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MIKTI®AL SURFACES IN EUCLIDEAN N-SPACE

1, Introduetion, Let

4£r=:15v(“5'"0) A=h2..., w, 0“9
define the genersl anslytic 2-spread, or surface, in
n dimensional Bueclidean space, the X, Deing anglytic

in the domain of definition., Putb

a+s
. _ J x4 . 0
- 2) |
i . _ » 2,
E‘,g,”f';/o, F—_g,’éa;/o'ga;a/ G-’-’E@};o:’ .3)

2\ %
H:(EG"F )/L G4

The element of srea of tae surface is defined to be

LT = Hd 2o (.5)

so that the area of a portion of the surface is

0'=fch&ue£x
(6)

A nminimel surface is, by definition, a surface
for which the first variation of the 2bove intesrsl

(1.6) vanishes for = given contour curve. This varistion



-2a
is

Jo -’-jf -;3‘, :,:‘ de L

(1.7)
=-f[Z[25%, + 2 & ] 5n tater

in order thset

Ja=o, (1.8)

it is necessary taat the quentity in the latter brackets

vanish for each r. Using the ilentities

JH_ _ _L
i R |

0.9)

we write this condition as

G £ fr
’iffloﬂ +4:I;oz » —A% 4,7

£ (.10)
ol ()-205 )|+ % [£ 6)- 2 (5)]<0

Thug far the parametric curves have been perfectly
generz=l, e shall meke use of the following two choices

of varameters,
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If we choose isothermic parameters, so that

E=6, F=0, (L)
then our ecustions of condition (1.10) become
1*’10 *1,{;02:0) //—:/J 2)-. ) WJ q.’l)

that is, the X, are harronic functions. Since the

converse of this result evidently is true, we have the

Theoren: A necessary and sufficient condition that
a surface, given in terms of isothermie paraneters,

be mirimal is that (1.12) be satisfied.

If we cho.se mirimal curves as perametric, so that

E=6=0
) (1.13)
then our ecuaticns reduce to
- :/ - -
“/ﬁ /7 0) ~ 7 2) Wit (I- [4)

The converse of this glso is true, so thef we have the

Theorem: A necessary and sufficient condition that
a surface, its minimgl curves being perametric, be

minimgl is thet (1l,14) be satisfied.

If we take the ccordinetes of a minimal surface

as satisfying (1.14) and integrate this equation, we

obtain



X, = 4 (<) + Y () (1.15)

and since, in this case, the paremetriec curves are

minimal, we have

Pgad 2 e T
= 2 =
E./’f':m °, 2%k "9 (/.76)

2., Pgrametric representation of minimel curves.

Let a curve in n dimensions be represented by the

analytic funetions

'1£h::fg},(«~&)/fﬁ=[’ib-- -, ﬂz/)
4 minimgl curve, or curve of zero length, is a curve
for which
= ¢"=0
7=y * ? (251)

she primes denoting differentiation with respect to u.

Equation (2,2) cen be written as
-~ 2

(4‘,/4.4: ¢1')(4('/_,_' 4{1_') = —-,GJ/K": ) @.3)

so that

2

—~ l
= 1% -_-[/,(4)]/‘

- 2 ,A, /
- < x; - X
(,r *r ) oot

(29



This gives
2/ 2 (2 )R =t(1-4): £ (4£): A%
’ 2 '/534. -z /1 z ’ 7 .
Consequently,
/ /
X, ='7.(/-ﬁ)/")
4 ¢
'x,-;(u-f,)/L
where f3 (u) is the function of proportionality
defined by _L
/ ?ﬁ

( 2%’ '
A ) = - -
ﬁ I-fl | + r?z.- - 3

We stert now with the equation

=

and oroceed exactly as before to determine ;} and x;,

and so on. In genersal, we start with

o=/

~n
fezz.o-,/x* ~Z f""-'{

@.5)

(2.6)

2.2

(2.8)

(2-9)
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and define

( / . / g =
zﬁ;a (49) =
-y ~/ 2 o N
'
4'2: % =T frr /4..—
=do 4y ‘;/
-4 = <=t 2
2 % -2 2.4
TE2ey ey -t 2o

'

(42,4:-, - L' «2/‘0 )2—

/O
‘/4 (“) = 24(;4,_1 _ . ’ (? )

J
so that

A1, = 5(1+fis) fie (2.11)

frm = ’ (2.72)
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while 1f n is 0odd, n =2 m + 1, we have

Hoimes =(E for 7))

It is to be noted that we 4o not have two

alternatives in selecting the rcots appearing in (2,12)

and (2.13), since we must choose those roots which

yield the given x,_.

“hether n is even or odd, then, we =2re gble to

eXpress the n anelytic derivative functions
/
49.,(4:.)) /‘:62,--:,»1;
by meansg of the n - 1L analytic functions

741/40)),4"=—6.2,~--)‘°b"ﬂ

Integrating, we have

Yoo, = z’f(:—f“_,)f; Ao,
K, 5 = %f(: +/,4_,)f;40&oJ.

ifn=2m,

- 2 //L

42%1»: = é/él-/zm-,) ‘,-;:, f"’"%" dee

From -,

J

(2.13)

(2 /4)

215)

ey

G./74)
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¢ ~F At 2\
‘1a4n/:: 3 (I-#]é;"°l) ’E;;fif/}#;i: Lo -

while if n= 2 mn + 1,

Ko +1 =U/Qié§ 2ff-//4;f);é¢¢ﬁu

Conversely, any n - 1 arbitrary analytie funections
rut into these equations determine a minimal eurve

in n dimensions.

Cur varametric representation serves also for tae
expression of the coordinstes of = space curve in
n - 1 dimensions, for if we let s redresent the arc

length a2nd set

KX = QL

P od J

then (2.2) becomes
-1

d&z 420: A\.

<=/ A -

3. Normal parsmetric representation. The above

renresentation is not at all unique, for we might

Cz/zﬂj

(2.1%)

@.19)

(2.20)
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replace u by an erbitrary anslytic function
AL = 40(4)-) (3 /)

and express the :ff, as functions of v.

ie choose the particuler perameter

PRI T :
= £ ()= — " = — - 3.
7 2 4 (4 i) °

A>3

neglecting for the present the possibility of the

exceptional case

//,(w) =C (3'3)

where ¢ is = constant, and the possibility of %(-«,)

being indeterminate. The eguations (2.1) become

x,r =XJ‘(U)) ’#z/J'?)"')MJ (34)

enéd from these we can deduce the parametric equations

Foory = s:ﬁ - £ )R LU,
(3.5)

ifn=2nmn,



+ /

LA ~—|
€X)
: -3 Fn A2
124.0" z (I+Flm-l) F %U)'

vhile if n =2 o + 1,

Ay, =/CZ: fe ES ) U

Jere we have

(3.2)

FWU) =V,
(.9)

and
- ' z
(X3p., *+¢ x3o)

2o, ~ , ot 2
S2o#¢ A=y !
~ <
2 s <= *
- —f:'uw’x’f 42_-.-, F;"" F“"
/ , o\ % )
(«24-1 ¢ i,
G.9)
2<r<° 4
E‘O(U):;;’- _ -2 X2
, - F;ﬂ— [4 / f' Fz,._, ,
~ t <=/
z I _ S /
(& T Z AL AR
F1/°~,
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the primes denoting differentiastion with respect to U,

e call U the normal parameter end the gf_(U)

the normegl functions of the curve.

We have, by (2.4),

& .o%)"

dU +L2_5 ¢ h
- s - i)
éa(ﬁ) 4;23 dﬁ""
(& . %) (3.72)
Z ez
S A
2 (Z)
and, by (2.7),
A B
24d0 ==
F()= - 2% 4 _ 2
=5 I~f &Y /{;(“)‘7”' 3. /1)
Assuming
for (U =4, (),
He L (3.72)
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we use (3.9) and (2,10) to prove by induction that
these formulee hold for r = s:

(5]
+ ¢ _
5‘-, (U) = {7 AU

2 .o- -
"'Z—ow (du) Zlf;”g/

=/

(%= o )

AU

e -
dgic,. Lo ‘:i;‘) ézjjggdﬂq C%<r£z;)

(0‘?94-, e )®

4. V¢ Z&

= (4w)
2@ -Fr.p For

(3 13)
4, ..,
‘zﬁ- #zo-r
() 22 4 A
2o B Yy =%-o(“)du
A /’iéL LY

Ifn=2m+1, (3,7) and (2,18) are ecuivalent:
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f( ZE R0

‘f[,%",!w_, (f” :1%)7%"51/ G )
:f(g: %'r-, fdz—rt) " e

while if n = 2 m, (3,6) and (2.17) are eguivalent,

by the seme substitution,

We turn now to the exceptionel case (3.3). Egustions

(2,6) give

* =3 (1=0) 2w,

. (z15)
‘lz,z'i;<}-+C)'576«J)

where

af(kk)=¢[}<(49)¢‘u/, 63/5)

Manifestly, then, the projection of the minimal curve
on the (x, , x, ) plene is a straight line. If ﬁ(«,)
is indeterminate, then X, and x, are both constants ¢, =t<¥+k

and the projection on the (x, , x, ) plane is = pointera cloubtli.

Conversely, if the projection of the minimal curve
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on the (x, , x, ) plane is a straight line or a point,
either we have the exceptionsl case (3.,3), or £, (u)
is indeterminate. If either x, or x, 1is constant,

but not both, then (2.4) gives respectively either
7(,:/=C) o %:-/:C,; (377
if Yoth gre constant, then f, (u) is indeterminste; if
¥, = 2% t+4 -
G.r®

then, by (2.16)’

%f(’*f/)ﬁ o = ‘%/(/—f,)/,a&u +4;

: a (3. 7
AL VA = 2 (1= £, 7)
so that either
a-c o
ﬁ T oare 9
. G.20)
or
=0
2 '
7Z @2r)
But if (3.3{) holds, then, by (2.7),
’ ’
4 = X, =0
* g @.22)

and this is the indeterminate case we have just mentioned.

If the projection on the (x’ y X4 ) Dlene is g
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straight line or a point, we define

(A + ¢ dxs)®

U , G.23)
s A& ‘
~#,3 7
provided this cquantity is neither o constent nor inde-
terminagte, end proceed to determine the normal parasmeter
and normal functions for the sequence
/":)«3; KJ’F#/’XSJ"‘) ’ij’ (3_1‘{)
Just as we would do otherwise for the sequence
x , K, T, K, (3-25)
In generel, if x, 1is the coordinate of lowest
[}
rank for which there exists et least one other coordinste
Xe such that
y 5
(., +<de,)
G32¢)

s Ay -

-2
'r#"";)“’
is neither constant nor indeterminste, and if X, 1is
T
the coordinate of lowest rank asmong a1l such Xg » We
determine the normal paremeter and normal functions

for the secuence
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S AN I PEEEN (327)
and define these to be the normgl parameter snd normal
functions for the sequence (3.25), that is, for the

minimgl curve.

If for all X, * Xo (3.26)) is either constent
or indetermingte, then each coordinate is & linear
function of each other coordinste, excepting that some
might be identically constant, and the minimal curve
is a2 straight line. Conversely, if the minimal eurve

is g straight line, then for all xhﬁ y Xq » (3.26)

is either constant or indetermingte.

To sum up: the coordingtes of the minimal curve
defined by (2.1), (2.2) may be given in terms of the
unicue normal parameter U and the n - 2 uniocue normol
funetions ¥ . (U), r = 2, 3,..., n - 1, unless the
minimal curve is = straight line. If the curve is a
straight line, the normal perametric representeation
is impossible, but the simple paorametriec revresentation

of section 2 still is walid.

4, feflections in the coordinate hyperplanes.

If we reflect our minimal curve in the hyperplane
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oo, =0,

we obtain g minimsl curve the equations of which are
the same &s those of the original curve except the

one for the (2 s - 1)th coordinate, which differs from
the original in sign only. Let us designate the

coordingtes of the origiral curve by

F(U), #=42., =1, F(0)=U,
and those of the reflected curve by

G (U)r=t 2ty GU=U

We incuire the relations between the Z(Z()and she A (U),

If2s-~-1=1, then, by (3.2), (3.9),

U= (- e+ e ) — (6&,"(—' 1—) _

/
"2230%" 2 v
=3
- & ALu

The expressions (3.9) for the Fu-., . 11;, , T > 1, are
unsltered except for the appearances in them of the

F , F y T < r. Since

2t~ ar
u2 =V (&)

“/)

“2)

%))

(44)

+5)
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we see by (3.9) thet

2 =h

) “« o)
adU
9"&7)

«

end so on; in genersal,

954-., 27—

Z-

If 2 s -1#1, then & = U, and, by (3.,5),

(1= 20, )R = = (1= Fne)) Fas,

7)
A 2.

N)
)
3

(44 8)
(’ .'—2’4-,)92'.& = (l + Fz"-’) Fz‘ -
Solving these equations, we obtain
!
Ry = Fo..,
(4 9)

27 = fon, Fae .

20
4 s hn
It is to be noted that FM., and Faq B8Te not
involved in the expressions for the x., r< 2 s - 1,
which sere unaltered by the reflection. The expressions
for the x. , r > 2 s, also ere unaltered except for the

anpearances in them of E and E , which are changed
26-, 2 .a
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eccording to (4.9); but these appvearsnces always are

of the form F,__, F,. , which satisfies the identity

F F* =2 a°

20—, ' 20 20, “2q -
The only normsl functions which are altered by the

reflection are therefore F, and F, . We have

Z=F 4 F2e, FE2e

2uite similarly, we show that a reflection in the

hypernlane
X, =0
is effected by means of the ecuations

U= T >

N
|

while q reflection in the hynerplane

“ /0)

@. 1)

. 12)

(4./3)
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7.

14=0) 2 7/)

% ¢

is effected by means of the ecustions

%_ ::,S:_) A o=l A # 29

Z;} - !/

24., f:zuo_, J

#15)
249. — f§;3-7 /iiqj )

Ifn=2m, and we reflect in the hyperplene

R

=0
Ry —4 J

¢L /6)

we obtein

2 - =

T e (41
_ ="' z // Aoy z
(, jg; é%ﬂﬂ ;kf L-:: _iii E;hq,if %
9’30-9- / ZW-I F j

while if we reflect in the hyverplane

X =0

we obtein
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%:5 )f:éz)---ﬂ/m.-l)

/
92"“--: = 'ci'—»..,-, J (4 /7)
-5 ,

24 ___.F .—E

=1

2oy [

ot —f F—- .

Rvens - ¢

Ifn=2m+ 1 ani we wish toc reflect in the

hyperplene

¢2M+I =0

/

(#20)

we have but to choose the other value of the square root

spnearing in (3.7).

In solving for the E* in any of the =bove

reflections, we note that the T, eore the same functions

of the 35- a5 the respective EB. are of the Eyp.

We can reflect in as many of the coordinste

hyperplenes =28 we wish, by making the reflections one
at 2 time; the eountions of the transformsetion result

from the succession of the separate sets of equetions.

Another wey of considering the above development
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is this: we have shown thet any minimal curve, given
by the normel set of paremetric equations (3.5)-(3.7),
can, by a suiteble chenge of the normel funections,

be expressed by eaquations which are of the form (3.5)-
(3.7) except that such of the integrals as we plesse

are maltiplied by minus one.

5. Lormal parametric representetion of minimal

surfeces. According to (1.16), the two sets of funetions

u, (u) and v, (v) of (1,15) can be given normal representation;
let the normel functions be ¥, (U) and P (T). According

to section 4, we can replace the functions ¥ (T) by

the functions @ (V) so that the functioms (1.1)

revresenting e minimel gurface in n dimensions can

be written in the form:

/xz'a-l = -1L (I-,i"'-l)g"‘ XU 4 %jél*é.z‘q—/)éza /V’

| | (/)
%2 = zf(/*a-,)ﬁadu‘%f(' 820 ) 0 AY;

ifn=2m,
-1

-3 F F.- \y
A, = 4/"; 7 e B\
r B 2 ( 24-9-,) F gU

2‘.\,—'

=/ (5 2 A)
-z 2,...9.; %

5. 4%

+2,- (,’é’”‘--:)




(5:28)

<
Z f e )2 e
é‘m-l
ifan=2m+ 1,
—_ o LR }’.. ) 2 I1
Y e 4, -‘/’(E,,Fu.fg) AV vf(g QL.,Q;)/JV. (5 3)
Here the ¥, are given by
/ . ,)‘L - b
, ey S «’
E(U):U = {w " - =3 T ,
"53 «’; ("‘l -¢ '“‘v'
/ . 7 r S
(“2-4—1 fe Landt ) )
Faa (V) = — =
Pl — = 2
*?2—4':«:' g Fz."--l Fz'f
g '“4’-‘- E’ /;-f—, rF :4- (5-1")
~Z204) =y
e 2- )

2ecn . ,
R (U) = L _ — 2=
/"'Fz,—v—/ ] + F;ﬂ_,
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the primes denoting differentigtion with respect to U,

In sccordance with (4.13), (4.15), the @ . are

given by
Eg‘dr'; n*
' (w4 c)” > g g
=3

S - 5e 4
7 ye B "2 02
o' 4

( / . ’ >
""“t-o-, Ll A )

("";4-,‘0'4)';4)]— (5.
- /; ’-L ppd [ 1 J . 5)
’/;M#l’d;. - ,; f "é;""

=s

/
g (W= 2¥asor . 2 vg,
/= é—l""l / +Bso -y

-~ T A=/ ~\/
z /tl./ - ’fz Q“'—l f‘, /L
=,

= | Bleys,

he primes denoting iifferentigtion with respect to V,

If and only if the minimsl surface is given by
these equations (5.1)-(5.3), we say that U, V are the
normal perameters, and the Fp. and &, the normal

functions, of the surface,

According to the discussion of the latter part
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of section 3, if it is impossible thus to choose one
of the normel parameters, say U, then the curves,

v = constant, on the surface are parallel strasight lines:

the surface is = cylinder, If neither parsmeter can

be determined, the cylinder is = plane.

We proceed to the determination of the fundarental

quentities E, F, G:

T 2 ‘
LT [{(/-FM_, )r;,} = L ( (-2 Fray tFaq, )

&
2 < 2 Fz‘: 1
«2'0,I0 :[;(/sz.a—/)fz:-o] = 7(‘/'2 EA-,’FIA:—/)' 6“)
: = — ., F"

T
«1‘9-1,/,'#/’\/2:0, 70 O T 20 .

It n=2mnm,

x*
dm-,0" |2

Fz»-..,-,
-3 AL, Fl.
= 4 F, I=2 6. ’ +-F=14~_I
Lo ad |
J
Y7
4(1 I -3 F F\4* Cs, )
0 = ‘z'(lf-/‘;,,.,-,) 7z 2T e
ey
- 42=_., FW’IF'L:‘ T
D7 O
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W =!

R T T
«ZM-S /0 +’xz.4n,‘/a - Z E‘f‘-l F’-«f'
"~y J
so that in this case
2 P e e — -
E=2 %m0 =72 orilor * £ Fin fr =95

=, ?
S0 thet again
L/ P o/ 2
= 2 Yo - * F._ F,,. =
E =, /gfjxo - _'g:; F‘l;f‘l F.sz' + é borey 2o o

Quite similarly, G = 0, These results for E and
G were kxnowvn & priori, since the minimal curves were

teken to be parametrie,

As for F:

'
’/fzoo-—l, /0 ?;',,_,)o, ={;—'(I-€o")€‘]{—:'(l-§u-mt]

o

Fred.,
= T/ (l- Flo-' -sz-v-’ + F‘L"-, IMQ—I)
J)

(5:78)

(5°5)

(5°9)

(5. 70)

(sua)
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Koo s g o) = [;‘( 1+Fa.,) Ea]['f( 1+2, ._) f“]

_E.8.

(l+ Fraey *82nes +R, g,-.,) (kn8)
)

fo e

y (/f- R, @a_,)

R
3
o
S
Y
+
|

LAY
,x“'ﬂlo/gm-la/‘ }’:(/‘/‘:”-l)( = lry s z/k
Eom .,
I8\«
x[z-(/\@;«-’)( g ,.,)]
| EEeri) g
- ¥ F;___‘-' Q"“_’ = E,,.._, _@;ﬁ_, fi-'é;“-’
oy )
¢ & AR R\ A .,
Frm, 10 Bpm 0 =[Z(’*€..., ,)( ’F' ! "’) ]: éf}"
P
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x

x
Lty lO ’xt—'-—'m/ F Xonr0 B0y

(5.128)
(-,,.w Bt ")( Z Q"""[’I)

{ Ty ézﬂﬂ--l

i
z

/+F:,,..-, g, .

so that in this case

2 ~vn, ~f

F= *‘Z’ %o, = ’2_,' f";i’(/f Fe, fw.,)

&13)

(. =, ta-.., sd') ("’ é;_p., 6&4- ) yL
’ + E&m-l J1’—---.-:

Flfm-, Q’—M-‘I j

ifn=2m+l,

-~ = A
/KZ"'L"I, /0 a;-mi-l, or :[(,,gl F)-ﬂ'-, F‘x:; )(g, é)*-;g;;y - (5 /4)
P

so thet in this case

Lt

We have



z
= g,, («"5'01401 -’Eﬂ"”g’”o)

NG 5 B N
- s |=E) L s T =k
A< | d () DU
Let
It o
Coa=—Rr= 47,
then

L ]

The quantities are called the direction-cosines

B o
of the tangent plane.

6. Real minimal surfaces. The above particular

form (5.1)=(5.3) of the ecuations of a minimel surface

&)

(5.18)
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was chosen, as regards plus end minus signs, because
if E(U)a,n.d I,f'(v) Py r = 17 2,000, n’ are conjuga‘tes’
end if, for n = 2 n,

—'h-l — < { =] “ /
2 A RN -28...0.\~

e 3
T rrve- —¢

or, forn=2m+ 1,

. Y o {
; F"f-l F""'—) /L =nd (Z é—zd-_, Q‘L:) /L

are conjugetes, then the surface is real. This follows
at once from the fact that to each element of the
integral relative to U there corresponds, in eacn of
the n ecuations, an element in the integral relative
to V which is its conjugate imaginary. In this case

we mey vrite

- Z 22 t; k—
/K —_ ‘/2I- F’-‘n\.— ) i !
2”-’ K ’ th-u-, /(j)

&. 1)

¢.2)

©.9)

6.4
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ifn=2m+l,

K g1 7?,/ -y A )/Lﬁél/ (6.$)

where the R designates that we take only the real part
of the function indicated,

‘e turn now to the converse question, as %o whether
or not these conjugate relations necessarily exist

if the surface is real.

For a real surface, (1l.4) can vanish =t most at
isolated points. In a small region sbout any other

point, then, by (5,16),
Jo o ¥ (6.6)

for some a, b; consecuently, U and V are funetions

of X, ~nd %6 in thls region, Let
dgt ft &" * ?ta&‘-’ . (é?)
vhere J
- Xe - Jxe - _
Pe”dn > Fet g 0t TR =l fHep=0 (6.2)

Along the minimal curves, which we are takiq? to

be parametriec, we have

Z Ao
Z% e ¢-7)

Equations (6.7) and (6.9) determine the following
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two systems of values of the differentials dx,, dx, ,...,

ax,, :
421;': ce%%: 4422 = i;ijgiiﬁrja-i:5(;§§h<ééff;'ﬂﬁ5359t]’i : .9

+La
~J

RO TR TXRTE PAr IS £, 4 ]

Since for real surfaces the B, 4, are regl,
the corresponding terms of the two systems of ratios
in the right-hand nember of (6,10) are conjugate
imgginaries. By the eauations of definition (5.4),

(5.5), then, f;. and i[, are conjugates.

If n=2m, then, by (5.2), if the two terms in
(6.1) were negative conjugates,3g-q and X, would
be »ure imsginaries, contrary to hymothesis; the
terms in (6.1) therefore must be conjugates. Similarly,
ifn=2m+ 1, then the two terms in (6.2) must be
conjugete imgginaries, for otherwise, by (5.3), > S

would be o mure imaginary,

We have shown that a necessary and sufficient
condition that =2 minimal surface be real is that
E- and 6. , r=1,2,..., n, and, if n = 2 m,
the terms in (6,1), or, if n = 2 mn + 1, the terms in

(6.2), be conjugantes. The surface then is given by (6.3)-(6.5).
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A second way of obtaining equetions (6.3)-(6.5)
is the following. The normal psrameters of a2 real minimzl

surface are conjugates, as we just pointed out:

U =G *":41,
V=£&-<= @

Since U and V refer to the minimgl curves,
o™= 2F LU AV. (@-12)

Substituting from (6,12) in (6.12), we obtain

ZGL:QF(/G-‘*JQ.L) @.13)

so that & ‘7 are real isothermic varsmeters of the
minimal suiface; therefore, by the first theorem c?f
section 1, the Z4 are hermonic funetions of 4 'y .
As 1is well Xnovmn. then, the X, are the resl parts

of analytic complex functions:

Ay = R{_O_A_(U)} U = §rim, (4,/4)

9
g
o

|

J7 (.15)

so thet

/ = E - t'F"'G'/'
z ? (6.746)
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consecguently, by (1.11),
53 Q"
A=y A —0' (6'/7J

Tresting the identity (6.17) as we treated (2.2),
we obtain exvressions for the £, analogous to (2.16)-
(2.18). Absorbing the inconsequential factors 1/2 into
the expressions of the F,_, , we now use (6,14) to convert

these equations to esuations (6.3)-(6,5).

7. Associate minimgl surfaces. The linesr element

of a minimgl surfsce S, given by (1.13) is given by
-~ ~J
P 2422 = Lo /
& —/'zlo‘gr 2/514:;' - (7)
since the minimal curves are perametric, The surface

S , defined by

« .
¢ o

-
Krw =2 A4(w) + £ V() (7.2)
where o 1is any constant, also is minimal, sccording
to the second theorem of ssetion 1; and its linear
element obviously is given by (7.1). Accordingly, S.
and S, are =pplicable to each other. Equation (7.2)

defines a one parameter family of applicable minimal

surfaces, cslled associate minimal surfaces.

The normal functions defining S, ere, by (5.1)-
(5.5),
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‘e —c
L 54 Q-z,a., J £ é;c (7 3)

2.0-1 ) ) )

where

Fons, Fou, Bae_,, ..

are the normal functions defining S, . A glance at

@4

(5.13), (5.15) shows that F is the same for §, as

for Se

Also, sccording to the definition (5,16), 2;"
is the same for tihe two surfaces. Finelly, if, by (1.13),

we teke +<F for N, then

3

e

8;'0 T e (7 §)
for our vresent parameters, so that 624 is the same

for the two surfaces.

The eaquations of the tangent »nlane to S, =are

hy, e, K

)

"
o

a - w¢6)

4')”) «z)lo“ T ’“’I”

24
41,01) «2.0';"" ~ 0l

Since Jp, is the same for S, and S, , then, the tangent
Dlanes st corresponding points of a family of associate

ninimel surfaces are parallel,
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The surface %?' is called the adjoint of S
2

By (5.1)-(5.3), its coordinates are

Fro-i = ;]},_sz) FodU - z/( -4, )4, 4V,
P s rm )R v -3 fCr ) d ay;

ifn=2mn,

ifn=2m+1,

;1“1_, (z, 2., 2-4') /( =z g,_,éz:)%tj}’

(27

(7.8

(79)



37 -

We have

’t,v;a( -:@!a-oo( +c'.c¢.}..-()a, +(co.° X — C 2o e()q)}

i\

(/%,,'!’4)_;_) oo X -f-(o',«.}_-c'—v;.)m.;oz

= ¥, Coo X +?,-¢o"¢.°{.

The vlane P determined by the origin and two corresponding

pOin’tS (‘i',i‘_ $ 0o e ey EM’) and(i,)g" ye ey iﬂ')Of

Se and Smy is given by the equations

50 du0 70 8|

«’ 4 - - xm : O)

?’) 7_"/"" ?”"

the z . being the current coordinates. The coordinstes
X,, of the corresponding voint of S, satisfy (7.11),

7

by (7.10), so thet the point (x“, Kottt x‘_ﬁ) is on P.

We might remark that Smy, and S are not fixed
in space, since replacing u_(u) by u,(u) + a, and
v-(v) by v_,.(w;/) -‘aa.,:‘};e:zves S, unaltered but adds

L —L

2c 2, to ¥, and o X, . The discussion of the above

paragraph cssumes the same values of the 8 have been

(z0)

(2.11)



~-38=-39-

used to determine S

0 as have been used to determine S-% .

For the surface S.,,/v » &8 for gll other surfaces

of the family,

s gt
A=y A

S et

/f:, 1)

VAL

&8s we already have remarked. We have also, for this

rarticular surface,

v
/=,

=3 (- ) =0

”z, A I

’%/%/ = ,:2; (o +,)(: o, - s, )

(7 13)

Equetion (7.13) shows that corresponding curves on

e minimgl surface and on its adjoint are perpendicular

to one another at corresponding points.

Since the tangent planes to So

darallel at corresponding p

|4, o,

¢6/0) 1(2,/0 )
1’)0/) 42,0/,-..

oints, we have

- A,

— O

and S"/" are

(2/7)f
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Consider the determingnt formed from the first two columns

and any other column of (7,17):

J;rﬁ; +l,69p +JI-;¢%/" =0.

Solving (7.13) for dq; and substituting this value
n (7,18), we have

J;r ‘jh +';Eﬁ 1&‘ - Jr z 645‘ jE:: =0 ’

'z o ks &* -

(Lo 5, )ty = (1 e+ T A ) i - T %, Arath =0

Adding the n - 2 of these equations, r = 3, 4,..., 1,

we obtain

[;Z; oy, +(m-) L, agr,]o;, —Es J, e, +(—~-2)], dﬁ]&?,_

—(+-3)J 2 2, dx ﬁ'f

ow, by (7.,13),

—(""' l'l.g == - T X
3) J. 45349_;,4, (*=3) T, o +( 3)«77;4(,'5__>

sutstituting (7.21) in (7.20), 2nd noting that
I, =

we hagve

d

T4 4 -

Since the seme reasoning holds for other subscripts

4‘:70

l

(28)

(2/1)

(720)

@21)

(222)

(223)
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es well ag for 1, 2, we have the ecuations

S S S

- . -

T A&, ZI A4 3T A

sz, [ = ~~ >

-

We now shell determine ) as given by the first

member of (7.24):

,zo_, = [F Qz..(/ i I-;&-,)
A ( ]+ u,+¢"_f-;“_,g)]
By = A[0-Bu Vg U + (- 80 )T, Y]

7.254)
J;za-: é& = (

2~

,{;{ F. ,w[r—: g( - -8, +F8.,  ~f. tEE th . F ’3«@«)
VB O R R P o B L B)]
AT A ST S ST T Y )

A A S W LA I 30 ¥

7#[& 14( -f +fz_°, F;Iz.a_,)

+Fae éz(/"'an., ~¢,-£,.., %, )]
)
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l
/[f}; FJM,(I—F' *@4.,"7' 4., ffd.,-r-;f_,_ +F

, “_,?;,., ”;:g-c-: 524-1)
F -@ -~
+ 1A Jz(l"‘éo-, i, E‘,,I, +Fz;_’ +F": -go‘-l II - F;:-I g’)}
+§2‘ J V[Flll-o (’I *Ft‘ -44-1 *E{!"., —f"‘" +EI;_.-, -J’:“l +FI— d;:-’)

LI R & Sy et 7 ﬁ.-,iﬁq-,)}} -
J

adding these two products, we obtain
L Ao 20 + J:,za 424:':
/
I-F)RF, - >
4 {[( )RE.E,, (+E.. b...)+2(-8)8, Ren, gﬂ]zu (226)
-[("é.:)g;g_‘iﬁ(lfﬁ‘-,éu.,) fz(l"ﬁ )Fz Ju-, Q.t: 4 V}

I n=2m, we £ind that

&+l 4 =

Lbim- "2m haw "%,

(7224)
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"?-' F;f_’ -‘f lésf_, el
:é{ ("‘Fl') E( = = (I 2awn =t ﬁam—t)

Fo =i D s

+201-8)8 (-F v i) | £U (7278)

-l},-gl)@;(’{' E—f—l E:,. /‘(—Z er-,gz—r (/ o = ,“-')

2,

2 n -1

+2 (I-FR)A (—Z"g,_, g, . )]dv}

so that
2 aed)

29, 4y, = {0-)R 40 - (838, 2] (7. 26)

]

ot T et a I/z
(’g Fz.f., Fll )(’é fl&,ﬁu} +E
Fz«.-, é.l Ao~/

x9 2 b O r (4R B, )+
=t

By (7.7), the first of the above brackets is -.zaﬁ, ,
while, by (5.13), the second is 2 F. Consequently, if

n = 2 m,
e

T4 —F F

(723)

Q'Mé



Ifn=2mn+1,
J'-,mel aﬁxzw,, =
7 v z I/L"’é é" ,/1r = *

(7.30)
l&—é}é (Z l.r:z,r)A' le,,fu)/l (l— ) I u—' zl]/‘/}
so that
w'J A ’-{0 FIR AU -(1-%.)8, d‘/}
- (731)

-~ 4
'{g ,.f(”'f';.,- [ ) 2[(2 Lf.,F;z Z ,Q;.«rj

Agein, by (7.7), the first of the above brackets is
-2¢< c%, » while, by (5,15), the second is 2 F. Comnsequently,

(7.29) holds for n = 2 m+ 1 as well gs for n = 2 m,

By (5.17), we may write (7.29) as

T~

T st E g o
,24 2p,. & (732)

P 2 P

i
s;“b
»

|\ M)

-

Equetions (1.15), (7.7)-(7.9), and (7.32) yield



(7.33)

These formulsase are enslogous to the formulge of Schwarz
for minimel surfaces in ordinsry space. By them we are

able to solve the following problem:

To determine the minimal surface passing through
a given snalytic curve and admitting at each point of

the curve o given tangent plene.

Let the coordinates of the given curve be given
by the anelytic functions x4,(t), and let the direction-
cosines of the given tangent plane be given by the
analytiec functions E“rf (t). Being direction-cosines

of 2 plene, the Eq4~ must setisfy (5.18) and

f3;¢ &4(t *‘E;1:04€a-'* P;ﬂr 44€¢,==62 (2 34«)

Substituting the given values of the Xg and the

E‘uf in (7.33), we determine the forms of the functions
u, and v, i then substituting parsmeters * = v and t = v
in these equations and esdding, we obtain the coordinates

of a point on the surface:
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Kolw) + 2 () = [
X4 = + I Z Pﬁ,f&/—,

-— -~

2 >

~

We shall show that this setually is the desired

surface.

Wie have, by (7.33),
< [ . -»n) ~ L
e = e f 20y B P, A (3 5.%,)

Now, by (5.17),

FIP
TR s e =g
so that
-~ ) 2 MW e )
v = -2z z 7P
b =z —ZZ I E, s

Solving (7.34) for Rtu*,d%a, squaring, and summing,

we see that

¢

¥

N ™M

z [

! !

the last expression resulting from (5.18), Putting
(7.39) in (7.38), we obtain

(7 35)

(7.39)

(7.38)

(232)

(740)
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Similarly,

2l -0
a=zr 2 =0 <7¢/)
Agein, by (7.33) and (7.34), along the given curve,

Bode 15 Ao +P _d = (f;ﬂa&tﬂ%t@f@d&)

t,r_¢

*fg(f,’. 41+Pt*fd,’, +F,

Ll +lap 4‘)

=¥, 4, BB H(BLE 4150 %,)

+(B7f B‘sf& 1—%1 &,7, ‘4/):] =0.

Similarly, aslong this curve,

64*1'4to4)~+P Ay =O

. t+Te T (7-43)
Adding, we get, glong the given curve,
B:’A,‘th t a',t X, + E,*/X¢:0, (7.¢¢)

By (7.35), (7.40), (7,41), and the second theorem
of section 1, the surfasce is minimal; whenu =v = t,
the surface is on the given curve, since the equations
then define the curve; anid, by (7.44), the surface has
the given tangent plane at esch point of the given curve.
These are 21l the conditions which the surfece was to

fulfill, Pinelly, by (7.32), the surface affords the
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unique solution.

If the given curve is regl end if g, corresponds
to a resl point of this given curve, then, by (7.35),
the reel part of the minimal surface is given by the

equations

)(@:R[’&,(@) ”Z,[:@,/"*/ | (745)

Wle shall mgke the following two applications of
formulae (7.35).

Suppose that a minimgl surface is such thet a
straight line can be drawn upon it, Let this line be

the x, -exis. Along this line

‘gp::czl Z:;z ::67) ’5'4L'==55'3 -t 7Y (3quéol

’

so that, for this surface, (7.35) becomes

X X, (<) +’x,(4}")
’ 2 )

o (247
XA/: ZMQ/A/ , %=2,3 ., v

When u and v are interchanged, X’ is unaltered dbut
gt » 8> 1, is changed in sign. Hence, if a straight
line can be dravm on = minimal surface, it is an axis

of gymmetry of the surface.
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Suppose, secondly, that the given curve lies in
a hyperplane, say the (x, , Xy seees %‘-) hyperplene.
Then on the given curve

=0, dy, =0, # =kt R+2,. .., Ay,

so that the minimal surfece is given by the equaticns
(7.35) in the form
Ay () + %, ()

Xw: 2 +?"Z':/P,r%{‘r 4,4,‘1

-
X :32/’3,4./5,,)47«&.

A

Suppose now that it is given that the surfece is to be

normel to the (x X,

given curve; that is, supnose that along this curve

yeeey %JL) hyperplane slong the

&/f’ :O) '%Ié,é.

4

Then

X K (W) +y ()
o 2

)4,_4,&

)

v

X,b:.zigdr /i,dg,, <>.f

2

In this case, when u gnd v are interchanged, the §4’,
8 < k, are unaltered, while the g » 8> k, are chenged

in sign. Hence, if g minimsl surface cuts a hyperplane

(7.48)

(749)

(759)

(7.57)
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normglly, it is symmetric with respect to the hyperplane.

8, Area theorems. The coordinstes Xp, T=1, 2,..., 1,

of sny real minimal surface can be given in terms of
conjugate parameters (e¢, B ), ths minimal curves being
perametric, in sn infinity of ways, and also in terms
of resl iscthermic varameters (u, v) in equally many
viays, the general substitution between the two

representntions being
A = o + 6.4}3

&/)

ﬂ:m/—-b’”.

Here we have
| do"= A Lo LB = A(A"ﬂ&»‘)) (®2)

so that if £ , F ,G 2nd & , & , & are the
fundemental quentities (1.3) with resvect to (e , A )

and (w, v) respectively, we have

E=G=5=0,6=4=2F (8.3)

By (2.16)-(2,18) and section 6,

(3.4)
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if n = 2 m, Z ‘; Z
Koot = Rf(’ /2"“” ( /1 _/ ) /d)

= R f (i +/2M_,)( "% fzz‘-)?* Ja

/24—-—:
ifn=2mn=+1,

N AE) SO

the /r(“) are given ty (2.10).

(% 5)

Ifn=2m, by (3,3) and (5,13),

& Zlp (o) + 'z'/"’f" (1+ 1)

Qo - 1

(27)
,/.,,/,, Z fedal, T
- =/ = ST )
J:Z J{’ Kz =/ / 2r- r{ "’l Zm-, /,_M - {{24--«})
ifn=2mn+ 1, by (8.3) and (5,15),
E=Zlful (141 fis)’) R|Z fms £
@®7)

".f, lﬂ"l +Z lﬂ*rﬂ«r' +1| f,wr

By their definitions, the ere gnelytic in

1

the region of definition if the same is true of the x/'_ .
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Further, by (2,10), if n = 2 m,

-
—_ ‘2“ { \ /% 7 . .’
,=, 21—y f 2.0 2434.. -r -2c Y &P

ST (89)

ﬁ”‘l I-‘/zm‘--, ,"'/1“-1

so that the last two terms in (8.7) are the squares

of anglytic functions; similerly, if n =2 m + 1, the
last term in (8.8) is the square of an enslytic function,
according to (2.13). Then

-~ T
&=2 LACH @./0)
the &, being anslytic functions of a&. Let

Ly,(q)zfﬂ; (et) A . @11

We now can vrove the following theorem:

If the isothermic hgrmonic functions (1.1) map
the infterior of a cirecle of redius & end center (u, , v, )
on a surface, then the sres A of the surface setisfies

the inequeality
k=
A?‘Tré:a' y (8-/2)

where & is the erea deformation at (ug » ¥, ). The

ecuality holds if and only if the map is a cirecle.

In L, R, Ford's Automorphic Funcdtions, page /67,

it is proved that each of the functions ¥, maps the
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cirecle on 2 region the area of which satisfies

z

Ac[flgrd s 2mig, %] 13

where &  is the value of €. at (u, , v, ). The
ecuality holds if and only if

9&:4,“ + 4 . (8. 7%)

Adding the equations (8.13), we have the desired

inequality:

A =f/§ lg/‘@wzﬂgigol‘;:m;t. &.15)

By (8,14), the equelity of (8,15) holds if and
only if each

A

. d .

R o
“~ ’ (7.76)
in this case, by (8.4)-(8,6),

1o Rfed =RV HREGd = o v
Phet this man is a circle becomes gpparent when we
meke the map tangsent to the (u, v) plsne at (u° y Yy )
and meke the x, and x, axes coincide with the u and
v axes respectively. Then

zﬂ"—f’) ’)f,lw :;’:0,

1%/02:7%-=¢% ‘1Lo: = ia , 6;,&)

%o SO Xyo, = §,.=0, A4 22
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end since the parameters are isothermie,

F=f =8%= ;‘/’4, (%./3)
so that
¥ = aiﬁﬁ403
e 6%, (%.20)
%,=0 , A4 22
the circle

t T
4+ v S a
- ®@2/)

is mavpved on the cirele

v 2 <& al

(§22)
We could have proved this theorem directly without
our parametric representation, as follows:
We can teke (u, , v, ) = (0, O) without loss of
generality. Replacing (u, v) by polar coordinstes,
(f’, 6 ), we have
z p e ero y
- a ,#e9)-
= - /0 (4,1 +8 * & ) (%.23A)



-55-

o2 A=/ )
=Zmf (o, 00070 44  stn8)erod

o0

”~
~-ZF (’/’“ 2 A6 +//-,/~ c,o,,.ga)""”"e
Az
-Z,/~/G [4 Coo(r-1)6 +} zel @._/)(?7
(%23B)

J’X4 o0 oo A+t-2
Rl T
(J ) EL00 o emtnong winnd].

. [@4 eoele)0 14 aite) 6T

0
WM
F™MR

+ A+TC-2
+TpP [@,gtcm(fr-;)e eoo(t-1) &

+24 oo (1) 8 <en (t-1) 6

4,{4

+h A s (-1)6 i (E-1) 9]_
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The ares of the map of the circle with center at

(0, 0) and redius @', where @ <d, is

A’ Jﬂdﬁfé'xe fﬁ/ﬂ/ %) 46
:'[azrr:z:e, +Z Z A+ /02" (“24 4’;)]{0/{0 (%24)

a + -— //‘d—l < LR L2
! 2 2 ~ 2~ +’4¢
As @ approaches & , this areas either becomes
infinite or approaches the same cquantity with a@ in

plece of @’ . In either case,

~ T 2z
A 77742=La4ﬂ a = ﬂ'é',a,) (7 25)

since
o=/ 7 o - (f 26)
The ecguelity in (8.25) helds if and only if

y,=by =0 A+, 2=5S & 27)
or
%= /3(“4’5, Coo 8 +.4, aen6); 3.28)

and (8,28) is ecuivelent to (8.17).
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e note, a3 g corollary¥ that the area of the
map of = ring, concentric with the given circle, of
radii @, and @, , where O< a, < a < a , satisfies

the inequality

A 2T, (4:—4,1) 7. 29)

J
the equality holding, as before, if and only if the

cirele is mepped on a cirecle.

The nroof of the above corollsry consists of
chenging the limits of integrstion with respeet to £

in (8.24) from (0, a') to (@, , @.).

As a second corollary, we prove the following

theorem for minimal surfeces in ordinary space:

If n = 3, then the length L of the boundary of

the map of the above circle satisfies the inequelity

%4
L22méE™a . (.30)

The enuelity holds if and only if the map is a cirecle.

This follows immedistely from our theorem =nd from

the knovn inequality

] z
< z7 L
A 4T p (?3/)
due to Torsten Carlemen, Zur Theorie der Minimalflichen,

Mathematische Zeitschrift, vol, 9 (1921), pages 154-160+

¥ This corollary was suggested by Dr., L. R, Ford.
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From (8.25) and (8.31), we have
L 2
TT'Qod.‘éAi‘qr[_) (33.2)

whence we obtain (8.30).

i 9. Minimpl gsurfaces of plenar derivation. If

; n=23, (8,8) becomes

E=IAL Al 2t =(pwi ) g

Let

M) -_-ffz(d)c(d , N) :f,[j («)fz(«) A (7.2)

When and only when a real minimal surfece in
Euclidean 3-space is such thet M(«) and N ()
give plane meps of the region of definition, we

say that the surfece is of planar derivation.

This is a large but not exhaustive class
of minimal surfaces. The following theorems are
generglizations of known theorems concerning plane

: anelytic maps: see Ford, loe. cit., pages 169-176,
Theorem: If the isothermie harmonic functions

4»3':4*('“')4).))»’: I)2)3) (qs)

map the circle

e~ )" A~ * }é
[(«-s)+(r-a)]* < p G0
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ox a finite surfasce of plansr derivastion, then
the minimum distance on the surface from the image
of the origin to the boundasry is greater than or
at least equal to é:l/‘F/l/. No closer inequelity
holds for all surfaces of this type.

The gbove distance is given by the minimum,

for all paths of integration, of the integral
. e
/
Je% = (1ml +|nl) [l
~=z0 “4-p

Since M(«) gand N(«) give plane maps of
(9.4), we ean a0ply Bieberbach's Theorem to these

functions, getting, for any path of integration,

e ,
w1 2 i
~=o0 4 /

f [4
Lo et =z L LE
=0 & )

-

where Mo and N,’ are the velues of M’ and V'
at (u, v) = (ﬁ, 4); adding the two inequalities
of (9.6), we obtain the desired inequality:

@ s
'/'é’%' [do(l 7§-—4—-£'0.

—

A=0

(9.5)

(9.6)

(7.7)
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That the inequality of the theorem is the
closest possible for all sueh surfaces follows
from the faet that, by Bieberbach's Theorem, it
is the closest possible for gll plane anslytic maps.
We can choose both M ®) gng N @) as equal to
a funetion P(=) satisfying the inequality of the
theorem for a certain path of integration. For

this path, the corresponding distsnce on the surface
/
is 67 6C/4.

Precisely the ssme method of proof as the
above generalizes the theorem in Ford, loe., ecit.,

page 173, to the following deformation

Theorem: If the isothermic harmonic funetions
(9.3) map the circle (9.4) on a finite surface
of plenar derivation, then at any point within

the circle the following inequalities hold:

y 1= //7, % |+
é (++)° s[é'(a,q,»)] 26 G

where

[ + o) ]2 i 0

Further, no closer inequelities hold for all surfaces

@.2)

(2-9)
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of this type.

The next theorem has its counterpert in the

theory of plane maps, yet needs some proof, See

Ford, loc. cit., pages 174, 175,

Theorem: If the isothermic harmonic functions

(9.3) map tre circle (9.4) on 2 finite surface of
plener derivation, then the minimum distance m(u, v)
on the surface from the imsge of the origin to the

point corresponding to (u, v) satisfies the inequalities

. A ~ %4
(l'l'*)l é: /0 < m(,(.a,q)-) < (/_*)150 (O, (7-'0)

where r is given oy (9.9). Ho closer inequalities

hold for 211 surfaces of this type.

The second inequality of (9.8) gives

(-, ) 4 )

Y 4
E* da ﬁ/ " 24 (3. 1)
%) e, ) (1-4)

The first of these integrals, taken along the radius,

is at least as great as m(u, v); hence,
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( </*z: %
(e, ) S A (,_*)3 Fé: L-'

. iy f;‘f'Vz.

(er)

If the curve C minimizes the distance, then

o (4, ) =,_[¢' % s

This integral is diminished if we substitute for
T 2 /,
d =[Py + Cwm L8]
the smaller quantity f’[i}h

e (e, ) z([f:’é'%” | dr| .

The first inequality of (9.8) gives, then,

w2 [ o5 L6 14

/ (l+,r)3 (06 Ar
- Vs
T et fof:o/.

(7 12)

(9.73)

4.7)

(9.15)

(9./6)
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From (9.12) end (9.,16) we get (9.10). That there
ere no closer inequalities follows from the fact
thet we can take both M(«) and N (=) as equal
to a function P(«) which attains both limits;

then the surface map ettains both limits.

The preceding two theorems yield the following
pair of theorems. The proofs, depending on a division
of the (u, v) domgin into sgquares, are exactly the
same as those of the corresponding theorems in the
plane, and therefore are not given here. See Ford,

loe. cit., pages 175, 176,

~heorem: Let S be a plane finite region
eand let T be a subregion whose boundery consists
of interior points of s'. Let the isothermic
nermoric functions (9.3) map S'on a finite surfeace
of planar derivation. Then there exists a constant
K, dependent on S end Z’but independent of the
mapring functions, such that if (u,, v,) and
(We » Vo ) are eny two interior or boundary points
of & ,
£ (<, ) ¢ K
€ (e, )

!
K <

(9.17)
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Theorem: In the mapping of the preceding theorem
there exists e constant L, independent of the mepping
functions, such that if (u , v, ), (u_, v ), and
(uy , V4 ) are eny three interior or boundsry points

of £ , then

v [(4%), (o, w)] < L, [6 (<y, %5 ],/z)

where
M C(“'l ""7)) (4&;’ "’1.)]

denotes the minimum distance on the surface between

AY

the points (w,, v,) and (u,, v_).

10. Theorem: The distance from gny point, line,
-lane, or hyperplane of less than n dimensions, to
the surface determined by the isothermic harmonie

funetions (1,1) cannot have 2 méximum within the

4. 18)

@. 19)

region of definition, unless the distance is identieally constant.

Let the point, line, plane, or hypervlane
in cuestion be the origin, the x_  axis, the

(x X, ) plane, or the (x‘ﬂkﬂ, cees X))

X ’
n-fa+ 2
hyperplahne., Then the distance in cuestion is

(f =(5§ ’l,:)l/") 0sh < v,

=,

~—p ?

The function d ~ is subharmonic, for its Laplacian is

(10.7)



J(8)

J® v ey

N, LR kN
=2 i{'—r) + ( c_’_’lf,_r) 2 0.
“(

The theorem follows from the facet that, as is
well Xncvm, a subharmonic function cennot have an

interior meximum, unless it is identically constant,

The funetion (10.1l) would have served our
purnose as well, for it also is subharmonic. Its

Laplacian is more tedious to evaluate, but is

actuelly
2 2
X % X L
|
33 2 + 20.
Ao ﬂﬁ&‘ éﬁé: 94%: 9%,
daw Jv  du

It is nossible, on the other hand, that the
surfece should ettain its minimum distance from
2 pvoint, line, plane, or hyperplane., Consider, for

example, the set of isothermic harmonic funections

%4 = an

-y

x, = U

4"_ :/)/r</rv—-/.

0 ~py Jt* J‘LI '1.

(/e 3)

(10.9)
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These functions map the unit cirecle with center at
the origin on a congruent circle; the minimum distance
from this surface to the origin, to the X,  axis, or
to the (x,..,, x_) plane is (n - 2),/" , to the

(xtt.-*l-’ xm-l ’ xﬁv

r/
) hypervlare is (n - 3)7* ...,
to the (x«_‘ﬂ, xﬂ_*"z..., X_..) hyperplane is
/
(n - k)/", and these minima are attained a2t the

interior point (0,0).



