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Abstract
THE EVALUATION OF A HYBRID CODING SCHEME

Forrest Fox

The performance of a hybrid sequential-algebraic coding scheme
is evaluated taking into account the probability of error, the c;omplexity
of implementation, and the overall rate. The hybrid scheme is one
suggested by Huband and Jelinek based on a similar proposal by
Falconer. Upper and lower bounds on the performance of a straight
sequential cbding scheme have been utilized. The corresponding

relationships for the algebraic’portion of the hybrid code and the

complete hybrid code are obtained. The performance of the hybrid
scheme is compared to the performance of a straight sequential
scheme, and found to obtain up to several orders of magnitude
improvement in probability of error for the.same overall rate and

complexity of implementation.
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INTRODUCTION

The performance of any coding scheme can be measured by the
inherent trade-off between speed, cost and reliability; i. e. increasing'
reliability generally requires increasing cost and/or decreasing
speed. The exact relationship of these three parameters for a given
code depends upon the communication channel to be utilized;

Both of the common coding techniques, sequential and algebraic,
have sufficiently severe limitations to restrict their utilization in
many practical communication systems. The algebraic codes
perform at reasonable rates, cost, and probability of error only for
rel;.ively small channel crossover probébilities. ‘The sequential
codes perform better for high crossover probabilities, but the
variability in the number of decoding computations can require
prohibitive storage allocation to obtain an acceptable overall
probability of error. 3 a hybrid sequential-algebraic coding scheme
propésed by Huband and Jelinek! based on a similar proposal by
]F‘alcoAner-2 is capable of providing significant improvemept in the
probability of error when compared to a straight sequential code
utilizing the same channel, at the same rate, and with comparable
complexity.

The basic idea of the hybrid scheme is indicated in Figure 1.

The "inner' convolutional encoder-channel-sequential decoder

.combination presents an apparent erasure channel to the "outer"

Reed-Solomon algebraic encoder-decoder pair. The inner combination
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appears to be an erasure channel in the sense that any data 'going'
into the apparent channel is either received correctly at the output
of the channel or is declared erased. The performance of the Reed-
Solomon algebraic code for an erasure channel is analyzed in the
Appendix. The performance of the hybrid code is analyzed and

shown to compare favorably to the straight sequential code.



THE SEQUENTIAL CODE

The convolutional encoder in a sequential coding scheme maps

each set of kg input bits into a set of n_ output bits to be communicated

o
over the channel, where ko and ng are small integers. If Vis the

constraint length of the code, the mapping is done such that each set
of n, output bits depends only on the kg input bits being encoded, and

on the ¥k, previously encoded bits. After Tko input bits have been
encoded and transmitted, the encoder transmits a set of ngt
resyncronization bits. The resyncronization bits are used to insure
that the last ¥k, information .bits will be correctly decoded. The
‘rate of the code is

Ry = Uk /(I'+ t)ng .
.Reasonable values of I' and t are 1000 and 25 respectively; therefore
(F+t)m]."andRowko/noéR ) ’ ‘

s

The performance of a sequential decoding algorithm depends
more on the structure of the available buffer storage, etc. than on the
specific algorithm involved. This discussion will be valid, in
particular, for both the Jelinek and the Fano decoding schemes., It
is assumed that the sequential decoder operates ét a cycle rate of ¢
cycles per second, and that the average number of cycles available
for decoding each information bit is Qg cycles/bit. Tl‘lus the total
time available for decoding a block of koI' information bits is

kg, I—'Qs/c‘ seconds. It is assumed that the blocks arec received at

this rate, and the decoding is to be done in real time; i. e. the decoding



of a block must be completed'in kOFQs/O‘ seconds. Failure to
complete the decoding in the allotted time is thg most probablé source
of error in a sequential coding scheme.

If the decoding is co;np1e£ed in the allotted time, some of the
decoded information bits may be in _errbr. An ﬁndetected error may
occur in the ﬁr_ét (I'-») ko informatioﬁ bits if the constraint length
of the code is too small,‘ or an error may occur in the last vkg
information bits if th_e numbér of resyncronization bits is too. small.
By an appropriate choice of ¥ and t, both the probability of undetected
error, and of error in the last. Vk, information bits can be _madew
nehgfigible with respect to the probability of inc01n1:;1ete decoding
without significantly adding to the encoder complexity or decreasing
the rate. Therefore, we shall assume that the probability of decoding
error in the sequential code is the probability of incomplete decoding.

Both the upper and lower bounds on the probability Py,

of incomplete decoding for a sequential code have the form

14 -y
(Qgq-q) -

where 7 and q are functions of the channel and the transmission rate,

. -
Pig « (T7d)

and d is a constant between 1 and ¥ . Expe:cimental6 evidence indicates
that for sequential rates below .Rcomp’ 7 = Rcomp/Rs and q is
approximately 1. For the purpose of analysis we shall set d=1 and

use the relationship

= YS : - y
S PS (e) =17

Qg2



where Pg(e) is the proba.bilitir of error for the sequential code, and

YS=R /R

comp /s



THE REED-SOLOMON ERASURE CORRECTING CODE

A codeword in the Reed-Solomon code is a sequence, {Xi}: of
N symbols in GF{( Zm') which satisfy the T equations

=0 ¢
where @ is a primitive element of GF(2™) and all operations are
field operations. The word length, N, of the code is 2™-1, ti1e
minimum distance, d, is T+1, and the number of information symbols,
K, is N-T. Since the minimum distance is d, as many as d-1=T
erasures may be corrected. The rate, Ra, of the code is K/N.
Thé encoding and decoding operations for the Reed-Solomon
code are carried out by digital circuitry. In order to evaluate the
complexity, or cost, of the encoder and decoder, both the amount of
hardware and the required hardware speed must be taken into account.

.

For the encoder, at least, the power consumption may also be an
important cost _consnj.deration. With the availability of low cost
integrated circuits containing multiple logic functions, the number

of IC packages may be more important than the number ;f logic
functions. However, since the extent of circuit integration and

required power is changing very rapidly, a cost function .involving

the amount of hardware and the required speed is used; i.'é. the

product of amount of ha.rdwall'e and operations-required—per-infofmation-
bit is used as a cost function. This type of complexity index has been

H

evaluated by John L. Savage? A 8, and found to be a good measure of cost. ..

£



As obtained in the Appendix, the decoding can be segxhented
into six steps. In Table 1l the nurnber. of flip-flops, exclusive OR
gates and AND gatész and the number of operations required per
decoded word are shown for ecach of the six s;:eps. Assumihg that
the cost of an exclusive OR gate is approximately twice that of an
AND gate and half that of a flip-flop, we obtain from Table 1 that

the cost per decoded word for each of the six decoding steps is as

follows:
1) determination of {Ui} and {Ui—l} 4m(2T+3)N
2) computation of {Sj} . 6mi‘N
- -~ 3) computation of {a’i} ’Imz']:2
4) computation {Ap“l} 20mT(mT+N-1)
5) computation {Bp} 14m?2T?2
6) computation *{Vp} 7m2T

Since each codeword contains mK information bits, the total cost, Q,,

0

per decoded information bit can be written as

1

Q, c[4(2T+3)N + 6TN + 7TmT2 + 20T(mT+N-1) + 14mT2 + 7mT] /K

Qa

cl-34TN +41mT? + 12K + T(7m—8)] /K
where c is a measure of the cost of a single AND gate. In terms of
the algebraic rate, Ra = K/N we have

Qa = c[34’1‘ + 41lmT(1-Rg) + 12R + (7 m-8)(l-Ra)] /R;,:l . (2)
Refering to Figure A2 i'n the Appendix, the encoding circuit requires
2mT flip flops, 2mT exclusive OR gates, and K shifts per encoded word.
Using the same cost function, the cost of the algebraic encoder is

12¢T per encoded information bit.
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) THE HYBRID SCHEME

The hybrid coding scheme suggested by Huband and Jelinek is
composed of a sequential "inner' code and a Reed-Solomon "outer"
code. As with most hybrid schemes, th¢ inner code éssentially
conditions the channel over which the outer code operates.:

The encoding process for the ﬁybrid scheme proceeds as shown
in Figures 2 and 3. The information to be communicated is assumed
to exist as blocks of.Kom binary digits, i.e. as blocks of Ko m-bit |
"symbols, " A grbup of K blocks is stored in K buffer-registers of-
Korh bits each. After all KK, symbols have been loaded into the
registers, a Reed-Solomon encoder takes the first symbol of m bits
from the front end of eaqh of the K registers and obtains a set of
T.=N-I ""check symbols, " each of which is shilted into the tail of an
additional Kom~-bit register. The original i( registers are then right-
shifted (e;ad—around), and the second set of digits is encoded. This
" proceeds until the entire set of KK, symbols has been successfully
encoded. (Note that only the last m bits of the Kom-Bit 1:.egisters .need
be a;ccessible. )

Each register or "track' is then coded in turn, block seciuentially
(with each track codeci independently of the others), agd communicated

through the discrete memoryless channel. The coded length of each

track is Ny = Ko+T, symbols.

The decoding process takes place in the opposite order. Ifa 7 7

given tréck of mKg information bits cannot be completely decoded
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by the sequential decoder in a sp‘eci'fied. number, mKOQS, of decoding
operations, that track is declared an erasure. If the sequential
decoder completes the decoding of a track, then with high p.robability
the decoded bits are corre'ct. Any nuﬁber of erasures in a block,' up
to a maximum of T will be successfully-r decoded by the Reed-Solomon
decoder.

The advantages obtained by this particular combination of codes
are due largely to the ability. to implement a sequential decoder so that
the only significant failure is from incomplete decoding. As a result
of this apparent channel transformation an erasure—cofrecting R-S
decoder can be used which is inherently much simpler than an error-

cérrecting decoder. The sequential and Reed-Solomon codes

complement each other in a number of other significant ways also,

Sequential codgs are easily adapted to non-symmetric channels
whereas Reed-Solomon erasure-correcting codes are not. In the
hybrid scheme the Reed-Solomon code is oblivious to any asymmetry .
in the channel. Sequential codes can achieve erasure probabilities of
about 10~3 with relatively little computation even for large channell
crossover probabilities. However, to reduce the erasure probability
from 1073 to 10~ would require about 1000 times the number of
computations. Reed-Solomon codes, on the other hand, are most

3

cffective for erasure probabilities less than or equal to. 1077, In

addition, the Reed-Solomon code is a maximum code in the sense

that it can correct as many eérasures as it'has pa'rity"ché*ck'“symb'ols", CoTTr

and it is a systematic code which implies that if more than the
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correctable number of erasures occurs, only those tracks actﬁally

erased are lost.

In order to evaluate the performance of the hybrid code we need an

expression like equation (i) for the sequential code, or equation (2)
for the Reed-Solomon code which relates the probability of error, th¢
number of computations or cost, and th'e rate..

The hybrid coding scheme fails to decode all mKK, information
bifs whenever more than T sequential track are erased. Therefore,
the hybrid probabilit‘y of error, Py(e), is the probability that more

than T tracks arc erased; i.e.,
~~~~~~ | SO -
p )= Z\j)re)(I-rl) (3)
h = ] S
j=T+l

where P_(e) is the probability that a single sequential track is erased.
Since the Reed-Solomon code is systematic, if j > T erasures occur,
then the number of tracks erased will be exactly j. The probability
of a given‘ track being erased is j/N times the probability of j erasures
occurring. Taking this factor into.account in the hybrid probability
of error, equation (3) becomes -

N /] i N-j .
Ph(g) = J:,Tz\:gal(ﬁ)(i}]) PS(@)J““%(G))l J (4)

For reasonably small track erasures probabilities (Pg(e) = 10'2), the
probability of more than T erasures occurring is very nearly the
probability of T+l erasures occurring. For the cases of interest we

can, with very little error, simplify equation (4) as

L N=y T, . N-TH o
Ph(@) & ( T ) (e (l-PS(@)) . (5)
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We define the overall rate of the hybrid code as the product of
the sequential and algebraic rates; i. e.
RA R.R =K K/NGN : (6)
t— s a o] o )
and we define Yi, as the'ratio of Rcomp to the overa}l rate; i. e.
Vi o= Reomp! Re: | ' ' (7)
From equations (1), (6) and (7), the pr.obability that any sequential

track in the hybrid scheme is erased is

I-%:Rq | -%R - -
Pg(e) = T 17a (Qg-1) ra . (8)

where I‘h is the number of k,-bit nodes. per track for .each track in the
hxl\o_rid scheme.

The total cost, Q;, of the hybrid decoder per decoded information
bit can be estimated as the sum of the cost, Q,, of the algebraic
decoder per information.bit, and the number of cycles, QS/Ra, Qf the
sequential decoder per information bit, i. e,

0,5 Qa + Qg/Ra : (9)

We assume that even for the sequential code alone, some
storage will be provided at the decoder either as disk, tape, or
registers to store incoming codewords. The input storage required
for the hybrid code will therefore be an inherent part of the sequential
decoder and wili not be considered to contribute additional cost to the
hybrid decoder,

| One advantage of this particular hybrid scheme, as mentioned

previously, is that the algebraic decoder is required to correct only

erasures and no errors. In fact, the structure of this hybrid scheme
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ié such that the algebraic decoding is less difficult even tha.;u normal
erasure correction. Note that in the hybrid schéme, when a
sequential track is erased, the erasure a.f.fects Ko Reed-Solomon
codewords. Therefore, tl;e erasure locators aré the same for the
entire set of K, codewords, and need be computed only once for the

set. In addition, the coefficients of ¢ (X) which depend only on the

erasure locators, and the set {Ap’l} which depends only on the
erasure locators and the coefficients of ¢ (X), are also coméuted
only once for a set of K, Reed-Solomon codewords. Therefore, the
cost per decoded information bit of each step in the Reed-Solomon

deggder- is as follows:

1) determination of {Ul} and {Ui-l} 4(2T+3)N/KK,

2) computation of {Sj} " 6TN/K

3) computation of {rri } _ TmTZ2/KK,

4) computation of {Ap'l} 20T(mT+N-1)/KK
5) computation of {Bp}. 14mT2/K

6) computatio-n of {Vp} TmT/K

.

For reasonable values of K,, the cost of those steps whi'ch are do'ne'
only once is negligible. Thus, the cost, Q,, per decoded inﬁormation
bit for the Reed-Solomon decoder in the pybrid scheme is given by
Q, = cT/K (6N+14mT+7m). ' | (10)
From (9) and (10)

Qg = R,Q¢ - ¢T/N(6N + 14mT + Tm). , (11)

- Equations-(11), (8) and (5) make up the desired relationship for the . . __ .
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evaluation of the performance of the hybrid scheme. Substituting
(11) and (8) into (5) gives P (e) in terms of Q, 7’.} , Fh’ N, an;l c
for all Ry such that 71, R, 2 1. .
The probability of e'ljror for the straight sequential scheme having
the same overall rate Rt, number of nodes I‘s =K I’h, and tdfal

complexity Qq, is calculated by the equation

l‘yi, "'yi.
Py(e) = Ty (Q.i."l) e | (12)
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COMPARISON OF THE HYBRID AND SEQUENTIAL CODES

The performance of the hybrid code has been eva.lua.tclad, using
those expressions just obtained, and compared to the pe;formance
-o.f the straight sequential code on the basis 'of probability of error.
In comparing the performance of the two cédes, each code is allowed
the sa.n.1e number of computations per information bit, Qt’ and the
same number of sequential nodes, PS . In addition, the overall rate
is assumed in each éase to be the same fraction of R’comp' Thus in each
case, Y.; = Rt/R’comp" For. a particular choice of these three

parémeters, the performance of the sequential code is evaluated by

the expression

-7, -y |
Pgle) =Ty " (Q-1) . -2
The number of sequential computations, the track erasure probability
and, finally, the probability of error for the comparable hybrid scheme

are evaluated from the expressions

Qg = RyQ - ¢T/N(6N + 14mT + 7m), . SENESY
-7 R
t"a -7 R -
Py(e) = (Iy/K) (Qg-1)" ", (®)
(N-l) T+I N-T-I
P (€)= X\ T/ pgte)  (I-pyle)) , BT

where N, K, and ¢ depénd on the algebraic portion of the hybrid code.

(Note that the other algebraic parameters, T, Ré‘, and m, are all

specified by the choice of N and K. )
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In Figures 4 through 15 the probability of error for the tv;/o codes
are compared using different values of N and K in the hybrid scheme
and with c (the algel>;~aic <'equa.tion complexity coefficient) always
equal zero. The effect of assuming that ¢=0 is to neglect the
algebraic complexity. The curve for each hybrid code on the i)lots
is denoted by the parameters of the algebraic por\tion of the code; i. e.
(N, K) - L where L = T/N(6T + 14mT + 7m). Some degredation in the
hybrid performance would certainly occur by the use of c£0, since
the number of sequential computations would be reduced by cL,
therefore increasing the track erasure probability and likewise
increasing the‘ hybrid probability of error. An indication of the
relative effect of non-zero c's is provided by the different values of
L for the various (N, K) codes.

Certain restrictions have been adhered to in constructing these
plots and‘it is worthwhile repeating those restrictions at this time.

4

For FS = 107 only N=15 is considered since Fh = I:S /K and I"h must

be on the order of 1000 or greater to justify ignoring the resyncronization

node size, t. Only values of R, 2 y’? are considered since for

R, < y’i’ sequential 1~a_§e.s above R are required. The expression

1

comp

7 =R /R does not hold for sequential rates above R

In fact,
comp

comp’

it is precisely this assumption, Rg 2 Y.i. which allows us to ignore

the properties of the channel. For sequential rates below Rcornp’

7 =R /Rg independent of the channel crossover probability, but
comp .

e e e e e R e emmermie e e e m mer e eh e mmes amemin 4 e emeem ek e & e e mmnam + e e emmtaas s memen. e e e ema s 3
for sequential rates above Réomp’ 7 is strongly dependent on the channel.
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In Figures 16 through 23 the same variables are plotted, but
with non-zero values of c considered. Xach of these plots shows

the effect on one hyb'rid code of c = .01 and . 05.
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CONCLUSIONS

The hybrid code is capable of obtaining up to several orders of
magnitude improvement in probability of error over the straight

e

sequential code with the same overall rate and complexity of

implementation. For relatively high overall rates, R 0.8 Reomp’

error prob.abilitiesv of about 10;6 can be obtained with a reasonable
number of computations. For applicationé such as machine-machine
communication where extreme reliability may be required, the hybrid
code obtainé error probabilities of about 1079 with only a slight |
rediction in rate.

Orne particular advantage to this hybrid scheme is that fhe
sequential code portion of the scheme is exactly the straight
sequential code. Therefore, in many applications where sequential
codes are now being utili.zed, the improved'perforrnance of the

hybrid scﬁeme could be realized by merely adding the Reed-Solomon

section of the hybrid code. All of the hardware for the sequential

encoder and decoder would be unchanged. In this type of é.pplicvation,
the value of the constant, c, would be of little interest, and the plots
with c¢=0 provide a good indication of the performance to be expected.
In fact, the improvement actua.ily obtained by adding the Reed-Solomon
encoder-decoder pair would be greater than indicated by the plots

since the length of cach sequential track would be "T.S nodes instead

of PS /K nodes.
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Appropriate values for the constant, c, are difﬁcultlto determine.
This constant should relate .the complexity of one cycle of the
sequential decoder to the complexity of one operation in the Reed-
Solomon decoder. One operation of the Reed-Solomoﬁ decoder
consists of a single register shift, whereas a sequential decoder
cycle consists of several computations, comparisons, and logical
decisions. It is not unreasonable then to expect that values of c on

the order of .01 are probably appropriate.



APPENDIX

The Implementation of a Reed-Solomon

Erasure-Correcting Encoder and Decoder

v

The encoding and decoding operations for the Reed-Solomon
code are carried out completely by digital circuitry. Kach codeword
is a sequence of N symbols, or field elements, from GF(2™). The
basic .opera.tions to be performed on field elements by digital circuitry
include storage, addition, multiplication, and inversion.

Since any element of GF('Zm) may be represented by a sequence
of m binary digits, .storage of a field element requires an m-bit
storage register; i. e. any field element may be stored in m flip-flops.
Two field elements can be added by adding their corresponding bits
modulo 2. Therefore, addition of field elements requires m modulo 2
adders; i. e. the sum of tﬁvo field elements is compuged with m exclusive
OR gates.‘ Since addition is done modulo 2, each element is its own
additive inverse, and addition and subtraction are the-same operation.
Multiplication of any fizld element in GF(2™) by the prir;ﬁtive element
requires one shift of an m-bit shift regiéter with ‘feedback. The
feedback connections are made through W(m)-2 modulo 2 adders, where
W(m) is the Hamming weight of the irreducible polynémial. 9
Multiplication by constants other than the primitive element is also
done with one shift of an m-~bit shift register W];,th feedback, This
operation is slightly moxe coraplicated in that mor¢ feedback connections,

i. e. more modulo 2 adders, are required. However, irreducible
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polynomials can be found10 such that for constants which are small

i .2 .
, 1= m the number of

powers of the primitive element, i.e. @
modulo 2 adders reqllil'ed' is approximately m. Therefore, the
product of a field element and a constant is computed with m flip-
flops, m exclusive OR gates, and one shift. Multiplication of two
field elements requires m modulo 2 multipliers and m shifts of an
m-bit accummulating register with feedback. The accummulating
register is identical to the constant multiplier which multiplies by

the primitive field eleme'nt and therefore requires m rpodulo 2 adders.
Tl}‘e produ'ct of two field éleme.nt.s is computed with m flip-flops,

m exclusive} OR gates, m AND gates, and m shifts. 11 Computing

the inverse of a field element requires two m-bit shift registers with
feedback and as many as 2'™-2 = N-1 shifts, i.e. the inverse of a
field element is computed with 2m flip-flops, 2m exclusive OR gates

and N-1 shifts. 12

In Figure Al symbols of devices for field element
operations are diagramed, and their operations are shown in terms
of two field elements, A and B In Table Al the amount of hardware
and the number of register shifts for each of the above operations is
tabulated.

The sequence of N symbols which comprise a codeword may he
thought of as the sequence of N coefficients of a polynomial of degree

N-1 over GF(2™).. Every codeword consists of K information symbols

‘and T check symbols, The encoding process consists of finding the T

check symbols for a given set of K information symbols. Since the
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P, —

A+B A'B

A3

field field .
element ) field element field field
storage element censtant element element
register adder multiplier multiplier inverter

) Figure Al
. Field Element Operators
Hardware
flip | exclusive } AND jregister
flops] OR gates igates] shifts
field element storage m -- -- --
field element addition -- m - -

field element constant multiplication] m m -~ 1

field element multiplication m m m m

field element inversion . 2m _2m - 2M_2

Table Al

Field Element Operations
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Reed-Solomon code is cyclic, there exists a unique generator polynomial
of degree N-K for the code. This gene'ra.for polynomial has the property
that every codeword,(that'is, _every polynomial whosp coefficients a.ré
a codexvor&) is divisible by the generzitor polynomial, and any
polynomial divisible by the generator polynomial is a codeword. The
encoding procedure is based on this property of the generator
polynomial.

Consider a pglynomial, f(X), of degree N-1 éuch that the K
highest order coefficients are the K information symbgls to be cnc;.oded,
and the N-K lowest order coef.i'iciepts are zero. If this polynomial
were divided by the generator polynomial, g(X), the result would be

f(X) = g(X) q(X) + »(X) where r(X) is the remainder and is a

polynomial of degree & N-K-1.
Since cvery polynomial divisible by the generator polynomial is a
codeword, g(X) q(X) = {(X) - r(X) is a codeword. Encoding the
information symbols is accomplished by computing the remainder when
f(X) is divided by g(X). Note also that f(X) contains no terms of degree
less than N-K, and r(X) no terms of degree greater than N-K-1. The
encoding process is, therefore, systematic in that the information
symbols appear unaltered in the encoded word.

P‘etersonl3 has described a circuit to compute the remainder
when a polynomial of degree N-1 is divided by a polynomial of degree
T over the field of 2™ elements. The encoding circuit is shown in

Figure A2. The T m-bit storage registers initially all contain zero.
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“clustered as the parity check symbols are. ~

A6

When fN-l’ the highest order coefficient of f(X), appears at the input,

. fN-l gT“1 = qN_T_l, the highest order coefficient of the quotient,

appears in the feedback loop. For eaéh ‘coefﬁcient, qj, of the quotient
the polynomial qj g(X) is s'ubtracted from the dividend by the feedback
connections. After K shifts all the information symbols have been
shifted into the encoder and the channel, and the coefficients of the
polynomial of check symbols, r(X), are in the T ;tora.ge registers.
Then the switch on the encoder is thrown to the r(X5 position, and the
coefficients of r(X) are shifted into the channel. |

The encoding circuit requires T m-bit storage r‘egisters, T.fn-bit
ad.&.éi‘s, and T m-bit constant multipliers. The amount of encoding
hardware is proportional to mT and the number of shifts required is K.

After the K information symbols are eﬁcoded, the codeword is
transmitted over a binary erasure channel. For each of the N iﬁ-bit
symbols, ,the Reed-Solomon decoder cither receives the symbol
correctly, or it receives a signal that the symbol was erased. If T

1

or fewer erasures are signaled, the Reed.-Solornon deCOflel' will
recover the lost symbd_ls.

Decoding represén@ very nearly the same problem as encoding,
i.e. at least K symbols‘.are known and as many as T"'symbols must be
found such that the K+T=N symbols satisfy the defining equation for

the code. Although the locations of the erasures are known, decoding

is more difficult than encoding because the erasures may not be
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Let {xi} denote the sequence of transmitted symbols, and {y}
i

denote the sequence of received symbols. The syndrome, {Sj}’ for the

received sequence is defined as

Nel |
s, & Zov e ST S (a

-th

where y; = x; if the i== symbol was not erased, and y; = 0 if the jth

symbol was erased. Let the sequence {zi} denote the difference
between the transmitted and received sequences, i.e. z; = xj-y; = X;ty;.

Fron-q (Al)
i}l:-l( ) i N-|l - i : :
- S = X, + 2, = 2, 1£j=T
ST TR T AT T 04 ‘ e

Since the number of non-zero z; must be less than or equal to T for

successful Reed-Solomon decoding, equation (A2) may be written

n. .
S, Z Zn&l lSJS-‘E EXT (A3)
J-.I l =0 .
Define U; = @ & as the if-}—l— erasure locator, and V, =z, as the ith
. i

erased value. From (A3)
&1 i+

P
S = X V.U - 0gjs &1 ExT
i |O ] . (A4)

Since the occurance of an erasure is a signaled event, the {ni} and

{Ui} = {ani} are known to the decoder. The {Sj} can be computed

’ by the decoder from the received sequence {Yi . To decode one must
find the unknown {Vi} from the known {Ui} and {Sj} ac;cording to
equation (A4). —

Equatmn (A4) may be written as the followmg matrix equatmn

5- v[u]
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where -S_is the syndrome vector, -\7 is the vector of erased values,
and [U] is a Van der Monde matrix. Decoding the Reed-Solorr;on
erasure-correcting code is equivalent to inverting the matrix [U] and
finding V by

V=5 [U] -1

In order to understand how this matrix inversion is realized by

digital circuitry, we first define the polynomial
&

A |
0 (x)z,, z o) X %) A .H (X+U) Ospsél &sT

p

[.‘_-.

and summmg gives

Multiplying (A4) by O.pj

§- F-' j
c*-‘-l C—
lFOvl U. JZO o U

From (A5) ¢,(U;) =0 Vi 5% p and thus

p

&-1 j
- & &
,yo‘ymsj Vo Uy jZO 0i Up Ozp<é-l &7

&-1 jtl el %—J |

Vps[Zo Uy | Toos

p- Lo pPi P S0 pivi (A6)

The erased values can be computed by the decoder from equation
2

(A6), but this computation requires & G'Qj’S to be computed as an
¥

iA

intermediate step. A further simplification is possible by defining

the polynomial

P .
A §-l
o (X) & JZ oJ = I (Y'rU) . (A7)

.By expanding equations (A5)and(A7) and equating coefficients we obtain

2 (g 4+ ! s
“pj = {opj1 + @jUp = Up %o“'i”p (48)
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Substituting from (AS8) into (A6)

- o df g et J i
% Y5 igoaiup)up.] jZ:O(U 2 o Up)s,

J i"‘:’l = '“.
2 o, U ] 20 .Z‘Oa'iU S, (A9)

From equation (A9) the de;oder can compute each erased symbol, Vi'
The c‘ombutation can be broken down into the basic field operations

in terms of the known {Ui} the {O‘i} which are computed from the
{Ui}, and the {Sj} which are c.omputed from the received s’equence.
Alth.ough equation (A9) appears more complicated than (A6),

its implementation is less difficult since only é’ G"i’S need be computed.

A diagram of the way in which the sequence {Ul} is determined by

1

if is received is shown in Figure A3a.

N-1 '
The U, register is initialized to @& . If the first symbol from the

the decoder as the sequenced {y

codeword, yp.]» is erased the erasure detector closes the switch and
N-] | _ ,
Ug =@ goes into the locator storage register. As each symbol is
either erased or received, the content of the Ui register is multiplied
by @ ', so that when yi is received the U, register contains t}l' . (The
multiplication can be obtained with feedback connections around the
U; register thereby eliminating the need for the constant multiplier.)
Only when a symbol is erased is the switch closed and the current

content of the U; register shifted into the locator storage register.

_The locator storage register is a T-symbol, series input, parallel
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output register. The erasure locators are available to the rest of the
decoder in two forms: 1) as a series strivﬁg as the codeword is being

received, and 2) as t'he parallel outputs of the locator storage register
after the entire codeword is received. |

Note that the inverée of each erasure locator can be determined
by a similar circuit as the sequence {yi} is received. (The nced for
the sequence {Ui- 1} will be shown later.) If the register is
initialized to & % (&N“')n| , and multiplied by @ with each incoming
symbol, then when Y is received the register will conFain Ci“i . The
inY?}*se of each erasure local;o.r may be stored in a register like
the locator storage register.

The overall function of the locator detector circuit.ry is to
determine and store the value of each erasure locator and its inverse.
The amount of hardware required for this circuit is prdportiona.l
to mT and the number of shifts required is N. The input to the
circuitry is the sequence {Yi} in serial form and the outputs are the
sequence {Ui} in serial and parallel form and the sequence {U{l} in
parallel form. In Figure A3b a block diagram of the locator detector
with its inputs and outputs is shown.

This basic strategy will be used in the description of each
functional block of the Reed-Solomon decoder: each circuit will be -

explained in terms of the registers, multipliers, etc. from which it

‘mavy be built; then a block diagram of the circuit showing only inputs

and outputs will be given. After discussing each of the functional
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blocks, the entire decoder will be diagramed showing the inter;
connection between the blocks.

The syndro.;rne‘is ca‘lculated with T m-bit storage registers,
T fn-bit adders, and T m-bit constant multipliers which multiply by
¢ through C!,T respectively with each shift. The circuit for computing
the syndromes is shown in Figure A4a. Each of the m-bit registers
is initially set to zero. The symbols are received from the ;hanﬁel,
high order symbols first, and fed in parallel into the T m-bit adders.
When yN-l is received, the contents of each storage r.egister becomes
Then YN-2 is received and the contents of the jEll register is

YN-1

changed to 18 +y . This process continues until is received
g ¥N-1 N-2 Yo

th

and the contents of the j register is

((},IN_.I&J e yN_.Z) CZJ + .l y')ch "’r’ yo = }:O V. CZU = 8
The constant multipliers for this circuit also may be rcalized by
feedback 'connections around the storage registers.

The amount of hardware required for ;omputing the syndrome is
proportional to mT and the number of shifts required is"vN. Recall
that the encoded sequence is shifted out ;>f the en.coder high order
symbols first. Therefo'ré, the decoder can compute:the syndrome as

the sequence is being reccived.

The sequence {O'l} is co"’mlputed by a direct expansion of the
G.’

"defining equation; i.e. & (X) = H (X+U;). A set of T field elements

o
i.-

can be considered as the coefficients of a polynomial, say & (X), of
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‘received, so {Ui} is available serially as the erasures occur.

Al4

degree T-1 or less, and can be stored in a set of T m-bit storage
registers. Multiplication of this polynomial by a field element, say
Uy, is equivalent to fnultiplying each coefficient by U;., Multiplication

of this polynomial by X is equivalent to shifting the contents of the

T registers so that the coefficient of X! becomes the coefficient of

Xi+l. Therefore multiplication by a factor (X+Ui) may be carried out
by a multiplication, and a shift, and the addition of two results.

The circuit shown in Figure A5a computes the sequence {6’1}.
All of the T storage registers areA initialized to zero e'xcept the first
\Vhl‘Ch is initialized to a® =1; 1 e. the storage registers contain the
coefficients of the constant polynomial ¢ (X) = 1. When Uy is received,
the content of each register is multiplied by UO and the registers are
right shifted. The content of the first register is then U0 and the
content of the second register is 1; i, e. the’ stora.gé registers contain
the coefficients of the polynomial & (X) = X+Uy. This process continues
until Uq. ) is received, at which tlmcrthe storage registers contain the
coefficients of the polynomial & ‘iino X+U "

The amount of hardware required for computing sequence {6‘ } is
proportional to mT. The storage registers must shift T times, andthe
field multipliers require m shifts for each shift of the storage registers
i. e. the number of shifts required is mT.

The erasures are signaled, or detected, ‘as the sequence is being

Therefore, the decoder can compute {5“1} as the sequence is being

received.
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After the N éymbol is either received or declared erased,

the erasure locators, fU} the syndrome, {Sj}’ and the {0‘1} are

all known, and the decoder can compute the erased values from

equatioh (A9). .
. ' -1 T—I j-\ i":"l
The circuit in Figure Aba computes the term A_ = [ z _Z, o, U
P J:O =0 1 p
Recalling that the summation is a modulo 2 sum, this expression for A
l+|

: 3_‘ i1
can be simplified to 0"|U for T odd or Z G' for T even.
ieven

The m-bit accumulating register A‘p’ is initially set to zero, and the
i
Up -register is initialized to Up = 1. Considering the case of T odd,

when T, is input to the multiplier, the contents of the accumulating
. i o
register becomes U'OUp' Then the Up register is shifted twice, the

inpuf is switch to 6"2, and the contents of the accumulator becomes

CS‘OUP + CY’ZUPS. After the input is switched to each of the &;'s (i even)

. i-;-l .
the total in A_ is }: o. U . A _is then shifted into an inverter
P i eveni P p

&

which after, at most, N-1 shifts will contain A.p-
The amount of hardware required for the circuit in Figure Aba

is proportional to m. There must be T such circuits in the decoder to

compute the T Ap—lﬂ's. The number of shifts required at the input is

T, and the field multipliers require m shifts for cach input. In
addition, the inverter requires'N-l sl'1ifts. Therefore, the amount
of hardware required to compute the {Ap"l} is proportional to mT,
and the number of shifts required is mT+N-1. .

The c1rcu1t shown in Flgule ATa computes the term

Z ? G’ U S, The two m-bit accumulating registers, bp

Pp j=0 =0 1 P
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(T odd)
G'T-l' * o0 Cf4, 0‘2) 6‘0
o, T,
G.T-l, o s 0 ’ 30 a‘l
B (T even)
Figure Aba
. U
p
(T odd) ‘l,
[v) ) [+
Iro1 v % % b
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T even
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-1
A
P

Figure Abb

Computation of A;l
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and Bp’ are initialized to zero. When G‘O and SO are input to their

respective multipliers, the contents of bp becomes 0‘0 and the

contents of B_ becomes ¢,S_ . Then the inputs are switched to &

P 070 1

and Sl and the contents of the accumulators become O'OUP~1+ 0‘1,

in bp énd (ti’v‘oUp + ?’I)Sl + O _S n} Bp. After the inputs are switched

T times, the total in BP is‘ z Z G..Uln S
=0 i=0 1 P N

The amount of hardware required for the circuit in Figure A7a
is proportional to m. There must be T such circuits in the decoder to
compute the T Bp‘s. The number of shifts required at the input is T,

and the field multipliers require m shifts for each input. Therefore,

to mT, and the number of shifts required is mT.

Each erased value, Vp, is computed as the product of an Ap"l

and a BP. The amount of hardware required for the T field multipliers

is proportional to mT and the number of shifts required is m.

The entire decoder for the Reed-Solomon erasure-correcting code
is shown in Figure A8. ZFXach block could be built exactly as indicated
in Figures A3 through A? with integrated circuit digital circuitry. The
m-bit registers would be,realized by m J-K flip-flops, the m-bit
adders by m exclusive OR gates, and the field eleme‘\nt multipliers
by m AND gates and an m-bit accumulator with feedback. Two

circular Tm-bit shift registers could serve the function of the ganged

switch shown in Figure A8. The only required circuitry not explicitly

" shown is a clock.
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To summarize, the encoding and de.coding for the Reed-Solomon
| code is carried out cofnpletely by digital circuitry. The decoding can
be segmented into si;c operations:

1) determination of each erasure locator and its invers'e,

2) computation of the syndrome,

3) computation of the coefficients of ¢ (X),

4) computation of the Apnl's,

5) computation of the Bp's,

6) computation of the Vp's.
O}{o._erations 1), 2), and 3) abov.e are carried out as the codewords
are received and are complete for each codeword when the erifire
codeword is received. Operations 4) and 5) are performed simultaneously
after the codeword is cofnplete, and operation 6) is performed when 4)
and 5) are complete. 'The hardware required for‘ each operation is
proportiohal tomT. A constant of proportionality for each of the
o_perétions can be easily determined by counting the number of
‘registers, multipliers,‘ and adders shown in Figures A3 through

A7 and weighting their relative costs.
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