Automated Design, Implementation, and Evaluation of Arbiter-based
PUF on FPGA using Programmable Delay Lines

Mehrdad Majzoobi, Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005 USA
Akshat Kharaya, Department of Electrical and Computer Engineering, Indian Institute of Technology, Powai,
Mumbai, MH 400076

Farinaz Koushanfar, Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005
USA

Srinivas Devadas, Department of Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02142

This paper proposes a novel approach for automated implementation of an arbiter-based physical unclonable function (PUF)
on field programmable gate arrays (FPGAs). We introduce a high resolution programmable delay logic (PDL) that is im-
plemented by harnessing the FPGA lookup-table (LUT) internal structure. PDL allows automatic fine tuning of delays that
can mitigate the timing skews caused by asymmetries in interconnect routing and systematic variations. To thwart the arbiter
metastability problem, we present and analyze methods for majority voting of responses. A method to classify and group
challenges into different robustness sets is introduced that enhances the corresponding responses’ stability in the face of
operational variations. The trade-off between response stability and response entropy (uniqueness) is investigated through
comprehensive measurements. We exploit the correlation between the impact of temperature and power supply on responses
and perform less costly power measurements to predict the temperature impact on PUF. The measurements are performed
on 12 identical Virtex 5 FPGAs across 9 different accurately controlled operating temperature and voltage supply points. A
database of challenge response pairs (CRPs) are collected and made openly available for the research community.

Additional Key Words and Phrases: Reconfigurable systems, physically unclonable functions, hardware security, process
variation.

1. INTRODUCTION

FPGAs provide a generic substrate of interconnected blocks that can be (re)programmed to achieve
the desired functionality. The inherent flexibility of FPGAs compared to Application Specific In-
tegrated Circuits (ASICs) together with their lower time-to-market as well as availability of third
party IPs, have made them the platform of choice for many applications. Like other systems, FP-
GAs demand security and resilience to attacks. In addition, techniques for ensuring IP security are
necessary for prevention against piracy and unauthorized access.

A common denominator for many security protocols is the concept of a secret. For example,
in public- and private- key cryptography, there is a secret key shared among a limited number of
parties. However, permanent storage of keys on FPGA is not straightforward, as FPGAs often do
not include nonvolatile on-chip memory. Even when the keys are externally powered or hidden in
the bitstream, side channel attacks for extracting the keys have been reported [Moradi et al. 2011].

Physical unclonable functions (PUFs) aim at addressing the shortcomings of the digital key stor-
age by relying on the secrets generated by the inherent and unclonable unique mesoscopic character-
istics (signatures) of the physical phenomena [Pappu et al. 2002; Gassend et al. 2002]. The physical
properties of each device determine a specific mapping between a set of challenges (inputs) to a set
of responses (outputs). Security protocols take advantage of the unique mappings provided by the
CRPs to authenticate the device and/or its components [Majzoobi et al. 2012].

To date, a number of possible implementations of PUFs on FPGAs based on the unique silicon
device-specific variations has been reported [Guajardo et al. 2007; Kumar et al. 2008; Suh and
Devadas 2007]. New methods based on the reconfigurability of FPGA inherent delay variations of
the PUF that is present even when the device is not configured, is used to configure blank FPGA
every time an authentication takes place.

Applications of FPGA PUFs include securing programs and data, IP protection, RFIDs, secure
key generation, remote activation, and IC enablement [Suh et al. 2005; Guajardo et al. 2007; Kumar
et al. 2008; Suh and Devadas 2007; Majzoobi et al. 2009; Alkabani et al. 2007; Alkabani and

A:2

Koushanfar 2007]. However, limitations of the existing PUF implementations on FPGA include
the polynomial number of CRPs, high power consumption, response errors, arbiter metastability,
and/or the delay imbalances dictated by the routing constraints [Morozov et al. 2010; Majzoobi
et al. 2009].

This paper introduces new methodologies that enable automated and stable implementation of
an arbiter-based PUF on FPGA. An arbiter-based PUF works by comparing path timings for two
routes with the same nominal delay (by design) but with slightly different actual delays (caused by
manufacturing variations). To achieve equal nominal delays and to avoid biases, the two routes must
be symmetric in shape. We introduce a low-overhead and high-resolution programmable delay line
(PDL) implemented by a single lookup table (LUT) on the FPGA. The new PDL is used to tune and
calibrate the delay bias caused by asymmetries in signal routing. Furthermore, a symmetric PDL-
based switch structure is introduced that is implementable on FPGA. Also, the PDL mechanism can
remove biases due to systematic variation effects.

To mitigate arbiter metastability and to achieve a higher robustness, we introduce redundancy and
majority voting of the responses. We further present a new method to classify and group challenges
into different robustness sets. The challenge classification increases the corresponding responses’ re-
silience to environmental variations. Using the measurement data collected from PUFs on 12 FPGA
across 9 different temperature and power supply conditions, we quantify the response robustness
of each group and investigate the trade-off between response robustness and response entropy. Fi-
nally, using the measurement data, correlations between the effect of temperature and power supply
variations on the PUF responses is quantified.

Our contributions in this paper are as follows:

— We introduce the first finely tunable PDL mechanism on FPGAs. This PDL can be implemented
using single LUT and can achieve a resolution of 3% pico-second and a dynamic range of 1 pico-
second.

— We demonstrate the first working implementation of arbiter-based PUF on FPGA that can be
fully automated!. Our implementation uses the PDLs to adjust for undesired asymmetries that
complicate FPGA realization of delay-based PUFs.

— We demonstrate the evaluation of our arbiter-based PUF across a population of 12 identical FP-
GAs. A comprehensive open-source database of 64,000 CRPs per PUF is collected in controlled
temperature and power supply settings and tuning conditions.

— The CRP database is thoroughly analyzed to derive optimal tuning levels, quantify response sta-
bility, train the PUF model, and reverse engineer the component delays.

— We suggest a new hypothesis that a larger delay difference at the arbiter input leads to a more
robust (stable) response. We utilize PUF model building and delay parameter training to classify
the challenges by the resulting delay difference at the arbiter input and use this classification to
confirm our hypothesis.

— We investigate and quantify the trade-off between response robustness and response entropy
(uniqueness). We hypothesize that highly robust responses are more likely to be similar (non-
unique) across different PUFs.

— We present a new method, based on the temperature and power supply variations, to partially
predict response errors in presence of temperature variations without costly temperature tests. We
show that the less costly (controlled) power supply tests can help the response error prediction
under temperature variations.

The rest of the paper is organized as follows. In Section 2, we provide a short background on
arbiter-based PUF construct as well as methods to implement a PDL. In Section 3, we study the
related literature on PDL and PUF implementations on FPGA. In Section 4, we introduce our LUT-
based programmable delay line mechanism and show how this construct can help in automated
implementation of arbiter-based PUF on FPGA. In Section 5, the method for improving the arbiter

L An earlier brief conference version of this work appeared in [Majzoobi et al. 2010c]

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

results accuracy by majority voting is discussed. Section 6 introduces robust challenge/response
classification methodology, whereas in the next Section 7, we investigate the trade-off between
response robustness and response uniqueness. In Section 8, measurement and evaluation results
taken across various PUFs in different operating conditions are analyzed and presented. Section 9
concludes the paper.

2. BACKGROUND

A PUF utilizes the inherent specific properties of a physical device to define a unique mapping
from a set of challenges (inputs) to a set of responses (outputs). The delay variations of CMOS
logic components can be exploited to produce unique responses. In the PUF structure introduced in
[Gassend et al. 2002], the analog delay difference between two parallel timing paths is compared
by an arbiter. The paths are built identically and their delays must be equal by construction, but
the physical device imperfections make them different. The architecture of the arbiter-based PUF
racing parallel paths is demonstrated in Figure 1. A step input simultaneously triggers the two paths.
At the end of the two parallel (racing) paths, an arbiter is used to convert the analog delay difference
between the paths to a digital value. The two paths can be divided into several smaller subpaths by
inserting path swapping switches. Each set of inputs to the switches act as a challenge set (denoted
by C}), defining a new pair of racing paths whose delays can be compared by the arbiter to generate
a one-bit response.

ir e e D Q

>C

A —I 4 4
First Path | | Middle Path | | T.ast Path
Segment. C, Segments C, C, Segment

Fig. 1. Arbiter-based PUF with path swapping switches.

2.1. Programmable delay lines

Programmable delay lines (PDLs) alter the signal propagation delay in a controlled fashion. The
common mechanisms used to change the delay includes (i) varying the effective load capacitance,
(i1) modifying the device current drive (by increasing/decreasing the effective threshold voltage by
body biasing), or (iii) incrementally altering the length of the signal propagation path. The first
two methods are often employed in either analog fashion and/or in application specific integrated
circuits (ASICs) and are not amenable to FPGA implementation.

On reconfigurable digital platforms such as FPGAs, PDLs can be implemented by only chang-
ing the signal propagation path length or by altering the circuit fanout that modifies the effective
load capacitance. The latter is only feasible if dynamic reconfiguration is available. In other words,
changing circuit fanout requires topological changes to the circuit which in turn needs a new con-
figuration.

3. RELATED WORK

The authors in [Gassend et al. 2002] were the first to exploit the unique and unclonable silicon
process variations in nanometer scales for PUF formation. Their PUF used the analog differences
between the delays of two parallel paths that are equal in design, but the physical device imperfec-
tions make the delays different. An arbiter inserted at the end of the paths generates binary responses
indicating a comparison between the delays. To generate many CRPs, the paths are divided into mul-
tiple subpaths and multiplexed by challenges. It is shown in [Majzoobi et al. 2009; Morozov et al.
2010] that implementation of delay-based PUFs on FPGAs is problematic because of the routing
constraints and arbiter inaccuracy. Ring oscillator (RO) PUFs rely on the specific and unique delay
of an oscillating path on each device [Suh and Devadas 2007]. The presently known PUFs of this

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

type contain many RO’s so there are many possible pairs to compare. One can only have a quadratic
number of challenges with respect to the number of RO’s on FPGAs. Another disadvantage of RO
PUF is the continuous dynamic power dissipation due to oscillation.

Another class of candidate FPGA PUFs are SRAM-PUFs and butterfly PUFs [Guajardo et al.
2007; Kumar et al. 2008]. Each FPGA SRAM cell would naturally tend to one logic state (either
zero or one) upon startup. There are only a polynomial number of challenges with respect to the
number of SRAM cells. An FPGA-based PUF along with a suite of time-bounded authentication
protocols is introduced in [Majzoobi et al. 2010b]. The PUF produces binary responses based on the
difference between the clock speed and some combinational circuit delay. Some instances of analog
and digital PUFs that attempt to implement public cryptography are presented in [Ruhrmair 2009;
Beckmann and Potkonjak 2009; Csaba et al. 2009; Jaeger et al. 2010]. A comprehensive survey of
PUFs can be found in [U. Ruhrmair 2011].

The scope of previous work on implementation of programmable delay line on FPGA is very
limited. Altering the delays is usually performed using hard coded blocks that come ready inside
FPGAs or phase locked loops (PLLs). These mechanisms are usually limited to the system clock or
subsystem clocks rather than any arbitrary signals. In addition, such blocks provide limited resolu-
tions in the order of micro seconds. To the best of our knowledge, the only work that attempts to use
FPGA generic components to build programmable delay lines are the work presented in this paper
and the one in [Bergeron et al. 2008].

In [Bergeron et al. 2008], a technique is proposed to alter the propagation path length by letting
the signal bounce a few times inside the switch matrices of FPGA instead of a direct and straight
connection. The concept is illustrated in Figure 2. In the switch matrix on the left side, the signal
bounces three times off the switch edges before it exits the switch. In the right switch, the signal
only bounces once; as a result a shorter propagation path length and a smaller delay is achieved.
However, changing the switch connections points and routings require a new configuration, and
doing so during the circuit operation is only possible by dynamic reconfigurability. The experiments
on Virtex-II Pro devices show that any differential delay in a range of 947ps can be reached with a
precision of +/- 18ps.

Three bounces _> One bounce

D, Dynamically D,
Reconfigure

Fig. 2. A PDL implemented by altering the signal routing inside FPGA switch matrix.

This paper is an extension to the work presented in [Majzoobi et al. 2010c]. It presents a low
overhead implementation of a programmable delay line (PDL) mechanism that uses only one look-
up table. The proposed PDL can provide a differential delay in range of 10ps with a resolution of a
fraction of pico-second without the need for dynamic reconfiguration.

4. ARBITER PUF ON FPGA

One of the major problems in implementation of PUFs on FPGAs, particulary the arbiter-based
PUFs, is in signal routing. Unlike ASICs where hand-drawn custom layout is possible, routing on
FPGA is constrained by its rigid fabric and interconnect structure. As a result, performing com-
pletely symmetric routing is physically infeasible in most cases. The PUF designer may do his/her
best to constrain and guide the placement and routing software to achieve the highest degree of

, Vol. V, No. N, Article A, Publication date: January YYYY.

A5

symmetry in the PUF layout. However, due to physical constraints of the FPGA fabric, the designer
may still not be able to achieve complete symmetry on some routes. Asymmetries in routing when
implementing PUFs can lead to bias in delay differences leading to predictable responses, lack of
randomness, and decreased response entropy [Majzoobi et al. 2009; ?].

The PUF routing can be divided into four different sections; the routing (1) before the first switch,
(2) inside the switches, (3) between switches, and (4) after the last switch or before the arbiter (see
Figure 1). As we will show later, by placing the logic components on symmetric sites and locations
on the FPGA, the routing between switches will automatically follow a symmetric route. However,
maintaining a complete symmetry between the top and bottom path routes before the first switch
and after the last switch is structurally infeasible. To alleviate this problem, we introduce and exploit
accurate PDLs to tune and remove the bias delay differences caused by asymmetries in net routing.
We further introduce a new switch structure that has a symmetric implementation by construction.

4.1. Automated tuning with programmable delay lines

In this section, we introduce a low overhead and high precision PDL with pico-second resolution.
The introduced PDL is implemented by a single LUT. Figure 3 shows the internal structure of an
example 3-input LUT. An n-input LUT can be configured to implement any n-input logic function.
The LUT in Figure 3 is configured so that the inputs Ay and A3z act as don’t-care bits. The LUT
output is inverted A; and is not a function of A5 and As. However, looking more closely, the inputs
Ag and Ajs determine the signal propagation path inside LUT. For instance, if A2 A3 = 00, the signal
propagates through the solid path (red), whereas if Ay A3 = 11, the signal propagates through the
path marked with the dashed-lines (blue). The lower dashed path is slightly longer than the upper
solid path which results in a larger propagation delay. The Xilinx Virtex 5 FPGA has 6-input LUTs

SRAM Binary challenge
values A, m
$ o o a
| |
A O
o I 1
o
— tD»@o
N r=
[0} A —
/\T ' Ay— wur [0
A3 0—
[0 | — 3-input LUT

Fig. 3. The internal structure of a 3-input LUT.

which can implement a PDL with 5 control bits - there are 4 LUTs in each Slice and two Slices
per CLB. Similar to the above example, the first LUT input, A4, is the inverter input and the rest
of the LUT inputs control the delay of the inverter. For, Ay A3 A4 A5 Ag=A[2.6=00000, the inverter
has the smallest delay (shortest internal propagation path) and for Ay Az A4As Ag=A[p.6=11111,
the inverter has the maximum delay. In general if A3, > AE%] then Dryr(A) > Dryr(A’),
where Dyyr(A) and Dryr(A’) are the delay of the inverter with A and A’ as the control inputs
respectively.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

We measured the changes in LUTs’ propagation delays under different inputs. For delay mea-
surements, we used the timing characterization circuit shown in Figure 8.1. The characterization
circuit consists of a launch flip-flop, sample flip-flop, and capture flip-flop, an XOR gate, and the
Circuit Under Test (CUT) whose delay is to be measured.

At the rising edge of the clock a signal is sent through the CUT by the launch flip-flop. At the
falling edge of the clock, the output of the CUT is sampled by the sample flip-flop. If the signal
arrives at the sample flip-flop well before sampling takes place, the correct value is sampled. The
XOR compares the sampled value with steady state output of the CUT and produces a zero if they
are the same. Otherwise, the XOR output rises to ‘1°, indicating a timing violation. If the signal
arrival and the sampling time (almost) simultaneously occur, the sample flip-flop would enter into
a metastable condition and produce a non-deterministic output. By sweeping the clock frequency
and monitoring the rate at which timing errors happen, the CUT delay can be measured with a very
high accuracy and in an automated way. For further details on the delay characterization method the
reader is referred to [Majzoobi et al. 2010b].

Binary Challenge

Launch Sample Capture
Flip Flop Flip Flops Flip Flops

Timing
Challenge

=

<«I>

Fig. 4. Delay characterization circuit.

The measurements performed on Xilinx Virtex 5 FPGAs suggest that the maximum delay differ-
ence (i.e., A=00000, and A’=11111) achieved by each inverter is 9ps on average.

4.2. PDL-based symmetric switch

The first arbiter-based PUF introduced in [Gassend et al. 2002] (see Figure 1) uses path swapping
switches as shown in Figure 5 (a). The switch, based on its selector bit, provides a straight or cross
connection. Figure 5 (b) shows the equivalent circuit implementation and delays. The path swap-
ping switch structure does not lend itself to FPGA implementation, since it is extremely difficult to
equalize the nominal delays of the top and bottom paths due to routing constraints, i.e., @ and d (or
the diagonal paths b and ¢). To alleviate the issue, we propose a new non-swapping switch structure
as shown in Figure 5 (c). The yellow triangles in the figure represent two PDLs. Figure 5 (d) shows
its equivalent circuit where the nominal delay values of @ and d (or the diagonal paths b and ¢) must
be the same.

sel‘ect sel‘ect | sel‘ect | sel‘ect
(@ (b) © (d

Fig. 5. (a),(b) path swapping switch and its delay abstraction (c),(d) PDL-based switch and its delay abstraction.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A7

The complete PUF circuit that uses the new switch structure and the tuning blocks is shown in
Figure 6. The presented system consists of N switches and K tuning blocks. The tuning blocks
insert extra delays into either the top or bottom path based on their selector inputs to cancel out the
delay bias caused by routing asymmetry. The only difference between a tuning block and a switch
block is that in the former, the selectors to the top and bottom PDLs are controlled independently
but in the latter, the same selector bit drives both PDLs. Also note that the tuning blocks do not
necessarily have to be placed at the end of the PUF. As a matter of fact, they can be placed anywhere
on the PUF in between the switches.

The design of this new PUF structure can be readily automated. Similar to the arbiter-based PUF
with path swapping switches, the new PUF structure is a linear system. The PUF response will be
‘1’ if the sum of the delay switch differences along the path is greater than zero, and "0’ otherwise:

N
> Cix(ai—di)+(1—Ci)x (bi—ci) + A <Oo (1)
. R 1

where a;, b;, ¢;, d; are the i-th switch delays as shown in Figure 5 (d), C; € {0, 1} is the i-th
challenge bit, and R is the response. Also, A is a constant delay difference from the first and last
path segments and tuning blocks lumped together. The security aspects of the linear PUF structures
against machine learning attacks can be boosted by insertion of feed forward arbiter and attach-
ing input/output XOR logic networks to multiple rows of PUFs [Majzoobi et al. 2008; Daihyun
et al. 2005]. The work in analyzing the complexity of machine learning and model attacks against
different classes of PUFs is given in[Rhrmair et al. 2010].

«———— Challengge ———» «—— Tune ——»

T ok

Cawt Oy THTHTLTY - TR T

Fig. 6. The new arbiter-based PUF structure.

5. PRECISION ARBITER

Arbiters in practice are implemented by D flip-flops. As a result, an arbiter has a limited resolution
meaning that if the absolute delay difference of the arriving signals is smaller than its setup and/or
hold time, it enters a metastable state where its output becomes highly sensitive to circuit noise
and will be unreliable. The probability of flip-flop output being equal to ‘1’ is a monotonically
decreasing function of the input signal timing difference (A7). Such probability in fact follows a
Gaussian CDF curve as shown in [Majzoobi et al. 2009; Majzoobi et al. 2010a]:

Ar

g

Po-1(Ar) = Q(—) 2

where Q(x) = \/% f:o exp(—“;) is the @ function. For an infinitely precise arbiter, o is

infinitesimal i.e., 0 — 1/00, and Po—1 (A7) — 1 — U(Ar) where U is the step function.

To increase the arbiter accuracy, we propose multiple evaluations of the same challenge to the
PUF and running a majority vote on the output responses as shown in Figure 17. The repetitive
challenge evaluation combined with majority voting is equivalent to having an arbiter with effec-
tively smaller 0. We will quantify the reduction in o as a function of the number of repetitions in
the experimental results section.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Tune-up
- D bpe L [T
Majority

+ Challenge + Tune-down Voting Logic

l ssuodsay

Fig. 7. Reducing the response instability due to arbiter metastability by using majority voting.

6. ROBUST RESPONSES

Fluctuations in operational conditions such as temperature and supply voltage can cause variations
in device delays. The impact on delays may not be equal on all devices. As an example, the signal
propagation delay on the PUF top and bottom paths is represented in Figure 8 by solid and dashed
lines respectively. In this example, the path delays increase with temperature at different rates. In the
diagram in Figure 8 (a), the delay difference A at the end of the PUF for a given applied challenge
at nominal temperature is small, whereas A, in Figure 8 (b) is larger for another challenge. The
response to the challenge in Figure 8 (a) changes as temperature varies because the delays change
their order (cross). However, in Figure 8 (b) the PUF response remains the same. As demonstrated
by this example, the responses to those challenges that cause large delay differences are unlikely to
be affected by temperature or supply voltage variations [Suh and Devadas 2007].

A -
& dy - &
(] (]
a1 a

\4

TImin TInom Tmax
(a) (b)

Fig. 8. Signal propagation delay as a function of temperature.

In this paper, we estimate the delay difference at the input of the arbiter. To estimate the cumu-
lative delay difference (Ay), we ought to first train the delay parameters of the linear model of the
PUF expressed in Equation 1 on the available set of challenge and responses. After estimating the
delay parameters, the left hand sum in Equation 1 is evaluated for every new challenge. The dis-
tribution of the resulting sum (Ay) to the set of available CRPs is next calculated. Now based on
the distribution, if the delay difference caused by a given challenge falls in the tails of the distribu-
tion, we expect (and will later verify and quantify it through experiments) that the response to this
challenge is less likely to be affected by variations in operating conditions. Figure 9 shows the dis-
tribution of the delay differences at arbiter input to a diverse set of challenges. The challenge set is
partitioned into equal sized partitions (bin) based on the delay difference each challenge produces.
Next, the stability of response to the challenges in each set is measured. We argue that the responses
to challenges that fall into the center partitions exhibit lower robustness compared to those in corner
partitions.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Arbiter Decision Edge

——

Fig. 9. The distribution of A, and stability of responses in the corresponding partitions.

Response
stability

> A

7. ROBUSTNESS VERSUS ENTROPY

The next question that arises from classifying robust challenges from non-robust ones is: ”Are ro-
bust challenges that good?”. In other words, are we trading something off to gain stability and
robustness? From information theoretical point of view, it is likely that the responses from more
robust challenges bear lower entropy. For example, consider the extreme case where responses are
absolutely biased towards either zero or one. In this case we have ultimate robustness whereas the
entropy is zero and the responses are not distinct enough for identification. This trade-off (if exists)
can only be quantified through measurements. We show this is in fact the case and quantify the loss
in entropy in exchange for robustness in the experimental results section.

8. EXPERIMENTAL EVALUATION
8.1. Programmable delay line

Before moving onto the PUF system performance evaluation, we shall first discuss the results of our
investigation on the maximum achievable resolution of the programmable delay lines. We set up a
highly accurate delay measurement system similar to the delay characterization systems presented
in [Majzoobi et al. 2010b; Majzoobi et al. 2010a; Majzoobi and Koushanfar 2011].

The circuit under test consists of four PDLs each implemented by a single 6-input LUT. The delay
measurement circuit as shown in Figure 8.1 consists of three flip-flops: launch, sample, and capture
flip-flops. At each rising edge of the clock, the launch flip-flop successively sends a low-to-high and
high-to-low signal through the PDLs. At the falling edge of the clock, the output from the last PDL
is sampled by the sample flip-flop. At the last PDL’s output, the sampled signal is compared with the
steady state signal. If the signal has already arrived at the sample flip-flop when the sampling takes
place, then these two values will be the same; otherwise they take on different values. In case of
inconsistencies in sampled and actual values, XOR output becomes high, which indicates a timing
error. The capture flip-flop holds the XOR output for one clock cycle.

To measure the absolute delays, the clock frequency is swept from a low frequency to a high target
frequency and the rate at which timing errors occur are monitored and recorded. Timing errors start
to emerge when the clock half period (T/2) approaches the delay of the circuit under test. Around
this point, the timing error rate begins to increase from 0% and reaches 100%. The center of this
transition curve marks the point where the clock half period (T/2) is equal to the effective delay of
the circuit under test.

To measure the delay difference incurred by the LUT-based PDL, the measurement is performed
twice using different (complementary) inputs. In the first round of measurement, the inputs to the
four PDLs are fixed to As_g = 11111. In the second measurement, the inputs to the last PDL
are changed to A,_¢ = 00000. In our setup, a 32x32 array of the circuit shown on Figure 8.1 is
implemented on a Xilinx Virtex 5 LX110 FPGA, and the delay from our setup is measured under

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Launch S 1
Flip-flop As=l11111 ample Capture
Ap=l1111 Ap=l1111 Age=11111 Ay=00000 Flip-flop Flill:_ﬂop
Do H: = ¢ = ‘ =l L B
HRS = P& {5
3 : 30 e 37
eIk 2 z e) 1o clk clk
i ? f

Fig. 10. The delay measurement circuit. The circuit under test consists of four LUTs each implementing a PDL.

the two input settings. The clock frequency is swept linearly from 8MHz to 20MHz using a desktop
function generator and this frequency is shifted up by 34 times inside the FPGA using the built-in
PLL.

The results of the measurement are shown on Figure 11. Each pixel in the image corresponds
to one measured delay value across the array. The scale next to the color-map is in nano-seconds.
Figure 11 (a) and (b) show the path delay when the last LUT in Figure is driven by As_¢ = 00000
and A,_g = 11111 respectively. Figure 11 (c) depicts the difference between the measured delays
in (a) and (b). As can be seen, the delay values in (b) are on average about 10 pico-seconds larger

than the corresponding pixel values in (a).
5 10 15 20 25 30 5 10 15 20 25 30
X X

(a) Delay for As_g = 00000 (b) Delay for Aa_g = 11111

0.025

5 10 15 20 25 30
X

(c) Delay difference

Fig. 11. The measured delay of 32x32 circuit under tests containing a PDL with PDL control inputs being set to (a)
Aa_g = 00000 and (b) Aa_g = 11111 respectively. The difference between the delays in these two cases is shown in (c).

8.2. Arbiter-based PUF evaluation

Next, we use the programmable delay lines to implement the arbiter-based PUF on FPGA. The
implemented PUF has 16 rows whose challenge input bits are connected together and placed in
parallel on the FPGA to produce 16 bits of responses per challenge. Each PUF consists of 64 stages
of PDLs, where the PDL is implemented by 2 LUTs each acting as an inverter. Figure 12 shows

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

the placement and routing of one of the PUF rows. As it can be seen, except for the routing at the
beginning and end of the PUF, the rest follows a completely symmetric pattern.

Switches — ’fﬂ 'ﬁ
£ il

R N

Arbiter

(a) b)

Fig. 12. Routing and placement of the PUF (a) first segment (b) last segment.

8.3. Measurement setup

We have a population of 12 Xilinx Virtex 5 (LX110) FPGAs at our disposal. The FPGAs are
mounted on a ball-grid array socket available on Xilinx FF676 Prototype board only. Since the
prototype board is stripped of any communication interface, we create a synchronous serial commu-
nication protocol to send/receive the data to/from XUP-V5 development board. From the XUP-V5
board, the data is sent to the PC through the Ethernet communication interface at a very high speed
by using SIRC API. SIRC (Simple Interface for Reconfigurable Computing) is an open sourced
software/hardware API developed at Microsoft Research that enables data transfer at full Ethernet
speed of 1GB/s between the FPGA and PC [Eguro 2010]. Additionally, to perform measurements
under various temperature points, we use PTC10 temperature controller from Stanford Research
Systems. The temperature controller drives a TEC (Thermo-electric coupler) Peltier device. TEC
is attached on the top of the FPGA and beneath a heat-sink. A closed-loop feedback system is es-
tablished to control the FPGA temperature accurately. The temperature feedback is provided by an
on-die diode junction voltage on the Virtex 5 device. This way the stable temperature would be that
of the die temperature rather than the package temperature. The temperature controller is further
calibrated to reliably map the junction voltage of the diode to die temperature using the tempera-
ture readings obtained through ChipScope Pro on-die temperature sensor. The measurement system
connections and setup is depicted in Figure 13. Figure 14 shows the measurement system setup in
the lab. The raw data, scripts and software is made available online at http://aceslab.org/node/1012.

USB Cable USB Cable

Temperature
Controller

irtex Virtex 5 XUP

Prototype Board Development Board

die-temperature s

feedback

Ethernet Cable

Fig. 13. Measurement system setup diagram.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Fig. 14. Lab setup.

8.4. Tuning the PUF

Before using the PUF, in order to see any changes in the responses it must be tuned to remove the
delay bias resulting from routing asymmetry. In the first experiment, we look at all 16 responses
to find out at what tuning level their responses to a set of random challenges are 50% zeros and
50% ones. To be able to find the best tuning level, we feed the PUF with a set of 64,000 random
challenges while for each challenge, we sweep the tuning level from -10 to 40. In each sweep point
(each tuning level), we collect 64,000 responses from each PUF row (64,000x 16 total for each
FPGA). Then, we look at the percentage of ones and zeros in each response set across different
tuning levels and find the set that is properly balanced.

We refer to tuning level as the difference in the number of ‘1’s in the top and bottom PDL selector
bits. The tuning level can be either positive or negative indicating insertion of delays to the top and
bottom path respectively. Note that when the tuning level is set to 40, for example, then it means
that 40 of the PDL blocks out of 64 blocks are dedicated to tuning and only 24 bits of the inputs
serve as the input challenge.

The response to a given challenge at each tuning level is repeated 128 times, and a majority vote
on the responses is performed to resolve the repeated readings to a single response value. Figure
15 shows the ratios of ones in each response set (y-axis) as a function of tuning level (x-axis) for
FPGA number 6. Since each PUF on each FPGA produces 16 response bits, there are 16 lines on
each subplot. There are 9 subplots in each plot. Each subplot corresponds to the measurement taken
under a different operating condition. The center subplot refers to the normal operating condition
(i.e. supply voltage Vpp= 1V and room temperature of 30°C). Note that the plot is only for one
FPGA (FPGA number 6). We have repeated the same experiment on all 12 FPGAs in the lab and
the results are available online at http://aceslab.org/node/1012.

Figure 16 shows the distribution of the center of the transition points across all PUFs on all
FPGAs.

8.5. Majority voting

As discussed in the paper, repeating the challenges to the PUF and running majority voting of the
obtained responses can help improve the precision of the arbiter. In this section, we quantify this
effect. Figure 17 shows the probability of observing a ‘1’ output from a flip-flop as a function of
the input signals delay difference. This characteristic has been measured on Xilinx Virtex 5 FPGAs
[Majzoobi et al. 2009; Majzoobi et al. 2010a]. The width of the transition region (30) gets narrower
as evaluation is repeated and more statistics is gathered.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Temp=5C VDD=1V Temp=5C VDD=1.05V
1 — — 1
0.8 0.8
- - -~
T 06 by T 06
g 2 g
O 0.4 3 2 0.4
a o o
0.2 \
o N
-10 0 10 20 30 40
Tuning Level Tuning Level
Temp=35C VDD=1V Temp=35C VDD=1.05V
1 - - 1 \ - -
0.8 \
= a T \‘
I I I 0.6 \
[e) [e)) \
= = =
[[S 0.4
a o a
0.2 \
0
0 -10 0
Tuning Level Tuning Level Tuning Level
Temp=65C VDD=0.95V Temp=65C VDD=1V Temp=65C VDD=1.05V
1 N\ 1 \X S v 1 \\ AN -
0.8 \ 08 \Ru NS
’ﬁ 0.6 ﬁ 0.6 | ’TIT ‘
g g g
04 04 [
o o a
0.2 0.2
o S
-10 -10 0 10 20 30 40
Tuning Level Tuning Level Tuning Level

Fig. 15. Number of *1’s in responses (normalized) as a function of tuning level for the PUF on FPGA 6.

Temp=5C, VDD=0.95V

Temp=5C, VDD=1V

Temp=5C, VDD=1.05V

50 50
> 40 > 40 > 40
)))
g 30 g 30 g 30
S S]
g 20 g 20 g 20
%10 %10 %10
0 0 0
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40
Tuning Level Tuning Level Tuning Level
Temp=35C, VDD=0.95V Temp=35C, VDD=1V Temp=35C, VDD=1.05V
50 50 50
S, 40 S, 40 >, 40
2 2 2
$ 30 $ 30 $ 30
3 E E
g 20 g 20 g 20
* 10 * 10 * 10
0
-40 -20 0 20 40 -20 0 20 40 -20 0 20 40
Tuning Level Tuning Level Tuning Level
Temp=65C, VDD=0.95V Temp=65C, VDD=1V Temp=65C, VDD=1.05V
50 50 50
> 40 > 40 > 40
g g g
g 30 T 30 $ 30
S E E
g 20 g 20 g 20
%10 %10 %10
0 0
-40 -20 0 20 40 -20 0 20 40 -40 -20 0 20 40
Tuning Level Tuning Level Tuning Level

Fig. 16. Distribution of the tuning levels across all PUF rows on all FPGAs for different operating conditions.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

1 T T
- 1 repetition
J:_', 08} 3repetitions |
a 5 repetitions
3 o6l 7 repetitions ||
5 9 repetitions
2 11 repetitions
= 041 et B
]
8
5 021

0 L L L M o

-20 -15 -10 -5 0 5 10 15 20

Delay difference (Ainps)

Fig. 17. The probability of majority voting system output being equal to 1 as a function of the delay difference.

The equivalent o which represents the width of the metastable window (i.e., 30) is calculated
for different number of repetitions as shown in Figure 18. The reduction in the metastable window
width is logarithmic with respect to the number of repetitions. For 10 repetitions, o = 2.5 ps.

Transition slope (0) in ps

0 2 4 6 8 10 12
Number of repetitions

Fig. 18. The sharpness (o) of the transition slope versus the number of repetitions for majority voting.

8.6. Robust response classification

Next, we measure the effect of robust challenge classification on PUF error rate in presence of
temperature and supply voltage variations as discussed in Section 6. Each challenge to the arbiter
PUF creates a delay difference (A) at the input of the arbiter (flip-flop). The As produced by all
challenges in the challenge space form a Gaussian distribution. If half of the responses are one
and half are zero, then this distribution has a mean of zero. The distribution is split by the arbiter
decision edge. Those challenges that create a A that is larger that e, result in a 1’ response and
a zero response otherwise, where e is basically the arbiter bias that has remained after tuning. We
partition the A distribution and the corresponding challenge space into 20 sets of equal size. The As
close to the decision border and their corresponding responses are more sensitive to environmental
condition fluctuations, and those farther apart from the decision border (i.e. |A - e] > 0) are less af-
fected by such variations. The Figure 19 shows the robustness of the responses to different subset of
challenges. The x-axis in each subplot refers to the challenge partition (bin) number. Each partition
contains 64000/20 = 3200 challenges. The y-axis shows the stability of the corresponding responses,
where 1’ means no errors in the responses and "0’ means completely erroneous responses. The er-
ror is measured by comparing the responses from eight corner cases to the response at the normal
operating condition (room temperature and nominal supply voltage). Therefore, each subplot con-
tains eight lines for each corner case. As it can be observed, the challenges in bins that are closer to
the decision border produce responses with larger error rates. There are 16 subplots in each figure
where each correspond to a PUF output response bit.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Bit#2 Bit#3 Bit# 4
1 - 1 < 1
[}) %) N) /
] T] \ T e
14 o o \ 12 \"/
§ § 0.5 \é 0.5 \‘— § 0.5 1”/
i i] i
0 0 0 — 0
0 10 20 0 10 20 0 10 20 0 10 20
Bin Number Bin Number Bin Number Bin Number
Bit#5 Bit#6 Bit#7 Bit#8
1 _ 1 — _ 1
o N\) ® . o @ 77/
T \ T T T //
£ 0.5 < 0.5 o < 0.5 4
A s S s v
i} A i} w i}
0 0 0
0 10 20 0 10 20 0 10 20 0 10 20
Bin Number Bin Number Bin Number Bin Number
Bit#9 Bit # 10 Bit # 11 Bit # 12
1 n 1 1 < .
] 4 o 7] e
© /A © / I ©
14 14 / « / &
§ 0.5 V § 0.5 § 0.5 V/ §
i i] i
0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20
Bin Number Bin Number Bin Number Bin Number
Bit # 13 Bit # 14 Bit # 15 Bit # 16
1 11— = 1 > 1 =R -
[0] Q \ 9 \ (
2 2 2 \ 2 A\
I g 78 (/
5 0.5 5 0.5 5 0.5 5 0.5
= = = = v
[} [im} i} [im}
0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20
Bin Number Bin Number Bin Number Bin Number

Fig. 19. Response stability measured across different challenge partitions with reference to eight operating condition corner
cases for FPGA 6.

Case | 1 | 2|3 |4 |56 | 7|8 |9 1011|1213 |14 |15]| 16| 17| 18
Ty r mMmL|L M L|LIML M H/ H M H|H|M|H|H
7% M/H/H M| H H M|H H/ L M|L|L M|L|L | M|L
%1 r, o, L MM M|L|IL|IL M MM H H|H|H | H|H
Vw.. MM M|\ M|IH H/ HIH HH L|L|]L M M M|L) | L]|L

Table 1: 18 correlation cases studies for various increments/decrements on temperature and power
supply
Figure 20 shows the distribution of the error rates for each challenge partition using boxplots. Each
subplot corresponds to an operating condition corner. As it can be seen, the average error rates is
considerably lower at corner (lower and higher) partitions.

8.7. Robustness versus entropy

Now that we have quantified the stability of responses to different challenges, it is time to investigate
the entropy of the responses to such challenges. In order to quantify the entropy, we look at the
inter-chip Hamming distance of PUF responses to challenges in different partitions. For the 12
available FPGAs, 66 distinct pairing of FPGAs can be selected. However, since the tuning level
of each PUF on FPGA is different, the challenge set is selected based on the target FPGA. For
example, the challenge set for the pair FPGA A and FPGA B is different from FPGA B and FPGA A.
This asymmetric challenge selection requirement also means that the inter-chip Hamming distance
between FPGA A and FPGA B might be different from FPGA B and FPGA A. Therefore, we

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Error Rate (%)
Error Rate (%)
Error Rate (%)

Temp = 35C, VDD = 0.95V

100

50

Error Rate (%)
Error Rate (%)

Temp = 65C, VDD = 1V

. _ 100 .
& & g
2 2 2
& & s0 &
S S S
i v v

b

123456789101234362182

Bin

Fig. 20. Boxplot showing the distribution of error rates for a given operating condition corner and challenge partition.

investigate the Hamming distance for all 12x 11 possible pairing (of course excluding similar chip
parings). At each partition, a set of 3200 response vectors of size 16 bits are compared to another
set. The result is 3200 integer hamming distances between 0 and 16. We take the average value
as the inter-chip hamming distance and normalize it with 16. Next we need to link entropy with
Hamming distance. Entropy is maximum if the average normalized inter-chip hamming distance is
at 0.5. Any deviation from 0.5 lowers the entropy. In other words, both Hamming distance of 0 and 1
indicate entropy of zero. Figure shows the entropy as measured by Hamming distance for response
to challenges in each partition. Each line on this figure corresponds to one paring of FPGAs.

8.8. Correlation between effects of temperature and power supply variations

Variation of temperature and/or core voltage from nominal values changes the response to chal-
lenges, especially the non-robust challenges. We argue that response flips due to change in temper-
ature is related to response flips due to change in core voltage. Temperature testing is expensive; if
a correlation between variation due to temperature and variation due to core voltage can be estab-
lished even partially, it will help predict temperature effects from core voltage effects and thus lead
to a huge cost saving.

The 64000x16 responses for each of the 12 FPGA under various experimental conditions (dif-
ferent temperature and voltage) are used to quantify this argument. The response set obtained in a
reference condition is compared to the response set obtained in condition /V; and the challenges for
which the response flips are noted, where /N; condition being an increment (or decrement) in core
voltage from the reference value.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A7

o

)

0
T

o
© =
[o

T T

Inter-Chip Hamming Distance (Normalized)
o
° o
(5] N
T T

CRP Partition Number

Fig. 21. Entropy of the response to the challenges at each robustness partition.

Then the response set obtained in reference condition are compared to the response set obtained
in Ny condition only for the challenges noted in /Ny, where N» condition being an increment (or
decrement) in temperature from the reference value. In other words, if the response to challenge
”C”, flips (changes from 0/1 to 1/0) as the power supply goes from V; to V5, how likely is it that
the response to the same challenge ”C”, flips as the temperature goes from 73 to 75 (while the
core voltage stays at V). Each PUF is set at a characteristic tuning level for which it has an equal
probability of 0 or 1 as an output and the response set is analyzed at that characteristic tuning level
to obtain a response error correlation value. (7%, V) and (7%, V5) comprise the condition N; and
Ny respectively. Figure 22 shows the results as boxplot for 18 different experimental conditions
tabulated in Table 8.7. The low/high values for core voltage are set assuming a practical tolerance
level of 5% in power supply. Low (L), medium (M) and high (H) values for core voltage are 0.95V,
1.00V and 1.05V respectively and for temperature are 5° C, 35° C and 65° C respectively.”

Each box in Figure 22 represents the result of the corresponding case and is drawn for the set
response error correlation values obtained from 12x 16 PUF response sets. The lower and upper
edges represent the 25th and 75th percentile respectively while the edge partitioning the box at
the centre is the median correlation value from the set of 192 correlation values which is used to
quantify this response error correlation. Correlation between voltage and temperature is maximized
in case 16 (0.68355), while the correlation in case 7 is also comparable (0.66355). It is interesting
to note that case 16 and case 7 are complementary, i.e. (T1, V1) are interchanged with (T2, V2).

9. CONCLUSION

We introduced a new high-precision low-overhead programmable delay lines (PDL) implementa-
tion using a single look-up table. We designed and implemented an arbiter-based PUF structure that
exploits programmable delay lines (PDL) to tune and cancel out the delay skews caused by asym-
metries in routing on FPGAs. A PDL-based symmetric switch structure was further introduced to
resolve the routing issues. To mitigate the arbiter metastability problem, we presented and analyzed
majority voting of responses. Furthermore, a method to classify challenges into different robustness
groups was introduced, to increase the response stability in the presence of environmental variations.
Using the measurement data collected from 16 PUF on 12 FPGAs across 9 different temperature and
power supply operating conditions, we measured the response robustness and quantified its trade-
off with response uniqueness (entropy). Finally, the correlation between effects of power supply and

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

09!

- -1
- ==

08!
0.7 i
0.6 [N

0.5 q

Correlation

0.4 q

031

0.2

T
ol T

[

[

01 [T R
I S

F;A;
-
e
-
e
bl
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 22. The correlation between effect of temperature and power supply variations on responses for 18 different scenarios.
Each box plot is made of response correlation values across 12x16 PUFs.

temperature variations on PUF responses were analyzed and quantified for in-field response error
prediction.

REFERENCES

Y. Alkabani, F. Koushanfar, and M. Potkonjak. 2007. Remote activation of ICS for piracy prevention and digital right
management. In International Conference on Computer Aided Design (ICCAD). 674-677.

Y. M. Alkabani and F. Koushanfar. 2007. Active hardware metering for intellectual property protection and security. In
USENIX Security Symposium. 1-16.

N. Beckmann and M. Potkonjak. 2009. Hardware-based public-key cryptography with public physically unclonable func-
tions. In 7H. 206-220.

E. Bergeron, M. Feeley, M.-A. Daigneault, and J.P. David. 2008. Using dynamic reconfiguration to implement high-
resolution programmable delays on an FPGA. In Joint 6th International IEEE Northeast Workshop on Circuits and
Systems and TAISA Conference, 2008. NEWCAS-TAISA. 265 -268.

Gyorgy Csaba, Xueming Ju, Qingqing Chen, Wolfgang Porod, Jiirgen Schmidhuber, Ulf Schlichtmann, Paolo Lugli, and
Ulrich Riihrmair. 2009. On-Chip Electric Waves: An Analog Circuit Approach to Physical Uncloneable Functions.
Cryptology ePrint Archive (2009).

L. Daihyun, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas. 2005. Extracting secret keys from integrated
circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13, 10 (2005), 1200 — 1205.

Ken Eguro. 2010. SIRC: An Extensible Reconfigurable Computing Communication APIL. In [EEE Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 135-138.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. 2002. Silicon physical random functions. In CCS. 148-160.

J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls. 2007. FPGA intrinsic PUFs and their use for IP protection. In CHES.
63-80.

C. Jaeger, M. Algasinger, U. Ruhrmair, G. Csaba, and M. Stutzmann. 2010. Random pn-junctions for physical cryptography.
Applied Physics Letters 96, 17 (2010), 172103 —172103-3.

S.S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls. 2008. The butterfly PUF protecting IP on every FPGA. In
HOST. 67-70.

M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar. 2010a. Rapid FPGA Characterzation using Clock Synthesis and
Signal Sparsity. In ITC.

M. Majzoobi, A. Elnably, and F. Koushanfar. 2010b. FPGA Time-bounded Unclonable Authentication. In /H.

M. Majzoobi and F. Koushanfar. 2011. Time-Bounded Authentication of FPGAs. Information Forensics and Security, IEEE
Transactions on 6, 3 (sept. 2011), 1123 —1135.

M. Majzoobi, F Koushanfar, and S Devadas. 2010c. FPGA PUF using programmable delay lines. In Information Forensics
and Security (WIFS), 2010 IEEE International Workshop on. 1-6.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

M. Majzoobi, F. Koushanfar, and M. Potkonjak. 2008. Testing Techniques for Hardware Security. In /7C. 1-10.

M. Majzoobi, F. Koushanfar, and M. Potkonjak. 2009. Techniques for Design and Implementation of Secure Reconfigurable
PUFs. TRETS 2, 1 (2009), 1-33.

M. Majzoobi, M. Rostami, F. Koushanfar, D.S. Wallach, and S. Devadas. 2012. Slender PUF Protocol: A Lightweight,
Robust, and Secure Authentication by Substring Matching. In IEEE Symposium on Security and Privacy Workshops
(SPW). 33 —44.

Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. 2011. On the vulnerability of FPGA bitstream en-
cryption against power analysis attacks: extracting keys from xilinx Virtex-II FPGAs. In Proceedings of the 18th ACM
conference on Computer and communications security (CCS ’11). ACM, New York, NY, USA, 111-124.

S. Morozov, A. Maiti, and P. Schaumont. 2010. An Analysis of Delay Based PUF Implementations on FPGA. Springer,
382-387.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. 2002. Physical one-way functions. Science 297 (2002), 2026-2030.

U. Rhrmair, F. Sehnke, J. Slter, G. Dror, S. Devadas, and J. Schmidhuber. 2010. Modeling Attacks on Physical Unclonable
Functions. In Conference on Computer and Communications Security.

U. Ruhrmair. 2009. SIMPL system: on a public key variant of physical unclonable function. Cryptology ePrint Archive
(2009).

G. Suh and S. Devadas. 2007. Physical Unclonable Functions for Device Authentication and Secret Key Generation. In DAC.
9-14.

G.E. Suh, C.W. O’Donnell, I. Sachdev, and S. Devadas. 2005. Design and implementation of the AEGIS single-chip secure
processor using physical random functions. In ISCA. 25-36.

F. Koushanfar U. Ruhrmair, S. Devadas. 2011. Security based on Physical Unclonability and Disorder. Springer.

, Vol. V, No. N, Article A, Publication date: January YYYY.

