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Abstract

Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene
encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme.
Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal
activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular
stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits
ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely
destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly,
reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the
unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition.
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Introduction

Lysosomal storage disorders (LSD) are a group of more than 40

clinically distinct inherited diseases characterized by the deficiency

of essential lysosomal hydrolytic functions [1]. Gaucher’s disease

(GD), the most common LSD, is caused by loss of lysosomal

glucocerebrosidase (GC) activity and consequent accumulation of

the GC substrate, glucosylceramide [2].

The most frequently encountered mutations in the GC

encoding gene (GBA; [3]) do not directly affect the enzyme’s

activity but destabilize its native structure [4]. They are typically

single amino acid substitutions that impair the enzyme’s folding

causing retro-translocation of misfolded GC to the cytoplasm for

ER-associated degradation (ERAD) and, consequently, leading to

deficiency of lysosomal GC activity [5]. The L444P substitution is

one of the most frequently occurring misfolding mutations [4]. It

severely destabilizes GC native structure and results in complete

loss of activity [6]. GD patients who are homozygous for the

L444P GC allele typically present severe neuropathic symptoms

[6].

Interestingly, a number of unstable GC variants containing

misfolding mutations (including L444P GC) can traffic to the

lysosome and retain catalytic function if forced to fold into their

native 3D structure [7–10]. Chemical chaperones, small molecules

that rescue the native folding of mutated GC enabling lysosomal

trafficking and enhancing enzyme activity were recently reported

[8]. However, chemical chaperones are highly mutation-specific

[11] and rarely proved effective to rescue GC variants associated

with neuropathic manifestations of the disease [12]. Modulation of

the proteostasis network has been explored recently to restore the

activity of GC variants in cells derived from GD patients with

neuropathic symptoms [10,13–15]. The ultimate goal of this

approach is to achieve chemically induced enhancement of the

innate cellular folding capacity – a strategy that could be in

principle applicable to rescue the function of a large class of

mutated enzymes processed through the secretory pathway [10].

However, the mechanism of action of most small molecules

reported to function as proteostasis modulators thus far relies on

induction of cellular stress, and, particularly, activation of the

unfolded protein response (UPR). Sustained UPR activation, in

turn, leads to induction of apoptosis [13,14]; hence the recent

focus on modulating the cellular folding capacity to rescue the

folding of unstable, degradation-prone proteins without causing

induction of the apoptotic cascade [13,14].

Native folding of GC variants is limited by rapid disposal of

unstable folding intermediates via ERAD [5]. We previously

reported that chemical inhibition of specific steps of the ERAD

pathway enables rescue of folding and trafficking of mutated GC

[15]. Particularly, administration of Eeryastatin I (EerI), a small

molecule that blocks retrotranslocation of misfolded substrates to

the cytoplasm [16,17], resulted in dramatic rescue of folding and

lysosomal activity of multiple GC variants. ERAD inhibition via

EerI treatment was shown to prolong ER retention of mutated

GC, thereby enhancing the pool of GC folding intermediates

amenable to folding rescue. However, EerI treatment was also

observed to cause dramatic induction of UPR and apoptosis [15].

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61418



Accumulation of the GC substrate (glucosylceramide) in GD

cells causes excessive [Ca2+]ER efflux through the ryanodine

receptors (RyRs) [18–20]. Because maintenance of intracellular

Ca2+ homeostasis is essential for a number of fundamental cellular

activities including protein folding in the ER [21,22], impairment

of intracellular Ca2+ homeostasis in GD cells is likely to hamper

the folding of unstable GC variants [13,23]. Re-establishing the

cellular gradient of [Ca2+] in GD fibroblasts was shown to create

an ER environment more amenable to native folding of GC

variants [13,14]. Lowered [Ca2+] in the cytosol observed upon

treatment of GD cells with lacidipine, a small molecule that

inhibits both RyRs on the ER membrane and L-type Ca2+

channels (LTCC) on the plasma membrane [24,25], correlates

with the increase in trafficking and lysosomal activity of L444P GC

[14]. Interestingly, despite causing moderate activation of the

UPR, lacidipine treatment was observed to prevent apoptosis

induction, effectively promoting cell survival [14].

We hypothesized that restoring Ca2+ homeostasis in GD cells

creates a folding environment that could be particularly amenable

to enhance native folding and trafficking of mutated GC mediated

by ERAD inhibition. Thus, we attempted remodeling the

proteostasis network by simultaneously i) inhibiting ERAD

degradation to increase ER retention of unstable intermediates

and ii) restoring Ca2+ homeostasis to enhance chaperone-mediated

folding (Figure 1A). We report herein that this strategy results in

dramatic increase in the folding, trafficking and activity of the

most severely destabilized GC variant, L444P GC. Moreover, we

demonstrated that modulation of Ca2+ homeostasis via lacidipine

treatment lowers UPR induction and apoptosis caused by ERAD

inhibition. Results from this study provide novel insights for the

development of effective therapeutic strategies for the treatment of

GD based on remodeling the proteostasis network to rescue the

folding of unstable, degradation-prone GC variants.

Materials and Methods

Enzyme Activity Assays
The intact cell glucocerebrosidase (GC) activity assay was

performed as described previously [10] and in File S1.

Quantitative RT-PCR
Quantitative RT-PCR was performed as described previously

[15] and in Materials S1 using the primers listed in Table S1.

Western Blot Analyses and Immunofluorescence
Microscopy
Details are provided in File S1.

siRNA Transfection
Transfection procedures were performed as described in

manufacturer’s manual: briefly, 12.5 ng siRNA was diluted in

3 ml of RNase-free water and was spotted into each well of a 96-

well plate. 0.75 ml of HiPerFect reagent was resuspended in 25 ml
of culture medium without serum and was added to the prespotted

siRNA. After incubating for 10 min at room temperature to allow

complex formation, 104 cells in 150 ml of growth medium were

plated directly into each well. Small molecules were added to the

medium 48 hrs post transfection at concentrations indicated in the

text. Quantitative RT-PCR was performed after 24 hrs and

lysosomal GC activity was measured after 48 hrs.

Toxicity Assay
Toxicity assays were conducted as described previously [15] and

in File S1.

Statistical Analysis
All data is presented as mean 6 s.d., and statistical significance

was calculated using one-way ANOVA analysis followed by post-

hoc Tukey’s test.

Results

Modulation of Ca2+ Homeostasis Enhances the Rescue of
L444P GC Folding, Trafficking and Activity Induced by
ERAD Inhibition in GD Fibroblasts
We previously reported that the folding of mutated GC variants

is partially rescued by inhibiting specific steps of the ERAD

pathway in GD cells [15]. In the present study, we asked whether

enhancing the cellular folding capacity via modulation of

intracellular Ca2+ homeostasis could increase the fraction of

natively folded GC mutants rescued by inhibiting ERAD

(Figure 1A) [13,14]. We co-administered the LTCC blocker

lacidipine, which lowers cytosolic [Ca2+] in GD fibroblasts [14],

and Eeyarestatin I (EerI), which blocks the ERAD pathway by

inhibiting the p97 ATPase [16,17], to fibroblasts derived from GD

patients homozygous for the L444P GC allele and investigated the

activity and intracellular trafficking of mutated GC. Experiments

were performed by administrating a constant concentration of

lacidipine (5, 10, or 20 mM) to GD fibroblasts that were cultured in

medium supplemented with a range of EerI concentrations. GC

enzymatic activity was evaluated every 24 hrs for up to 72 hrs with

the intact cell GC activity assay (Figures 1B and S1). Culturing

conditions resulting in maximal rescue of L444P GC activity are

reported in Figure 1B. Co-treatment with EerI (6 mM) and

lacidipine (20 mM) for 48 hrs resulted in 2.9-fold increase in

L444P GC activity compared to untreated cells (ANOVA,

p,0.001; F= 16; Figure 1B), which corresponds to 36.3% of

WT activity and is compatible with effective treatment [2]. This

increase in GC activity is significantly higher (p,0.001) than that

measured in cells treated only with EerI (1.6-fold; ANOVA,

p,0.01, F= 22) or lacidipine (1.8-fold; ANOVA, p,0.01, F = 16)

under the same conditions and was still observed after 72 hrs of

incubation (EerI 6 mM and lacidipine 20 mM, 2.6-fold increase in

GC activity; ANOVA, p,0.01, F = 14; Figure S1).

In order to verify that the increase in GC activity observed in

cells treated with EerI and lacidipine is due to rescue of L444P GC

folding and lysosomal trafficking, we investigated L444P GC

intracellular localization. Cells were treated to obtain maximal

increase in GC activity and analyzed by immunofluorescence

microscopy. Specifically, L444P GC fibroblasts were cultured with

EerI (6 mM), lacidipine (10 mM) and a combination thereof for

48 hrs. Localization of GC in the ER and in the lysosomes was

detected with antibodies specific for GC, for an ER marker

(CNX), and for a lysosomal marker (LAMP-1). Co-localization of

GC and CNX (Figure 1C) and of GC and LAMP-1 (Figure 1D)

are shown in pink and purple, respectively, in merged images. As

shown in heatmaps of co-localization images, L444P GC was

barely detectable in untreated cells due to extensive ERAD, as

expected [10]. Treatment with lacidipine or EerI enhanced the

pool of GC that accumulates both in the ER and in the lysosomes,

as previously reported [14,15]. The addition of lacidipine to EerI

treatment resulted in accumulation of GC in the ER similar to that

observed in cells treated only with EerI. However, co-treatment

with lacidipine and EerI resulted in an increase in accumulation of

GC in the lysosomes compared to cells treated with either EerI or
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Figure 1. Co-treatment with EerI and lacidipine enhances lysosomal trafficking and activity of L444P GC. (A) Lacidipine and EerI
modulate distinct pathways of the proteostasis network that regulate the processing of GC. Lacidipine enhances ER folding by restoring Ca2+

homeostasis in GD cells [14]. Specifically, lacidipine inhibits extracellular Ca2+ influx through L-type voltage-gated Ca2+ channels (LTCC) on the plasma
membrane and blocks ER Ca2+ efflux through ryanodine receptors (RyRs) on the ER membrane, thus restoring the intracellular gradient of [Ca2+]. EerI
treatment enhances retention of unstable proteins in the ER. Particularly, EerI inhibits p97 ATPase activity, which promotes retro-translocation of
misfolded substrates from the ER to the cytoplasm for ER-associated degradation (ERAD). (B) L444P GC activities of GD cells treated with a range of
concentrations of EerI and constant doses of lacidipine (5, 10, or 20 mM) for 48 hrs. Relative GC activities were evaluated by normalizing GC activities
measured in treated cells to the activity in untreated cells (left y axis), (ANOVA, p,0.01 if not specified; *p,0.001). The corresponding fraction of WT
GC activity is also reported (right y axis). Experiments were repeated three times and data points are reported as mean 6 SD. Lac, lacidipine. (C–D)
Immunofluorescence microscopy of GC and CNX (an ER marker), and GC and LAMP-1 (a lysosomal marker) in L444P GC fibroblasts. Cells were treated
with EerI (6 mM), and lacidipine (10 mM) for 48 hrs. (C) Colocalization of CNX (grey, column 1) and GC (red, column 2) is shown in pink (column 3). (D)
Colocalization of LAMP-1 (blue, column 1) and GC (red, column 2) is shown in purple (column 3). Heatmaps of co-localization images were obtained
with NIH ImageJ analysis software (column 4). Hot colors represent positive correlation (co-localization), whereas cold colors represent negative
correlation (exclusion).
doi:10.1371/journal.pone.0061418.g001
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lacidipine (Figure 1CD). These results are compatible with a model

in which combining modulation of Ca2+ homeostasis and ERAD

inhibition enhances rescue of GC folding intermediates that escape

ERAD and promotes their trafficking through the secretory

pathway, thereby leading to the increase in lysosomal GC activity

observed from enzymatic assays (Figure 1B).

Lacidipine Lowers Cytosolic Free [Ca2+] in GD Fibroblasts
Treated with EerI
The accumulation of glucosylceramide in GD cells causes Ca2+

efflux from the ER and increases free cytosolic [Ca2+] [18]. We

previously showed that lacidipine treatment lowers cytosolic

[Ca2+] in GD fibroblasts and, in turn, is associated with an

increase in mutated GC folding and activity. Since administration

of lacidipine to EerI-treated cells increases the residual activity of

L444P GC (Figure 1B), we asked whether this difference in activity

could be attributed to the mobilization of intracellular Ca2+. We

evaluated cytosolic free [Ca2+] in L444P GC fibroblasts treated

with EerI (6 mM), lacidipine (10 mM) and a combination thereof

by measuring fluctuations in the Fura-2 fluorescence ratio

(340 nm/380 nm) [23]. EerI treatment alone did not seem to

alter intracellular [Ca2+] in GD fibroblasts. However, the addition

of lacidipine to EerI-treated cells lowered free cytosolic [Ca2+]

(Figure 2). Interestingly, the free cytosolic [Ca2+] in GD cells

treated with lacidipine was lower than that observed in cells co-

treated with lacidipine and EerI, suggesting that either minimal

intracellular Ca2+ mobilization is sufficient to enhance L444P GC

folding and activity or that the increase in L444P GC activity

obtained upon co-administration of lacidipine and EerI is due to

additional or alternative effects of these compounds on the

proteostasis network.

Lacidipine Attenuates the Cytotoxic Effect of EerI-
mediated ERAD Inhibition in GD Fibroblasts
EerI treatment causes accumulation of misfolded intermediates

in the ER and, consequently, ER stress and induction of the UPR

[15]. Moderate UPR induction was repeatedly reported to

promote the rescue of misfolding-prone GC variants [10,13–15].

However, prolonged UPR induction observed upon sustained

treatment with EerI causes activation of apoptosis [14,15]. Cell

treatment with lacidipine, on the other hand, was shown not to

cause cytotoxicity under conditions observed to rescue the folding

of mutated GC variants [14].

We asked whether lacidipine treatment could counteract the

cytotoxic effect of EerI and evaluated apoptosis in cells co-treated

with lacidipine and EerI. Specifically, we monitored membrane

rearrangement (Annexin V binding) and fragmentation (propi-

dium iodide (PI) binding) that occur during early and late

apoptosis, respectively, using the CytoGLOTM Annexin V-FITC

Apoptosis Detection Kit. L444P GC fibroblasts were cultured with

lacidipine (10 mM) and EerI (6 mM) for 16 hrs (Figure 3A–B).

Similar to what previously reported [14,15], Annexin V binding

affinity in cells treated with lacidipine was comparable to that

measured in untreated cells, whereas a dramatic increase in

Annexin V binding was observed in cells treated with EerI,

reflecting the onset of apoptosis. The addition of lacidipine to

EerI-treated cells resulted in significant decrease in Annexin V

binding compared to cells treated only with EerI (14% decrease;

ANOVA, p,0.01), suggesting that lacidipine treatment partially

alleviates the cytotoxic effect of EerI (Figure 3A). Cell death was

measured by monitoring the change in PI binding population. A

negligible increase (0.3%) in PI binding was observed upon

lacidipine treatment, while EerI treatment caused 10.4% increase

in PI binding (ANOVA, p,0.01; Figure 3B). The addition of

lacidipine to EerI-treated cells reduced the PI binding population

to 6.7% (ANOVA, p,0.01), confirming that lacidipine treatment

has an anti-apoptotic effect.

These results, taken together, demonstrate that lacidipine

treatment enhances EerI-mediated rescue of mutated GC native

folding and activity and that it also counteracts EerI cytotoxic

effect. Moreover, lacidipine treatment protects the cells from

apoptosis associated with prolonged UPR induction, a particularly

appealing property for development of therapeutic strategies based

on the modulation of the proteostasis network.

Lacidipine Remodels EerI-mediated Activation of the UPR
Pathway
EerI, when administered under conditions that result in

maximal increase in L444P GC activity, is associated with

significant UPR induction and cell apoptosis, whereas lacidipine

treatment induces UPR but does not cause apoptosis [14,15]. We

reported above that co-administration of lacidipine and EerI

lowers apoptosis compared to treatment with EerI only (Figure 3).

Therefore, we asked whether co-treatment of GD cells with EerI

and lacidipine activates the UPR. The UPR is a complex tripartite

pathway regulated by three transmembrane signal transducers,

namely inositol requiring kinase 1 (IRE1), activating transcription

factor 6 (ATF6) and double-stranded RNA-activated ER kinase

(PERK). Activation of these three sensors leads to transcriptional

regulation of a series of UPR target genes that mediate cellular

folding [26,27]. In order to evaluate UPR induction, we measured

the expression of three representative UPR target proteins: X-box

binding protein-1 (Xbp-1), which is activated by IRE1; activating

transcription factor 4 (ATF4), which is part of the PERK signaling

cascade; and C/EBP homologous protein (CHOP), which is

upregulated in response to ATF6 activation [27]. Quantitative

RT-PCR was conducted to evaluate the transcription levels of

Xbp-1, ATF4, and CHOP in cells treated with lacidipine (10 mM)

and EerI (6 mM).

Xbp-1 mRNA is spliced upon activation of the IRE1 signaling

cascade. The protein encoded by the spliced Xbp-1 mRNA

functions as an activator of the IRE1 branch of the UPR, while

the protein encoded by the unspliced precursor acts as a repressor

[26]. Spliced and unspliced forms of Xbp-1 mRNA were analyzed

by RT-PCR followed by gel electrophoresis. Bands corresponding

Figure 2. Lacidipine reduces cytosolic [Ca2+] in GD fibroblasts
treated with EerI. GD fibroblasts were cultured with lacidipine
(10 mM) and EerI (6 mM) for 5, 10, 20 and 40 min, respectively. Cytosolic
[Ca2+] level was evaluated by measuring excitation 340/380 ratio of
fura-2 acetoxymethyl ester and normalized to that at time zero. Each
data point was repeated three times and reported as mean 6 SD.
doi:10.1371/journal.pone.0061418.g002

Remodeling Proteostasis in Gaucher Disease Cells

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e61418



to spliced Xbp-1 mRNA were quantified with NIH ImageJ

software to evaluate the activation level of the IRE1 arm of the

UPR (Figure 4A–B). Xbp-1 splicing in cells treated with lacidipine

or with EerI was previously investigated [14,15]. Thus, EerI- and

lacidipine-treated cells are reported here as control samples. In

agreement with what reported before [14], the amount of spliced

Xbp-1 in lacidipine treated cells was similar to that measured in

untreated cells, while a considerable amount of spliced Xbp-1 was

observed in cells treated with EerI [15]. In cells treated with both

lacidipine and EerI, the amount of spliced Xbp-1 was found to

increase 1.8-fold compared to cells treated only with EerI,

suggesting an additive effect of lacidipine and EerI on the

induction of the IRE1 arm. Interestingly, Xbp-1 is an essential

pro-survival UPR component and its activation is associated with

attenuated apoptosis under ER stress conditions [28]. Thus,

enhanced splicing of Xbp-1 in cells treated with lacidipine and EerI

correlates with the decrease in apoptosis induction observed in

cells treated under same conditions.

The expression level of ATF4 was evaluated in order to monitor

the activation of the PERK branch. ATF4 transcriptional

expression was upregulated 1.8- and 4.4-fold in cells treated with

lacidipine and EerI, respectively, compared to untreated cells. Co-

treatment with lacidipine and EerI reduced ATF4 expression to

only 2.1-fold of that of untreated cells (ANOVA, p,0.05),

suggesting that lacidipine suppresses EerI-mediated activation of

the PERK arm (Figure 4C). Since the PERK arm of the UPR

regulates the pro-apoptotic pathway activated in response to

sustained UPR induction [29], these results support the notion that

lacidipine lowers the apoptotic effect of EerI.

CHOP, a downstream effector of the ATF6 branch, is

upregulated by both lacidipine and EerI treatment (6.1- and

18.5-fold, respectively; Figure 4D). The addition of lacidipine to

EerI-treated cells lowered CHOP upregulation to 14.7-fold

(ANOVA, p,0.05). CHOP mediates UPR induced apoptosis

activation [30]. Hence, these results again suggest a correlation

between lacidipine’s anti-apoptotic effect and its ability to remodel

the UPR pathway activated by EerI.

Lacidipine treatment alters the expression of genes involved in

the regulation of UPR-induced apoptosis, and, particularly, it

upregulates the anti-apoptotic gene Bcl-2. We therefore asked

whether the protective effect of lacidipine treatment observed in

EerI-treated cells could be attributed to the upregulation of Bcl-2

[14]. The expression level of Bcl-2 was evaluated by quantitative

RT-PCR in cells cultured with lacidipine (10 mM) and EerI

(6 mM). Lacidipine treatment resulted in 3.0-fold increase in Bcl-2

expression compared to untreated cells, while EerI treatment

caused a 2.0-fold decrease. Bcl-2 expression was also significantly

upregulated (4.2-fold; ANOVA, p,0.05) in cells co-treated with

lacidipine and EerI (Figure 4E).

The gene encoding GC (GBA), as well as other genes encoding

for lysosomal proteins that are associated with the development of

LSD, is upregulated in cells treated with proteostasis modulators

[14,15]. We thus asked whether the dramatic increase in L444P

GC activity observed upon modulation of intracellular Ca2+

homeostasis and inhibition of ERAD could be attributed to

Figure 3. Lacidipine attenuates induction of apoptosis in GD cells treated with EerI. (A) Flow cytometry histograms of Annexin V-FITC
fluorescence intensities (x-axis, log scale) plotted against cell counts (y-axis, linear scale) obtained from the analysis of untreated cells and cells treated
with lacidipine (10 mM) and EerI (6 mM). Three independent experiments were conducted and results of one representative experiment are reported.
(B) PI binding population change (%) of cells treated with lacidipine (10 mM) and EerI (6 mM) for 16 hrs compared to untreated cells (ANOVA, p,0.01).
Number of total cells counted: 10,000. The data is reported as mean 6 SD.
doi:10.1371/journal.pone.0061418.g003
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upregulation of GC transcription in addition to rescue of GC

folding and inhibition of GC degradation. The expression of GBA

in GD fibroblasts treated with lacidipine (10 mM) and EerI (6 mM)

was measured by quantitative RT-PCR. Co-administration of

lacidipine and EerI resulted in 5.2-fold upregulation of GC

expression compared to untreated cells (ANOVA, p,0.05), which

Figure 4. Lacidipine remodels the UPR pathway in GD fibroblasts treated with EerI. Cells were treated with lacidipine (10 mM) and EerI
(6 mM) for 24 hrs. (A) Xbp-1 mRNA splicing was determined by RT-PCR followed by gel electrophoresis. (B) Spliced Xbp-1 band intensities were
quantified with NIH ImageJ analysis software. Relative mRNA expression levels of (C) ATF4, (D) CHOP, (E) Bcl-2, and (F) GC were obtained by
quantitative RT-PCR, corrected by the expression of the housekeeping gene GAPDH, and normalized by that of untreated cells (ANOVA, p,0.05). The
data is reported as mean6 SD. (G) Western blot analysis of cells treated with EerI (6 mM) and lacidipine (10 mM) for 48 hrs using GC specific antibody.
GAPDH expression was used as a loading control. (H) Western blot band quantification. GC bands were quantified by NIH ImageJ analysis software
and corrected by GAPDH band intensities.
doi:10.1371/journal.pone.0061418.g004

Remodeling Proteostasis in Gaucher Disease Cells

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61418



is higher than what observed in cells treated only with lacidipine

(2.5-fold) or EerI (3.3-fold) (Figure 4F).

GC expression was also evaluated by Western blot (Figure 4G–

H). As shown in Figure 4H, L444P GC content was barely

detectable in untreated cells, as expected, due to extensive ERAD

[8], but it was enhanced by treatment with either lacidipine or

EerI. In agreement with the results obtained from quantitative

RT-PCR analyses, co-treatment with lacidipine and EerI further

enhanced GC accumulation (1.4-fold increase compared to EerI

treatment alone).

Among ER resident chaperones, BiP plays a critical role in the

folding of mutated GC variants [13,14]. The increase in lysosomal

GC activity observed upon chemically induced inhibition of

ERAD or modulation of intracellular Ca2+ homeostasis in GD

cells is partially due to the upregulation of BiP expression

associated with UPR induction. Thus, we evaluated BiP expres-

sion in cells treated with lacidipine and EerI and compared it to

that of other ER chaperones Calnexin (CNX) and Calreticulin

(CRT). The total protein content of treated and untreated cells

was analyzed by Western blot using a BiP-specific antibody

(Figure 5A–B). Co-administration of lacidipine and EerI resulted

in 3.6-fold increase in BiP cellular accumulation, which is lower

than what observed in cells treated only with EerI (4.3-fold). CNX

and CRT protein levels were not significantly altered by co-

treatment with lacidipine and EerI. BiP is normally upregulated

upon activation of the UPR [27]. Thus, the decrease in BiP

expression observed in cells treated with EerI and lacidipine

correlates with lacidipine-mediated attenuation of UPR induction.

Bcl-2 does not Directly Affect Mutated GC Folding but
Protects GD Cells from Apoptosis Associated with
Modulation of Proteostasis
Bcl-2 is the prototype of an expanding family of proteins that

regulate cell survival and apoptosis in multiple cell types [31]. As

discussed above, treatment with lacidipine prevents apoptosis

associated with UPR induction that was observed upon treatment

with EerI. The addition of lacidipine to EerI treated cells results in

upregulation of Bcl-2 expression to a considerably higher level

than what is observed administering EerI alone (Figure 4E). In

order to investigate the role of Bcl-2 in cells treated for the rescue

of mutated GC folding via UPR induction, we treated GD cells

with fluvastatin, a compound that was previously reported to

induce upregulation of Bcl-2 [32]. Specifically, we asked whether

fluvastatin treatment could counteract the apoptotic effect of

prolonged UPR induction. Fluvastatin was administered to GD

cells treated with UPR inducing proteostasis modulators known to

rescue native folding of mutated GC, namely EerI and MG-132.

MG-132 inhibits proteasomal degradation, which, in turn, causes

induction of UPR and upregulation of chaperones in GD cells

[10]. Co-treatment with EerI and MG-132 was found to

dramatically enhance the activity of L444P GC (to 52% of WT

activity), but at the cost of even higher induction of apoptosis [15].

We administered fluvastatin (100 nM) to GD cells treated with

EerI (2 and 6 mM) and MG-132 (0.6 mM) and tested Bcl-2

expression, induction of apoptosis and GC activity. Fluvastatin

treatment caused dramatic upregulation of Bcl-2 (18.4-fold

compared to untreated cells; p,0.05) and did not induce

cytotoxicity (Figure 6A–B). The addition of fluvastatin to EerI-

treated cells also upregulated Bcl-2 and lowered apoptosis.

Specifically, fluvastatin treatment increased Bcl-2 expression in

cells treated with EerI 2 mM (4.6-fold) and with EerI 6 mM (5.2-

fold) (p,0.05; Figure 6A). Fluvastatin treatment also reduced

apoptosis caused by EerI, reducing cell death by 40% in cells

treated with EerI 6 mM (p,0.01; Figure 6B). Similar results were

obtained upon addition of MG-132. Bcl-2 expression was

downregulated in cells treated with both EerI and MG-132 (0.8-

fold) compared to untreated cells. However, the addition of

fluvastatin caused upregulation of Bcl-2 expression (2.8-fold;

ANOVA, p,0.05) compared to untreated cells. The addition of

fluvastatin also resulted in a decrease in cell death (40%; ANOVA,

p,0.01) compared to cells treated only with EerI and MG-132.

These results suggest that Bcl-2 plays a protective role in GD cells

treated with proteostasis modulators that induce the UPR and

activate apoptosis.

To test whether chemically induced upregulation of Bcl-2

expression affects rescue of L444P GC activity, we also measured

GC activity in GD cells cultured under the same conditions

(Figures 6C and S2). Interestingly, chemically induced upregula-

tion of Bcl-2 expression did not alter the increase in L444P GC

activity mediated by UPR induction.

To further investigate the role of Bcl-2 in GD cells cultured with

proteostasis modulators, we asked whether the genetic modulation

of Bcl-2 expression correlates with apoptosis induction in cells

treated with EerI and lacidipine. To this end, we downregulated

the expression of Bcl-2 using small interfering RNA (siRNA) and

evaluated apoptosis induction and GC activity. L444P GC

fibroblasts were incubated with siRNA against endogenous Bcl-2

for 48 hrs followed by small molecule treatment (lacidipine 10 mM
and EerI 6 mM) for additional 48 hrs (Figure 7). Non-targeting

siRNA was used as a siRNA knockdown control. To determine the

extent of silencing achieved, we first measured Bcl-2 expression by

Figure 5. Lacidipine attenuates BiP upregulation in GD cells treated with EerI. (A) Western blot analyses of BiP, CNX, CRT, and GAPDH (used
as loading control) in GD fibroblasts treated with lacidipine (10 mM) and EerI (6 mM) for 48 hrs. (B) Quantification of Western blot bands. ER
chaperone band intensities were quantified with NIH ImageJ analysis software, corrected by GAPDH band intensities, and divided by the values
obtained from untreated samples.
doi:10.1371/journal.pone.0061418.g005
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quantitative RT-PCR (Figure 7A). Bcl-2 siRNA resulted in 50%

downregulation of Bcl-2 expression compared to non-targeting

siRNA in untreated cells. Bcl-2 silencing was also observed to

reduce Bcl-2 expression in cells treated with lacidipine or EerI,

confirming that the knockdown of endogenous Bcl-2 was achieved

in both untreated and small molecule-treated cells.

Administration of Bcl-2 siRNA to achieve partial (50%)

downregulation of its expression did not significantly change the

induction of apoptosis (monitored by measuring PI binding as

described above, Figure 3) in either untreated or lacidipine treated

cells (Figure 7B). However, reducing the expression of Bcl-2 in

EerI-treated cells resulted in significantly higher apoptosis in-

duction leading to a 35% increase in cell death (Figure 7B). These

data suggest that Bcl-2 plays a key role in preventing induction of

apoptosis associated with sustained UPR activation.

To investigate whether silencing Bcl-2 expression influences the

increase in L444P GC residual activity achieved with proteostasis

modulators, we also tested GC activity in GD cells treated under

the same conditions (Figure 7C). Not surprisingly, Bcl-2 siRNA did

not significantly alter GC activity in cells treated with lacidipine

and EerI, confirming that modulating the expression of Bcl-2 does

not influence folding of mutated GC.

Discussion

LSDs comprise a class of more than 50 inherited diseases. They

are individually rare, but collectively represent one of the most

prevalent genetic disorders in children [33,34]. GD is the most

common LSD (1 in 60,000 people) with the highest frequency in

the Ashkenazi Jewish population (1 in 1,000) [35]. It presents

highly variable clinical manifestations ranging from adult forms to

acute or chronic infantile neuronopathic types [6]. Enzyme

replacement therapy is currently available for most patients, but

fails to treat several affected areas, particularly the skeleton and the

brain [36]. Bone marrow transplantation can reverse non-

neurological aspects of the disease, but it is rarely performed

[37]. Inhibitors of glucosylceramide synthesis are available for the

treatment of GD patients with moderate clinical manifestations for

which enzyme replacement therapy cannot be considered an

option [38]. In summary, there is no effective treatment for

neurological symptoms that affect the brain damage that occurs in

the most severe cases of GD.

The most prevalent mutations in gene encoding GC (GBA,

NM_000157) result in single amino acid substitutions that do not

directly impair enzymatic activity but destabilize the protein

structure, leading to its degradation via ERAD [5]. These

misfolding-prone GC variants, however, retain catalytic activity

if forced to fold into their native structure [7–10]. In an effort to

design therapeutic strategies that overcome the blood brain barrier

and ameliorate symptoms in the central nervous systems,

increasing focus has been recently devoted to the development

of small molecule based strategies to rescue native folding of GC

variants containing non-inactivating, destabilizing mutations and

enhance their lysosomal targeting and activity. Particularly,

modulating the proteostasis network to upregulate the synthesis,

Figure 6. Upregulation of Bcl-2 protects GD cells from
apoptosis induced by proteostasis modulators. (A) Relative
mRNA expression levels of Bcl-2 in cells treated with EerI (2 and 6 mM),
MG-132 (0.6 mM), and fluvastatin (100 nM) for 24 hrs evaluated by
quantitative RT-PCR and calculated as described in Figure 4 (ANOVA,
p,0.05). (B) PI binding population change (%) of cells treated with EerI

(2 and 6 mM), MG-132 (0.6 mM), and fluvastatin (100 nM) for 16 hrs
compared to untreated cells (p,0.01). The data is reported as mean 6
SD. Number of total counted cells: 10,000. (C) L444P GC activities of GD
fibroblasts treated with EerI (2 and 6 mM), MG-132 (0.6 mM), and
fluvastatin (100 nM) for 48 hrs. Relative GC activities were evaluated as
described in Figure 1B (ANOVA, p,0.01). Experiments were repeated
three times and data points are reported as mean 6 SD. MG, MG-132;
Flu, fluvastatin.
doi:10.1371/journal.pone.0061418.g006
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folding and processing of secretory proteins holds significant

promise to efficiently rescue protein homoeostasis in GD cells [10].

A variety of small molecules including proteasome inhibitors

[10,39], Ca2+ blockers [13,14], and ERAD inhibitors [15] were

reported to enhance folding and activity of the most destabilized

GC variant containing the L444P substitution, which is the most

prevalent mutation in GD patients with CNS symptoms.

However, the mechanism of action of these proteostasis mod-

ulators involves induction of ER stress and activation of the UPR.

Sustained activation of the UPR, in turn, can lead to apoptosis

thus ultimately compromising effective rescue of protein homeo-

stasis. In this study, we sought to investigate chemical strategies to

selectively modulate different branches of the proteostasis network

that enhance rescue of L444P GC folding, while preventing

proteotoxic stress and apoptosis.

We previously reported that inhibition of specific steps of ERAD

leads to rescue of L444P GC folding and activity. As expected,

ERAD inhibition enhances retention of unstable GC in the ER

and ultimately results in enhanced lysosomal trafficking and

activity, but it also leads to significant UPR induction and

apoptosis [15]. On the other hand, restoring Ca2+ homeostasis via

lacidipine treatment proved to be an effective strategy to modulate

the cellular folding capacity and rescue L444P GC folding and

activity without, however, inducing apoptosis [14]. In this study,

we attempted to simultaneously increase retention of GC folding

intermediates into the ER (via ERAD inhibition) and enhance ER

folding (by restoring Ca2+ homeostasis). We found that combining

these two mechanisms of proteostasis modulation enhances

lysosomal trafficking and activity of L444P GC (Figure 1). Most

importantly, we proved that the observed increase in GC activity

was accompanied by lowered apoptosis induction, which suggests

that lacidipine treatment protects GD cells from induction of

UPR-associated apoptotic response.

Lacidipine treatment remodels the UPR pathway activated by

EerI. Remodeling of the UPR, in turn, seems to be tightly linked

to lacidipine’s anti-apoptotic function. Signal transducers of the

UPR can activate either cytoprotective or pro-apoptotic pathways

[29]. A pro-survival response is first initiated to reduce the load of

misfolded proteins by boosting the ERAD pathway [40]. This

response is mediated by the induction of the IRE1 signaling

cascade [41] via Xbp-1 splicing and activation [28]. If the

proteotoxic stress persists, pro-apoptotic signals are elicited

through the activation of the PERK and ATF6 signaling cascades

through the expression of ATF4 and its target CHOP. Induction

of this pro-apoptotic response occurs simultaneously to attenuate

IRE1 signaling [29,42]. We found that lacidipine enhances EerI-

mediated Xbp-1 splicing and lowers the activation of ATF4 and

CHOP. These results suggest that lacidipine remodels EerI-

mediated UPR induction by activating the anti-apoptotic IRE1

signaling cascade and inhibiting the activation of the pro-apoptotic

PERK and ATF6 arms.

The Bcl-2 protein family plays a key role in the activation of

UPR-associated apoptosis [43]. Particularly, Bcl-2 is an essential

anti-apoptotic protein that controls cell survival [31] and is

possibly involved in maintaining Ca2+ homeostasis by reducing

[Ca2+]ER efflux [44,45]. Bcl-2 is upregulated upon treatment of

GD fibroblasts with lacidipine [14]. We showed herein that

lacidipine enhances the expression of Bcl-2 in EerI-treated cells

Figure 7. Silencing Bcl-2 aggravates the apoptotic effect of
proteostasis modulators. (A) Relative mRNA expression levels of Bcl-
2 in GD fibroblasts incubated with siRNA for 48 hrs and treated with
lacidipine (10 mM) and EerI (6 mM) for additional 24 hrs evaluated by
quantitative RT-PCR and calculated as described in Figure 4 (ANOVA,
p,0.05). (B) Flow cytometry analysis of PI binding population change
(%) of GD fibroblasts incubated with siRNA for 48 hrs followed by
lacidipine (10 mM) and EerI (6 mM) treatment for 16 hrs (ANOVA,
p,0.01). The change in PI binding population (%) was calculated by
subtracting PI binding values of cells treated with small molecules to
that of cells only incubated with control siRNA. The data is reported as
mean 6 SD. Number of total counted cells: 10,000. (C) Relative L444P

GC activities in cells incubated with Bcl-2 or control siRNA for 48 hrs
followed by lacidipine (10 mM) and EerI (6 mM) treatment for additional
48 hrs. Relative GC activities were evaluated as described in Figure 1B
(ANOVA, p,0.01). Experiments were repeated three times and data
points are reported as mean 6 SD. Lac, lacidipine.
doi:10.1371/journal.pone.0061418.g007
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and protects cells from EerI-mediated apoptosis induction. We

also reported direct evidence that the expression level of Bcl-2

plays a protective role in GD cells treated with proteostasis

modulators that activate the pro-apoptotic arms of the UPR.

In conclusion, this study demonstrates that combining modu-

lation of Ca2+ homeostasis and ERAD inhibition enhances the ER

folding capacity of GD fibroblasts thereby enabling efficient rescue

of folding, trafficking and activity of L444P GC. Generally

speaking, there is a clear correlation between protein stability and

extent of degradation and residual enzymatic activity of GC

variants containing destabilizing, non-inactivating mutations.

Accordingly, modulation of the proteostasis network typically

result in higher rescue of enzymatic activity in cells expressing

highly destabilized GC variants, such as L444P GC, than in cells

expressing less unstable variants that retain higher enzymatic

activity, such as N370S GC [15]. The results reported herein

provide insights for the development of pharmacologic strategies

to modulate the proteostasis network and rescue native folding of

unstable, degradation-prone proteins traversing the secretory

pathway without triggering induction of ER stress and activation

of apoptosis.
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Figure S1 Co-treatment of GD patient-derived fibro-
blasts with EerI and lacidipine enhances the folding,
lysosomal trafficking and activity of L444P GC. Relative
L444P GC activities were evaluated in cells treated with a range of

concentrations of EerI and constant doses of lacidipine (5, 10, or

20 mM) for 72 hrs. Relative GC activities were evaluated by

normalizing GC activities measured in treated cells to the activity

in untreated cells (left y axis). The corresponding fraction of WT

GC activity is also reported (right y axis). Experiments were

repeated three times and data points are reported as mean 6 SD.

Lac, lacidipine.
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Figure S2 Chemically induced upregulation of Bcl-2
enhances mutated GC activity rescue. Relative L444P GC

activities of GD fibroblasts treated with EerI (2 and 6 mM), MG-

132 (0.6 mM), and fluvastatin (100 nM) for 72 hrs. Relative GC

activities were evaluated as described in Figure S1. Experiments

were repeated three times and data points are reported as mean 6

SD. MG, MG-132; Flu, fluvastatin.
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