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Abstract. We describe new architectures for the efficient computation of redundant manipulator
kinematics (direct and inverse). By calculating the core of the problem in hardware, we can make full
use of the redundancy by implementing more complex self-motion algorithms. A key component of our
architecture is the calculation in the VLSI hardware of the Singular Value Decomposition of the
manipulator Jacobian. Recent advances in VLSI have allowed the mapping of complex algorithms to
hardware using systolic arrays with advanced computer arithmetic algorithms, such as the coordinate
rotation (CORDIC) algorithms. We use CORDIC arithmetic in the novel design of our special-purpose
VLSI array, which is used in computation of the Direct Kinematics Solution (DKS), the manipulator
Jacobian, as well as the Jacobian Pseudoinverse. Application-specific (subtask-dependent) portions of
the inverse kinematics are handled in parallel by a DSP processor which interfaces with the custom
hardware and the host machine. The architecture and algorithm development is valid for general
redundant manipulators and a wide range of processors currently available and under development
commercially.
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1. Introduction

The Robot Forward and Inverse Kinematics problems are critical computation-
ally intensive tasks in real time robot control which can benefit from the
judicious application of parallel algorithms and architectures [10, 20]. Parallel
architectures including systolic arrays are being successfully applied to more basic
algorithms in real-time signal processing and image processing, as well as robotics.
Previous work on architecture design has centered on robot kinematics, [15, 17,
19, 24, 31, 39] dynamics, [l, 8, 18] and control [3, 13, 27, 37]. Algorithms and
architectures for kinematically redundant manipulators have been considered in
6, 22, 34].

Recent advances in VLSI have allowed the mapping of complex algorithms to
hardware using systolic arrays with advanced computer arithmetic algorithms,
such as the coordinate rotation (CORDIC) algorithms. CORDIC has been used in
robotics for inverse kinematics [11, 15, 17] for nonredundant robots and for control
[3, 37]. However, it appears that CORDIC has not been utilized in the Direct
Kinematics Solution (DKS) and Jacobian computations, where the many rotations
present fertile ground for its ability to handle rotations efficiently. In this work, we
use CORDIC arithmetic in the novel design of a special-purpose VLSI array,
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forming a key part of an efficient architecture for redundant robot kinematics
computations.

The overall objectives of our research are to design a custom VLSI CORDIC
Architecture suitable for redundant manipulator kinematics, to fabricate chips for
this architecture, and implement the resulting architecture in our Robotics Labora-
tory [34]. In this paper, we describe progress in the first stages of this project, the
design and implementation of a high performance VLSI array specifically tailored
for the robotic application and the combination of the array with a high perfor-
mance general purpose processor. Digital Signal Processor (DSP) chips present a
number of architectural advantages, including high speed arithmetic and communi-
cation ports for parallel array construction. The performance advantage of DSP
chips over conventional microprocessors has narrowed somewhat with the current
generation of Reduced Instruction Set (RISC) floating-point processors. However,
the DSP architecture remains important for real-time control and will be the
model used in this paper.

The self-motion capability of redundant manipulator designs [23, 28] allow them
to significantly outperform conventional current robots, particularly in unstructured
environments [33, 35] (for obstacle avoidance, fault tolerance, etc.). f{owever, the
increased complexity of solving the inverse kinematics for redundant arms is a key
factor in limiting the current practical use of such robots to a fraction of their poten-
tial. Typically in applications, inverse kinematics for redundant arms has been
‘avoided’ by using end effector-based control schemes. However, these schemes do
not make provision for the self-motion capability which is the fundamental motiva-
tion for redundant joints - indeed in some cases, the resulting joint motion is non-
conservative and unpredictable, which is clearly undesired. A number of suggested
joint space techniques for self-motion control are based on a well-known algorithm
using the Jacobian pseudoinverse [23, 28], which must be computed iteratively in real
time in practise.

Here, we restructure and recast the kinematics algorithm to exploit the parallelism
in the computation. We then introduce efficient special purpose VLSI arrays to com-
pute the DKS, the Jacobian, and its pseudoinverse. The Singular Value Decomposi-
tion (SVD) represents an appealing method of computing the pseudoinverse. Our
previous work has shown the applicability of high speed algorithms such as the
CORDIC algorithms to the SVD of real matrices [5]. Our architecture features a
special purpose array of CORDIC processors to compute the SVD of a matrix.
The result is a new and interesting application of design techniques and sheds
light on many of the issues involved in applying VLSI methodologies to apparently
amorphous technological algorithms. The resulting processor design offers the
possibility of implementing in real time some of the more complex schemes for
redundant robot kinematic control suggested in the literature.

Our architecture is valid for any type of high performance processor, and is thus
not restricted to our particular hardware. We are currently using the Texas
Instruments TMS320C30 and TMS320C40 floating-point DSP chips. Based upon
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the performance of the custom chips designed for the CORDIC SVD array, and
utilizing maximum parallelism wherever possible, we estimate that this architecture
will compute each iteration for the joint velocities in approximately 400 micro-
seconds. We are currently building custom CMOS chips for this architecture, which
is described in more detail in the following.

2. Forward and Inverse Kinematics Algorithms

A key computational bottleneck for controllers is the calculation of inverse
kinematics, which produces the time configuration history of the robot joints
necessary to produce desired end effector motion. The controller must solve the
inverse kinematics problem to produce the correct (joint) trajectories to track.

The problem may be restated as that of solving the direct (forward) kinematics
(DKS) equations

x=f(8) ()

for the values of the n joint variables § € R" given the m end effector position/
orientation variables x € R™.

Two approaches to inverse kinematics are common for nonredundant robots. One
method involves solving (1) directly for the joint angles. Conventionally this involves
forming the direct kinematics as a product of 4 x 4 homogeneous transformation
matrices [H;_,(8;)] where 6; is the ith component of 8,

(H') = (Ho ODIHF(82)] - - - [Hy =3 (Bu))[H,-1(64)] (2)
and equating with a (desired) end effector transformation [7gy]. The inverse
kinematics is then computed by manipulation of (2) to produce n independent
equations for the 6,;’s [30]. For many conventional nonredundant robots, (2) yields
closed form solutions, and a number of elegant approaches to efficient inverse
kinematics computation have been proposed (for example [11, 15, 17]). However,
there are in general several solutions to (2) (corresponding to ‘elbow-up’ ‘elbow-
down’ solutions, etc.) which complicate the solution even for nonredundant arms.

In our architecture, we adopt the ‘resolved-rate’ approach [38], solving for the
joint velocities required for end effector motion, using the manipulator Jacobian.
This approach, which can be used for both redundant and nonredundant arms, is
more appropriate than solving for § directly in the case of redundant arms, where
there are in general an infinite set of solutions in (1) for 8 given x and direct
solutions to (2) more complex [23, 28].

By differentiation of (1), we obtain the relationship between the joint velocities and
end effector velocities expressed as

x=[J]8 (3)

where the (m x n) matrix [J] = 9f/88 is known as the manipulator Jacobian. Equa-
tion (3) is used to solve for the joint velocities § and hence the joint variables § by
integration.
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Redundant robot inverse kinematic algorithms are typically based on the
pseudoinverse of the Jacobian matrix as follows:

§=[TH(ONx+[I-T*(8)J(8)e 4

where [J "] is the pseudoinverse of the Jacobian (for more details, sce [23, 28]). In
(4), I'is the (n x n) identity matrix, and ¢ is an (n x 1) column vector whose values
may be arbitrarily selected [23, 28]. Conventional nonredundant manipulators
have m = n, in which case there is a unique solution for 8, ([J*]=[J"'] in this
case, and (I —J*J] = [0]). Redundant arms have n larger than m (extra joints),
and different choices for ¢ determine different possible arm postures, each of
which will allow the specified end effector motion x. This capability is however
gained at the expense of significantly increased complexity via the need to compute
the pseudoinverse and the second term in (4). Earlier we proposed an architecture
which computes both the direct kinematics solution (2) and the manipulator
Jacobian using a parallel array. The architecture then computes the joint velocities
using (4) to complete the kinematics.

3. Novel VLSI CORDIC/DSP Architecture

Figure 1 presents a conventional computing environment for the inverse kinematics
calculation. We propose an Inverse Kinematics Engine (IKE) architecture, which
incorporates a special-purpose VLSI array and a programmable DSP processor.
Figure 2 shows the proposed Inverse Kinematic Engine (IKE) which is a key part of
the architecture presented in this paper. The IKE reduces the computational load on
the Real Time Controller through the use of custom VLSI hardware and DSP
processors. Figure 3 shows the enhanced VLSI CORDIC/DSP architecture
demonstrating the Inverse Kinematic Engine (IKE) configuration of Figure 2. The
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Fig. 1. Robot Control using internal inverse kinematics calculation.
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interconnection of the hardware components in the proposed IKE is shown. The
CORDIC SVD array acts as a co-processor for the general-purpose DSP processor
as shown in Figure 3. In a particular implementation, the Processor Element could
be a DSP chip, such as the Texas Instruments TMS320C30 {29] or TMS320C40 [7],
or one of the INMOS Transputer chips [14].

In our architecture, both the DKS and the Jacobian are calculated using the
CORDIC array and the DSP chip. To perform the inverse kinematics, the pseudo-
inverse of the Jacobian is performed in hardware using the CORDIC SVD array.
The pseudoinverse is used to calculate the next iteration of joint velocities, with
the necessary matrix-matrix and matrix-vector computations carried out by the
DSP chip using the information emanating from the CORDIC SVD array. As
part of our architecture, we can calculate the DKS in parallel with the Inverse
Kinematics. The high level Overall Kinematics algorithm is structured to exploit
the processing capabilities of VLSI CORDIC/DSP arrays.

Our architecture has similarities with that of [3, 37] in which a general purpose
robotics processor with two CORDIC subunits was devised. However, our
special-purpose CORDIC array with multiple CORDIC units allows us more
flexibility in partitioning the various portions of the algorithm in parallel. Our
architecture is also more general than that proposed in [13], which is specific to non-
redundant robots, and [22], which does not have the CORDIC SVD array or efficient
parallel Jacobian calculation. Our approach is valid for more general robots
than that in [17], which used a pipelined CORDIC architecture for closed form
nonredundant robot inverse kinematics.

This work concentrates on the design of the first level building blocks, including
the DKS, Jacobian, Jacobian SVD and pseudoinverse sections.

4. New Parallel DKS and Jacobian Using CORDIC

We use our CORDIC architecture to také advantage of both the parallelism and the
large number of rotations inherent in the DKS and Jacobian calculations. We adopt
the conventional Jacobian formulation expressed in a base coordinate frame [30].
Other work [24, 25] has considered Jacobian models expressed at varying coordinate
systems. Our architecture can easily be used to compute any of these Jacobians.
However, the Jacobian in base coordinates is standard in the literature, thus is a
good reference case for our architecture, and will be adopted in the following.
For the purposes of demonstration, we use the example of an eight revolute joint
arm. However, our architecture is not limited in the number or type of joints in
the robot.

4.1. ROTATIONS USING CORDIC ARITHMETIC

The Coordinate Rotation Digital Computer (CORDIC) algorithms provide a
fast hardware method to calculate vector rotations and inverse tangents. These
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Fig. 4. CORDIC arithmetic processor elements.

algorithms were initially described by Volder [32] and further extended to hyperbolic
functions by Walther [36].
The CORDIC iteration equations which are to be implemented in hardware are:

Xip1 = X; + 627,

Vie1 =yi—6x,27 (5)
zip =z + 6;0;.

The variable, z;, contains the total rotation angle applied, 6; is the current rotation
angle increment, and §; = +1. Through the appropriate selection of each §;, either
the initial zy value can be reduced to zero (vector rotation) or the initial y, value
can be reduced to zero (inverse tangent). These equations can be implemented
with simple structures: registers, shifters, adders, and a small ROM. Figure 4
presents a block diagram of the CORDIC processor. The CORDIC algorithms
have been applied by Cavallaro and Luk [5] to the Jacobi method for the SVD to
produce a processor architecture which is currently being implemented by us
[4, 12] at Rice University. For the current eight joint robot architecture, we require
an array to compute an 8 x 8 SVD. This can be performed on a 4 x 4 array of
CORDIC SVD processors where each unit operates on a 2 x 2 sub-matrix. Addi-
tionally, at each iteration, prior to taking the SVD, individual CORDIC processors
within the array are used (as described in the following section, see Figure 5) to com-
pute rotations required for the DKS and Jacobian. The operation of each CORDIC
unit and data flow between it and the DSP chip are shown in Figure 6.

4.2. DSP/PARALLEL CORDIC JACOBIAN FORMATION

At each iteration, the values of the 8 joint variables § are streamed in parallel to
generate the following » matrices [R;_,] and n vectors d;_;:

cosd; sin6 01 ~ 0 0
[Ri)] = | —sin6; cos6; 0||0 cose; siney |, (6)

0 0 1{]0 —sing; cosq;
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Fig. 5. Dataflow for Jacobian matrix formation using CORDIC rotators.
a;cosf;
4::—1 = | g;sing; |. (7
d;

In the above, a;, a;, and d; are constants related to the dimensions of the robot.

These quantities must then be used to form the Jacobian [J/], which takes the
form (assuming revolute joints) [30]:

=" s Rt ®

where x denotes the cross product operation. The elements in the Jacobian are
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Fig. 6. CORDIC co-processor organization for Jacobian calculation.

formed recursively from the above quantities d'_; and [Rf_,] as follows:

[Rs] = [Rs"J[Ri_], ©)
do=dy' +[Ry7]d}y, (10)
for i=1,...,8 where the initial conditions are dg = 0 and [R§] = [7] with [/] the

3 x 3 identity matrix and the zj vectors are the third columns of the [R}] matrices.
A CORDIC array to compute the Jacobian is shown in Figure 5. This logical
array is formed using physical sub-units of our special-purpose CORDIC SVD
array. From (8), the top and bottom halves of J are formed differently. Both require
the computation of (9) in the double triangular array shown in Figure 5. The 4
vectors required for the upper portion of the Jacobian are streamed in the lower
triangular array. The physical array is composed of nine CORDIC rotation
modules operating in parallel, with the initial seeds shown at the bottom of the
array. The loading and unloading/shifting of data is performed by the DSP
Processor. A diagram of the rotations produced by each module, with the data
exchanges performed by the DSP processor, is shown in Figure 6. The total propa-
gation time for this task will be 16 CORDIC rotation cycles using nine CORDIC
processors in parallel. CORDIC scale factor correction will also be performed as
the rotations are being applied. Notice that we have full utilization of the array.
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When we seed the uppe. triangular array with [0,0, 1]7 then we generate the z's.
Similarly, Equation (10) is seeded in the lower triangular array by d’s in (7) (notice
we need only seed by [a;,0,0]” to produce the di_,’s in one rotation, with a sign
change in the DSP). Notice that by performing a succession of 2 x 2 rotations and
holding the third vector element in register, we make a computational savings in the
matrix rotations (we do not explicitly perform the two multiplications by 1 in (6)).

The subtractions and cross products to form the final Jacobian are formed by the
DSP processor. The appropriate columns are then collected to form the Jacobian
matrix. Other methods have been proposed to compute the Jacobian [13, 21, 24,
25, 39]. Our approach adds to this body of techniques, using CORDIC for the
first time, and making full use of the rotations inherent in the algorithm.

In parallel with the formulation of the Jacobian, the remainder of the direct
kinematics solution (x§ and y§) is performed by appropriate rotations of [1,0,0]"
and [0,1,0]7 in two other CORDIC units (shown on the left in Figure 5). When
coupled with z§ and d from the Jacobian calculation, the entire direct kinematics
is formed in paralle] with the Jacobian calculations (recall that

E NN

)= 78 00 % 4] ()
in (2)). Notice that the total direct kinematics solution is performed using four
CORDIC units, with the Jacobian calculations occupying nine units. The decompo-
sition depicted above is not the only possible method. For example, we could
perform the Jacobian operation using eight modules in parallel (shifting the triangu-
lar portions). However, in this case, the operation would take nine steps in Figure 5
instead of eight. Previous architectures to compute the DKS [13, 19} did not use
CORDIC to compute the rotations. By using the CORDIC units, we are making
full use of our special-purpose CORDIC SVD array.

5. Jacobian Pseudoinverse Calculation

Given the Jacobian, we next need to compute its pseudoinverse to compute the joint
velocities via (4). In general, the most efficient means of computing a pseudoinverse
is by its Singular Value Decomposition [16]. Previous work in computing the
pseudoinverse did not use the SVD or CORDIC [6, 22]. In the following, we
review the SVD, and note how the application of CORDIC results in an efficient
special-purpose parallel processor array.

5.1. SINGULAR VALUE DECOMPOSITION USING CORDIC

The Singular Value Decomposition (SVD) represents an appealing method of com-
puting the pseudoinverse. The SVD is more closely mapped onto hardware through
the use of the CORDIC algorithms. In this paper, we build upon our previous work on
the application of CORDIC arithmetic to the SVD, by taking advantage of the features
offered by the CORDIC SVD in efficiently mapping algorithms onto hardware.
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The singular value decomposition [9] of a p X p matrix M is
M=UsVT, (12)

where U and V are orthogonal matrices and ¥ is a diagonal matrix of singular
values. The SVD is a computationally complex algorithm which benefits from a
VLSI parallel array.

The systolic array of Brent, Luk, and Van Loan [2] uses a square array of
processors to implement the parallel Jacobi Method for the SVD. Figure 7 shows
a typical array architecture to perform a 6 x 6 SVD. In the Brent-Luk-Van Loan
array, the matrix is divided into 2 x 2 submatrices. Each processor element contains
a 2 x 2 submatrix. The array architecture is scalable. There are two types of data
flowing in this array. Rotation angles generated by the diagonal processors flow
systolically along the rows and columns of the array. Matrix data elements are
exchanged diagonally, after the diagonal neighbor has received and applied the
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Fig. 7. Brent Luk Van Loan array for the SVD.
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necessary rotation angles. This leads to ‘waves’ of activity moving diagonally away
from the main array diagonal.

A 2 x 2 SVD can be described as

{a b v 0
O MG | (13)

where 6, and 6§, are the left and right rotation angles, respectively. The rotation
matrix is

R(6) = [

and the input matrix is

M= [‘C’ Z] (15)

In a typical computer algorithm for the SVD, the sines and cosines of the rotation
angles are computed through formulas that require division and square root
operations. The explicit angles are not required and only the sines and cosines are
computed. The rotations are then applied to the 2 x 2 submatrix using standard
matrix multiplication techniques. However, time-consuming operations such as
multiplication, division, and square root are needed.

As mentioned above, the CORDIC algorithms provide a fast hardware method to
calculate vector rotations and inverse tangents which are essential operations for the
SVD. We integrate the CORDIC SVD processor array with a DSP processor to
compute inverse kinematics for redundant robots, a more general problem going
beyond the earlier work on CORDIC for non-redundant robots [11, 15, 17].

(14)

cosf sinf
—sinf cosé |’

5.2. FORMATION OF PSEUDOINVERSE FROM SVD

The pseudoinverse is easily expressed in terms of the information resulting from the
SVD as follows [16]:
Jt=vztuT, (16)

where U and V are defined from the SVD, and £% is a n x m matrix with reciprocals
of the singular values in ¥ along the leading diagonal, and zeros elsewhere. The
singular values of the Jacobian are obtained from the CORDIC SVD array. The
current CORDIC SVD processor can be enhanced to collect the matrices U and
V. The reciprocals of the singular values required for ©* are generated from ¥ by
the DSP chip. Finally, the product J* = ¥S*UT is formed in the DSP chip.

5.3. STRUCTURE OF INVERSE KINEMATIC ALGORITHM

The algorithm to be computed becomes, when discretized,

Qr= [J+(Q,_|)]__5£,+[I—J+(Q,_1)J(Q,_l)]§,‘ (17)
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The quantity §,_, is assumed available via sensory information, and x, given from
off-line end effector planning. We see that at each stage, the quantities that must be
obtained are: first, the updated version of the Jacobian; second, the calculation of the
Jacobian Pseudoinverse; and third, the calculation of the new value of 8, using (17).
The algorithm is configured as follows:

Algorithm VLSI CORDIC Parallel Inverse Kinematics()
begin;

compute Jacobian;

compute SVD;

do (Pseudoinverse, Null Space Projector);

do (|7 "%, [T~ 7 *7]e)s

do (§=[7%]x+[1-T"T]e);

output Q;
end;

The value of €, depends on the particular redundancy resolution scheme selected,
and is application dependent. Part of our ongoing research concerns calculation of
different schemes for selecting €, within the DSP processor. This is possible due to
the ability of DSP chips to handle differing algorithms (notice that most schemes
for selecting ¢, require values of 8,_; and/or @,, which are available locally in our
architecture). This allows the entire inverse kinematics solution to be contained
within the Inverse Kinematics Engine, and separate from the host machine. The
key to our architecture is the calculation of the rotations making up the Jacobian
and direct kinematics using CORDIC processors.

5.4. GENERATION OF NEW §,'S AND §,'S

After the completion of the SVD, several steps which involve a series of matrix-
vector multiplications occur in (4). These are implemented using the DSP processor.
The top portion of Figure 8 shows the necessary operations. The matrix-vector
multiplications necessary to generate the Null Space projector will be performed
by the DSP processor along with the Pseudoinverse computation.

The DSP processor also forms the integration required to produce the joint angles
from the joint velocities. The programmability of the DSP processor allows the use
of different integration routines, such as the Adams predictor-corrector [13], Runge-
Kutta methods, etc., to accuracy as desired for particular applications.

6. VLSI Implementation Issues

In this section, we investigate the issues involved in designing special purpose archi-
tectures to allow exploitation of the structure of the manipulator inverse kinematics
algorithms. In this architecture, the CORDIC co-processor array is utilized for a
number of functions as shown in Figure 9. Although composed of special-purpose
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Fig. 8. CORDIC Inverse Kinematics Engine (IKE) algorithm.

chips, each CORDIC SVD chip (CSVD) can act as a simple CORDIC co-processor
unit or as part of the systolic array for the SVD. Under the control of the DSP chip,
the 9 CSVD chips in the lower righthand corner of Figure 9 compute parameters for
the Jacobian matrix. Two of these nine plus two additional CSVD chips in parallel
compute the DKS. At a later point in the inverse kinematics algorithm, all 16 CSVD
chips compute the SVD of the Jacobian.

6.1. CORDIC ARRAY PROCESSOR ELEMENT

The CORDIC SVD processor is implemented in a 2um CMOS technology and
fabricated through the MOSIS service. The chip measures 6900 x 5600 pm and
contains over 26000 transistors [12]. The chip is primarily designed to implement
the 2x 2 SVD systolic algorithm, but performs in several different modes in
response to a control word. The chip is also capable of acting as a dedicated
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Fig. 9. Utilization of Processor Elements of CORDIC SVD array.

CORDIC co-processor and in fact contains two 16-bit fixed-point CORDIC units.
This first generation CSVD chip uses a conservative two-phase nonoverlapping
clocking strategy and is fully functional at 2 MHz. The design uses custom adder
and barrel shifter cells designed with the magic layout editor. The control units
are implemented as PLAs and the higher level routing was completed with octtools.

We are currently designing a second generation chip which will reduce the delays
in the 16-bit barrel shifter section of the CORDIC units. We expect to improve the
performance of the chip so that it would operate at 10 MHz. The CSVD chip com-
munication ports are also being modified to interconnect with the TMS320C40 8 bit
communication ports.

6.2. DIGITAL SIGNAL PROCESSORS

The current generation of floating-point DSP chips combine the flexibility of a
general purpose microprocessor with high performance arithmetic and communica-
tion facilities. The TMS320C30 chip has a 60 ns processor cycle time and hardware
support for single cycle floating-point multiplication and addition. This leads to a
high speed multiply and accumulate operation important for many of the matrix
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products needed for inverse kinematics. DSP chips are highly integrated and contain
on-board RAM. We have been using a TMS320C30 evaluation module board as
part of our implementation. The current generation TMS320C40 has a 40 ns pro-
cessor cycle time and six hardware communication ports to support multiprocessing
[71 and will provide a parallel interface to the CORDIC SVD array. We are currently
working with a simulator for the TMS320C40, and projected performance results of
our robotic algorithms using the TMS320C40 based on the simulator are presented
here. The Texas Instruments DSP chips can be programmed in a high-level language,
such as ‘C’, and have real-time operating system software.

6.3. PERFORMANCE ESTIMATES

An inverse kinematics algorithm for a PUMA robot augmented with a seventh joint
was implemented in the ‘C’ programming language. The code was compiled and
loaded to maximize the use of the on-chip RAM, the zero wait-state local and global
memory, the on-chip instruction cache, and the register-argument function model.
The program was benchmarked on the TMS320C40 simulator and the results for
each of the major subroutines and the total time are presented in Table I. The
table also contains data for the AT&T DSP32 chip presented by Maciejewski {22]
using an updating scheme for the SVD. Our code computes the complete SVD
using a Golub-Reinsch algorithm for the serial case on the TMS320C40 and a
Jacobi based algorithm for the CORDIC SVD array.

The performance of the algorithm could be improved by replacing the matrix
multiplication and transpose routines with assembly language subroutines. For
instance, multiplication of two 7 x 7 matrices requires 2500 TMS320C40 processor
cycles or 100 pus using a ‘C’ language algorithm. Optimized assembly language
code for the same problem would require approximately 672 cycles or 27 ps. Further
speedup could be achieved by using a parallel array of TMS320C40 chips [26].

In our proposed architecture, we plan to replace the SVD subroutine which
consumes over 70% of the execution time of the ‘C’ language inverse kinematics
algorithm with the custom VLSI CORDIC SVD array. This array requires time
for loading, computation, flushing, and unloading. The SVD algorithm requires
O(logn) computation sweeps for convergence. For the 8 x 8 SVD, five sweeps will
guarantee convergence. Based on the internal cycle counts, it will take 2560 cycles

Table I. Performance of Inverse Kinematics Algorithm.

TMS320C40 TMS320C40

AT&T DSP32 TMS320C40 AT&T DSP32  assembly assembly
Major Ref. [22] Initial *C" Ref. [22] Ist. gen. 2nd. gen.
subroutines serial serial 4 parallel CSVD array CSVD array
SVD 6.2ms 1.3502ms 1.7ms 1.28 ms 256 ps
Pseudo-inverse  0.5ms 0.3234ms 0.2ms 135ps 135us

Total 6.7ms 1.6736 ms 1.9 ms 1.45ms 400 ps
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to compute the SVD. The actual time can be found by multiplying the cycle count by
the reciprocal of the maximum frequency. An array of 16 first generation CSVD
chips which operate at 2MHz will therefore compute the SVD in 1.28 ms. The
second generation CSVD chip should achieve an increase in clock frequency to
10MHz and compute the SVD of the Jacobian in 256 ps. Even higher performance
is possible if the chip were to be fabricated in the recently announced MOSIS 0.8 um
n-well CMOS process. The cost of the new process is somewhat beyond the range of
academic proof of concept implementations.

As a final performance estimate, we consider an array of second generation CSVD
chips and the TMS320C40 programmed in assembly language. From (17) and Figure
8, the work which remains beyond the SVD is the reciprocal of the singular values to
form £¥, three matrix multiplications, two matrix vector multiplications, and a
vector addition. This can be conservatively approximated by the time for five matrix
multiplications. Using the above estimate of 27 ps for assembly language matrix
multiplication, yields 135ps. The total time including the SVD for a seven joint
robot will therefore be 400 ps.

7. Conclusions

In this paper, we describe and detail a new architecture for efficiently computing the
kinematic equations (direct and inverse) for kinematically redundant robots. The
architecture combines a CORDIC processor array and programmable DSP pro-
cessors in a novel and interesting manner, fusing together several systolic algo-
rithms. We detail a new parallel method to compute both the Direct Kinematics
Solution and the manipulator Jacobian in parallel using units of the CORDIC
array. The array, which acts as a co-processor to the DSP chip, is then used to com-
pute the SVD of the Jacobian and its pseudoinverse. The DSP processor is used to
compute the joint velocities and positions to complete the inverse kinematics solu-
tion. The architecture is valid for nonredundant as well as redundant arms, and
can use any type of high performance DSP chip. We have constructed the first
generation CORDIC SVD chip and are currently building, testing, and integrating
the CORDIC SVD array with the Texas Instruments TMS320C40 processor. We
estimate the time for each iteration of the inverse kinematics of an eight joint arm
using our architecture to be 400 us. This suggests that some of the more complex
schemes for redundancy resolution suggested in the literature can become tractable
in real-time using our architecture.
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