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Abstract 

THE EVALUATION OF A HYBRID CODING SCHEME 

Forrest Fox 

The performance of a hybrid sequential-algebraic coding scheme 

is evaluated taking into account the probability of error, the complexity 

of implementation, and the overall rate. The hybrid scheme is one 

suggested by Huband and Jelinek based on a similar proposal by 

Falconer. Upper and lower bounds on the performance of a straight 

sequential coding scheme have been utilized. The corresponding 

relationships for the algebraic*portion of the hybrid code and the 

complete hybrid code are obtained. The performance of the hybrid 

scheme is compared to the performance of a straight sequential 

scheme, and found to obtain up to several orders of magnitude 

improvement in probability of error for the, same overall rate and 

complexity of implementation. 
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INTRODUCTION 

The performance of any coding scheme can be measured by the 

inherent trade-off between speed, cost and reliability; i. e. increasing 

reliability generally requires increasing cost and/or decreasing 

speed. The exact relationship of these three parameters for a given 

code depends upon the communication channel to be utilized. 

Both of the common coding techniques, sequential and algebraic, 

have sufficiently severe limitations to restrict their utilization in 

many practical communication systems. The algebraic codes 

perform at reasonable rates, cost, and probability of error only for 

relatively small channel crossover probabilities. The sequential 

codes perform better for high crossover probabilities, but the 

variability in the number of decoding computations can require 

prohibitive storage allocation to obtain an acceptable overall 

probability of error. ^ A hybrid sequential-algebraic coding scheme 

proposed by Huband and Jelinek^ based on a similar proposal by 

2 
Falconer is capable of providing significant improvement in the 

probability of error when compared to a straight sequential code 

utilizing the same channel, at the same rate, and with comparable 

complexity. 

The basic idea of .the hybrid scheme is indicated in Figure 1. 

The "inner1* convolutional encoder-channel-sequential decoder 

•combination presents an apparent erasure channel to the "outer" 

Reed-Solomon algebraic encoder-decoder pair. The inner combination 
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appears to be an erasure channel in the sense that any data going 

into the apparent channel is either received correctly at the output 

of the channel or is declared erased. The performance of the Reed 

Solomon algebraic code for an erasure channel is analyzed in the 

Appendix. The performance of the hybrid code is analyzed and 

shown to compare favorably to the straight sequential code. 
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THE SEQUENTIAL CODE 

The convolutional encoder in a sequential coding scheme maps 

each set of kQ input bits into a .set of nQ output bits to be communicated 

over the channel, where kQ and nQ are small integers. If V is the 

constraint length of the code, the mapping is done such that each set 

of nQ output bits depends only on the kQ input bits being encoded, and 

on the 2/kQ previously encoded bits. After FkQ input bits have been 

encoded and transmitted, the encoder transmits a set of nQt 

resyncronization bits. The resyncronization bits are used to insure 

that the last ^k0 information bits will be correctly decoded. The 

rate of the code is 

Ro = Fk0/(r+ t)nQ . 

Reasonable values of F and t are 1000 and 25 respectively; therefore 

(F+t)^r and R0«k0/n0sRg. 

The performance of a sequential decoding algorithm depends 

more on the structure of the available buffer storage, etc. than on the 

specific algorithm involved. This discussion will be valid, in 

particular, for both the Jelinek and the Fano decoding schemes. It 

is assumed that the sequential decoder operates at a cycle rate of O* 

cycles per second, and that the average number of cycles available 

for decoding each information bit is Qs cycles/bit. Thus the total 

time available for decoding a block of k0F information bits is 

kQ F Q s /cr seconds. It is assumed that the blocks are received at 

this rate, and the decoding is to be done in real time; i. e. the decoding 
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of a block must be completed in koFQs/0* seconds. Failure to 

complete the decoding in the allotted time is the most probable source 

of error in a sequential coding scheme. 

If the decoding is completed in the allotted time, some of the 

decoded information bits may be in error. An undetected error may 

occur in the first (T-* ) kQ information bits if the constraint length 

of the code is too small, or an error may occur in the last VkQ 

information bits if the number of resyncronization bits is too small. 

By an appropriate choice of V and t, both the probability of undetected 

error, and of error in the last Vk0 information bits can be made 

negligible with respect to the probability of incomplete decoding 

without significantly adding to the encoder complexity or decreasing 

the rate. Therefore, we shall assume that the probability of decoding 

error in the sequential code is the probability of-incomplete decoding. 

4 5 Both the upper and lower bounds ’ on the probability P^, 

of incomplete decoding for a sequential code have the form 

i-7 -7 
Pjd cc (r/d) (Qs-q) 

where 7 and q are functions of the channel and the transmission rate, 

and d is a constant between 1 and V . Experimental^ evidence indicates 

that for sequential rates below RComp> ^ = ^comp^s and *1 

approximately 1. For the purpose of analysis we shall set d= 1 and 

use the relationship 

i-Xs -7o 
- ps(e) =■ r- 3 (Qg - I)_.?  - -  (.1). 



where Pg(e) is the probability of error for the sequential code, and 

~ ^comp * 
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THE REED-SOLOMON ERASURE CORRECTING CODE 

A codeword in the Reed-Solomon code is a sequence, H , of 

N symbols in GF(2m) which satisfy the T equations 

N-l 
X. x oJ = 0 I < j < T 

where S is a primitive element of GF(2m) and all operations are 

field operations. The word length, N, of the code is 2m-l, the 

minimum distance, d, is T-H, and the number of information symbols, 

K, is N-T. Since the minimum distance is d, as many as d-l = T 

erasures may be corrected. The rate, Ra> of the code is K/N. 

The encoding and decoding operations for the Reed-Solomon 

code are carried out by digital circuitry. In order to evaluate the 

complexity, or cost, of the encoder and decoder, both the amount of 

hardware and the required hardware speed must be taken into account. 

For the encoder, at least, the power consumption may also be an 
* 

important cost consideration. With the availability of low cost 

integrated circuits containing multiple logic functions, the number 

of IC packages may be more important than the number of logic 

functions. However, since the extent of circuit integration and 

required power is changing very rapidly, a cost function involving 

the amount of hardware and the required speed is used; i.‘e. the 

product of amount of hardware and operations-required-per-information 

bit is used as a cost function. This type of complexity index has been 

7 8 
evaluated by_John E. Savage ’ . and found to be a good measure of cost.. 

8 



As obtained in the Appendix, the decoding can be segmented 

into six steps. In Table 1 the number of flip-flops, exclusive OR 

gates and AND gates, and the number of operations required per 

decoded word are shown for each of the six steps. Assuming that 

the cost of an exclusive OR gate is approximately twice that of an 

AND gate and half that of a flip-flop, we obtain from Table 1 that 

the cost per decoded word for each of the six decoding steps is as 

follows: 

1) determination of and j* 4m(2T-f3)N 

2) computation of to . 6mTN 

. - - 3) computation of 7m2 T2 

4) computation 20mT(mT+N-l) 

5) computation "^Bpj* 14m2T2 

6) computation Kl 7m2 T 

Since each codeword contains mK information bits, the total cost, Qa, 

t 

per decoded information bit can be written as 

Qa = c[4(2T+3)N + 6TN + 7mT2 + 20T(mT+N-l) + 14mT2 + 7ml] /K 

Qa = c £34TN + 41mT2 + 12K + T(7m-8)J /K : 

where c is a measure of the cost of a single AND gate. In terms of 

the algebraic rate, Ra = K/N we have 

Qa = c [34T + 41mT(l-Ra) + 12Ra + (7 m-8)( 1-Ra)] /Ra . (2) 

Refering to Figure A2 in the Appendix, the encoding circuit requires 

2mT flip flops, 2mT exclusive OR gates, and K shifts per encoded word. 

Using the same cost function, the cost of* the algebraic encoder is 

12cT per encoded information bit. 
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THE HYBRID SCHEME 

The hybrid coding scheme suggested by Huband and Jelinek is 

composed of a sequential "inner" code and a Reed-Solomon "outer11 

code. As with most hybrid schemes, the inner code essentially 

conditions the channel over which the outer code operates. 

The encoding process for the hybrid scheme proceeds as shown 

in Figures 2 and 3. The information to be communicated is assumed 

to exist as blocks of KQm binary digits, i. e. as blocks of KQ m-bit 

"symbols. " A group of K blocks is stored in K buffer registers of 

K0m bits each. After all KKQ symbols have been loaded into the 

registers, a Reed-Solomon encoder takes the first symbol of m bits 

from the front end of each of the K registers and obtains a set of 

T=N-K "check symbols, " each of which is shifted into the tail of an 

additional K0m~bit register. The original K registers are then right- 

shifted (end-around), and the second set of digits is encoded. This 

proceeds until the entire set of KKQ symbols has been successfully 

encoded. (Note that only the last m bits of the K0m-bit registers need 

be accessible. ) 

Each register or "track" is then coded in turn, block sequentially 

(with each track coded independently of the others), a.nd communicated 

through the discrete memoryless channel. The coded length of each 

track is N0 = K0+T0 symbols. 

The decoding process takes place in the opposite order. If a 

given track of mK0 information bits cannot be completely decoded 
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Figure 3 
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by the sequential decoder in a specified number, mK0Q , of decoding 
s 

operations, that track is declared an erasure. If the sequential 

decoder completes the decoding of a track, then with high probability 

the decoded bits are correct. Any number of erasures in a block, up 

to a maximum of T will be successfully decoded by the Reed-Solomon 

decoder. 

The advantages obtained by this particular combination of codes 

are due largely to the ability to implement a sequential decoder so that 

the only significant failure is from incomplete decoding. As a result 

of this apparent channel transformation an erasure-correcting R-S 

decoder can be used .which is inherently much simpler than an error- 

correcting decoder. The sequential and Reed-Solomon codes 

3 
complement each other in a number of other significant ways also. 

Sequential codes are easily adapted to non-symmetric channels 

whereas Reed-Solomon erasure-correcting codes are not. In the 

hybrid scheme tire Reed-Solomon code is oblivious to any asymmetry , 

in the channel. Sequential codes can achieve erasure probabilities of 

o 
about 10~J with relatively little computation even for large channel 

crossover probabilities. However, to reduce the erasure probability 

from 10~^ to 10~^ would require about 1000 times the number of 

computations. Reed-Solomon codes, on the other hand, are most 

.3 
effective for ereisure probabilities less than or equal to 10 . In 

addition, the Reed-Solomon code is a maximum code in the sense 

that it can correct as”many erasures as it has parity check symbols, 

and it is a systematic code which implies that if more than the 
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correctable number of erasures occurs, only those tracks actually 

erased are lost. 

In order to evaluate the performance of the hybrid code we need an 

expression like equation (1) for the sequential code, or equation (2) 

for the Reed-Solomon code which relates the probability of error, the 

number of computations or cost, and the rate.. 

The hybrid coding scheme fails to decode all mKKQ information 

bits whenever more than T sequential track are erased. Therefore, 

the hybrid probability of error, Pj^e), is the probability that more 

than T tracks arc erased; i. e.. 

N/N\ j. N-j 
P. (e) = ZVj/ P„(e) (l-p(a)) (3) 
n j = | -r j ° 

where P (e) is the probability that a single sequential track is erased. 

Since the Reed-Solomon code is systematic, if j > T erasures occur, 

then the number of tracks erased will be exactly j. The probability 

of a given track being erased is j/N times the probability of j erasures 

occurring. Taking this factor into.account in the hybrid probability 

of error, equation (3) becomes 

N j . N-J 
Ph(e) * 2 Ul/ljj Ps(s) (l-Ps(s)) . (4) 

For reasonably small track erasures probabilities (Pg(e) S 10~^), the 

probability of more than T erasures occurring is very nearly the 

probability of T+l erasures occurring. For the cases of interest we 

can, with very.little error, simplify equation (4) as 

,N.rT-l 
h 

/N-l\ T-H y ^ J 
(e) « [ T 1 PQ(e) (|-R' {©)) (5) 
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We define the overall rate of the hybrid code as the product of 

the sequential and algebraic rates; i. e. 

A R. R_- R„ = K0K/N0N t "s ~'a 
t 

and we define as the ratio of Rcomp to the overall rate; i. e. 

X. = R /R . 
• T comp t 

From equations (1), (6) and (7), the probability that any sequential' 

track in the hybrid scheme is erased is 

ps(e) = rh 
f a (Q,,l) 

r 

(6) 

(7) 

(8) 

where is the number of kQ-bit nodes per track for each track in the 

hybrid scheme. 

The total cost, Qt, of the hybrid decoder per decoded information 

bit can be estimated as the sum of the cost, Qa, of the algebraic 

decoder per information bit, and the number of cycles, Qs/Ra, of the 

sequential decoder per information bit, i. e. 

Qt=Qa+Qs/Ra (9) 

We assume that even for the sequential code alone, some 

storage will be provided at the decoder either as disk, tape, or 

registers to store incoming codewords. The input storage required 

for the hybrid code will therefore be an inherent part of the sequential 

decoder and will not be considered' to contribute additional cost to the 

hybrid decoder. 

One advantage of this particular hybrid scheme, as mentioned 

previously, is that the algebraic decoder is required to correct only 

erasures and no errors. In fact, the structure of this hybrid scheme 
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is such that the algebraic decoding is less difficult even than normal 

erasure correction. Note that in the hybrid scheme, when a 

sequential track is erased, the erasure affects K0 Reed-Solomon 

codewords. Therefore, the erasure locators are the same for the 

entire set of K0 codewords, and need be computed only once for the 

set. In addition, the coefficients of C (X) which depend only on the 

erasure locators, and the set |Ap
_1j- which depends only on the 

erasure locators and the coefficients of <5'(X)i are also computed 

only once for a set of KQ Reed-Solomon codewords. Therefore, the 

cost per decoded information bit of each step in the Reed-Solomon 

decoder is as follows: 

1) determination of and "ju^ ^j* 4(2T+3)N/KKQ 

2) computation of ^Sj^ 6TN/K 

3) computation of 7mT2/KKQ ' 

4) computation of ^Ap” j' 20T(mT+N-l)/KI<o 

5) computation of ^BpJ 14mT2/K 

6) computation of *£\/p^ 7mT/K 

For reasonable values of K0, the cost of those steps which are done 

only once is negligible. Thus, the cost, Qa, per decoded information 

bit for the Reed-Solomon decoder in the hybrid scheme is given by 

Qa= cT/K (6N+14mT+7m). (10) 

From (9) and (10) 

Qs = RaQt - cT/N(6N 4 14mT + 7m) . (11) 

Equations (11), (8) and (5) make up the desired relationship for the     
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evaluation of the performance of the hybrid scheme. Substituting 

(11) and (8) into (5) gives P^e) in terms of Qj., N, and c 

for all Ra such that 7f Ra>l. 

The probability of error for the straight sequential scheme having 

the same overall rate R^., number of nodes Fg = KF^, and total 

complexity Qj., is calculated by the equation 

Ps(e) = Tg ^ (Qt- I) . (12) 
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COMPARISON OF THE HYBRID AND SEQUENTIAL CODES 

The performance of the hybrid code has been evaluated, using . 

those expressions just obtained, and compared to the performance 

■ of the straight sequential code on the basis of probability of error. 

In comparing the performance of the two codes, each code is allowed 

the same number of computations per information bit, Qj., and the 

same number of sequential nodes, Fg . In addition, the overall rate 

is assumed in each case to be the same fraction of R . Thus in each 
comp 

“ I 
case, /j = R-t'^-comp* For a particular choice of these three 

parameters, the performance of the sequential code is evaluated by 

the expression 

, > i-r* , Ps(e) = rs 
} (Q}- I) f . (12) 

The number of sequential computations, the track erasure probability 

and, finally, the probability of error for the comparable hybrid scheme 

are evaluated from the expressions 

Qs = RaQt - cT/N(6N + WmT + 7m), . (11) 

'-ytRa -r,Rn P„(e) = (r_/K) (Q»- I) ’ 
S ’ ' > 

7+| N-T-l 
SiS, » 

/N-!\ T+l t 
Ph(e) = \ T ) po(e) (|-Pe(e)) 

(8) 

(5) 

where N, K, and c depend on the algebraic portion of the hybrid code. 

(Note that the other algebraic parameters, T, Ra> and m, are all 

specified by the choice of N and K. ) 



In Figures 4 through 15 the probability of error for the two codes 

are compared using different values of N and K in the hybrid scheme 

and with c (the algebraic equation complexity coefficient) always 

equal zero. The effect of assuming that c=0 is to neglect the 

algebraic complexity. The curve for each hybrid code on the plots 

is denoted by the parameters of the algebraic portion of the code; i. e. 

(N, K) - L where L» = T/N(6T + 14mT + 7m). Some degredation in the 

hybrid performance would certainly occur by the use of c/-0, since 

the number of sequential computations would be reduced by cL, 

therefore increasing the track erasure probability and likewise 

increasing the hybrid probability of error. An indication of the 

relative effect of non-zero c!s is provided by the different values of 

L for the various (N, K) codes. 

Certain restrictions have been adhered to in constructing these 

plots and'it is worthwhile repeating those restrictions at this time. 

For Fg = 10^ only N=15 is considered since F| = Fg /K and F^ must 

be on the order of 1000 or greater to justify ignoring the resyncronization 

* v"1 
node size, t. Only values of Ra c /.j. are considered since for 

Ra ^ Y.j. sequential rates above RCOmp are squired. The expression 
t 

Y = R /R0 does not hold for sequential rates above R . In fact 
comp s ^ ^ comp ’ 

it is precisely this assumption, Ra ^ Y.j. which allows us to ignore 

the properties of the channel. For sequential rates below RCOmp> 

Y = Rcomp/Rs independent of the channel crossover probability, but 

for sequential rates above Rcomp, Y is strongly dependent on the channel 
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In Figures 16 through 23 the same variables are plotted, but 

with non-zero values of c considered. Each of these plots shows 

the effect on one hybrid code of c = . 01 and . 05. 
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Figure* 10 Figure 11 
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CONCLUSIONS 

The hybrid code is capable of obtaining up to several orders of 

magnitude improvement in probability of error over the straight 

sequential code with the same overall rate and complexity of. 

implementation. For relatively high overall rates, Rj. ^ 0. 8 R-COmp» 

£ 
error probabilities of about 10 can be obtained with a reasonable 

number of computations. Fpr applications such as machine-machine 

communication where extreme reliability may be required, the hybrid 

code obtains error probabilities of about 10~^ ^ith. only a slight 

reduction in rate. 

One particular advantage to this hybrid scheme is that the 

sequential code portion of the scheme is exactly the straight 

sequential code. Therefore, in many applications where sequential 

codes are now being utilized, the improved performance of the 

* • 
hybrid scheme could be realized by merely adding the Reed-Solomon 

section of the hybrid code. All of the hardware for the sequential 

encoder and decoder would be unchanged. In this type oif application, 

the value of the constant, c, would be of little interest, and the plots 

with c = 0 provide a. good indication of the performance to be expected. 

In fact, the improvement actually obtained by adding the Reed-Solomon 

encoder-decoder pair would be greater than indicated by the plots 

since the length of each sequential track would be Fg nodes instead 

of Fg/K nodes. 
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Appropriate values for the constant, c, are difficult to determine. 

This constant should relate the complexity of one cycle of the 

sequential decoder to the complexity of one operation in the Reed- 

Solomon decoder. One operation of the Reed-Solomon decoder 

consists of a single register shift, whereas a sequential decoder 

cycle consists of several computations, comparisons, and logical 

decisions. It is not unreasonable then to expect that values of c on 

the order of . 01 are probably appropriate. 



APPENDIX 

The Implementation of a Reed-Solomon 

Erasure-Correcting Encoder and Decoder 

The encoding and decoding operations for the Reed-Solomon 

code are carried out completely by digital circuitry. Each codeword 

is a sequence of N symbols, or field elements, fr'om GF(2m). The 

basic operations to be performed on field elements by digital circuitry 

include storage, addition, multiplication, and inversion. 

Since any element of GF(2m) may be represented by a sequence 

of m binary digits, storage of a field element requires an m-bit 

storage register; i. e. any field element may be stored in m flip-flops. 

Two field elements can be added by adding their corresponding bits 

modulo 2. Therefore, addition of field elements requires m modulo 2 

adders; i. e. the sum of two field elements is computed with m exclusive 

OR gates. Since addition is done modulo 2, each element is its own 

additive inverse, and addition and subtraction are the same operation. 

Multiplication of any fisld element in GF(2m) by the primitive element 

requires one shift of an m-bit shift register with feedback. The 

feedback connections ai’S made through W(m)-2 modulo 2 adders, where 

9 
W(m) is the Hamming weight of the irreducible polynomial. 

Multiplication by constants other than the primitive element is also 

done with one shift of an m-bit shift x'egister with feedback. This 

operation is slightly more complicated in that more feedback connections, 

i. e. more modulo 2 adders, are required. However, iri'educible 
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polynomials can be found such that for constants which are small 

powers of the primitive element, i. e. Q1, i ^ m the number of 

modulo 2 adders required is approximately m. .Therefore, the 

product of a field element and a constant is computed with m flip- 

flops, m exclusive OR gates, and one shift. Multiplication of two 

field elements requires m modulo 2 multipliers and m shifts of an 

m-bit accummulating register with feedback. The accummulating 

register is identical to the constant multiplier which multiplies by 

the primitive field element and therefore requires m modulo 2 adders. 

The product of two field elements is computed with m flip-flops, 

m exclusive OR gates, m AND gates, and m shifts. * * Computing 

the inverse of a field element requires two m-bit shift registers with 

feedback and as many as 2m-2 = N-l shifts, i. e. the inverse of a 

field element is computed with 2m flip-flops, 2m exclusive OR gates 

< 12 
and N-l shifts. In Figure A1 symbols of devices for field element 

operations are diagramed, and their operations are shown in terms 

of two field elements, A and B. In Table A1 the amount;of hardware 

and the number of register shifts for each of the above operations is 

tabulated. 

The sequence of N symbols which comprise a codeword may be 

thought of as the sequence of N coefficients of a polynomial of degree 

N-l over GF(2m).. Every codeword consists of K information symbols 

and T check symbols. The encoding process consists of finding the T 

check symbols for a given set of K information symbols. Since the 
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A 

A-B 

B A 

field 
element 
storage 
register 

field 
field element 

element constant 
add e r mult ipiie r 

field field 
element element 

multiplier inverter 

Figure A1 

Field Element Operators 

« 
Hardware 1 

flip 
flops 

exclusive 
OR gates 1 

! AND 
gates 

register 
shifts 

field element storage m -- -- 

field element addition t -- m — 

field element constant multiplication m m -- i 

field element multiplication m 111 m m 

field element inversion 2m 2m -- 2m-2 

Table A1 

Field Element Operations 
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Reed-Solomon code is cyclic, there exists a unique generator polynomial 

of degree N-K for the code. This generator polynomial has the property 

that every codeword (that is, every polynomial whose coefficients are 

a codeword) is divisible by the generator polynomial, and any 

polynomial divisible by the generator polynomial is a codeword. The 

encoding procedure is based on this property of the generator 

polynomial. 

Consider a polynomial, f(X), of degree N-l such that the K 

highest order coefficients are the K information symbols to be encoded, 

and the N-K lowest order coefficients are zero. If this polynomial 

were divided by the generator polynomial, g(X), the result would be 

f(X) = g(X) q(X) + r(X) where r(X) is the remainder and is a 

polynomial of degree ^ N-K-l. 

Since every polynomial divisible by the generator polynomial is a 

codeword', g(X) q(X) = f(X) - r(X) is a codeword. Encoding the 

information symbols is accomplished by computing the remainder when 

f(X) is divided by g(X). Note also that f(X) contains no terms of degree 

less than N-K, and r(X) no terms of degree greater than N-K-l. The 

encoding process is, therefore, systematic in that the information 

symbols apjoear unaltered in the encoded word. 

13 
Peterson has described a circuit to compute the remainder 

when a polynomial of degree N-l is divided by a polynomial of degree 

T over the field of 2m elements. The encoding circuit is shown in 

Figure A2. The T m-bit storage registers initially all contain zero. 
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When fjsj.p the highest order coefficient of f(X), appears at the input, 

fN-l gT~1 = qN-T-l’ the hiShest order coefficient of the quotient, 

appears in the feedback loop. For each coefficient, q^, of the quotient 

the polynomial qj g(X) is subtracted from the dividend by the feedback 

connections. After K shifts all the information symbols have been 

shifted into the encoder and the channel, and the coefficients of the 

polynomial of check symbols, r(X), are in the T storage registers. 

Then the switch on the encoder is thrown to the r(X) position, and the 

coefficients of r(X) are shifted into the channel. 

The encoding circuit requires T m-bit storage registers, T m-bit 

adders, and T m-bit constant multipliers. The amount of encoding 

hardware is proportional to mT and the number of shifts required is K. 

After the K information symbols are encoded, the codeword is 

transmitted over a binary erasure channel.r For each of the N m-bit 

symbols, 4the Reed-Solomon decoder either receives the symbol 

correctly, or it receives a signal that the symbol was erased. If T 
i 

or fewer erasures are signaled, the Reed-Solomon decoder will 

recover the lost symbols. 

Decoding represents very nearly the same problem as encoding, 

i 

i. e. at least K symbols are known and as many as T ‘symbols must be 

found such that the K+T=N symbols satisfy the defining equation for 

the code. Although the locations of the erasures are known, decoding 

is more difficult than encoding because the erasures may not be 

"clustered" as the parity check symbols are. ' “    
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Let denote the sequence of transmitted symbols, and to 

denote the sequence of received symbols. The syndrome, , for the 

received sequence is defined as 

s, , A £. y. a'j 
J-I 1 = 0 I 

^th 

I < j < T (Al) 

where y^ = x^ if the i— symbol was not erased, and y^ = 0 if the i^L 

symbol was erased. Let the sequence *£zjj» denote the difference 

between the transmitted and received sequences, i. e. z^ = x^-y^ = x^+yj. 

From (Al) 

N-l .. N-l 
S, , = Z (x. + Z.)CE,J = % z.ct,J 

J-I 1=0 ti 1=0 I 
l<j<T (A2) 

Since the number of non-zero z^ must be less than or equal to T for 

successful Reed-Solomon decoding, equation (A2) may be written 

M 
n I Z„ <2 

n':J 
j-| i=0 ni 

XI: 
1 

i < j ■< £ £ < T (A3) 

Define U- = G 1 as the i^L erasure locator, and V- = z as the i— 1 lxi 

erased value. From (A3) 

£**l 

s. = £ v. u. 
J 1=0 i i 

j+i 
0<j< M C.ST. (A4) 

Since the occurance of an erasure is a signaled event, the *jn^J» and 

H ■ K1} are known to the decoder. The w can be computed 

by the decoder from the received sequence ^y^J*. To decode one must 

find the unknown from the known R and R according to 

equation (A4). 

Equation (A4) may be written as the following matrix equation 

s = v[uj 
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and 

where S is the syndrome vector, V is the vector of erased values, 

and j\jj is a Van der Monde matrix. Decoding the Reed-Solomon 

erasure-correcting code is equivalent to inverting the matrix juj c 

finding V by 

v^sjV]-1. 
In order to understand how this matrix inversion is realized by 

digital circuitry, we first define the polynomial 

(AS, 
p pi 

j#p 

o<p< £-1 C<T 

i # * 
Multiplying (A4) by CTpj and summing gives 

M £-1 £-l’ i+i 
- .X <r . S- = .1 cr ■ £ V.U 

j=0 PJ i j=0 PI 1=0 1 1 

M M i 
= X V- Uj 2, cr j U j 

i=0 1 1 j=0 PJ 1 

From (A5) CTp(U^) = 0 V i and thus 

M C-l j 
.5Lcrn:S: = V U n Z O'n: IL 
1 = 0 PJ J P P pH PJ " 

r J + h-l.y 

VP = L j = 0°Pj UP J jaO^PJ Sj 

The erased values can be computed by the decoder from equation 

(A6), but this computation requires £ j9 S to be computed as an 

intermediate step. A further simplification is possible by defining 

the polynomial 

0< p<£-l £<T 

(A6) 

A £ i A £-1 

<r(X)s 1 <r.X s n (X + U.) 
j=0 J i*0 I 

.By expanding equations (A5)and(A7) and equating coefficients we obtain 

„l _| i j~j 
^pj 2 (cr

PH + °-j)up 2 up |t'o
<r

i
up (A8> 

i-1 
(A7) 
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Substituting from (A8) into (A6) 

i» ^ ^ | J j j C ® ' | I Lj 

vD= x (u:1 i o-.u'■')uf x (u:1 x o-.u'J)s. 
p 1 j=0 p i=o • P P J j~0 p i=0 * P J 

rM i f+h-i M i .-.j 
VD = I Z o'. U ] Z Z o', UD S. (A9) 
p LpO i=0 1 P J j«0 i=0 I P J 1 ; 

V ^ A"1 B vp Hp Dp 

From equation (A9) the decoder can compute eaclf erased symbol, \k. 

The computation can be broken down into the basic field operations 

in terms of the known the w which are computed from the 

and the ^Sjj> which are computed from the received sequence. 

Although equation (A9) appears more complicated than (A6), 

its implementation is less difficult since only C need be computed. 

f 1 
A diagram of the way in which the sequence *jU.j is determined by 

the decoder as the sequenced w is received is shown in Figure A3a. 

N-l 
The U. register is initialized to €1 If the first symbol from the 

codeword, y^_p is erased the erasure detector closes the switch and 

i 
U0 = Q goes.into the locator storage register. As each symbol is 

either erased or received, the content of the IJ\ register is multiplied 

-| j 
by Q , so that when y^ is received the Lk register contains Cl . (The 

multiplication can be obtained with feedback connections around the 

register thereby eliminating the need for the constant multiplier. ) 

Only when a symbol is erased is the switch closed and the current 

content of the register shifted into the locator storage register. 

The locator storage register is a T-symbol, series input, parallel 
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output register. The erasure locators are available to the rest of the 

decoder in two forms: 1) as a series string as the codeword is being 

received, and 2) as the parallel outputs of the locator storage register 

after the entire codeword is received. 

Note that the inverse of each erasure locator can be determined 

by a similar circuit as the sequence w is received. (The need for 

the sequence ilJ^ f will be shown later. ) If the register is 

, N-lfl 
initialized to Cl™ \ Ci ) , and multiplied by Cl with each incoming 

symbol, then when y^ is received the register will contain Q . The 

inverse of each erasure locator may be stored in a register like 

the locator storage register. 

The overall function of the locator detector circuitry is to 

determine and store the value of each erasure locator and its inverse. 

The amount of hardware required for this circuit is proportional 

to mT and the number of shifts required is N. The input to the 

circuitry is the sequence «£y^ in serial form and the outputs are the 

sequence w in serial and parallel form and the sequence K1} in 

parallel form. In Figure A3b a block diagram of the locator detector 

with its inputs and outputs is shown. 

This basic strategy will be used in the description of each 

functional block of the Reed-Solomon decoder: each circuit will be 

explained in terms of the registers, multipliers, etc. from which it 

' may be built; then a block diagram of the circuit showing only inputs 

and outputs will be given. After discussing each of the functional 
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blocks, the entire decoder will be diagramed showing the inter¬ 

connection between the blocks. 

The syndrome is calculated with T m-bit storage registers, 

T m-bit adders, and T m-bit constant multipliers which multiply by 

T 
a through Ci respectively with each shift. The circuit for computing 

the syndromes is shown in Figure A4a. Each of the m-bit registers 
\ 

is initially set to zero. The symbols are received from the channel, 

high order symbols first, and fed in parallel into the T m-bit adders. 

When y^ ^ is received, the contents of each storage register becomes 

y Then y^ ^ received and the contents of the j— register is 

changed to yj^i G + y^ £. This process continues until yQ is received 

and the contents of the j— register is 

I j j N^I u 
H-ia * WG +-+y,)«+y0" toV =S

H- 
The constant multipliers for this circuit also may be realized by 

4 

feedback connections around the storage registers. 

The amount of hardware required for computing the syndrome is 

proportional to mT and the number of shifts required is N. Recall 

that the encoded sequence is shifted out of the encoder high order 

symbols first. Therefore, the decoder can compute1.the syndrome as 

the sequence is being received. 

The sequence computed by a direct expansion of the 

defining equation; i. e. d*(X) = H (X+U^). A set of T field elements 
I “U 

can be considered as the coefficients ofa. polynomial, say <7 (X), of 
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degree T-l or less, and can be stored in a set of T m-bit storage 

registers. Multiplication of this polynomial by a field element, say 

Up is equivalent to multiplying each coefficient by Up Multiplication 

of this polynomial by X is equivalent to shifting the contents of the 

T registers so that the coefficient of X1 becomes the coefficient of 

-^i+1. Therefore multiplication by a factor (X+U^) may be carried out 

by a multiplication, and a shift, and the addition of two results. 

The circuit shown in Figure A5a computes the sequence fa}- 
All of the T storage registers are initialized to zero except the first 

which is initialized to =1; i. e. the storage registers contain the 

coefficients of the constant polynomial @"(~X) = 1. When UQ is received, 

the content of each register is multiplied by UQ and the registers are 

right shifted. The content of the first register is then UQ and the 

content of the second register is 1; i. e. the storage registers contain 

the coefficients of the polynomial <T(X) = X+UQ. This process continues 

until Urp i is received, at which time the storage registers contain the 
1-1 T-l 

coefficients of the polynomial 0*(X) = 0 (X+U,-). ' pO 
The amount of hardware required for computing sequence is 

proportional to mT, The storage registers must shift T times, and the 

field multipliers require m shifts for each shift of the storage registers 

i. e. the number of shifts required is mT. 

The erasures are signaled, or detected, as the sequence is being 

received, so {ui} is available serially as the erasures occur. 

Therefore, the decoder can compute j- as the sequence is being 

received. 
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are 

After the N— symbol is either received or declared erased, 

the erasure locators, W , the syndrome, w , and the {°i} 

all known, and the decoder can compute the erased values from 

equation (A9). 

The circuit 
-1 T_l l i-s- 

it in Figure A6a computes the term A = [ E £T. U- 
PL j-o i=0 i P 

Recalling that the summation is a modulo 2 sum, this expression for A 

^ y i+l p 
can be simplified to 2/ O' 11 for T odd or 2» CT. U_ for T even. 

i even | P i odd j P 

The m-bit accumulating register A , is initially set to zero, and the 
Jr 

i o 
U -register is initialized to Un = 1. Considering the case of T odd, 
ir P 

when is input to the multiplier, the contents of the accumulating 

i 
register becomes o*QU^. Then the register is shifted twice, the 

input is switch to 0v>, and the contents of the accumulator becomes 

3 
€TQUp + CF^Up • After the input is switched to each of the s (i even) 

^ i+l 
the total in A is iL CF. U _ . A is then shifted into an inverter 

P i even | P P 

which after, at most, N-l shifts will contain A 
-1 

The amount of hardware required for the circuit in Figure A6a 

is proportional to m. There must be T such circuits in the decoder to 

compute the T Ap ^’s. The number of shifts required at the input is 

T, and the field multipliers require m shifts for each input. In 

addition, the inverter requires N-l shifts. Therefore, the amount 

of hardware required to compute the {V1} is proportional to mT, 

and the number of shifts required is mT+N-1. 

The circuit shown in Figure A7a computes the term 
- - T:i J- j„j     ——- - - - 

B — ^ €/*, II S. . The two m-bit accumulating registers, b 
P j=o i»0 I p J p 
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Figure A7b 

Computation of B 
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and B , are initialized to zero. When <7 and S are input to their 
P 0 0. 

respective multipliers, the contents of bp becomes 0*^ and the 

contents of Bp becoriies 0”^ S . Then the inputs are switched to O’, 

-1 and Si and the contents of the accumulators become G" U A+ o* . 
0 P 1 

in bp and (cr^Up + ©*J)SJ+ 01 S An. ®p' After the inputs are switched 

l-\ J ,\.j 
T times, the total in B is Z X o*.u Js• 

j=0 i=0 i P J 
The amount of hardware required for the circuit in Figure A7a 

is proportional to m. There must be T such circuits in the decoder to 

compute the T Bp!s. The number of shifts required at the input is T, 

and the field multipliers require m shifts for each input. Therefore, 

the amount of hardware required to compute the to is proportional 

to mT, and the number of shifts required is mT. 

Each erased value, Vp, is computed as the product of an A 

and a Bp. The amount of hardware required for the T field multipliers 

is proportional to mT and the number of shifts required is m. 

The entire decoder for the Reed-Solomon erasure-correcting code 

is shown in Figure A8. Each block could be built exactly as indicated 

in Figures A3 through A7 with integrated circuit digital circuitry. The 

m-bit registers would be realized by m J-K flip-flops, the m-bit 
t 

adders by m exclusive OR gates, and the field element multipliers 

by m AND gates and an m-bit accumulator with feedback. Two 

circular Tm-bit shift registers could serve the function of the ganged 

switch shown in Figure A8. The only required circuitry not explicitly 

shown is a clock. 
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from channel 

Figure A8 

Reed-Solomon Decoder 
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To summarize, the encoding and decoding for the Reed-Solomon 

code is carried out completely by digital circuitry. The decoding can 

be segmented into six operations: 

1) determination of each erasure locator and its inverse, 

2) computation of the syndrome, 

3) computation of the coefficients of 0*(X), 

4) computation of the Ap 's, 

5) computation of the B 1 s, 
P 

6) computation of the V^1 s. 

Operations 1), 2), and 3) above are carried out as the codewords 

are received and are complete for each codeword when the entire 

codeword is received. Operations 4) and 5) are performed simultaneously 

after the codeword is complete, and operation 6) is performed when 4) 

and 5) are complete. The hardware required for each operation is 

proportional to mT. A constant of proportionality for each of the 

operations can be easily determined by counting the number of 

registers, multipliers, and adders shown in Figures A3” through 

A7 and weighting their relative costs. 
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