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ABSTRACT 

Magnetic pair creation, 'Y ~ e+ e- , is a key component in polar cap models of gamma­

ray pulsars, and has informed assumptions about the still poorly understood radio 

emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 

"(-ray pulsars, providing rich information for the interpretation of young energetic 

pulsars and old millisecond pulsars. Fermi observations have established that the 

high-energy spectra of most of these pulsars have exponential turnovers in the 1-10 

GeV range. These turnovers are too gradual to arise from magnetic pair creation 

in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be 

used to provide a physically motivated lower bound to the typical altitude of Ge V 

band emission. This work computes pair creation opacities for photon propagation 

in neutron star magnetospheres. It explores the constraints that can be placed on 

the emission location of Fermi "(-rays due to single-photon pair creation transparency 

below the turnover energy, as well as the limitations of this technique. These altitude 

bounds are typically in the range of 2-6 neutron star radii for the Fermi pulsar sample, 

and provide one of the few possible constraints on the emission altitude in radio quiet 

pulsars that do not possess double-peaked pulse profiles. 



Chapter 1 

INTRODUCTION 

1.1 History and Observations 

Since the discovery of the first radio pulsars in 1967, the pulsar catalog has grown 

to more than 2,000 sources. These include 1984 radio pulsars in the most recent 

ATNF catalog [Manchester et al., 2005], at least 66 x-ray pulsars as of 2006 [Liu, 

van Paradijs, & van den Heuvel, 2006], and 14 optical pulsars as of 2006 [Shearer, 

O'Connor, & Thairisg, 2006]. The most significant early development in high-energy 

pulsar observations was the launch of the Compton Gamma-Ray Observatory, with 

the EGRET instrument on board. EGRET was sensitive from 30 MeV to 30 GeV, a 

new energy window at the time. 

EGRET detected seven young to middle-aged 1-ray pulsars, of which six were 

high-confidence detections and PSR 0656+ 14 was a marginal detection; the millisec­

ond pulsar J0218+4232 was also detected at a marginal significance level. All of these 

sources became the subject of intense scrutiny and multiwavelength campaigns. Of 

particular interest were the relationship between the 1-ray and radio emission, the 

presence or absence of thermal emission, and the detailed multiwavelength spectrum. 

Six of the seven high-confidence pulsars had radio counterparts, while the Geminga 

pulsar may be radio-quiet within the limits of our detection sensitivity; the low-
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frequency detection claimed by Malofeev & Malov [1997) has been questioned by 

Kassim & Lazio [1999). Multiwavelength observations showed that the gamma-ray 

emission appeared to lead the radio peaks in all cases except Geminga and the Crab 

pulsar (see the review article by Harding [2007) and many others for the state of 

pulsar observations prior to Fermi). The peaks in the Crab pulsar's folded light curve 

are aligned in phase for all measured frequencies. 

Chandra and XMM-Newton x-ray observations were used to measure surface ther­

mal emission from pulsars (see Zavlin [2007) for an excellent review of these obser­

vations). Most of the pulsars for which thermal emission was observed (notably the 

EGRET pulsars Vela, Geminga, B0656+14, and B1055-52) showed a thermal x-ray 

spectrum that could be fit by a combination of two blackbodies of different tem­

peratures, possibly with the cooler blackbody corresponding to the majority of the 

neutron star surface and the hotter blackbody corresponding to a heated polar cap. 

In the very youngest pulsars, such as the Crab, nonthermal magnetospheric emission 

completely swamps the thermal emission from the surface. 

More recently, the atmospheric Cherenkov telescopes MAGIC and VERITAS have 

detected pulsed emission from the Crab pulsar, phase-aligned with the peaks in other 

frequencies, above 25 GeV and 100 GeV respectively [Aleksic et al., 2011, Aliu et 

al., 2011). These observations suggested that the shape of the Crab spectrum at the 

highest energies might be better described by a broken power law than by exponential 

cutoffs. 
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EGRET also detected about 200 sources with no clear identification with known 

source classes. In the years when the Fermi Gamma-Ray Space Telescope was in 

development, there was a strong debate over how many of the EGRET unidentified 

sources were actually pulsars. Harding & Muslimov [2004] predicted, based on slot 

gap arguments, that as many as 2/3 of th~ 28 unidentified EGRET sources with at 

least 1 radio pulsar in their EGRET error box might be pulsars. Despite having 

possible radio associations, these sources did not have enough EGRET photons to 

search for a periodic ')'-ray signal. Other EGRET unidentified sources had pulsar-like 

spectra, with high spectral curvature and low variability, but no radio counterpart 

could be found. Except for the very brightest sources, EGRET was not sensitive 

enough to allow for blind period searches, a process that requires many photons and 

very long observations, so the possibility that these sources might be Geminga-like 

pulsars could not be adequately tested. 

After the launch of Fermi, many EGRET unidentified sources turned out to be 

pulsars. The pulsar catalog increased more than tenfold in just two years, from 7 to 

over 100 at the most recent count. Blind searches, aided by a new time-differencing 

technique developed by Atwood et al. [2006], have discovered 35 pulsars to date, only 

four of which were shown to have radio counterparts in follow-up searches [Abdo et 

al., 2009a, 2010a, Saz Parkinson et al., 2010]. Prior to Fermi, PSR J0218+4232 was 

the only hint of a ')'-ray millisecond pulsar, and it was a marginal detection. Fermi 

revealed that gamma-ray millisecond pulsars are a significant population with spectral 
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properties similar to young pulsars. 

Fermi's Large Area Telescope (LAT) is sensitive from 30 MeV up to 300 GeV, a 

range that comfortably includes the pulsar cutoffs at a few GeV measured by EGRET. 

Newly available information from Fermi included well-measured pulsar spectral en­

ergy distributions and much finer resolution in the pulse phase of the pulsars' folded 

light curves. The new measurements of the spectral cutoffs have helped to settle 

long-standing physics questions. Better-resolved folded light curves provided new in­

sight into the detailed structure of gamma-ray pulses and allowed for phase-resolved 

spectroscopy, both of which tie into emission geometry questions; the best example 

is the extremely bright Vela pulsar [Abdo et al., 2009b, 201Gb]. 

1.2 The Neutron Star Paradigm 

In the accepted pulsar picture, pulsars are rapidly rotating neutron stars with mass of 

the order of the Chandrasekhar mass (1.44M0 ) and radius of approximately 10 km. 

The details of the neutron star structure depend on the equation of state, which is not 

well known. In most models, starting at the surface, one first encounters a crystalline 

crust of electrons and nuclei. At densities exceeding the critical density for neutron 

drip (4.3 x 1011 g cm-3 ), where n-p-e equilibrium is driven in favor of neutrons, an 

inner crust of nuclei, electrons, and superfl.uid neutrons forms. The outer and inner 

crust together are generally less than 1 km thick. Working inward, when the density 

is greater than nuclear densities (Pnuc ~ 2.8 x 1014 g cm-3), protons become superfl.uid 
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as well; the thickness of this layer depends strongly on the stiffness of the equation 

of state. At the center of the star, even more exotic forms of condensed matter are 

believed to exist [Shapiro & Teukolsky, 1983]. 

Neutron star magnetosphere models generally fall between the extremes of a vac­

uum dipole, which has analytic solution derived by Deutsch [1955], and a completely 

pair-flooded force-free magnetosphere, in which all electric fields parallel to the mag­

netic field lines are shorted out by the plasma. Some amount of plasma must exist in 

the magnetosphere due to the high drift electric fields induced by the pulsar's rapid 

rotation, but particle acceleration clearly does occur, so a realistic magnetosphere 

must be some intermediate model between these two extremes. For examples of such 

finite-conductivity models, see Kalapotharakos et al. [2011] and Li, Spitkovsky, & 

Tchekhovskoy [2011]. 

In an intermediate model containing some plasma, particle acceleration is assumed 

to occur in "vacuum gaps", plasma-free regions in which an electric field parallel to 

the magnetic field can persist. In these gaps, the electric field is very strong, and 

charged particles entering the gap are quickly accelerated to high Lorentz factors. 

Three specific cases of gap locations and shapes are discussed below. 

Particles can be removed from the surface and injected into the acceleration region 

in one of two ways. First, if the neutron star temperature exceeds the work function 

for electrons in the crystal lattice, electrons can be liberated from the neutron star 

surface in that way. If the neutron star is hot enough, it may exceed the ion work 
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function as well, allowing for free emission of charges of either sign. Second, if a 

gap exists at the neutron star surface, the gap electric field is easily able to rip 

charges from the crystal lattice and accelerate them. The curvature photons from 

this acceleration travel outward and convert to electron-positron pairs in the strong 

electric and magnetic fields, creating a "pair formation front" above which the electric 

field is screened and further acceleration cannot take place [Muslimov & Harding, 

2004]. This is the picture underpinning polar cap pulsar models. 

1.3 Pre-Fermi Modeling 

1.3.1 Polar Cap Models 

The first polar cap models were created by Sturrock [1971] and Ruderman & Suther­

land [1975], and have undergone a great deal of modification since then. The neutron 

star temperature controls whether both electrons and ions can be pulled off the sur­

face of the star, or electrons only. At lower temperatures, only electrons can escape, 

a vacuum gap with E parallel to B will develop at the surface, and acceleration and 

radiation will occur at extremely low altitudes. If the temperature is high enough to 

overcome the ion work function and allow free emission of both electrons and ions, 

charges can flow freely along field lines. When the particles radiate and the photons 

produce pairs, a "pair formation front" will develop, above which the pairs screen 

the electric field and prevent further acceleration (see Arons [1983] and the slot gap 

section below). Because acceleration and radiation is occurring at low altitudes where 
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the magnetic field is strongest, the magnetic pair creation process is extremely effi­

cient at attenuating gamma-rays above the pair creation threshold, which leads to 

the expectation of a super-exponential cutoff in the gamma-ray spectrum [Daugherty 

& Harding, 1996). The primary pair (from magnetic pair creation) is generally cre­

ated in an excited Landau state, and the synchrotron photons they emit as they drop 

to the ground state set off a pair cascade, which considerably increases the pulsar's 

pair luminosity. These high pair multiplicities may be required to power pulsar wind 

nebulae. 

1.3.2 Outer Gap Models 

Outer gap models argue that no gaps can exist close to the neutron star, because 

the high E · B in any vacuum region would immediately drive rapid pair production 

until the parallel electric field is shorted out and the gap is filled. However, in the 

outer magnetosphere, a gap can be created either as a consequence of a solution 

to the difficult problem of a non-aligned rotating neutron star magnetosphere or by 

assuming charge flow along the last open field line near the light cylinder [Cheng, Ho, 

& Ruderman, 1986). The gap then consists of a stripe of field lines near the last open 

field line, with a high parallel electric field on the field lines in the center of the gap. 

The electric field falls to zero both at the outer edge of the gap (the last open field 

line) and the inner edge (the field line closest to the magnetic pole). 

The vacuum gap that produces the particle acceleration, pair production, and 
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radiation is inferred to occur along the last open field line above the null charge 

--+ --+ 
surface (defined by n · B = 0). Romani [1996] defines a gap width w, assumed to 

be proportional to the 1-ray efficiency, and assumes a constant voltage drop across 

the vacuum gap and electric fields parallel to the magnetic field. Photons are thus 

accelerated to high Lorentz factors along the curved field lines and emit curvature 

photons (see, for example, Chiang & Romani [1994]). Eventually, the emitting elec-

trons reach a constant velocity due to radiation reaction, which produces a spectrum 

with an exponential cutoff. Hirotani has worked to put the outer gap model on a 

firmer theoretical basis (see Takata et al. [2006] and Hirotani [2011], for example) by 

solving the Poisson equation self-consistently. 

A major prediction of several outer gap models has been the existence of a spectral 

component at energies far above the spectral turnover at 1-10 GeV, resulting from 

inverse Compton scattering [Chiang & Romani, 1994]. Upper limits in the TeV band 

from atmospheric Cherenkov telescopes proved very constraining to outer gap models. 

At first glance, then, the detection of pulsed emission from the Crab at energies greater 

than 100 GeV would appear to be good news for the outer gap models. However, the 

shape of the Crab's VHE spectrum appears to be inconsistent with a curvature peak 

plus an inverse Compton peak, and possibly more consistent with a single broken 

power law over the entire Fermi-MAGIC-VERITAS range [Aliu et al., 2011]. 
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1.3.3 Slot Gap Models 

The slot gap picture is basically an extension of the polar cap model to high altitudes, 

and differs from outer gap models mainly in the location and shape of the vacuum gaps 

(see Muslimov & Harding [2004]). The pair formation front (see Figure 1.1) develops 

as in the polar cap model of space charge limited flow. However, narrow vacuum gaps 

persist from the surface all the way out to the light cylinder along the last open field 

line due to inefficient pair screening of the electric field, and electrons and positrons 

can be accelerated through these gaps and continue to produce photons via curvature 

radiation. The electron Lorentz factors are once again limited by radiation reaction, 

and like the outer gap, the slot gap can produce single-peaked, double-peaked, or more 

complex pulse profiles. A purely geometric variant of this model includes emission 

from both poles (explaining some inter-pulse emission), and is known as the Two-Pole 

Caustic model [Dyks & Rudak, 2003]. 

Prior to the launch of Fermi, all of these models were still considered viable. 

EGRET had detected the turnover in some pulsar SEDs, but only as a few points at 

the upper limit of its energy range. EGRET data were equally consistent with either 

an inner magnetosphere or outer magnetosphere model. Razzano & Harding [2007] 

noted this fact and predicted that Fermi should be able to distinguish between polar 

cap and outer magnetosphere (slot gap and outer gap) models based on the shape 

of the spectral turnover. Early Fermi LAT observations of the Vela pulsar showed a 

simple exponential cutoff [Abdo et al., 2009b], and subsequent observations of Vela 
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and other pulsars have corroborated this and shown that the simple exponential cutoff 

is present in both phase-averaged and phase-resolved spectroscopic data [Abdo et al., 

2010b]. Observations of the other EGRET pulsars and newly detected Fermi pulsars 

made it clear that the turnovers in every case were exponential, thus ruling out the 

polar cap class of models [Abdo et al., 2010a]. 

1.3.4 Current State of Pulsar High-Energy Emission Modeling 

There is now a strong effort underway from both the outer gap and slot gap camps to 

produce detailed light curve models and attempt to match the vast array of informa­

tion that the Fermi data provides (see, for example, Watters et al. [2009], Pierbattista 

et al. [2010], and Harding et al. [2011]). Typically, these calculations involve a Monte 

Carlo technique and attempt to match the folded gamma-ray light curve, and some­

times also the folded radio light curve and polarization signature, by varying the 

pulsar inclination angle, the viewing angle, the gap width, and probable emission 

radii. All these modeling efforts are plagued by a great deal of geometric uncertainty. 

Fermi has provided a wealth of detailed data for comparison to these models. 

Observations of the Vela pulsar [Abdo et al., 2009b], for example, show features such 

as a third 1-ray peak between the two main peaks that shifts in phase with energy 

and a decreasing ratio between the heights of the first and second peaks as the energy 

increases. These features can both challenge and inform 1-ray emission modeling. 

In practice, it can be very difficult to say which model is favored by the available 
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Figure 1.1 : Shape of the pair formation front and accelerating region in polar cap 
models , from Harding [2007]. The left panel is applicable to the slot gap case, as the 
PFF extends to high altitudes along the last open field line. 

light curves. Fig. 1.3 below shows an example of best fits with the two models for 

PSR J0030+0451, as calculated in Johnson, Harding, & Venter [2011). Similarly, 

in Abdo et al. [2011], fits to PSR J0007 + 7303 (the CTA1 pulsar) imply that either 

scenario is possible at slightly different viewing geometries. In these cases, additional 

constraints from pair creation physics may be useful in narrowing the phase space for 

solutions. 
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1.4 Motivation for This Work 

Even though pair creation-driven cutoffs do not occur in the Fermi pulsar sample, 

it is still worthwhile to perform the calculations for pair creation cascades. The fact 

that super-exponential cutoffs are not observed can be used to place a physical lower 

bound on the altitude of origin for the high-energy emission. The magnetic pair 

creation process is strongly height-dependent and should dominate at low altitudes. 

Since the signature of strong pair creation- a super-exponential cutoff in the spectrum 

- is not observed, the emission altitude must be high enough that attenuation due 

to single-photon pair production is not expected. The physical lower bound for the 

emission height should be considered as a complement to geometric determinations of 

the emission height from peak separation [Watters et al., 2009] and can help constrain 

magnetospheric geometry in pulsars without 2 gamma-ray peaks (about 30% of the 

blind search pulsars, according to Saz Parkinson et al. [2010]). Minimum altitudes 

from magnetic pair creation are unlikely to help in constraining outer gap models or 

determining useful lower bounds for millisecond pulsars (because the low millisecond 

pulsar magnetic fields make magnetic pair creation inefficient). 

Furthermore, pair production rates are important in the understanding of pulsar 

wind nebula energetics. The Goldreich-Julian currents alone cannot carry enough 

energy to account for pulsar wind nebula luminosities [de Jager, 2007], and to achieve 

the required energy deposition, there must be prolific pair creation occurring in the 

pulsar magnetosphere. Single-photon magnetic pair creation is very efficient at low 
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Figure 1.2 : Diagram showing the emission sites for each of the three gamma-ray 
emission models discussed above, from Aliu et al. [2008]. 
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Figure 1.3 : Comparison of best fits to the folded light curve of the millisecond 
pulsar J0030+0451, for both {'-ray (top) and radio (bottom) emission, from Johnson, 
Harding, & Venter [2011]. The key fitting parameters are a, the inclination angle 
between the magnetic axis and the rotation axis, and (, the viewing angle between 
the rotation axis and the line of sight. The pink curves are a slot gap/two-pole 
caustic model with a = 73°, ( = 57° , and the green curves are an outer gap model 
with a = 81 o, ( = 66°. The best fits were calculated with a Markov Chain Monte 
Carlo technique. For this pulsar, the slot gap model is slightly statistically favored. 
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altitudes and can produce pair multiplicities approaching those needed to achieve the 

required energy deposition. 

Ho, Epstein, & Fenimore [1990], working on early gamma-ray burst theory, rec­

ognized that"!- B attenuation posed a major problem for the escape of gamma-rays 

from the neutron star surface. Their calculations, which ignored general relativistic 

and rotational aberration effects, showed that for the escape probability to be signifi­

cant at soft gamma-ray energies, emission must be strongly beamed around the local 

magnetic field. For the higher-energy gamma-rays seen by Fermi, relativistic beaming 

guarantees that photons will be emitted essentially parallel to the local magnetic field. 

In Harding, Baring & Gonthier [1997], although the focus was on photon splitting, 

the authors carried out single-photon pair production attenuation calculations for 

comparison purposes. These calculations included GR influences and detailed con­

sideration of threshold effects in the computation of photon attenuation lengths and 

escape energies. Baring & Harding [2001] produced plots of photon escape energy 

vs. colatitude of emission for photons originating at the neutron star surface. They 

also discussed cascading and the conditions under which pair creation (and therefore, 

arguably, radio emission) should be effectively quenched. Most recently, Lee et al. 

[2010] tackled the problem of"!- B attenuation in detail. Their work, which deals 

with critical aberration and G R corrections but largely ignores threshold behavior 

in the pair creation process, produced minimum emission altitudes as a function of 

photon energy. 
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The physics that determines the form of the 'Y - B attenuation coefficient is dis­

cussed in some detail in section 2. The first attempt to describe this first-order QED 

process in a manageable form was carried out in the seminal work by Erber [1966], 

which provided an asymptotic form of the attenuation coefficient. Tsai & Erber [1974] 

subsequently dealt in detail with the differences in photon polarization modes. Near 

the pair creation threshold, the simple asymptotic approximations become less accu­

rate. One empirical approximation to threshold behavior can be found in Daugherty 

& Harding [1983], and an analytic one in the later work of Baring [1988]. 

In this work, we have taken an analytical approach to the problem of pair cre­

ation opacity whenever possible. We present magnetic pair creation transparency 

conditions as a function of the colatitude and height of emission for photons ini­

tially parallel to the local magnetic field. This initial condition is reasonable due to 

the extremely strong relativistic beaming of radiation from ultra-relativistic primary 

electrons. We have included, analytically where possible, corrections for threshold 

conditions on magnetic pair creation [Baring, 1988], gravitational redshift, and gen­

eral relativistic magnetic field distortion. We provide comparisons with earlier work, 

including Chang, Chen, & Ho [1996], Gonthier & Harding [1994], Harding, Baring & 

Gonthier [1997], and Baring & Harding [2001]. Furthermore, the detailed geometry 

calculations will pave the way for the exploration of other attenuation mechanisms, 

including 'Y - 'Y attenuation, which is expected to occur at higher altitudes. 



Chapter 2 

REACTION RATES FOR MAGNETIC PAIR 
CREATION 

Magnetic pair creation is a quantum mechanical process by which a single pho­

ton in a strong electromagnetic field converts to an electron and a positron. It 

has been well understood since the work of Toll [1952) and Klepikov [1954), but 

is not observed in Earth environments because of the magnetic field strengths re-

quired. This process is forbidden in field-free regions due to four-momentum con-

servation, but in a magnetic field with magnitudes approaching the quantum critical 

field ( Bcr = m~c3 /(en) = 4.413 x 1013 Gauss, at which the cyclotron energy equals 

mec2 ) , perpendicular momentum conservation is not required because the excess mo-

mentum perpendicular to B can be absorbed by the field. Magnetic pair creation is 

first order in the fine structure constant (a 1 = e2 / nc), with a Feynman diagram with 

one vertex. The pair-production rate differs markedly for parallel and perpendicu­

lar photon polarizations (defined relative to the plane containing the magnetic field 

vector and the photon trajectory), and has a hard threshold at w = 2mec2 /sin ()kB 

where the energy available for pair creation is equal to the rest mass energy of the 

electron-positron pair. In strong magnetic fields, this can be the dominant mode of 

pair conversion. 

When a photon converts to a pair, the electron and positron are generated in ex-
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cited Landau levels in the magnetic field. Near the pair creation threshold, only a few 

energy levels are accessible, and the attenuation rate has a characteristic sawtooth 

structure, rising to a series of divergent peaks as it approaches the energy of each 

Landau level from the right (Daugherty & Harding [1983], hereafter DH83; see also 

Baier & Katkov [2007]). The number of accessible states rises dramatically as the en­

ergy increases. The divergences are integrable, so that approximating the attenuation 

coefficient by averaging over the sawtooth peaks in W_i = w sin OkB is possible, using 

the proper-time technique developed by Schwinger [1951]. The most commonly used 

asymptotic approximations were derived by Klepikov [1954], Erber [1966], Sokolov 

& Ternov [1968], and Tsai & Erber [1974]. These attenuation coefficients take the 

general form 

Rfl:.l = -t- B sin OkB Fll,.i ( w .1, B) W_i - W sin (JkB (2.1) 

where ~ = li/mec is the Compton wavelength over 27!' and F is a dimensionless 

function specific to the method used to obtain the approximation. Throughout, we 

will use the scaling convention that B will be dimensionless, scaled to the quantum 

critical field Bcr defined above, and w will be a dimensionless energy in units of mec2 . 

The angle OkB is the local angle between the photon trajectory k and the magnetic 

field vector B. The factor of sin OkB comes from a Lorentz transformation from the 

frame where k · B = 0 into the local magnetic frame. 

Erber [1966] and Tsai & Erber [1974] derived a simple expression for the function 

F by performing a weighted integral over all the possible energies of the created pairs 
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in the ultra-relativistic limit. These integrals can be evaluated by the method of 

steepest descents when w1..B « 1, which is often the case in pulsar magnetospheres. 

The asymptotic expressions for :Fare then 

2 
3 FErber (2.2) 

for WJ.. ~ 2. Thus, the attenuation rate increases rapidly with sin(hB, the magnetic 

field strength, and the photon energy. Dimensional arguments with typical photon 

energies observed from pulsars lead one to expect that the attenuation rate will fall 

to effectively zero above approximately 10 NS radii from the surface. The expression 

for :FErber is a polarization-averaged rate, widely deployed in pulsar calculations, and 

has been used in the development of polar cap models for radio pulsars (e.g. Sturrock 

1971; Ruderman and Sutherland 1975; Daugherty & Harding 1982, 1996). Lee et al. 

[2010] also used this form for their calculations of minimum altitudes of emission that 

account for rotation effects. 

In both polar cap and outer magnetosphere models, the electrons that radiate 

curvature ')'-rays are accelerated along magnetic field lines to high Lorentz factors. 

Hence, the ')'-rays are relativistically beamed into a tiny cone around the magnetic 

field lines. All photons therefore start out with very small sin OkB, which means 

they begin their propagation well below the pair conversion threshold. For photons 

emitted from the surface, this means they must travel a distance s on the order of the 

field line radius of curvature Pc before they will cross threshold, since sin OkB "" sf Pc· 

For the attenuation rate to be appreciable, the exponential of Eq. (2.2) must be 
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of order unity, represented by wB sin OkB ~ 0.2. Looking at the threshold condition 

(wsinOkB > 2), we can see that this implies that for magnetic fields B « 0.1Bcn pair 

creation will take place well above threshold, and Eq. (2.2) is adequate. However, 

for higher magnetic fields (B ~ 0.1Bcr), the photon attenuates almost immediately 

after crossing the threshold, placing it in the regime where the Erber approximation 

to the attenuation rate diverges dramatically from the exact rate (see Fig. 2.1). 

For high fields, therefore, it is critically important to obtain a better description of 

the threshold behavior. Chang, Chen, & Ho [1996], Harding, Baring & Gonthier 

[1997], and Baring & Harding [2001] all deal with these threshold corrections, but 

Lee et al. [2010] does not. One can treat the threshold in several different ways, from 

using the full exact form near threshold (as Chang, Chen, & Ho [1996] did) to the 

parameterization that Daugherty & Harding [1983] obtain by fitting. We choose to 

use the analytic result developed by Baring (1988; see also Baring 1991) from detailed 

asymptotic analysis of the exact pair creation formalism: 

W_l_ ;::: 2 , 

(2.3) 

for 

(2.4) 

Note that this is slightly different from the definition of ¢(w_1_) in Gonthier & Harding 

[1994]; their definition contained a typographical error. The origin of this analytic 

result is a modification of the WKB approximation Sokolov & Ternov [1968] applied 
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Figure 2.1 : Figure 5 of Daugherty & Harding [1983], showing the exact and asymp­
totic attenuation coefficients. The attenuation coefficient is plotted against a quantity 
that we would designate Wj_/2 in our notation. The solid curve is the exact coeffi­
cient and the dashed curve is the Erber approximation given in Eq. (2.2). Note the 
divergence of several orders of magnitude near the threshold at Wj_/2 = 1. 

to the Laguerre functions appearing in the exact 'Y -t e+ e- rate, to specifically 

treat created pairs that are mildly-relativistic. This polarization-averaged expression 

improves the accuracy of the attenuation coefficient by orders of magnitude over the 

Erber approximation very near the pair creation threshold. In the limit of Wj_ >> 1, 

Eq. (2.3) reduces to the Erber result in Eq. (2.2). 

When the magnetic field goes even higher, even these excellent approximations 

do not provide a good description of near-threshold behavior, and we must treat the 
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exact sawtooth function. Furthermore, the distinction between the two polarization 

states becomes important, since the perpendicular state has a higher threshold than 

the parallel state. In practice, as long as the condition w1_B ;S 1 is satisfied, the 

approximation in Eq. (2.3) is good up to B "' 0.5Bcr or so. Above that, a further 

correction to account for the fact that only the lowest Landau levels are energeti-

cally accessible near threshold is necessary. We take the same approach as Harding, 

Baring & Gonthier [1997]; we do an exact treatment for the first accessible state of 

each polarization and thereafter use the asymptotic expression from Eq. (2.3). This 

corresponds to calculating the first two peaks of the sawtooth function shown in Fig. 

2.1. 

The photons in the parallel polarization state access the ground (0,0) state first, 

where (j, k) denotes the Landau level quantum numbers of the produced pairs. The 

exact attenuation coefficient for the parallel state is given in Daugherty & Harding 

[1983], and takes the form 

-rPP 2B ( ~) 
.rll = 21 I exp -2B W1_ Poo 

Wl_ 2': 2 (2.5) 

The (0,0) state is inaccessible to perpendicularly polarized photons, and so the first 

state available is the first excited state, (1,0) and (0,1). These states are summed 

over to give the perpendicular attenuation coefficient: 

-rPP _ 2BEo(Eo+EI) (-wi) 
.r j_ - I I exp 2B w 1_ P01 

(2.6) 

where 

E1 = (1 + p~1 + 2B) 112 



24 

for 

[ 2]1/2 
!Pikl = ~- 1- (j + k)B + ( (j -::)B) 

which describes the magnitude of the momentum parallel to B of each member of the 

produced pair in the specific frame where (}kB = 1rj2, i.e. k · B = 0. Above W..L = 1 + 

-/1 + 4B, which would be the location of the sawtooth peak corresponding to the (2,0) 

state, we transition to the asymptotic attenuation coefficient. Because the parallel 

and perpendicular photon polarizations have different pair creation thresholds, it can 

be important to handle this properly if one is interested in calculating mean free paths 

for attenuation, especially at B ~ Bcr· In practice, the photon usually attenuates 

very quickly after crossing threshold, so that the polarization-dependent attenuation 

rate behaves effectively like a step function in this regime. The implication is that 

it does not matter much for near-critical or supercritical fields whether one uses the 

exact attenuation rate or any of the various approximations, as long as the kinematic 

thresholds are treated precisely. In contrast, for significantly sub-critical fields, pair 

creation usually takes place well above the kinematic thresholds, so the asymptotic 

expressions are entirely appropriate. In Section 3, we will show that in sub-critical 

fields, quantities like the attenuation length and escape energy are insensitive to 

polarization. 



Chapter 3 

PAIR CREATION IN STATIC, FLAT 
SPACETIME MAGNETOSPHERES 

Although general relativistic effects are expected to be important near the neutron 

star surface, we can glean some important insights from considering the case of photon 

attenuation in a dipole magnetic field in flat spacetime. This was the case dealt 

with by Ho, Epstein & Fenimore (1990), Chang, Chen & Ho (1996) and Lee et al. 

(2010), among others, and we compare our results to theirs. Furthermore, the analytic 

behavior of the optical depth function is clearest in flat spacetime with no aberration. 

General relativistic and aberration influences will perturb these results, but the flat 

spacetime case in the absence of rotation will provide a useful limit against which 

to check the more complex calculations. We will also confirm a result of Zhang 

& Harding (2000; see also Lee et al. 2010), which indicates that in flat spacetime 

the photon escape energy scales with emission altitude r as r512 , in the absence of 

rotational aberration effects. 

To assess the importance of single-photon pair creation in pulsars, we compute pair 

attenuation lengths and escape energies as functions of the photon emission location, 

i.e. altitude and colatitude, and also as functions of the energy observed at infinity. 

Following Gonthier & Harding (1994) and Harding, Baring & Gonthier (1997), the 

optical depth for pair creation out to some path length l , integrated over the photon 
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trajectory, is 

r(l) = 1l Rds (3.1) 

where R is the attenuation coefficient, in units of cm-1, as expressed in general form 

in Eq. (2.1). Also, s is the path length along the photon trajectory in the local 

inertial frame; in fiat spacetime, all such inertial frames along the photon path are 

coincident. With this construct, the probability of survival along the trajectory is 

exp{ -r(l)}, and the criterion r(l) = 1 establishes a value of l = L that is termed 

the attenuation length. A photon will be able to escape the magnetosphere entirely 

if r( oo) < 1 . In general, this will only be possible for photon energies below some 

critical value cesc , at which r( oo) = 1 ; this defines the photon escape energy €esc 

as in Harding, Baring & Gonthier (1997) and Baring & Harding (2001). It is the 

strongly increasing character of the pair conversion functions in Eqs. (2.2) and (2.3), 

as functions of energy w , that guarantees magnetospheric transparency at c < cesc . 

Observe that these formal definitions apply both to fiat spacetimes here, and general 

relativistic ones in Section 4. 

The geometry for general spacetime trajectories used in the computation of T 

is illustrated in Fig. 3.1. While slight curvature in the photon path is depicted 

so as to encapsulate the general relativistic study in Sec. 4, this curvature can be 

presumed to be zero for the present considerations of fiat spacetime. Each of the 

angles in this diagram can be defined once the emission colatitude Be and emission 

altitude r e = hRNs are specified. The instantaneous colatitude () with respect to the 
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0 2 4 6 8 10 
Distance in NS radii 

Figure 3.1 : The photon propagation geometry in a dipole magnetic field , represent­
ing either curved or fiat spacetimes, the latter being for straight line propagation. 
The photon emission point is defined by the altitude of emission r e = hRNs and the 
emission colatitude Be. At any location along the photon path, k is the photon mo­
mentum vector, and B is the local magnetic field vector; the angle between these two 
vectors is ekB' given in Eq. (3.8). All such locations are defined by the propagation 
angle {3 , with the radial position r relative to the center of the neutron star , and the 
distance s from the point of emission, being described by Equations (3.5) and (3.7) , 
respectively. 
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magnetic axis is 

(3.2) 

This defines the propagation angle {3 , which is the angle between the radial vector at 

the time of emission and the radial vector at the present photon position. The photon 

trajectory initially starts parallel to the magnetic field, since gamma-rays in pulsars 

are necessarily emitted by ultra-relativistic electrons that move basically along field 

lines. Standard models of electron acceleration invoke electrostatic potentials parallel 

to the local B (e.g. Sturrock 1971; Ruderman & Sutherland 1975; Daugherty & 

Harding 1982), and velocity drifts across B due to pulsar rotation are generally much 

smaller than c for young gamma-ray pulsars. Accordingly, gamma-rays produced by 

primary electrons of Lorentz factor 'Ye are beamed to within a small Lorentz cone 

of half angle "' 1/'Ye centered along B. This restriction conveniently simplifies the 

trajectory parameter space, so that the angle between the radial direction and the 

photon trajectory at the point of emission, 8e (Gonthier & Harding 1994 name this 

80 ), is determined only by the colatitude Oe at the point of emission. The magnetic 

field vector at any point in a fiat spacetime dipole magnetosphere is given by 

(3.3) 

where Bp is the surface polar magnetic field, i.e., that at r = RNs and () = 0. The 

geometry of Fig. 3.1 then simply sets 

1 
- 2 tanOe (3.4) 
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This result is, of course, independent of the altitude of emission. One remaining piece 

of the geometry is the relationship between the altitude along the photon path, and 

the angle {3. This is simply derived using the trigonometric law of sines. Given §e , 

the dimensionless distance from the center of the neutron star x = r / r e , scaled by 

the altitude of emission, satisfies 

r 
X-

Te sin(6e- /3) (3.5) 

This is the locus of a straight line in polar coordinates, and it is trivially determined 

that {3 ----+ §e as r ----+ oo . The photon momentum vector k along this path satisfies 

k- k/w = cos(§e- j])f + sin(6e- {3)0. 

For flat spacetime geometry with no aberration influences, it is convenient to 

restate the optical depth integral in Eq. (3.1) using the propagation angle {3 as the 

integration variable: 

(3.6) 

The propagation distance 8 is easily found using the trigonometric law of sines, and 

thereby yields the change of variables Jacobian d8/df3 in Eq. (3.6): 

re sin {3 
8 - sin(6e- /3) 

d8 re sin§e 
d/3 - sin2(6e- /3) (3.7) 

Therefore, the relationship for f3(l) is the inversion of Eq. (3.7) for 8 = l, i.e., 

tan/3 = sin6e/(cos6e + re/l). The integrand in Eq. (3.6) includes a dependence on 

the angle {jkB between the photon trajectory and the local magnetic field, particularly 
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through the attenuation coefficient function :F . The photons start with BkB = 0 ' 

and this angle increases at first linearly as the photon propagates outward. The angle 

BkB is given geometrically by 

. ll 'In I' krBo- koBr sm uks = k . B = I B I - sinBcos(8e- /3)- 2cosBsin(8e- /3) (3.8) 
V1 + 3cos2 B 

at every point along the photon's path. Using Eq. (3.4) simply demonstrates that 

the right hand side of this expression approaches zero as /3 = B- Be ~ 0. Note 

also, that forming cos BkB , using Eq. (3.5) one can show routinely that this result is 

equivalent to Eq. (5) of Baring & Harding (2007). In the limit of small colatitudes 

near the magnetic axis, one simply derives sin Bks ~ 3/3/2 , which can be combined 

with r/re ~ 1 + 2/3/Be to yield Bks ~ 3Be(r/re- 1)/4. This dependence closely 

approximates the low altitude values for Bks in fiat spacetime exhibited in Fig. 5a of 

Gonthier & Harding (1994). This completes the general formalism for pair creation 

optical depth determination in Minkowski metrics. 

3.1 Optical Depth for Emission Near the Magnetic Axis 

In order to better understand the complicated optical depth integral, it is instructive 

to consider the case of a photon emitted at very small colatitudes. This situation is 

representative of much of the relevant parameter space for gamma-ray pulsars. For 

these photons emitted very close to the magnetic axis, /3 and Be are small. In this 

limit, we have the approximations 

B~ (3.9) 
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for re = hRNs. We also have ds/d/3 ~ re8e/(8e- {3)2 using Eq. (3.7), with 8e ~ Oe/2. 

These results can be inserted into Eq. (3.6), and the integration variable changed to 

x = f3 / 8e , yielding an approximation for the optical depth in axial locales: 

(l) ......., 30e !!.E._ atRNs 1x+ ( ) -r (3 n !!.E._ [ ]3) 
T ......., 4 p tt X 1-X J"" 4 cueX, h! 1 - X dx , 

8/(30ee) l + hRNs 

(3.10) 

This form is applicable to any choice of the pair conversion function :F. Observe 

the correspondence w -+ c . The lower limit defines the threshold condition, so 

that if cOe :::; 8/3, propagation in fiat spacetime out of the magnetosphere never 

moves the photon above the pair threshold at w ..L = 2 , and T = 0 over the entire 

photon trajectory. For the particular choice of Erber's (1966) attenuation coefficient 

in Eq. (2.2), the integral for the optical depth assumes a fairly simple form: 

( ) 9J3 Oe !!.E._ atRNs 1x+ ( ) { 32h3 1 } (3.11) 
T l ~ J2 p tt X 1 - X exp - 9 B (} (1 )3 dx . 

64 2 8/(30ee) c p e X - X 

If one considers emission points at different altitudes along a particular field line near 

the magnetic axis, then for a foot point colatitude (} 1 for this field line, Oe ~ 0 tv'h 

gives the altitude dependence of the emission colatitude. This case corresponds to 

altitude variations for a pulsar whose rotational period fixes the last open field line, 

the putative site of gamma-ray emission. The escape energy cesc can be computed 

by setting T( oo) = 1 , for which x+ -+ 1 . Imposing this T( oo) = 1 criterion, and 

presuming cOe » 1 in Eq. (3.11), yields the approximate altitude dependence 

(3.12) 
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for the escape energy. This is a fiat spacetime result for near polar axis locales that 

was identified by Zhang & Harding (2000; see also Lee, et al. 2010). Deviations 

from this simple altitude dependence arise when (i) the footpoint colatitude 01 is 

not sufficiently small, (ii) the pair creation conversion occurs not very fair from the 

W.L = 2 threshold, and (iii) down near the stellar surface where general relativistic 

effects modify the values of w, B and Oks. 

For significantly sub-critical surface polar magnetic fields Bp, a complete asymp-

totic expression for the optical depth after propagation to high altitudes can be deter-

mined using the method of steepest descents to compute the integral for T(l) , since 

the integrand in Eq. (3.11) is exponentially sensitive to values of x. The exponential 

realizes a very narrow peak at x = 1/4, so that for l -too and x+ = 1 

(3.13) 

This result actually applies for any x+ > 1/4, i.e. when l ~ hRNs/3. It is inde-

pendent of l since the integrand has peaked and has shrunk to very small values 

when x exceeds 1/4 by a significant amount. Again setting T(oo) = 1, and taking 

logarithms, the escape energy cesc satisfies 

(3.14) 

While an exact solution for cesc must be determined numerically from this transcen-

dental equation, the second logarithmic term on the right is only weakly dependent 

on its arguments. Therefore, to a good approximation, one can infer that cesc ex 1/ Bp 
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and E"esc ex: 1/Bt, both of which emerge due to the presence of the factor w1_B in the 

argument of the exponential in Erber's asymptotic form. 

The same protocol can be adopted for pair conversion rates that include threshold 

modifications, specifically Eq. (2.3). In this case, as the counterpart of Eq. (3.10) we 

have 

(l) 3Be Bp atRNs 1x+ ( ) -r (3 (} !}_p_ [ ]3) 
T ~ 4 fi! A X 1 - X JB88 Ll c eX, ~ 1 - X dx , 

8/(38ee) 
(3.15) 

again for x+ = l/(l + hRNs). We can neaten this up a bit more by making the 

substitution >. = 3Bec/8 2:: 1. The argument of the exponential is of the form 

( ) - ¢(xj>.) 
q x, >. = 4(1- x)3 -

2>.x (2>.x) 2 - 4 (>.x- 1) 
(1- x)3 - 4(1- x)3 loge >.x + 1 (3.16) 

Using the method of steepest descents once again, we take the first derivative of the 

function in the exponential, and set it equal to zero to find the peak of the function. 

The solution of 8qf 8x = 0 is a transcendental function in >., but it can be numerically 

approximated to better than 3% by 

1 x ~ 4 + 0.82>. - 5/ 3 . (3.17) 

Given 8qf8x = 0, q"(x, >.) can be written in the following form. 

, _ 8>. (>.2 (2x3 - 3x + 1)- 3x + 3) 
q (x, >.) = (>.2x(x + 2) - 3)(1- x)5 (>.2x2 - 1) (3.18) 

The integral is then given approximately, as before, by the method of steepest de-

scents. We will combine some terms and define the quantity Y to clean up the second 
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derivative term. With some cancellation, we then obtain 

3Be ....!!..E._ a1Rex(1 _ x) 512 3(..\x) 2 - 1 
4 h3Bcr -\ (2..\x)2vf2(..\x+1)2 

x [(..\2x2-1)] [(..\2x(x+2)-3)3]1/2 [ 21rBp ]1/2 
4..\ (x + 2) h3 BcriYI 

(3.19) 

x exp {- h~cr ( (1- x)2(,\2~~x + 2) - 3))} 
for 

(3.20) 

This agrees with the Erber approximation to high precision in the regime where 

..\ ---t oo, and exhibits the appropriate threshold behavior. Setting T = 1 gives a 

transcendental equation, which can be solved numerically for Eesc· 
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3.2 Pair Creation Escape Energies in Flat Spacetime 

Numerical solutions of Eq. (3.6) can help us gain a better understanding of where the 

effects of magnetic pair creation will be the strongest. By specifying surface emission, 

fixing a surface polar magnetic field Bp and then solving for cesc as a function of the 

colatitude of emission Oe, we obtain the plot shown in Fig. 3.2. We can see that 

for small colatitude, €esc ex 1/0e and €esc ex 1/ Bp, as expected from Eq. (3.14). The 

dashed lines representing the steepest descents approximation in Eq. (3.20) clearly 

illustrate the remarkable accuracy of this expression over a wide range of colatitudes 

and subcritical fields. The effects of threshold corrections are also apparent from 

this figure. For the red Bp = 1 curves, the Erber approximation to the attenuation 

coefficient produces escape energies nearly a factor of 3 below the threshold-corrected 

result. For lower magnetic fields, pair creation is taking place well above threshold, 

and the Erber curves are much closer to the threshold-corrected curves. 

In comparing with extant flat spacetime computations of escape energies, we also 

achieve good agreement with Fig. 2 of Ho, Epstein & Fenimore (1990), using the 

Erber asymptotic form of Eq. (2.2); this matches their chosen attenuation coefficient 

closely. In this analysis, we assume that photons are always emitted parallel to the 

magnetic field, so comparison of our results is made to the topmost ( '1/Ji = 0 ) curve 

of their Fig. 2, the x-axis of which is equivalent to log( 8e + Oe) in our variables. For 

B = 2 x 1012 Gauss, the apparent difference between our numerics and theirs is less 

than about 15% , though visual precision in reading this plot limits such an estimate. 
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For the Erber attenuation coefficient in fiat spacetime, multiplying the photon escape 

energy from a fixed emission altitude and colatitude by the surface polar magnetic 

field yields an approximately constant result. 

If, on the other hand, we fix the surface polar field and the photon energy and 

calculate the lowest altitude from which photons of that energy can escape to infinity, 

we can draw a "pair convertosphere" plot like the one in Fig. 3.3. The leaf-shaped 

curves represent a cross-section through a T = 1 surface that is symmetric about 

the magnetic axis. Inside the surface, to a first approximation, all photons of the 

labeled energy will convert to pairs. Outside the surface, photons can escape and 

be detected. At a fixed colatitude, a higher altitude of emission results in a higher 

escape energy (corresponding to shifting the curves in Fig. 3.2 up in energy). In a 

Minkowski metric, all of these minimum altitude curves drop to zero at the magnetic 

pole; GR and aberration will force them to higher altitudes. Rotational aberration, 

which will be considered in a separate work, introduces an azimuthal asymmetry 

about the magnetic axis for an inclined pulsar and distorts the shape of the surfaces. 
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Figure 3.2 : The maximum energy Eesc of photons emitted from the neutron star 
surface ( h = 1 ) that can escape to infinity in fiat spacetime, plotted as a function 
of emission colatitude. The curves are labeled with the surface polar magnetic field, 
BP , scaled by the quantum critical field. Solid curves represent results for T( oo) = 1 
using the integral calculation of the optical depth in Eq. (3.10). This determination 
employs polarization-averaged forms for F that include the first two "sawtooth" 
peaks in the exact attenuation coefficient formula of Daugherty and Harding (1983), 
and at higher W_1_ uses the approximation derived by Baring (1988); see Sec. 2 for 
details. Dashed lines represent the steepest descents approximation in Eq. 28, and 
the shorted dotted lines depict the asymptotic form obtained using Erber's (1966) 
reaction rate. Triangles are taken from the computations illustrated in Fig. 2 of 
Chang et al. (1996), for comparison. The steepest descents approximation remains 
extremely good out to fairly high colat itudes, and begins to diverge slightly from the 
exact calculation at the critical field, when a more precise treatment of the multitude 
of peaks is warranted. 
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Figure 3.3 : "Pair convertosphere" diagram for a pulsar with the same magnetic field 
as the Crab, fiat spacetime and no rotation. Each green curve represents the lowest 
possible emission point at a given colatitude for a photon of a given energy, below 
which magnetic pair creation would attenuate the photon before it could escape from 
the neutron star magnetosphere. The scale is neutron star radii , with the radius 1 
circle in the center representing the neutron star, and pink curves show magnetic field 
lines. G R effects alter these curves only very near the neutron star surface. 



Chapter 4 

GENERAL RELATIVISTIC EFFECTS 

Our overall approach to calculating curved spacetime effects on photon attenuation 

will be to integrate the optical depth over the path length in the local inertial frame 

(hereafter LIF), with all magnetic fields, angles, energies, and distances computed in 

that frame. In general, we will use the definitions for curved spacetime quantities 

from Gonthier & Harding [1994) (hereafter GH94), with the notation altered slightly 

for clarity. Our starting point is again Eq. (3.1), therefore requiring specification of 

the quantities B, w and BkB in the LIF. The blueshift of the photon energy in the 

LIF from its value c = W00 at infinity (i.e. as observed) can be accounted for with 

the simple correction 

c w - ,/1-w 
W T 8 2GM 

- r - ~ (4.1) 

at radius r , where r s = 2G M / c2 is the Schwarzschild radius of a neutron star of 

mass M . The introduction of the dimensionless parameter W to describe the radial 

position will expedite the path length integration in curved spacetime constructs; 

we will use it as our integration variable instead of {3 in Eq. (3.6), approximately 

equivalently to the approach of GH94. The emission altitude re will be prescribed 

by We = r8 /re < 1. Note that throughout, we will adopt the convention that c will 

denote the dimensionless photon energy as seen by an observer, and w will signify 
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that in the LIF. 

The general relativistic form of a dipole magnetic field in a Schwarzschild metric 

was developed in Wasserman & Shapiro [1983]. It is also expressed in Eq. (21) of 

Gonthier & Harding [1994] in the LIF in terms of the coordinates r and () for an 

observer at infinity: 

_ _ 3 Bp cos() [.!:.. lo ( 1 _ r 8) + 1 + r 8] f 
r;r r8 ge r 2r 

(4.2) 

In fiat spacetime, where r 8 « r , Bp represents the surface polar field at () = 0. It 

is more convenient to write this in terms of the scaled inverse radius '11 = r8 /r. To 

this end we define the functions 

(4.3) 

1 [ x2] ~e(x) = x3Vf=X (1- x) loge(l- x) + x- 2 

Then, the curved spacetime dipole field is expressed via 

(4.4) 

In fiat spacetime, where '11 « 1, the leading terms of the Taylor series expansion 

yield ~r('l!) ~ 1/3 and ~e('ll) ~ 1/6, so that then Eq. (4.4) reproduces the familar 

result in Eq. (3.3) in the absence of general relativity. The magnitude of the general 
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relativistic field is then 

(4.5) 

this will be employed in the quantum pair creation rates in the local inertial frame. 

The ratio of Eq. ( 4.5) for altitudes near the surface to its flat spacetime value (i.e., 

\ll---+ 0) inferred from Eq. (3.3) reproduces the ratio plotted in Fig. 5c of GH94. 

The trajectory of a photon emitted from a point in a neutron star magnetosphere 

will be curved in the frame of an observer at infinity, though for cases of emission 

near the polar cap, this is generally small (see Baring & Harding [2001]). Here 

we incorporate the influence of the slight curvature in the path, so that calculating 

sin f)kB becomes a slightly more complicated exercise than it was in the flat spacetime 

approximation. First, the photon is emitted parallel to the magnetic field in the field 

frame. This fixes 8e, the initial angle between the photon trajectory and the radial 

direction (depicted in Fig. 3.1): 

· B9
1 -r======s=in=O=e=~~(=W~e)======== sm8e - B -
r=Re Jcos2 Oe [~r(We)] 2 + sin2 Oe [~e(We)] 2 

(4.6) 

When We « 1, this reduces to Eq. (3.4), though in general, since ~e(We)/~r(We) ~ 

1/2 + We/8 + O(w~) in this limit, it is easily seen that spacetime curvature increases 

be for proximity to the magnetic pole. This effect is illustrated in Figure 3b of 

GH94. The photon's trajectory at infinity emerges parallel to a line drawn from the 

center of the star, displaced from it by a distance b. This impact parameter b is 

proportional to the ratio of two conserved quantities of the unbound photon orbit, 
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the orbital angular momentum and the energy; consult Pechenick, Ftaclas & Cohen 

[1983] or Chapter 8 of Weinberg [1972] for illustrations of such orbits. Scaling b by 

the Schwarzschild radius, as we have with r, introduces a new trajectory parameter 

Wb = r 8 /b that can be related to We and 8e via 

where 

~(w) = ~~t:~ (4.8) 

The first identity in Eq. ( 4. 7) is derived from Eq. (17) of GH94, who use the notation 

80 for 8e . Observe that the impact parameter can be smaller than the Schwarzschild 

radius for almost radial trajectories initiated near the magnetic polar axis (setting 

sin 8e « 1 ), so Wb can assume values well in excess of unity where the orbit is a 

capture one, if reversed. Inserting Eq. (4.6) yields Wb purely as a function of the 

emission altitude (i.e. We ) and colatitude Oe , and derives the second identity in 

Eq. (4.7), with 0 :::; ~(w) :::; 2 on 0 :::; W :::; 1. This form is needed for the photon 

trajectory computation, an integral expression for which is given in Eq. (11) of GH94: 

(4.9) 

expressing the functional dependence O(r), as viewed by an observer at infinity. An 

alternative version of this can be obtained from Eq. (8.5.6) of Weinberg [1972]; see 

also Misner, Thorne & Wheeler [1973]. Since W :::; We in this construction, as the 

photon propagates out from the star, then the change in colatitude !J.() is necessarily 
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positive as the altitude r increases. Observe that w~ > w~(1- We) from the second 

identity in Eq. ( 4. 7) so that the argument of the square root in the integrand of 

Eq. (A.1) is positive-definite. In the case of a neutron star, generally We ;S 0.4, and 

the integral in Eq. (A.1) can be approximated extremely accurately by an analytic 

form, for non-equatorial emission colatitudes Be ;S 1r /4; see the Appendix for details. 

This expedient step removes the trajectory integral from consideration, and speeds 

up optical depth computations immensely. In the fiat spacetime limit, We « 1 , the 

integral for the trajectory in Eq. (A.1) can be expressed analytically by replacing the 

argument of the square root in the denominator by w~ - w~ . Then, forming sin D.B , 

the result can be inverted to solve for W and thereby find the locus for the trajectory: 

w = wb sin (Be- B- arcsin!:) (4.10) 

This is a polar coordinate form for a straight line, and is easily shown to be equivalent 

to Eq. (3.5) using the limiting form wb ~ we.J1 + 4cot2 Be~ We/ sin8e when We<< 

1. 

Given emission locale coordinates (We, Be), for any subsequent position ( W, B) 

along the curved trajectory, we can determine the angle BkB of the photon momentum 

to the local field direction, in the LIF. This is simply done by forming a cross product 

between the photon momentum kaR and BaR using Eq. (4.4) for the field. The 

photon momentum in the LIF can be derived from the formalism in Section 3 of GH94, 

or by manipulation of the differential form of the trajectory equation in Eq. (A.1). 



The result is 

kcR = ~ { Jw~- W2(1- W) f + WV1- W 0} w b 1 - w 
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(4.11) 

which can be simply inferred from Eq. (Al) of Harding, Baring & Gonthier [1997]. 

From this, one can form the angle 8e for the initial angle of the photon momentum 

relative to the radial direction, via sin8e = lkcR X fl/lkcRI = Wev'1- We /Wb, a 

result that is the first identity in Eq. (4.7). Forming a cross product between the 

photon momentum and the field vectors, it follows that 

Br w ( 1 _ w) 112 

- B wb ( 4.12) 

an expression that is also routinely obtained by rearranging Eq. (37) of Gonthier & 

Harding [1994]. Inserting the forms for the field components, elementary manipula-

tions yield 

J w~ - w2 ( 1 - w) - w y' 1 - w ~ ( w) cot () 

Wb J 1 + [~(w)] 2 cot2 () 

sin ()kB = (4.13) 

Insertion of the form for Wb in Eq. (4.7) quickly reveals that when W = We, this 

expression yields sin ()kB = 0. Using the fact that W2(1- w) is an increasing function 

for 0 < W < 2/3, and that ~(w) is a more modestly declining function of W on the 

same interval, it is routinely established that sin ()kB increases as r increases from the 

emission radius, i.e. W drops below We. Numerical comparisons of our computations 

of sin ()kB and the effective pair threshold 2/ sin ()kB with panels (a) and (b) of Fig. 5 

of GH94 were performed, yielding excellent agreement. In the flat spacetime limit 

We « 1, Wb ~We/ sin 8e ~ W / sin(8e- (3) can be deduced using Eq. (3.5), and then 
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it is straightforward to demonstrate that Eq. (4.13) reduces to Eq. (3.8). 

Finally, we will need to change our integration variable from s to \ll . In the 

LIF, the path length is related to the coordinate transit time: ds2 = (1 - w)c2dt2 

in the Schwarzschild case. Equivalently, the path length can be connected to the 

radial and angular (equatorial) contributions to the Schwarzschild metric via ds2 = 

dr2 I (1- w) + r 2 d(J2. The two forms are equivalent, yielding the proper time interval 

dT2 = 0 for light-like propagation. Employing Eq. (18) of GH94, or equivalently 

taking the derivative of Eq. (8. 7.2) of Weinberg [1972], yields an expression for dt/ d\ll 

for the photon's transit along its trajectory, essentially formulae for Shapiro delay. 

Assembling these pieces one quickly arrives at the change of variables 

ds (4.14) 

The optical depth integration for the case of including general relativity then takes 

the form 

T(W) = re We {we R(w, sinOkB, BcR) \lib dWr 

Jw w;J(l- Wr) {w~- w;(l- Wr)} 
( 4.15) 

where the arguments of the scaled quantum pair creation rate R are given by 

Eqs. (4.1), (4.5) and (4.13). With this construct, we can formally define the at-

tenuation length L as in Harding, Baring & Gonthier [1997] and Baring & Harding 

[2001] via 

( 4.16) 

When We« 1, Eq. (4.15) is equivalent to the flat spacetime evaluation in Eq. (3.6). 
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It should be noted that we have also attempted comparisons between our work 

and Harding, Baring & Gonthier [1997] and Baring & Harding (2001]. Despite the 

agreement between our geometry and attenuation coefficient calculations and those 

presented in Gonthier & Harding [1994], our computations (for example, attenua­

tion lengths like those in Fig. 4.1) differ from those presented in Harding, Baring 

& Gonthier [1997] by 20-30%. We continue to search for an explanation for these 

discrepancies, but for the present, all we can say is that we have checked our work 

thoroughly against both GH94 and the We ---+ 0 fiat spacetime limit, and we believe 

our results to be robust. 

As a further additional note, when considering emission originating from the last 

open field line, it is important to take into account the decreased polar cap size 

resulting from the reshaping of the magnetic field in curved spacetime. Equation (27) 

in GH94 represents the correct form of the polar cap angle. This correction is used in 

computing the dotted lines in Fig. 4.3, and in the minimum altitude determinations 

in Fig. 4.4. 

Figures 4.1 and 4.2 show the attenuation lengths computed for curved spacetime 

at two different magnetic fields. Eq. 4.16 defines L; this is approximately the distance 

that a photon of a given energy will travel from its emission point (here, restricted to 

the neutron star surface) before converting to an electron-positron pair. The curves 

turn up to infinity at the escape energy. In the first plot, the magnetic field is low, 

and so we see that although the attenuation lengths differ for the Erber and B88 
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attenuation coefficients, the escape energies are similar, as expected from parallels 

with Fig. 3.2. The second plot shows that, also as expected, the difference between 

the threshold-corrected attenuation lengths and the Erber asymptotic attenuation 

lengths increases dramatically as we approach the critical magnetic field. 

The escape energies calculated with general relativistic effects are shown in Fig. 

4.3 as a function of emission colatitude and emission altitude. The dotted lines 

indicate the escape energy along the last open field line for two different pulsar periods. 

At low altitudes, the expected trend of cesc ex h 712 is realized along the last open field 

line curves. To find a minimum altitude for emission, one would find the point along 

the last open field line curve where cesc = Ecutoff· That point will lie along the re 

curve corresponding to the minimum radius. 

Fig. 4.4 shows these minimum radii for the 4 7 pulsars in the first Fermi catalog 

[Abdo et al., 2010a], plus eight pulsars discovered in blind searches that were not 

included in the catalog [Saz Parkinson et al., 2010]. These minimum altitudes are 

calculated using the cutoff energies published in the catalog paper, which are not the 

highest energy photons detected from the source, but are close to the energy where 

the vFv is at a maximum, modulo a factor that depends on the power-law spectral 

index below the cutoff. Millisecond pulsars and a few other pulsars with relatively 

low cutoff energies are not constrained at all by this technique; their "minimum 

radii" are actually inside the neutron star. In the case of millisecond pulsars, their 

magnetic fields are too low for magnetic pair creation to play a significant role in 
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photon propagation in their magnetospheres. 
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Figure 4.1 : Attenuation lengths for photons emitted at colatitudes of 5, 10, and 
50 degrees, for a neutron star with surface polar magnetic field of 0.1Bcr· These 
represent the quantity L, defined in Eq. (4.16) for curved spacetime and Eq. (3.1) for 
flat spacetime. Green curves show the attenuation length for the Erber attenuation 
coefficient of Eqs. (2.1) and (2 .2); red curves show the attenuation length for the 
threshold-corrected attenuation coefficient in Eq. (2.3). The curves turn up and go 
to infinity at the escape energy. 
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Figure 4.2 : Same as Fig. 4.1, but for a surface polar magnetic field of Bcr· Note 
that the difference between the Erber asymptotic and the Baring (1988) threshold­
corrected curves increases sharply as the magnetic field increases. 
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Figure 4.3 : Escape energies in curved spacetime for multiple radii of emission, as a 
function of emission colatitude. The two dotted curves pick out the last open field 
line for pulsars with periods of 0.033 s (Crab) and 0.089 s (Vela). 
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Magnetic Pair Creation Altitude Bounds 
5 ~~~~~~~~~~-~~~~~~~~~~~~ 
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Figure 4.4 : Minimum emission radii for the 4 7 pulsars in the first Fermi catalog 
[Abdo et al., 2010a], plus 8 blind search pulsars from Saz Parkinson et al. [2010]. The 
minimum radius in neutron star radii is plotted against the log of VP / B 12 , which is 
the dependence suggested in Baring [2004] from a semi-empirical fit to accommodate 
the influences of GR on Eesc· These minimum radii are found by solving T(re, Ec ) = 1 
for re, using the cutoff energies measured by Fermi for Ec [Abdo et al., 2010a], and 
assuming that emission takes place on the last open field line. If the same calculation 
is done for the VERITAS detection of t he Crab pulsar at 120 GeV, we get a minimum 
altitude of 15RNs for the 120 Ge V photons. 



Chapter 5 

Conclusions 

In this work, we have calculated single-photon pair creation transparency con­

ditions for neutron star magnetospheres, both for fiat and curved spacetime. We 

calculate optical depths for arbitrary photon emission points in neutron star mag­

netospheres, in the special case where photons are emitted parallel to the magnetic 

field. Emission parallel to the magnetic field is expected because electrons that emit 

curvature radiation -y-rays have such high Lorentz factors that all the photons will be 

subject to very strong relativistic beaming. This has allowed us to present attenua­

tion lengths, minimum altitudes of emission for a given energy, and escape energies 

for a given emission altitude. 

Where prior results for the same calculation are available, we generally match them 

well. In Fig. 3.2, we show the agreement between our work and the corresponding 

calculation of fiat spacetime escape energies in Chang, Chen, & Ho (1996]. The general 

relativistic calculation has resulted in partial agreement with previous calculations 

(including Gonthier & Harding (1994], Harding, Baring & Gonthier [1997], and Baring 

& Harding (2001]). 

The main outcome of this work is a set of analytic and semi-analytic results 

that can greatly simplify the computation of magnetic pair creation opacities. These 

approximations can be applied to any emission altitude and most colatitudes, and may 
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prove useful in calculating pair multiplicities for pulsar wind nebula applications. 

Our minimum altitudes are one of the few constraints available on the emission 

location in -y-ray pulsars with a single peak, and they have the advantage of being a 

physics-based constraint that is not solely dependent on the geometry of the emitting 

region. The minimum emission altitudes that we calculate from magnetic pair creation 

are far below those obtained from pulse profile fitting with slot gap or outer gap 

models, which are typically rmin "'O.lRLc- RLc"' lOORNs for two-peaked pulsars. 

As such, they are not tremendously useful constraints on these curvature-radiation­

based models. Nor are they expected to apply to millisecond pulsars, where the 

surface magnetic fields are too low for magnetic pair creation opacity to be significant. 

Thus, the magnetic pair creation calculations are expected to be most relevant to 

single-peaked pulsars and to questions about pulsar pair luminosities. 

However, the geometric calculations we have done will be used again when we 

move on to investigating 'Y - 'Y attenuation. If one photon in this interaction is 

a thermal x-ray from the neutron star surface, the pair creation energy threshold 

requires the other photon to be a GeV -y-ray. This natural energy dependence may 

better explain the observed Ge V band turnovers. Because 'Y- 'Y attenuation lacks the 

strong magnetic field dependence of single-photon magnetic pair creation, it occurs 

at much higher altitudes, and will provide a direct connection to slot gap and outer 

gap models. 
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Appendix A 

Approximating the Photon Trajectory Curvature 
Integral 

The following approximation was derived by Dr. Baring to simplify the computa-

tion of curved spacetime optical depths by eliminating the need to perform a double 

integral. Figures and numerical results were calculated by me. 

The photon trajectory in curved spacetime is defined by colatitude () expressed 

as an integral over the propagation altitude parameter W = r8 /r, where r8 is the 

neutron star's Schwarzschild radius. The angle in Eq. (11) of GH94 is the difference 

between the angle (in the local inertial frame) of the photon momentum vector to the 

radial vector at the point of emission, and the angle of the photon trajectory to the 

local radial vector at a point defined by W ; it relates to () as follows: 

(A.l) 

Since W :::; we in this construction, as the photon propagates out from the star, then 

the change in colatitude /:)..() is necessarily positive as the altitude r increases. Also, 

wb = rs/b expresses the general relativistic impact parameter b for the unbound 

photon path. 

Computation of the trajectory using numerical integration is expensive in terms 

of time, particular for repeated applications in Monte Carlo simulations of magneto-

spheric cascades, so it is expedient to derive an analytic approximation to the integral 
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in Eq. (A.1). Using manipulations outlined in Chapter 17 of Abramowitz & Stegun 

(1965), this integral can be expressed in terms of elliptic functions. Such a step does 

not facilitate its evaluation, since the parameter 'I!e/'I!b is not necessarily small, a 

condition that would render series expansion of elliptic functions more amenable. In 

our neutron star cases, 'I! e ;S 0.4 is generally realized, and this suggests a series ex-

pansion in this parameter. To effect such, we have designed an expansion algorithm 

(not unique) that is motivated by the flat spacetime limit We ----+ 0 of the integral. 

Define 

(A.2) 

as flat and curved spacetime forms, respectively, of the denominator of the integrand 

of the trajectory integral. A Taylor series expansion for Pel PJ = J1 +'I!~/ PJ can 

be developed in the generally small parameter 'I!~/ p} . Note that this parameter is 

not much less than unity for near-surface, equatorial cases. This protocol results in 

a series expansion in 'I! b for the integral: 

(A.3) 

Now define the scaled parameters 

(A.4) 

The integrals in Eq. (A.3) are all analytically tractable, and yield a useful analytic 

approximation for the photon trajectory: 

(A.5) 



when retaining only the first four terms in the integrand of Eq. (A.3). Here 

fi(v) 2- v 2 
~;========:= - 1 
2v'1- v2 

h(v) 
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48(1 - v2) 572 - 3 !J(v) -
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(A.6) 

This provides an alternative to the Beloborodov (2002) approximation. As con-

structed, for small arguments v , the functions employed in the approximation scale 

as fn(v) ex v1+3n. This regime is sampled for Wb » 1, the low impact parame-

ter cases appropriate for circumpolar colatitudes. Accordingly, the series implied by 

extension of Eq. (A.5) to higher order terms is nicely convergent even when Wb is 

large. 

For photon emission from the neutron star surface, with We ~ 0.4, this approxi-

mation for the transit in colatitude is accurate to better than 0.1% at all subsequent 

altitudes for emission colatitudes Be ;S 1r /4 . Raising the altitude of emission, i.e. 

reducing We below 0.1 substantially improves this. This level of precision is entirely 

suitable for the pertinent pulsar parameter space, where footpoint colatitudes are 

usually inferior to B 1 ;S 30° . To illustrate this, in Fig. A.1 we plot the fractional 

precision I.6.Bapp/ .6.B - 11 of the approximation in Eq. (A.5) relative to the exact 

integral in Eq. (A.1), as a function of W for different colatitudes Be and altitudes 

We representative of the locales sampled in the pair attenuation calculations. Given 

an emission altitude parameter We , the emission colatitude Be can then be used to 

define the impact parameter wb in Eq. (4.7). The precision clearly is degraded at 
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high colatitudes, though is always better than 1% for the colatitudes illustrated. Yet, 

because the general relativistic curvature is diminished at higher emission altitudes, 

the range of colatitudes ee yielding a given level of precision increases as We declines. 

To retain 0.1% precision, it is best to restrict use of the approximation to field line 

foot point colatitudes e f ~ 45° . 
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Figure A.1: The fractional precision I~Bapp/ ~B-11 of the approximation in Eq. (A.5) 
to the full trajectory integral in Eq. ( A.1) for photon propagation in curved space­
time. Three groups of curves, color-coded, are illustrated for altitude parameters 
We = 0.4, 0.2, 0.133, as marked, corresponding to emission at the neutron star sur­
face and at two and three stellar radii. The range of altitudes 0 ::; W ::; We spans 
from the emission locale all the way out to infinity. Within each group are three 
curves for emission colatitudes Be, as labelled, illustrating how the precision of the 
approximation improves nearer the magnetic axis. 


