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Abstract 

The plane-wave detection problem is: to estimate the incidence 
angle and waveform of a transient plane traveling wave, from samples 
recorded at a linear array of receivers. This simple problem shares sev­
eral important mathematical features with other inverse problems of 
wave propagation, and is of interest in its own right as a model prob­
lem in ocean acoustic signal analysis. Straightforward formulation as 
a nonlinear least squares problem yields a nonconvex objective for 
which the minima are not stably dependent on the data. In contrast, 
an infeasible point formulation, in which the signal at each receiver is 
explained to some extent independently, proves to yield a smooth con­
vex optimization problem with stable optima. Numerical experiments 
illustrate the theoretical results about the infeasible point approach, 
differential semblance optmization. 
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0 Introduction 

This paper presents a detailed study of a simple but nontrivial nonlinear 
least-squares problem in infinite dimensions. We call the problem studied 
here the "(plane-wave) detection problem." It is a simple model for some 
inverse problems in wave propagation previously studied by the~ author 
(Symes [1991a], [1991c], Symes and Carazzone [1991], Symes [1993]). Sup­
pose that a scalar field in three-dimensional space-time is sampled at every 
point in the interval [-X, X] on the x-axis: 

z(x, t) = U(x, 0, t) -X:s;x:s;X. 

Suppose moreover that U is a priori known to be a plane wave moving at 
speed 1, except possibly for some noise: 

U(x, y, t) l'V u(t - x sin0 - y cos 0). 

The goal of the plane wave detection problem ( or detection problem, for 
short) is to estimate the waveform u(t) and the incidence angle 0 (or equiv­
alently its sines= sin0), given the data z(x, t). 

Because one believes that the noise in the measurement z is small in the 
mean-square sense, or for statistical reasons ( e.g. Tarantola ( 1987)), one may 
naturally attempt to fit a prediction of z in the mean-square sense. If the 
waveform is u(t) and the direction sine is -s, one predicts the measurement 

cf>[s,u] = u(t + sx). 

In this notation, one attempts to find [s, u] to solve the output least-squares 
problem 

min llc/>[s, u] - zll 2 

s,u 

where 1111 denotes the L2 norm on a suitable domain. This formulation may 
be attacked numerically after suitable discretization. Note that cf> is linear in 
u but quite nonlinear in s. 

Consider for a moment a more general class of problems, in which physical 
theory connects a set of model parameters { m} to a set of data { z} through 
a mapping: z = cf>(m) (in the plane wave detection problem, e.g. m l'V [s, u]). 
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Whether through solution of a least-squares problem or by some other means, 
one obtains an estimate m = S[z] of the model from the data z. In this paper, 
we take the point of view that such an estimator S is satisfactory if it has 
the following properties: 

(i) if z is consistent, i.e. z = </>[m] for m in an a priori prescribed 
admissible set of models, then m = S[z]; 

(ii) Sis locally Lipschitz continuous, and is well-defined on a neighbor­
hood of the set of consistent data, in the sense of suitable metrics; 

(iii) S is computable by means of local (Newton-type) mathematical 
programming techniques, applied to some ( constrained or uncon­
strained) optimization problem. 

Our main results are that the output-least-squares problem stated above 
cannot produce an estimator with these properties, and that a variant on 
output-least-squares does produce an estimator satisfying these conditions. 
We call the variant the differential semblance optimization method - the 
reasons for this terminology will be evident. 

We will shortly describe the results in more detail, but first we offer a few 
comments concerning conditions (i)-(iii). 

Condition (i) serves to connect the estimator and the estimation problem 
(i.e. with the "physics"). It is certainly very stringent - for example, we 
could replace (i) by the requirement that a family of estimators be given 
which arbitrarily well approximate a model from its (consistent) data set. 
Such families are produced by numerical methods, of course, and also by 
regularization of ill-posed estimation problems, for example (see Tarantola 
[1987]). It might even be satisfactory that a (linear or nonlinear) projection 
of the model be reproduced. We will stay mostly with the strong version of 
condition (i) for the sake of simplicity. 

Condition (ii) could be paraphrased: "stability for low-noise data sets." 
It guarantees that one is rewarded for efforts in the direction of 

• more accurate data collection 

• more accurate basic physical modeling. 
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It is motivated by the presumption that the theory is accurate, i.e. that 
models exist which predict experimental data up to small errors - small 
in the sense of the "suitable norms" mentioned in the statement. Repeated 
experiments then yield necessarily data sets with small differences. Obviously 
this necessary "small scatter" condition is experimentally verifiable (for a 
given choice of norm), at least in principle. Condition (ii) asserts that the 
model estimates should have differences of sizes proportional to the sizes of 
the data differences. Thus the smaller the measurement errors, the more 
unambiguous the model estimate. 

We shall have little to say about the "high-noise" case, ie., when either the 
data tends to be very inaccurate, or the model grossly incomplete, or both. 
We shall assume that the signal is close to that which would be produced by 
a plane-wave, and ask that the direction sine and wave form be estimated 
with comparable accuracy. 

Weaker notions of continuity could be used, but it is not clear that these 
would be as useful in practice as Lipschitz continuity, which is a qualitatively 
maximal notion of stability. 

Note that nothing is said in conditions (i) and (ii) about the statistical 
nature of data or estimation noise - only its size is addressed. Statistical as­
sumptions about the data would doubtless entail consequences for the model 
statistics. Rather ambitious attempts have appeared recently to character­
ize the solution of inverse problems in terms of subjective probabilities, or 
Bayesian statistics (see especially Tarantola [1987], Menke [1984]). We shall 
not discuss this "standard inverse theory" here, or otherwise offer much seri­
ous argument about the epistemology of inverse problems. Our goal here is 
modest and mathematical: we want merely to show that some formulations 
of our simple model problem have properties (i)-(iii) above, whereas others 
do not. 

A part of condition (iii) is the presumption that S is defined by the 
solution of an optimization problem. The rest of (iii) demands that this 
optimization problem, which may incorporate model constraints, be solved 
by local mathematical programming, i.e., methods that find local minima. 
Therefore we must regard the collection of all local solutions of the defining 
optimization problem as the "value" of S: that is, S is multi-valued when 
the defining optimization problem possesses multiple local minima. In this 
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case the stability property (ii) must be reinterpreted. The largest possible 
error in the estimated model is the radius of the smallest ball containing all 
values of S, i.e., all local optima. So the stability property (ii) must mean 
that the radius of this ball is proportional to the data error. In particular, for 
noise-free (consistent) data, there must exist exactly one local (hence global) 
minimizer (as is also implied by (i) and (iii) together). 

Condition (iii) is motivated by the role of the detection problem as a sim­
ple relative of a number of inverse problems in wave propagation, with which 
it shares central analytical properties. For these latter problems, the scalar 
parameter s is replaced by a vector in a high-dimensional space, and eval­
uation of the analogue of the model-to-data map </> (and of its derivatives) 
is very computation-intensive, even with present-day supercomputers. The 
vastly greater efficiency of smooth local optimization ( quasi-Newton) meth­
ods, as compared to exhaustive or Monte-Carlo search, or to non-smooth 
(subgradient) techniques motivated (iii): these latter options are simply out 
of the question for the more complex problems for which plane wave detection 
is a model. 

Our first main result (Section 1) is that, for a large class of obvious choices 
of metric in the model space {m = [s, u]}, the output least squares problem 
stated above does not define an estimator S for the detection problem with 
the properties (i)-(iii) above. We choose the L2 topology for the range of</>, 
as is implied in the setting of the least squares problem, and a subspace of 
IR x Hk[O, T], k 2:: 0, as the domain. We show that, depending on domain 
metric (i.e. on s ), either the objective function fails to be differentiable, or 
its Hessian fails to be coercive. Thus the standard sufficient conditions for 
superlinear convergence of Newton's method are violated, i.e. condition (iii) 
appears to be violated (Dennis and Schnabel [1983], Ch. 5). Moreover, we 
show by explicit example that the least squares functional can have many 
local minima even for consistent data, so that condition (ii) cannot possibly 
hold. 

Our second main result (Section 2) is that a reformulation of the output 
least squares, involving enlargement of the model space and introduction 
of new constraints, defines an estimator with properties (i)-(iii) above. To 
motivate this reformulation, note that the output least-squares formulation 
demands that the signals z( x, ·) be fit simultaneously, for many values of x, 
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by the predicted signal u(t + sx) based on a single input waveform u(t). If 
z is at all oscillatory, a good fit is only possible (if at all) when the slope 
s is very nearly correct. On the other hand, fitting the data for a single 
value of x is easy - in fact, any s and u(t) = z(x, t - sx) will do the job! 
Equally well, it is easy to fit z(x, t) with the x-dependent waveform u(x, t) 
regardless of the slope s. In allowing the waveform u to depend on x we 
have lost the "physics" of the problem, of course: that is, the assumption 
that the field sampled to produce q,[s, u] is a plane wave. We reintroduce this 
assumption in a measured way by means of the objective function (of sand 
the x-dependent waveform u(x, t)): 

II! ~[s,u]-{ + u' 11::11' 
where 1111 is the L2 norm and u ranges over a suitable subspace of H 1([-X, X] x 
[O, Tl) (precise choices are identified in Section 2.) We claim that this ob­
jective function yields an estimator satisfying the criteria (i)-(iii), for proper 
choice of u > 0 and minimization strategy. 

We draw the reader's attention to the role of the parameter u. It is a 
penalty parameter, enforcing a problem constraint in a soft way. It is not 
a regularization parameter, and does not exhibit the "L-curve" influence 
on the solution typical of regularization weights. Some information on the 
dependence of the solution on u is given in Section 2, but much remains to 
be explained. 

Note that we have implicitly changed variables by introducing the t­
derivative in the data misfit term. Specifically, if ( s, u) is a minimizer of 
the above functional, then 

1 jx au 
s, t t-+ 2X -X dx at (x, t) 

is an estimator for the plane-wave detection problem. Note that if z(x, t) = 
z.(x, t) := u.(x + s.t) is consistent data for u. E Lfoc' then 

s = s., u(x, t) = lot dt'u.(t') 

minimizes the above functional - in fact, its value is = 0. Moreover, the 
estimator just defined gives ( s., u.) as the estimated solution of the detection 
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problem. Thus the new formulation is consistent - that is, it has property 
(i) above. 

The demonstration that this estimator possesses properties (ii) and (iii) 
is more involved. For a variety of subspaces H C H1 ([-X, X] x [O, T]), the 
problem 

~w (II! ¢[•,u1-,JI' + u' 11::11') 
has a unique solution u[s] depending continuously on the data z. Set 

J.[s; z] = ½ (II :1 ¢[s, u[s]] - zll' + u' II 0;~1 II') . 
In Section 2 we show that Ju is smooth overs E (-1, 1) so that its local 

minima may be found efficiently by variants of Newton's method. Next we 
investigate the set of critical points of Ju. Let e 2: 0 be the error level of the 
datum z relative to a model [s*, u*], i.e. 

= { llz - <f>[s*, u*]II \ 
e llzll J 

We show that the diameter of the set of critical points of Ju is proportional 
to e/ a, provided that a is sufficiently small and the "target signal" u* is 
sufficiently oscillatory. These observations (Theorems 2.9, 2.10) establish 
properties (ii) and (iii) for the estimator constructed by local minimization 
of Ju, applied to oscillatory data. In particular, the solution map 

( 
1 jx 8u[s[z]] ) 

z ~ s[z], t ~ 2X -X dx at (x, t) 

can be computed reliably by smooth optimization methods for low-noise data 
sets, and is Lipschitz continuous (in the sense of set-valued maps). Ju has a 
unique critical point, i.e. the global minimizer, if e = 0: for consistent (noise­
free) data, Ju is quasiconvex. Note that quasiconvexity is not necessary in 
general for an estimator to have properties (i)-(iii). 

The analysis of the gradient in Section 2 yields a fairly precise description 
of the shape of Ju as a function of a. For noise-free oscillatory data, small 
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(J' implies quasiconvexity. For large (J' on the other hand we show that Ju 
becomes quite flat away from the global minimizer (Theorem 2.9(a)), and in 
fact then closely resembles the output least squares objective in its general 
form, as one would suspect. Therefore to retain properties (i)-(iii) (J' must 
be kept bounded away from both O and oo. The estimates of Section 2 are 
qualitative in nature. Precision in the constants appearing in these estimates 
would have little value. Instead, an adaptive algorithm for adjustment of (J' 

is needed. We do not give such an algorithm here. 

The results of Section 2 are illustrated by a number of numerical experi­
ments discussed at the end of the section. 

The term (J'
2 ll8u/8xll 2 measures the extent to which the waveforms u( · , x) 

resemble each other for nearby values of x. We call this term a differential 
semblance measure, and (J' the differential semblance weight. 

As mentioned earlier, the planewave detection problem is studied here 
mainly as a simple model for various inverse problems in hyperbolic partial 
differential equations. Versions of differential semblance optimization, anal­
ogous to minimization of Ju, have been applied to a variety of such problems 
by the author and his associates; see the references cited at the beginning of 
this section. 

Norms in the L2-based Sobolov spaces Hk will be denoted by II Ilk· Thus 
II llo, or simply II II, is the norm in L2

• Domains are either evident from 
context or specified explicitly. Boundary conditions will be introduced as 
needed and specified by subscripts. 
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1 Output Least-Squares Detection 

We begin this section by formulating the plane-wave detection problem pre­
cisely as a nonlinear least-squares problem. We find immediately that in 
order to fulfill the standard conditions for convergence of Newton's method, 
we must severely restrict the smoothness of the signal u(t) .. Having made 
this restriction, we then find that, even so, the least squares cost functional 
has multiple local minima, which can be as close together as we like - even 
for noise-free data! As pointed out in the introduction, this means that the 
least squares formulation cannot be regarded as well-posed, or alternatively 
that the amount of regularization necessary to render the problem well-posed 
is bounded away from zero, even when the data error vanishes. 

We shall assume that 

(i) the wave form and signal are square-integrable; 

(ii) either 

a) the waveform u is periodic with period T, and foT dt u(t) = 0 

or 

b) the support in t of u( t + sx) is known a priori to be contained 
in the interval [O, T] for any s E [-1, 1] and x E [-X, X] 

where [-X, X] is the interval of recording positions, and [O, T] is the time 
interval of the recording. Note that the direction parameter s is necessarily 
in the interval [-1, l]. Cases (a) and (b) in assumption (ii) correspond to 
the two most common plane wave signals: periodic and impulsive. Under 
our assumption, we can view (b) as a special case of (a) by extending u T­
periodically, but we prefer to single it out to emphasize the more common 
impulsive case. Assumption (ii) ensures that we have sufficient amount of 
information of the plane wave at each recording position. The second part of 
assumption (iia) implies that u is oscillatory. We will not use this assumption 
until the next section. The signal resulting from the waveform u at direction 
SIS 

</>[s, u](x, t) = u(t + sx). 
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We may regard ¢ as a mapping 

<P: [-1,1] x L2 [0,T]-+ L2
( [-X,X] x [O,T]). 

The output least squares formulation of the plane wave detection problem is: 

given data 
z E L2

( [-X,X] x [O,T]) 

find 
(s,u) E [-1,1] x L2 [0,T] 

to minimize 
J[s, u; z] = 11</J(s, u) - zll~. 

Suppose that we regard the minimization of J as equivalent to finding a sta­
tionary point of its gradient, i.e. we ignore the possible presence of stationary 
points other than minima. Formally, 

grad J[s, u; z] = 2D<j)[s, uf ( ¢,[s, u] - z) 

where 
du 

D<j)[s, ul[bs, bu](x, t) = bu(t + sx) + bsx dt (t + sx) . 

The presence of a derivative on the right-hand side of the last equation sug­
gests that D<j) is not well-defined at general [s, u] E [-1, 1] x L2 [0, T]. In 
fact it is easy to show that, while ¢ as defined above is continuous, it is not 
locally uniformly continuous, hence a fortiori not differentiable. 

If we are to employ smooth optimization methods at all, we must change 
the definition of ¢, either by strengthening the topology on the domain or 
weakening the topology on the range. We choose to maintain the L2 measure 
of error on the range. Then the signal u(t) must have a derivative in the sense 
of L2 in order that the derivative D<j) of <P exist. We shall state the following 
result in a fashion appropriate to the "impulsive" case ((iib) above). Similar 
statements can be made concerning the periodic case ((iia) above); we leave 
the formulation of these to the reader. The proof of the following result is 
straightforward: 
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Theorem 1.1 Fork= 0, l, 2, ... , regard <P as a map 

then: 

where 

<P: [-1, 1] x H;[o, T]-+ L2
( [-X, X] x [O, T]), 

(a) <P is of class Ci-1,1 if and only if k ~ j. 

(b) the gradient of J is given by 

grad J[s, u; z] = [gs, 9u] 

9s = 2jx dx IT dt xa
8 

u(t + sx) (u(t + sx) - z(x,t)) 
-X Jo t 

and 9u is the solution of the boundary-value problem (in weak sense) 

k . a2i X 

2)-1)' a 2;9u(t) = 2Xu(t) -1 dx z(x, t - sx) 
~o t -X 

with boundary conditions 

d dk-1 
9u(t) = dtgu(t) = · · · dtk-lgu(t) = 0 at t = O,T. 

We digress to recall the standard conditions for local quadratic conver­
gence of Newton's method for the equation F(x) = 0 to a solution x. E U, 
where F : U -+ Y, U C X open, X and Y are Banach spaces: 

( 1) F should be of class C1•1 ( U, Y), i.e. be continuously differentiable 
with Lipschitz-continuous derivative; 

(2) the Jacobian map F'(x.) should be coercive, i.e., 

IF'(x.)bxlv ~ Clbxlx 

(see e.g. Dennis and Schnabel [1983], Theorem 5.2.1). We wish to take gradJ 
for F, one of the spaces [-1,1] x Hk[O,T] for X, and L 2

( [-X,X) x [O,T]) 
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for Y. For grad J to be of class C 1•1 , it is sufficient that </> is of class C 2
•1 

which requires k ~ 3, according to Theorem 1.1. In fact it is not hard to 
prove that k ~ 3 is also necessary ( at least so long as k is restricted to be an 
integer). Accordingly we shall regard </> as a map 

</>: [-1, 1] x HJ[O, T] - L2
( [-X, X] x [O, T]). 

The Jacobian of the gradient is the Hessian map. Its action on a vector of 
the form [O, bu] is given by 

H[s, ul[O, bu]= huu , 

where huu is the solution of the boundary-value problem: 

3 . f)2i 

~(-1)' ot2i huu(t) = 2Xbu(t) 

d d2 
huu(t) = dt huu(t) = dt2 huu(t) = 0 at t = O,T. 

Evidently H is a smoothing operator H- 3 [0, T] - HJ[O, T]. Thus the spec­
trum of H accumulates at zero, and the second sufficient condition ( coer­
civity) fails. This implies that the cost functional might not be globally 
convex, thus multiple minima might be present. This conjecture is proved in 
Symes [1991b], and illustrated by the following very simple example. In this 
example we view </> once again as a map 

</>: [-1,1] x L2 [0,T] - L2([-X,X] x [O,T]) 

as the choice of norm in the domain does not affect the properties illustrated 
here. 

Let X = ½, T = 1r, and z(x, t) = sin wt be consistent and noise-free data. 
It is easy to show via normal equation that, given s, the unique minimizer 

IS 

u[s] = argminuJ[s, u; z] 

u[s](t) = jx dx sinw(t - sx) 
-X 

11 



and straightforward calculations lead to 

1r [ sin 
2 

( ~) l 
J0 pt[s] := J [s, u[s]] = 4 1 - ( T) ~ 

Figure 1.1 and Figure 1.2 are graphs of J0 with w = 50 and w = 500 respec­
tively. A quick examination of J[s] shows that this function has as many 
local rnimima as one likes, and they can be as close as one likes by choosing 
w sufficiently large. For any local minimizers* of J[s], (s*,u[s*]) is a local 
solution of 

min 11</>[s, u] - zll~ . 
s,u 

Hence, this output least squares problem can have as many solutions as one 
likes, they spread as wide as one likes, and they can be as close as one likes 
too, by just choosing w large enough! Keep in mind that z is smooth and of 
class £ 2 for any w, and it is consistent and noise-free! Therefore the solution 
of the output least-squares problem cannot be stable, in the sense of the 
discussion in the introduction. 

This example also reveals a typical feature of the output least squares 
detection problem for bandlimited data: if the frequencies of the data con­
centrate near w, then the size of the neighborhood of the global minimizer 
of J[s] in which J[s] is convex is of O(t). Outside of this neighborhood, J[s] 
tends to be flat ("saturated"), with many local minima. 

Another example of this nature is the output least squares detection of a 
plane wave produced from the Ricker wavelet (i.e. the second derivative of a 
Gaussian pulse - see Figure 1.3). Figure 1.4 is the noise-free sampling of the 
plane wave on spatial range [-0.5, 0.5] in a time interval [0, 1.0], and Figure 
1.5 is the sampling with 160% noise. There are 41 receiver signals ("traces") 
in both instances, each with 512 samples. The time shifts of the sampled 
input wave form are performed via the Fourier transform. All calculations 
were done in MATLAB. 

Figure 1.6 and Figure 1. 7 are the corresponding numerically computed 
mean square errors J[s] vs. directions. Both curves are nonconvex and very 
sharp at their global minima s = 0.1. Success in minimizing such functions 
relies heavily on a good initial guess or on a global search. Note also that 
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Figure 1.7 shows that with noise-corrupted data, J[s] tends to have multiple 
mm1ma. 
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2 Differential Semblance Optimization 

In this section we introduce an alternative to the output least-squares func­
tional, which we have named differential semblance optimization (DSO). We 
develop the basic regularity and convexity properties of the new objective 
function, then present some numerical examples. We begin. with some re­
marks intended to motivate the new approach. 

As the plots of residuals in the last section suggest, one of the difficulties 
faced by output least-squares is the necessity of fitting all of the data traces 
simultaneously with a single waveform u and slopes. On the other hand the 
data-fitting problem for a single trace: 

~fp j [u(t + sx) - z(x, t)] 2dt 

while nonconvex for the same reasons as before, is nonetheless trivial to solve. 
In fact, zero residual can always be achieved simply by setting 

u(t) = z(x, t - sx) 

and this residual is independent of s, in contrast to the multi-trace case 
considered in the last section. Alternatively, suppose that the models for each 
trace are regarded as independent, i.e. u is allowed to depend on x: then, 
once again zero residual is achieved, independently of s, through solution of 
the quadratic problem 

~fp j j dxdt Ju(x, t + sx) - z(x, t)J2 

the solution of which is 

u(x, t) = z(x, t - sx) 

with no restriction on s. 

Of course the price paid for this complete relaxation of the data-fitting 
problem is the complete loss of the plane-wave model, which is the "physics" 
of the plane-wave detection problem. 

The plane-wave model is retrieved by imposition of any constraint forcing 
u to be independent of x; for example, minimizing the above function under 
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the constraint au 
-=0 ax 

is apparently equivalent to the output least-squares problem of Section 1 
and therefore will not be amenable to solution through versions of Newton's 
method or its relatives adapted to equality-constrained problems, for instance 
sequential quadratic programming. 

The following reasoning suggests our resolution of this difficulty. We view 
</> as a mapping 

</>: [-1, 1) x L 2 ([-X, X] x [O, T]) -t L 2 ([-X, X] x [O, T]) 

</>[s, u](x, t) = u(x, t + sx) 

and solve the detection problem in two steps: 

Step 1. Solve 
min 11</>[s, u] - zll 2 

u 

to get u[s]; 

Step 2. Solve 

mjn 11:x u[sill' =: J[s] 

to get s*, hence u [ s*]. It is easy to see that 

and 

u[s](t, x) = z(x, t - sx) 

J[,] = 11:: - , !:II' 
( oz oz) 
a;' Ft 

8 * = (oz oz) 
ot ' ot 

where ( ·, ·) is the inner product on L 2 ( [-X, X] x [O, T] ), and we used the fact 
that </>[s, ·] is an isometry on this space under the assumption (iib) in Section 
1. Note that Step 1 is easily solved via the normal equation, which is a linear 
equation, and in Step 2 J[s] is perfectly smooth and convex. The obvious 
problem is that one needs to compute the derivatives of z, which are generally 
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not square integrable. In fact, evidently u (which must be differentiated) is 
only as smooth as z, which doesn't have a derivative. We resolve this conflict 
by parametrizing the waveform as 8u/8t, rather than as u, minimizing the 
penalized functional 

in two steps as above. The change of unknown ensures that the presumption 
that z E L 2 will not be violated. We will obtain a linear well-posed problem 
for u (Step 1). Moreover the minimum (over u) is a smooth, globally convex 
function of s if z is close to a consistent datum and u is sufficiently small. In 
this case, at the stage of Step 2, the first term in the functional will be small 
and not destroy the convexity of the second term. Note also that in the limit 
u -+ 0 this problem becomes constrained by the first term, therefore reduces 
to the problem discussed above. 

That is, for small u, this problem resembles the minimization of ll8u/8xll5 
subject to the constraint that u predicts the data correctly. The x-derivative 
of u measures the extent to which the waveforms, chosen to explain signals 
at neighboring receivers, resemble each other. This idea motivates the name 
differential semblance. 

On the other hand, as u -+ oo the problem tends to resemble the min­
imization of the mean-square error subject to the constraint 8u/8x = 0, 
which is of course exactly the output least-squares problem of the previ­
ous section. Thus the differential semblance functional interpolates between 
the "pure semblance" problem described above (u -+ 0) and output least 
squares ( u -+ oo). This feature will be illustrated numerically at the end of 
the section. 

We begin the development of these results by defining some useful func­
tion spaces. 

Define the extended model space E by 

H; = {uEH1 ([-X,X]x[0,T]): u(x,0)=u(x,T) 

JxJ ~ X; foT dt 1-: dx u = 0 .} 
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E = IR X Ht. 
We define a family of norms on E by 

where 

IJulJi,. - j~ dx { dt ( l!:I' + u
2 1::1') 

for x = [ s, u] E .E. 
The norm is definite for a > 0 because of Poincare's inequality ( Gilbarg 

and Trudinger (1983), p. 164). Define the extended data space F by 

F=FxF 

where as before F = L2 ( [-X, X] x [O, T] ), viewed as a subspace of T-periodic 
functions in t, with the obvious norm. Define finally for a E IR+: 

- - -
<Pu : E --+ F 

by 

[ 
au l - (x, t + sx) 

Ju[s, u](x, t) = a&u 
a ax (x, t) 

For z E F, let z = [z, Of E F. 
Remark. The reason for the definition of¢; using au/at, rather than u 

as in Section 1, was hinted above and will be explained further below. 

Evidently Ju is once again quite irregular ( continuous, but not locally 
uniformly). Motivated by the remarks at the beginning of the section, define 
nonetheless 
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Theorem 2.1 J,,.[s] = IIJ,,.[s, u[s]] - zll~ where u[s] is the (weak) solution 
of the boundary value problem 

( 
a

2 
a

2 
) az 

- at2 + (F2 ax2 u(x,t) = - at (x,t- sx) 

u(x, 0) = u(x, T), -X $ x $ X 

au au 
ax (-X, t) = ax (X, t) = 0, 0 $ t $ T 

j x dx IT dt u = 0 . 
-X Jo 

Also, the estimate 

llu[s]ll1,o- $ llzllo 
holds. 

Proof. Denote by H; 1 the dual space of Hl. For each s E IR, define the 
operator Ts on F by 

Tsf(x, t) = f(x, t + sx) 

(interpreted as 1-periodic int). Ts is bounded and continuous for each s E IR, 
and the following relations are easily verified: 

Tt f(x, t) = f(x, t - sx) 

TtTs =I. 

Since the derivatives a I at and a I ax map Hl -t F continuously, we can view 
their transposes (formal adjoints) as maps F -+ H; 1

. Finally, define for each 
s E IR the map 

1 -
<I> S,O" : Hb -t F 

by 
<I>s,o-U = J,,.[s, u] . 

Evidently <I> s,o- is a bounded linear map, and 

[ 

T au l sat 
au ' (F-ax 

u E Ht. 
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Moreover, 

( a
2 a ) 

- 8t2 + a2 ax2 

iF..T -
'*' s (jz = 

' 

where we have identified (a/ at? with -a/ at as usual and thus regarded the 
Laplace operator as a map: Hl ---+ H;1. 

The objective function of the variational problem posed in the statement 
of the theorem can be written as 

ll<I>s,qU - zll} 

ll<I>s,uUllp - 2(<I>s,qU, z) fl'+ llzijp 

ll<I>s,<Tujjp - 2(u, <J>;,uz)Ht,Hi: 1 + llzll} 

The first term defines a coercive quadratic form on Hl, thanks to Poincare's 
inequality. The second term defines a continuous linear form on Hl. Accord­
ing to a basic result in the calculus of variations ( the Lax-Milgram Theorem, 
see e.g. Gilbarg and Trudinger (1983), p. 83), the objective function attains 
a (global) minimum at u E Hl solving the normal equations 

The translation into the boundary value problem stated in the theorem 
follows the standard pattern of the direct method ( Gilbarg and Trudinger 
(1983), Ch. 8). 

To prove the bound, suppose first that z is smooth, T-periodic in t, and 
satisfies 

a 
ax (z(x,t-sx)) = 0 if x = ±X. 

Then 

z(x,t-sx) = I: 
n,mEZ; 

• ( 1rmx m 7r) 2,rint 
Z COS --+- e T 

mn 2X 2 
lnl+ 1ml > 0 
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the series being absolutely convergent together with all derivatives. Accord­
ingly 

u(x,t) = I: 
n,mEZ; 

A ( 1rmx m 1r) 21r int 
U COS --+- e T 

mn 2X 2 
lnl+ 1ml > 0 

with 
A 

Umn = 

and in particular 

The indicated bound follows immediately from the fact that T _s is an isom­
etry of F. Note that more generally for , > 0 

llu[s] Iii,,, ::S 1 llzll · 
(7 

q.e.d. 

If we denote the solution operator of the problem in Theorem 2.1 by Nu, 
then similar arguments show that tt Nu :t is contractive on F, i.e. we have 

Proposition 2.2 II :t Nu :t ull ::S llull for u E F. 

Theorem 2.3 Ju E C00 (IR) 

Proof. Write the objective function in the statement of Theorem 2.1 in 
the form 

llr,:-{ +u'll::11: · 
Note that Ts and 8/ot commute. Also Hl CFC H;1 and Ts and its formal 
adjoint T; both restrict to isomorphisms of Hl interpreted as consisting of 
1-periodic functions. Thus 

llr, ~; -{ + u'II::[ 
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11:t T,u -{ + u' 11::11: 

= II~:-{ +u'll:xr;{ 
where v = Tsu ( so that u = T; v). It follows that 

Since :x T; = Tt ( :x -s :t) and T; is an isometry of F, it follows that 

also 

J,[s] = "~~J: {II~; -{ + u' 11:: - s ~:[} · 

The problem just defined is also a convex variational problem, as its quadratic 
part is also coercive: 

11:11: + u' 11:: -• !:[ 
(l+ s'u') II~:[ +u' 11::[ -2u's (!: '!:t 

> ½ll!:11: + l+~:'u' 11::11: 
So in exactly the same way as before it attains its minimum at v[s] E Hl, 
given by v[s] = Ns,uZ. Here Ns,u is the inverse operator of 

v 1----t { (~)T (~) + a 2 (!_ -s~)T (!_ -s~)} v =: M v E Hi:1 
at at ax at ax at s,u 

where the transposes are taken in the sense of F --+ Hi: 1
• Thus 

J,[s] = 11&~\sl _ { + u' ll&;~s] _ s !:[ 
21 



The operator-valued function 

a a 1 s 1---+ - - s - : Hb ---+ F ax at 
is C 00 (linear!) in the operator norm, therefore so is its adjoint F - H-;1, 
whence 

- 1 -1 
s I---+ Ms,u : Hb ---+ Hb 

is a C 00 operator-valued function. Since its values are invertible, with (lo­
cally) uniformly bounded inverse Ns,u it follows from the calculus that 

is C 00
• Therefore s - v[s] = Ns,uZ E Hl is C 00

, and the statement of the 
theorem follows immediately. q.e.d. 

Remark. In a prior incarnation of this work (Symes [1990]), the entire 
treatment was based on the map 

- at 
[ 

av l 
~ •. ,v ~ "(!: -s !:) 

which plays a major role in the proof of Theorem 2.3. There is a rough 
equivalence between variational problems based on <l>s,u and those based on 
<I> s,u though only in the case of t-periodic models does it seem possible to 
establish an exact relationship. 

Remark. We will sketch here another proof, which works when the 
definition of the map <I> incorporates a cutoff: 

[ 

gTs ~u l 
~ •. ,u = "::t 

with g E Ccf(JR-2). In fact, this problem setting is more prototypical of the 
seismic inverse problems which motivate this work, which require a similar 
approach. It is natural to take for the model space HJ(O), where n is a 
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domain large enough that data in the support of g can be reproduced with 
models supported in n, for the range of slopes s considered. Evidently the 
normal operator of cI> is no longer elliptic, and this is also a characteristic 
feature of the reflection inversion problems. It is necessary to regularize the 
normal operator; in the present case, one could for example redefine 

HJ ( n) - F x F x F . 

Now zero residual is no longer possible, as usual for regularized problems. 
The normal equations now read 

If it is arranged - as it always can be - that the support of the right-hand 
side is interior to 0, then the solution operator Ns,u>. of this Dirichlet problem 
differs from a certain pseudo-differential operator by an infinitely smoothing 
error. The symbol of the pseudodifferential operator Ns,u>. can be calculated 

explicitly, and when u = -Ns,u,>. :t Tt gz 

Each of the terms in this sum involves operators of the form Ts (pseudo D.0.) T;. 
It turns out that such operators are also (essentially) pseudodifferential ( this 
observation is related to Egorov's theorem (Taylor (1980), pp. 147 ff.); their 
symbols can be computed explicitly and are smooth functions of s. It follows 
immediately that Ju[s] as defined above is smooth. 
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For more comment on this reasoning see Symes (1991c). 

Next we compute the gradient of J. We assume temporarily that the 
data z is smooth. Then u[s] is smooth and periodic, and 

So 

d 
ds J[s] 

d - 2 
ds ll<I>s,au[s] - zllF 

2( ! ( <I>s,au[s]), <I>s,au[s] - Z) 
/ au au a ) 2\ x at Ts at [s], Ts at u[s] - z 

+ 2(:s u[s],<I>;,a (<I>s,au[s] - z)) 
and the second term in the sum vanishes by virtue of the normal equations. 

As noted before, :t and Ts commute. Note also that (multiplication by) 

x and Ts commute, so we obtain 

:, J[s] = 2( x :t u[s], ( T, ! ) T ( T, :i u[s] - z) ) . 

We will need the following technical result. 

Theorem 2.4 Supppose that z is a smooth (C=) function, 1-periodic int. 
Then u[s] and all of its s-derivatives are smooth functions, 1-periodic int. 

Proof. Recall that the r.h.s. of the normal equation for u[s] is 

-TTaz 
s at · 
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Evidently if z is smooth then this quantity is a smooth function all s­

derivatives of which are also smooth. The first derivative with respect to 
SIS 

d ( rOZ) ds - Ts at ( X' t) d ( oz ) ds - at ( X' t - SX) 

a2z x0t
2
(x,t-sx) 

a rOZ 
- X at Ts at 

and so on. Since the r.h.s. of the normal equations are smooth ins, so is the 
solution. The same reasoning applies to all higher derivatives. q.e.d. 

Now suppose that z E c=. The normal equations can also be written 

so 

I a a2 ) 
217\ X at u[s], OX 2 u[s] 

- 2172
/ ~ (x ~ u[s]), ~ u[s]) \ax at ax 

- 217
2 

[ \ :t u[s], :x u[s]) 

+ (x%t(:xu[s]),:xu[sJ)] 

where we have used the assumed smoothness of u[s] to take advantage of the 
Neumann boundary conditions in integrating by parts. 

It is easy to see that the operator x :t is antisymmetric on smooth func­

tions periodic in t, so the second term above vanishes and we are left with 
the result 
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Theorem 2.5 

d ; a a ) 
ds J[s] = -2a\at u[s], ax u[s] . 

Proof. We have established this formula under the assumption that 
z E F was actually smooth. However, note that u[s] is a continuous Hl­
valued function of z E F; it follows that the formula is correct in general. 
q.e.d. 

Remark. At this point it is possible to justify the inclusion of 8/8t in 
the definition of 4>u- Indeed, suppose we were to define instead 

and regard <Pu as mapping H 1-functions of x, with values in L 2 I-periodic 
functions oft, into fr. The normal equations may then be written 

( 
2 8

2 
) T 1 - a ax2 u = Ts z . 

Exactly the same calculation leads to the formula stated in Theorem 2.5, 
under the assumption of smooth z. In particular, the t-derivative of u ap­
pears, because the s-derivative of u(x, t + sx) produces it! Now, however, the 
quadratic form in z, defined in Theorem 2.5, does not extend to z E F: the 
gradient of Tis only defined at a dense set of z E F. In fact, when 8/8t is not 
included in the definition of ¢u, the normal operator is not elliptic, and does 
not smooth u sufficiently to make J[s] smooth ins, for arbitrary data z E F. 
The inclusion of 8/8t in the definition of ¢u, on the other hand, induces 
exactly the necessary amount of regularity in u[s] to make J[s] smooth. 

Next we shall compute the Hessian, i.e. second derivative, of J[s]. To 
accomplish this, we need to compute the derivative of u[s], which satisfies 
the normal equations, written in yet another way: 
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Therefore 

- - + a2 
- - u[s] = -x - -- TT z ( a

2 a2 ) d a ( a ) 
at2 ax2 ds at at s 

On the other hand, 

a [ ( a
2 

a
2 
) ] X at - at2 + <72 ax2 u[s] = 

Comparing equations, we see that 

( a
2 a2 ) ( d a ) a2 

- at2 + <72 ax2 ds u[s] + X at u[s] = -2<72 axat u[s] 

Let No- be the inverse of -(a2/at2 + a 28 2/8x2): Hl--+ H-;;1
. Then we have 

d a a2 

ds u[s] = -x at u[s] - 2a2 No- axat u[s] . 

Differentiating the result of Theorem 2.5, we have 

/ a a ( a 2 a
2 

) ) } + \ at u[s], ax -x at - 2a No- axat u[s] 

_ -2a2 {! -x~ (~ u[s]) !._ u[s]) \ at at 'ax 
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+ I~ u[s] -x ~ (!..... u[s]) ) + / - ~ u[s] ~ u[sJ)} \ at ' at ax \ at ' at 

+ 4a4 
{ \ :t Nu a~~t u[s], :x u[s]) 

+ (!t u[s], :x Nu a!~t u[s])} 

2<1
2 

II :t u[sill' - 8"'( a::t u[s], N, a::t u[s]) 

2172 II :t u[ sf + 8<1
4 

( :x u[s], :t N, %i ! u[s]) 

where we have used the antisymmetry of x :t as before. Since both terms 

define continuous quadratic forms in z E F, we have proved 

Theorem 2.6 

2<1
2 II! u[sill' 

+ 8a
4

\ :x u[s], :t Nu :t :x u[s]) . 

The next results give together a fairly precise characterization of the shape 
of lu, 

a 
Corollary 2.7 Suppose that u[s] ¢ 0, ax u[s] = 0. Thens is a strict local 

minimizer of lu[s] for any a > 0. 

Proof. From Theorem 2.5, ! J[s] = 0, while from Theorem 2.6, 
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since u[s] ¢ 0 and u[s] has mean zero. q.e.d. 

The periodic 1-variable Sobolev spaces H;er are defined to be the com­
pletions of C~r[0, T] in the norms 

2 4n 7r A 2 

( 

2 2) 8 

llulls=~ l+T2 lunl · 

Corollary 2.8 Suppose that the datum z E F is consistent, i.e. for some 

s* E IR, u* E H;er' z = :t Ts• u*. Then s* is a strict local minimizer of Ju 

for all a> 0. 

Proof. Indeed if we set u(x, t) = u*(t) then evidently u = u[s*], 
au[s*]/ax = 0, and J[s*] = 0, so the conclusion follows from the last corol­
lary. q.e.d. 

It is convenient to introduce notation for norm ratios: for u E LJ H;er 

define 
llulls 

Rs,t[u] = M, 
whenever the latter makes sense. 

s 

Theorem 2.9 Suppose that the datum z is consistent, i.e. z = ttTs•u* for 
s* E IR, u* E H;er· Then with Rs,t := Rs,t[u*], 

3 

( a) If additionally u* E H;. [O, Tl, then 

R2 R~ 2 

( 

1 ) 2 

llzll - const. { Is _"·~·I + ;·'} llu•ll1 

( { 
R2 R~ }½ ) 

2 

< Ju[s] ~ llzll + const. Is ~·:.1 + ;·
1 

llu*lli 

(b) 

Id:: [s]I ~ a2 ls - s*l llu*II~ { : 2 - const.R~,1 - const.fo R½,1 } 
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( c) If fo R1 1 and Ro,1 are suffiently small, then Jo- is quaszconvex over 
2' 

[-1.1]. 

Remark. Before giving the proof of Theorem 2.9, we discuss its meaning. 
The norm ratios Rs,t measure oscillation. For example 

Rs,t [sin n;t] = I; r-t . 

This gives us a way to interpret the results in terms of the shortest and 
longest significant wavelengths in an essentially bandlimited target signal u*. 

The bound (a) means: IJo-[s] - llzll 21 is small, provided that (j is much 
larger than the largest frequency ( upper bandlimit ), and that is-s* I is larger 
than the longest wavelength (corresponding to the lower bandlimit). That is, 
as (j - oo, Jo- becomes flat if the slopes is "more than a wavelength in error". 
This is exactly the behaviour observed in Section 1 for the mean square error 
function, and justifies the intuitive notion that Jo- must approximate the 
mean square error for large (j. 

The bound (b) states that Jo- has only one critical point, so long as the 
longest wavelength in u* is sufficiently short. Moreover the fo R1 1 term 

2' 
suggests that larger (j can be allowed for shorter wavelengths. Otherwise 
put: Jo- is quasiconvex so long as (j ~ 1 and u* is sufficiently oscillatory. 

Proof. Assume for the time being that u*, hence u[s], is smooth. The 
result as stated will follow from continuity. 

As in the proof of Theorem 2.1, 
A 

a 
at u[s](x, t) = I: 

k2:'.0 

= 
[ a ] (brx br) 
at u[s] k,n cos 2x + 2 

n=-= 

so 
A 

21rint e-T-

a 
at u[s](±X, t) = 

= 
I: 

k~O 
(±lt [~u[s]] e~ . 

at k,n 
n=-= 

Here for n =/:- 0, 
A 

[~ u[s]] = 
at kn 

1 jx 1T (brx br) dx dt cos -- + -
XT(l + '5ok) -X o 2X 2 

271"int a 
e--:r- at u[s](x, t) 
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A 

[ :t Nu ( T_s !2

2 Ts•U*)] kn 

Of course [ a;~s]l ko = 0, so the sum on n implicitly avoids u = 0. 

[
. (2n(s* - s) k ) krrl} + exp z rr T -

2
X x - 2 

i-k . ( (2n(s* - s)X k)) + -sine rr ----- + -
2 T 2 

Evidently, IAknl ~ 1 uniformly. Thus 

A 2 
00 

I: 
n= -oo 

~ [:tu[s]Ln 
n;c 0 

00 

< I: 
n = -(X) 

< 
00 

I: 
n= -oo 

4 2 2 

~IA* 12 IA 1
2 

T2 Un On 

n;c 0 
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const. + --
a 

00 

L 
n= -oo 

by the simple domination of a sum over k by an integral. On the other hand 

1 
IAonl ~ I I' n s - s* 

n =/ 0 

so we conclude that for s =/ s* 

{ 
llu*llo llu*II}} 

const. I 12 + s - s* a 

II ·112 0,1 2,l 
{ 

R
2 RI } 

< const. u 1 is_ s*I + ~ 

Similarly 

au[s] ~ A* 2xint 00 ktr ( T2 k2)-l . (ktrx ktr) 
a;-(x, t) = n~oo une~ ~ 2X 1 + a 4X2 n2 Akn sm 2X + 2 

The family { sin ( ~n-; + k;) } is also orthogonal on [-X, X] so 

II 

aaux[s] 11

2 
= 00 oo k21r2 ( r2 k2 )-

2 
n~oo lu~l2 ~ 16X2 1 + a2 4X2 n2 IAknl2 

< conS
t . llu*lli = conS

t . Ri llu*ll2 
a3 2 a3 2 ,1 t 

by another simple integral majorization. The first part of the theorem follows 
immediately via the triangle inequality. 

Since T z* is a function of t + ( s* - s )x it follows that 

0 = - (~ + a 2 
~) (i_- (s* - s)~) u[s]. 

at2 ax2 ax at 
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Since u[s] obeys the homogeneous Neumann condition at x = ±X, we can 
view 

v := (:x -(s* - s) :t) u[s] 

as the solution of the boundary value problem 

( 
a2 82 ) 

- 8t2 + a2 8x2 V = Q m [-X, X] x [O, T] 

v(±X, ·) = (s* - s) a~~s] (±X, ·) 

v is T-periodic in t . 

Straightforward estimation shows that 

llvll' SC" (s• -s)' lliJ:\si l.=±xL 
2 

Using the Fourier expansion developed previously, we can write 
A 

a;~s] (±X, t) - ~ '°' [8u[s]l 21rint (brx br) I L L -- e---r-cos --+-
n=-= k~O at kn 2x 2 x=±X 

A 

f= i1¥-1 I)=F1t [au[sl] 
n=-oo k>O 8t kn 

so 

. ( (2n(s*-s)X k))l 2 

smc 1r T + 2 
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For each n E Z, denote by k[n] the unique k E Z satisfying 

l
k 4n(s - s*)X I ~ 

+ T < 2. 

Split the sum over k above into three pieces, according to whether k - k[n] 
is zero, odd, or even: 

Loo ( ')k(l 2 T
2 

k
2)-l. ( (2n(s*-s)X k)) =t=z + a -- - smc 1r ---- + -

16X2 n2 T 2 k=-oo 

Here 

(=Fit[n) { (1 + a 2 ~ k[n]
2)-l sine 7r >.[n] 

16X2 n2 

sin: ,\[n] k too [ ( 1 + a2 1[;2 (k[n]; 4k)2) (,\[n] + 2k + 1)-1 

k,i:O 

- ( 1 + u' l~;, (k[n] \;k + 2)')-1 (~[n] + 2k + 11-1] 

± . sin 1r(>.[n] + ½) ~ [(l 2 ~ (k[n] + 4k + 1)
2)-l (>.[ ] 2k ~)-l 

z 7r L + a 16X2 n2 n + + 2 
k=-= 

(
l + a 2 ~ (k[n] + 4k + 3)

2
) (.\[n] + 2k + ~)-ll 

16X2 n2 2 

-X[n] = 2(s - s*)X + k[n] 
T 2 

(so 1-X[n]I <¼,all n), and the sums have been "unrolled" a bit take advantage 
of the periodicity of sin. 

One easily sees that 

I 
k[n]T + (s - s*)I < _!_ 
4Xn 8Xn 

whence follows a uniform bound on the first term. 
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Set 

f(x) - (1 + ::~: (k[n]~ 2x)') _, (A[n] + x)-'. 

Then the second sum can be written 

and the third as 

00 

I: J(2k) - J(2k + 1) 
k= -oo 

k;i:O 

The arguments off in the sums avoid the interval (-½, ½)- Outside of this 
interval 

lf(x)I < 4. 

In addition to the pole at x = -,\[n], f has at most two critical points, so the 
two half-axes (-oo, ½]and[½, oo) are divided into at most four subintervals on 
each of which f(x) is monotone. Thus each sum can be grouped into at most 
four subsums, each of which is an alternating sum of a monotone sequence. 
Each of these is estimated by the following simple principle: Suppose { an} 
is a monotonic sequence with a_ ~ an ~ a+, all n. Then 

Consequently 

II: a2n+1 - a2n+2I ~ a+ - a_ . 
n=O 

00 

I: J(2k) - J(2k + 1) ~ 32 
k = -oo 

k;i:O 

and a similar bound holds for the third term. In view of the previous esti­
mates of k[n], ..\[n] this gives a uniform bound on the sums. We obtain 

8u[s] • 2 

II 11

2 

~(±X, ·) ~ const.llu 11 1 . 
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Similarly, 

whence 

dJu [s] 
ds 

11
8~\sl (±X, -{

1 
S const.[lu·[I½ 

2 

_ 2u 2 / au[s] au[s]) 
\ at ' ax 

-2u'( s - S) II a~\sl 11' 

_ 2u 2 / au[s] au[s] _ (s _ s*) au[s]) 
\ at ' ax . at 

Id:: [s)I > 2u'ls -s·111a~\•III' 

From the Fourier expansion of a~~s] derived before, 

00 I ( ( k))l2
( r2 (k[n] k)2)-

2 

k~oo sine 7r >.[n] + 2 1 + u2 16X2 n"; 

simply by dropping all terms with k =J= 0. From the definition of k[n], 

so 

J1r>.[n]J = l1r ( k~n] + 2n(s; s*)X) I < ~ 

2y'2 
Jsinc 1r >.[n] I ~ - . 

7r 
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Also 

(
1 a2 T2k[n] )-2 > 1 - 0 (_!_) 
+ 16X2 n 2 - n 2 

where the O(;2 ) bound is uniform over any finite interval of a. Therefore 

11 
auat[s] 112 4 II 8u* 112 2 > 7r2 at - const. llullo 

> (:2 - const.'R~,1) llu*II~ 

These estimates together establish the second part of the theorem. q.e.d. 

The next theorem establishes properties (ii) and (iii) of an acceptable 
estimator for the output of a local optimization algorithm applied to lu, as 
discussed in the introduction. 

Theorem 2.10 Suppose that O < a and that u* E H;er is sufficiently oscil­
latory relative to a, as in Theorem 2.9 (b), (c). Let z E Fand 

e= 
llz - z*II 

llz*II 
be the relative error level, where z* = ¢,[s*, u*]. Ifs is a critical point of lu, 
then 

Is - s* I ~ canst . .:.. . 
(j 

Proof. Recall that u[s] is the solution of 

( 
a

2 
a

2
) a 

- at2 + a2 ax2 u = - at T _s z 

plus boundary conditions. Denote by u0 [s] the solution of the same problem 
with z replaced by z*. From Theorem 2.1, 

llu[s] - uo[s]ll 1 ,u 

(II :t(u[s] - uo[•DII' + u' II :x (u[s] - uo[•])n 

< llz - z*II. 
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Thus 

-a2/ au[s] au[s]) 
\ at ' ax 

-2a2 
{ ( !~ ( u[s] - u0 [s]) , a;~s]) 

; auo[s] au[s] _ auo[s]) 
+ \ at ' ax ax 

/ auo[sJ auo[s] )} 
+ \ at ' ax 

Denote by J;[s] the functional lu with data z*. Then using Theorem 2.1 
agam, 

Id~ lu[s] -1 J;[s]I::; 2ajjz - z*ll(llzll + llz*II)::; const.aeiiu*II~. 

As noted before, if u* is sufficiently oscillatory, the quantity in Theorem 
2.9(b) obeys 

8 
-

2 
- const.'R.0 1 - const.y'a'R.1. 1 := const. > 0 . 

7r ' 2' 

Combining Theorem 2.9(b) with the above inequalities we obtain 

so ifs is a critical point of lu, then 

Is - s*I ::; const.-=- . 
a 

q.e.d. 

Up to this point we have concentrated entirely on the extent to which s 

can be estimated. Concerning the waveform u, we have the following result, 
the proof of which is straightforward: 
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Corollary 2.11 Let the hypotheses be as in Theorem 2.10 and suppose that 
s = argmin J,,.[s]. Then the estimator 

l lx au[s] 
U(t) = 2X -X dx ~ (x, t) 

satisfies 

foT dt llat dt' (u*(t') - U(t'))l
2 

< const.;. 

Remark. That is, the estimate of u is Lipschitz continuous with loss of 
one derivative. It is easy to see that this result is sharp. 

We have illustrated the foregoing results through numerical experiments. 
We used the data displayed in Figures 1.4 and 1.5, which led to the opti­
mal mean-square error curves in Figures 1.6 and 1. 7. Figure 2.1 shows the 
differential semblance objective function J,,. for the data of Figure 1.4, using 
the weight o- = 1. This result is directly comparable to that of Figure 1.6, 
and the contrast in Figure 2.1 is essentially quadratic. Figure 2.2 displays 
the analogous result for the noisy data of Figure 1.5, using o- = l. While the 
values of the objective function are very much greater (by an order of mag­
nitude), and the curve much shallower, the general shape remains quadratic 
with the correct minimum. 

One might expect a larger error in the estimate of s on the basis of 
Theorem 2.10. Apparently the completely incoherent nature of the data noise 
in Figure 1.5 leads to anomalously small effect on the differential semblance 
estimator. To show that coherent noise has a much stronger effect, we use the 
data in Figure 2.3 (the sum of Figure 1.4 and its mirror image) to produce the 
plot of J,,. in Figure 2.4. The curve is still quite convex, but the minimizer has 
moved to s = 0 (unsurprisingly). While these examples are suggestive, the 
precise influence of the nature of noise on the differential semblance estimator 
remains to be explained. 

Our final examples illustrate the conclusion embodied in Theorem 2.9(a), 
that as o--+ oo the differential semblance objective approximates the output 
least squares objective, and in particular tends to become saturated away 
from the global minimizer. Figures 2.5 and 2.6 show the function J,,. for 
o- = 10, using the data of Figures 1.4 and 1.5 respectively. The minimum 
is more sharply defined, as is suggested by Theorems 2.9 and 2.10, and the 
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curves flatten out away from the global minimizer. Even in this example, 
though, Ja remains quasiconvex and smooth, and could easily be minimized 
by a properly designed quasi-Newton algorithm. 
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Captions for figures 

Figure 1.1 Plot of the reduced least squares objective 

Jopt[s] = inf 11</>[s, u] - zll 2 

uEL2 [0,T] 

where 
z(x, t) = sin(wt) 

and w = 50.0. Here -0.5 < x < 0.5, 0.0 < t < 1.0 and the values 
of Jopt are computed analytically as explained in the text. Since 
the mean square residual has already been optimized over the 
waveform u here, the many local minima of Jopt actually repre­
sent local minima of the output least-squares objective function. 

Figure 1.2 Same as 1.1 with w = 500.0. 

Figure 1.3 A Ricker wavelet (second derivitave of a Gaussian pulse) with 
peak frequency 20 Hz. 

Figure 1.4 Plane wave data with u = Ricker waveform of Figure 1.3, slope 
s = 0.1. 

Figure 1.5 Same as 1.4, with 160% added pseudorandom noise filtered with 
the waveform of Figure 1.3. 

Figure 1.6 Jopt for the noise-free data of Figure 1.4. 

Figure 1. 7 Jopt for the noisy data of Figure 1.5; note the appearance of local 
optima. 



Figure 2.1 The DSO objective function for the noise-free data of Figure 1.4, 
a= 1. 

Figure 2.2 The DSO objective function for the noisy data of Figure 1.5, 
a= 1. 

Figure 2.3 Dataset formed by summing Figure 1.4 with its mirror image; 
thus composed of the data for s = 0.1 and s = -0.1 in equal 
measure. Either may be regarded as coherent noise. 

Figure 2.4 The DSO objective function for the "coherent noise" data of 
Figiure 2.3, a = 1. 

Figure 2.5 Counterpart of Figure 2.1 with a= 10. 

Figure 2.6 Counterpart of Figure 2.2 with a = 10. 
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Ricker wavelet, peak freq = 20Hz 
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Plane wave data, no noise, slope= 0.1 
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Plane wave data, 160% noise, slope= 0.1 
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X 10·3 Least Squares Scan, no noise 
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xl0·3 Least Squares Scan, 160% noise 
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xl0-4 OS scan: no noise. sig = 1 
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xl0·3 OS scan: 160% noise. sig = l 
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Plane wave data, 100% coherent noise 
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xI0-3 OS scan: no noise, sig = 10 
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xl0-3 DS scan: 160% noise, sig = 10 
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