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Abstract 

A Scattered Data Approximation Tool to Map Carbon Nanotube Dispersion to the 

Processing Parameters in Polymer Nanocomposites 

by 

Jonathan W. Lee 

The relationship of nanocomposite dispersion was studied with the variation of 

dispersion techniques and other processing parameters. Examining all permutations of 

the various factors in the laboratory is a challenging task. In this thesis, we propose to 

map a correlation between inputs and output via a self-adaptive scattered data 

approximation method. The proposed greedy algorithm, Sequential Function 

Approximation (SFA), reveals the multidimensional behavior of the system, provides the 

sensitivity of each input, and presents the combination of inputs that is most suitable for a 

specific output. In this research, we have collected data from various research 

institutions and applied it to SFA. The results show that CNT weight percent, sonication 

time, CNT modification, and high shear mixing time are key factors that affect the 

dispersion. This thesis discusses SFA, the data, and the results in detail. This work 

serves as a proof of concept and recommended future work is discussed. 
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Chapter 1 

Introduction 

Composite materials (or composites for short) are materials comprised of two or 

more constituent materials. Typically the constituent materials have vastly different 

physical or chemical properties, and combine with a synergistic effect to create a new, 

better material. The two types of constituent materials are known as the matrix and 

reinforcement. At least one of each type is required. The matrix is used to hold the 

reinforcement in place, while the reinforcement is used to enhance the properties of the 

matrix. 

Carbon nanotubes (CNTs) are a relatively new type of molecule comprised of 

only carbon atoms. The CNTs take the form of cylindrical tubes, as if sheets of graphene 

were rolled onto themselves. Due to their unique shape, aspect ratio, and composition, 

CNTs display very unique properties [1-3]. For this reason, CNTs are being employed in 

composites as the reinforcement constituent. CNT composites may also be referred to as 

"nanocomposites" because of their "nano-constituents." 

Polymers are typically used in these nanocomposites as the matrix material. 

However, a great deal of research has been directed towards dispersing and dissolving 

CNTs in the matrix such that the composite is a stable mixture [4-15]. Many different 

approaches to polymer-CNT composite processing have been attempted, with varied 

success. These many approaches suggest that there are many factors that could 

potentially influence the ultimate product. The goal in processing polymer-CNT 

composites is to achieve a significant enhancement of the matrix's material properties. In 
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essence, each experiment performed is aimed at finding the correlation between some 

processing parameters and the material property. 

The goal is to determine how to make better composites. Rather than approaching 

this problem one experiment at a time, an alternative is to build a model based on existing 

data. High-dimensional (i.e., systems with large numbers of input variables) mapping is 

a tool commonly used in science and engineering. A database that contains a fixed set of 

input variables and output variable(s) is acquired and applied to the mapping tool. An 

input-output mapping is then generated based on a training set (a portion of the whole 

database). With the mapping, the correlations between inputs and output(s) are now 

expressed as a function. The function has predictive capabilities, and can be used for 

design purposes. This type of modeling is called function approximation or scattered 

data approximation. Specifically, we employ Sequential Function Approximation (SFA) 

in this work [16]. 

Due to the complex nature of composite processing, physical knowledge of the 

domain is limited and theoretical modeling is difficult. Polymer-CNT process design can 

be modeled using SFA because it only utilizes empirical data to build the model. The 

many processing parameters and other influencing factors are treated as inputs to the 

system. The output of the system can be any discernible assessment of the final product. 

A mathematical model of the system would provide sensitivity information about 

the many processing factors. It would also save time and money by avoiding a 

permutation approach in which engineers would have to test a vast number of 

experiments. The model would also allow scientists and engineers to explore other 

options and processing parameters that have been overlooked. 
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In this work, a kernel based learning algorithm is applied to polymer-CNT 

composite processing as described above. A model was developed with very sparse data 

to achieve better than 60% accuracy. A sensitivity analysis was also performed which 

provided the most and least sensitive inputs. The results from the analyses were 

corroborated by current knowledge of the domain as well as knowledge of the algorithm. 

In Chapter 2, SFA is described in detail and examined with three test cases. 

Chapter 3 discusses the method of applying the algorithm to polymer-CNT processing. 

Chapter 4 presents the results of the model and compares them against existing 

knowledge. Conclusion and future work are discussed in Chapter 5. 
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Chapter 2 

Function Approximation Theory 

2.1 Introduction 

Let us consider a deterministic system which takes as input the vector xeR ' ' and 

returns a scalar output y e R. With s repeated experiments, we have a set of s input 

vectors, X = \x^\x"',...,x^'\eRdXs, and the set of corresponding output values 

5s = 17 ,y ,••••> y p R J . A portion of the data is allocated to training. The training 

data is often obtained by a design of experiments technique. Given the training data, we 

are concerned with constructing an approximation to the function which maps the input 

data x to the output y . The approximation problem is essentially the prediction of the 

output y(x) given a new input vector x. The output data can be categorical (binary 

[-l,+l] or integers) yielding a classification problem or continuous thereby yielding a 

regression problem. The outputs we will concern ourselves with in this text will be 

categorical. Such a problem is in general referred to as black-box modeling. Black-box 

modeling generally consists of the following steps: (1) data generation, (2) model-

structure selection, (3) parameter estimation, and (4) model validation [17]. 

Data generation, for our purposes, is more applicably termed data collection. For 

problems where the training data can be computationally generated, the location of the 

training points can be selectively placed so that the predictive capability can be optimized. 

In our case, the location of our training points is largely dictated by the data that we are 
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able to collect. Selection of the training data from the collected data can be selectively 

chosen by various means [17]. The means by which we select our training data is 

random selection. Taking the mean result from several random permutations is 

representative of the model's performance. One selective method which we will explore 

is called Latin Hypercube sampling. This method will be addressed in Section 4.6. 

The next step in black-box modeling involves specifying the structure of the 

model. In practice, this is essentially a question of whether the data is better modeled 

with a parametric or non-parametric model. A model is parametric if the training data is 

no longer needed after the model parameters are estimated. Conversely, a non-parametric 

model requires the training data even after the model parameters have been established 

[17]. The algorithm that we employ in this thesis deals with non-parametric models. 

For any given model, there must be a set of unknown model parameters which 

must be determined. Typically the parameters are chosen in a way which will minimize 

error, though there are several techniques for estimating the parameters. Particularly, the 

choice of model type will affect the way the parameters are determined [17]. In our 

algorithm, the parameters are determined to minimize the residual. 

Finally, we have model assessment. In model assessment, we run a diagnostic 

procedure to ensure the suitability of the model. In statistics, goodness-of-fit tests and 

diagnostic plots can be employed to check the adequacy of the model [17]. For our 

method, we compare our model against the remaining data, which we have reserved as 

testing data. The testing points which are incorrectly predicted are accumulated for an 

assessment of the error. 
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In the remainder of this text, the vector of output classes will be referred to as the 

target function. Generally, for a classification problem the target function is complicated 

and needs to be expressed in terms of easily computable functions called bases. This is a 

very basic problem of constructive approximation theory. Resolution of the target 

function may be increased by choosing more complicated basis functions at the cost of 

simplicity of the approximation. If the basis functions come from a linear space it is 

termed a linear approximation and if they are chosen from non-linear manifolds it is 

called non-linear approximation. The early methods employed in linear approximation 

required the basis to be chosen from finite dimensional linear spaces like algebraic and 

trigonometric polynomials. Splines, piecewise polynomials, and wavelet theory were 

other important contributions to this field [18]. It was soon realized that choosing the 

approximants from non-linear manifolds yielded better rates of approximation. 

Nonlinear approximation techniques, where the choice of the basis depended on the 

target function, were soon developed. An extensive discussion on nonlinear 

approximation theory is presented in reference [19]. In 1907 Schmidt [20] proposed the 

idea of constructing an approximation of the target function in a nonlinear fashion 

simultaneously keeping control of the number of terms used in the linear sum. This gave 

rise to n-term approximation. It has been studied thoroughly in the past and its 

supremacy over linear approximation has been established [19]. This led to the 

development of a nonlinear approximation technique where the target function was not 

only used to choose the best basis function from a collection of basis functions but was 

also used to determine the coefficients required for the linear sum. Doing this ensures 

that the approximation is the best n-term approximation possible for the given target 
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function. Such a double stage approximation technique is often referred to as a highly 

nonlinear technique. Some of the popular algorithms belonging to this category are 

greedy algorithms and adaptive pursuit. 

A brief discussion on greedy algorithms is presented in this dissertation because 

SFA falls under this category of algorithms. Assume that the target function / belongs 

to the Hilbert space H, and a collection of basis functions often called a dictionary D is 

given. For a classification problem, the training points mapped to a higher dimensional 

space via a kernel function act as a dictionary. Then the greedy algorithm can be 

expressed mathematically as follows [19,21]: 

Let we H and 0 = 0(u)e D denote an element chosen from D such that 

(u,(f) = sup(u,<f>y (2.1) 
</>eD 

Define the following: 

G(u) = (u, 

R[u) = M —G(W). 

Initially set R0 (u) = u and G0 [u] - 0. Then for each n > 1: 

Gn{u) = Gn_l{u) + G(Rn_l{u)) 

Rn{u) = u-Gn{u) = R(Rn_{{u)). 

(2.2) 

(2.3) 

Here g is the basis function, G is a greedy operator, R is the residual vector, and (w,0) 

is the inner product of u with respect to </>. Given the dictionary is orthogonal, a basis 

that maximizes the absolute inner product with the target function is chosen. Its 

contribution is subtracted to obtain the residual and iterated. 
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The above-mentioned algorithm is called a Pure Greedy Algorithm [19,21]. In 

this work, we are concerned with Pure Greedy Algorithms only because of their 

simplicity and effectiveness. Work with other variations of greedy algorithms deserves a 

separate study. 

2.2 Sequential Function Approximation 

We start our approximation of the unknown target function u by noting that a 

continuous d -dimensional function can be arbitrarily well approximated by a linear 

combination of radial basis functions <p. Sequential Function Approximation (SFA) 

approximates u as 

<(?) = £ci(t(l%>°t) + bt) (2-4) 

with 

^ ( l . ^ . c r ^ e x p f l n ^ ] ^ - ! ; ) - ^ - ! ; ) ] , (2.5) 

for 0 < (J; < 1 where | e Rd , £* e Rd , o\ e K , b, e K , and c,. e M represent the 

function argument, the ith basis function center, independent variables, function 

parameters, and linear coefficients, respectively. 

The basic principles of our greedy algorithm are motivated by the similarities 

between the Jones [22,23] and Barron [24] iterative optimization procedures and the 

Method of Weighted Residuals (MWR), specifically the Galerkin method (Fletcher [25]). 

We can write the function residual r at the n'h stage of approximation as 



r„(f) = «(?)-X(|) 
= u({)-ull({)-cn(<p(l?n,an) + bn) (2.6) 

Because we are given a finite number of samples (s) of the observed data, we can write 

V i = k - i ( ? i ) » V i ( ? 2 ) . - » V i ( £ ) } 
- -• (2.7) 

Utilizing the Petrov-Galerkin approach, we select a coefficient cn that will force 

the function residual to be orthogonal to the basis function and bn using the discrete inner 

product 

R O =(R <f> ) 

- " 2 3c„ - U ' 

which is equivalent to selecting a value of cn that will minimize (Rn,Rn) . It can be 

proven that 

('<*.'*•>„-(*.».>„; (29) 

* ( * . . ^ > D - ( ^ ) i > ( * . ) i , ) 
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will minimize (Rn,Rn) , where (f\ =^f.. The discrete inner product (Rn,Rn) , 
1=1 

which is equivalent to the square of the discrete L2 norm, can be rewritten with the 

substitution of Eq. (2.9) as 

{KX)MJI^kAJ^ 
» n 

S S 

o„ *4 * _MA /* _(U, s _W , * „ — ! 

(2.10) 

Recalling the definition of the cosine using arbitrary functions / and v and the discrete 

inner product, 

(7,v) 

ifimo 
(2.11) 

then Eq. (2.10) can be written as 

R„ 
2 -In (R"~l)p R (R"~l)i 
2,D-\R»-> — , V l 7 

sin' w 
D 

2 A 

R 7 7 - 1 
(***)'„ 

2,D sin m 
(2.12) 

where 6n is the angle between On and i^_, since — and - — — are scalars. 
^ s 

With Eq. (2.12), we note that (Rn,Rn) < ( R ^ , ^ ) as long as 6n * K I 2 , which is a 

very robust condition for convergence. By inspection, the minimum of Eq. (2.12) is 

0„=O,or 
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Cn(t(?J>n) + bn) = r^(?i) ^Ti = \,...,S. (2.13) 

Therefore, to force (Rn,Rn) —>0 with as few stages of n as possible, a low 

dimensional function approximation problem must be solved at each stage. This involves 

a constrained nonlinear minimization of Eq. (2.10) in the determination of the two 

variables an (0<an<\) and index j*(^*=^*eRd\ for the basis function center 

taken from the training set. The dimensionality of the nonlinear optimization problem is 

kept low since we are solving only one basis at a time. 

2.3 Implementation of the Algorithm 

Though our SFA scheme allows the basis center (£,n ) to be located anywhere in 

Md, the practical application to problems with multiple inputs constrains the centers to 

the set of sample points j £,,..., ^ j . At each stage, we determine gn such that 

k,_i(^„*) =max| Rn_y \. The remaining optimization variable an is continuous and 

constrained to 0 < an < 1. 

The benefit to using radial basis functions is that in practical applications we can 

ignore the denominator in the discrete inner product formulation of Eq. (2.10). As a 

result, the determination of <f„ and <Jn requires only 

min -(KAA)2
D • (2-14) 
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The algorithm terminates when max I Rn \ < T where T is the tolerance desired by the 

user. For binary classification where u = +1 or - 1 , we set r = 0.99. 

In this work, a multi-class classification problem is tackled by applying several 

binary classifiers in parallel. Approaches to combining binary classifiers include the one 

vs. one combination, the one vs. all pairing, and the error-correcting output coding 

approaches. Beygelzimer, Langford, and Zardony [26] modified the standard one vs. all 

approach and showed that it can also be applied to multi-label classification. Berger [27] 

explains error-correcting output coding in detail and applies it to the task of document 

categorization. Masulli and Valentini [28] compared several decomposition schemes for 

classification. 

Rifkin and Klautau [29] compared the one vs. all approach to other existing 

methods and concluded that one vs. all classification will produce results as good as any 

other approach if the underlying classifiers are well tuned. In a standard one vs. all 

formulation applied to a multi-class classification task, M binary classifiers are 

constructed, where M is the number of classes in the data set. 

To implement the SFA algorithm, the user takes the following steps: 

1. Choose a class; label all the members of this class as 1 and the members of all the 

other classes as - 1 . 

Initiate the algorithm with RQ = | M ( ^ 1 ] , M ( ^ 2 ) ' - - - ' M ( ^ ) | -

3. Search the components of Rn_} for the maximum magnitude. Record the 

component index j . 
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5. With 0(<%,£*,crnj centered at £.•, calculate bn from Eq. (2.9) and minimize Eq. 

(2.10), initializing the optimization parameter with <Tn = 0. 

6. Calculate the coefficient cn from Eq. (2.9). 

7. Update the residual rn {^ = rn_x[^-cn U^,^*,<7n^ + bn J. Repeat steps 3 to 7 

until the termination criterion max I K < 0.99 has been met. 

8. Use the constructed binary classifier to predict on the test set. 

9. Repeat steps 1 to 8 for remaining classes. 

10. Use one vs. all scheme to obtain the final prediction on the test set. 

Our binary method is linear in storage with respect to s since it needs to store only 

s + sd vectors to compute the residuals: one vector of length s (Rn) and s vectors of 

length d (^,,^2,...,^ ), where s is the number of samples and d is the number of 

dimensions. Conventional Support Vector Machines require on the order of s1 memory 

[30]. To generate the SFA model requires two vectors of length n ({cx,...,cn) and 

[bl,...,bn\) and n vectors of length d + \ (g*,g*,...£* and crx,cr2,...,<Jn concatenated as 

n vectors). 
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2.4 Testing the Algorithm 

Some test cases are presented here to show some typical behaviors of the 

algorithm. Three functions of two variables each were created to generate a database of 

1000 points. The functions are as given: 

. -1 < xt < 1 
fx[xx,x2) = sign{xxx2) where (2.15) 

1 S X2 S 1, 

/ x / I l\ - 1 < X, < 1 
f2(xx,x2) = sign{xx\x2\) where (2.16) 

/ I l\ Xj = ±1 
f3(xx,x2) = sign{xx\x2\) where (2.17) 

- 1 S x2 S I . 

The functions all return ±1. 

Each function database was randomly divided into a training set and a test set. A 

mapping was built based on the training set, then compared against the testing set. For a 

given training set size, the procedure was repeated 20 times. The training set size was 

varied from 10% of the data to 90% of the data. The misclassification error trends for 

each function are plotted in Figure 2.1, Figure 2.5, and Figure 2.9. In these plots, the 

error bars shown depict the standard deviations of the misclassification error (for 20 

permutations). The mapping is shown in the three-dimensional plots in Figure 2.2, 

Figure 2.6, and Figure 2.10. The actual classification takes the mapping (as shown) and 

computes the sign of the dependent variable so that the output is discrete. 

Based on the mapping (before discretization), input sensitivities are computed 

from the mean-squared partial derivatives with respect to each input, evaluated at the 
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centers of the basis functions. Figure 2.4, Figure 2.8, and Figure 2.12 plot the input 

sensitivities, computed from the models which used 50% of the data for training. 

2.4.1 Test Function 1 

For Function 1, both inputs are expected to be equally significant, since they are 

weighted and treated equally. From Figure 2.4, this is definitely shown to be the case. It 

is also comforting that the misclassification error in Figure 2.1 is below 10% as long as at 

least 100 points are used for training. Figure 2.2 confirms that the mapping (prior to 

discretization) is accurate in that it resembles a saddle-shape. Figure 2.3 shows that the 

discretized output maps accurately except at the discontinuities. This is due to the fact 

that the training points don't exist everywhere along the discontinuous boundaries. 

Misclassification Trend with Varying Training Set Size 
Testing Function 1 (20 Permutations) 

0 10 20 30 40 50 60 70 80 90 100 

Percentage Used for Training (Out of 1000 Total Datapoints) 

Figure 2.1. Misclassification trend with varying training set size for Function 1. A mapping is built 
from a varied amount of random training points. This is repeated for 20 different permutations, for 
a given training set size. The misclassification error is computed by comparing the mapping results 
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to the remaining data points not used for training. The downward trend suggests an improved 
accuracy with more training points. 

Figure 2.2. Input to output mapping for Function 1. The mapping shown is taken before the output 
is discretized by the sign function. This particular mapping resembles a saddle-shape, which is a 
smooth form of the ultimate, discretized version. 
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Figure 2.3. Input to output mapping for Function 1 after the output is discretized. Except for the 
discontinuous boundaries, all the points are mapped correctly. 
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Input Sensitivities (based on 50% used for training) 

x 2 

I 

x_1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Non-Normalized Sensitivity 

Figure 2.4. Average input sensitivities for Function 1 computed using partial derivatives. Input 
sensitivities are taken by taking the mean-squared values of the partial derivatives with respect to the 
input variable, evaluated at the radial basis function centers. These sensitivities were evaluated 
based on the (pre-discretized) mappings corresponding to 50% used for training. The sensitivities of 
both inputs for Function 1 are approximately equal, as to be expected. 

An Analysis of Variance (ANOVA) test was done to compare against our 

sensitivity analysis. ANOVA is a test which computes the probability of a null 

hypothesis. The null hypothesis assumes that variation in a given input has no effect on 

the mean of the output. In essence, it is another way of quantifying the sensitivity of an 

input. The p -value for xx is 0.7512, and the p -value for x2 is 0.5075. This means xx 

and x2 have statistically high probabilities of accepting the null hypothesis. However, 

the interaction between xx and x2 returns a p -value of 0. In other words, we can 

conclude with greater than 99.99% confidence that the interaction of the two variables 

affects the output. This is of course true for Function 1. 
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2.4.2 Test Function 2 

For Function 2, the second input is expected to have a low sensitivity because we 

take the absolute value of it. Figure 2.8 shows a relative drop in the sensitivity, though it 

is not insignificantly low. From the mapping in Figure 2.6, it is apparent that there is a 

minor variation in the output with respect to x2. The variation is small enough that it 

does not show up in the discretized output, shown in Figure 2.7. Furthermore, the 

variation with respect to xx is quite shallow in comparison to the discretized version. 

However, this turns out to be acceptable because the algorithm only needs to learn the 

sign of the output. The wavy discontinuity in the discretized mapping is the sole source 

of the error. Again, it is due to the fact that there are not enough training points along the 

discontinuity. All of this combined reconciles the low misclassification error shown in 

Figure 2.5. 

Misclassification Trend with Varying Training Set Size 
Testing Function 2 (20 Permutations) 
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Figure 2.5. Misclassification trend with varying training set size for Function 2. 



20 

Figure 2.6. Input to output mapping for Function 2. The mapping shown is taken before the output 
is discretized by the sign function. The ultimate, discretized version should be a step function. This 
particular mapping is basically a slope, which is a smooth form of a step function. 
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Figure 2.7. Input to output mapping for Function 2 after the output is discretized. Except for the 
discontinuous boundary, all the points are mapped correctly. 
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Input Sensitivities (based on 50% used for training) 

i 
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Figure 2.8. Average input sensitivities for Function 2 computed using partial derivatives. The second 
input's sensitivity is relatively lower than that of the first input, as to be expected. 

ANOVA for Function 2 returned p = 0 for xx , p- 0.3595 for x2 , and 

p = 0.6744 for the interaction between the two. This means the first input affects the 

output conclusively, and the second (alone and in conjunction with x,) has a high 

probability of accepting the null hypothesis. Again, this is true for Function 2. 

2.4.3 Test Function 3 

For Function 3, we have modified Function 2 such that the xx input has become a 

binary variable. While this should not affect the output, it clearly has an effect on the 

sensitivity. In fact, Figure 2.12 shows a dramatic decrease in xx sensitivity, so dramatic 

that it is even less than the x2 sensitivity. Despite this counter-intuitive result, the 

misclassification trend in Figure 2.9 shows the best accuracy of the three functions. 
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Again, we refer to the mappings in Figure 2.10 and Figure 2.11 to reconcile this behavior. 

Since there is no data in the —l<x1<\ range, the training can not learn about the domain 

space in that region. The mapping will almost always under-represent the significance of 

a binary (or discretized) variable. Since the discontinuity exists in between the two valid 

binary values of xl (and far enough away from either), all the points can be mapped 

correctly for this special case. 
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Misclassification Trend with Varying Training Set Size 
Testing Function 3 (20 Permutations) 
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Figure 2.9. Misclassification trend with varying training set size for Function 3. 
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Figure 2.10. Input to output mapping for Function 3. The mapping shown is taken before the output 
is discretized by the sign function. The ultimate, discretized version should be a row of points at +1 
and a row of points at - 1 . If this particular mapping is discretized, it will match the solution exactly. 
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Figure 2.11. Input to output mapping for Function 3 after the output is discretized. Since the first 
input variable is binary, all the points in the domain are far enough away from the discontinuity so 
that all the points are mapped correctly. 
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Input Sensitivities (based on 50% used for training) 
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Figure 2.12. Average input sensitivities for Function 3 computed using partial derivatives. The 
second input's sensitivity is lower than it was in Figure 2.8, but the first input's sensitivity is 
significantly lower. This unexpected result is due to the binary nature of the input. 

ANOVA for Function 3 returned p = 0 for xx, p-\ for x2, and p - 0 for the 

interaction between the two. This means xx and the interaction between xx and x2 affect 

the output. We can also conclusively say that x2 alone does not affect the output. This is 

true for Function 3. 
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Chapter 3 

Approach 

We now consider how to apply SFA to composite processing. There are a 

number of considerations, so the following sections are aimed at addressing each of the 

concerns. The field of composites is quite large, so clearly defining the problem will help 

to limit the domain space. For simplicity, this work only takes Single-walled Carbon 

Nanotube (SWNT) composites into account. A brief literature survey of Multi-walled 

Carbon Nanotube (MWNT) composites revealed that they would introduce a large subset 

of input variables that do not correspond to those of SWNT composites [4-6,31-37]. 

The goal is to determine how various factors will influence the outcome of a 

Polymer-SWNT composite. Some considerations, therefore, will be what those factors 

will be and how the "outcome" will be determined and evaluated. 

3.1 Composite Processes & Other Factors 

The first step to implementing SFA to our problem is to identify the input 

variables. Below, we will illuminate some of these factors. 

3.1.1 CNT 

There are many ways that the CNTs can affect the composite. This includes 

synthesis, received form, chirality, amount, quality, maker, modifications, etc. For 

simplicity and feasibility sake, we will look at a few of them. 

Synthesis - There are four main techniques for CNT synthesis. The first is the 

Electric Arc Discharge Technique, or Arc Discharge for short. The method was first 
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done by Sumio Iijima in 1991. "An arc discharge is generated between two graphite 

electrodes placed face to face in the machine's principal airtight chamber under a partial 

pressure of helium or argon. The electrical discharge that results brings the temperature 

up to 6000° C . This is hot enough for the carbon contained in the graphite to sublimate. 

During sublimation, pressure runs very high, ejecting carbon atoms from the solid and 

forming a plasma. These atoms head toward colder zones within the chamber, allowing a 

nanotube deposit to accumulate on the cathode" [1,38]. 

The second technique is called Laser Ablation. The technique, created by Ting 

Guo, Richard Smalley, et al, also consists of sublimating graphite in a reduced 

atmosphere of rare gases. Graphite (and in some cases a graphite-catalyst composite) is 

vaporized by the laser. The CNTs nucleate in the vapor phase, coalesce, get carried away 

by flowing argon and condense downstream on a water-cooled collector [38,39]. 

Another technique is called Chemical Vapor Deposition (CVD). The technique 

was applied to make CNTs in 1993 by M. Jose-Yacaman, et al. In this method, a 

substrate is impregnated with metal catalytic particles. The substrate is heated to 700° C, 

and two gases are bled into the reactor, including a carbon-containing gas. 

Decomposition of the carbon-containing gas allows free carbons to grow in a needle-like 

structure at the catalytic sites. The size of the catalyst particles determines the diameter 

of the resulting CNTs [38,40]. 

The last technique is known as High Pressure Carbon Monoxide (HiPco). The 

technique was first investigated and optimized by Michael Bronikowski, Richard Smalley, 

et al in 2001. Fe(CO)5 particles are injected to a stream of high temperature and high 

pressure Carbon Monoxide (CO) gas. Upon heating, the Fe(CO)s decomposes into iron 
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particles which condense into clusters. The clusters serve as catalysts upon which the 

CNTs nucleate and grow [41,42]. 

Received Forms of CNTs - CNTs can be found in various macroscopic forms. 

Common dry aggregates such as powder and pearls differentiate themselves from as-

produced raw material (commonly referred to as fluff) through higher densities. The 

different forms are the same on the nanoscopic level and the attributes are unaltered. The 

different forms are simply different post-synthesis processes which may be beneficial for 

different applications. 

Purification - The various synthesis procedures often leave carbon nanoparticles, 

residual catalysts, and other unwanted species. Purification is a process which separates 

out those particles with minimal loss of CNTs. The intrinsic properties of CNTs can only 

be studied if these impurities are removed [42,43]. There are various methods of 

purification, but they will not be discussed in this thesis. 

Functionalization - "Functionalization is the process by which chemical 

functional groups are introduced to the surface of a material. Functionalization can be 

used to modify the interface between the environment and the outer wall of CNTs. This 

would, for example, modify the solubility and facilitate the dispersion of a given 

medium" [38]. The atomically smooth and nonreactive surface of CNTs limits the load 

transfer from polymer to CNT. With little to no interfacial interaction, the CNTs are 

inclined to pull out of the polymer. All known forms of SWNTs are insoluble in organic 

solvents. Organic functional groups can be covalently attached to CNT surfaces, opening 

the window to a wide range of possibilities [38,44,45]. 
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Weight Percent - The weight percent is a measure of the amount of CNTs 

present in a composite. The higher the weight percent, the more CNTs there are. 

Naturally, this affects the dispersion and other properties of CNT composites. 

3.1.2 Polymers 

The polymer (also referred to as the matrix) is the material that surrounds the 

CNTs in the composite. "A polymeric solid material may be considered to be one that 

contains many chemically bonded parts or units which themselves are bonded together to 

form a solid" [41]. This research focuses on two main types of polymers: thermoplastics 

and thermosetting plastics (thermosets). 

Thermoplastics - "Thermoplastics require heat to make them formable and after 

cooling, retain the shape they were formed into. These materials can be reheated and 

reformed into new shapes a number of times without significant change in their 

properties. Most thermoplastics consist of very long main chains of carbon atoms 

covalently bonded together. Sometimes nitrogen, oxygen, or sulfur atoms are also 

covalently bonded in the main molecular chain. Pendant atoms or groups of atoms are 

covalently bonded to the main-chain atoms. In thermoplastics the long molecular chains 

are bonded to each other by secondary bonds" [41]. Some examples of thermoplastics 

include polyethylene, polypropylene, polystyrene, ABS, and polymethyl methacrylate. 

CNTs are generally dispersed in thermoplastics via chemical methods. 

Thermosetting plastics (thermosets) - "Thermosetting plastics formed into a 

permanent shape and cured or 'set' by a chemical reaction cannot be remelted and 

reformed into another shape but degradate or decompose upon being heated to too high a 

temperature.... Most thermosetting plastics consist of a network of carbon atoms 
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covalently bonded together to form a rigid solid. Sometimes nitrogen, oxygen, sulfur, or 

other atoms are also covalently bonded into a thermoset network structure" [41]. Some 

thermosets include epoxies and polyester. CNTs are generally dispersed into thermosets 

via mechanical methods. 

3.1.3 Dispersion Methods 

There are many types of dispersion methods. For discussion purposes, we will 

categorize them into two main classes: chemical and mechanical methods. 

Chemical Methods - Chemical methods include incipient wetting and in situ 

polymerization. Incipient wetting is a method which mixes the CNTs and polymer in a 

suitable solvent before evaporating the solvent to form the composite. In this method, 

agitation of the CNTs in the solvent serves to de-agglomerate and disperse the CNTs. 

Agitation is generally provided by magnetic stirring, shear mixing, or most commonly 

sonication. "The solution is combined with a polymer, and the solvent is evaporated 

using an oil bath. After the solvent is removed, an additional furnace heating step is 

performed to ensure that all of the solvent is removed. Polymer powders are particularly 

well suited to this processing step because they have more surface area than pellets have. 

The solvent chosen is specific to the polymer being used. It is desirable for the boiling 

point of the solvent to be lower than the polymer's melting temperature to allow coating 

of the polymer particles" [7,8]. 

In situ polymerization has been suggested as an ideal way to make of perfect 

dispersion of CNTs into polymer matrices. The process works by grafting polymer 

macromolecules onto the walls of the CNTs. The objective is two-fold. First, the CNTs 

are prohibited from agglomerating with each other because there are long polymer chains 
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attached to the sides. Secondly, the CNTs are automatically incorporated into the matrix 

because the matrix material doesn't see the CNTs, only the polymer chains around them 

[8,9,46]. 

Mechanical Methods - We will discuss two types of mechanical mixing methods: 

sonication and high shear mixing. 

Sonication is a process which exposes the material to ultrasound, in an attempt to 

disperse CNTs in the liquid media. Air layers and gas bubbles tend to be trapped within 

the liquid composite, and the ultrasonic waves are reflected off of these air-liquid 

interfaces. In general, the waves are prevented from hitting the CNT surfaces. The sonic 

waves help to break up bundles and increase CNT surface area. The increased surface 

area improves the wetting by making the CNT surfaces more accessible to the solvent 

[10,47]. 

High shear mixing (or sometimes melt mixing) involves a pair of high shear rotor 

blades. The temperature of the mixing chamber is increased such that the polymer 

becomes molten. High shear mixing is most suitable for thermoplastic polymers because 

they can be softened under high heat. Under the high shear mixing, the CNT 

disentanglement is facilitated and secondary agglomeration is prevented. At low shear, 

re-agglomeration of well-dispersed CNTs can be observed [8,11,48]. Another type of 

mechanical mixing which we have considered is called homogenization. A homogenizer 

is essentially a high shear mixer except it is done at room temperature. 
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3.2 Input Selection 

Based on a literature survey of polymer-SWNT composite research and the 

summary we have provided above, we have chosen a list of 20 input variables, shown in 

Table 3.1 [7,12-15,48-64]. 

Input Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

Input Variable 

How are CNTs made? 

How are the CNTs received? 

How are CNTs modified? 

Are CNTs shortened? 

Are solvents added? If so, what 
solvent? 

What is the weight percent of CNTs? 

What is the polymer used? 

Is incipient wetting done? 

How long is it mixed manually? 
How long is it mixed with a magnetic 
stir bar? 
How long is it homogenized? 
How long is it sonicated? 
What is the starting high shear mixing 
temperature? 
What is the stopping high shear 
mixing temperature? 

Sample Input Values 
0 - Laser Ablation 
1 - HiPco 
2 -C VD 
3 - Arc Discharge 
0 - Pearls 
1 - Powder 
2 - Fluff 
0 - not modified 
1 - purified 
2 - functionalized, 
fluorination 
Etc. (other functional groups) 
0 - N o 
1-Yes 
0 - N o 
1 - Yes, Water 
2 - Yes, Chloroform 
Etc. (other solvents) 
Any value (percentage) 
0 - Polypropylene 
1 - Low Density Polyethylene 
2 - Medium Density 
Polyethylene 
Etc. (other polymers) 
0 - N o 
1-Yes 
Any value (minutes) 

Any value (minutes) 

Any value (minutes) 
Any value (minutes) 

Any value (Celsius) 

Any value (Celsius) 
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15 
16 

17 

18 

19 

20 

What is the high shear mixing time? 
What is the high shear mixing rate? 

Is stretching done? 

Is in situ polymerization done? 

Is the composite made in a magnetic 
field? 

Are the CNTs sprayed onto the 
polymer? 

Any value (minutes) 
Any value (RPM) 
0 - N o 
1-Yes 
0 - N o 
1-Yes 
0 - N o 
1-Yes 

0 - N o 

1-Yes 

Table 3.1. Input Variables Selected. 

As more data is acquired, this list may be modified. Clearly, the accepted values 

for Inputs 3, 5, and 7 is a continually growing list. The last several inputs (17-20) are 

amendments due to new data that provided these methods. However, not every input 

variable is so easily amended. Some processing methods include factors that go far 

beyond "time." For example, Input 12 asks, "how long is it sonicated?" Along with 

sonication time, other factors such as sonication power and sonicator type exist. 

Unfortunately, many journal articles neglect to report some of this information. In order 

to move forward, we must accept the fact that some information is unobtainable. For this 

reason, sonication power and sonicator type are not included as input variables. The 

same discussion can be applied to several of the other processing methods. 

Inputs 13 and 14 provide another challenge. The accepted values for these inputs 

are temperatures. Let us take Experimentalist A, for example. Experimentalist A 

chooses not to mix Composite A by high shear mixing. The question then becomes: how 

did Experimentalist A perform their high shear mixing? The human response is obvious: 

"they didn't." However, the algorithm requires a response to each of those input 

variables. Clearly, we could say Experimentalist A performed high shear mixing with 

"time = 0" and "rate = 0." But what of the temperature? There is no "null" response for 



35 

temperature. Admittedly, this is one major flaw in this approach. We have assumed that 

if we choose a "normal" or "average" answer that it would not affect the outcome 

significantly. In other words, the inputs for a "null" response might be given as in Table 

3.2. 

Input Number 
13 
14 
15 
16 

Input Variable 
What is the starting high shear mixing temperature? 
What is the stopping high shear mixing temperature? 
What is the high shear mixing time? 
What is the high shear mixing rate? 

Input Value 
27°C 
27°C 

0 minutes 
ORPM 

Table 3.2. Example of Assigning Input Values to Non-Applicable Input Variables. 

3.3 Output Selection 

There are many ways to assess the final product of a composite. With mechanical 

applications, one could look at the enhancement in tensile strength, Young's modulus, etc. 

With other applications, one could look at thermal conductivity, electrical conductivity, 

or viscosity. In fact, all of these could be used simultaneously as the output. However, a 

value for the output must be given in order for the data to be used. If data is obtained 

from a journal article which focuses on mechanical properties, then the thermal, electrical, 

and rheological outputs may be missing. Therefore, in order to maximize the amount of 

data that can be acquired, the output selection must be a generic one. 

CNT dispersion is typically one assessment of how successful a composite 

process is. This is due to the fact that material property enhancement is generally 

accomplished by achieving a homogenous dispersion of CNTs within the matrix. 

Therefore, dispersion is a general property that can (and should) be reported by all 

composite experimentalists - regardless of the ultimate application in mind. For this 

project, we have chosen to use dispersion as the output. 
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Another complication arises due to the fact that CNT dispersion is not 

quantifiable yet. To date, CNT dispersion is always reported in a qualitative manner 

based upon a Scanning Electron Microscope (SEM) image of the sample. For our 

database, we have created a rating system to judge the dispersion (Table 3.3). Each 

rating is treated as a class, and therefore we have transformed our problem into a 

classification problem, as discussed in the previous chapter. Each sample is given a 

rating based on a corresponding SEM image. 

Output value 
1 
2 
3 
4 
5 
6 

Qualitative Explanation 
Poorly distributed entangled ropes 
Well distributed entangled ropes 
Poorly distributed ropes 
Well distributed ropes 
Poorly distributed single tubes 
Well distributed single tubes 

Table 3.3. Dispersion as the Output. 

3.4 Acquiring Data 

Data has been acquired from a number of sources [7,12-15,48-64]. Sources 

include dissertations, journal articles, and unpublished results from associates. However, 

with each source, the data must be methodically extracted to fill in all the input and 

output values. Unfortunately, quite often various pieces of information will be missing 

from a full data entry. In those cases, authors must be contacted to obtain those missing 

values. Successful correspondence rate is less than 50%. To date, 134 entries have been 

added to the database. Regrettably, only 48 of those 134 are complete. The results in the 

next chapter are based upon those 48 entries. 

Also, occasionally an experimental procedure is so radical that it simply will not 

work with the set of inputs that have been selected. Much like the discussion of MWNTs 
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from the beginning of this chapter, there are even polymer-SWNT composite processes 

that don't work well. In those cases, we must accept a loss, and disregard that data. 
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Chapter 4 

Results 

4.1 Training and Testing 

After the database is acquired, it is divided into two groups: a training set and a 

testing set. A percentage of the total number of entries is allocated to training. The 

points are randomly selected from the whole database, and the remaining points are 

allocated to testing. 

The training points are fed to the algorithm so that the computer can learn about 

the domain space. A mapping is constructed as described in Chapter 2. Assuming the 

tolerance is reached, the mapping matches the training points exactly. The remaining 

points, which comprise the testing set, are compared against the mapping. The number of 

points unsuccessfully mapped is accumulated for "misclassification error." The training 

and testing procedure is repeated 50 times with a random sampling permutation each time. 

4.2 Model Accuracy 

The percentage misclassification error is plotted against the number of data points 

used for training in Figure 4.1. The error bars depict the standard deviation of the 

misclassification error, after 50 permutations. One can clearly see a downward trend 

with increasing size of the training set, suggesting improved models with more data. The 

slight plateau seen at the end is also an expected outcome as seen from our tests in 

Section 2.4. However, the misclassification error only goes down to about 40%. When 

SFA was applied to other engineering problems with much larger databases, the error was 
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seen to drop below 10%. Moreover, with the large simulated data in our tests in Section 

2.4, we saw error down by an order of magnitude. This is a strong (and optimistic) 

suggestion that the current database should be increased to see significant improvements 

in accuracy. 

Misclassification Trend with Varying Training Set Size 
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Figure 4.1. Misclassification trend with varying training set size. A mapping is built from a varied 
amount of random training points. This is repeated for 50 different permutations, for a given 
training set size. The downward trend suggests an improved accuracy with more training points. 
The increasing error bars, which denote the standard deviation, are a statistical side-effect due to 
decreasing number of testing points. 

Of course, one can also clearly note that the error bars increase dramatically as the 

training set increases. To understand this trend, one must realize the varying size of the 

testing set. For a training set size of 5 points, the test set is 43 points. Testing on so 

many points improves the confidence of the result. Conversely, for 43 points used for 

training, only 5 data points are used for testing. With such a small sample size, the 

confidence of the result is very poor. This is bolstered by the fact that the quality of the 
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model is less than perfect (40-70% misclassification error). Therefore, the increasing 

error bars is a logical outcome. 

Class 1 Distribution (based on 80% used for training) 
(average of 38 permutations) 
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Figure 4.2. Distribution of classification for Class 1. The percentage of test points which were 
classified to the various output classes where the correct classification was Class 1. The results 
plotted are an average of 38 random permutations where 80% of the total data was assigned to 
training. 
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Class 2 Distribution (based on 80% used for training) 
(average of 38 permutations) 
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Figure 4.3. Distribution of classification for Class 2. 

Class 3 Distribution (based on 80% used for training) 
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Figure 4.4. Distribution of classification for Class 3. 
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Class 4 Distribution (based on 80% used for training) 
(average of 38 permutations) 
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Figure 4.5. Distribution of classification for Class 4. 

Figure 4.2 to Figure 4.5 show the confusion matrix in the form of four histogram 

plots. The confusion matrix contains information about how the actual data is classified 

versus how the modeled data is classified. For example, Figure 4.2 contains all the test 

points which have an actual output value of 1. The bars show the percentages which 

were correctly classified as 1, and the percentages which were incorrectly classified as 2, 

3, and 4. Figure 4.2, Figure 4.3, and Figure 4.5 show that a significant percentage of 

those data were correctly classified and that most of the misclassifications weren't off by 

a substantial margin. Figure 4.4 however, clearly shows some confusion for Class 3. It is 

probable that many data points with Class 3 share similar input values as those with 

Classes 1 and 4. 
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4.3 Input Sensitivities 

Another goal of this project is to find which inputs the target function is most 

sensitive to. After a mapping is constructed, the input sensitivities can be computed by 

taking the partial derivatives of the approximating function with respect to each input. 

The input sensitivities were determined by summing the squares of the derivatives over 

the bases used to construct the approximating function. This was done once for each 

binary classifier and an average was taken to get the final input sensitivities. The 

sensitivities are plotted in Figure 4.2, normalized by the least sensitive input, "Incipient 

Wetting". It appears that the most sensitive inputs are "CNT Weight Percent," 

"Sonication Time," "CNT Modification," and "High Shear Time." 



44 

Input Sensitivities (based on 80% used for training) 
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Figure 4.6. Average input sensitivities computed using partial derivatives. Input sensitivities are 
taken by taking the mean-squared values of the partial derivatives with respect to the input variable, 
evaluated at the radial basis function centers. These sensitivities were evaluated based on the 
mappings corresponding to 70% used for training. All input variables are included in the modeling. 
The sensitivities were normalized by the least sensitive input, "Incipient wetting." Four obvious 
input variables stand out as important factors: "CNT modification," "CNT weight percent," 
"Sonication time," and "High Shear Mixing time." 

In order to discern the least sensitive inputs, Figure 4.7 shows the input 

sensitivities on a logarithmic scale. From this figure, the least sensitive inputs are 

"Incipient Wetting," "CNTs shortened?," "How CNTs received?," and "Homogenization 

Time." 
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Input Sensitivities (based on 80% used for training) 
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Figure 4.7. Average input sensitivities replotted on logarithmic scale. This is the same plot as Figure 
4.6 except the x-axis scale is logarithmic in order to show the lesser sensitive inputs. Here one can see 
"Form of received CNTs," "CNTs shortened?," "Incipient Wetting," and "Homogenization Time" 
are the least sensitive inputs. 

Upon further evaluation, the sensitivities are scaled by the range of each input 

variable. This serves to non-dimensionalize the sensitivities so that they can be compared 

more directly. Figure 4.8 and Figure 4.9 show the scaled results plotted on the linear and 

logarithmic scales, respectively. 



46 

Input Sensitivities (based on 80% used for training) 
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Figure 4.8. Average input sensitivities scaled by range of respective input. Values from Figure 4.6 
were scaled by multiplying each sensitivity by the total range of the respective input. Plotted on a 
linear scale, the figure shows the same four inputs as being the most sensitive, but the order is slightly 
changed. 

According to the scaled figures, the most sensitive inputs remain the same, but in 

a slightly different order. The least sensitive inputs are "Incipient Wetting?," "CNTs 

shortened?," "How CNTs received?," and "How CNTs made?" 
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Input Sensitivities (based on 80% used for training) 

How CNTs made? 

How CNTs received? 

How CNTs modified? 

CNTs shortened? 

Solvent? 

CNT Wt %? 

u> Po lymer? 

O^ Incipient Wetting? 

— Mixing Time? 

Homogenization Time? 

Sonication Time? 
I 

High Shear Start Temp? [ 

High Shear Stop Temp? [ 

High Shear Time? [ 

High Shear Rate? 

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 

Sensitivity (Log Scale, Normalized by Least Sensitive Input) 
(Scaled by Range of Respective Input) 

Figure 4.9. Average input sensitivities replotted on log scale, scaled by range of respective input. 
This is the same plot as Figure 4.8 except the x-axis scale is logarithmic in order to show the lesser 
sensitive inputs. Here one can see "CNT Synthesis," "Form of Received CNTs," "CNTs 
Shortened?," and "Incipient Wetting" are the least sensitive inputs. 

The following sub-sections are devoted to providing an explanation for these 

sensitivity results. However, it should be understood that the sensitivities can be 

misleading in certain situations. When the variation of an input is small, then the domain 

space with respect to that input is not well-explored. This is well demonstrated in the 

examples in Section 2.4, for Case 3 where one of the inputs is binary. Certainly with 

only 48 data entries, there will be many inputs that only reveal a small range of the 

domain to the computer. Some of these examples will be addressed in the following sub­

sections. 
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4.3.1 CNT Weight Percent 

It is well understood that CNT weight percent is important for dispersion. Of 

course if there are fewer CNTs inside the polymer, it is expected that they would be 

easier to disperse. Likewise, many CNTs would tend to agglomerate, giving a very poor 

dispersion. Moreover, as per the argument given before this sub-section, the data 

acquired contains much variation in the weight percent, so the full extent of its effect on 

dispersion is more likely to be apparent in our model. 

4.3.2 Sonication 

Similar to weight percent, it is very reasonable that sonication would have a large 

effect on dispersion. Sonication is used specifically to break bundles and improve 

dispersion. So this result is as expected. Again, the data acquired also contains a lot of 

variability in the sonication input, so its effect is well-represented in our model. 

4.3.3 CNT Modification 

Functionalization is also expected to play a significant role in CNT dispersion. 

Functionalization helps to bond CNTs to the matrix (covalently or otherwise). This 

serves to prevent movement and aggregation of CNTs. However, the choice of 

functionalization is important and depends on the choice of polymer. A certain 

functionalizaion may help significantly with a certain polymer, but may be completely 

useless for another type of polymer. From our acquired data, the CNT modification input 

spans a wide range as well, but the spread within the whole domain for a given 

modification remains sparse. It is likely that given more data, CNT modification could 

prove to be even more important than shown here. 



49 

4.3.4 High Shear Mixing 

High Shear Mixing is a method of mechanical mixing. The main purpose of this 

method is also to improve dispersion. However, the results here tend to confuse the issue. 

On one hand, High Shear Mixing Time is shown to be an important factor while High 

Shear Mixing Rate seems to be one of the least important factors. One must note that the 

"Time" input ranges from 10 minutes to 15 minutes (ignoring the null values). On the 

other hand, the "Rate" input ranges from 60 RPM to 75 RPM (also ignoring the null 

values), where the majority take the 75 value. The maximum for the "Time" input is 

50% larger than the minimum value, while the maximum for the "Rate" input is only 

25% larger than the minimum value. Therefore, the "Time" variable covers a wider 

range than the "Rate" input. Furthermore, the spread of the "Rate" variable is unbalanced 

within the domain, since the majority of the values are either null or 75 RPM. It is 

essentially a binary variable. 

4.3.5 Incipient Wetting 

Incipient Wetting is a chemical method of dispersion. It is specifically designed 

to increase dispersion. However, we found it to be the least sensitive input. The most 

reasonable explanation is simply that it is a binary variable. Moreover, with the data 

provided, incipient wetting was performed whenever the materials called for it. When 

thermoplastics were used, incipient wetting were done. When thermosets were used, 

mechanical mixing methods were done. Therefore, it is quite possible that, had incipient 

wetting been done when it was not called for, it would show up in the data and therefore 

be apparent in the results. 
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4.3.6 Shortened CNTs 

Shortened CNTs should certainly play a role in dispersion. When CNTs are 

shortened, there is less tube-tube interaction, so there will be fewer agglomerates. It is 

expected that shorter tubes would therefore be significantly easier to disperse. However, 

the results here show a very limited result. There are two very simple reasons. First, the 

input is a binary variable. There is virtually no variability with binary variables. The 

computer is unable to explore the space between the minimum and maximum of this 

variable. The second reason is apparent upon inspection of the database. Of the 48 data 

entries, only two provide non-null results. This also reduces the variability of the input. 

4.3.7 Form of Received CNTs 

The received form of the CNTs basically suggests the density of the starting 

material. The density is essentially the amount of aggregation (of the starting material). 

Again, this is expected to be an important factor, yet the results show otherwise. One 

physical reason may be that the processes that were used to disperse the denser CNTs 

happened to be more successful. However, a more reasonable explanation goes back to 

the input's variability. Upon inspection, only two of the samples started with pearls. All 

others started with powder. There were no samples that started as dry aggregate or fluff. 

4.3.8 CNT Synthesis 

The way the CNTs were synthesized was shown to be one of the least important 

factors. It should be expected that the synthesis has relatively little effect on the outcome, 

since all the other inputs are materials, circumstances, or methods specifically tailored to 

increasing dispersion. However, the data shows that of the 48 data points used in the 
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analysis, only two of them used arc discharge CNTs. The remaining 46 used HiPco 

CNTs. Again, this is essentially a binary variable. Moreover, it has very little spread in 

the data, so the domain is not well explored. From what the data can offer, the result is 

expected. However, to get a more meaningful result, more data is required. 

4.4 Analysis of Variance 

ANOVA was done to compare against our sensitivity analysis. We discussed 

ANOVA in Section 2.4. Due to the limited and scattered nature of our data, a full n -way 

interaction analysis was not possible. Furthermore, this prevented binary inputs and 

inputs with low variance from being included in the analysis. Therefore, in performing 

this analysis, we have assumed an additive model, or one with little to no interaction 

among inputs. 

The results of the ANOVA showed that only the "Sonication Time" input rejects 

the null hypothesis with at least 99.9% confidence. This means variation in "Sonication 

Time" alone affects the mean of the output. It does not, however, suggest that other 

inputs can not affect the output. Variations in two or more inputs together could cause a 

change; this would go beyond our additive model assumption. These results confirm our 

most sensitive input result. However, the data is not statistically sufficient to confirm (or 

deny) our whole sensitivity analysis. 

4.5 Modifying the Database for New Training 

This section seeks to further confirm our sensitivity results. We will modify the 

database such that certain inputs will be removed. We will draw conclusions based on 

how well SFA performs with the modified data. 
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4.5.1 Training with Sensitive Inputs 

In this test, all the input variables were eliminated except for the four (4) most 

sensitive ones. This is not a suggestion that these inputs are the only important factors, 

but that they are the only ones that we have a good distribution of data for. 

Misclassification Trend with Varying Training Set Size 
(First Modified Database) 
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Figure 4.10. Misclassification trend with varying training set size for first modified database. All but 
the four most sensitive inputs were removed. Training was performed once again with varied 
number of training points. The downward trend, which strongly resembles that in Figure 4.1, 
suggests the improvement of accuracy with more training points. Due to the strong resemblance to 
Figure 4.1, it is reasonable to conclude that a comparable model can be achieved with just those four 
inputs. 

Figure 4.10 shows the misclassification trend for the modified database. Again, 

there is a clear improvement with more training points. Also, the error bars also grow in 

size, as explained previously. The misclassification error closely resembles the results 

from the unmodified data. This suggests that SFA performs just as well with only the 

four most sensitive inputs. Figure 4.11 shows the input sensitivities based on 90% used 

for training. These sensitivities are not normalized with each other, but they are scaled 
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by the range of their respective inputs. The results are also similar to that of the 

unmodified data. 

Input Sensitivities (First Modified Database) 
(based on 60% used for training) 
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Figure 4.11. Average input sensitivities scaled by range of respective input for first modified database. 
Input sensitivities here were not normalized with respect to each other. They were, however, scaled 
by the range of the respective input, as done before. Only the four most sensitive inputs were used in 
these models, hence only four bars. These sensitivities were computed based on 90% of the data used 
for training. The sensitivities resemble Figure 4.8 (in relative magnitude), suggesting a comparable 
model with just these four inputs. 

Figure 4.12 to Figure 4.15 plot the confusion matrix histograms for the modified 

database. Figure 4.12, Figure 4.13, and Figure 4.15 show good results, analogously 

resembling Figure 4.2, Figure 4.3, and Figure 4.5. Figure 4.14 shows worse results than 

the already poor results from Figure 4.4. This goes to show that there is indeed confusion 

(between Classes 3 and 4) which is partially cleared up by the removed inputs. Since the 

results are almost directly analogous to Figure 4.2 to Figure 4.5, there is further evidence 

that these four inputs are indeed the most sensitive. 
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Class 1 Distribution, First Modified Database 
(based on 60% used for training) 

(average of 50 permutations) 
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Figure 4.12. Distribution of classification for Class 1 for the first modified database. 

Class 2 Distribution, First Modified Database 
(based on 60% used for training) 
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Figure 4.13. Distribution of classification for Class 2 for the first modified database. 
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Class 3 Distribution, First Modified Database 
(based on 60% used for training) 

(average of 50 permutations) 
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Figure 4.14. Distribution of classification for Class 3 for the first modified database. 

Class 4 Distribution, First Modified Database 
(based on 60% used for training) 

(average of 50 permutations) 
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Figure 4.15. Distribution of classification for Class 4 for the first modified database. 
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4.5.2 Training without Sensitive Inputs 

Further tests were done by training with all but the four (4) most sensitive inputs. 

The accuracy results are shown in Figure 4.16. One can clearly see that the percentage 

misclassified is very high and remains high despite increasing size of the training set. 

Because the models are so poor, there is no reason to show the sensitivity plot. 

Misclassification Trend with Varying Training Set Size 
(Second Modified Database) 
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Figure 4.16. Misclassification trend with varying training set size for second modified database. 
Training was done with all but the four most sensitive inputs. Training and testing was performed as 
it was previously. Here, the misclassification error is high and remains high despite adding more 
training points. This suggests that a proper model can not be achieved without the inclusion of the 
four omitted inputs. 

The results clearly do not change much when changing the original database to 

the first modified database. However, the results worsen drastically with the second 

modified database. Therefore, we can conclude that the four (4) most sensitive inputs are 

indeed the most important variables (given the data that we have currently acquired). 
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4.6 Latin Hypercube Sampling 

The analysis was repeated with Latin hypercube sampling (LHS). Rather than 

randomly selecting training points, LHS chooses training points which are well 

distributed in the domain space. The range of each input variable is divided into s bins. 

Effectively, we have s" sub-domains, where n is the number of input variables. 

Subsequently, s points are selected such that no two points should lie in a bin. The 

points are generated as follows: 

m itf+u) [\<i<s 
* ? = - -» v/,y \ (4.1) 

s [\<j<n, 

where C/e[0,l] is a uniform random number, and it is an independent random 

permutation of the sequence of integers 0, 1,..., s — \. The subscript denotes the input 

variable number. The superscript denotes the training point number. In practice, the 

training points are then selected by taking the points that lie nearest (spatially in the 

domain) to the generated points. 
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Misclassification Trend with Varying Training Set Size 
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Figure 4.17. Misclassification trend with varying training set size with Latin Hypercube sampling. 
The trend denoted by boxes shows the LHS, compared against the random sampling denoted by 
diamonds. Both were performed with 50 permutations. The error bars denote standard deviations. 
The LHS trend is significantly worse than the random sampling. This is probably due to selecting 
spatially well distributed points from data which is spatially poorly distributed. 

Figure 4.17 shows the misclassification trend for LHS juxtaposed with Figure 4.1 

(from random sampling). Both trends plot the mean of the results after 50 permutations 

of the respective sampling procedure. As before, the error bars denote the standard 

deviations. Clearly, the LHS trend is significantly worse than that of the random 

sampling. This result seems counter-intuitive because LHS is designed to select points 

which should result in better training. However, the issue is resolved when one considers 

the database. Roughly half of the inputs are categorical. Of the categorical inputs, most 

are either binary or nearly binary. Moreover, the variability in the data is, in general, not 

very good; even some of the continuous variables display data which appear categorical. 

Also, some of the input values are not uniformly spaced. For example, "CNT Weight 
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Percent" takes values of 0.1, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, and 10. The points are more 

concentrated at the lower end and more sparse at the higher end. 

In essence, LHS assumes that the data has good variability in a continuous and 

uniformly spaced domain. Arguably at least six of our inputs have poor variability. 

Seven inputs are categorical. Lastly and most conclusively, two of the most influential 

inputs (as judged by our sensitivity analysis) are not spaced uniformly. All of these are 

likely reasons to cause LHS to provide a poor sampling for training data. 
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Chapter 5 

Conclusions and Future Work 

This thesis applied a computer learning algorithm to a problem in composites 

engineering. The struggle to find the optimal conditions for a good dispersion of CNTs 

contains a large number of inputs, including starting materials and details of processing 

procedures. Rather than test an infinite number of permutations to find those "perfect" 

conditions, we took what data we had and had SFA predict the rest of the domain. In this 

research, we organized the most common factors and processes into a series of inputs. 

We collected data based upon these inputs from a variety of sources. SFA trained upon 

portions of the data and tested itself against the remaining portions. 

The results show improving accuracy trend with increasing training data. This is 

a logical result, and is corroborated by our simulated tests in Section 2.4. The results also 

revealed the four most sensitive inputs: "CNT Weight Percent," "Sonication Time," 

"CNT Modification," and "High Shear Mixing Time." Given our current knowledge of 

the domain as well as our understanding of SFA, these results are well within reason. 

The least sensitive inputs, "Incipient Wetting," "Shortened CNTs," "Form of Received 

CNTs," "CNT Synthesis," and "High Shear Mixing Rate," were also reasoned out with 

our physical and mathematical understandings. 

For future research, at least one thing is certain. It was shown several times in 

this thesis that more data will provide better accuracy. In Section 2.4, we examined 

idealized datasets with 1000 data points. Those examples achieved extremely high 

accuracy. Later, in Chapter 4, we applied our real data with varying training set sizes. 
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With more training data, the accuracy improved consistently (except when we trained 

without the most sensitive inputs). A significantly larger database will not only improve 

accuracy, it will also explore a larger portion of the domain. Inputs which were not well 

explored in this research suffered and were, in some cases, deemed unimportant. 

For the future, it would also be worthwhile to create an online database where any 

researcher can add their own data to the database. Additional inputs could be considered 

as well (so long as "null responses" can be conveniently and logically assigned). This 

would serve to increase the growth rate of the database and sample from a larger variety 

of sources. 
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Table A.3. Second Modified Database of 48 Entries. 


