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Abstract

Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-causing genes underpinning
about half of all Mendelian diseases remain elusive. One main challenge is the high genetic heterogeneity of Mendelian
diseases in which similar phenotypes are caused by different genes and each gene only accounts for a small proportion
of the patients. To overcome this gap, we developed a novel method, the Gene Ranking, Identification and Prediction
Tool (GRIPT), for performing case-control analysis of NGS data. Analyses of simulated and real datasets show that GRIPT
is well-powered for disease gene discovery, especially for diseases with high locus heterogeneity.
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Background

Mendelian diseases refer to the diseases caused by muta-
tions in a single gene and are inherited following Mendel’s
laws. It was estimated that approximately 0.4% of
live-born individuals have clinically recognizable Mendel-
ian phenotypes by early adulthood, and about eight mil-
lion children worldwide are born each year with a serious
genetic condition leading to disability or threatening lives
[1, 2]. Identification of Mendelian disease-causing genes
can directly improve molecular diagnosis and genetic
counseling and also provide new insights into the genetic
and pathogenic mechanisms underlying the diseases, lay-
ing the foundations for developing preventive and thera-
peutic methods for patients [3, 4].

Traditional strategies for Mendelian disease gene dis-
covery are primarily family-based approaches. Linkage
analysis was widely used for mapping genes underlying
dominant inherited diseases, while homozygosity map-
ping was successfully applied on recessive inherited
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diseases in consanguineous families [5-9]. However,
family-based strategies are limited by the availability of
multi-member families and cannot be effectively applied
to the sporadic cases of rare diseases. On the other hand,
as the recent advances in next-generation sequencing
(NGS) technology and the establishment of large patient
cohorts, case-control analysis of patient NGS data has
provided powerful alternatives in novel disease gene dis-
covery [7, 10]. Case-control analysis methods typically
map candidate genes mutated in multiple affected pa-
tients (i.e., cases) but in wildtype form in unaffected in-
dividuals (i.e., controls). However, it remains challenging
for these methods to distinguish the candidate disease
genes from the genes with large numbers of rare benign
variants (e.g., the highly mutable genes). Furthermore,
the enormous amount of data generated by NGS brings
huge analytical and computational burdens, which re-
quires algorithms that can efficiently search through
large numbers of whole genome/exome data and reliably
detect the true signal of the disease gene from the
massive background noise.

Previously, for case-control analysis, association tests
were developed to identify the relation between geno-
types and the phenotype, such as rare variant vs. com-
mon complex diseases. Particularly, the group-wise (i.e.,
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gene/locus-based) association tests have been applied to
enrich association signals and reduce the penalty for
multiple testing. For example, “burden tests” or “collapsing
methods,” such as Combined Multivariate and Collapsing
(CMC) [11], Cohort Allelic Sums Test (CAST) [12], and
Weighted-Sum method [13], aggregate prioritization infor-
mation across multiple variants within a genetic region.
Furthermore, the kernel-based methods, such as Sequence
Kernel Association Test (SKAT) [14] and Kernel-Based
Adaptive Clustering (KBAC) [15], take into account the
different effect direction and magnitude of variants within
a locus when grouping the variants together. However,
these methods were not originally designed for Mendelian
diseases. Moreover, most of these methods are mainly
based on the allele frequency differences and take little ac-
count of the functional predictions of individual alleles. In
2011, a case-control analysis method named Variant An-
notation, Analysis and Search Tool (VAAST) and, later, an
upgraded version, VAAST2, were developed for disease
gene discovery of Mendelian disorders [16, 17]. VAAST/
VAAST2 measures the aggregative impact of variants
within a gene based on the variant frequency differences
between cases and controls and also considers the func-
tional effects of variants by weighting amino acid substitu-
tion frequency and phylogenetic conservation [16, 17].
However, VAAST/VAAST2 is prone to producing false
positives, prioritizing the genes with large numbers of rare
benign variants as the candidate disease genes. In addition,
its specificity is greatly reduced when analyzing cohorts
with high population stratification.

So far, 3532 genes underlying 5159 Mendelian pheno-
types have been discovered, according to the Online
Mendelian Inheritance in Man (OMIM) database
(OMIM statistics, May 11, 2018) [18]. But the genes
mutated in about 50% of the known Mendelian disor-
ders remain elusive, and many more Mendelian pheno-
types have not yet been recognized [10]. One main
challenge is that the disease is often rare and genetically
heterogeneous where each disease-causing gene only
accounts for a very small proportion of patients with
the disease [10]. To address this challenge, we devel-
oped a novel method, named the Gene Ranking, Identi-
fication and Prediction Tool (GRIPT), to identify
Mendelian disease genes through analyzing genomic se-
quence data of patient-control datasets. By testing both
simulated and real datasets, we demonstrated that
GRIPT has excellent sensitivity and specificity in identi-
fying known and novel disease genes. It significantly
outperforms other state-of-the-art tools in discovering
disease genes underlying patient cohorts with high
locus heterogeneity. Moreover, GRIPT is quite robust
and less affected by potentially confounding factors,
such as patient cohort size, population stratification in
cohorts, and cutoff of variant frequency filtering.
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Results

The framework of GRIPT

GRIPT is specifically designed for Mendelian disease
gene discovery through prioritizing genes with signifi-
cantly higher deleterious mutation load in patients than
controls as the candidate genes. In implementation,
GRIPT first ranks the variants within each gene for every
individual in both patient and control cohorts according
to the variant effect score provided by users, e.g., CADD
score [19] (Fig. 1, see the “Methods” section). Based on
the variant scores, a gene score is calculated for each
gene measuring the deleterious mutation load of the
gene in every individual under a given inheritance
model, i.e., autosomal dominant (AD), autosomal reces-
sive (AR), X-linked dominant (XD), or X-linked recessive
(XR) model (see the “Methods” section). Then, a Fisher’s
test built upon the combination of a binomial test and a
Wilcoxon rank sum test (WRST) is applied to compare
the gene score distributions in patients and controls for
each gene, and a significant p value associated with the
test statistic is assigned. This composite test is especially
suitable to compare two highly skewed distributions with
excesses of zero, such as the gene score distributions in
the case and control cohorts (Fig. 2, see the “Methods”
section) [20]. Finally, GRIPT compares and ranks all
genes based on the test statistic of each gene (Fig. 1).

Simulation analysis tests the sensitivity and specificity of
GRIPT

To evaluate the sensitivity and specificity of GRIPT, we
simulated WES data for patient and control cohorts
under both the AR and AD inheritance models based on
the variant profile of the human genome in the ExXAC
database [21] (see the “Methods” section). To mimic the
patient cohort with high disease-locus heterogeneity
where a given disease gene only accounts for a small
proportion of the patients, pathogenic mutations of the
same gene were randomly selected from the Human
Gene Mutation Database (HGMD) and spiked into a
small proportion (e.g., 0.5%, 1%, 2%, or 3%, respectively)
of individuals in the patient cohort (see the “Methods”
section). The size of patient cohort was set at 600 and
the control cohort at 5000. The simulation for each sce-
nario was repeated 30 times. A genome-wide statistical
significance level (GWSL) of 2.7 x 10™® was used as the
significant p value cutoff for multi-testing correction
(given about 18,500 autosomal protein-coding genes an-
notated by RefSeq genes). The performance of GRIPT
was measured with three parameters: (1) the ranking of
the disease gene with spike-in pathogenic mutations, indi-
cating the sensitivity of the tool; (2) the percentage of simu-
lation runs in which the disease gene passes GWSL,
indicating the statistical power of the tool; and (3) the num-
ber of significant autosomal candidate genes, indicating the
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Fig. 1 The logic flowchart of GRIPT. First, the samples of the case and control cohorts will be collected and be subjected to NGS, e.g., WES. After
variant calling, the known common and/or benign variants will be filtered out based on the variant annotation and their allele frequency in large
databases of normal populations and internal databases. Thus, for each gene, only a few rare variants will be left. Then, GRIPT will annotate and
rank the deleteriousness of each variant, e.g.,, using CADD score. Based on the variant scores, a gene score will be calculated to measure the
deleterious mutation load of each gene in every individual according to a given inheritance model (see the “Methods" section). Next, a Fisher's
test built upon the combination of a binomial test and a Wilcoxon rank sum test (WRST) will be calculated to measure the difference of gene
score distributions between patient cohort and control cohort for each gene, and a significant p value associated with the test statistic will be
assigned. This composite test is especially well suited to measure the difference of two highly skewed distributions with excesses of 0, such as
the gene score distribution in the patient/control cohort computed by GRIPT (Fig. 2). Finally, according to the test statistic of each gene, GRIPT
compares and ranks all genes
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Fig. 2 The example of gene score distribution. This figure shows the gene score distributions of USH2A in a retinal disease cohort of 250 patients
(in red) and in a control cohort of 250 individuals (in blue). X axis: the gene score of USH2A per individual. Y axis: the numbers of patients or
controls with the corresponding score. Like the gene USH2A, the gene score distributions of most genes are highly skewed with excesses of zeros
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specificity of the tool. Furthermore, the performance of
GRIPT was compared with four popular cohort analysis
tools, including the Mendelian disease gene finder,
VAAST?2, and three group-wise association tests, the CMC
(burden test), SKAT, and KBAC (kernel model), on the
same datasets [11, 14, 15, 17, 22].

The sensitivity and specificity of GRIPT under the AR and
AD models

To test the performance of GRIPT in identifying AR dis-
ease gene, RPE65 was used as an example. RPE65 is a
well-studied gene with mutations known to cause AR
Leber congenital amaurosis (LCA) and retinitis pigment-
osa (RP) [23-25]. The performance of the four tests is
summarized in Fig. 3 and Additional file 1: Table S1. Fig-
ure 3a—c and Additional file 1: Table S1 demonstrate
that GRIPT has great sensitivity and specificity in detect-
ing RPE6S, even when the proportion of RPE65 patients
was very low, mimicking the scenario of patient cohort
with high locus heterogeneity. When the RPE65 patient
proportion was as low as 0.5%, GRIPT ranked RPE65 on
average sixth, achieving 66.67% power. When the RPE65
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patient proportion reached > 1%, GRIPT ranked RPE65
first in all trials with 100% power. Across the range of
RPE65 patient proportions, GRIPT identified on average
three significant candidates per simulation. In contrast,
with a low proportion of RPE6S patients, the other four
algorithms had significantly lower sensitivity and power
than GRIPT (WRST, p value, see Additional file 1: Table
S1). For example, when the RPE65 patient proportion
was < 1%, the powers of the other four tests were < 10%
and the mean rank of RPE65 was between 38 and 3068.
Each of the other four methods identified on average
zero or one significant candidate gene.

In parallel, the performance of GRIPT in identifying
AD disease gene was tested using TINF2 as an example.
TINF2 is a known, disease-causing gene of AD Revesz
syndrome and dyskeratosis congenita [26—28]. As shown
in Fig. 3d-f and Additional file 1: Table S1, GRIPT
lacked power when the TINF2 patient proportion was
very low, but its performance was greatly improved as
the TINF2 patient proportion increased. Specifically, as
TINF?2 patient proportion increased from 0.5 to 1%, the
power of GRIPT increased from 3.33 to 53.33%. When
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the TINF2 patient proportion reached >2%, TINF2 was
always ranked first by GRIPT with 100% power. On
average, GRIPT identified about two significant candi-
date genes. In comparison, the other four methods had
significantly worse performance than GRIPT (WRST, p
value, see Additional file 1: Table S1). For example, when
TINF?2 patient proportion increased from 0.5 to 1%, the
power of VAAST2 increased from 0 to 13.33%, CMC
from 0 to 36.67%, SKAT from 0 to 6.67%, and KBAC
from 0 to 6.67%.

Benchmark on 400 randomly selected known disease genes
To further expand the evaluation of GRIPT, we per-
formed simulation using 400 Mendelian disease-causing
genes randomly selected from the OMIM database, in-
cluding 200 AR and 200 AD disease genes. For each
gene, we simulated the patient cohorts with a size of 600
and used the same simulated control cohort with a size
of 5000. The results are summarized in Fig. 4 and
Additional file 1: Table S2.

Consistent with the results for RPE65, GRIPT showed
outstanding sensitivity and specificity in detecting the
200 AR genes even when the proportion of patients
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attributed to the same disease gene was very low
(Fig. 4a—c). Consistently, VAAST2, CMC, SKAT, and
KBAC showed significantly worse performance than
GRIPT when patient cohort had high locus heterogen-
eity (Fig. 4a—c, WRST, p value, see Additional file 1:
Table S2). When the proportion of patients attributed to
the same disease gene was as low as 0.5%, the disease
genes were ranked on average 24th by GRIPT achieving
52.5% power, whereas the other four methods had 0%
power. When the patient proportion equaled to 1%, the
disease genes were ranked on average first by GRIPT
with 97% power. In contrast, the power of the other four
methods was between 0.5 and 11.5%. When the patient
proportion reached > 2%, the disease genes were always
ranked first by GRIPT with 100% power. In comparison,
the power of the four methods was between 11.5 and
97.5%. Across the range of patient proportions, GRIPT
identified on average one significant candidate gene
compared to zero or one candidate by each of the other
four methods.

Consistent with the results of TINF2, the overall per-
formance of GRIPT was better than or comparable to
the other four methods in detecting the 200 AD genes
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(WRST, p value, see Additional file 1: Table S2). When
the proportion of patients attributed to the same disease
gene was < 1%, GRIPT and the other four tests have very
low power, i.e., <29.5% for GRIPT, <13% for VAAST2,
<21.5% for CMC, <31% for SKAT, and < 4.5% for KBAC
(Fig. 4d—f). When the patient proportion attributed to
the same gene increased to 2%, the disease genes were
ranked on average third by GRIPT with 87% power. In
comparison, the power of the other four tests was be-
tween 68 and 85.5%. When the patient proportion
reached 3%, the disease genes were ranked first in 97.5%
of simulations by GRIPT with 99% power. Comparably,
the power of the other four tests increased to 93-99%.
Across the range of patient proportions, on average, one
to two significant candidate genes were identified by
GRIPT compared to between zero and five candidates by
the other four methods.

Simulations suggest GRIPT is highly robust

The performance of case-control cohort analysis can be
potentially impacted by several confounding factors,
such as patient cohort size, population stratification, and
the cutoff of variant filtering frequency, and the control
cohort size. To assess their impact, we performed
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simulations using RPE65 and TINF2 as examples under
the AR and AD models, respectively, and compared
GRIPT with VAAST2, CMC, SKAT, and KBAC using
the same datasets under each scenario. In addition, we
tested the effect of different variant score systems on the
performance of GRIPT.

The sample size of the patient cohort

We simulated the patient cohorts in a range of sizes, i.e.,
50, 100, 300, 600, and 800, with 2% of patients carrying
the pathogenic mutations of the same disease genes, and
control cohorts with a size of 5000. The results are sum-
marized in Fig. 5 and Additional file 1: Table S3.

As shown in Fig. 5a—c, under the AR model, GRIPT
maintains high sensitivity for patient cohorts with a var-
iety of sizes and high locus heterogeneity although its
specificity decreased for small patient cohorts with high
locus heterogeneity. In comparison, the other four
methods performed significantly worse than GRIPT
under the same situations (WRST, p value, see Add-
itional file 1: Table S3). Specifically, as the patient cohort
size increased from 50 to 300 with 2% of patients carry-
ing the RPE65 pathogenic mutations, the mean rank of
RPE65 increases from 31 to 1 by GRIPT with 100%
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power. The number of significant candidates identified
by GRIPT decreased from 107 to 8. When the patient
cohort size reached =300, GRIPT always ranked RPE65
first with 100% power. The average number of signifi-
cant candidates decreased to between one and eight. In
contrast, the power of the other four methods was 0%
when the patient cohort size is < 300. When the patient
cohort size reached >300, the power was 33.33-100%
for VAAST?2, 0-40% for CMC, 3-56.67% for SKAT, and
0-16.67% for KBAC. And the average number of signifi-
cant candidates identified by each of the four methods
was between 0 and 26.

Under the AD model, when patient cohort was small
and had high locus heterogeneity, GRIPT had low sensi-
tivity and specificity, but its performance was greatly im-
proved as the patient cohort size increased (Fig. 5d—f).
The other four methods performed comparably or sig-
nificantly worse under the same scenarios (Fig. 5d-f,
WRST, p value, see Additional file 1: Table S3). Specific-
ally, when the patient cohort size increased from 50 to
100 with 2% of patients attributed to TINF2, the power
of GRIPT increased from 6.67 to 33.33% and the average
number of significant candidates decreased from 79 to
28. When the patient cohort size increased to =300,
TINF2 was ranked on average first by GRIPT with 100%
power. The average number of significant candidates by
GRIPT was between two and eight. In comparison, when
the patient cohort size is <300, the power increased
from 6.67 to 36.67% for CMC and remained at 0% for
VAAST?2, SKAT, and KBAC. When the patient cohort
size reached >300, the power was between 3.33 and
100% for the four tests. The average number of signifi-
cant candidates by each of the four tests was between 0
and 103.

Population stratification of cohorts
It was observed that the variant spectrum of a disease
gene is different among populations with different ethnici-
ties and that high-population stratification could impair
the performance of cohort analysis [16]. To test the im-
pact of population stratification on GRIPT, we simulated
patient cohorts as an admixture of African and Latino in-
dividuals and control cohorts with Latino individuals only,
based on the allele frequency in ExAC database with cor-
responding ethnicity (see the “Methods” section). The un-
matched proportion between case and control cohorts
was simulated at 0%, 20%, 40%, 60%, 80%, and 100%. The
size of patient cohort was set at 500 and the control co-
hort at 5000. The proportion of patients carrying the
pathogenic mutations of the same gene was set at 1%. The
results are summarized in Fig. 6 and Additional file 1:
Table S4.

As shown in Fig. 6a—f, the sensitivity and specificity of
GRIPT slightly decreased as unmatched ethnicity
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proportion between cases and controls increased. How-
ever, GRIPT is significantly less affected by population
stratification than the other four methods even when pa-
tient cohort had high locus heterogeneity (WRST, p
value, see Additional file 1: Table S4). Specifically, under
the AR model, as the unmatched ethnicity proportion
between patients and controls increased from 0 to 100%
(namely, from the completely matched to the completely
unmatched), the mean rank of RPE65 dropped from 1 to
32 by GRIPT but always with 100% power (Fig. 6a—c).
Specificity was reduced as the average number of signifi-
cant candidate genes increased from 2 to 111 (Fig. 6a—
¢). In comparison, the powers of CMC, SKAT, and
KBAC were between 0 and 20%. The average number of
significant candidate genes increased from 1 to 1929 for
CMC, from 0 to 2603 for SKAT, and from 0 to 1921 for
KBAC. In addition, as the unmatched ethnicity propor-
tion increased, the running time for VAAST2 dramatic-
ally increased (e.g., needs 120-240 h with five parallel
CPUs to finish one simulation run). Therefore, VAAST2
was only tested for the unmatched ethnicity proportion
ranging from 0 to 60%. Under those scenarios, the
power of VAAST?2 was between 10 and 26.7%. The aver-
age number of significant candidate genes identified by
VAAST?2 increased from 0 to 1502.

Under the AD model, GRIPT is also significantly less
affected by population stratification (WRST, p value, see
Additional file 1: Table S4). As the unmatched ethnicity
proportion increased from 0 to 100%, the mean rank of
TINF2 dropped from two to nine by GRIPT with 96.67—
100% power (Fig. 6d—f). The mean number of significant
candidate genes increased from 3 to 19. In comparison,
the mean rank of TINF2 dropped from 3 to 75 for
VAAST?2, from 7 to 57 for CMC, from 44 to 166 for
SKAT, and from 3 to 33 for KBAC. The power was 0—
13.33% for VAAST2, 53.33-66.67% for CMC, 0-3.33%
for SKAT, and 0-6.67% for KBAC. The average number
of significant candidate genes increased from zero to five
for VAAST?2, from 4 to 35 for CMC, from zero to two
for SKAT, and from zero to one for KBAC. (Fig. 6d—f).

Variant frequency filtering

Mendelian disease-causing mutations are expected to be
very rare in the population, and common human vari-
ants are likely benign for rare Mendelian diseases.
Therefore, to reduce the analysis/computation complex-
ity, variants from WES are conventionally first filtered
out common human genome variants based on allele
frequency in a large database of human genome variants,
e.g., gnomAD and ExAC [21]. To mimic this scenario,
the above patient and control cohorts were simulated
using the variants whose maximum population fre-
quency is <0.5% in ExAC database for the AR model
and whose maximum population frequency is <0.01%
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for the AD model. Here, we examined the impact of a
relaxed (i.e., higher) frequency filtering cutoff on the dis-
ease gene identification methods. We simulated the
WES data of patient and control cohorts using a range
of variant frequency cutoffs respectively: <0.5%, <1%,
and <2% for the AR model and <0.01%, <0.5%, and <
1% for the AD model. The proportion of patients attrib-
uted to the same gene was set at 1%. The size of patient
cohort was set at 600 and control cohort at 5000. The
results show that inclusion of more variants/noise per
individual by using higher frequency filtering cutoff had
little impact on GRIPT’s performance under the AR
model, but it reduced its power under the AD model.
The performances of the other four methods were
largely compromised and were significantly worse than
or comparable to that of GRIPT (Fig. 7a—f, Add-
itional file 1: Table S5).

Specifically, under the AR model, as the frequency fil-
tering cutoff increased from 0.5 to 2%, GRIPT ranked
RPEG65 first in 98.89% of the simulations, always achiev-
ing 100% power. The mean number of significant candi-
date genes was about three (Fig. 7a—c). In contrast, the
ranking of RPE65 by the other four tests was largely

decreased, with <10% power for VAAST2 and 0% power
for CMC, SKAT, and KBAC. Under the AD model, as
the variant frequency cutoff increased from 0.01 to 1%,
the average rank of TINF2 dropped from 5 to 590 by
GRIPT with power decreasing from 53.33 to around 3%.
The average number of significant candidate genes was
between zero and two (Fig. 7d-f). The power of
VAAST?2 decreased from 13.33 to 10%, CMC from 36.67
to 0%, SKAT from 6.67 to 0% for SKAT, and KBAC from
6.67 to 0%.

The effect of the control cohort size

Theoretically, the variant spectrum of a gene in a large
control cohort should be less biased and closer to the
true distribution than that in a small control cohort.
Thus, large control cohorts can better serve as the con-
trol/baseline, for example, to exclude the genes with
large numbers of rare benign variants in population. To
test the effect of control cohort size, we simulated
smaller control cohorts with a size of 600 and used the
previous case cohorts with a size of 600 to repeat the
analysis. The results are summarized in Fig. 8 and
Additional file 1: Table S6.
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Under the AR model, GRIPT remained sensitive in
ranking RPE65. When the RPE65 patient proportion in-
creased from 0.5 to >2%, the mean rank of RPE65 in-
creased from 45 to 1. However, the p value of RPE65 did
not pass the GWSL in any of the simulations, showing
GRIPT with 0% power. Consistent with the results with
larger control cohort, the other four tools performed sig-
nificantly worse than GRIPT (Fig. 8a—c, WRST, p value,
see Additional file 1: Table S6). For example, when the
RPEG6S patient proportion equaled to 1%, the mean rank
of RPE65 was 981 for VAAST2, 6243 for CMC, 7611 for
SKAT, and 2892 for KBAC. Similarly, the p values of
RPE6S from the other four tests did not pass the GWSL
for the majority of the simulations either, shown as the
test power below 13.33%.

Under the AD model with the small control cohorts,
the rankings of TINF2 by GRIPT and the other four
methods were consistent to that with the large control
cohorts (Fig. 8d-f, Additional file 1: Table S6). The five
methods gave TINF2 a low ranking when the TINF2 pa-
tient proportion was low. But the ranking of TINF2 rose
as the TINF2 patient proportion increased. When the
TINF2 patient proportion increased to 3%, all five

methods ranked TINF2 to the top. However, similar to
the results under the AR model, the p value of TINF2 by
the five methods did not pass the GWSL in the majority
of the simulations under the AD model, shown as the
power below 36.67% (Fig. 8d—f).

The effect of different variant scoring systems

To test whether the performance of GRIPT will be af-
fected by different variant score systems, besides CADD
score, we applied the Deleterious Annotation of genetic
variants using Neural Networks (DANN) and Rare Ex-
ome Variant Ensemble Learner (REVEL) scores to anno-
tate the variant scores in GRIPT respectively and
repeated the aforementioned analyses. DANN scoring
system shares the same feature set and training data as
CADD (which was trained with a linear kernel support
vector machine, SVM) but was trained with a non-linear
deep neural network. DANN achieves about a 19% rela-
tive reduction in the error rate and about a 14% relative
increase in the area under the curve (AUC) metric over
CADD’s SVM methodology [29]. REVEL is an ensemble
method for predicting the pathogenicity of missense
variants by integrating the individual tools, including
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MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN,
MutationAssessor, MutationTaster, LRT, GERP, SiPhy,
phyloP, and phastCons. REVEL outperformed (p < 107*?)
individual tools and seven ensemble methods (i.e.,
MetaSVM, MetalLR, KGGSeq, Condel, CADD, DANN,
and Eigen) in analyzing independent test sets and also
showed the best performance for distinguishing patho-
genic from rare neutral variants with allele frequencies
<0.5% [30]. As shown in Additional file 2: Figure S1-S4
and Additional file 1: Table S2-S5, the benchmark ana-
lysis with 400 AR and AD genes, the analyses of the im-
pacts of patient cohort size, population stratification,
and variant frequency filtering all showed that the results
based on DANN and REVEL scores are consistent with
the previous results based on CADD score. The
consistency based on different variant score systems
demonstrated the reliability and robustness of the statis-
tic test framework of GRIPT.

Comparison to the traditional GWAS single variant test

To compare the performance of GRIPT with the trad-
itional GWAS single variant test, we simulated the basic
scenario with 0.5-3% of patients carrying the pathogenic
mutations of RPE65 and TINF2, respectively, and applied

GRIPT and Fisher’s exact test to the data. As shown in
Fig. 9 and Additional file 1: Table S1, Fisher’s exact test
performed much worse than GRIPT. Under the AR
model, when the RPE65 patient proportion was 0.5%,
RPE65 was ranked on average sixth by GRIPT with
66.67% power. When the RPE65 patient proportion was
> 1%, RPE65 was always ranked first by GRIPT with
100% power. In contrast, the average ranking of RPE65
by Fisher’s exact test was in the range of 890 to 32,000,
always with 0% power (Fig. 9a—c). Under the AD model,
as TINF2 patient proportion increased from 0.5 to 1%,
the power of GRIPT increased from 3.33 to 53.33%.
When the TINF2 patient proportion was >2%, GRIPT
always ranked TINF?2 first with 100% power. In compari-
son, as the proportion of TINF2 patients increased, the
average ranking of TINF2 by Fisher’s exact test was im-
proved from 12,675th to 23th, but the test power
remained at 0% (Fig. 9d—f). The reasons may be as fol-
lows: (1) GRIPT is a gene-wise test that ranks the func-
tional effects of variants and incorporates the Mendelian
inheritance models to compute the gene score. In con-
trast, the traditional single variant test considers one
variant in a gene each time and is mainly based on the
allele frequency difference between cases and controls.
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Thus, the single variant test does not have sufficient modest-effect variants. The reason behind might be that
power to detect the heterogeneous rare deleterious vari-  GRIPT ranks the functional effects of variants and takes
ants in Mendelian disease cohorts, although it might be  account of the Mendelian inheritance model to compute
suitable for common complex diseases. (2) The multiple  the gene score. In contrast, the collapsing test aggregates
test correction requests a much more stringent p value  all the variants within a gene regardless of their functional
cutoff for the single variant test than the gene-wise effect and the Mendelian inheritance mode to compute
GRIPT due to the larger number of tests applied in the the mutation burden, resulting in higher background
single variant test than in GRIPT (i.e., variants vs. noise; therefore, it is less sensitive and more prone to false
genes). positives for genes with large numbers of rare benign
variants.
The performance to detect genes with modest-effect
variants Analysis of real patient cohort data displays GRIPT’s
To test the performance of GRIPT in detecting genes with  excellent performance
modest-effect variants, we simulated the scenario of patients To further validate the performance of GRIPT, we
carrying allele complex composed of modest-effect muta-  applied it to real WES data of three different patient co-
tions by concurrently spiking two known modest-effect mu-  horts respectively, including a Leber’s congenital amaur-
tations of ABCA4, chr1:94476467:T>A (p.Asnl868lle), and  osis (LCA) cohort, a retinitis pigmentosa (RP) cohort,
chrl: 94517254:C>G (p.Gly863Ala) [31] into the varying and a congenital disorder of glycosylation (CDG) cohort.
percentages (i.e., 0.5%, 1%, 2%, and 3%) of patients under ~ Both the LCA cohort and RP cohort were composed of
the AR model. Both GRIPT and the collapsing test CMC  the patients carrying the pathogenic mutations of differ-
were applied to the data. As shown in Fig. 10 and ent genes, and the proportion of patients attributed to
Additional file 1: Table S7, GRIPT significantly outper- each disease gene was small. Furthermore, the patient
formed the collapsing test in detecting genes with ethnicity of the LCA cohort or RP cohort was an
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admixture of Caucasian, African American, Latino, and
Asian, whereas the CDG cohort was composed of the
patients all attributed to PGM3 from two families. The
performance of GRIPT was also compared with
VAAST2, CMC, SKAT, and KBAC on the same datasets.

The LCA cohort
LCA is a genetic heterogeneous disease and can be
caused by mutations in at least 22 genes (http://
www.sph.uth.tmc.edu/RetNet, accessed as of September
3, 2017). We performed WES on 115 sporadic LCA pa-
tients. As LCA is a rare Mendelian disorder, variants
with maximum population allele frequency > 0.5% were
filtered out based on the allele frequency in the large
public databases of normal populations (i.e., 1000 gen-
ome, dbSNP, ESP6500, ExAC, gnomAD) and an internal
database. We only focused on rare protein-changing var-
iants including nonsense variants, splicing donor/ac-
ceptor variants, missense variants, and small INDELSs,
since they are more likely to be the disease-causing mu-
tations. One previously simulated control cohort (n=
5000) was used as the control cohort for these tests.
GRIPT showed high sensitivity for the LCA cohort
with high locus and ethnicity heterogeneity. It success-
fully detected the disease gene that only accounted for <
1% of the patients. Specifically, the first nine candidate
genes ranked by GRIPT were all known retinal disease
genes (Table 1). Among a total of 203 significant candi-
dates, 19 genes were known disease genes, each of which
accounted for 0.87-6.09% (one to seven patients) of the

cohort. Most interestingly, GRIPT was able to identify
novel retinal disease genes, i.e, POMGNTI (p=2.81 x
107'% and MFSDS8 (p =2.81 x 107*°), POMGNTI was a
gene causing non-syndromic RP newly discovered in
2016 [32] and accounted for one patient of this cohort,
who carried a stop-gain mutation and a missense muta-
tion in POMGNTI. Mutations in MFSD8 have been
linked to macular dystrophy recently [33] and accounted
for one patient of the LCA cohort, who carried a splice
donor mutation and a missense mutation in MFSD8.

In comparison, the other tools lacked power in detect-
ing the disease genes accounting for small proportions
of this cohort. A total of 7 significant candidates were
identified by VAAST?2, 27 by CMC, 6 by SKAT, and 1 by
KBAC. Among them, 5 genes by VAAST2 were known
disease genes, 3 genes by CMC, 2 genes by SKAT, and 1
gene by KBAC, each of which accounted for 2.61-6.09%
(three to seven patients) of the cohort. However, none of
these known genes were the recently identified novel
retinal disease genes.

The RP cohort

RP is an inherited retinal disease with even greater genetic
heterogeneity compared to LCA. So far, mutations in more
than 65 genes were found to cause the disease (http://
www.sph.uth.tmc.edu/RetNet, accessed by September 3,
2017). WES was performed for 154 sporadic RP patients.
After filtering, the WES data of the real patient cohort and
a simulated control cohort (r=5000) were subjected to
analysis. GRIPT again showed excellent power in identifying
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Table 1 Known disease genes were given high ranks and significant p values by GRIPT in a LCA cohort

Genes No. of GRIPT VAAST2 cMC SKAT KBAC

gz;ﬁents Rank p value Rank p value Rank p value Rank p value Rank p value
NMNATT 4 (3.48%) 1 6.97E-39 7 2.50E-06 12 2.52E-09 18 1.78E-04 3 1.50E-05
GUCY2D 6 (5.21%) 2 3.40E-32 2 2.50E-06 102 1.15-03 14 1.13E-04 35 1.84E-03
AIPLT 3 (2.61%) 3 2.03E-29 8 5.00E-06 100 1.086-03 24 3.01E-04 40 2.15E-03
RPE6S 3 (261%) 4 2.18E-29 4 2.50E-06 16 244E-08 4 0 2 7.00E-05
CEP290 7 (6.09%) 5 1.55E-26 1 2.50E-06 5 3.94E-11 2 0 1 2.00E-05
CRB1 3 (261%) 6 341E-22 12 244E-05 427 0.0231 77 2.14E-03 230 2.22E-02
RPGRIP1 4 (3.48%) 7 341E-22 3 2.50E-06 464 0.025 164 6.30E-03 168 1.50E-02
SPATA7 3 (261%) 8 4.55E-22 20 1.57E-04 1391 0.0838 534 3.16E-02 371 3.72E-02
TULPT 2 (1.74%) 9 6.53E-20 2689 0.158 5,160 0.7198 879 0.06 2203 02324
ADAM9 1 (0.87%) 12 7.33E-20 325 0.0198 790 0.0483 588 0.0357 243 0.0240
IFT140 4 (348%) 18 551E-13 499 0.0297 11,474 0.5064 3835 03333 7951 07111
TRNT1 1 (0.87%) 23 281E-10 7801 0.594 17,607 0.8925 8191 0.6 5775 0.5283

The listed genes are the correctly identified retinal disease genes among the top 20 candidate genes by GRIPT in the LCA cohort. Parameters: 115 cases, 5000

controls, the AR inheritance model

low-frequency disease genes underlying the cohort with
high locus and ethnicity heterogeneity. As shown in Table 2,
eight genes whose rankings ranged from first to 11th by
GRIPT were known retinal disease genes. Among the 157
significant candidates (p < 2.7e-6) identified by GRIPT, 17
are known disease genes, each of which explained 0.649—
8.44% (1 to 13 patients) of the cohort. Furthermore, GRIPT
was able to identify three novel retinal disease genes re-
cently published, i.e, POMGNTI (p = 3.95 x 10°*%), TRNTI
(p =6.25 x 1078 and HGSNAT (p =2.10 x 1077). Mutations
in POMGNT1 [32] accounted for two patients of the cohort,
who carried two different homozygous missense mutations.
Mutations in HGSNAT, a gene causing nonsyndromic RP
[34], explained two patients in this cohort. One patient

carried two missense mutations, and the other carried a
disruptive inframe deletion and a missense mutation. Mu-
tations in TRNTI, a gene causing RP and erythrocytic
microcytosis [35], accounted for one patient in the cohort,
who carried a frameshift mutation and a missense muta-
tion in TRNT1.

In comparison, the other tools had weak power in
detecting the low-frequency disease genes underlying
this cohort. A total of 4 significant candidate genes
were identified by VAAST2, 25 by CMC, 6 by SKAT,
and 2 by KBAC. Among them, 2 genes by VAAST2
were known disease genes, 0 by CMC, 1 by SKAT,
and 0 by KBAC, each of which accounted for 5.19—
8.44% (8 to 13 patients) of the cohort. And none of

Table 2 Known disease genes were given high ranks and significant p values by GRIPT in a RP cohort

Genes No. of GRIPT VAAST2 CMC SKAT KBAC

gz)tients Rank p value Rank p value Rank p value Rank p value Rank p value
TULP1 3 (1.95%) 1 2.87E-22 15 1.57E-04 878 0.0429 279 0.0158 186 0.0190
EYS 8 (5.19%) 2 567E-18 2 2.50E-06 2718 0.1231 255 0.0143 504 0.0556
POMGNTT 2 (1.30%) 5 3.95E-15 854 0.0396 12,243 0.5391 8407 0.6 7477 06315
CNGAT 2 (1.30%) 6 3.95E-15 73 2.85E-03 18,620 0.9801 4650 0.375 4150 0.3769
RDH5 2 (1.30%) 7 3.95E-15 2430 0.119 2009 0.0924 1089 0.0769 900 0.0946
USH2A 13 (8.44%) 9 227E-14 1 2.50E-06 44 6.31E-05 6 0 6 0.0001
CRBI1 3 (1.95%) 10 3.65E-11 114 4.66E-03 222 0.0063 428 0.028 92 0.0082
MERTK 3 (1.95%) 11 6.20E-11 19 0.0003 6523 0.2699 76 0.0023 1325 0.1384
BBS4 2 (1.30%) 13 851E-10 645 0.0297 13,022 0.5874 1309 0.0968 2036 0.1984
MAK 1 (0.649%) 17 6.25E-08 1694 0.0792 13,033 0.5874 11,162 0.75 3899 03573

The listed genes are the correctly identified retinal disease genes among the top 20 candidate genes by GRIPT in the RP cohort. Parameters: 154 cases, 5000

controls, the AR inheritance model
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these known genes were the novel retinal disease
genes recently identified.

The CDG cohort

The CDG cohort was composed of six patients from two
families who all carry the pathogenic mutations of
PGM3 gene [36, 37]. The WES data were downloaded
from dbGaP (phs000809.v1.p1) [36]. Thus, this cohort
serves as a real data example of a genetic homogeneous
disease with extremely small case cohort size from an
independent external source. After filtering and annota-
tion, the real WES data and a simulated control cohort
(n=5000) were analyzed by the five tools. GRIPT
showed the highest accuracy and efficiency in analyzing
this homogeneous external cohort. GRIPT correctly
ranked PGM3 first (p = 0), taking less than 30 min with
one CPU. VAAST?2 also ranked PGM3 first (p = 2.50 x
107°) but took about 6 h with five parallel CPUs. CMC
ranked PGM3 11th (p=3.79 x 10™%*) and took about
2.5 h with one CPU. The p value of PGM3 by SKAT
equals to O but is the same as the other 162 genes (p =
0), taking 9.3 h with one CPU. The p value of PGM3 by
KBAC equals to 2 x 107 but is the same as the other 62
genes (p = 2 x 107°), taking 7.8 h and one CPU.

Discussion

In this study, we developed a novel computational
method named GRIPT for Mendelian disease gene dis-
covery through analyzing the NGS data of patient-
control cohorts. The null hypothesis of GRIPT is that a
non-disease gene should have similar deleterious muta-
tion load in cases and in controls. GRIPT scores and
compares the deleterious mutation load of each gene in
the genome between patients and controls using a com-
posite Fisher’s test and prioritizes the genes that have
significant higher deleterious mutation loads in cases
than in controls as the candidate disease genes.

Both simulation and real data tests indicate that
GRIPT has great sensitivity and specificity and is highly
reliable in discovering Mendelian disease genes. For ex-
ample, as shown in the benchmark of 400 known disease
genes, under the AR model, GRIPT ranked the disease
gene first in 97.5% of the simulations for a patient co-
hort with a size of 600 and with only 1% of patients car-
rying the pathogenic mutations of the same gene. In
addition, the disease gene was usually the only signifi-
cant candidate gene identified by GRIPT (Fig. 4a—c).
Under the AD model, GRIPT ranked the disease genes
in the top three in 93.5% of the simulations when 2% of
patients (cohort size = 600) were attributed to the same
gene (Fig. 4d—f). The average number of significant can-
didates was about two. Furthermore, the results from
analysis of real patient data were consistent with the
benchmark results. For the LCA cohort (size n =115),
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GRIPT was able to systematically and accurately identify
19 disease genes (5 genes by VAAST2, 3 genes by CMC,
2 genes by SKAT, and 1 by KBAC). The candidates
ranked from first to ninth were all real disease genes.
For the RP cohort (size n = 154), GRIPT was able to ac-
curately identify 17 genes (2 genes by VAAST2, 0 genes
by CMC, 1 gene by SKAT, and 0 by KBAC) with seven
of the top 10 candidates being real disease genes. Each
of the disease genes identified by GRIPT only accounted
for 0.649-8.44% (1 to 13 patients) of patients in the
LCA or RP cohort. Moreover, as shown in the simula-
tion, GRIPT reached around 100% power and always
ranked the genes to the top for large patient cohorts
(e.g., size m>300) and/or more homogeneous patients
(e.g., the same gene explaining >3% of the patients),
which was also demonstrated by the analysis of the CGD
cohort with a size of six and all attributed to the gene
PGM3. Most interestingly, GRIPT was able to discover
four newly reported disease genes in the analysis of real
patient data. Each of these newly discovered genes only
accounted for one or two (0.649-1.3%) patients in the
patient cohort. Overall, GRIPT shows the great power in
discovering known and novel Mendelian disease genes.
It is especially well suited to analyze diseases with high
locus (and ethnicity) heterogeneity, which is a major
challenge for solving the underlying genetics mecha-
nisms of Mendelian disorders.

GRIPT is also more robust and significantly less af-
fected by potential confounding factors than other
disease gene finders. For example, GRIPT remained
powerful for small patient cohorts with high locus het-
erogeneity. In simulation, under the AR model, for a pa-
tient cohort with a size of 100 and only two (2%)
patients carrying the pathogenic mutations of the same
gene, the disease gene was ranked on average third by
GRIPT with 100% power. In contrast, the mean ranking
of the disease gene by other tools was between ~ 150
and ~ 3300 and all with 0% power. This result was also
consistent with results from real data as previously dis-
cussed. Furthermore, using higher allele frequencies as
the variant filtering cutoff, which presumably adds more
noise to the analysis, had little impact on the perform-
ance of GRIPT under the AR model. In the simulation,
for a patient cohort with a size of 600 and with six (1%)
patients attributed to the same gene, as the cutoff of
variant frequency filtering increased from 0.5 to 2%, the
disease gene was ranked first in 98.89% of simulations
by GRIPT with 100% power. In comparison, the mean
rank of the gene was between 11 and 38 by VAAST?2,
between 2953 and 4420 by CMC, between 269 and 2095
by SKAT, and between 1306 and 1655 by KBAC, all of
which had power below 10%. More importantly, GRIPT
is significantly less affected by the combined effect of
population stratification and high locus heterogeneity,
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which occur frequently in real data and severely impair
the performance of other tools as shown in the simula-
tion and real data analysis. In the simulation of the
worst-case scenario where the ethnicity of the patient
cohort was completely unmatched by that of the control
cohort and with only 1% of the patient cohort (with a
cohort size of 500) attributed to the same disease gene
under the AR model, GRIPT ranked the disease gene, on
average, 32nd with 100% power although it generated
around 107 significant candidates. In contrast, the mean
ranking of the disease gene by other tools was greater
than 3500 (power < 20%), each of which generated more
than 1500 significant candidates. Consistently, the other
tools displayed lack of power in the real LCA and RP co-
horts with mixed ethnicity and high locus heterogeneity.

The performance advantage of GRIPT might be partly
due to that it scores the mutation load of a gene accord-
ing to the Mendelian inheritance rule. Under the AR
model, for each individual, GRIPT only considers/scores
genes with at least two variants, which could exclude the
false positive signals from the genes merely carrying one
pathogenic allele in an individual. Furthermore, Fisher’s
test built upon the combination of a binomial test and a
Wilcoxon rank sum test equipped GRIPT the excellent
statistical power for comparing highly skewed distribu-
tions of gene score (Fig. 1 and the “Methods” section).
In comparison, VAAST/VAAST2, CMC, SKAT, and
KBAC take into account the genes carrying at least one
variant in an individual. In addition, CMC, SKAT, and
KBAC group all the variants within a gene to compute
the deleterious mutation load of the gene, which makes
genes with a large number of rare variants in case cohort
(e.g., benign or due to chance) ranked high and creates
false positives. As shown in simulation, this impact on
the other tools was more pronounced when the true sig-
nal was diluted by high locus heterogeneity and/or was
compromised by large background noises, e.g., popula-
tion stratification (or sequencing platform/variant calling
difference) or relaxed cutoff of variant filtering
frequency.

Simulation results also suggest that to optimize the
performance of GRIPT, the following conditions should
be considered. First, as one of the key factors affecting
sensitivity is the proportion of patients attributed to the
same gene, it is highly desirable to increase the homo-
geneity of patient cohort. One possible approach is to
perform detailed phenotyping and gather the patients
who share similar phenotypes and are likely due to mu-
tations in one or a small number of genes. Second, while
maintaining the homogeneity of the patient cohort, in-
creasing the patient cohort size can also improve sensi-
tivity. For example, by increasing the patient cohort size
from 50 to 100 while maintaining 2% of patients carry-
ing disease mutations of the same gene under the AR
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model, the average rank of the disease gene increased
from 31 to 3 by GRIPT. Third, using the correct inherit-
ance model when running GRIPT can leverage its power.
If the inheritance model of the diseases is unclear,
GRIPT should be run using different models, including
AD, AR, XD, and XR, respectively. Fourth, reduction of
the noises in the input variants will improve the out-
come. For example, large databases of “normal” popula-
tions, e.g., gnomAD and ExAC, should be used to
pre-filter variants and remove common benign variants
that are unlikely to cause diseases, while filtering with
internal databases can reduce the error/bias from the se-
quencing platforms and variant callers. Furthermore,
under different inheritance models, the mutations
should be pre-filtered with different frequency cutoffs
(for example, the variant filtering frequency for AD
model should be more stringent, namely lower than for
AR model). Additionally, removing the genes that are
highly mutable but known not causing diseases can re-
duce noise as well. Fifth, the accuracy of variant func-
tion/pathogenicity prediction will also impact the
performance of GRIPT. Currently GRIPT applies the
well-established integrative allele prediction score, i.e.,
CADD score, to predict the pathogenicity of variants.
However, as the scoring system of GRIPT is flexible,
users can easily substitute the CADD score with any
other score generated by better algorithms for variant
pathogenicity prediction. In the aforementioned analysis,
we also used DANN and REVEL scores as the variant
score, which generates the consistent results, suggesting
the reliability and robustness of the statistic test frame-
work of GRIPT. The rule of thumb for using variant
score systems is as follows: (1) the scoring systems
should reliably and quantitatively predict the deleteri-
ousness of variants, (2) the scores should be scaled/nor-
malized into a genome-wide ranked score to allow the
comparison implemented in the statistic test of GRIPT,
and (3) the score system should be comprehensive and
cover all the possible SNP and INDEL in the genome.
Although GRIPT does not directly identify pathogenic
mutations, by identifying candidate (novel) disease
genes, it will dramatically reduce the number of variants
to be considered for each patient and therefore greatly
facilitate the identification of potential mutations. Once
the candidate genes are identified, the causal variants of
the genes can be further prioritized with the conven-
tional steps: (1) The individuals carrying at least two (re-
cessive mode) or one (dominant mode) rare variants of
the candidate gene should be identified from the patient
cohort. (2) Multiple variant effect prediction systems can
be applied to estimate and compare deleteriousness of
the variants in affecting protein function, mRNA splicing,
or other regulation processes of the gene (e.g., CADD
score, SIFT, Polyphen, MetaLR/SVM, PROVEAN, REVEL,
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phyloP100way_vertebrate, phastCons100way_vertebrate,
ada_score, NNsplice). (3) The Sanger validation and segre-
gation tests of the patients and additional relatives should
be performed for the candidate variants.

Conclusions

In summary, we developed a highly accurate and robust
case-control analysis method, GRIPT, for the discovery
of Mendelian disease genes. It is especially powerful in
detecting disease genes underlying diseases with high
locus heterogeneity and is less affected by population
stratification. It is also efficient, portable, and flexible. In
addition, we generated a WES data simulator which is
capable of unbiasedly simulating the WES data of con-
trol cohorts with any sample size, sex ratio, and popula-
tion ethnicity for the usage of GRIPT or other tools. As
NGS technology advances (e.g., the decrease in cost and
time) and greater amounts of large cohort data become
available, we envision that GRIPT will make a significant
contribution to the discovery of novel Mendelian disease
genes and pave the way for better understanding, diag-
nosis, prevention, and treatment of Mendelian diseases.

Methods

Each variant is scored to quantify the deleteriousness

The hypothesis whether GRIPT test is the deleterious
mutation loads of a disease-causing gene is significantly
higher in the case cohort than in the control cohort. To
quantify the deleteriousness of variants, in this study, we
applied Combined Annotation Dependent Depletion
(CADD v1.3) score to each variant of each gene in every
individual [19]. CADD score is an integrative score de-
rived from the integration of diverse annotations and is
highly predictive of molecular functionality and patho-
genicity [19]. Higher CADD score indicates more delete-
riousness of the mutation. In addition, CADD not only
provides integrative prediction scores for SNVs but also
for INDELs which are missing for most other variant ef-
fect prediction tools. We further normalized the variant
score on a scale of 0 to 1 as s=1-10"“"°, C is the
PHRED-like scaled C-score as described in CADD.
Moreover, CADD score can be easily replaced by any other
score that users provide in order to better predict the vari-
ant’s deleteriousness. To test the reliability and robustness
of the statistic test framework of GRIPT, the ranked
REVEL [30] and DANN [29] scores were also applied as
the variant scores respectively. The CADD score (v1.3)
was downloaded from https://cadd.gs.washington.edu/
download. The ranked DANN score was extracted from
dbNSFP3.4a downloaded from https://sites.google.
com/site/jpopgen/dbNSFP. The ranked REVEL score
was downloaded from https://sites.google.com/site/
revelgenomics/downloads [38, 39].
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Each gene is scored under different inheritance models
Under the autosomal recessive (AR) model, only the
genes with at least two variants in an individual will be
assigned a positive score. The sum of the two highest
scores of variants within a gene is used as the score of
that gene in the individual. If two variants of a gene are
in cis (namely, the two variants reside on the same
chromosome) in an individual, only the variant with the
higher score will be considered. If a gene carries greater
than or equal to one variant in an individual, the score
of this gene will be 0 for that individual. Under the AR
model, the maximum score for a gene is 2, and the mini-
mum is 0.

Under the autosomal dominant (AD) model, only the
genes with at least one variant in an individual will be
assigned a positive score. The highest score of variants
within a gene is used as the score of that gene in the in-
dividual. Under the AD model, the maximum score for a
gene is 1, and the minimum is 0.

Similarly, under the X-linked recessive model, the sum
of the two highest variant scores is used as the score of
each gene on the X chromosome in an individual. And
under the X-linked dominant model, the highest variant
score is used as the score of each gene on the X
chromosome in an individual.

Gene score distribution is highly skewed for rare
Mendelian disorders

As mentioned above, each gene has a score in each case
or control individual, ranging from 0 to 1 (for dominant
models) or 2 (for recessive models). Then, for each gene,
we compare the gene score distribution in the case co-
hort to that in the control cohort. The null hypothesis is
that the deleterious mutation load of a gene is not sig-
nificantly different between cases and controls. Thus,
the significance of the one-tailed alternative hypothesis
that the deleterious mutation load is higher in cases than
controls could suggest the likelihood of the gene associ-
ated with the disease.

To choose the appropriate statistic test, we first char-
acterized the gene score distribution. We found that the
score distributions of most genes are highly skewed with
excesses of zeros. This is expected mainly because Men-
delian diseases are rare and so are the disease-causing
mutations. Usually, after filtering out known common
human variants which are likely benign, only a small
number of rare variants (e.g., MAF <0.5%) in cases and
controls will be kept. Moreover, among the filtered rare
variants, only some of them have deleterious effects;
therefore, only these rare, deleterious variants will have
positive variant scores. In addition, the recessive model re-
quires a biallelic state to assign a positive gene score in
one individual. Thus, the scores of a gene in most case in-
dividuals and control individuals are zeros. An example of
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USH2A gene score distributions in our retinal disease pa-
tient cohort (n = 250) and an internal control cohort (1 =
250) is shown in Fig. 2.

Combining two separate statistical tests with Fisher’s test
To compare the highly skewed distributions of gene
scores in the case and control cohorts derived above, we
test a composite null hypothesis by applying Fisher’s test
to combine two separate tests including a binomial test
and a Wilcoxon rank sum test [20]. The composite null
hypothesis is designed to answer two questions. The first
question is whether the proportions of non-zero scores
are similar in the case cohort and control cohort (Z; =
0). The second question is whether the values of
non-zero scores are similar in the case cohort and con-
trol cohort (Z, =0). Namely, Fisher’s method will test
the Hy: Z; =0 and Z, =0 versus the one-tailed alterna-
tive Hy: Z; > 0 and/or Z, > 0 [20].

Let N; and N, be the total number of cases and con-
trols, respectively. Let #n; and n, be the number of
non-zero score in cases and controls, respectively.

The first statistic, Z;, represents the proportion differ-
ence of non-zero scores between cases and controls.
Given n; + ny = n and r = N»/Ny, n; is approximately dis-
tributed as Binomial(n, (1 +7)™") under H, Hence, a
one-tailed p value p; can be obtained as the tail area
under the N(0, 1) p.d.f to the right of

175} 1
m+mn 1+r

\/(1 +r)(1+r)(nm +n)

The second statistic, Z,, represents the difference of
the non-zero scores between cases and controls. The
standardized Wilcoxon rank sum test was applied to test
whether the gene cores in cases are significantly higher
than those in controls. Let p, denote the corresponding
one-tailed p value.

Finally, Fisher’s method is used to test the composite
null hypothesis Hy: Z; =0 and Z, =0 at one-tailed level
a based on a combination of Z; and Z, or p; and p, as
follows:

Reject Hy if p < o, where p = P(x; > —4 log,\/p1P5)-

Here, y2 is a x* distribution with 4 d.f; therefore, the p
value can be calculated using a x* distribution.

The program of GRIPT is written in Java and R.

Z) =

A WES data simulator based on ExAC database

The VCF file of ExAC database (ExAC.r0.3.1.sites.-
vep.vcf) was downloaded from http://exac.broadinstitu-
te.org/downloads [21]. We collected the variants
recorded in the VCF file which were not indicated as fil-
tered by ExAC. For each of these variants, we extracted
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information on the genomic position, the allele count,
the chromosome number, and the allele frequency in
each subpopulation, including AFR (African/African
American), AMR (American), EAS (East Asian), FIN
(Finnish), NFE (Non-Finnish European), SAS (South
Asian), OTH (Other), adjusted population, and raw data.
We only considered the ExAC variants that were mis-
sense or loss-of-function mutations (e.g., missense muta-
tions, stop-gained mutations, splicing donor/acceptor
mutations, and frameshift mutations). We also down-
loaded the CADD scores v1.3 for the ExAC variants
from http://cadd.gs.washington.edu/download [19] and
annotated each collected ExAC variant with its corre-
sponding CADD score. Next, we wrote a WES data
simulator program in PERL. Briefly, the script simulated
the WES data per person individually. For each individ-
ual, the simulator will go through the variants recorded
in the EXAC database which satisfy the variant filtering
criteria (e.g, MAF <0.5%) one by one and output the
reference nucleotide or the altered nucleotide according
to the allele frequency of that variant in ExAC. For ex-
ample, in the position chr1:10000, if the allele frequency
of “A>T” is 0.2% and the allele frequency of “A >G” is
0.5%, then in the simulated WES data of one person,
there is 0.2% of chances the simulator will output the
SNP “A >T,” 0.5% of chances will output the SNP “A >
G,” and 99.3% of chances the simulator will generate
“A>A namely no SNP ouput in chrl:10000. Thus,
each generated variant follows a multinomial distribu-
tion according to its frequency in the user-selected eth-
nic population based on the ExAC database. For a given
number (N) of individuals with a given sex ratio, the
simulator will generate “N” WES data files individually.
Each WES data file includes information such as refer-
ence nucleotides, altered nucleotides, the coordinates in
the genome, and the CADD scores of the variants.

Simulation of patient and control cohorts

To evaluate the performance of GRIPT, we performed
the simulation tests on GRIPT and similar tools, ie.,
VAAST2, CMC, SKAT, and KBAC. The WES data of the
patient cohort and control cohort were first generated
using the WES data simulator mentioned above. Given
the rare frequency of Mendelian disease-causing variants
in normal population, for the AR model, the WES data
were simulated based on the variants whose maximum
population frequency was <0.5% in ExAC database by
default, while for the AD model, based on the variants
whose maximum population frequency was <0.01% in
ExAC database by default, unless otherwise specified.
We used “adjusted” average population frequency as the
default variant frequency, unless otherwise specified.
Then, we randomly selected pathogenic variants of a
given disease gene from HGMD database with MAF <
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0.5% in ExAC database and inserted them into a given
percentage of individuals randomly selected from the pa-
tient cohort to mimic the patient cohort with genetic
heterogeneity. In the AR model, two variants were re-
spectively selected from HGMD and spiked into each se-
lected individual. Thus, the two variants spiked into the
same individual can be the same (homozygous) or differ-
ent (heterozygous). In the AD model, only one variant
was randomly selected and spiked into each selected in-
dividual. Therefore, under the AR or AD model, the
pathogenic mutations of a given gene can be the same
or different within and between the patients. No add-
itional mutations were spiked into the control cohort.
For each spike in percentage level per scenario, 30 simu-
lation runs were repeated (Additional file 2: Figure S5).

The implementation of VAAST2, CMC, SKAT, KBAC, and
Fisher’s exact test

The latest release of VAAST2 was obtained from http://
www.yandell-lab.org/software/vaasthtml [16, 17]. The
CMC, SKAT, and KBAC were implemented through the
“Rvtests” software package downloaded from https://
genome.sph.umich.edu/wiki/Rvtests#Download [22]. The
p values of VAAST2, SKAT, and KBAC were obtained
using 400,000 permutations. Fisher’s exact test was
implemented through the PLINK v1.90b5.2 package
from https://www.cog-genomics.org/plink/1.9/ [40]. The
intermediate steps were carried out using PERL and R
scripts.

Preprocessing the variants in cis

To reduce false positive, we recommend the users to
handle the variants in cis before inputting data into
GRIPT. However, given that it is not always possible to
obtain accurate phasing information, GRIPT can tolerate
imperfect phasing as shown in the aforementioned simu-
lation and real data analyses. Currently, a preprocessing
script included in the GRIPT package was used to
handle variants in cis, which performs the following
operations:

1) If the genomic coordinates of two variants are
within 100 bp, Fisher’s exact test will be performed
to determine whether the two variants are in cis by
comparing the ratio of the variant base sequencing
coverage to the reference base sequencing coverage
of the two variants. If the two variants are in cis
and within 100 bp, they can be covered by a large
number of the same sequencing reads; therefore,
their read coverage ratios would be similar and
Fisher’s exact test p value would be large. In contrast,
if they are in ¢rans and close to each other, they
would be covered by different sequencing reads; thus,
the read coverage ratios of the two variants would be
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different and Fisher’s exact test p value would be
small. We take Fisher’s exact test p > 0.4 as the cutoff
to deduce the read coverage ratios of the two variants
are similar, namely, the two variants as in cis,
otherwise as in trans. Using a different p value cutoff
does not significantly impact on the result. For
example, we have used p < 0.05 as the cutoff to assign
the variants in trans and p > 0.05 to assign the two
variants in cis. Although this could mistakenly assign
a few in trans variants as in cis, the results remained
consistent. Because GRIPT is built on the mutation
burden in the case cohort and control cohort but not
a single case, a few imperfect phasing cases can be
tolerated. If the two variants are determined to be in
cis by Fisher’s test, the variant with higher variant
score (e.g., CADD score) will be passed on to the
subsequent analysis, while the one with lower variant
score will be ignored.

2) For each gene in every individual, all variants within
the gene will be searched against the same gene in
the rest of the individuals of the case cohort. If a
gene has > 2 variants present concurrently in > 2
individuals, it is likely that these variants are in cis.
Because given the sample size of case cohorts (1 =
115 for LCA, 154 for the RP cohort, and currently
available case cohort size mostly < 5000) and the
rare frequency of Mendelian disease-causing
mutations (allele frequency < 0.5%), the chance for
two or more rare variants co-occurring in unrelated
individuals is very small (5000 x (0.005 x 0.005)"? «
2), unless these variants are in cis or the disease is
specifically caused by the combination of the variants.
Although our preprocessing script does not fit the
latter situation, it can help clean up the former
one. If a gene has =2 variants co-occurring in
2 individuals, among the concurrent variants, the
script will only keep the variant with the highest
variant score and ignore the other concurrent
variants in the subsequent analysis.

Additional files

Additional file 1: Table S1. The sensitivity and specificity of GRIPT with
CADD and other tests under the AR and AD models. Table S2. Benchmark
on 400 randomly selected known disease genes. Table S3. Test the effect
of the patient cohort sample size. Table S4. Test the effect of population
stratification in cohorts. Table S5. Test the effect of variant frequency
filtering. Table S6. Test the effect of the control cohort size. Table S7. The
performance of detecting genes with modest-effect variants. (XLSX 111 kb)

Additional file 2: Figure S1. Benchmark of GRIPT with CADD, REVEL,
and DANN scores on 400 Mendelian disease genes. Figure S2. Test the
impact of patient cohort sizes with REVEL and DANN scores. Figure S3.
Test the impact of population stratification with REVEL and DANN scores.
Figure S4. Test the impact of variant frequency filtering with REVEL and
DANN scores. Figure S5. The main procedure of simulation analysis.

(PDF 3207 kb)
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