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Wavelet-Based Queuing Analysis of Gaussian and
NonGaussian Long-Range-Dependent Network
Traffic

Vinay Ribeiro

Abstract

In this thesis, we develop a simple and powerful multiscale model for the synthesis
of nonGaussian, long-range-dependent (LRD) network traffic. The wavelet transform
effectively decorrelates LRD signals and hence is well-suited to model such data.
However, wavelet-based models have generally been used for modeling Gaussian data
which can be unrealistic for traffic. Using a mmultiplicative superstructure atop the
Haar wavelet transform, we exploit the decorrelating properties of wavelets while
simultaneously capturing the positivity and “spikiness” of nonGaussian traffic. We
develop a queuing analysis for our model by exploiting its multiscale construction
scheme. We elucidate our model’s ability to capture the covariance structure of real
data and then fit it to real traffic traces. Queuing experiments demonstrate the
accuracy of the model for matching real data and the precision of our theoretical
queuing result. Our results indicate that a Gaussian assumption can lead to over-

optimistic predictions of tail queue probability.



Acknowledgments

I have many people to thank for making this thesis possible. I am greatly indebted
to Matthew Crouse whose work this thesis is based on and Rolf Riedi for both his
advice and the long hours he spent discussing various ideas with me. Many thanks
to my dynamic advisor, Dr. Richard Baraniuk, for his encouragement, patience and
lively character that make doing research with him a pleasure. I must also thank
Dr. Edward Knightly, Prof. Don Johnson and Dr. Dennis Cox for the enlightening
discussions I had with them.

My list would be incomplete if I left out all those who have made it possible for
me to study at a prestigious research institution like Rice University. I thank God
for all His blessings, my parents for their love and support and my teachers for the
education they gave me.

I also must thank my cooking group members Dins, Amit, Rahul, Pots, Neelsh,
Chis and Felix for their company and of course excellent focd. I also thank Dinesh
and Ravi for being excellent room-mates and Justin and Tao for being office-mates
par excellence. My bible study companions were a source of strength and guidance
and I especially thank C. J. Fretheim, Nathan Tallent, Justin Lokey and Damian
Dobric.

Last but not least, I must thank Texas Instruments, the National Science Foun-

dation and DARPA for their financial support that made this thesis possible.



Contents

Abstract
Acknowledgments
List of Illustrations

List of Tables

Introduction

Wavelet Models for LRD Processes
2.1 Long-rangedependence . . . .. ... .........
2.2 Wavelet transform . . .. ... .. ... .......

2.3 Wavelet-domain Independent Gaussian (WIG) model
Multifractal Wavelet Model

Queuing Analysis of Wavelet-Based Models

4.1 Queue size and multiple timescales . . . . ... ...

4.2 Queuinganalysis . ...................
4.2.1 Queuing formula for tree-based models . . . .
4.2.2 Queuing analysis of the WIG . ... .. ...
4.2.3 Queuing analysisof the MWM . . . . . . ...

Experimental Results

.........

.........

i

iil

=



5.1 Realdata . .. ... ... ... .. ... ... ... ...
5.2 Matchingof RealData . . . ... ... ......... .. ......

5.3 Queuing experiments . . . . . . . . . ... ... ... ...

6 The MWM is a Cascade
6.1 Cascades . . . . . . . . . ...,
6.2 Multifractal analysis . . ... ... ... ... ... ... .......

6.3 Multifractal spectrum and higher-order moments . . .. ... .. ..

7 Conclusions

A Proof of Lemma

Bibliography

30
30
31
31

34

35

37



1.1

2.1

3.1

5.1

5.2

5.3

9.4

6.1

INlustrations

Real WAN traffic and synthetic MWM and WIG data at different

aggregation levels . . . . . . . . ... Lo L.

The Haar wavelet system and the Wavelet-domain Independent

Gaussian (WIG) model construction . . . .. ... . ... ......

Multifractal Wavelet Model (MWM) construction . . . . ... .. ..

Histograms of real WAN data and synthetic MWM and WIG data at
different aggregationlevels . . . . . . . .. . ... ... ... .....
Comparison of variance-time plots of real data and synthetic WIG
and MWMdata . . . ... ... ... ... ...
Comparison of queuing performance of real traces and synthetic WIG
and MWMtraces . . . . ... . . ... .. ... ... ...
Validation of theoretical formula for tail queue probability of the
MWMand WIGmodels . . .. ... ... ...............



Tables

3.1 Comparison of the tree-based WIG and MWM models

........



Chapter 1

Introduction

Traffic models play a significant role in the analysis and characterization of network
traffic and network performance. Accurate models capture important characteristics
of traffic and enhance our understanding of these complicated signals and systems by
allowing us to study the effect of various model parameters on network performance
through both analysis and simulation.

One key property of modern network traffic is the presence of long-range depen-
dence (LRD) which was demonstrated convincingly in the landmark paper of Leland
et. al. [24]. There, measurements of traffic load on an Ethernet were attributed to
fractal behavior or self-similarity, i.e., to the fact that the data “looked statistically
similar” (“bursty”) on all time-scales. These features are inadequately described by
classical traffic models such as Markov or Poisson models. In particular, the LRD of
data traffic can lead to higher packet losses than that predicted by classical queuing
analysis [24, 12].

These findings were immediately followed by the development of new fractal traffic
models [39, 25, 4]. Fractional Brownian motion (fBm), the most broadly applied
fractal model, is the unique Gaussian process with stationary increments and the

following scaling property: for alla > 0
B(at) £ a" B(t), (1.1)

with equality in the sense of finite-dimensional distributions. The discrete increment

process G(k) := B ((k + 1)A) — B (kA), called fractional Gaussian noise (fGn), has



an autocorrelation of the form
2
fog
rolk] = 1AL (I + 11" — 2k + |k — 1), (1.2)

where A is a constant and the parameter H, 0 < H < 1, is known as the Hurst
parameter. Gaussianity and the strong scaling (1.1) make rigorous analytical studies
of queueing behavior possible [6, 29, 11, 30, 15], thus increasing the popularity of the
fBm /fGn models.

Processes approximating fBm/fGn can be synthesized almost effortlessly using
the amazing decorrelating capability of the wavelet transform [14, 44, 41, 22]. We
simply generate independent Gaussian wavelet coefficients with variances decaying
with scale as a power law and then invert the wavelet transform. Generalizations of
fBm/fGn with a more flexible scaling relation than (1.1) are easily generated as well.
Such models can approximate both the long and short-term correlations of a target
data set and have been used by a number of authors [27, 23]. We will term all such
models wavelet-domain independent Gaussian (WIG) models. The WIG synthesizes
N-point data sets in a fast O(N) algorithm.

Though traffic models based on fBm/fGn are appropriate in some cases (8, 43],
they have severe limitations. First, real-world traffic traces do not exhibit the strict
self-similarity of (1.1) or (1.2) and are at best merely asymptotically self-similar.
In other words, the single parameter H does not sufficiently capture the compli-
cated correlation structure of real network processes. Indeed, convincing evidence
has been produced establishing the importance of short-term correlations for buffer-
ing [10, 38, 17] and so-called relevant time scales have been discovered [38, 28, 16].
This shortcoming is surmounted by more versatile models such as the WIG [27] and
fractional ARIMA [40].

Second, the Gaussianity of fBm/fGn/WIG models can be unrealistic for certain



types of traffic, for instance when the standard deviation of the data approaches or
exceeds the mean. In this case, considerable parts of the fBm/fGn/WIG output are
negative (see Figure 1(a) and (b)).

Third, in many networking applications, we are nowhere near the Gaussian limit,
in particular on small time scales. Indeed, various authors have observed heavy-tailed
marginals in traffic [37, p. 364],[3)].

In this thesis, we propose a new model for network traffic, the multifractal wavelet
model (MWM), based on a multiplicative cascade in the wavelet domain that by
design guarantees a positive output. Since each sample of the MWM process is
obtained as a product of several positive independent random variables, the MWM’s
marginal density is approximately lognormal, a distribution with heavier tails than
the Gaussian. The MWM is thus a more natural fit for positive arrival processes.
This is especially true when the standard deviation is much larger than the mean
(as observed in the traces we have studied). Fitting the MWM to real traffic traces
results in an excellent match, far better than the WIG model, visually (see Figure
1(c)) and, as we will see, in the burstiness as measured by the multifractal spectrum,
in the marginals and the queueing behavior. It thus appears that the multiplicative
MWM approach is more appropriate than an additive Gaussian one.

In its simplest form, the MWM is closely related to the wavelet-based construc-
tion of fBm/fGn, having as few parameters (mean, variance, H). However, the MWM
framework boasts the flexibility, if desired, to additionally match the short-term cor-
relations like the WIG model.

Apart from matching crucial properties of real network traffic, a good traffic model
must possess an accurate and simple queuing analysis. By restricting our analysis to
data at time scales of powers of two, we exploit the inherent binary tree structure

of the MWM in deriving an easy-to-use — and as numerous experiments verify —
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a close approximation to the tail queue probability. As a consequence, the MWM
becomes viable for applications like call admission control. Our analysis is applicable
to tree-based models in general including the WIG.

After introducing wavelets and explaining the WIG model in Chapter 2, we de-
scribe the MWM in Chapter 3. We then perform a queuing analysis of the WIG and
MWM in Chapter 4. Chapter 5 provides empirical evidence for the accuracy of the
MWM in modeling real data as well as for the accuracy of our queuing analysis. We
give an intuitive introduction to multifractal cascades in Chapter 6 and close with
conclusions in Chapter 7. The proof of a lemma instrumental in our analysis appears

in the Appendix.
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Figure 1.1 : Bytes-per-time arrival process at different aggregation levels for (a) wide-
area TCP traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-3) [33], (b) one
realization of the state-of-the-art wavelet-domain independent Gaussian (WIG) model [27],
and (c) one realization of the multifractal wavelet model (MWM) synthesis. The top,
middle and bottom plots correspond to bytes arriving in intervals of 6ms, 12ms and 24ms
respectively. The top and middle plots correspond to the second half of the middle and
bottom plots, respectively, as indicated by the vertical dotted lines. The MWM traces
closely resemble the real data closely, while the WIG traces (with their large number of
negative values) do not.



Chapter 2

Wavelet Models for LRD Processes

2.1 Long-range dependence

The discovery of LRD in data traffic [24, 33] has incited a revolution in network
design, control and modeling. Intuitively, the strong correlations present in a LRD
process are responsible for its “bursty” nature that causes excessive buffer overflows
not predicted by traditional non-LRD traffic models such as Poisson and Markov
models [12].

Consider a discrete-time, wide-sense stationary random process {X;, t € Z}
with auto-covariance function ry[k] = cov(X;, X;+x). A change in time scale can be
represented by forming the aggregate process Xt('"), which is obtained by averaging

X over non-overlapping blocks of length m and replacing each block by its mean

Xim-m+1+ -+ Xim
— ;

XM = (2.1)

Denote the auto-covariance of Xt("‘) by rgz")[k]. The process X is said to exhibit
LRD if its auto-covariance decays slowly enough to render Y po ___ rx[k] infinite [7].
Equivalently, m rf\'-") [0] — occasm — oo and the power spectrum Sx(f) is singular
near f = 0.

An important class of LRD processes are the asymptotically second-order self-
stmilar processes, which are defined by the property rx[k] ~ k2#-2 for some H €

(1/2,1), or equivalently (see [7])

rO kL = (1/2)r[0)(k + 1127 — 21k 22 + [k — 1]2H) (2.2)



as m — oo. In words, these processes “look similar” on all scales, at least from the
point-of-view of second-order statistics. An example of such a process is the fGn
where the Hurst parameter H in (1.1) is exactly the scaling parameter (2.2).

To estimate H by the veriance-time plot method, we fit a straight line through
the plot of an estimate of log var(X(™)) against log(m). More reliable estimators of

H have been devised [40], in particular an unbiased one based on wavelets [1].

2.2 Wavelet transform

The discrete wavelet transform provides a multiscale signal representation of a one-
dimensional signal ¢(t) in terms of shifted and dilated versions of a prototype bandpass
wavelet function (t) and shifted versions of a lowpass scaling function ¢(z) [5, 9]

For special choices of the wavelet and scaling functions, the atoms
Vin(t) =272 p(2t — k), @;u(t) =22 ¢(Pt~k), jkeZ (2.3)

form an orthonormal basis, and we have the signal representation [9]

[ ]

C(t) = Z U Jo k ¢Jo’k(t) + Z Z Wj k wj,k(t)- (24)
k

j=Jo k

Here the wavelet coefficients w;x and the scaling coefficient u,, x are given by
wj,k = /C(t) '([)J"k(t) dt, a.nd UJok = /C(t) ¢J°,k(t) dt. (25)

Without loss of generality, we will assume Jy = 0.

In this representation, k indexes the spatial location of analysis and j indexes the
scale or resolution of the wavelet analysis — larger j corresponds to higher resolution
and j = 0 indicates the coarsest scale or lowest resolution of analysis. In practice,
we work with a sampled or finite-resolution representation of c(t), replacing the semi-

infinite sum in (2.4) with a sum over a finite number of scales0 < j < n—1, n € Z,.



Using filter-bank or pyramid algorithm techniques, the forward and inverse wavelet
transforms of an N-point signal can be computed in O(NN) operations.
In this paper, we restrict our attention to the simplest wavelet system, the Haar.

The Haar scaling and wavelet functions are given by (see Figure 2.1(a) for ¢;(t) and
Vjk(2))

1, 0<t<1/2
1, 0<t«1
#(t) = and Y(t)=¢ -1, 1/2<t<1 (2.6)
0, else
0, else.

The Haar scaling coefficients u;x are obtained by integrating the product of the signal
c(t) and the rectangular scaling function ¢;(t) as in (2.5). They represent the local
mean values of the signal in the time intervals [k2~7, (k+1)277]. The continuous signal
c(t) can thus be approximated at resolution j by the discrete signal u;x, k € Z. The
support of ¢;x(t) for different values of j and k are the intervals [k277, (k + 1)277].
By design they are nested within each other and the relationship between coefficients
u;x is well-captured by a binary tree (Figure 2.1(b)). Nodes at horizontal levels in
the tree correspond to representations of the signal at different approximations with
finer resolutions situated lower in tree.

The wavelet coefficients w; represent the difference between local means in the
time intervals [k277, (k + 1/2)277] and [(k + 1/2)277, (k + 1)277]. They provide the
detail information required to move from level j on the scaling coefficient tree to the
next finer level j + 1. Thus, the Haar wavelet transform of a signal can be computed

recursively starting from its finest-scale scaling coefficients via [9]
Uik = 27 (ujoe + Ujgk1),  Wiork = 272 (w0 — U ki) (2.7)

This corresponds to moving up the binary tree and storing the detail information w;

lost while going from a finer to coarser resolution of the data (Figure 2.1(b)).
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Figure 2.1 : (a) The Haar scaling and wavelet functions ¢;x(t) and ¥;x(t). (b) Binary
tree of scaling coefficients from coarse to fine scales. (c) Recursive scheme for calculating
the Haar scaling coefficients Uj.1.2x and Uj;1.2k+1 at scale j + 1 as sums and differences
(normalized by 1/+/2) of the scaling and wavelet coefficients Ujx and Wjx at scale j. For
the WIG model, the W;’s are mutually independent and identically distributed within
scale according to W;x ~ N(0,0%).

L;I+2.-Ik+2 Lll*zv“*-’

The inverse Haar wavelet transform, computes finer scale scaling coefficients from

coarser scale scaling and wavelet coefficients via
ujoe = 272 (uj 1 +wjo1k) and wjoker = 272 (ujo 1k — w1 k) (2.8)

and is equivalent to moving down the scaling coefficient tree to get finer representa-
tions of the signal by adding in the wavelet coefficient terms.

We introduce three different processes: the continuous-time signal c(¢), its integral
D(t), and a discrete-time approximation C[k] to c(t). These three signals are related
by

-n

(k+1)2—"
ClK] := / o(t) dt = D ((k +1)2™") — D (k2~") . (2.9)
k

In this paper, C[k] and D(t) will play réles analogous to f{Gn and f{Bm, respectively.
For notational simplicity, we will assume that both c(¢) and D(¢) live on [0, 1]
and that C[k] is a length-2" discrete-time signal. Thus, there is only one scaling

coefficient Uy in (2.4). Note that we use capital letters when the underlying variables
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are random. (A more general case with multiple scaling coefficients at the coarsest

scale is treated in [36].) C[k] relates directly to the finest-scale scaling coefficients:
Clk] = 27"2U,s, k=0,1,...2" — 1. (2.10)

We will focus on modeling C[k] in this paper.

2.3 Wavelet-domain Independent Gaussian (WIG) model

Wavelets serve as an approximate Karhunen-Loéve or decorrelating transform for fBm
[14], fGn, and more general LRD signals [23]. Hence, the difficult task of modeling
these highly correlated signals in the time domain reduces to a simple one of modeling
them approximately by an uncorrelated process in the wavelet domain.

The WIG model synthesizes Gaussian LRD data by generating the parent node
of the scaling coefficient tree, Uy g, with a required Gaussian distribution and wavelet
coefficients as independent (and hence uncorrelated) zero-mean Gaussian random

variables, identically distributed within scale according to
Wik~ N(0,5%), (2.11)

with o7 the wavelet-coefficient variance at scale j [14, 44, 41, 22, 27]. Scaling coef-
ficients at finer scales on the tree are then recursively computed through (2.8) until
the finest scale scaling coefficients U, and hence the required signal Cy,c[k] are ob-
tained. The result is a fast O(N) algorithm for generating a length-N signal (see
Figure 2.1(c)).

An attractive feature of the WIG model is its flexibility in matching different
correlation structures of LRD processes. A power-law decay for the a;‘-”s leads to
approximate wavelet synthesis of fBm or fGn [14, 44]. However, while network traffic

may exhibit LRD consistent with fBm or fGn, it may have short-term correlations
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that vary considerably from pure fBm or fGn scaling. Such LRD processes can be
modeled by setting 012 to match the measured or theoretical variances of the wavelet
coefficients of the desired process [27]. Thus, for a length-N signal, the WIG is
characterized by approximately log,(/V) parameters.

The WIG is an additive model because we can express the signal Cy,c[k] directly
as a sum of independent random variables. Decomposing each shift £ into a binary

expansion k = 37! k/27~1~% defines the k} € {0,1} uniquely and we can write
=0 Vi 3

n—1
Cwiclk] = 272U, = 27" (Uo,o + Z(—l)"?z"ﬂmk‘.) , (2.12)
=0
with
i—1
ko:=0, and k=) Kk2"'7, i=1,..,n-1 (2.13)
j=0

This result can be derived by iteratively applying (2.8).

The WIG model assumes Gaussianity, but network traffic signals (such as loads
and interarrival times) can be highly nonGaussian (Figure 1). Not only are these
signals strictly non-negative, but they can exhibit “spiky” behavior corresponding to
a marginal distribution whose right-side tail decays much more slowly than that of a
Gaussian. We seek a more accurate marginal characterization for these spiky, non-
negative LRD processes, yet wish to retain the decorrelating properties of wavelets

and the simplicity of the WIG model.
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Chapter 3

Multifractal Wavelet Model

In order to model non-negative signals using the wavelet transform, we must develop
conditions on the scaling and wavelet coefficient values for c(t) in (2.4) to be non-
negative. While cumbersome for a general wavelet system,! these conditions are
simple for the Haar system.

Since the Haar scaling coefficients u;x represent the local mean of the signal at
different scales and shifts, they are non-negative if and only if the signal itself is non-
negative; that is, c(t) > 0 & u;x > 0, V j, k. This condition leads us directly to a set
of constraints on the Haar wavelet coefficients. Combining (2.8) with the constraint

ujx > 0, we obtain the condition
C(t) > 0 |wj,k| < Uj ks v j, k. (31)

The positivity constraints (3.1) inspire a very simple multiscale, multiplicative
signal model for positive processes. In the multifractal wavelet model (MWM) [36] we

compute the wavelet coefficients recursively by
Wit = Ajx Ujk, (3.2)

with A;,x a random variable supported on the interval [~1,1]. We assume that the

A;i’s are independent. Together with (2.8), we obtain (see Figure 3.1)

Ujae = 27Y2(1 + Aj1x) Uiy, Ujar+r =27Y2(1 = Ajo14) U1 - (3.3)

! The conditions are straightforward also for certain biorthogonal wavelet systems.
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See [42] for a similar model used as an intensity prior for wavelet-based image esti-
mation.

The MWM synthesizes a data trace in a similar manner to the WIG with the
difference that independent multipliers A;; are generated instead of independent
wavelet coefficients W) . After generating the coarsest scale scaling coefficient Uy g
and the multipliers A;x, the MWM generates scaling coefficients at finer scales of the
scaling coefficient tree recursively using (3.3) until the finest scale has been reached.
The total cost for computing N MWM signal samples is O(N). In fact, synthesis of
a trace of length 28 data points takes just 8 seconds of workstation cpu time.

The MWM is a multiplicative model because we can express the signal Cywu[k]
directly as a product (or cascade) of independent random multipliers 1 + A4, . Using

the notation introduced in (2.13), we have

n—1

Cuwulk] = 27"2Uny = 27" Up o H(l + (-1)% Aik), (3.4)

i=0
which should be compared with (2.12).

It remains to choose an appropriate distribution for the multipliers A, and the
scaling coefficient Upo. For simplicity of development, we will assume that the A;’s
are mutually independent and independent of Uyg. Consequently, A, and Uj are
independent for all j, k. We will also assume that the A;,’s are symmetric about 0
and identically distributed within scale; it is easily shown that these two conditions
are necessary for the resulting process to be first-order stationary [36]. Due to its
flexible shape (see Figure 3.1(b)), compact support and tractability to closed-form
calculations, we choose the symmetric beta distribution® [21], B_; :(p,p) (see Figure
3.1(b)) for the Ajx’s

Ajk ~ B-11(pj,Pj), (3.5)

2We denote a beta random variable with support [a, b] by 85
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Figure 3.1 : (a) Multifractal wavelet model (MWM) construction: At scale j, generate the
multiplier Ajx ~ B(pj,p;), and then form the wavelet coefficient as the product Wy =
A;xUjk. At scale j+ 1, form the scaling coefficients in the same manner as the WIG model
in Figure 2.1(c). (b) Probability density function of a 3-,,(p,p) random variable A. For
p = 0.2, B_;,1(p, p) resembles a binomial distribution, and for p = 1 it has a uniform density.
For p > 1 the density is close to a truncated Gaussian density with increasing resemblance
as p increases.

with p; the beta parameter at scale j. The variance of a random variable A ~ 3(p, p)

is
1
T 2p+1°

In the MWM, the p; play a rdle analogous to the ¢ of the WIG model as they

var[A] (3.6)

allow us to control the wavelet energy decay across scale through

va.r(I/VJ-_lvk) _ 2 Val'[Aj_[,k] _ 2pJ +1

var(Wyz)  var[A;i] (L+var[A;_ 1)) P+ 1 (3.7)

Thus, to model a target process with the MWM, we can select the p;’s to match
the signal’s theoretical wavelet-domain energy decay. Or, given training data, we
can select the parameters to match the sample variances of the wavelet coefficients
as a function of scale. With one beta parameter per wavelet scale, the MWM has
approximately log, N parameters for a trace of length N. Distributions with more

parameters (e.g., discrete distributions or mixtures of betas) could be used to capture
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Table 3.1 : Comparison of the tree-based WIG and MWM models. For approximating a
signal with a strict fGn covariance structure, both the WIG and MWM require only three
parameters (mean, variance, and H).

WIG MWM
Additive Multiplicative
Gaussian Asymptotically Lognormal
LRD matched LRD matched

log, NV + 2 parameters log, N + 2 parameters

O(N) synthesis O(N) synthesis

high-order data moments at a cost of increased model complexity [36]. See Table 3.1
for a comparison of the WIG and MWM properties.

To complete the modeling, we must choose the parameter py of the model and
characterize the distribution of the coarsest scaling coefficient Uyg. From (3.2) and
(3.6) we obtain

(2po + 1)var(Wyo) = ]E[U&O], (3.8)

which allows us to calculate po from estimates of IE[UZ,] and var(Wyg). A precise
model of Upg would require a strictly non-negative probability density function to
ensure the non-negativity of the MWM output. In our simulation experiments in
Chapter 5, we use a § random variable with positive support, that is, Uy g ~ Bo ar(p, q)
with M > 0. See Figure 1(c) for a sample realization of the MWM. Clearly, the MWM
produces positive “spiky” data akin to the real traffic unlike the WIG model.
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Chapter 4

Queuing Analysis of Wavelet-Based Models

The importance of queuing analysis in network design and control cannot be overem-
phasized. Buffer dimensioning in routers and call admission control are but two of the
many crucial areas in networking research that rely on an accurate characterization
of the queuing behavior of data traffic.

The discovery of LRD in traffic has created a challenging new area of research in
queuing theory. The strong correlations in LRD traffic are responsible for its “bursty”
nature that can lead to higher packet loss in queues than that predicted by short-range
dependent (SRD) models [12]. This finding has been bolstered by theoretical queuing
results for fGn, the pre-eminent LRD traffic model at present. When fGn is input to
an infinite-length queue with constant service rate, the tail queue distributions decay

asymptotically with a Weibullian law
P[Q > z] ~ exp(—éz>~2H), (4.1)

with § a positive constant that depends on the service rate of the queue [11, 29].
Clearly, (4.1) reveals that the decay of the tail queue distribution for fGn with H >
1/2 is much slower than the exponential decay predicted by SRD classical models [12]
which correspond to the case H = 1/2. In spite of this result, there is still an ongoing
discussion on the effect of LRD on queuing, with researchers arguing both for and
against its importance [38, 17, 34, 32, 28, 16].

In Chapter 3 we described the versatile MWM model that is capable of capturing

the correlation structure of traffic as well generating a positive output. Since the



17

MWM has a fast O(N) data synthesis algorithm, it is of potential use for simulation
experiments. In order to expand the range of applications of the MWM beyond
simulation, we provide in this section a theoretical queuing analysis of it. We exploit
the inherent binary tree structure of the Haar scaling coefficients of the MWM to
derive a simple approximate formula for the tail queue probability. Our analysis
is also applicable to other tree-based models like the WIG. We will show later in
Chapter 5 that our theoretical result is a good approximation of the empirical tail

queue behavior of both the WIG and the MWM.

4.1 Queue size and multiple time scales

Consider a discrete time random process X;, i € Z, which we regard as the workload
entering an infinite buffer single server queue with constant link capacity c. Let Q;
represent the queue size at time instant :. Denote by K, the aggregate traffic arriving

between time instants —r + 1 and 0, that is,

0
K, = Z X;. (4.2)
i=—r+l

In the sequel, we refer to K, as representing data at time-scale r. We set Ky :=
The famous Lindley’s equation [26] gives
Qo = max(Q-; + Xp —¢,0) = max(max(Q-2 + X_; —¢,0) + Xy — ¢, 0)
= max(Q_2 + X_; + Xo — 2¢, Xg — ¢, 0) (4.3)
= max(Q-2 + K> — 2¢, K| — ¢, Ky). (4.4)
Proceeding iteratively we obtain
Qo =max(Q_, + K, —rc,---, Kp). (4.5)

Since @_, > 0 for all r we must have Qg > sup,.. Z_(Kr — rc). Denoting by —j the

last instant the queue was empty before time instant 0 (we set —j = 0 if Qg = 0),
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we obtain Qp = K; — jc < Sup, L(K' —rc). Thus if the queue was empty at some

time in the past,

Qo = sup (K, —rc). (4.6)

re

We will study the quantity Qo obtained by taking the supremum in (4.6) over a

finite subset of Z, corresponding to powers of 2 values for n (or dyadic time scales),
that is,

Qo = sup (Kom —c2™), (4.7)
mef0,---n}

for some fixed n € Z,. Clearly, QO < @o.

We will approximate the desired tail queue probability by! P(Qo > b) ~ P(Q, >
b). Assuming the existence of a critical time scale (CTS) [38, 28, 16|, that is, r* such
that P(K,. —cr* > b) = P(Qo > b), we present the following two heuristic arguments

for our approximation:

1. Dyadic time scales, though a small subset of Z,, span the entire range of time
scales. This ensures that the nearest dyadic time scale to the CTS captures its
effect on P(Qo > b). One argument for considering dyadic time scales in (4.7)
(ie. € {2™ :m € {0,---,no}; ng € Z, }) rather than, say, equally spaced time
scales (i.e. 7 € {1+ym:m € {0,---,n;};n1,v € Z.}, is that the analysis does
not change significantly if we start analyzing data at a coarser time resolution.
As an illustration, let us say we have a real data trace of packets arriving every
milli-second and wish to study the tail queue behavior of the underlying real
process using (4.7). By using equally spaced time scales with v = 3, that is
r € {1,4,7,10,---}, we will consider data at time resolutions lms, 4ms, 7ms

and so on. If instead we had the same real data set but with a finest resolution

1Here x denotes that two quantities are approximately equal.
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corresponding to bytes per 2ms, we would consider time resolutions 2ms, 8ms,
14ms, 20ms etc. Intuitively, we would expect these analyses to give different
results. If instead we use dyadic time scales, we will use time resolutions 1ms,
2ms, 4ms, 8ms etc. in the first case and 2ms, 4ms, 8ms etc. in the second. Qur
results will be the same barring the effect of the finest time scale (1ms) on the

queue size.

2. The approximation will capture the effect of the CTS if n > r* and we are thus

justified in neglecting time scales r > n.

4.2 Queuing analysis
4.2.1 Queuing formula for tree-based models

Performing an exact queuing analysis of tree-based models like the WIG and MWM
is very complicated because their binary tree naturally produces a process that is not
strictly stationary [36]. We would thus expect the distribution of the queue size to
vary with time. As an illustration, in Figure 2.1(b) the neighboring nodes Uj.2
and Uji2,4k+1 have a parent node U, o at scale j + 1 while the nodes Uj 2 4+ and
Uj+2,4k+2 do not.

Here, we will concentrate on the tail queue probability of the models at the instant
the last data point of the model output, C[2" — 1], enters the queue. In other words,
we choose X; = C[2" — 1 +¢]. The Haar scaling coefficients on the branch linking Uy o
and Uy, an_, or right edge of the tree of Figure 2.1(b), are related to the quantities
Kom (4.2), that is

Kon-s =270, 5, fori=0,---,n, (4.8)

and a queuing analysis is feasible.
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Experimental evidence indicates that such an analysis closely approximates the
empirically observed tail queue probability obtained by passing several synthetic
traces of the models through a queue. Though it is not obvious why this must be true,
there is some intuition as to why the result of such an analysis must closely match the
queuing behavior of stationary data that we model. Say we are modeling fGn, G(k),
with the WIG and are interested in obtaining the tail queuing probability at the time
instant G(2" — 1) enters the queue. Then on taking a Haar wavelet transform of fGn
data points between 0 and 2™ — 1, the quantities Kom correspond to the nodes on the
right edge of the WIG’s scaling coefficient tree. Since the Haar wavelet coefficients of
fGn are nearly uncorrelated [22], the corresponding WIG scaling coefficients model
the quantities Kom well.

For the ease of notation let us denote Qo and Qo of Section 4.1 by é and Q
respectively. Let E; denote the event {Kon-i < b+ c2"'}. The following Lemma
simplifies our analysis.

Lemma: Assume that the events E; are of the form E; = {J; < b;}, where J; =
Jioiv + Liy for 1 < i < n and where Jy, Lgy,---, L, are independent. Then for
1<i1<n.

P(E;|Ei-1,-- -, Eqg) > P(Ey).

Proof: Given in the appendix.

Assuming the conditions of the Lemma to be true

P(Q>b) = 1-P(Q<b)=1-P(N’yE;) from (4.7)

= 1-P(Eo) [[P(E|Ei-s,- -+, Eo)

=1

< 1-[[P(E:) =: Papp(@ > b). (4.9)

i=0

We thus arrive at an upper bound approximation Papp(é > b) of P(@ > b) by
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assuming the events E; to be independent. Intuitively, our approximation (4.9) not
only assumes that dyadic scales are sufficient for an accurate queuing analysis, but
also that they are sparse enough to be considered independently.

Recall from Section 4.1 that Q < Q. This implies that P(@ > b) < P(Q > b),
which means that Papp(é > b) is an upper bound of a lower bound on P(Q > b).

Our queuing approximation is thus

P(Q>b) ~ 1 - [[rgP(Kon—i < b+c2%%) =: Papp(Q > b). (4.10)

4.2.2 Queuing analysis of the WIG
For the WIG, on choosing Jy := Upg and L; := —2/2W, »_, we obtain from (4.8)
i-1
Kopn-i = 27* (UO.O + Z LJ) = 2-iJi. (411)
Jj=0

Setting b; = b2* +c2", we observe that the WIG satisfies the conditions of the Lemma.
We thus use (4.10) to approximate P(Q > b) for the WIG.

Since for the WIG Kj.-: is Gaussian, by estimating the mean and variance of
Kon-i, the probability P(E;) can be computed from the cumulative distribution of a

Gaussian distribution for which numerous approximations are available [21].

4.2.3 Queuing analysis of the MWM

Denoting A;,i_; by 4;, (4.8) reduces to
i-1
Kopnmi = Upp [ [(1 - 45)/2. (4.12)
j=0
The event Ej; is thus
i-1

E; = {Kp-i <b+c2"} = {U[J(1 - 4)) < b2' +c2"}

j=0
i-1
= {log(Uo) + Z log(1 — A;) < log(b2* + c2")} . (4.13)
7=0
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By setting Jp := log(U), L; := log(1 — A;) and b; := log(b2! + c2") we see that the
MWM satisfies the Lemma. Consequently, we use (4.10) to approximate P(Q > b)
for the MWM.

For the MWM, obtaining P(E;) is not as straightforward as for the WIG. If Uy g is
equal to a constant M times the random variable 8y, (p_,,¢_,), then from (4.12) Kon—:
is M times several independent fBp; random variables. We approximate Kopui /M

by a beta random variable, fo1(d;,e;), using Fan’s approximation [13]. Thus, if

(1= Aj)/2 ~ Bo,(pj, q;) then
d; = S(T - 5*)71(S —T) and &; = (1 - S)(T - §3)~}(S - T), (4.14)

where

pi(pi +1)
5= H and T'= H (0 +q5)(pj +q; + 1) (415)

This approximation matches the mean and variance of the actual distribution of

J——l j=-1

Kn-i exactly and closely approximates the first 10 moments [13]. We thus use the
cumulative distribution of a 4 random variable to calculate P(E;), for which several
approximations are available [21].

Thus given model parameters for the WIG and MWM, Papp can be calculated
as above. If instead, we model training data with the WIG and MWM we must first
estimate the model parameters after taking a fast O(V) wavelet transform of the

data.
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Chapter 5

Experimental Results

The first goal of this section is to evaluate the capability of the MWM in modeling
LAN and WAN traffic and compare it to the WIG. The second goal is to determine
the accuracy of our theoretical queuing approximation (4.10). Although the LRD of
network traffic was first established in Ethernet LAN traffic [24] and later in WAN
traffic [33], few models exist for them, and LRD traffic modeling has been mainly
restricted to video traffic 27, 20].

5.1 Real data

We use two well-known real data traces in our experiments. The first (LBL-TCP-3)
contains two hours wide-area TCP traffic between the Lawrence Berkeley Laboratory
and the rest of the world in 1994 [33]. We form a data trace by counting the number of
bytes that arrive in consecutive time intervals of 6ms and use the first 22° data points
in our simulation experiments. This trace has a sample mean of 257.5 bytes/(unit
time) and sample standard deviation of 562.6 bytes/(unit time).

The second real data set (BC-pAug89) is one of the celebrated Ethernet data
traces collected at Bellcore Morristown Research and Engineering facility in 1989 and
has been extensively analyzed [24]. We obtain a data trace by summing the bytes of
packets that arrive in consecutive time intervals of 2.6ms. We use the first 220 data
points of this trace in our experiments. This trace has mean 345.8 bytes/(unit time)

and standard deviation 703.4 bytes/(unit time). The BC-pAug89 trace is approxi-
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mately a realization of a second-order self similar process with H = 0.79 [2].

5.2 Matching of Real Data

In order to study how well the WIG and MWM models match real data, we train
them on the the real data traces. To fit the WIG and MWM models to the data,
we use the procedure outlined in Section 2.3 and Chapter 3, which involves taking
a Haar wavelet transform of the real data and estimating the variances 012- of the
wavelet coefficients at each scale. We estimate these variances only at the 15 finest
scales, because at coarser scales there are not a sufficient number of coefficients to
obtain good variance estimates. As a result, we synthesize data traces of maximum
length 215 data points. For the MWM, we model the coarsest-scale scaling coefficient
Us,e as a constant times a symmetric! §y; random variable with mean and variance
equal to the sample mean and variance of the scaling coefficients of the real data at
this scale.

With trained models in hand, we now generate synthetic data traces. Due to
space constraints, fitting results for only the LBL-TCP-3 trace are presented here
(see [36] for results on BC-pAug89). Recall from Figure 1 that visually the synthetic
MWM looks very similar to the real trace while the WIG does not. On comparing the
marginals of WIG and MWM traces to that of the LBL-TCP-3 trace at three different
aggregation levels (Figure 5.1), we observe that the MWM marginals are similar to

that of the real data trace, while the Gaussian WIG marginals differ significantly.

! At very coarse time resolutions where the data is approximately Gaussian, a symmetric 8 random
variable can suffice to model the scaling coefficients. If the coarsest scale is chosen to coincide
with time scales where a Gaussian approximation may not be appropriate, an asymmetric 3(p, q)

distribution, that is p # ¢, would be a more appropriate choice.



25

To compare the correlation matching abilities of the two models, we plot variance-
time plots of the real data, the MWM traces, and the WIG traces in Figure 5.2. The
variance-time plot estimates were obtained by averaging the empirical variance-time
plots of 32 independent realizations of the models. Observe that, as expected, both
the MWM and WIG models do a good job of matching the correlation structure of

the real data.

5.3 Queuing experiments

Intuitively, the more traffic characteristics (correlation structure, marginals etc.) a
model matches, the better will it match the queuing behavior of real traffic. Hence,
it is not surprising that a perfect fitting of second-order correlations and marginals
as done in [18] leads to a good match of queuing behavior. In contrast to [18] that
modeled data using several parameters, the MWM through few parameters, closely
approximates the correlation structure of a target data set and naturally produces
a marginal distribution resembling that of the real trace. Since both the WIG and
MWM capture the correlation structure of real data, we study the effect of marginals
on queuing behavior by comparing their ability to capture the queueing behavior of
the two real data sets.

In all experiments, the coarsest scale scaling coefficient in the MWM is distributed
as a symmetric beta random variable.

In experiments with real traces, data traces are fed as input to an infinite-length
single-server queue with link capacity 800 bytes/unit time. We estimate the tail queue

probabilities of the various data traces as

number of time instants Q > z
total time duration of trace i

PiQ >z = (5.1)

We also provide estimated confidence intervals with confidence level of 95% for the
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estimated queue distribution (I/L)Z}{‘:lf’i[Q > z|, where L is the total number of
traces, assuming that it is a Gaussian random variable [19].

With both real traces, we performed the same queuing experiment. After syn-
thesizing 1000 WIG and MWM traces of length 2!°, we fed them as input to our
theoretical queue and obtained their queuing behavior.

In Figure 5.3 we compare the average queuing behavior of the WIG and MWM
traces to that of the real traces. Observe that the MWM traces closely match the
queuing behavior of the real data traces while the WIG traces do not. Also observe
that our theoretical queuing approximation (Papp) of (4.10) tracks the tail queue
probability of the models closely.

To confirm the accuracy of (4.10) further experiments were performed with syn-
thetic WIG and MWM traces. We chose model parameters corresponding to an fGn
correlation structure and varied the mean, variance and Hurst parameter and fixed
the link capacity at ¢ = 10 units. Each trace was of length 2?° data points. Due
to space constraints, we present results for only few cases in Figure 5.4. In all cases
we observe that (4.10) is indeed a good approximation to the empirical tail queue
behavior and that the MWM exhibits larger tail queue probabilities than the WIG.

These queuing experiments indicate that the correlation structure of traffic is not
the only factor with an impact on the queuing behavior of data traffic. Since the
MWM outperforms the WIG model in matching queuing behavior, we conclude that

the marginals have a substantial effect on the queuing behavior of traffic.
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Figure 5.1 : Histograms of the bytes-per-times process at different aggregation levels for
(2) wide-area TCP traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-3) [33],
(b) one realization of the WIG model, and (c) one realization of the MWM synthesis. The
top, middle and bottom plots correspond to bytes arriving in intervals of 6ms, 12ms and
24ms respectively. Note the large probability mass over negative values for the WIG model.
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Figure 5.2 : Variance-time plot of the LBL-TCP-3 data “x”, the WIGdata “o”, and one
realization of the MWM synthesis “o”. Both the MWM and WIG capture the correlation

structure of the real data.
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Figure 5.3 : Comparison of the queuing performance of real data traces with those of
synthetic WIG and MWM traces. In (a), we observe that the MWM synthesis matches
the queuing behavior of the LBL-TCP-3 data closely, while the WIG synthesis does not.
In (b), we observe a similar behavior with the BC-pAug89 data. We also observe that our
theoretical prediction of queuing behavior for the WIG and MWM matches their empirical

queuing behavior.
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Figure 5.4 : Validation of theoretical formula (4.10) for tail queue probability of the MWM
and WIG models. Experiments used synthetic WIG and MWM traces corresponding to an
fGn correlation structure for different values of Hurst parameter H. In (a) H = 0.6, in (b)
H = 0.7 and in (c) H = 0.8. In all cases, the mean, standard deviation and link capacity
were 7, 7 and 10 units respectively. Observe that in all cases the formula gives a good
approximation to the empirical queuing behavior. Also observe that the MWM exhibits a

higher tail queue probability in all cases.
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Chapter 6

The MWM is a Cascade

We now link the MWM with the theory of multiplicative cascades. Cascades provide
a natural framework for producing positive “bursty” processes and offer greater flexi-
bility and richer scaling properties than fractal models such as f{Gn and fBm. Closely
related to cascades is the powerful theory of multifractals, which provides statistical

tools for measuring “burstiness”.

6.1 Cascades

The backbone of a cascade is a construction where one starts at a coarse scale and
develops details of the process on finer scales iteratively in a multiplicative fashion.
This construction procedure naturally results in a process that “sits” just above the
zero line and emits occasional positive jumps or spikes. In contrast, additive self-
similar models such as fGn and the WIG “hover” around the mean with occasional
outbursts in both positive and negative directions.

The MWM is a multiplicative cascade, as (3.3) and (3.4) reveal (see Figure 6.1(a)).
In accordance with the notation for cascades, setting

_ 0+ (DA,

MJ =UJ and M;, 5 , 0<i<m, (6.1)
and substituting into (3.4) leads us to (see Figure 6.1(a))
n
Cuwnlk] = 27Mg [ | Mix., (6.2)

=1

with the k; and k! defined as in (3.4).
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6.2 Multifractal analysis

Intuitively, multifractal analysis measures the frequency with which bursts of different
strengths occur in a signal. Consider a positive process Y (t). The strength of the
burst of Y at time £, also called the degree of Héolder continuity, can be characterized
by

a(t) = lim ta;:n where af := —% log, IY((k,, +1)27") — Y(k,,2“")| (6.3)

ka2-"—
where k,27" — t means that t € [k,27™,(k, + 1)2™") and n — oo. The smaller
the a(t), the larger the increments of Y around time ¢, and the “burstier” it is at
time £. The frequency of occurrence of a given strength a, can be measured by the

multifractal spectrum:
f(a) :==dim{t : a(t) = a} (6.4)

By definition, f takes values between 0 and 1 and is often shaped like a N and
concave. The smaller the f(a), the “fewer” points ¢ will exhibit a(t) =~ a. If &
denotes the value a(t) assumed by “most” points ¢, then f(@) = 1. See Figure 6.1 for
the multifractal spectrum of the LBL-TCP-3 data set and of synthetic MWM data.
We observe that the MWM captures the spectrum of the real data except for large
values of . This means that the MWM does not generate as many small values as

the signal possesses.

6.3 Multifractal spectrum and higher-order moments

Though (6.4) gives us a simple measure of burstiness in data, in practice it is impos-
sible to compute the right side of (6.4). However, f(a) can be obtained through the

use of high and low-order moments of the signal Y (¢).
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Define the partition function that captures the scaling of different moments of Y’

as
T(g) = lim —log, E[Sa(a)], (635)
with
m—1 p L. |
Sa(g) =D [Y((ka +1)277) = Y(ku2™™)|" = Y 27, (6.6)
kn=0 k=0

The multifractal spectrum f(a) and T'(q) are closely related, as the following hand-
waving argument shows. Grouping in the sum S,(q) of (6.6) the terms behaving as
af = a, and using (6.4) we get

5a(@) = XaXawma (27 =3, 20270
~ 9—ninfa(ga—f(a))_

(6.7)

We conclude that we must “expect” T(g) to equal inf,(ga — f(a)), the so-called
Legendre transform of f(a). For the special case of an MWM process, i.e., Y = D
(see Section 2.2 for the definition of D), it can be shown (see [35]) that the inverse

relation holds, called the multifractal formalism
f(e) = T"(@) = inf (ga - T(@)). (68)

In order to estimate T'(q) from a data set, it is customary to use the approximation

27T ~ §,(q). For the MWM this is equivalent to

251
279T@ = 3 " |279/2 0. (6.9)
k=0

The slope of a linear fit of log S(;)(q) against j will give T'(q).

For the MWM, assuming the moments of the multipliers M; . converge to a lim-

iting random variable M ~ [, (p,p), we find

—1 —log, E[M?] = —1 — log, S&XC) 3¢/, 5 4
To(g) ={ & (M) 2 Teptar) 4 (6.10)

—00 ifg < —p.
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Figure 6.1 : (a): The MWM translates immediately into a multiplicative cascade in the
time domain (cf. (6.2)). (b) Multifractal spectra of the LBL-TCP-3 data and one realization
of the MWM synthesis. The MWM spectrum matches that of the real data closely except
for large values of a or small values of the signal.

For the self-similar fBm,

gH -1 forgq> -1,
Tm(g) = (6.11)
—00 forg < —1.

On taking the Legendre transform of Tig,, we observe that fBm possesses only one
degree of “burstiness” (a(t) = H) which is omnipresent. Consequently, fBm (or
its increments process fGn) cannot capture the complicated multifractal behavior or

“burstiness” of real data like the LBL-TCP-3 trace (Figure 6.1).
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Conclusions

The MWM provides a new multiscale tool for synthesis of nonGaussian LRD traffic.
Computations involving the MWM are extremely efficient — synthesis of a trace of
N sample points requires only O(N) computations. In fact, synthesis of even long
2% point data sets takes just seconds of workstation cpu time. The parameters of
the MWM, numbering approximately log N, are identical in number to the WIG
model and are simple enough to be either inferred from observed data or chosen a
priori. We can reduce the number of parameters further by developing a parametric
characterization of the wavelet energy decay across scale.

With the MWM, we have been able to fit actual traffic traces, and have developed
preliminary queueing results that demonstrate the impact of the nonGaussian nature
of traffic on queueing performance.

We derived an approximate queuing formula for the MWM and demonstrated its
accuracy through experiments. As a consequence, the versatile MWM model is now
viable for numerous applications including call admission control.

Further research could make the MWM practicable for data prediction. The
parameters of the MWM could also be used to capture the effect of different protocols
on shaping data traffic (e.g., the TCP protocol). In short, the use of the MWM in

real-time network protocols and control algorithms seems very promising.
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Appendix A

Proof of Lemma

Lemma: Assume that the events E; are of the form E; = {J; < b;}, where J; =
Ji_1+ Li_y for 1 < i < n and L; are mutually independent and independent of J;.
Then P(E{E;i_1,---,Ey) > P(E;) for1 <i<n.

Proof

Let fz and Fz denote the probability density function and cumulative density func-
tion, respectively, of a random variable Z. We will simplify the notation by denoting
Fzie(z|E), where E is an event, by Fzg(z). Let J;; := Ji|E;_1,---, Eg for i > 1 and
Jo,1 = Jo. Also, let J;g := J;|E;,- -+, Eg. Then

Frigi_ ez} fori>1
FJ‘-J(l’) _ JilEi—y Eo( ) (Al)
FJO(:L'), t=0,VreR,
and
FJ.',o (.’L’) = FJ.'IE.’,-",EO (.’Z.') vz € R. (A'Q)

Claim: Fj, (z) > Fj,(z) Yz € IR and Vi.

From (A.1) we see that this claim is true for ¢ = 0. Let us assume
FJi.l 2 Fy,. (A'3)

The key fact to note is that Jiy1,1 = Ji0+ L;, since L; is independent of J; and hence

of the events Ej for j < i. Now from Baye’s rule [31]

Fri (=)

m if z < b;

FJ;',o (.'L') =
1 otherwise

2 FJi.x (.’L') (A»4)
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FJi-i-l.l (z) = P(Jio + Li < z)

- [ _:“ Frealio) fru () diso d

= [ Frae-t)fu ) a

> [“FuG-0R@d fom (A4
> [ : Fule = 1) e, (1) dis from (A.3)

= P(Ji+L;<71)

= FJ.'-H (.’B) (A.5)

Thus, by induction the claim is proved. Since the claim is true Vz € IR, by setting

z = by in (A.5) the lemma is proved. o
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