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Abstract

Mathematical Programming for Constrained Minimal Problems:
Modifications and Extensions
of the Conjugate Gradient-Restoration Algorithm
by

ALEJANDRO VELASCO LEVY

In this thesis, the problem of minimizing a function f(x) subject to a constraint
o(x) = 0 is considered, where f is a scalar, x an n-vector, and v a g-vector,
with q <n. Several conjugate gradient-restoration algorithms are analyzed:
these algorithms are composed of the alternate succession of conjugate gradient
phases and restoration phases, In the conjugate gradient phase, one tries
to improve the value of the function while avoiding excessive constraint violation.

In the restoration phase, one tries to reduce the constraint error, while
avoiding excessive change in the value of the function.

Concerning the conjugate gradient phase, two classes of algorithms are considered:
for algorithms of Class I, the multiplier A is determined so that the error in the
optimum condition is minimized for given x; for algorithms of Class II, the
multiplier X is determined so that the constraint is satisfied to first order.
Concerning the restoration phase, two topics are investigated: (a) restoration
type, that is, complete restoration versus inc,omplet.e restoration and (b) restoration
frequency, that is, frequent restoration versus infrequent restoration.

Depending on the combination of type and frequency of restoration, four

algorithms are generated within Class I and within Class II, respectively:
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Algorithm (o) is characterized by complete and frequent restoration;
Algorithm (B) is characterized by incomplete and frequent restoration;
Algorithm (Y) is characterized by complete and infrequent restoration;
and Algorithm (&) is characterized by incomplete and infrequent restoration.

If' the function f(x) is quadratic and the constraint ¢(x) is linear, all of
the previous algorithms are identical, that is, they produce the same sequence
of points and converge to the solution in the same number of iterations. This
number of iterations is at most N, = n-q if the starting point x_ is such that
cp(xs) = 0 and at most N,, = 1+n-q if the starting point Xg is such that cp(xs) # 0.

In order to illustrate the theory, five numerical examples are developed.
The first example refers to a quadratic function and a linear constraint, The
remaining examples refer to a nonquadratic function and a nonlinear constraint,
For the linear -quadratic example, all the algorithms behave identically, as
predicted by the theory. For the nonlinear-nonquadratic examples, Algorithm
(I1-8), which is characterized by incomplete and infrequent restoration,
exhibits superior convergence characteristics.

It is of interest to compare Algorithm (II-8) with Algorithm (I-a), which
is the sequential conjugate gradient-restoration algorithm of Ref. 1 and is
characterized by complete and fréquent restoration. - For the nonlinear-nonquadratic
examples, Algorithm (II-6) converges to the solution in a number of iterations

which is about one half to two thirds that of Algorithm (I-q).



iii
ACKNOWLEDGMENT

The author is indebted to Dr. Angelo Miele for suggesting the topic
and helpful discussions. He would also like to thank Mr. E.E. Cragg for

checking the accuracy of the numerical results, This research was

supported by the Office of Scientific Research, Office of Aerospace Research,

United States Air Force, Grant No. AF-AFOSR-72-2185.



iv

TABLE OF CONTENTS

Introduction

Statement of the Problem

Conjugate Gradient Phase

Restoration Phase

Summary of Conjugate Gradient-Restoration Algorithms
Experimental Conditions and Numerical Examples
Numerical Results and Conclusions

Appendix: Search for the Optimum Gradient Stepsize

References

Page

14
18
23
28
35

38



1. Introduction
In Ref. 1, the problem of minimizing a function f(x) subject to a constraint
¢(x) = 0 was considered, where f is a scalar, x an n-vector, and ¢ a q-vector, '

with q <n. - A sequential conjugate gradient-restoration algorithm was presented.

The basic cycle of this algorithm involves a conjugate gradient phase and a |
restoration phase. In the conjugate gradient phase, one tries to improve the
value of the function, while avoiding excessive constraint violation, In the
restoration phase (Ref. 2), one tries to restore the constraint to a predetermined
degree of accuracy, while avoiding excessive change in the value of the function.

In Ref. 3, a combined conjugate gradient-restoration algorithm was

presented. It differs from the sequential conjugate gradient-restoration algorithm
in that the displacement Ax leads toward the minimum point while simultaneously
leading toward constraint satisfaction.

In this thesis, several modifications and extensious of the above algorithm
are studied with the basic objective of improving the convergence characteristics.

Concerning the conjugate gradient phase, two classes of algorithms are considered:

for algorithms of Class I, the multiplier X\ is determined as in Refs. 1 and 4,
so that the error in the optimum condition is minimized for given x; for
algorithms of Class II, the multiplier X is determined as in Ref. 3, so that the
constraint is satisfied to first order.

Concerning the restoration phase, the minimum distance algorithm of

Refs. 1-2 is employed. Extensive computer experimentation has shown that
this restoration algorithm is more stable and yields faster convergence than

that of Ref, 3.



With the above ideas in mind, two topics are investigated: (a) restoration
type and (b) restoration frequency. Regarding (a), wWe distinguish complete

restoration from incomplete restoration: complete restoration involves

several iterations until the constraint error becomes smaller than some
preselected number; incomplete restoration involves a single iteration.

Regarding (b), we distinguish frequent restoration from infrequent restoration.

Frequent restoration means that a restoration phase precedes every conjugate
gradient step; infrequent restoration means that a restoration phase precedes
every n-q conjugate gradient steps.

Depending on the combination of type and frequency of restoration, four
algorithms are generated within Class I and within Class II. They are
designated by (a), (B), (Y), (8) and are shown in Table 1. As an example,
Algorithm (I-q) is the algorithm of Class I characterized by complete and
frequent restoration; as another example, Algorithm (II-8) is the algorithm
of Class II, characterized by incomplete and infrequent restoration.
Incidentally, Algorithm (I-g) is the sequential conjugate gradient-restoration
algorithm of Ref. 1.

1.1 Outline. A statement of the problem is given in Section 2,
together with the exact first-order conditions and a discussion of approximate
methods. The conjugate gradient phase is discussed in Section 3, the restoration
phase is discussed in Section 4, and a summary of conjugate-gradient
restoration algorithms is given in Section 5. The experimental conditions
and five numerical examples are described in Section 6, Next, the numerical

results are given in Section 7, together with the conclusions. Finally, the



details of the search technique employed in the conjugate gradient phase are

given in the A'ppendix.

Table 1. Classification of Algorithms of Class I and Class:II,

Restoration type

Complete Incomplete

F ent o, (8
Restoration requen ()

frequency Infrequent (v) (9)




2. Statement of the Problem

We consider the problem of minimizing the function
f = f(x) (1)

subject to the constraint

w(x) = 0 (2)
In the above equations, f is a scalar, X an n-vector, and ¢ a q-vectorl, where q <n,
It is assumed that the first and second partial derivatives of the functions f and ¢

with respect to x exist and are continuous; it is also assumed that the constrained

minimum exists.

2.1. Exact First-Order Conditions. From theory of maxima and

minima, it is known that the previous problem can be recast as that of

minimizing the augmented function

F(x, \) = {(x) + XTcp(x) (3)

subject to the constraint (2). Here, A is a q-vector Lagrange multiplier, and

the superscript T denotes the transpose of a matrix. If
F_(x, %) = £() + @ (0} @)

. 2 . .
denotes the gradient of the augmented function™, the optimum solution x, A

must satisfy the simultaneous equations

w(x) =0, FX(X’ N =0 (5)

1
All vectors are column vectors.

2 In Eq. (4), the gradients fX and Fx denote n~-vectors and the matrix @, isnxq.



2.2, Approximate Solutions. In general, the system (5) is nonlinear;

consequently, approximate methods must be employed, These are of two
kinds: first-order methods (such as the one discussed in subsequent sections

of this thesis) and second-order methods. Here, we introduce the quantities
T T
P(x) = ) (X)CD(X) ’ Q(x, A) = FX (x, M) Fx(xs N (6)

measuring the error in the constraint and the optimum condition, respectively.
We observe that P = 0 and Q = 0 for the optimum solution, while P >0 and Q =0
for any approximation to the solution, When approximate methods are used,

they must ultimately lead to values of x, A such that
P(x) < el ,  Qx,7) < 62 (7)
Alternatively, (7) can be replaced by
R(x, \) = €3 (8)

where

R(x, M) = P(x) + Q(x,}) (%)

denotes the cumulative error in the constraint and the optimum condition.

Here, ¢_, €., €, are small, preselected numbers. Note that satisfaction of

1" 2" 3

Ineq. (8) implies satisfaction of Ineq. (7), if one chooses € = €, = €3¢



3. Conjugate Gradient Phase

Let x denote the nominal point, ¥ the varied point, and Ax the displacement
leading from the nominal point to the varied point. Let ) denote the Lagrange
multiplier, p the present search direction, p the previous search direction, Y
the directional coefficient, and q the gradient stepsize. Both p and f§ are
n-vectors, while y and o are scalars. With these definitions in mind, we

consider the conjugate gradient algorithm represented by
Fx(x, A) = fX(x) + cpx(x)x

p=TF (%N +vp
(10)

AX = - op

E=x+Ax

whose form is suggested by the results of Ref. 1. For a given nominal point
x, Egs. (10) constitute a complete iteration leading to the varied point X,
providing one specifies the Lagrange multiplier A, the directional coefficient v,
and the gradient stepsize q.

3.1. Lagrange Multiplier. In accordance with the discussion of

Section 1, two possible determinations of the multiplier are presented here.

Algorithms of Class I, In these algorithms, the multiplier is determined

so that the error in the optimum condition (6-2) is minimized for given X

(Refs. 1 and 4), Owing to the fact that

QN = [0+ G [E,(0 + @ (o] (11)



the multiplier is determined by the relation
Q)\(x, N=0 (12)
which implies that
@, () (9N + @ (IE () = 0 (13)

This linear vector equation is equivalent to g linear scalar relations, in which
the only unknown is the multiplier A. The unique multiplier solving Eq. (13)

is denoted by

A= )\0 (14)

Algorithms of Class II. In these algorithms, the multiplier is determined

so that, at the end of any iteration, the constraint is satisfied to first order
(Ref.3), Let o(x) # 0 and (%) = 0 to first order, If quasilinearization is

employed, we obtain the relation
T
o(x) + @ px =0 (15)
which, for convenience, is imbedded in the more general relation
T
p(x) + @, (X)8% = 0 (16)

where p = 0 denotes a scaling factor to be specified. If Eqs, (10-3) and (16)

are combined, we see that

Mep(x) - aCPI (x)p=0 (17)



Let 1 be proportional to g throughout the algorithm, that is, let
u = Ca, (18)
where C is a constant to be specifieds. Then, Eq. (17) becomes
T
Co(x) - @ (x)p=0 (19)
and, in the light of Egs. (4) and (10-2), can be written as
T T T, .
@, (KO (0N + @ (O (%) + yo ()P - Colx) =0 (20)

For a given value of the constant C and for a specified value of the directional
coefficient Y (see Section 3.2), this linear vector equation is equivalent
to q linear scalar equations, in which the only unknown is the multiplier A.

The unique multiplier solving Eq. (20) is denoted by
A=A, (21)

3.2, Directional Coefficient. For both algorithms of Class I and

Class II, the directional coefficient y is determined by the relation (Refs. 1 and 3)
y=0 (22)

or

Y= QxA)/ QR R ) (23)

Equation (22) is to be employed for the first iteration of the conjugate gradient

phase and means that the search direction p is identical with the gradient of the

31f the function f, the constraint ¢, and the vector x are scaled in such a way that the
gradient stepsize q is 0(1), then the choice C =1 is appropriate,



augmented function Fx(x, A). Equation (23) is to be employed for the remaining
iterations of the conjugate gradient phase; since vy # 0, the search direction p
is not identical with the gradient of the augmented function. In Eq. (23), x
denotes the present point, % the previous point, and )\o the solution of Eq. (13)
at the present point, and ;\0 the solution of Eq. (13) at the previous point.

3.3. Descent Properties. In the previous sections, we discussed the

determination of the Lagrange multiplier A and the directional coefficient y
for both algorithms of Class I and Class II. Prior to determining the gradient
stepsize ¢ for given values of y and A, we establish whether certain descent
properties are satisfied, When the displacement (10-3) is employed, the first

variations of the functions F(x,A) and P(x) are given by4

8F(x, \) = F;f(x, AAx = —an(x, AP

(24)
T . T T, . T
8P(x) = 20" (N), (X)Ax = -2o%p (X)@, (X)P
and, in the light of (10-2), can be rewritten as
T
8F(x, 1) = -a[Q(x, 1) + YF, (x, })B]
T T (25)
8P(x) = -200 (X)0, (X)[F (X, }) + YP]
For algorithms of Class I and Class II, the second of these equations takes
the particular form
Class1 () = ~20v9 ()9, (0
(26)

Class II 8P(x) = -2CoP(x)

4
In the computation of the first-order change of F, the multiplier X is held constant.
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Augmented Function. For both algorithms of Class I and Class II, the

first variation of the augmented function (25-1) is negative providing
T A
Q(x, ) + YF_(x, )p >0 (27)

For the first iteration of the conjugate gradient phase (v = 0), Ineq. (27) is
satisfied, and the descent property 8F(x, ) <0 holds. Therefore, for a
sufficiently small, the decrease of the augmented function is guaranteed,

For subsequent iteration ( y # 0), Ineq. (27) may or may not be satisfied,

and the descent property §F(x, \) <0 may or may not hold. Whenever Ineq (27)
is violated [that is, whenever &F(x, ) > 0], the conjugate gradient phase

must be interrupted, and the restoration phase must be started.

Constraint Error. For algorithms of Class I, Eq. (26-1) applies. For

the first iteration of the conjugate gradient phase (y =0), the first variation of
the constraint error vanishes. For subsequent iterations (¥ # 0), the first

variation of the constraint error is negative only if
T, T, .~
® (X)@, ()b >0 (28)

Since Ineq. (28) may or may not be satisfied, the descent property &P (x) <0

may or may not hold, For the above considerations, the restoration phase

is indispensable to the stability of algorithms of Class L.

For algorithms of Class II, Eq. (26-2) applies and shows that &P(x) <0,
regardless of the value assigned to the directional coefficient y. Therefore,
for o, sufficiently small, the decrease in the constraint error is guaranteed,

For the above considerations, the restoration phase is not indispensable to
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the stability of the algorithms of Class II, but it is desirable in order to
ensure quadratic terminal convergence.

3.4. Gradient Stepsize. The descent properties established in the

previous section are instrumental in the determination of the optimum gradient
stepsize for given values of the multiplier ) and the directional coefficient vy.
If Egs. (10-3) and (10-4) are combined, the position vector at the end of the

conjugate gradient step becomes
X=%x-op (29)

where p is known through Eq. (10-2). This is a one-parameter family of
varied points %, for which the augmented function and the constraint error

are functions of the form
F(%,\) = F(x - ap, \) = F(o) , P(X) =P(x - ap) = P(a) (30)

Along the straight line defined by Eq. (29), the augmented function admits

the derivative
F (@) = -FL(%,M)p = -F (% N [F.(x, ) + v5] (31)
o a) = x Ko P= x K X\ Y
which, at q = 0, becomes
T ~ Ly
Fa(O) = -[Q(x, M) + YF_(x, Mp] (32)

If Ineq. (27) is satisfied, the descent property on F(a) holds, and the search
for the optimum gradient stepsize can be initiated. If Ineq. (27) is violated,

the descent property on F(q) does not hold; the search direction p must be
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discarded, the conjugate gradient phase must be interrupted, and the
restoration phase must be started.

Now, we assume that Fa(O) < 0 and that a minimum F(a) exists, Then
we employ some one-dimensional search scheme (for instance, quadratic

interpolation, cubic interpolation, or quasilinearization) to determine the

value of Q, for which

Ideally, this procedure should be used iteratively until the modulus of the

slope satisfied any of the following inequalities:
[F @|se, or [F@]=es|F(0)] (34)

where ¢ 4 and € are small, preselected numbers. Of couse, the value of ¢,

satisfying Ineq. (34) must be such that
F(o) < F(0) (35)

In practice, the solution of (33) must be subordinated not only to (35) but
also to certain additional inequalities, designed to counteract the effects
arising from these undesirable situations: (a) the minimum of the function F(q)
occurs for such a large gradient stepsize that the constraint error P(a) at the
end of the iteration is excessive; and (b) the function F(¢) decreases nonotonically

versus the gradient stepsize. With these ideas in mind, Ineq. (35) must be

supplemented by
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P(q) < kP(0) if P(0) = P, (36)

P(a) <P, if P(0) <P, (37)

where P, and k are prescribed constants. Specifically, k >1 for algorithms of
Class I and k = 1 for algorithms of Class II.

In closing, we note that Ineq. (36) applies only to algorithms with
incomplete restoration, namely, Algorithms (8) and (§). On the other hand,
Ineq. (37) applies to all of the previous algorithms, regardless of whether

complete restoration or incomplete restoration is used.

3.5. Convergence Properties, If the function f(x) is quadratic, if the

constraint ¢(x) is linear, and if the starting point X is such that cp(xs) =0, then
algorithms of Class I and algorithms of Class Il become identical. They
produce the same sequence of points and converge to the solution in at

most N, = n-q iterations. If any of the above conditions is violated, the
quadratic convergence property does not hold, However, quadratic terminal
convergence can be achieved if a suitable restoration phase is inserted in the

algorithm (see Section 4).
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4, Restoration Phase

Let x denote the nominal point, X the varied point, and Ax the displacement
leading frém the nominal point to the varied point. Let o denote the Lagrange
multiplier, p the search direction, andu the restoration stepsize. Here, o is
a q-vector, p an n-vector, and y a scalar, With these definitions in mind, we

consider the restoration algorithm represented by

cpz(x)cpx(x)c - @x) =0

P = (x)o

(38)
AX = -up
X=x+Ax

whose form is suggested by Refs, 1-2.. For a given nominal point x, Egs. (38)
represent a complete iteration leading to the varied point X, providing one
specifies the restoration stepsize [l.

4,1, Descent Property. Prior to determining the restoration stepsize y,

we establish a basic descent property. When the displacement (38-3) is

employed, the first variation of the function P(x) is given by
T, T T, . T
8P(x) = 29" (%) (¥)ax = -2up” (X)ep, (X)P (39)
and, in the light of (6-1), (38-1), (38-2), can be written as

OP(x) = -2uP(x) - (40)
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Since u is positive and P(x) is positive, Eq. (40) shows that 8P(x) <0. Therefore,
for u sufficiently small, the decrease of the constraint error is guaranteed.

4.2. Restoration Stepsize. The descent property established in the

previous section is instrumental in determining the optimum restoration stepsize.
If Egs. (38-3) and (38-4) are combined, the position vector at the end of a

restoration step becomes
X=x-up (41)

where p is known through Eq. (38-2) . This is a one-parameter family of

varied points X, for which the constraint error is a function of the form

P(X) = P(x - up) = P(p) (42)
Along the straight line defined by Eq. (41), the constraint error admits the derivative

P ()= -2 (R, (P 43)
which, atp =0, »becomes

PM(O) = -2P(x) (44)

a results consistent with (40). Since PM(O) <0, the search for the optimum
restoration stepsize can be initiated.

Assuming that a minimum - £ P(u) exists, we employ some one-dimensional
search scheme (for instance, quadratic interpolation, cubic interpolation, or

quasilinearization) to determine the value of i for which
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Pu(“) =0 (45)

Ideally, this procedure should be used iteratively until the modulus of the slope

satisfies any of the following inequalities:
P <e,  or |P <e, |P (O 46
[P Gl se, or [P (Wlse, P (O] (46)

where ¢ 6 and €7 are small, preselected numbers, Of course, the value of u

satisfying Ineq. (46) must be such that
P(u) < P(0) (47)

Since a rigorous search might take excessive computer time, we propose
here an alternate procedure., We observe that, for a linear constraint, Eq. (45)
is solved by u = 1. This result and the descent property of the previous section
suggest replacing the rigorous search by a bisection process on y starting from u = 1,
Specifically, we first assign the value p = 1 to the restoration stepsize and
verify Ineq. (47). If Ineq. (47) is satisfied, the iteration is complete. If Ineq. (47)
is violated, u is bisected several times until satisfaction of Ineq. (47) occurs,
This is guaranteed by the descent property of the previous section.

Remark 4.1. The restoration phase is important for two reasons: (i) it
gives stability to algorithms of Class I: for these algorithms, the descent
property onthe function P(a) is guaranteed during the conjugate gradient phase; and
(ii) it accelerates the convergence of both algorithms of Class I and Class II; if the
function f(x) is quadratic, if the constraint ¢(x) is linear, and if the starting point

X is such that cp(xs) # 0, then convergence to the solution in at most N, = 1+n-q
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iterations is possible if the restoration phase precedes the conjugate
gradient phase.

Remark 4.2, Algorithms (¢) and (y) are characterized by complete
restoration: the restoration phase involves several iterations, the number of
which is determined through satisfaction of Ineq. (7-1). In turn, Algorithms (B)
and (8) are characterized by incomplete restoration; the restoration phase

involves one iteration.



18

5. Summary of Conjugate Gradient-Restoration Algorithms

The conjugate gradient-restoration algorithms discussed here involve
the alternate succession of conjugate gradient phases and restoration phases.
A summary of these phases is given below.

5.1. Conjugate Gradient Phase, For algorithms of Class I, the conjugate

gradient phase involves n-q iterations, each of which is represented by the

following equations:

o (x)0, (0N + 0 (IE (3) = 0
Fx(x, xo) = fx(x) + cpx(x))\o
Q1) = Fr(x, A )F (X, )
(o] X 0o X (o]
Y= QA )/ QR ) (48)
p=F (xX)+ vp
AX = -ap

X=X+ AX

For the first iteration, Eq. (48-4) is bypassed and is replaced by y = 0.
For algorithms of Class II, the conjugate gradient phase involves n-q

iterations, each of which is represented by the following equations:
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o (x)p, (0N + & (IE () = O
FX(X, )\0) = fx(x) + Cpx(x))\o
Q(x, )\o) = FI(X, )\o) Fx(x, 7\0)
Y = Q%A )/Q%A )
O (99, (90N, + BLCOE () + Y0, (0 - Co(x) =0 (49)
F (%)) = £,(0) + 0 (0,
p=F (xX,)+ P
AX = -Qp
% =%+ Ax

For the first iteration, Eq. (49-1) through (49-4) are bypassed and replaced by vy = 0.

Search Technique. The search for the optimum gradient stepsize is made on

the augmented function F(%, A) = F(¢), where A = xo for algorithms of Class I and

A = )\, for algorithms of Class II. = First, one checks the sign of the derivative
T
F(0) = -[Q(x, ) + YF, (%, )] (50)

If FG(O) <0, the search for the optimum gradient stepsize is initiated. If Fa(O) 20,
the conjugate gradient phase is interrupted, and the restoration phase is started.
Whenever Fa(O) <0, the search is terminated when any of the following

inequalities is satisfied:
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|F ()] <, or |Fa(oc)\s es |F (0] (51)

and must be subordinated to the further inequalities

F(o) < F(0) (52)

and
P(o) <kP(0) if P(0) =P, (53)
P(a) <P, if P(0) <P, (54)

where P, and k are prescribed constants, Specifically, k >1 for algorithms
of Class I and k = 1 for algorithms of Class II.

5.2. Restoration Phase. Depending on the restoration type (incomplete

or complete), the restoration phase involves one or several iterations, each of

which is represented by the following equations:

%, (X (X)0 - 9(x) =0

p = (x)0

(59)
Ax = -up
X=x+AX

For every iteration, the search for the restoration stepsize is made on the
constraint error P(X) = P(u). Specifically, one employs a bisection process on

u (starting from u = 1) until satisfaction of the following inequality occurs:
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P() < P(0) (56)

5.3. Special Conditions. In this section, special conditions relevant to

the computer implementation of conjugate gradient-restoration algorithms
are presented.

Starting Condition. The algorithms can be started from any nominal

point X regardless of whether cp(xs) =0 or cp(xs) #0.
Initial Phase. The algorithms are started with a restoration phase if

P(xs) > ¢, and a conjugate gradient phase if P(xS) <eé 1°

1
Restoration Phase: Stopping Condition. For Algorithms (o) and (Y),

the restoration phase is stopped when Ineq, (7-1) is satisfied. For Algorithms
(R) and (&), the restoration phase is stopped after a single iteration.

Restoration Phase: Bypassing Condition. Usually, a complete cycle

includes a restoration phase and a conjugate gradient phase. However, if at
the beginning of the restoration phase, Ineq. (7-1) is met, the restoration phase
is bypassed, and the conjugate gradient phase is started directly.

Conjugate Gradient Phase; Stopping Condition. The conjugate gradient

phase must be stopped under the following conditions: (a) every n-q iterations,
(b) if Fa(O) =0, where Fa(O) is given by Eq. (50), and (c) if the gradient
stepsize mi_nimizi.n’g’ the augmented funtion F(a) cannot be employed due to
violation of Ineq. (53)-(54).

Conjugate Gradient-Restoration Algorithm: Stopping Condition. A conjugate

gradient-restoration algorithm is stopped when Ineq. (7) is satisfied or Ineq. (8)

is satisfied.
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5.4, Convergence Properties, If the function f(x) is quadratic and if

the constraint o(x) is linear, then all of the previous algorithms become identical,
regardless of whether they are of Class I or Class II, and regardless of whether
they are of type (o), (B), (Y), (8). They produce the same sequence of points

and converge to the solution in the same number of iterations. This number

of iterations is at most N, = n-q if the starting point X is such that cp(xs) =0

and at most N, = I4n-q if the starting point x_ is such that cp(xs) # 0.
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6. Experimental Conditions and Numerical Examples

In order to illustrate the theory, five numerical examples were
developed using a Burroughs B-5500 computer and double-precision arithmetic.
The algorithms were programmed in FORTRAN IV, The constant C was
specified to be C = 1; the constant P, was given the value P, = 10; and the
constant k was selected to be k = 10 for algorithms of ClassI andk =1
for algorithms of Class II,

Concerning the conjugate gradient phase, the one-dimensional search
on the function F(a) was done in accordance with Section 5. 1; a modification
of quasilinearization was employed (see Appendix); the stopping condition

for the one-dimensional search was

6

Fi(a) < Fi(O) x 10~ (57)

and the gradient stepsize o was subordinated to satisfaction of Ineq. (52)-(54).
Concerning the restoration phase, the one-dimensional search on the function P(.)
was done in accordance with Section 5.2,

Convergence was defined as follows:

12

R(x,A) < 10~ (58)

. . 5 .
and the number of iterations for convergence N, was recorded . Incidentally,

satisfaction of Ineq. (58) implies that6

12 12

P(x) <10~ , Qx,\) <10 (59)

S
The number N, includes both the iterations of the conjugate gradient phase and the
iterations of the restoration phase.

6 . .
Inequality (59-1) constitutes the bypassing condition for the restoration phase.
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Conversely, nonconvergence was defined by means of the inequalities

(a) N = 1000 (60)
or

(b) N_ =20 (61)

Here, N is the iteration number and NS is the number of bisections of the
stepsize required to satisfy Ineqs. (52}-(54) or Ineq. (56).
In the numerical experiments, the effect of the length of the conjugate gradient
phase AN on the convergence characteristics of the algorithms was studied, where
AN denotes the number of iterations of the conjugate gradient phase. Three values
of AN were considered, namely, AN = 1, AN =n-q, and AN = n. Note that, for
AN = 1, the present algorithm reduces to the ordinary gradient-restoration algorithm.

Example 6.1, Consider the problem of minimizing the function7
fo(x-y) 2 (y+2z-22+@- 12+ w- 1) (62)
subject to the constraints
x+3y=0, z4+u-2w=0, y-w=0 (63)
This function admits the relative minimum £ = 4,0930 at the point defined by

x=-0,7674 , y=0.2558 , z=0.6279 , u=-0,1162 , w=0.2558 (64)
and

)\1=2.0465 » Ao =2.2325 , A, = -5.9534 (65)

2 3

7 For simplicity, the symbols employed in the examples denote scalar quantities.
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The nominal point chosen to start the algorithm is the point of coordinates
X=y=z=u=w=2 (66)

not consistent with (63).

Example 6.2. Consider the problem of minimizing the function
t=x-p +y -2 (67)
subject to the constraint
x(1+yD) +27 -3=0 (68)
This function admits the relative minimum f = 0 at the point defined by
x=y=2z=1 (69)

and

A, =0 (70)
The nominal point chosen to start the algorithm is the point of coordinates
X=y=2z2=2 (71)

not consistent with (68).

Example 6.3. Consider the problem of minimizing the function
2 2 ‘ 4
f=x-1) " +Ex-9N + -2 (72)
subject to the constraint

X1+y)+zt -4-3/2=0 (73)
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This function admits the relative minimum f = 0.3256 x 10-1 at the point

defined by
x=1,1048 , y=1.1966 , z =1.5352
and
A, = -0.1072x 107
The nominal‘ point chosen to start the algorithm is the point of coordinates
X=y=z=2

not consistent with (73).

Example 6.4, Consider the problem of minimizing the function
2
f=(x - 1)2+(x -y)2+(z -1 +(u - 1)4+(w - 1)6
subject to the constraints

ux2+sin(u~w) -2/2=0, y+z4u2-8-,\/2=0

This function admits the relative minimum f = 0.2415 at the point defined by

x=1,1661 , y=1,1821 , z=1.3802 , u=1,5060 , w = 0.6109

and

A = 0.8553 x 01, A, = -0.3187 X 107!

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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The nominal point chosen to start the algorithm is the point of coordinates
X=y=z=u=W=2 | (81)

not consistent with (78).

Example 6.5. Consider the problem of minimizing the function
N R A Rt AT R M C 2
subject to the constraints
x+y2+23 -2-3/2=0, vy -z2+u+2 -2/2=0 , xw-2=0 (83)
This function admits the relative minimum £ = 0.7877 x 10~1 at the point defined by
x= 1.1911 , y=1.3626 , z=1.4728 , u=1.6350 , w=1.6790 (84)

and

A, = -0.3882 x wt, Ay = - 1672 x 0!, Ay = -0.2879 x 107 (85)

The nominal point chosen to start the algorithm is the point of coordinates

X=y=z=u=w=2 (86)

not consistent with (83).
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7. Numerical Results and Conclusions

For the previous examples and experimental conditions, the conjugate
gradient-restoration algorithms of Class I and Class II were tested in versions
(@), (B), (v), (8), all of which include a restoration phase. For completeness,
the algorithm of Class II was also tested in version (e), which does not include
a restoration phase. The numerical results are given in Tables 2-11, where
the number of iterations for convergence N, is shown versus the parameter
AN of the conjugate gradient phase. From the tables, the following conclusions
arise:

(a) For the linear-quadratic Example 6.1, Algorithms (I-a) through (I-98)
and Algorithms (II-a) through (II-8) behave identically, as predicted by the theory.
For these algorithms, the quadratic convergence is verified, while this is not
the case with Algorithm (II-¢). This clearly establishes the importance of the
restoration phase,

(b) For the nonlinear -nonquadratic Examples 6. 2 through 6.5,
the algorithms do not behave identically. A detailed analysis is given below.

(c) Concerning the conjugate gradient phase, algorithms characterized
by AN = n-q generally require a smaller number of iterations than algorithms
characterized by AN = 1 or AN =n. Also, algorithms of Class II generally
require a smaller number of iterations than algorithms of Class I.

(d) Concerning the restoration phase, Algorithms (B) and (&)
generally require a smaller number of iterations than Algorithms (a) and (y),
respectively. Also, Algorithms (y) and (8) generally require a smaller number

of iterations than Algorithms (a) and (B), repsectively. Therefore, for fast
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convergence, incomplete restoration is to be preferred to complete restoration
and infrequent restoration is to be preferred to frequent restoration.

(e) Among the algorithms tested, Algorithm (II-&) with AN =n-q is
the best. This algorithm is characterized by the multiplier being determined
so as to satisfy the constraint to first order. It is also characterized
by incomplete and infrequent restoration, that is, a single restoration
step prior to every AN = n-q gradient steps.

(£ It is of interest to compare Algorithm (II-8) with Algorithm (I-o),
which is the sequential conjugate gradient-restoration algorithm of Ref, 1
and is characterized by complete and frequent restoxation. For Examples 6.2,
6.3, 6.4, Algorithm (II-8) converges in a number of iterations which is about
one half that of Algorithm (I-o)., For Example 6.5, Algorithm (II-8) converges

in a number of iterations which is about two thirds that of Algorithm (I-a).
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Table 2. Number of iterations at convergence N,

for Example 6.1, algorithms of Class I.

AN (o) (B) (v) (8)
1 11 11 11 11
n-q=2 3 3 3 3
n=>5 3 3 3 3

Table 3. Number of iterations at convergence N,

for Example 6.1, algorithms of Class II.

AN (a) (8 (v) (8) (e)
1 11 11 11 11 24
n-q=2 3 3 3 3 27
34
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Table 4. Number of iterations at convergence N,

for Example 6.2, algorithms of Class L.

AN (o) (B (v (5)

1 >1000 >1000 >1000 >1000
n-q =2 32 25 25 18

n=3 46 17 28 23

Table 5. Number of iterations at convergence N,

for Example 6.2, algorithms of Class II.

AN (o) (B) (v) (8 (e)

1 >1000 599 >1000 599 >1000
n-q =2 27 22 27 16 >1000
>1000

n=3 25 25 27 20
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Table 6. Number of iterations at convergence N,

for Example 6.3, algorithms of Class I.

AN (o) (B) (y) (5)
1 40 34 40 34
n-q = 2 21 15 18 15
n=3 23 14 18 19

Table 7. Number of iterations at convergence N,

for Example 6.3, algorithms of Class II.

AN (@) (B) ) () (e)
1 40 34 40 34 35
n-q = 2 21 14 17 12 36
n=3 23 13 17 15 26
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Table 8. Number of iterations at convergence N,

for Example 6.4, algorithms of Class I.

AN (o) (B) (v) (6)
1 56 49 56 49
n-q =3 27 16 19 21
n=>5 30 18 23 31

Table 9. Number of iterations at convergence N,

for Example 6.4, algorithms of Class II.

AN (o) (B (v) () (€)
1 56 41 56 41 39
n-q =3 26 14 19 13 29
n=>5 31 14 22 - 16 22

(23
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Table 10. Number of iterations at convergence N,

for Example 6.5, algorithms of Class I.

AN (a0) (8) (v) (8)
1 16 11 16 11
n-q =2 15 11 13 11
n=35 16 13 19 21

Table 11. Number of iterations at convergence N,

for Example 6.5, algorithms of Class II.

AN (o) (B) ) (6) (e)
1 16 21 16 21 17
n-q =2 14 11 13 10 17
n=5 16 11 12 13 31
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8. Appendix: Search for the Optimum Gradient Stepsize

In this section, we describe the one-dimensional search employed in
order to determine the optimum gradient stepsize., The search is carried

out on the augmented function
F(%, ) = F(o) (87)
along the straight line defined by
X=x-ap (88)

Here, A\ = >‘o for algorithms of Class I and A = ), for algorithms of Class II. Before
the search is started, one must check whether the decrease of the augmented

function is guaranteed. To this effect, one computes the derivative
T "
F_(0) = -[Q(x, 1) + YF, (%, )] (89)

and verifies whether Fa(O) <0, If this is the case, one starts the search; otherwise, if
Fa(O) > 0, one abandons the search and starts the restoration phase.

Owing to the analytical nature of the examples considered here, modified
quasilinearization is employed; however, in a more realistic situation, one
would use cubic interpolation or equivalent first-order technique. When

quasilinearization is employed, evaluation of the derivatives
F()=-F &Mp » F_(0)=p F_(&N (90)
G.a - X ’ p y Gﬂ.a - p XX ] p

is in order,

Let ono denote the nominal stepsize, o the varied stepsize, and Aao the

increment leading from a, to o, Sso that
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a=a +Ax (91)
o) o
If modified quasilinearization is employed, one has
ho, = -pFa(ono)/ |Fw(ono)| (92)
where the scale factor p is such that
0<p=<1 (93)

8
With the above considerations in mind, the sequence of computation is as follows:
(a) Select a nominal stepsize as compute the derivatives Fa(oco) and
ch(ao) with (90).
(b) For any given p, compute Aao with (92) and o with (91); select

p so that the inequality
F(o) < Fay) (94)

is satisfied; to this effect, employ a bisection process on p starting from p = 1.
(c) Once p and o are known, check the inequality
P(a) <kP(0) if P(0) =P,
(95)
P(o) <P, if P(0) <P,

where k = 10 for algorithms of Class I and k = 1 for algorithms of Class II.

8
In oxrder to start the search, one sets ao =0,



37

(d) If Ineq. (95) is satisfied, return to (a) and continue the search

until the stopping conditioh—
Fz( ) < FZ(O) x 1070 (96)
a o

is satisfied; with o known, the search is completed, the state x is updated
with (88), and the next iteration of the conjugate gradient phase is started.

(e) If Ineq. (95) is violated, a further bisection of the scale
factor p is performed until Ineq. (95) is satisfied; with o known, the search
is completed disregarding satisfaction of Ineq. (96), and the state x is updated
with (88); then, one interrupts the conjugate gradient phase and starts the

restoration phase.
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