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Abstract. The problem of finding p-harmonic flows arises in a wide range of applications
including micromagnetics, liquid crystal theory, directional diffusion, and chromaticity denoising. In
this paper, we propose an innovative curvilinear search method for minimizing p-harmonic energies
over spheres. Starting from a flow (map) on the unit sphere, our method searches along a curve
that lies on the sphere in a manner similar to a standard inexact line search descent method. We
show that our method is globally convergent if the step length satisfies the Armijo-Wolfe conditions.
Computational tests are presented to demonstrate the efficiency of the proposed method and a variant
of it that uses Barzilai-Borwein steps.
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1. Introduction. Let | · | denote the Euclidean norm, SN−1 denote the (N −1)-
sphere in R

N , i.e., SN−1 := {U ∈ R
N : |U| = 1}, and Ω denote an open subset of

R
M , where M ≥ 1 and N ≥ 2. In this paper we propose, for the case N = 3 and

M = 2, simple and very efficient methods for solving the minimization problem

(1.1) min
U∈H1

n0
(Ω,SN−1)

Êp(U) =

∫

Ω

|DU(x)|pF dx,

where 1 ≤ p < ∞,

(1.2) H1
n0

(Ω, SN−1) := {U ∈ H1(Ω, RN ) | U(x) ∈ SN−1a.e.;U|∂Ω = n0},

| · |F is the Frobenius norm, i.e., |B|F =
√∑

i,j B2
i,j , and the operator D denotes

differentiation, i.e.,

DU(x) =




∂U1(x)
∂x1

. . . ∂U1(x)
∂xM

. . .
∂UN (x)

∂x1
. . . ∂UN (x)

∂xM




is the Jacobian matrix of U at x. In what follows, we use the simpler notation |U| = 1
to represent the constraint U ∈ H1

n0
(Ω, SN−1). The mappings U that are stationary

points of Problem (1.1) are called p-harmonic maps, and in particular, harmonic maps
for p = 2.

The analytical properties of (1.1), including the existence, non-uniqueness, regu-
larity and singularities of minimizing harmonic maps, have been intensively studied
[Chen, 1989; Chen and Lin, 1995; Chen and Struwe, 1989; Coron and Gulliver, 1989;
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Hungerbühler, 1996, 1997, 2004; Lin, 1987]. The applications of p-harmonic maps in-
clude micromagnetics [Kruž́ık and Prohl, 2006], liquid crystal theory [Alouges, 1997;
Cohen et al., 1987, 1989; Lin and Luskin, 1989], directional diffusion and chromatic-
ity (color image) denoising [Chan and Shen, 2000; Lysaker et al., 2004; Perona, 1998;
Tang et al., 2000, 2001].

Several types of numerical approaches have been proposed to solve Problem (1.1).
The approach in [Cohen et al., 1987, 1989] solves the Euler Lagrange equations for
(1.1) iteratively, where at each step the spherical constraints are ignored at first
and then the solution V is renormalized by setting U = V

|V| . This renormalization

approach is analyzed in [Alouges, 1997], where it is shown that the energy is decreased
after each renormalized step and a convergent algorithm is proposed. Related finite
element methods are studied in [Barrett et al., 2007; Bartels, 2005]. By modifying a
discretization scheme for the heat flow equations corresponding to (1.1), constraint
preserving finite element methods are developed in [Bartels and Prohl, 2006,c]. A
second approach [Bethuel et al., 1992, 1993; Misawa, 2001] adds a penalty term to
the objective function in (1.1) to penalize violation of the spherical constraint, i.e., it
forms

Pǫ(U) =

∫

Ω

|DU(x)|pF dx +
1

ǫ

∫

Ω

(|U|2 − 1)2 dx,

and then solves a sequence of unconstrained minimization problems minPǫ(U) by
letting ǫ → 0. This approach is also used to solve the minimization of the Ginzburg-
Landau functional. A third approach [Cecil et al., 2004; Vese and Osher, 2002] is
based on solving the unconstrained problem

(1.3) min
U

Ep(U) =

∫

Ω

∣∣∣∣D
(

U

|U|

)∣∣∣∣
p

F

dx, s.t. U ∈ H1
n0

(Ω, RN ).

A parameterization of the variable U is employed to derive a constraint preserving
gradient descent method.

Our method directly solves (1.1) by generating a sequence {Un} based upon an
updating formula that preserves |Un| = 1 and does not involve renormalization. Ev-
ery update from Un to Un+1 is determined by a descent direction on the manifold
H1

n0
(Ω, SN−1) and a step size; however, the formula preserves |Un+1| = 1 for any

direction and step size. This important property allows us to directly apply classi-
cal optimization techniques developed for use in Euclidean spaces such as line search
methods and Barzilai-Borwein step sizes to significantly accelerate convergence, re-
sulting in a framework that we refer to as a curvilinear method. In addition, at least
for N ≤ 3, we show that the updating formula is simple and easy to compute. We
carefully discretized various quantities, especially the objective functional and updat-
ing formula, so that the magnitude preserving property holds after discretization and,
therefore, benefits numerical computation.

This paper is organized as follows. In Section 2.1, we derive a descent method
that preserves |U| = 1 from the Euler-Lagrange equations for (1.1). In Section 2.2,
we present an equivalent representation of the unconstrained objective functional in
(1.3) for the case N = 3. We then introduce in Section 2.3 a discrete counterpart of
the descent method described in Section 2.1. In Section 2.4, we present a curvilinear
search method applied to the discrete formulation and prove global convergence to a
stationary point. In Section 3 we describe how to incorporate Barzilai-Borwein steps
into our curvilinear search framework. Finally a set of numerical results on both
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synthetic and real problems are presented in Section 4 to demonstrate the efficiency
of our algorithms.

2. Continuous and Discrete Descent Methods.

2.1. A Descent Method that Preserves |Un| = 1. It is well known that
the Euler-Lagrange equations (i.e., the first-order optimality conditions) for Problems
(1.1) and (1.3) are the set of coupled PDEs (assuming they are well-defined)

(2.1)





∇Êp(U) := −∆pU − |DU|p U = 0,
|U| = 1 a.e. on ΩT ,

U|∂Ω = n0,

where ∇Êp(U) denotes the Fréchet derivative of Êp(U) with respect to U and ∆pU
n :=

D · (|DU|p−2 DU). From |U| = 1 it follows that (DU)⊤ U = 0; hence from this and
the product rule for differentiation we obtain

0 = D ·
(
|DU|p−2

(
DU⊤U

) )
= D ·

((
|DU|p−2 DU

)⊤
U

)
= |DU|p + 〈U,∆pU〉,

which implies that −|DU|p = 〈U,∆pU〉 and

∇Êp(U) = −|DU|p U − ∆pU = 〈U,∆pU〉U − 〈U,U〉∆pU = U × (U × ∆pU),

where the second equality is from Lagrange’s formula

(2.2) a × (b × c) = 〈a, c〉b − 〈a,b〉c.

Given a current point Un with |Un| = 1, the classical steepest descent method
computes a new trial point Un+1

SD as

(2.3) Un+1
SD = Un − τ∇Êp(U

n) = Un − τUn × (Un × ∆pU
n),

where τ is a step size. In general, Un+1
SD does not satisfy |Un+1

SD | = 1. Inspired by
[Vese and Osher, 2002], we propose replacing the step direction

Un × (Un × ∆pU
n)

by

Un+1 + Un

2
× (Un × ∆pU

n),

which yields the following method for computing a new trial point Un+1

(2.4) Un+1 = Un − τ
Un+1 + Un

2
× (Un × ∆pU

n).

We note that both (2.3) and (2.4) can be viewed as a time discretization of p-harmonic

heat flow Uτ = −∇Êp(U) by letting τ go to 0.
Remark 2.1. We can represent the cross product in R

3 in the form of matrix-
vector product. Let a = (a1, a2, a3)

⊤ ∈ R
3 and b ∈ R

3. Then the cross product
a × b = a(×)b, where the matrix a(×) is defined by

(2.5) a(×) =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .
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Using this result, we can obtain Un+1 explicitly.
Theorem 2.2. For any Hn, the solution of the update formula

(2.6) Un+1 = Un − Un+1 + Un

2
× Hn,

with respect to Un+1 is

(2.7) Un+1 =

(
I − 1

2
(Hn)(×)

)−1 (
I +

1

2
(Hn)(×)

)
Un

where I is the identity matrix in R
3×3 and (Hn)(×) is the matrix of the form (2.5)

corresponding to Hn. In addition, (2.7) satisfies

(2.8) |Un+1| = |Un|.

Consequently, if |U0| = 1 it follows that {Un} satisfies |Un| = 1 for all n > 0.
Proof. 1. Rearranging (2.6), we get

Un+1 − Un +
1

2
Un+1 × Hn +

1

2
Un × Hn = 0.

Using the matrix-vector form of the cross product (2.5), the fact that a×b = −b×a

and collecting common terms, we obtain

(2.9)

(
I − 1

2
(Hn)(×)

)
Un+1 =

(
I +

1

2
(Hn)(×)

)
Un.

Since (Hn)(×) is skew symmetric, the matrix
(
I − 1

2 (Hn)(×)
)

is nonsingular for any

Hn; in fact, det
(
I − 1

2 (Hn)(×)
)

= 1 + 1
4‖Hn‖2. Therefore, the system of equations

(2.9) is solvable and we obtain (2.7).

2. Taking the inner product on both sides of (2.6) with U
n+1+U

n

2 and rearranging
terms gives

0 =

〈
Un+1 − Un,

Un+1 + Un

2

〉
+

〈
Un+1 + Un

2
× Hn,

Un+1 + Un

2

〉

=
1

2

(
|Un+1|2 − |Un|2

)
,

where we have used the fact that the second term in the first equation is equal to
zero because of the following properties of the cross product: 〈a × b, c〉 = −〈b,a ×
c〉 and a× a = 0 for any a,b, c ∈ R

3. This result also follows from (2.7) and the fact
that B⊤B = I if B = (I − K)−1(I + K) and K is skew symmetric.

Theorem 2.3. The step Un+1 − Un in (2.4) is a descent step if the steepest
descent step Un+1

SD − Un with the same step size τ is a descent step.
Proof. It is easy to verify that

Un+1 − Un+1
SD =

τ

2
(Hn)(×)

(
Un+1 − Un

)
,

where Hn = Un × ∆pU
n. Since (Hn)(×) is skew symmetric,

(
Un+1 − Un

)⊤ (
Un+1 − Un+1

SD

)
= 0.

D 
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Hence

(
Un+1 − Un

)⊤ (
Un+1

SD − Un
)

=
(
Un+1 − Un

)⊤ (
Un+1

SD − Un+1 + Un+1 − Un
)

= |Un+1 − Un|2 > 0,

since Un+1 6= Un if Un+1
SD 6= Un.

In [Bartels and Prohl, 2006c] the authors take Hn as U
n+1+U

n

2 × ∆pU
n+1 in

a finite element discretization for the gradient flow equation and use a fixed point
method to compute Un+1. Similar results are also presented in [Bartels and Prohl,
2006b,a]

Remark 2.4. The updating formula (2.4) can be applied to solve the general
minimization problem

(2.10) minF(U), subject to U ∈ S2.

From the theory of Riemannian manifolds, the Euler-Lagrangian equations of Problem
(2.10), given by the covariant derivative, is

(2.11) ΠU (∇F) = ∇F − 〈U,∇F〉U = 0, U ∈ S2,

where ΠU is the orthogonal projection from TUR
3 onto the tangent space TUS2 [Chan

and Shen, 2000; Mémoli et al., 2004]. From the Lagrange formula (2.2), we obtain

ΠU (∇F) = −U × (U ×∇F) , U ∈ S2,

which implies that an updating formula similar to (2.4) can be used to solve (2.10).
Next, we develop a discrete numerical scheme that preserves the results of Theo-

rems 2.2 and 2.3 after first presenting an objective functional in next section that is
equivalent to the one in (1.3).

2.2. An Equivalent Objective Functional. By expanding the integral
∣∣∣D

(
U

|U|

)∣∣∣
p

F
in (1.3) for U = (u, v, w), we obtain
(2.12)

min
U∈H1

n0
(Ω,RN )

Ep(U) =

∫

Ω

(∣∣∣∣
uDv − vDu

u2 + v2 + w2

∣∣∣∣
2

+

∣∣∣∣
uDw − wDu

u2 + v2 + w2

∣∣∣∣
2

+

∣∣∣∣
vDw − wDv

u2 + v2 + w2

∣∣∣∣
2
)p/2

dx,

which is equivalent to Problems (1.1) and (1.3). Our task is to discretize (2.12) and
express the updating formula (2.4) in terms of (uk, vk, wk) while preserving the results
in Theorems 2.2 and 2.3.

Although the minimization problems (1.1) and (1.3) (hence, (2.12) above as a
special case for N = 3) have the same infimum, there are advantages in solving (1.3)
(hence, (2.12)) instead of the equivalent problem (1.1). In (1.1) the explicit constraints
|U| = 1 are all nonconvex and thus difficult to handle numerically; in contrast problem
(1.3) or (2.12) is unconstrained and one can directly apply nonlinear optimization
methods to it. For (2.12), we give below a finite difference discretization for which we
derive a globally convergent and efficient iterative algorithm. Furthermore, we do not
need to renormalize U, either at every iteration or when our algorithm terminates (at
a steady state).

Formula (2.12) can be extended to higher dimensional spaces, i.e., N ≥ 3, by

expanding the integral
∣∣∣D

(
U

|U|

)∣∣∣
p

F
explicitly. Also let us remark that (2.12) for N = 2,

D 
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i.e., when U = (u, v) maps to S1, can be simplified. Needless to say, all formulas and
results developed below for N = 3 can also be simplified and applied to N = 2.

Remark 2.5. For p-harmonic mappings into S1, we simply take w = 0; hence
Problem (1.3) becomes

minEp(U) =

∫

Ω

∣∣∣∣
uDv − vDu

u2 + v2

∣∣∣∣
p

dx,

which has a gradient flow governed by

(2.13) ut + vH = 0, vt − uH = 0,

where H = uD · (|DU|p−2Dv) − vD · (|DU|p−2Du).
Remark 2.6. For N = 2, i.e., mappings U = (u, v) into S1, [Vese and Osher,

2002] parametrizes u and v by (r, θ) using u = r cos(θ) and v = r sin(θ). It can

be shown that
∣∣∣D

(
U

|U|

)∣∣∣
p

F
≡ |Dθ|p. The authors calculate the gradient flow of the

functional
∫
Ω
|Dθ|p dx with respect to θ. Using the transformation θ = tan−1

(
v
u

)
and

the two facts that u2 + v2 = 1 and Dθ = uDv−vDu
u2+v2 , they reformulate the gradient flow

in (u, v) as

uut + vvt = 0,

uvt − vut

u2 + v2
= D ·

(∣∣∣∣
uDv − vDu

u2 + v2

∣∣∣∣
p−2

uDv − vDu

u2 + v2

)
,

which they then further simplify into a set of equations similar to (2.13). From this,
an updating scheme similar to (2.4) is proposed. Our approach generalizes theirs for
p-harmonic maps into S2.

In the next subsection we take a “discretize-then-optimize” approach. In an
“optimize-then-discretize” approach, the updating formula (2.4), instead of the ob-
jective functional (2.12), is the starting point of the discretization. Given a specific
discretization to (2.4) it is not easy to figure out the exact (discretized) objective func-
tion that the discretized version of (2.4) minimizes, so it is not clear how to specify
certain algorithmic steps such as a line search and a convergence test.

Updating formula (2.4) and Theorem 2.2 provide some guidelines for designing a
discretized energy function for Problem (2.12) (i.e., Problem (1.3)). If the gradient
of the discretized energy function at the point Un can be represented in the form of
Un × Hn for some quantity Hn ∈ R

3, an updating scheme similar to (2.4) can be
derived and the point-wise constraint |Un| = 1 can be maintained at all the iterations.

2.3. A Finite Difference Discretization Scheme. For simplicity, we assume
that the domain Ω is a rectangle and discretize it as the grid:

(2.14) Ωh
def
= {(xi, yi) |xi = ihx, yj = jhy, i = 0, 1, · · · ,m; j = 0, 1, · · · , n},

where hx, hy are the grid widths in the x and the y directions, respectively. We let
ui,j = u(xi, yi), vi,j = v(xi, yi) and wi,j = w(xi, yi) at each grid point (xi, yi). A key
aspect of our discretization is the use of the mean operators ζxu and ζyu, which are
defined as

ζxui,j =
ui,j + ui−1,j

2
, ζyui,j =

ui,j + ui,j−1

2
,
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with respect to the x direction and y directions, respectively. To match the mean
operators ζxu and ζyu, the backward finite difference operators δxu and δyu, which
are defined as

δxui,j =
ui,j − ui−1,j

hx
, δyui,j =

ui,j − ui,j−1

hy
,

are used to approximate the partial derivatives Du. Similar mean operators and finite
difference operators are defined for v and w. As shown in the following lemma, the
property (DU)⊤ U = 0 for |U| = 1 holds for the U and DU given by the means
and finite differences defined above, respectively. This result plays an important role
in the derivation of the Euler Lagrange equations and the cross product form of the
gradient.

Lemma 2.7. If |Ui,j | = |(ui,j , vi,j , wi,j)| = 1 for all i and j, then

ζxui,jδxui,j + ζxvi,jδxvi,j + ζxwi,jδxwi,j = 0,(2.15)

ζyui,jδyui,j + ζyvi,jδyvi,j + ζywi,jδywi,j = 0.(2.16)

The proof is trivial.
Next, we define

Sx
i,j = (ζxui,j)

2 + (ζxvi,j)
2 + (ζxwi,j)

2, Sy
i,j = (ζyui,j)

2 + (ζyvi,j)
2 + (ζywi,j)

2,

and

(fx
1 )i,j =

ζxui,jδxvi,j − ζxvi,jδxui,j

Sx
i,j

, (fy
1 )i,j =

ζyui,jδyvi,j − ζyvi,jδyui,j

Sy
i,j

,

(fx
2 )i,j =

ζxui,jδxwi,j − ζxwi,jδxui,j

Sx
i,j

, (fy
2 )i,j =

ζyui,jδywi,j − ζywi,jδyui,j

Sy
i,j

(fx
3 )i,j =

ζxvi,jδxwi,j − ζxwi,jδxvi,j

Sx
i,j

, (fy
3 )i,j =

ζyvi,jδywi,j − ζywi,jδyvi,j

Sy
i,j

,

to approximate the terms uDv−vDu
u2+v2+w2 , uDw−wDu

u2+v2+w2 and vDw−wDv
u2+v2+w2 , in the x and y direc-

tions, respectively. The terms (fx
k )i,j and (fy

k )i,j for k = 1, 2, 3 are well defined if
Sx

i,j 6= 0 or Sy
i,j 6= 0. Furthermore, we introduce

Fi,j =
(
(fx

1 )2i,j + (fy
1 )2i,j + (fx

2 )2i,j + (fy
2 )2i,j + (fx

3 )2i,j + (fy
3 )2i,j + ξ

)p/2
,

where ξ ( ξ = 0 if p is even and ξ > 0 if p is odd) is a small perturbation to avoid
non-differentiability. Using the above definitions, the objective functional in (2.12) is
discretized as:

(2.17) Ep(U) =

m∑

i=1

n∑

j=1

Fi,j ,

by abusing the notation and letting U = {(ui,j , vi,j , wi,j)}.
We show below in Lemma 2.8, proved in Appendix B, that the partial derivatives

of the discrete function Ep(U) with respect to ui,j , vi,j and wi,j can be represented
in a cross-product form similar to their continuous counterparts (2.3).

Lemma 2.8. Suppose |Ui,j | = 1 for all i and j. The partial derivatives of
Ep(U) with respect to variables Ui,j = (ui,j , vi,j , wi,j) for each i = 1, . . . ,m − 1 and
j = 1, . . . , n − 1 are

(2.18) (∇Ep(U))i,j = Ui,j × Hi,j ,
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where H = (Ha,Hb,Hc) and
(2.19)



(Hc)i,j = +p

(
−F

p−2

p

i,j

(
(fx

1 )i,j

hxSx
i,j

+
(fy

1 )i,j

hySy
i,j

)
+ F

p−2

p

i+1,j

(fx
1 )i+1,j

hxSx
i+1,j

+ F
p−2

p

i,j+1

(fy
1 )i,j+1

hySy
i,j+1

)
,

(Hb)i,j = −p

(
−F

p−2

p

i,j

(
(fx

2 )i,j

hxSx
i,j

+
(fy

2 )i,j

hySy
i,j

)
+ F

p−2

p

i+1,j

(fx
2 )i+1,j

hxSx
i+1,j

+ F
p−2

p

i,j+1

(fy
2 )i,j+1

hySy
i,j+1

)
,

(Ha)i,j = +p

(
−F

p−2

p

i,j

(
(fx

3 )i,j

hxSx
i,j

+
(fy

3 )i,j

hySy
i,j

)
+ F

p−2

p

i+1,j

(fx
3 )i+1,j

hxSx
i+1,j

+ F
p−2

p

i,j+1

(fy
3 )i,j+1

hySy
i,j+1

)
.

Remark 2.9. Forward finite differences or central finite differences can also be
used, and they give similar results with appropriate mean operators.

2.4. A Discrete Descent Method and Curvilinear Search Algorithm.

In this subsection, we describe a method for solving the unconstrained discretized
problem (2.17), based upon the special structure of the gradient (2.18). Our updating
scheme is analogous to (2.4). Essentially, we define a curve from the current point
Un on the surface of the sphere S2 and search along it for a new point Un+1.

The steepest descent method computes a new point Un(τ) by the formula

(2.20) Un
i,j(τ) = Un

i,j − τ (∇Ep(U
n))i,j ,

where ∇Ep(U
n) is given by (2.18). Since in general |Un

i,j(τ)| 6= 1, we modify (2.20)
in the same way as in Theorem 2.2 and obtain

(2.21) Un
i,j(τ) = Un

i,j − τ
Un

i,j(τ) + Un
i,j

2
× Hn

i,j ,

which is clearly linear in Un
i,j(τ). Below we derive the candidate point Un(τ) and its

derivative with respect to τ and show |Un(τ)| = |Un| for any τ similar to Theorem
2.2.

Theorem 2.10. For any τ , the solution Un
i,j(τ) of the system of equations (2.21)

with respect to Un
i,j is

(2.22) Un
i,j(τ) =

(
Wn−

i,j

)−1 Wn+
i,j Un

i,j ,

where Wn+
i,j = I + τ

2 (Hn
i,j)

(×), Wn−
i,j = I− τ

2 (Hn
i,j)

(×), I is the identity matrix in R
3×3

and (Hn
i,j)

(×) is the matrix corresponding to (Hn
i,j) defined as in (2.5). Moreover

|Un
i,j(τ)| = |Un

i,j | and the derivative of Un
i,j(τ) with respect to τ is

(2.23) (Un
i,j)

′(τ) =
dUn

i,j(τ)

dτ
=

1

2

(
Wn−

i,j

)−1
(Hn

i,j)
(×)

(
Un

i,j + Un
i,j(τ)

)
.

Proof. Except for the derivation of (2.23), the proof is identical to the proof of
Theorem 2.2 with Un, Un+1 and Hn replaced by Un

i,j , U
n+1
i,j (τ) and Hn

i,j , respectively.
To obtain (2.23) we differentiate both sides of (2.22) with respect to τ , which gives

−1

2
(Hn

i,j)
(×)Un

i,j(τ) +
(
I − τ

2
(Hn

i,j)
(×)

) dUn
i,j(τ)

dτ
=

1

2
(Hn

i,j)
(×)Un

i,j .
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The matrix form of the updating formula (2.22) should be expanded to avoid
inverting the matrices Wn−

i,j at each grid point (i, j). To simplify the notation, we
temporarily drop the subscripts (i, j) and superscript n. Let (Ha)i,j , (Hb)i,j , (Hc)i,j

be denoted by a, b, c, respectively, and recall that Un = (u, v, w) and Un(τ) =
(u(τ), v(τ), w(τ)) .

Corollary 2.11. The solution given by (2.22) can be expressed explicitly as

u(τ) =
4u + 4τbw − 4τcv − τ2b2u + τ2a2u − τ2c2u + 2τ2abv + 2τ2acw

4 + τ2c2 + τ2a2 + τ2b2
,

v(τ) =
4v + 4τcu − 4τaw + τ2b2v − τ2a2v − τ2c2v + 2τ2cbw + 2τ2abu

4 + τ2c2 + τ2a2 + τ2b2
,

w(τ) =
4w + 4τav − 4τbu − τ2b2w − τ2a2w + τ2c2w + 2τ2bcv + 2τ2acu

4 + τ2c2 + τ2a2 + τ2b2
.

Proof. Since a direct verification is tedious, a symbolic “MATLAB script” is given
in Appendix A.

Remark 2.12. A curve µ(τ) : R → S2 is a geodesic on the unit sphere S2 if and
only if

(2.24) µ̈ = 〈µ̈, µ〉µ.

It can be verified that the curve Un(τ) defined by formula (2.22) is not a geodesic
since it does not satisfy (2.24).

To further our understanding, we compare the curves generated by formula (2.22)
with the two curves generated by the traditional steepest descent method followed by
a projection on to S2, called the normalization method, and by the geodesic steepest
descent method on S2. Specifically, the curve generated by the normalization method
is defined as

(2.25) Ûn(τ) =
Un − τ∇Ep(U

n)

|Un − τ∇Ep(Un)| .

The geodesic steepest descent method searches along the geodesic of S2 in the negative
gradient direction. We first make sure that the gradient ∇Ep(U

n) lies on the tangent
plane TUnS2 by computing d = ΠUn(∇Ep(U

n)) where ΠUV = V − 〈V,U〉U is
the orthogonal projection from the tangent space TUR

3 onto the tangent space TUS2.
Then the curve along the geodesic of the unit sphere [Chan and Shen, 2000] is defined
as

(2.26) Ũn(τ) = cos(τ |d|)Un + sin(τ |d|) d

|d| .

To obtain some intuition, we study Example 4.1 with p = 1 from Section 4 on numeri-
cal implementation. We choose Un as the initial point U0 given by (4.1), choose a grid

point (i, j) and then compute the points Un(τn), Ûn(τn) and Ũn(τn) for τn = k/3,

k = 1, · · · , 30 on the curve Un(τ), Ûn(τ) and Ũn(τ) defined by formulas (2.22),
(2.25) and (2.26), respectively, corresponding to that grid point. The left hand side
of Figure 2.1 is the result corresponding to the grid point (11, 11) and the right hand
side of Figure 2.1 is the result corresponding to the grid point (11, 15). These plots
show that the three curves are different.

D 

D 



10 DONALD GOLDFARB, ZAIWEN WEN AND WOTAO YIN

Fig. 2.1. Comparison of Updating Formulas. The solid curve marked by ∗ was generated by

(2.22), the dash-dot curve marked by ◦ was generated by the normalization method, and the dashed

curve marked by ⋄ was generated by the geodesic steepest descent method.
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It is well known that the steepest descent method with a fixed step size may not
converge. By choosing the step size wisely, we can guarantee convergence and even
accelerate the speed of convergence without greatly increasing the computational cost
at each iteration. One approach is to minimize the objective value Ep(U) along the
curve Un(τ) with respect to τ , i.e., to obtain an optimal τ∗ by solving

min
τ

Ep(U
n(τ)).

Since finding a global minimizer τ∗ is computationally expensive, one is usually sat-
isfied with an approximate minimizer such as a τn satisfying the Armijo-Wolfe condi-
tions [Fletcher, 1987; Nocedal and Wright, 2006; Sun and Yuan, 2006]

Ep(U
n(τn)) ≤ Ep(U

n(0)) + ρ1τnE′
p(U

n(0)),(2.27a)

E′
p(U

n(τn)) ≥ ρ2E
′
p(U

n(0)),(2.27b)

where E′
p(U

n(0)) and E′
p(U

n(τn)) are the derivatives of Ep(U
n(τ)) with respect to

τ at τ = 0 and τ = τn, respectively, and 0 < ρ1 < ρ2 < 1 are two parameters. To
select a step size τn to satisfy the Armijo-Wolfe conditions (2.27a) and (2.27b), we
refer to Algorithms 3.2 and 3.3 in [Nocedal and Wright, 2006], which are based on
interpolation and bisection. For a more detailed description of these kind of strategies,
see, for example [Moré and Thuente, 1994]. To summarize, we describe the curvilinear
search approach in Algorithm 1.

Algorithm 1 A gradient descent method with curvilinear search

STEP 0: Initialization. Given an initial point U0 such that |U0| = 1. Set
n = 0, ǫ ≥ 0 and 0 < ρ1 < ρ2 < 1.

STEP 1: Compute the Step size τn. Call line search along the path Un(τ)
defined by (2.22) to obtain a step size τn that satisfies the Armijo-Wolfe
conditions (2.27a) and (2.27b).

STEP 2: Update. Set the new trial point Un+1 = Un(τn). If ‖∇Ep(U
n+1)‖ ≤

ǫ, then STOP. Set n = n + 1; goto STEP 1.

Using the chain rule, the derivative of Ep(U
n(τ)) with respect to τ is

(2.28) E′
p(U

n(τ)) = [∇Ep(U
n(τ))]

⊤
(Un)′(τ),

............... 
·····•· 

··-.~-,,, 

• 
t 

l 
. ,.i 
·•··... ,,---··-.--~ 

······· ....... -........... L:~__,, .• _.: __ _ I½ 
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where the partial derivatives (Un)′(τ) are given by (2.23). Using (2.23) we have

(2.29) (Un
i,j)

′(0) = (Hn
i,j) × Un

i,j = −(∇Ep(U
n))i,j ,

or

(2.30) E′
p(U

n(0)) = −‖∇Ep(U
n)‖2 ≤ 0.

Moreover, (2.29) shows that the negative gradient is the direction of the trajectory
Un(τ) at τ = 0.

Since Ep(U(τ)) is continuously differentiable and bounded from below, it is not
difficult to prove that there exists a τn satisfying the Armijo-Wolfe condition (2.27a)
and (2.27b). Therefore, every iteration of Algorithm 1 is well defined. Formally, we
have

Lemma 2.13 ([Nocedal and Wright, 2006]: Lemma 3.1). If 0 < ρ1 < ρ2 < 1
and E′

p(U
n(0)) < 0, there exist intervals of step lengths satisfying the Armijo-Wolfe

conditions (2.27a) and (2.27b).
To prove the global convergence of Algorithm 1, let us define the level set

(2.31) L = {U |Ep(U) ≤ Ep(U
0), |U0

i,j | = 1, |Ui,j | = 1},
which is a compact set. Starting from a point U0 with |U0

i,j | = 1, the sequence {Un}
generated by Algorithm 1 stays in the level set L since Ep(U

n) is decreasing and Un

always satisfies the point wise constraints |Un
i,j | = 1. We first show in Lemma 2.14

that limn∈K ‖Un(τn)−Un(0)‖ = 0 and limn∈K ‖(Un)′(τn)− (Un)′(0)‖ = 0 if τn → 0
for any subsequence {Un}n∈K generated by Algorithm 1.

Lemma 2.14. Suppose that {Un}n∈K is an infinite subsequence generated by
Algorithm 1. Then the sequence {Un(τn)}n∈K defined by formula (2.22) satisfies
limn∈K ‖Un(τn)−Un(0)‖ = 0 and limn∈K ‖(Un)′(τn)−(Un)′(0)‖ = 0 if limn∈K τn =
0 .

Proof. 1. It follows from (2.22) that

Un
i,j(τ) − Un

i,j(0) =
[(
Wn−

i,j

)−1 Wn+
i,j − I

]
Un

i,j = Ŵn
i,jU

n
i,j ,

and hence that
∣∣Un

i,j(τ) − Un
i,j(0)

∣∣ ≤
∥∥∥Ŵn

i,j

∥∥∥
2
|Un

i,j | = κn
i,j ,

where κn
i,j =

2τn|Hn
i,j |√

4+τ2
n|Hn

i,j
|2

is the 2-norm of the matrix Ŵn
i,j (See Appendix A for a

procedure for determining this norm). Therefore, we obtain

‖Un(τn) − Un(0)‖2 =
∑

i,j

|Un
i,j(τn) − Un

i,j(0)|2 ≤
∑

i,j

(
κn

i,j

)2
.

Since {Hn
i,j}n∈K are continuous functions with respect to the variables Un, which

stays in the compact level set L, it follows that the sequences {Hn
i,j}n∈K are uniformly

bounded for all i and j. This together with the fact that limn∈K τn = 0, gives
limn∈K(κn

i,j)
2 = 0, and hence the result limn∈K ‖Un(τn) − Un(0)‖ = 0.

2. It follows from (2.22) and (2.23) in Theorem 2.10 that

(Un
i,j)

′(τ) − (Un
i,j)

′(0) =
1

2

(
Wn−

i,j

)−1
(Hn

i,j)
(×)

(
Un

i,j + Un
i,j(τ)

)
− (Hn

i,j)
(×)Un

i,j

=

[
1

2

(
Wn−

i,j

)−1
(Hn

i,j)
(×)

(
I +

(
Wn−

i,j

)−1 Wn+
i,j

)
− (Hn

i,j)
(×)

]
Un

i,j

= W̃n
i,jU

n
i,j ,
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where the 2-norm of the matrix W̃n
i,j is

κ̃n
i,j =

√
τ4
n|Hn

i,j |6 + 16τ2
n|Hn

i,j |4
τ4
n|Hn

i,j |4 + 8τ2
n|Hn

i,j |2 + 16
.

Therefore, a similar proof to that given in part 1 gives limn∈K ‖(Un)′(τn)−(Un)′(0)‖ =
0.

We now study the convergence properties of the sequence {Un} generated by
Algorithm 1. Since {Un} stays in the compact level set L, there exists at least
one accumulation point. Moreover, the following result shows that the sequence of
gradient {∇Ep(U

n)} converges to zero.
Theorem 2.15. Let {Un} be the full sequence generated by Algorithm 1. Then

(2.32) limn→∞‖∇Ep(U
n)‖ = 0.

Proof. For a proof by contradiction we suppose that (2.32) does not hold. Then
there exists a constant ǫ > 0 and a infinite index set K ⊆ N such that

(2.33) ‖∇Ep(U
k)‖ > ǫ, for all n ∈ K.

It follows from Lemma 2.13 that a step size that satisfies the Armijo-Wolfe condition
(2.27a) and (2.27b) is well defined for each iteration. Summing the inequalities (2.27a)
we obtain that

(2.34)

∞∑

n=0

ρ1τn‖∇Ep(U
n)‖2 ≤ Ep(U

0) − lim
n→∞

Ep(U
n),

where the limit exists because of the descent property of Ep(U
n) and the boundedness

of L. Hence, we have τn‖∇Ep(U
n)‖2 → 0, which implies that τn → 0 for n ∈ K

because of (2.33). Therefore, from Lemma 2.14, we have

(2.35) lim
n∈K

‖Un(τn) − Un(0)‖ = 0 and lim
n∈K

‖(Un)′(τn) − (Un)′(0)‖ = 0.

Using relation (2.30) and the curvature condition (2.27b), we obtain that, for all
n ∈ K,

(1 − ρ2)‖∇Ep(U
n)‖2 = (ρ2 − 1)E′

p(U
n(0)) ≤ E′

p(U
n(τn)) − E′

p(U
n(0)).

Using relation (2.28), we have

E′
p(U

n(τn)) − E′
p(U

n(0))

= ∇Ep(U
n(τn))⊤(Un)′(τn) −∇Ep(U

n(0))⊤(Un)′(0)

= ∇Ep(U
n(τn))⊤[(Un)′(τn) − (Un)′(0)] + [∇Ep(U

n(τn)) −∇Ep(U
n(0))]⊤(Un)′(0).

Therefore, it follows from Cauchy-Schwartz inequality that

(1 − ρ2)‖∇Ep(U
n)‖2 ≤ ‖∇Ep(U

n(τn))‖ ‖(Un)′(τn) − (Un)′(0)‖(2.36)

+ ‖∇Ep(U
n(τn)) −∇Ep(U

n(0))‖ ‖(Un)′(0)‖.

Since ∇Ep(U) is continuous on the compact set L and recalling (2.35), we have

lim
n∈K

‖∇Ep(U
n(τn)) −∇Ep(U

n(0))‖ = 0.

D 
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Furthermore, {‖∇Ep(U
n)‖}n∈K is bounded, and so is ‖(Un)′(0)‖ since by (2.29)

‖(Un)′(0)‖ = ‖∇Ep(U
n)‖. These facts together with (2.35) imply that the right

hand side in (2.36) converges to zero as n ∈ K tends to ∞. This, in turn, implies
that limn∈K ‖∇Ep(U

n)‖ = 0, which contradicts (2.33).
Remark 2.16. If a backtracking line search is used in Algorithm 1, results similar

to Theorem 2.15 still hold.

3. Accelerating the Curvilinear Search Method. In this section we apply
so-called Barzilai-Borwein (BB) steps [Barzilai and Borwein, 1988] for a significant
acceleration of convergence. Calculating BB steps requires less computation per it-
eration than performing line search, and using them often significantly reduces the
required number of iterations in a gradient descent method.

The BB method for solving

(3.1) min
x∈RN

f(x)

has the form xn+1 = xn − αngn, where gn = ∇f(xn) and αn is determined by the
information obtained at the points xn−1 and xn. Let

sn−1 = xn − xn−1, yn−1 = gn − gn−1.

Barzilai and Borwein choose the step size αn so that the matrix Dn = αnI, which
can be viewed as an approximation to the Hessian of f at xn, has the quasi-Newton
property Dnyn−1 = sn−1. This yields

(3.2) α1
n =

(sn−1)⊤sn−1

(sn−1)⊤yn−1
,

or

(3.3) α2
n =

(sn−1)⊤yn−1

(yn−1)⊤yn−1
.

For the discretized problem (2.17), one can apply either one of the step sizes (3.2)
or (3.3), or use (3.2) and (3.3) alternatively on odd/even steps. On the very first
iteration of the algorithm, s0 and y0 do not exist so the BB steps α1

1 and α2
1 are

not defined and a line search must be performed. Since the steepest descent method
with inexact line search usually works well in early iterations, our curvilinear search
algorithm with BB steps uses this approach. The result is Algorithm 2.

Algorithm 2 A Curvilinear Search method with BB steps

STEP 0: Initialization. Given an initial point U0 such that |U0| = 1. Run
Algorithm 1 for γ steps to return another initial solution Uγ , where
γ ≥ 2 is a prescribed integer. Set n = γ + 1, ǫ ≥ 0.

STEP 1: Compute the Step size τn. If n is odd, compute τn by rule (3.2);
otherwise, compute τn by rule (3.3).

STEP 2: Update. Set the new trial point Un+1 = Un(τn). If ‖∇Ep(U
n+1)‖ ≤

ǫ, then STOP. Set n = n + 1; goto STEP 1.

The BB method is a nonmonotone method since it does not decrease the objective
value at every iteration. We note that there are many ways to improve the BB method,

D 
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incorporating it into a globalization strategy while preserving its good features. For
example, a nonmonotone line search strategy that guarantees global convergence when
combined with the BB method is studied in [Raydan, 1997]. An alternative step
gradient method is proposed in [Dai, 2003]. For other references on the BB method,
see, for example [Dai and Fletcher, 2005; Dai and Liao, 2002] and the references
therein.

4. Numerical Results. In this section, we demonstrate the effectiveness of our
curvilinear search algorithms on two test problems. We compared three algorithms: 1)
the gradient flow method with a fixed step size, denoted by “fixed-step”, 2) Algorithm
1 with Armijo-Wolfe line search, denoted by “curve-ls”, and 3) Algorithm 2, denoted
by “curve-BB”. All codes were written in MATALAB (Release 7.3.0); the curvilinear
search code is based upon the code “DCSRCH” [Moré and Thuente, 1994] with an
initial step size of 10−2 and parameters ρ1 = 10−4 and ρ2 = 0.9 for Armijo-Wolfe
conditions (2.27a) and (2.27b). In our implementation, we omitted the term hx, hy

in the objective function. All experiments were performed on a Dell Precision 670
workstation with an Intel Xeon 3.4GHZ CPU and 6GB of RAM.

In the following examples, our tests are on mappings into S2.
Example 4.1. ([Barrett et al., 2007; Bartels and Prohl, 2006c; Struwe, 1996]).

Let Ω = (−1, 1)2, and the initial solution U0 : Ω → S2 for x ∈ Ω be defined by

(4.1) U0(x) =

(
x

|x|sinφ(|x|), cosφ(|x|)
)

, where φ(r) =

{
br2 for r ≤ 1

b for r ≥ 1

and b = 3π
2 . The Dirichlet boundary condition is taken as U(x) =

(
x

|x| , 0
)

on ∂Ω.

The grid spacing is set to h =
√

2/24. We chose three cases p = 1, 1.5 and 2. We
terminated all algorithms when the norm of the gradient was less than ǫ = 10−5 and
limited the total number of iterations to 10000. For the “fixed-step” method, we set
τ = 10−2 for p = 1, τ = 10−3 for p = 1.5 and τ = 5 ∗ 10−4 for p = 2 to avoid a
blow-up in the objective function. In Algorithm 2, the number of monotone curvilinear
search iterations γ was set to 20.

We plot the first two components of the exact solution of the continuous problem
(1.1) and the initial solution U0 in Figure 4.1. It is easy to see that the initial solution
U0 is not close to the exact solution by comparing their two quiver plots at various
grid points.

First, let us consider the p = 1 case (the results are in Figures 4.2 and 4.5). From
Figure 4.2, all of the three methods recovered the solution quite well. The left plot
in Figure 4.5 shows the energy-versus-iteration histories. All three methods reduced
the objective value quickly at early iterations. Then they all slowed down, yielding
“L”-shaped curves. However, it is obvious that “curve-BB” converges faster than
“curve-ls”, which converges faster than “fixed-step”. The right plot in Figure 4.5 is
a zoom-in of the left plot. It shows that the algorithm “curve-BB” quickly converged
in no more than 200 iterations.

A summary of the computational costs for all of three methods is presented in
Table 4.1, in which “CPU” denotes CPU time measured in seconds, “ITER” denotes
the number of iterations, “NFE” denotes the total number of function evaluations,
Ep(U) and ‖∇Ep‖ denote the objective function value and the norm of the gradient,
respectively, when the algorithm terminates. From the table, the superiority of the
“curve-BB” method is obvious. The “curve-BB” method took less CPU time and
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Table 4.1
Computational Summary for Example 4.1

p fixed-step
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 8.086515 10000 10001 7.40e+01 2.79e-05
1.5 8.101544 10000 10001 3.15e+01 4.68e-01
2 7.172569 10000 10001 1.79e+01 1.23e+00

p curve-ls
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 5.478214 3308 3998 7.40e+01 9.90e-06
1.5 2.919280 1631 2091 3.08e+01 1.00e-05
2 1.763271 1085 1365 1.28e+01 9.92e-06

p curve-BB
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 0.371542 331 334 7.40e+01 9.88e-06
1.5 0.283160 242 247 3.08e+01 7.90e-06
2 0.177434 162 169 1.28e+01 9.73e-06

Fig. 4.1. Example 4.1, Left: exact solution of the continuous problem, Right: initial solution
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fewer function evaluations to achieve a point with a smaller gradient norm than the
“curve-ls” method, which is better than the “fixed-step” method.

The recovered solution and the energy-versus-iteration histories for p = 1.5 are
given in Figures 4.3 and 4.6 and those for p = 2 are given in Figures 4.4 and 4.7. These
figures and Table 4.1 demonstrate that the curvilinear search methods are effective and
the BB step strategy significantly accelerates convergence while the method “fixed-
step” did not converge within 10000 iterations. More surprisingly, the order of the
norm of the gradient achieved by the curvilinear methods is 10−5 while it is only of
order 10−1 and 100 for the “fixed-step” method for the p = 1.5 and p = 2, respectively.

Next, we consider the application of RGB color image denoising. This involves
solving Problem (1.1) with the Neumann boundary conditions ∂U

∂~n |∂Ω = 0, where ~n
denotes the exterior unit normal to ∂Ω. Let I = (IR, IG, IB) ∈ R

3 be an original color
image, from which we extracted the intensity or brightness |I| =

√
I2
R + I2

G + I2
B and

the chromaticity

f
def
=

I

|I| =

(
IR√

I2
R + I2

G + I2
B

,
IG√

I2
R + I2

G + I2
B

,
IB√

I2
R + I2

G + I2
B

)
∈ S2.

Then, noise was added to the image, but only to the chromaticity f so that the noisy
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Fig. 4.6. Energy versus iterations for Example 4.1 with p = 1.5 for the “fixed-step” method,

‘curve-ls” and “curve-BB”
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Fig. 4.7. Energy versus iterations for Example 4.1 with p = 2 for the “fixed-step” method,

‘curve-ls” and “curve-BB”
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chromaticity became f (0) = f+βξ
|f+βξ| , where ξ ∼ Normal(0,1) and β was the noise level.

Then applying Algorithms 1 and 2, we obtained an optimal restoration f∗. Finally,
using the original brightness |I|, we assembled the new image Inew = f∗|I|.

Example 4.2. In Figure 4.8, we depict the original color RGB image I =
(IR, IG, IB) ∈ R

3 (left) and a noisy version (right), where the noise level β was set to
0.5. We studied two cases p = 1 and 2. For the fixed step size method, τ was set to
10−3. We terminated the algorithm when the norm of the gradient was less than ǫ,
where ǫ = 30 for p = 1 and ǫ = 1 for p = 2. (The solution will be over-smoothed if ǫ
is too small). We also limited the total number of iterations to 500.

The denoised images are depicted in Figure 4.9 for p = 1 and in Figure 4.10 for
p = 2. They show that both the “curve-BB” method and the “curve-ls” method
accurately recovered the image . A summary of the computational performance for
all three methods is presented in Table 4.2.

5. Conclusion. In this paper, we present new gradient descent algorithms for
the p-harmonic flow problem on spheres. The algorithms are based on a simple updat-
ing formula and a specialized finite difference scheme, which preserve the point-wise
constraints |U| = 1. One of the algorithms determines a step size by an inexact curvi-
linear search, and is globally convergent. The other algorithm uses Barzilai-Borwein
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Table 4.2
Computational Summary for Example 4.2

p fixed-step
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 3.525676 500 501 4.74e+02 6.24e+01
2 2.721903 500 501 9.26e+06 1.01e+10

p curve-ls
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 1.094670 110 117 1.78e+02 2.42e+01
2 0.487048 50 64 4.36e+00 9.31e-01

p curve-BB
CPU (sec.) ITER NFE Ep(U) ‖∇Ep‖

1 0.687641 66 71 2.42e+02 3.00e+01
2 0.393424 43 52 4.59e+00 9.26e-01

Fig. 4.8. Example 4.2, Left: exact solution, Right: initial solution
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Fig. 4.9. Recovered solution for Example 4.2 with p = 1. Left: the “fixed-step” method with

step size 10−3, Center: “curve-ls”, Right: “curve-BB”
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Fig. 4.10. Recovered solution for Example 4.2 with p = 2. Left: the “fixed-step” method with

step size 10−3, Center: “curve-ls”, Right: “curve-BB”
Gradient Flow, p =2 ,dt =0.001
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step sizes and is nonmonotonic. While not shown to converge in theory, the latter
algorithm exhibits exceptional computational efficiency.

Our future work includes extending the proposed algorithmic framework to prob-
lems in higher dimensional manifolds and adapting classical optimization techniques
such as Newton’s method and conjugate directions within this framework.
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[2] John W. Barrett, Sören Bartels, Xiaobing Feng, and Andreas Prohl. A convergent
and constraint-preserving finite element method for the p-harmonic flow into
spheres. SIAM J. Numer. Anal., 45(3):905–927 (electronic), 2007. ISSN 0036-
1429.
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Appendix A. Symbolic Computational Procedure.

Since a direct verification of Theorem 2.10 is tedious, we give a symbolic com-
putational procedure “Listing 1” written in the language of “Matlab”. First, sym-
bolic objects are declared to define the matrix (Hn

i,j)
(×) where a, b, c denote (Ha)i,j ,

(Hb)i,j , (Hc)i,j , respectively. Then “Wplus” and “Wminus” denote the matrices
Wn+

i,j and Wn−
i,j , respectively. Finally, “Ut” is computed as the solution of (2.4),

where “eye” is the function that generates an identity matrix, “inv” is the function
that inverts a matrix. The function “simplify” helps us to get a simplified version
of a function. We use the function “det” to check the determinant of the matrix
Wn−

i,j , so that we actually can invert it. Specifically, the command “det(Wminus)”

returns 1 + 1/4 ∗ t2 ∗ a2 + 1/4 ∗ t2 ∗ c2 + 1/4 ∗ t2 ∗ b2 which is 1 + 1
4τ2‖Hn

i,j‖2 since

‖Hn
i,j‖2 = a2 + b2 + c2. To check the 2-norm of the matrices needed in Lemma 2.14,

we declare “hatW” and “tildeW” to denote the matrices Ŵn
i,j and W̃n

i,j , respectively.
Then the function “eig” is called to compute their eigenvalues. Finally, the returned
results are further simplified by noting that ‖Hn

i,j‖2 = a2 + b2 + c2.

Listing 1
Verify Theorem 2.10 ¥

% de f i n e symbol ic ob j e c t s
syms a b c u v w t
% de f i n e the matrix ve r s i on o f the c r o s s product
H = [0 −c b ; c 0 −a ; −b a 0 ] ;

% de f i n e in t e rmed ia t e matrix
Wminus = eye (3 ) − 0 .5∗ t ∗H;
Wplus = eye (3 ) + 0 .5∗ t ∗H;
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% so l v e the system o f l i n e a r equat ions
Ut = s imp l i f y ( inv (Wminus)∗ Wplus ∗ [ u ; v ; w] )

% compute the d e r i v a t i v e o f Ut with r e sp e c t t
s imp l i f y ( d i f f (Ut , ’ t ’ ) )

% check the determinant o f the matrix Wminus
det (Wminus)

% check the 2−norm of the matrix Lemma 2.11
hatW = inv (Wminus)∗ Wplus − eye ( 3 ) ;
s imp l i f y ( eig ( hatW. ’∗hatW) )

tidleW = 0.5∗ inv (Wminus)∗J∗(eye (3 ) + inv (Wminus)∗ Wplus ) − J ;
s imp l i f y ( eig ( tidleW . ’∗ tidleW ) )

¦

Appendix B. Proof of Lemma 2.8.

We now compute the gradient of the discrete energy function Ep(U) explicitly.
Since the variable ui,j appears only in the terms Fk,l, where (k, l) corresponds to the

grid points (i, j), (i + 1, j), and (i, j + 1), the partial derivative
∂Ep(U)

∂ui,j
can be written

as

(B.1)
∂Ep(U)

∂ui,j
=

∂Fi,j

∂ui,j
+

∂Fi+1,j

∂ui,j
+

∂Fi,j+1

∂ui,j
.

We now compute the partial derivatives of Fi,j by using the chain rule of differentiation

∂Fi,j

∂uk,l
= pF

p−2

p

i,j

(
(fx

1 )i,j
∂(fx

1 )i,j

∂uk,l
+ (fx

2 )i,j
∂(fx

2 )i,j

∂uk,l
+ (fx

3 )i,j
∂(fx

3 )i,j

∂uk,l

+ (fy
1 )i,j

∂(fy
1 )i,j

∂uk,l
+ (fy

2 )i,j
∂(fy

2 )i,j

∂uk,l
+ (fy

3 )i,j
∂(fy

3 )i,j

∂uk,l

)
.

Since (fx
1 )i,j is only a function of the variables ui,j , ui−1,j , vi,j and vi−1,j at a particular

grid point (i, j), it suffices to compute the partial derivatives of (fx
1 )i,j with respect

to these variables; all other components are zero. We first compute
∂(fx

1 )i,j

∂ui,j
explicitly

as an illustration

∂(fx
1 )i,j

∂ui,j
=

1
(
Sx

i,j

)2

[(
∂ζxui,j

∂ui,j
δxvi,j − ζxvi,j

∂δxui,j

∂ui,j

)
Sx

i,j

− (ζxui,jδxvi,j − ζxvi,jδxui,j)

(
2ζxui,j

∂ζxui,j

∂ui,j

)]
.

Using (2.15), we obtain

[ζxui,jδxvi,j − ζxvi,jδxui,j ] ζxui,j = (ζxui,j)
2δxvi,j − ζxvi,j(−ζxvi,jδxvi,j − ζxwi,jδxwi,j)

=
(
Sx

i,j

)
δxvi,j + (ζxvi,jδxwi,j − ζxwi,jδxvi,j) ζxwi,j .

Together with
∂ζxui,j

∂ui,j
= 1

2 , we have

∂(fx
1 )i,j

∂ui,j
=

1
(
Sx

i,j

)2

[
−

(
∂ζxui,j

∂ui,j
δxvi,j + ζxvi,j

∂δxui,j

∂ui,j

)
Sx

i,j

− (ζxvi,jδxwi,j − ζxwi,jδxvi,j) ζxwi,j ] .
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It follows from the fact
∂ζxui,j

∂ui,j
δxvi,j + ζxvi,j

∂δxui,j

∂ui,j
= 1

hx
vi,j that

(B.2)
∂(fx

1 )i,j

∂ui,j
= − 1

hxSx
i,j

vi,j −
1

Sx
i,j

(fx
3 )i,jζxwi,j .

Similarly, we obtain

(B.3)
∂(fx

2 )i,j

∂ui,j
= − 1

hxSx
i,j

wi,j +
1

Sx
i,j

(fx
3 )i,jζxvi,j .

Since only the term Sx
i,j in (fx

3 )i,j is related to ui,j , a direct calculation gives

(B.4)
∂(fx

3 )i,j

∂ui,j
= − 1

Sx
i,j

(fx
3 )i,jζxui,j .

Noting that −(fx
1 )i,j(f

x
3 )i,jζxwi,j + (fx

2 )i,j(f
x
3 )i,jζxvi,j = (fx

3 )2i,jζxui,j and combining
(B.2), (B.3) and (B.4) together, we obtain
(B.5)

(fx
1 )i,j

∂(fx
1 )i,j

∂uk,l
+(fx

2 )i,j
∂(fx

2 )i,j

∂uk,l
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3 )i,j
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3 )i,j
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1 )i,jvi,j + (fx

2 )i,jwi,j) .

Similar to (B.5), we obtain for the y direction that
(B.6)

(fy
1 )i,j
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∂uk,l
+(fy

2 )i,j
∂(fy

2 )i,j

∂uk,l
+(fy

3 )i,j
∂(fy

3 )i,j

∂uk,l
= − 1

hySy
i,j

((fy
1 )i,jvi,j + (fy

2 )i,jwi,j) .

Finally, by symmetry of the variables and noting the relationship (B.1), we can
write out the gradient explicitly as

(B.7)





∂Ep(U)

∂ui,j
= +vi,j(Hc)i,j − wi,j(Hb)i,j ,

∂Ep(U)

∂vi,j
= −ui,j(Hc)i,j + wi,j(Ha)i,j ,

∂Ep(U)

∂wi,j
= +ui,j(Hb)i,j − vi,j(Ha)i,j ,

which leads to the cross product expression in Lemma 2.8.


