
RICE UNIVERSITY

Expressiveness, Programmability and Portable High
Performance of Global Address Space Languages

by

Yuri Dotsenko

A THESISSUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THEDEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Dr. John Mellor-Crummey, Chair
Associate Professor of Computer Science

Dr. Ken Kennedy
John and Ann Doerr University Professor
of Computational Engineering

Dr. Peter Joseph Varman,
Professor of Electrical & Computer
Engineering

HOUSTON, TEXAS

JANUARY, 2007

Expressiveness, Programmability and Portable High
Performance of Global Address Space Languages

Yuri Dotsenko

Abstract

The Message Passing Interface (MPI) is the library-based programming model employed

by most scalable parallel applications today; however, it is not easy to use. To simplify

program development, Partitioned Global Address Space (PGAS) languages have emerged

as promising alternatives to MPI. Co-array Fortran (CAF), Titanium, and Unified Parallel C

are explicitly parallel single-program multiple-data languages that provide the abstraction

of a global shared memory and enable programmers to use one-sided communication to

access remote data. This thesis focuses on evaluating PGAS languages and explores new

language features to simplify the development of high performance programs in CAF.

To simplify program development, we explore extending CAF with abstractions for

group, Cartesian, and graph communication topologies thatwe call co-spaces. The com-

bination of co-spaces, textual barriers, and single valuesenables effective analysis and

optimization of CAF programs. We present an algorithm for synchronization strength re-

duction (SSR), which replaces textual barriers with fasterpoint-to-point synchronization.

This optimization is both difficult and error-prone for developers to perform manually.

SSR-optimized versions of Jacobi iteration and the NAS MG and CG benchmarks yield

performance similar to that of our best hand-optimized variants and demonstrate signifi-

cant improvement over their barrier-based counterparts.

To simplify the development of codes that rely on producer-consumer communication,

we explore extending CAF with multi-version variables (MVVs). MVVs increase pro-

grammer productivity by insulating application developers from the details of buffer man-

agement, communication, and synchronization. Sweep3D, NAS BT, and NAS SP codes

expressed using MVVs are much simpler than the fastest hand-coded variants, and experi-

ments show that they yield similar performance.

To avoid exposing latency in distributed memory systems, weexplore extending CAF

with distributed multithreading (DMT) based on the conceptof function shipping. Func-

tion shipping facilitates co-locating computation with data as well as executing several

asynchronous activities in the remote and local memory. DMTuses co-subroutines/co-

functions to ship computation with either blocking or non-blocking semantics. A proto-

type implementation and experiments show that DMT simplifies development of parallel

search algorithms and the performance of DMT-based RandomAccess exceeds that of the

reference MPI implementation.

Acknowledgments

I would like to thank my adviser, John Mellor-Crummey, for his inspiration, technical di-

rection, and material support. I want to thank my other committee members, Ken Kennedy

and Peter Varman, for their insightful comments and discussions. I am indebted to Tim

Harvey for his help with data-flow analysis. I am grateful to Luay Nakhleh, Keith Cooper,

and Daniel Chavarrı́a-Miranda who provided guidance and advice.

I want to thank my colleague, Cristian Coarfa, for years of productive collaboration.

I would like to thank Fengmei Zhao, Nathan Tallent, and JasonEckhardt for their work

on the Open64 infrastructure. Jarek Nieplocha and Vinod Tipparaju provided invaluable

help with the ARMCI library. Kathy Yelick, Dan Bonachea, Parry Husbands, Christian

Bell, Wei Chen, and Costin Iancu provided assistance with the GASNet library. Craig

Rasmussen helped to reverse-engineer the dope vector format of several Fortran 95 vendor

compilers. Collaboration with Tarek El-Ghazawi, FrancoisCantonnet, Ashrujit Mohanti,

and Yiyi Yao resulted in a successful joint publication.

I would like to thank many people at Rice who helped me during my stay. Tim Harvey,

Bill Scherer, and Charles Koelbel helped in revising and improving the manuscript. Daniel

Chavarrı́a-Miranda and Tim Harvey provided invaluable assistance with the qualification

examination. I want to thank Robert Fowler, Yuan Zhao, Apan Qasem, Alex Grosul, Zoran

Budimlic, Nathan Froyd, Arun Chauhan, Anirban Mandal, Guohua Jin, Cheryl McCosh,

Rajarshi Bandyopadhyay, Anshuman Das Gupta, Todd Waterman, Mackale Joyner, Ajay

Gulati, Rui Zhang, and John Garvin.

This dissertation is dedicated to my family, my dear wife Sofia, my son Nikolai, my

sister, and my parents for their never-ending love, infinitepatience, and support. Sofia also

contributed to this work by drawing some of the illustrations.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations xii

List of Tables xix

1 Introduction 1

1.1 Thesis overview . 3

1.2 Contributions of joint work .. . 4

1.3 Research contributions .. 7

1.3.1 CAF communication topologies – co-spaces 7

1.3.2 Synchronization strength reduction 8

1.3.3 Multi-version variables .9

1.3.4 Distributed multithreading .. 10

1.4 Thesis outline . 10

2 Related Work 11

2.1 CAF compilers . 11

2.2 Data-parallel and task-parallel languages 12

2.2.1 High-Performance Fortran . 14

2.2.2 OpenMP . 15

2.2.3 UC . 16

2.2.4 Compiler-based parallelization 17

2.3 PGAS programming models . 18

2.3.1 Unified Parallel C . 19

vi

2.3.2 Titanium . 20

2.3.3 Barrier synchronization analysis and optimization 22

2.4 Message-passing and RPC-based programming models 23

2.4.1 Message Passing Interface . 23

2.4.2 Message passing in languages . 26

2.5 Concurrency in imperative languages 28

2.5.1 Single-Assignment C . 28

2.5.2 Data-flow and stream-based languages 29

2.5.3 Clocked final model . 30

2.6 Function shipping . 31

2.6.1 Remote procedure calls . 31

2.6.2 Active Messages . 31

2.6.3 Multilisp . 31

2.6.4 Cilk . 32

2.6.5 Java Remote Method Invocation 32

3 Background 33

3.1 Co-array Fortran . 33

3.1.1 Co-arrays . 34

3.1.2 Accessing co-arrays . 34

3.1.3 Allocatable and pointer co-array components 35

3.1.4 Procedure calls . 35

3.1.5 Synchronization . 35

3.1.6 CAF memory consistency model 36

3.2 Communication support for PGAS languages 38

3.2.1 ARMCI . 39

3.2.2 GASNet . 40

3.3 Experimental platforms .. 41

vii

3.3.1 Itanium2+Myrinet2000 cluster (RTC) 41

3.3.2 Itanium2+Quadrics cluster (MPP2) 41

3.3.3 Alpha+Quadrics cluster (Lemieux) 41

3.3.4 Altix 3000 (Altix1) . 41

3.3.5 SGI Origin 2000 (MAPY) . 42

3.4 Parallel benchmarks and applications 42

3.4.1 NAS Parallel Benchmarks . 43

3.4.2 Sweep3D . 44

3.4.3 RandomAccess . 46

3.4.4 Data-flow analysis . 47

4 Co-array Fortran for Distributed Memory Platforms 49

4.1 Rice Co-array Fortran compiler —cafc 49

4.1.1 Memory management . 50

4.1.2 Co-array descriptors and local co-array accesses 50

4.1.3 Co-array parameters . 52

4.1.4 COMMON and SAVE co-arrays 53

4.1.5 Procedure splitting . 54

4.1.6 Multiple co-dimensions . 57

4.1.7 Intrinsic functions . 59

4.1.8 Communication code generation60

4.1.9 Allocatable and pointer co-array components 64

4.2 Experimental evaluation .. 67

4.2.1 Co-array representation and local accesses 68

4.2.2 Communication efficiency . 68

4.2.3 Cluster architectures . 74

4.2.4 Point-to-point vs. barrier-based synchronization 78

4.2.5 Improving synchronization via buffering 78

viii

4.2.6 Performance evaluation of CAF and UPC79

5 Co-spaces: Communication Topologies for CAF 90

5.1 Communication topologies in CAF .. . 92

5.2 Co-space types . 94

5.2.1 Group . 96

5.2.2 Cartesian . 98

5.2.3 Graph . 100

5.3 Co-space usage examples .103

5.4 Properties of co-space neighbor functions 106

5.5 Implementation . 107

6 Analyzing CAF Programs 109

6.1 Difficulty of analyzing CAF programs 109

6.2 Language enhancements . 110

6.2.1 Textual group barriers . 110

6.2.2 Group single values . 111

6.3 Inference of group single values and group executable statements 112

6.3.1 Algorithm applicability .112

6.3.2 Forward propagation inference algorithm 112

6.4 Analysis of communication structure 118

6.4.1 Analyzable group-executable PUT/GET 119

6.4.2 Analyzable non-group-executable PUT/GET 125

6.4.3 Other analyzable communication patterns 126

7 Synchronization Strength Reduction 128

7.1 Motivation . 128

7.2 Intuition behind SSR . 130

7.2.1 Correctness of SSR for analyzable group-executable PUTs/GETs . 131

ix

7.2.2 Correctness of SSR for analyzable non-group-executable

PUTs/GETs . 137

7.2.3 Hiding exposed synchronization latency 139

7.3 Overview of procedure-scope SSR .. . 140

7.3.1 Notation and terminology . 142

7.3.2 Synchronization and event placeholders 145

7.3.3 Pseudocode data structures .146

7.3.4 Hints to increase SSR scope beyond the procedure level. 149

7.4 Preliminary analysis .. 151

7.5 Reducibility analysis .. 153

7.5.1 Initialize flow equations . 154

7.5.2 Detect reducible barriers and synchronizable communication events 159

7.6 Optimization of notify/wait synchronization 165

7.6.1 Hiding synchronization latency 165

7.6.2 Eliminating redundant point-to-point synchronization 170

7.7 Code generation . 177

7.7.1 Synchronization primitives for SSR 177

7.7.2 Code transformation . 179

7.7.3 Generation of non-blocking PUTs181

7.8 Experimental evaluation .. 181

7.8.1 Jacobi iteration . 182

7.8.2 NAS MG . 183

7.8.3 NAS CG . 190

7.9 Discussion . 193

8 Multi-version Variables 197

8.1 Motivation . 198

8.2 Sweep3D case study . 204

x

8.2.1 Programmability . 205

8.2.2 Performance . 207

8.3 Language support for multi-version variables 216

8.3.1 Declaration . 217

8.3.2 Operations with MVVs . 219

8.4 Examples of multi-version variable usage 223

8.4.1 Sweep3D . 223

8.4.2 NAS SP and BT forward [xyz]-sweeps 224

8.4.3 NAS SP and BT backward [xyz]-substitutions 226

8.5 Relation of MVVs, GETs/PUTs, and synchronization 228

8.6 Implementation . 229

8.6.1 An implementation based on Active Messages 229

8.6.2 Prototype implementation incafc 232

8.7 Experimental evaluation .. 232

8.7.1 Sweep3D . 233

8.7.2 NAS BT and SP . 234

8.8 Discussion . 238

9 Toward Distributed Multithreading in Co-array Fortran 24 2

9.1 Motivation . 242

9.1.1 Accesses to remote data structures 245

9.1.2 One-sided master-slave programming style 246

9.1.3 Remote asynchronous updates . 247

9.1.4 Other applications . 249

9.2 DMT design principles . 249

9.2.1 Concurrent activities within a node 249

9.2.2 Remotely initiated activities 252

9.2.3 Host environment of activities and parameter passing. 254

xi

9.2.4 Synchronization . 254

9.2.5 Extensions to the memory consistency model 255

9.3 Language support for DMT in CAF . 257

9.3.1 Language constructs . 257

9.3.2 DMT semantics . 260

9.4 DMT implementation and experience 268

9.4.1 Implementation overview . 269

9.4.2 Spawn types . 271

9.4.3 ship andsync support . 273

9.4.4 Support of dynamically linked libraries 274

9.4.5 Polling . 274

9.4.6 Number of concurrent threads . 275

9.4.7 Activity interference . 276

9.5 Compiler and run-time optimizations for function shipping 277

9.5.1 Compiler recognition and aggregation of remote operations 277

9.5.2 Remote fine-grain operations/accesses aggregation 278

9.5.3 Optimization of spawn . 278

9.6 Experimental evaluation .. 279

9.6.1 Maximum of a remote co-array section279

9.6.2 Traveling Salesman Problem . 282

9.6.3 RandomAccess . 286

9.7 Discussion . 294

10 Conclusions and Future Directions 296

10.1 Contributions . 296

10.1.1 Design, implementation, and performance evaluation of cafc . . . 297

10.1.2 Enhanced language, compiler, and runtime technology for CAF . . 299

10.2 Future Directions .303

xii

Bibliography 307

Illustrations

3.1 Sweep3D kernel pseudocode. .. 45

3.2 Wavefront communication in Sweep3D. 45

3.3 RandomAccess Benchmark. 46

4.1 Using Fortran 90 interfaces to specify by-co-array and by-reference

argument passing styles. 53

4.2 Procedure splitting transformation. 56

4.3 Fortran 90 pointer access to remote data. 60

4.4 General communication code generation. 69

4.5 Fortran 90 pointer access to remote data. 70

4.6 Cray pointer access to remote data. 70

4.7 Comparison of parallel efficiencies of the MPI, CAF with general

communication, CAF with shared-memory communication, andOpenMP

versions of the NAS SP benchmark on an SGI Altix 3000. 74

4.8 Comparison of parallel efficiencies of the MPI, CAF with general

communication, CAF with shared-memory communication, andOpenMP

versions of the NAS MG benchmark on an SGI Altix 3000. 75

4.9 Comparison of MPI and CAF parallel efficiency for NAS MG on

Alpha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricsclusters. . . . 76

4.10 Comparison of MPI and CAF parallel efficiency for NAS BT on

Alpha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricsclusters. . . . 77

4.11 Comparison of MPI, CAF, and UPC parallel efficiency for NAS MG. 81

xiv

4.12 Comparison of MPI, CAF, and UPC parallel efficiency for NAS SP. 88

5.1 An example of a generalized block distribution. 105

5.2 Shadow region exchange for a 2D generalized block data distribution. . . . 105

6.1 SV & GE inference initialization step. 113

6.2 SV & GE inference propagation step. 114

6.3 Evaluation of aΦ-node. 114

6.4 Evaluation of a statement and propagation of theNGE property. 115

6.5 Evaluation of an assignment statement. 115

6.6 Evaluation of anIF-THEN-ELSE statement. 116

6.7 Evaluation of aDO statement. 117

6.8 Evaluation of an expression. .. . 117

6.9 Jacobi iteration shadow region exchange for periodic boundaries. 120

6.10 Jacobi shadow region exchange for one processor. 120

6.11 Periodic boundary communication to the right for four processes. 120

6.12 Targets and origins of communication to the right for Jacobi iteration with

periodic boundaries. 121

6.13 The target (image 3) and the origin (image 1) of communication to the

right for process image 2. 121

6.14 Jacobi iteration shadow region exchange for non-periodic boundaries. . . . 123

6.15 Non-periodic boundary communication to the right for four processes. . . . 123

6.16 The origin image index for the communication to the right with

non-periodic boundaries. 124

6.17 Targets and origins of communication to the right for Jacobi iteration with

non-periodic boundaries. 124

6.18 Non-single-valued guard in NAS MG extrapolation subroutine. 125

xv

6.19 Shadow region exchange for a 2D generalized block data distribution

expressed using point-to-point synchronization. 127

7.1 Synchronization with textual barriers. 129

7.2 Synchronization with notify/wait. 129

7.3 Synchronization with textual barriers. 130

7.4 A PUT to the right for a 4×2 Cartesian co-space with periodic boundaries. . 132

7.5 A PUT to the right neighbor on a 4×2 Cartesian co-space with periodic

boundaries. 132

7.6 Synchronization with direct communication partners (relative toy view). . . 133

7.7 Communication to the right neighbor followed by communication to the

upper neighbor for a 4×2 Cartesian co-space with periodic boundaries. . . . 135

7.8 Communication for images1 and6 accessing the same co-arraya[2]. . . 136

7.9 Time diagram for communication for images1 and6 accessing the same

co-array memorya[2]. 136

7.10 Non-single-valued guard in NAS MG extrapolation subroutine

synchronized with permission & completion pairs instead ofbarriers. 138

7.11 Communication to the right for a 4×2 Cartesian co-space with periodic

boundaries. 140

7.12 PreconditionedDO loop. 144

7.13 EntryFence, EntryEvent, ExitEvent, andExitFence. 145

7.14 PreconditionedDO loop withPreloop, Postloop, Prebody, andPostbody

placeholders. 146

7.15 CFG node structure. .147

7.16 Fence structure for a barrier or a synchronization fence. 147

7.17 DO loop region structure. 147

7.18 Place structure for a notify or a wait. 147

7.19 Event structure for a PUT/GET or an event placeholder. 148

xvi

7.20 Detecting synchronizable PUT/GET events. 155

7.21 Determining synchronizable PUT/GET and placement forwp andnc. 156

7.22 Initializing reducibility state. 158

7.23 BuildingfencesBeforeEvent, fencesAfterEvent,

eventsBeforeFence, andeventsAfterFence sets. 159

7.24 Recursive procedures to build reachability sets. 160

7.25 Iterative propagation step. 161

7.26 Post-propagation step. 162

7.27 Movement of the completion waitwc and permission notifynp. 166

7.28 Downward movement of a completion waitwc. 167

7.29 Upward movement of a permission notifynp. 168

7.30 Redundant point-to-point synchronization in SSR-transformed code. 170

7.31 Marking redundant synchronization. 171

7.32 Shadow region exchange for Jacobi iteration. 172

7.33 A fragment of SSR-generated code for Jacobi shadow region exchange. . . 173

7.34 SSR-reduced Jacobi iteration shadow region exchange.. 174

7.35 SSR-reduced Jacobi iteration shadow region exchange:explanation for

the synchronization elision. .. 175

7.36 Eliding redundant permission pairs for a Cartesian co-space. 176

7.37 Code generation. 180

7.38 NAS MGcomm3 boundary exchange subroutine for the

MG-CAF-BARRIER version. 184

7.39 NAS MGcomm3 ex inter-image extrapolation subroutine for the

MG-CAF-BARRIER version. 185

7.40 One XY-plane of inter-processor extrapolation communication from

coarser grid (level one) to finer grid (level two) in NAS MG on 16

processors. 186

7.41 NAS MG class A on an Itanium2 cluster with a Myrinet 2000 interconnect. 187

xvii

7.42 NAS MG class B on an Itanium2 cluster with a Myrinet 2000 interconnect. 188

7.43 NAS MG class C on an Itanium2 cluster with a Myrinet 2000 interconnect. 189

7.44 Exchange with the transpose image in CG-CAF-BARRIER version. 190

7.45 Group scalar sum reduction for CG-CAF-BARRIER version. 190

7.46 NAS CG class A on an Itanium2 cluster with a Myrinet 2000 interconnect. . 191

7.47 NAS CG class B on an Itanium2 cluster with a Myrinet 2000 interconnect. . 192

7.48 NAS CG class C on an Itanium2 cluster with a Myrinet 2000 interconnect. . 193

8.1 Producer-consumer in MPI using the two-sided send and receive primitives. 198

8.2 Producer-consumer in CAF using one buffer. 200

8.3 Producer-consumer in CAF using multiple buffers. 201

8.4 Sweep3D kernel pseudocode. .. 204

8.5 Sweep3D-1B kernel pseudocode. .. . 205

8.6 Sweep3D-3B kernel pseudocode. .. . 206

8.7 Sweep3D of size 50x50x50 on an Alpha cluster with a Quadrics Elan3

interconnect. 208

8.8 Sweep3D of size 150x150x150 on an Alpha cluster with a Quadrics Elan3

interconnect. 209

8.9 Sweep3D of size 300x300x300 on an Alpha cluster with a Quadrics Elan3

interconnect. 209

8.10 Sweep3D of size 50x50x50 on an Itanium2 cluster with a Quadrics Elan4

interconnect. 210

8.11 Sweep3D of size 150x150x150 on an Itanium2 cluster witha Quadrics

Elan4 interconnect. 211

8.12 Sweep3D of size 300x300x300 on an Itanium2 cluster witha Quadrics

Elan4 interconnect. 211

8.13 Sweep3D of size 50x50x50 on an Itanium2 cluster with a Myrinet 2000

interconnect. 212

xviii

8.14 Sweep3D of size 150x150x150 on an Itanium2 cluster witha Myrinet

2000 interconnect. 213

8.15 Sweep3D of size 300x300x300 on an Itanium2 cluster witha Myrinet

2000 interconnect. 213

8.16 Sweep3D of size 50x50x50 on an SGI Altix 3000. 214

8.17 Sweep3D of size 150x150x150 on an SGI Altix 3000. 215

8.18 Sweep3D of size 300x300x300 on an SGI Altix 3000. 215

8.19 MVV declarations. 218

8.20 Sweep3D kernel pseudocode with multi-version buffers. 224

8.21 NAS SP pseudocode for forward sweep along x dimension expressed via

MVVs. 224

8.22 NAS SP pseudocode for forward sweep along x dimension inCAF that

uses a buffer per stage. 225

8.23 NAS BT pseudocode for backward substitution in x dimension. 226

8.24 Data transfer in x-dimension backward substitution ofthe NAS BT

benchmark. 227

8.25 NAS BT class A on an Itanium2 cluster with a Myrinet 2000 interconnect. . 235

8.26 NAS BT class B on an Itanium2 cluster with a Myrinet 2000 interconnect. . 235

8.27 NAS BT class C on an Itanium2 cluster with a Myrinet 2000 interconnect. . 236

8.28 NAS SP class A on an Itanium2 cluster with a Myrinet 2000 interconnect. . 237

8.29 NAS SP class B on an Itanium2 cluster with a Myrinet 2000 interconnect. . 237

8.30 NAS SP class C on an Itanium2 cluster with a Myrinet 2000 interconnect. . 238

9.1 Execution model of classical SPMD CAF. 243

9.2 Execution model of CAF with distributed multithreading. 244

9.3 Activity chain (note that[] denote remote co-array references). 256

9.4 Examples of CS and CF declarations. 257

9.5 Using areply to returnINOUT andOUT parameters to the spawner. . . . 258

xix

9.6 Locally initiated activities (no[] after CF/CS; the spawnee image is the

same as the spawner image). 260

9.7 Remotely initiated activities (the spawnee image is specified in[]). 261

9.8 Conversion of a co-function into the equivalent co-subroutine. 262

9.9 Blocking and equivalent non-blocking CS spawn. 263

9.10 Normalized (to local) time to find a maximum value of a co-array section. . 280

9.11 Normalized (to CF) time to find a maximum value of a co-array section. . . 281

9.12 Co-subroutine to obtain a new subproblem path prefix. 283

9.13 Co-subroutine to update the best length. 284

9.14 Code to update the best length. 284

9.15 Traveling salesman problem for 18 cities (seed=1). 285

9.16 Traveling salesman problem for 18 cities (seed=2). 286

9.17 RandomAccess with 512MB per node table and 4KB bucket size. 288

9.18 Co-subroutine to apply XOR updates. 290

Tables

4.1 RandomAccess performance on the Origin 2000 in MUPs per processor. . . 71

4.2 RandomAccess performance on the Altix 3000 in MUPs per processor. . . . 72

7.1 Performance improvement of Jacobi-CAF-SSR over

Jacobi-CAF-BARRIER for 32- and 64-processor executions. 183

1

Chapter 1

Introduction

Modern scientific progress heavily relies on computer simulations that are becoming more

complex, memory demanding, and computation hungry. However, the computation power

of individual processor cores is limited by clock frequency. To satisfy the demand, com-

puter manufacturers have shifted their focus towards more parallel hardware. Not only

high-end super computers but also personal desktops and laptops are becoming multipro-

cessor and multi-core. Unfortunately, software development practices and tools for parallel

and concurrent computing are lagging behind. For parallel programming to flourish, it will

require a programming model that isubiquitous, expressive, andeasy to usewhile also

providing transparentperformance portability.

Today, thede factostandard for programming scalable parallel systems is the Message

Passing Interface (MPI) [62]. MPI is a low-level library-based parallel programming model

based on two-sided communication that is implemented on almost every parallel platform.

In parallel programs based on MPI, application developers have full control over perfor-

mance critical decisions such as data decomposition, computation partitioning, and com-

munication placement. While MPI is a powerful instrument inthe hands of an experienced

programmer, most developers have found that it is difficult and error-prone to write parallel

programs using the MPI model. Due to the library-based nature of MPI communication,

MPI programs are not well-suited to compiler-based improvement, which leaves applica-

tion developers solely responsible for choreographing communication and computation to

achieve high performance.

There has been significant interest in trying to improve the productivity of parallel pro-

grammers by either using automatic parallelization techniques, such as those found in the

2

Polaris compiler [14], or language-based parallel programming models that abstract away

most of the complex details of library-based high performance communication. The two

parallel programming models that have received attention from the scientific community

are OpenMP [42] and High Performance Fortran (HPF) [77]. However, both of these mod-

els have significant shortcomings that reduce their utilityfor writing portable, scalable, high

performance parallel programs. OpenMP programmers have little control over data layout;

as a result, OpenMP programs are difficult to map efficiently to distributed memory plat-

forms. In contrast, HPF enables programmers to explicitly control the mapping of data to

processors; however, to date, commercial HPF compilers have failed to deliver high perfor-

mance for a broad range of programs. Experience with early HPF compilers has shown that

in the absence of very capable parallelizing compilers, it is crucial to provide programmers

with sufficient control to enable them to employ sophisticated parallelizations by hand.

The family of partitioned global address space (PGAS) languages, including Co-array

Fortran (CAF) [86], Unified Parallel C (UPC) [121], and Titanium [66], has attracted inter-

est as a promising alternative to MPI because it offers the illusion of shared memory. CAF,

UPC, and Titanium employ the single-program-multiple-data (SPMD) model for paral-

lel programming and are simple extensions to widely-used languages, Fortran 95, C, and

Java, respectively. The global address space abstraction of these languages naturally sup-

ports a one-sided communication style, considered easier and more convenient to use than

MPI’s two-sided message passing. With communication and synchronization as part of

the language, programs written in these languages are more amenable to compiler-directed

communication optimization than MPI’s library-based communication; however, in PGAS

languages, programmers retain full control over critical decisions necessary to achieve high

performance.

The goal of this thesis is to evaluate the PGAS programming model to identify lim-

itations and find ways to address them by programming model improvement, compiler

optimization, and sophisticated run-time engineering to equip application developers with

an easier to use, more expressive and ubiquitously available programming model that de-

3

livers performance comparable to that of hand-tuned codes for a variety of applications on

a broad range of modern parallel architectures.

1.1 Thesis overview

This research mainly explores Co-array Fortran, a member ofthe PGAS family of lan-

guages. CAF is based on a small set of extensions to Fortran 95. CAF is of special interest

for the scientific community because many legacy codes are written in Fortran and many

parallel high performance codes are developed using Fortran and MPI. To inspire the com-

munity to incrementally port these codes into CAF and to develop new CAF applications,

Co-array Fortran must be easy to use and deliver high performance on a range of parallel

platforms.

CAF was designed by Cray for tightly-coupled architectureswith globally addressable

memory featuring low communication latency and high communication bandwidth. The

performance results for a CAF version of the NAS MG benchmark[12] were promising

on the Cray T3E [22]. However, it was not clear whether efficient CAF implementations

could be engineered for a range of architectures including shared-memory, cluster, and

hybrid platforms to deliver high performance for a broad spectrum of applications.

The research described in this dissertation was performed in two parts. The first part

was joint work with Cristian Coarfa on the design and implementation ofcafc, a research

CAF compiler for distributed- and shared-memory systems, and several evaluation stud-

ies [30, 47, 48, 31, 32, 33] to investigate the quality of the CAF programming model and

its ability to deliver high performance. Using numerous parallel applications and bench-

marks, we showed that the performance ofcafc-compiled codes matches that of their

hand-tuned MPI counterparts on a range of parallel architectures. However, developing

high performance programs using classical CAF [87, 86] today is as difficult and error-

prone as writing the equivalent MPI codes. The second part was independent research

focused on exploring enhancements the CAF programming model to simplify the develop-

ment of high performance codes in CAF.

4

My thesis is thatextending CAF with language-level communication topologies, multi-

version variables, and distributed multithreading will increase programmers’ productivity

by simplifying the development of high performance codes. In particular,

• Extending CAF with communication topologies will equip programmers with com-

monly used abstractions for organizing program processes,facilitate compiler com-

munication analysis, and support more efficient collectivecommunication.

• Using communication topologies (in the form of co-spaces) and single-valued ex-

pressions enables a CAF compiler to perform conversion of textual barriers into faster

point-to-point synchronization; this relieves the programmer of the burden of orches-

trating complex synchronization while delivering the level of performance compara-

ble to that of hand-optimized codes.

• Enhancing CAF with multi-version variables simplifies the development of wave-

front and other producer-consumer applications by insulating the programmer from

the details of buffer management and synchronization.

• Adding distributed multithreading to CAF enables computation to be co-located with

data to avoid exposing communication latency, simplifies access to remote complex

data structures, and enables several asynchronous activities in the remote and local

memory.

1.2 Contributions of joint work

This section briefly summarizes the contributions of joint work with Cristian Coarfa.

First, we provide a brief overview of CAF language constructs. An executing CAF

program consists of a fixed number of asynchronous process images. The images use co-

arrays to access distributed data. For example,integer::a(n,m)[*]declares a shared

co-arraya with n× m integers local to each process image. The dimensions insidebrackets

are called co-dimensions. Co-arrays may be declared for user-defined or primitive types. A

5

local section of a co-array may be a singleton instance of a type rather than an array of type

instances. Remote sections of a co-array can be accessed by using the bracket notation.

For example, processp can access the first column of co-arraya from processp+1 by

referencinga(:,1)[p+1]. A remote co-array access induces one-sided communication

in the sense that only one image knows about the access; the target image is not aware of

the communication. A remote co-array assignment translates into a one-sided remote write

(PUT). A remote co-array reference translates into a one-sided remote read (GET).

We designed and implemented a Co-array Fortran compiler,cafc, that supports most

of the original CAF language specification [87]. It is the first multiplatform open-source

CAF compiler. It is a source-to-source translator, based onthe OPEN64/SL [101] in-

frastructure, that transforms a CAF program into a Fortran 95 program augmented with

communication and synchronization code tailored to the target architecture.

We ported several parallel benchmarks and applications into CAF and usedcafc to

compile them. We performed extensive evaluation [30, 47, 48, 31, 32] of these codes to

identify the underlying causes of inefficiencies and performance bottlenecks on a range of

modern parallel architectures. An important result is demonstration that a broad variety of

CAF codescanmatch, and sometimes exceed, the performance of equivalenthand-tuned

MPI variants on a range of shared-memory and cluster platforms.

We performed a thorough comparison of the CAF and UPC programming models for

several benchmarks that perform computations on multi-dimensional arrays [33]. It re-

vealed that it is harder to match the performance of MPI codeswith UPC. The main reason

is that UPC uses C as the target sequential language, which lacks language support for

multi-dimensional arrays.

We identified performance bottlenecks that kept CAF programs from matching the

MPI’s performance, fixed some of them, and suggested coding recipes to alleviate the oth-

ers untilcafc’s infrastructure matures.

Thecafc compiler uses source-to-source translation to leverage each target platform’s

best Fortran 95 compiler to optimize sequential Fortran 95 program. The translation pro-

6

cess must not inhibit the ability of the target Fortran 95 compiler to generate high per-

formance code. We investigated different co-array representations for local and remote

co-array accesses across a range of architectures and back-end compilers. The result of our

study [48] is that it is acceptable to represent co-arrays asFortran 95 pointers. However,

the translation process might not convey the shapes and lackof aliasing for static co-arrays

to the target platform’s Fortran 95 compiler, resulting in suboptimal scalar performance.

We devised a technique, called procedure splitting [47], that represents static co-arrays as

procedure parameters conveying static co-array shapes andlack of aliasing to the target

platform’s Fortran 95 compiler. This enabledcafc-translated sequential program to have

scalar performance similar to that of an equivalent Fortran95 program.

Lack of efficient communication in parallel programs hinders performance and scalabil-

ity. On cluster architectures, communication vectorization and communication aggregation

are essential to increase the granularity of communication. An advantage of CAF over

other languages is that communication vectorization can beconveniently expressed in the

source code using Fortran 95 triplet notations,e.g., a(1,:)[p]. However, array sections

not contiguous in memory lead to strided communication thatis not supported efficiently

by the existing communication libraries. Programmers should use contiguous temporary

buffers and packing/unpacking of communicated data to yield top performance [47]. We

also investigated the possibility of enabling non-blocking communication using hints [47].

In CAF, several process images can access the same shared data. Programmers must use

explicit synchronization to ensure the correct order of such accesses. CAF provides global

barrier and team synchronization. We observed that using barrier-based synchronization is

simpler, but results in suboptimal performance and poor scalability. As expected, point-

to-point synchronization between a pair of images is fasterand yields higher performance

and scalability [47]; however, this performance comes at the cost of greater programming

complexity. Using several co-arrays for communication together with point-to-point syn-

chronization might reduce the number of synchronization messages and/or remove them

from the critical path [31, 32].

7

Chapter 4 provides additional details and results of our joint studies.

1.3 Research contributions

The second part of this dissertation explores extensions tothe CAF programming model

that simplify the development of high performance parallelapplications by either providing

missing language features or enabling better compiler analysis. We explore extending CAF

with language-level communication topologies called co-spaces, multi-version variables,

and distributed multithreading. The combination of co-spaces, textual co-space barriers,

and co-space single-valued expressions enables synchronization strength reduction, which

helps a CAF compiler to replace textual barriers with fasterpoint-to-point synchronization.

1.3.1 CAF communication topologies – co-spaces

CAF differs from the other PGAS languages in that programmers explicitly specify the

target image of a remote co-array access. For instance,a[p] references the portion of

co-array data located in imagep’s memory. A co-array can have several co-dimensions

and its declaration defines a co-shape,e.g., integer a[2,*] arranges process images

into a2×3 Cartesian grid without periodic boundaries when the numberof process images

is 6. However, co-shape has several disadvantages described indetail in Section 5.1. The

topology can be incompletely filled if the number of images isnot divisible by the product

of co-shape dimensions. Co-shape provides only one type of communication topology for

all process images forcing programmers to re-implement topologies of other types that are

more suitable for the application needs. In turn, this not only imposes a burden on the

programmers but also complicates compiler analysis.

We explore replacing the notion of co-shape in CAF with support for group, Cartesian,

andgraphcommunication topologies, based on the ideas of MPI communicators and pro-

cess topologies [62, 112]. In CAF, an instance of a communication topology is called a

co-space. Co-spaces provide reusable abstractions for organizing application’s images into

groups with Cartesian or graph communication topologies and specifying the target of a

8

remote co-array access. Each co-space has a set of interfacefunctions that enable program-

mers to specify communication targets in a systematic way. In addition, a CAF compiler

can use these functions to symbolically analyze a number of common communication pat-

terns, which enables several powerful communication and synchronization optimizations.

1.3.2 Synchronization strength reduction

We present an algorithm for one such optimization, called synchronization strength reduc-

tion (SSR). Where legal, SSR tries to replace barriers with faster point-to-point synchro-

nization. To do so successfully, it requirestextual co-space barriersandco-space single

valuesdescribed in detail in Chapter 6, which are based on similar concepts from Tita-

nium [66, 75]. A textual barrier guarantees that images execute the same barrier statement.

A single-valued expression evaluates to the same value on a group of images. Single-valued

expressions, used in control statements such asIF-THEN-ELSE, enable the compiler to

reason about the control flow of a group of images. We explore extending CAF with textual

co-space barriers and co-space single-value hints to enable SSR. We focus on optimizing

common communication patterns. For instance, when every image accesses a co-array on

its left neighbor in a Cartesian topology. If such a statement is executed by images of a

co-space and the target image is specified via co-space interface functions with co-space

single-valued arguments, a CAF compiler would be able to analyze the communication pat-

tern. Such analysis enables every co-space image to determine the origin(s) of one-sided

communication locally, without the need to contact other images. Using this knowledge,

in certain cases a CAF compiler might be able to replace textual barriers and one-sided

communication with two-sided communication.

SSR works within procedure scopes that use only structured control flow in the form

of IF-THEN-ELSE statements andDO loops. Without inter-procedural communication

analysis or automatic procedure inlining, its applicability is limited. We explore a set of

SSR compiler directives to overcome this limitation until inter-procedural analysis is avail-

able. We implemented prototype support for synchronization analysis and SSR incafc.

9

Several SSR-optimized CAF codes annotated with the SSR directives show performance

comparable to that of hand-coded versions that use point-to-point synchronization and are

noticeably faster than their barrier-based counterparts.The details of CAF program analy-

sis and SSR can be found in Chapters 6 and 7.

1.3.3 Multi-version variables

PGAS languages are concurrent in that several threads of execution can access the same

shared variable simultaneously either locally or using one-sided communication. The pro-

grammer is responsible for synchronization of these threads. A typical communication

pattern found in wave-front and producer-consumer applications is sending a stream of

values from one processor to another. The processor that generates and sends values is

called the producer; the processor that receives the valuesis called the consumer. CAF

implementation of such a producer-consumer pattern that yields high performance is not

trivial for a distributed memory machine [31, 32]. Images transmit data using co-arrays

as communication buffers. If a consumer uses only one communication buffer to accept

data, the producer has to wait for the consumer to finish usingthe buffer before sending

a new value. This results in an algorithm that is not asynchrony-tolerant. To obtain high

performance, the programmer has to manage several communication buffers and use point-

to-point synchronization [31, 32]. In fact, developing such codes using MPI’s two-sided

buffered communication is easier.

We explore extending CAF withmulti-versionvariables (MVVs) to simplify develop-

ment of wave-front and other producer-consumer codes. An MVV can store more than

one value. A sequence of values is managed with the semanticsof a stream: the producer

commits new values and the consumer retrieves them in the same order. MVVs increase

programmer productivity by insulating the programmer fromthe details of buffer manage-

ment and synchronization. Producer-consumer codes expressed via MVVs are cleaner and

simpler than their hand-optimized counterparts, and experiments show that they deliver

similar performance.

10

1.3.4 Distributed multithreading

CAF provides co-arrays to efficiently access remote array and scalar data. However com-

pared to the other PGAS languages, it fails to provide efficient language constructs and

semantics for accessing complex data structures such as lists and trees located inremote

memory. We explore extending CAF withdistributed multithreading(DMT) to avoid ex-

posing communication latency. DMT is based on the concept offunction shipping, which

facilitates co-locating computation with data as well as enables several asynchronous ac-

tivities in the remote and local memory. DMT usesco-subroutinesandco-functions, by

analogy with co-arrays, to spawn a new thread of computationlocally or remotely. We

explore the impact of DMT on the CAF execution model and semantics of co-subroutine

parameter passing. A prototype implementation and experiments showed that DMT sim-

plifies development of parallel search algorithms without adedicated master; and DMT-

based RandomAccess [1] code, which performs asynchronous random updates of a huge

distributed table, exceeds that of the standard MPI versionfor a medium-size cluster.

1.4 Thesis outline

Chapter 2 reviews several approaches to parallel programming and, where applicable, com-

pares and contrasts them with our solutions. Chapter 3 provides background information

necessary for understanding our approaches and methodologies in Chapters 4–9. Chap-

ter 4 describes interesting details of work with Cristian Coarfa oncafc engineering and

performance evaluation studies. Chapters 5, 6 and 7 presentco-spaces, program analysis

and SSR. Chapters 8 and 9 focus on multi-version variables and distributed multithreading.

Finally, Chapter 10 summarizes the results of our research and discusses promising future

research directions.

11

Chapter 2

Related Work

This chapter starts with an overview of existing Co-array Fortran compilers. Next, it sum-

marizes several programming models and parallel programming paradigms with the em-

phasis on features and optimization techniques related to those addressed in this disser-

tation. Where appropriate, our ideas are compared and contrasted with the existing ap-

proaches.

2.1 CAF compilers

As of this writing, there exist only two CAF compiler implementations: one is available

on Cray X1E [37], X1 [36], and T3E [109] architectures, the other is a multi-platform

CAF compiler developed at Rice University [30, 47]. The CrayCAF compiler is available

only for Cray architectures that provide globally accessible memory, where each processor

can access memory of other processors through a high-bandwidth, low-latency memory

subsystem. These architectures are perfect for CAF. In fact, the original CAF specification

was influenced by the assumption of “good” hardware. To the best of our knowledge,

there is no publication about the design, engineering, and optimizations of the Cray CAF

compiler. However, vector registers on X1 & X1E and E-registers on T3E enable access to

remote co-array data directly, without the need to allocatea temporary in local memory to

store off-processor data for the duration of a computation.This enables streaming remote

data directly into a local computation. This approach requires minor modifications to the

existing Fortran compiler, but it cannot be employed for architectures that lack globally

accessible memory. Several studies [22, 91] showed that theperformance of several CAF

codes (NAS MG and LBMHD) compiled with the Cray CAF compiler exceeded that of

12

the equivalent MPI versions on these architectures for two reasons. First, PUT/GET can

be translated into lightweight hardware operations, whichis cheaper than performing a

procedure call for MPI send/receive. Second, MPI may use extra memory copies to perform

two-sided communication, increasing cache pressure.

The other CAF compiler iscafc developed at Rice University.cafc is a multi-

platform, open-source compiler that, in contrast to the Cray CAF compiler, generates code

for a range of cluster and shared-memory architectures.cafc is a source-to-source trans-

lator. It transforms a CAF program into an equivalent Fortran 95 program augmented with

communication and synchronization code. To accommodate cluster architectures,cafc

uses intermediate temporaries to hold off-processor data for the duration of a computation

and utilizes the ARMCI [83] or GASNet [17] library to performPUT/GET. We showed

that the performance of a broad variety of CAF codes compiledwith cafc can match that

of their MPI counterparts. We do not have an implementation of cafc for Cray architec-

tures and did not perform a comparison study. We present a detailed description ofcafc

design choices and engineering effort in Chapter 4.

2.2 Data-parallel and task-parallel languages

In this section, we provide a detailed overview of several data-parallel and task-parallel

models such as High-Performance Fortran (HPF) [52, 77], OpenMP [42], UC [11], and

SUIF system [3] for automatic parallelization. We first discuss how the analysis and opti-

mization of Partitioned Global Address Space languages (PGAS), which include Co-array

Fortran (CAF), Unified Parallel C (UPC), and Titanium, are different from those of data-

parallel and task-parallel languages.

The intent of data-parallel and task-parallel programminglanguages is to simplify par-

allel programming by providing high-level abstractions for expressing parallelism. How-

ever, mapping these abstractions onto parallel architectures efficiently is a difficult task.

In these models, programmers do not have full control over all performance critical paral-

lelization decisions such as data decomposition, computation partitioning, data movement,

13

and synchronization. They must rely on compilers to deliverhigh performance.

In general, compiler implementations of task- and data-parallel languages have not been

able to deliver high performance for a variety of applications on a wide range of parallel

architectures, especially for distributed-memory platforms. As a consequence, these pro-

gramming models have not received general acceptance. However, reliance on the compiler

to deliver performance has spurred development of many compiler analysis techniques and

communication/synchronization optimizations.

Unfortunately, not all technology for analysis and optimization of data- and task-parallel

languages can readily be adopted for analysis and optimization of PGAS languages. CAF,

UPC, and Titanium areexplicitly-parallelsingle-program multiple-data (SPMD) languages.

They can benefit from traditional analysis and optimizationtechniques, such as scalar opti-

mizations and communication vectorization/aggregation,that rely on control flow and val-

ues of asingleprocess of an SPMD parallel program. However, new compiler technology

is necessary to relate control-flow and values of several SPMD processes.

In data- and task-parallel languages, the compiler deals with structuredparallelism ex-

pressed via sequential program statements, data-distribution directives, or special parallel

execution statements/directives (e.g., SPMD regions or parallel loops). The programming

model exposes the structure of parallelism to the compiler that often can analyze and “un-

derstands” this structure. The analysis of explicitly-parallel languages such as CAF is

different. A programmer creates an arbitrary parallel program and parallelism is defined by

the program’s semantics. In this respect, the parallelism is “unstructured” and the compiler

mustinfer its structure to analyze and optimize communication and synchronization. One

contribution of this work is a technique for imposing computation structure on CAF pro-

grams that both simplifies program development and enables analysis and optimization of

communication/synchronization.

We now describe several data-parallel and task-parallel programming models and ap-

proaches to their analysis and optimizations in more detail.

14

2.2.1 High-Performance Fortran

High Performance Fortran (HPF) [52, 77] is a data-parallel language. To use HPF, a pro-

grammer annotates a sequential Fortran program with data-distribution directives. For

distributed-memory systems, an HPF compiler transforms this program into a parallel

SPMD program, in which the data is distributed across the nodes of the system. HPF com-

pilers use mathematical representation, expressed as functions or sets, for data elements

owned by each processor. These sets are used to determine computation partitioning guided

by theowner-computes rule[8] — the owner of the left-hand side of each assignment must

compute the right-hand side expression. Analysis of subscripted references is used to de-

termine off-processor data necessary for computation. Theanalysis starts with a sequential

program and the compiler can leverage traditional analysisand optimization technology.

Since the compiler is solely responsible for transforming the sequential program into an

SPMD program, it “understands” the computation structure,e.g., global control flow, and

can generate efficient two-sided communication.

There are several implementations of HPF compilers that areable to deliver good per-

formance primarily for regular, dense scientific codes on several architectures. Chavarrı́a’s

thesis [24] and his joint work with Mellor-Crummey [26, 25] showed that, using the dHPF

compiler, it is possible to match the performance of MPI for regular, dense scientific codes

on several architectures. A notable feature of dHPF is support for generalized multiparti-

tioning [27, 43]. Guptaet al. [64] discuss the design, implementation, and evaluation of

the pHPF compiler done at IBM Research; they show good speedups for several regular

benchmarks. PGHPF [115, 19] is a commercial HPF compiler from PGI. Both pHPF and

PGHPF have limited support for communication optimizationof loops with carried depen-

dence along distributed dimensions. Sakagamiet al.[105] showed that IMPACT-3D plasma

simulation code compiled with HPF/ES [120] achieved 45% of the peak performance when

running on 512 nodes on the Earth Simulator [51].

While HPF improves programmability and can deliver high performance for regu-

lar scientific applications, it has two disadvantages that prevented HPF from achieving

15

widespread acceptance. First, programmers have little control over the parallelization pro-

cess;i.e., if an HPF compiler makes a wrong parallelization decision,it is very hard for

the programmer to intervene and undo the “harm”, and any intervention requires immense

knowledge about the compiler internals. As a consequence, there is not enough evidence

that HPF can deliver performance for a broad class of applications. Second, a good HPF

compiler implementation requires heroic effort, which makes HPF less appealing as a prag-

matic programming model. In contrast, CAF sacrifices programmability, but allows pro-

grammers to retain much more control over performance critical decisions to obtain the

same level of performance as that of hand-optimized MPI codes. In addition, the effort to

implement a CAF compiler is modest;e.g., refer tocafc engineering details in Chapter 4.

2.2.2 OpenMP

OpenMP [42] is a task-parallel directive-based programming model that offers a fork-join

model for parallelism with a focus on loop parallelization.In comparison to the CAF, UPC,

and Titanium languages, OpenMP provides no means to the programmer for controlling the

distribution of data among processors. As a result, it is very hard to map efficiently onto

a distributed-memory architecture. There are two major approaches to optimize OpenMP

for a cluster architecture. The first approach is to use data-distribution directives. For ex-

ample, Chapmanet al. [23] proposes a set of data-distribution directives, basedon similar

features of HPF, to enable programmers to control data locality in OpenMP. However, this

complicates OpenMP as a programming model and requires similar compiler technology

as for HPF to deliver high performance, which is hard for a broad class of applications. As

of this writing, the OpenMP specification [16] does not have data-distribution directives.

The second approach is based on clever engineering of the runtime layer to exploit data

locality, perhaps, with the help of the compiler. Nikolopoulos et al. [85] describes and

evaluates a mechanism for data-distribution and redistribution in OpenMP without pro-

grammer intervention. The approach is effective for fixing poor initial page placement on

a coherent-cache non-uniform memory access architecture (ccNUMA). Hu et al. [68] de-

16

scribes and evaluates an implementation of OpenMP that usesthe TreadMarks software

distributed shared-memory (SDSM) system [76]. Their experiments show that speedups

of multithreaded TreadMarks programs are within 7–30% of the MPI versions for several

benchmarks on 16 processors (an IBM SP2 cluster of four four-processor SMPs). Clus-

ter OpenMP [70, 67] is a commercial implementation of OpenMPfor clusters based on

SDSM. Hoeflinger [67] compares speedups of several applications run on an Itanium2-

based cluster using Cluster OpenMP and on an Itanium2-basedhardware shared-memory

machine using OpenMP. The results show that it is possible toachieve a good percentage

of the performance of a hardware shared-memory machine on a cluster by using Cluster

OpenMP.

While some codes parallelized using OpenMP can achieve goodperformance on small-

scale SMPs and even clusters, in our study [48], we observed that for other codes OpenMP

does not scale well even for non-uniform memory access (NUMA) shared-memory archi-

tectures such as SGI Altix [111]. In general, it is hard to efficiently parallelize codes that

use multi-dimensional arrays [126]. Using OpenMP might be agood parallelization strat-

egy for applications that have high data locality (e.g., primarily stride one accesses) and

little fine-grain synchronization. The recent shift towards multi-core multiprocessor archi-

tectures might increase the significance of OpenMP as a programming model to achieve

performance on multi-core multiprocessor nodes. However,OpenMP (especially, without

data-distribution directives) is unlikely to deliver goodperformance on large-scale cluster

architectures. OpenMP can be used together with CAF to exploit parallelism available

within a multi-core multiprocessor node. In this combination, CAF provides data locality

and inter-node parallelism, while OpenMP allows to parallelize code accessing only local

data to exploit intra-node parallelism.

2.2.3 UC

UC [11] uses theindex-setdata-type andpar keyword to explicitly specify parallel ex-

ecution of statements, which is more suited to shared-memory machines.par specifies

17

a well-defined parallel region “understandable” by the compiler. The compiler performs

data mapping according to built-in heuristics and can permute data dynamically, if neces-

sary [95]. The programmer can also provide a hint how the compiler should map the data.

The compiler computes a synchronization graph for eachpar region based on the sequen-

tial data dependence graph. Renaming (extra storage) and alignment are used to reduce the

number of interprocessor dependencies. Other dependencies must be preserved by using

synchronization.

Prakashet al. [95] devised a set of techniques to reduce the number of barriers and/or

to replace barriers with cheaper clustered synchronization in data parallel languages. They

demonstrate them for UC [11], which has thepar construct to specify a parallel region.

They use a greedy algorithm to minimize the number of barriers necessary to preserve the

dependencies in thepar region. They eliminate barriers by breaking each analyzable data

dependency (subscripts can be inverted at compile time) with send/receive communication

and a temporary to store the result of the send. In addition, they use run-time techniques

such as fuzzy barriers [65] and non-blocking send/receive to further optimize the program.

Our SSR algorithm relies on the analysis of explicitly-parallel SPMD CAF programs to

detect communication patterns via the interpretation of subscripts used to reference off-

processor data.

2.2.4 Compiler-based parallelization

The SUIF [3] parallelizing compiler performs automatic parallelization of a sequential

source program. Parallelism is created by the compiler and structured as a collection of

fork-join SPMD regions synchronized with barriers. These barriers may lead to oversyn-

chronized code and cause unnecessary overhead. Tseng [119]presents an algorithm for

eliminating barriers or replacing them with counters by employing communication analy-

sis developed for distributed memory machines [118]. Communication analysis determines

how data flows between processors. If processors access onlyon-processor data in two ad-

jacent SPMD regions, they do not communicate and no synchronization is required. Thus,

18

if communication analysis detects that the producers and consumers of all data shared be-

tween two SPMD regions are identical (the same processor), the barrier between these

two regions can be eliminated. If inter-processor data movement is necessary, it may be

possible to replace a barrier with counter-based point-to-point synchronization. Since the

excessive use of counters is not efficient, the compiler usesthem, one counter per a pair of

processors, only for the cases of simple communication patterns such as nearest-neighbor,

one-to-many, and many-to-one. These patterns are identified based on the system of linear

inequalities corresponding to data movement between processors.

SUIF parallelizes a sequential (implicitly-parallel) program. CAF is explicitly-parallel

with explicit data movement and synchronization. The novelty of our communication anal-

ysis is to use a combination of co-spaces, textual co-space barriers, and co-space single-

valued expressions to infer communication patterns in a CAFprogram. If profitable, our

synchronization strength reduction algorithm replaces barriers with more efficient point-

to-point synchronization for the inferred patterns. We usenotify and wait, which are sim-

ilar to CAF’snotify/wait, unidirectional point-to-point synchronization primitives per

co-space processor group so that notify/wait of different co-spaces do not interfere. The

implementation of co-space notify and wait conceptually uses pairwise counters between

each pair of co-space processors. However, we suggest allocating a counter state on de-

mand at runtime;i.e., to create a real counter for a pair of processors iff point-to-point

synchronization between them happens. This is necessary toreduce the memory overhead

of having a counter for each pair of processors on a large-scale parallel machines such as

Blue Gene/L [56].

2.3 PGAS programming models

There are three Partitioned Global Address Space (PGAS) parallel programming languages:

Co-array Fortran, Unified Parallel C (UPC) and Titanium. They are based on Fortran, C,

and Java, respectively. Each PGAS language extends its baselanguage with a set of con-

structs to enable explicit SPMD parallel programming. There is no “best” PGAS language.

19

Each one offers some advantages and has some disadvantages.It is likely that the choice of

the language would be determined by its base sequential language. In this respect, CAF has

an advantage, because many high performance scientific codes that require parallelization

are implemented in Fortran. In the following, we compare CAFwith UPC and Titanium as

well as review compiler analysis technology for Titanium.

2.3.1 Unified Parallel C

UPC [121] is an explicitly-parallel extension of ISO C that supports a global address space

programming model for writing SPMD parallel programs. In the UPC model, SPMD

threads share a part of their address space. The shared spaceis logically “flat”. Physi-

cally, it is partitioned into fragments, each with a specialassociation (affinity) to a given

thread. UPC declarations give programmers control over thedistribution of data across

the threads; they enable a programmer to associate data withthe thread primarily manip-

ulating it. A thread and its associated data are typically mapped by the system into the

same physical node. Being able to associate shared data witha thread makes it possible to

exploit locality. In addition to shared data, UPC threads can have private data always co-

located with its thread. UPC supports dynamic shared memoryallocation. UPC provides

theupc forall work-sharing construct that distributes loop iterations according to the

loop affinity expression that indicates which iterations torun on each thread. UPC adds

several keywords to C that enable it to express a rich set of private and shared pointers.

UPC has a memory model with relaxed and strict variables. Accesses to relaxed variables

can be reordered for performance, while strict variables can be used for language-level

synchronization,e.g., point-to-point synchronization [33]. The language offers a range

of synchronization constructs. Among the most interestingsynchronization concepts in

UPC is the split-phase fuzzy barrier [65], which enables overlapping local computation

and inter-thread synchronization. Bonachea [18] proposesa set of UPC extensions that

enable strided data transfers and overlap of communicationand computation.

CAF is different from UPC in that it does not provide the abstraction of a “flat” shared

20

address space. CAF has a simple two-level memory model with local and remote memory.

In CAF, the programmer explicitly specifies the target of each communication or synchro-

nization. Thus, UPC is more convenient to use for irregular fine-grain codes. On the other

hand, CAF enables a compiler to distinguish between local and remote accesses at compile

time for free: co-array accesses with brackets are usually remote, co-array accesses without

brackets are always local. This enables CAF compilers to optimize local references well,

while in UPC, the programmer needs to cast shared pointers tolocal C pointers to increase

efficiency of local accesses [33]. Such casting eliminates the run-time overhead associated

with each shared-pointer dereferencing. We found that for dense scientific codes, it is es-

sential to use C99restrict local pointers to indicate lack of aliasing to C compilers to

achieve better scalar performance [33].

CAF is based on Fortran 95 and inheritsmulti-dimensionalarrays. The lack of multi-

dimensional arrays in C and UPC can be an obstacle for achieving high performance due

to less precise dependence analysis [33]; because without multi-dimensional arrays, the

compiler must analyze linearized polynomial array subscripts, which is a much harder task

than analysis of multi-dimensional vector subscripts for multi-dimensional arrays. CAF

provides array and co-array sections enabling programmersto conveniently express com-

munication vectorization in the source code. In UPC, programmers must use library-based

primitives [18] to express bulk and strided communication,a clear disadvantage compared

to CAF. In CAF, co-arrays are equivalent to UPC relaxed variables. UPC’s strict variables

can be used to implement custom synchronization primitivessuch as unidirectional point-

to-point synchronization [33]. It is possible to implementlanguage-level synchronization

in CAF as well; to ensure ordering of co-array accesses, programmers can use the memory

fence and CAF’s synchronization primitives.

2.3.2 Titanium

Titanium [66] is an explicitly-parallel SPMD language based on Java. It has a few advan-

tages over both CAF and UPC, mainly in what Java can offer C andFortran 95 developers.

21

It is an object-oriented, strongly-typed language. It has garbage collected memory as well

as zone-based managed memory for performance. It supports multi-dimensional arrays.

Remote memory is accessed using global pointers; thelocal type qualifier is used to in-

dicate that a pointer points to an object residing in the local demesne (memory), thus com-

piler optimizations are possible for local references. Thestrong type system guarantees

compile-time deadlock prevention for programs that use only textual barriers for synchro-

nization; however, the current version of Titanium allows only global textual barriers. Since

every process of a parallel program must participate in a global textual barrier, applications

such as CCSM [50] that operate in independent, interacting groups of processes cannot be

readily expressed in Titanium, using only global textual barriers for synchronization, with-

out major re-engineering. The focus of Titanium language design and implementation is

on providing sequential memory consistency without sacrificing performance [74]. It was

shown that Titanium can match the performance of Fortran+MPI for the NAS MG, CG,

and FT benchmarks on several architectures [45]. Titanium’s cross-language application

support can alleviate sequential code performance issues by calling optimized computation

kernels implemented in Fortran 95 or C.

Compiler analysis for Titanium

Aiken et al.[6] use barrier inference to verify that an SPMD program is structurally correct;

i.e., the program executes the same number of barriers. They pioneered the notion of

single-valuedexpressions that evaluate to the same value on every process. They used

the single type qualifier to mark single-valued variables and developed a set of type

inference rules to statically verify that an SPMD program isstructurally correct. They

proved their ideas on a simple procedural language,L, and adapted them for Split-C [40]

and Titanium. However, their analysis is limited only to global textual barriers.

Kamil and Yelick [75] usetextually aligned barriers(referred to as textual barriers

hereafter) as well as single-valued expressions to furtherimprove the analysis of Titanium

and to statically verify that a program that uses only textual barriers for synchronization is

22

deadlock-free. Textual barriers enforce all processes to execute the same barrier statement.

Thus, the control flow graph (CFG) [35] can be partitioned to improve the precision of

the concurrency analysis [74], which determines the set of all statements that may run

concurrently. This reduces the number of memory fences necessary to provide sequential

consistency in Titanium [74]. Their analysis is also limited to global textual barriers.

Global textual barriers pose a severe limitation when implementing loosely-coupled ap-

plications such as CCSM [50] that execute in independent, interacting groups of processes.

Our analysis in Chapter 6 uses textual co-space (or group) barriers and co-space single-

valued expressions as compiler hints rather than elements of a type system for two reasons.

First, type inference for group textual barriers and group single values is hard, if not im-

possible, in the case of several groups, and no inference algorithms exist to date. Second,

CAF cannot be made a strongly-typed language. Aikenet al. [6] use the CFG and sin-

gle static assignment form (SSA) [41] to derive constraintsfor single-valued expressions.

Solving the system of these constraints yields the maximal set of single values. This ap-

proach can be adopted for the inference of single values for aco-spaceC in a scope where

synchronization is done only via textual co-space barriersof the same co-spaceC. We

devised a simpler forward propagation inference algorithmpresented in Chapter 6. While

our solution is less general and limited to structured control flow, it is sufficient for the

synchronization strength reduction (SSR) optimization, presented in Chapter 7, that works

only for structured control flow.

2.3.3 Barrier synchronization analysis and optimization

Jeremiassen and Eggers [72] use the presence of barriers to perform non-concurrency anal-

ysis of explicitly-parallel programs. Their algorithm, based on barrier synchronization

graph and live variable analysis, partitions the program into a set of non-concurrent phases

that are delimited by barriers. A phase is a set of statementsthat may execute concurrently

between two global barriers. They apply their analysis to reduce false sharing. It is not

clear whether SSR can benefit from non-concurrency analysis. Communication analysis

23

for SSR uses textual co-space barriers to rely on the fact that all co-space processes execute

the same program statement.

Darte and Schreiber [44] present a linear-time algorithm for minimizing the number

of global barriers in an SPMD program. The authors acknowledge that minimizing the

number of barriers might not yield best performance becauseoptimized barrier placement

may introduce load imbalance. SSR replaces textual co-space barriers with point-to-point

synchronization and does not introduce load imbalance.

2.4 Message-passing and RPC-based programming models

PGAS languages use one-sided communication to access off-process data. Since several

threads of execution can access the same shared data, these languages are concurrent. Pro-

grammers must useexplicit synchronization to ensure the proper ordering of accesses to

shared data. In contrast, programming models based on two-sided communication do not

use explicit synchronization. In two-sided communication, both communication partners

participate in a communication event, which synchronizes themimplicitly. For some com-

munication patterns,e.g., producer-consumer, two-sided communication is more natural

and simpler to use. In addition, an implementation of a two-sided mechanism can use extra

storage to buffer communicated data for better asynchrony tolerance between the producer

and consumer. In the one-sided programming model, programmers have to manage all de-

tails of buffering and pipelined synchronization explicitly to get high performance [31, 32].

In this dissertation, we explore multi-version variables as a practical and efficient solu-

tion to simplify program development of high-performance codes with producer-consumer

communication in CAF. We first describe two-sided communication in MPI. Then we pro-

vide an overview of several programming languages that encapsulate two-sided communi-

cation via the abstraction of a stream/link/channel/pipe.

24

2.4.1 Message Passing Interface

MPI [62] is a library-based programming model that is thede factostandard for parallel

programming today. Writing parallel programs using MPI is hard, because programmers

are responsible for managing all details of parallelization: data decomposition, compu-

tation partitioning, communication, and synchronization. In return, MPI programs can

achieve high performance and good scalability for a varietyof codes. The ability to deliver

performance and availability on almost every platform havemade MPI the programming

model of choice for parallel computing today.

The strength of MPI is that it can be used with almost any programming language.

Program developers do not need to learn another programminglanguage to parallelize an

application. However, codes written using MPI are harder tooptimize because MPI is

a library, which limits opportunities for compiler optimization. Communication in MPI

programs is expressed in a detailed form, which makes it hardto analyze.

Ogawaet al. [89] developed the Optimizing MPI (OMPI) system to reduce software

overhead of MPI calls especially for applications with finer-grained communication. OMPI

removes much of the excess overhead of MPI function calls by employing partial evalua-

tion techniques, which exploit static information of MPI calls. It also utilizes pre-optimized

template functions for further optimization. OMPI work dates from a decade ago; commu-

nication latency is now much more significant than CPU overhead due to MPI function

calls. However, reducing the overhead of library function calls to perform communication

and synchronization is likely to improve the performance ofcodes with a lot of fine-grain

communication, especially pipelined wavefront applications, in any parallel programming

model. In this respect, CAF provides better performance portability. For example, a CAF

compiler could generate code to use load/store (e.g., via F90 pointers) to perform fine-

grain accesses on a shared-memory architecture, eliminating the overhead of function calls

altogether [48].

Compared to MPI, CAF offers programmers more convenient syntax for communica-

tion based on Fortran 95 array sections as well as type/shapechecking for co-array ac-

25

cesses. A CAF compiler has more opportunities for efficient tailoring of generated code

to the target architecture and run-time layer without the need to modify the source pro-

gram. For example, it can generate code to use CPU load/storeor vector instructions

for remote co-array accesses on shared-memory architectures. A CAF compiler can also

vectorize and/or aggregate remote co-array accesses on cluster architectures and generate

non-blocking communication. Our evaluation studies [30, 47, 48, 31, 32, 33] showed that

even without compiler support for optimizations, it is possible to achieve the same level of

performance in CAF as with MPI. However, achieving high performance without optimiza-

tions is as hard as for MPI. A part of this thesis explores extending CAF with abstractions

that simplify development of high-performance codes in CAF, e.g., the multi-version vari-

ables to compensate for the lack of two-sided communicationin CAF.

MPI uses send and receive library primitives to express two-sided message passing. An

implementation usually supports two communication modes:eager and rendezvous com-

munication protocols. The eager protocol is used for small messages. The send operation

does not require a matching receive to send data; instead, the data is copied into an auxil-

iary buffer on the sender and then communicated to the receiver, or is communicated into

an auxiliary buffer on the receiver and then copied to the destination, when the receiver

participates in communication. The rendezvous protocol isused for large messages; the

sender does not start data transmission and is blocked in send until a matching receive is

executed by the receiver. The eager protocol enables betterasynchrony tolerance, but uses

more memory for buffering and exhibits extra memory copies.Some interconnects such as

Myrinet require that data being communicated resides in registered memory. Because MPI

can transfer arbitrary user variables and some of them may reside in unregistered memory,

MPI might incur extra memory registration/copying/unregistration overhead. For in-core

scientific applications, a CAF compiler can avoid this overhead by allocating co-arrays in

registered memory without the programmer’s intervention.

CAF’s multi-version variables (MVVs) are a language construct, not a library primi-

tive. Thus, they are more amenable to compiler-based optimizations. Communication via

26

MVVs resembles the MPI eager protocol. The sender knows the address of the destination

memory for each data transfer, which has two advantages. Thememory can be allocated

from a special memory pool,e.g., registered memory and extra memory copies can be

avoided at the source (with proper compiler analysis or hints) and destination by adjusting

MVV’s Fortran 90 array descriptor (see Chapter 8). To summarize, CAF’s MVVs offer

clean and simple semantics of two-sided communication and can deliver comparable or

better performance than that of MPI’s send/receive.

2.4.2 Message passing in languages

Several languages encapsulate two-sided communication via the abstraction of a stream

(or link/channel/pipe). We believe that these abstractions are too general, better-suited

for distributed programming rather than SPMD high performance programming. MVVs

provide less generality, but, in our opinion, are more convenient to use in a broad class

of scientific applications. They can also be optimized to avoid extra memory copies by

communicating data in-place; this is hard to do for the more general stream abstraction.

In addition, some of message-passing languages provide limited capabilities for executing

code in remote process. Our distributed multithreading discussed in Chapter 9 is more

general and flexible.

Lynx. Scott presents Lynx [108] with the abstraction of thelink, a two directional

communication channel for type-checked message passing. Links are first-class objects in

Lynx and can be passed to other processes, supporting dynamic topology changes. Lynx

is well-suited for the programming of distributed systems and client-server applications.

Because links are a rather general abstraction, enabling even inter-program communication,

it is not clear whether it is possible to optimize them to deliver the best performance.

Lynx’s links provide a form of cooperative multithreading in each communicating pro-

gram. Lynx allows only one active thread per program, and each consumer executes code

with run-until-block semantics when it handles a message. As we discuss in Chapter 9,

only one hardware thread of execution per program is not enough to exploit the parallelism

27

available within modern cluster nodes with parallel execution context,e.g., multi-core mul-

tiprocessors; also, run-until-block semantics are not appropriate for multithreaded high per-

formance computing. In Lynx, consumers can use the “early reply” to unblock producers;

this concept inspired the “remote return” (reply) concept in distributed multithreading

(see Section 9.3).

Fortran M. Fosteret al. propose Fortran M [54] that useschannelsto plug together

Fortran processes. Channels are used for passing messages between tasks. Fortran M al-

lows variable message sizes, dynamic topology changes, andmany-to-one communication.

Compared to MVVs, channels require explicit connection andare harder to optimize.

Strand and PCN. Strand and PCN [53] are compositional programming languages

designed by Foster. Strand is commonly used as a coordination language to control the

concurrent execution of sequential modules. It has only single-assignment (definitional)

variables used to communicate values from producers to consumers and to synchronize

them. A stream of values, accumulated in a list, is used to communicate data; these lists

need to be garbage collected. While Strand is a powerful symbolic and distributed pro-

gramming language, it is ill-suited for numeric codes. Program Composition Notation

(PCN) improves on Strand in combining declarative and imperative programming. Both

Strand and PCN are hard to optimize because of single-assignment variables and garbage

collection. It is not clear whether they can deliver performance of hand-optimizes MPI or

MVV-based codes.

Teleport Messaging.Thieset al.proposeTeleport Messaging[117] to solve the prob-

lem of precise handling of events across parallel system. Control messages that change

the state are treated as special data messages. When a receiver receives a control message,

it invokes the associated handler that changes the corresponding state. Because control

messages flow with the data in the stream, data dependencies enforce the precise timing

(with respect to the data stream) of executing the action carried by a control message. This

approach enables optimizing the signal processing applications, modeled in a Cyclo-Static

Dataflow language,e.g., StreamIt [116], by exposing the true data dependence to thecom-

28

piler. Teleport Messaging provides limited capabilities for execution of code in a remote

process; however, it is too restrictive for multithreadingin many scientific applications.

Space-Time Memory. Ramachandranet al. developed theSpace-Time Memoryab-

straction [96] — a dynamic concurrent distributed data structure for holding time-sequenced

data. STM is designed for interactive multimedia applications to simplify complex buffer

management, intertask synchronization, and meeting soft real-time constraints. STM has

globally knownchannelswhere threads can PUT a data item with a timestamp and GET

a data item with a timestamp. The semantics of PUT and GET are copy-in and copy-

out. Unused memory is globally garbage collected. If used directly in the program, STM

requires programmers to establish connections, which is not necessary with MVVs, and

pack/unpack strided transmitted data, which is usually notnecessary with MVVs. We

could use STM as a vehicle to implement MVVs; however, as of this writing, an STM im-

plementation is available only for a cluster of Alpha SMPs running Digital UNIX. Also, an

STM-based implementation of MVVs is likely to have more overhead than a lighter-weight

implementation based on Active Messages (AM).

2.5 Concurrency in imperative languages

Another approach to simplify the development of concurrentprograms is to enable vari-

ables that can hold infinitely many values managed with the semantics of a stream. The

simplicity comes from removing the anti- and output dependencies due to variable memory

reuse.

2.5.1 Single-Assignment C

Grelck and Scholz present Single Assignment C (SAC) [59], a purely functional array

processing language. Programming in SAC can be thought of asprogramming in Static

Single Assignment form (SSA) [41]. Each assignment is done into a new memory loca-

tion, thus, there are no anti- and output data dependencies.While this simplifies many

compiler optimizations and enables detection of parallelism, the compiler is fully respon-

29

sible for code optimization. SAC is a functional programming language and, in practice,

does not offer a “natural” programming style for imperative-language programmers. Sev-

eral studies [59, 58, 60] reported reasonable performance results for a few benchmarks,

including NAS MG and FT, on a 12-processor SUN Ultra Enterprise 4000 shared-memory

multiprocessor; however, no comparison was done with explicitly-parallel models such as

Fortran+MPI, CAF, or UPC. As of this writing, there is no implementation of SAC for a

cluster. It would be interesting to see whether a functionallanguage without the notion of

data locality can be optimized to deliver high performance on large-scale cluster architec-

tures for a broad class of scientific applications.

2.5.2 Data-flow and stream-based languages

Streams and Iteration in a Single Assignment Language — Sisal [2] — is a general-purpose,

single assignment, functional programming language with strict semantics, automatic par-

allelization, and efficient array handling. The strong point of Sisal is that programs are

deterministic, regardless of platform or environment. Several Sisal compiler implementa-

tions for distributed- and shared-memory platforms were reported [20, 55, 107, 57]. Good

performance was demonstrated for small-scale parallel machines. It would be interesting

to see whether Sisal, which does not offer programmers any means to control data distri-

bution, can be optimized to deliver high performance on large-scale distributed-memory

machines such as Blue Gene/L.

Many data-flow and stream-based domain specific languages,e.g., YAPI [46], used

for signal processing systems are based on Kahn process networks (KPNs) [123], a dis-

tributed model of computation where a group of processes is connected by communication

channels. Processes communicate via unbounded first-in-first-out (FIFO) data channels.

Processes read and write atomic data elements or tokens fromand to channels. Writing

to a channel is non-blocking;i.e. it always succeeds and does not stall the process, while

reading from a channel is blocking;i.e., a process that reads from an empty channel will

stall and can only continue when the channel contains sufficient data items. Given a spe-

30

cific input (token) history for a process, the process must bedeterministic in that it always

produces the same outputs (tokens). Timing or execution order of processes must not affect

the result and, therefore, processes are not allowed to testan input channel for existence

of tokens without consuming them. The KPN computation modelis too restrictive for

general-purpose scientific applications. It is also unlikely that the abstraction of channels

that can hold infinitely many tokens in-flight would be optimized in CAF to deliver the

best performance. We limit the number of unconsumed versions that can be buffered by a

multi-version variable and block the producer that tries tocommit another value until one

of the buffered values is consumed.

2.5.3 Clocked final model

Saraswatet al. proposed theclocked final(CF) model [106] to address the difficulty of

concurrency in imperative languages and express concurrent applications in a natural way

similar to sequential code. CF guaranties determinacy and deadlock freedom. Under CF,

each mutable location,e.g., shared scalar or an array element, is associated with aclocked

streamof immutable (final) values. Writers write the location at different stream indices

and readers consume the locations at a particular index. If there is no value to read at the

index, the reader blocks until the value is available. The stream is conceptually infinite.

In practice, the number of items buffered for a stream shouldbe bounded, and analysis

is required to determine the right buffer size. While the concept looks appealing, experi-

mental evidence is required to prove that the CF model can be optimized to deliver high

performance for a variety of codes on a range of parallel platforms. In our approach, pro-

grammers explicitly specify which variables are multi-version and, thus, will be used for

data streaming. The number of versions that an MVV can hold isfinite and can be specified

explicitly by the programmer. We chose to support only “PUT-style” (push strategy) multi-

version variables (MVVs), since they deliver the best performance for distributed-memory

machines; we could also extend MVVs to support “GET-style” (pull strategy) retrieves, but

this inherently exposes communication latency. There can be multiple producers that com-

31

mit values into an MVV located on process imagep, but there is only one consumer process

image —p — that retrieves vales locally. While MVVs are less general than the CF model,

they can simplify development of many parallel codes and deliver high performance today.

2.6 Function shipping

The distributed multithreading for CAF evaluated in this work is based on the concept of

function shipping. While function shipping has been used inmany contexts, the novelty of

this research is the first design and evaluation of function shipping for CAF.

2.6.1 Remote procedure calls

The idea of performing a computation by the remote processoris quite old. TheRemote

Procedure Calls (RPC)[13] provide the ability to invoke a procedure remotely; input pa-

rameters can be passed by-value and the result returned backto the caller. This is a library-

based approach and the programmer is responsible for parameter marshaling/unmarshaling

and thread management.

2.6.2 Active Messages

Eickenet al.[122] proposeActive Messages (AM). An AM header contains the address of a

user-level handler that is executed on message arrival withthe message body as argument.

Thus, arbitrary user code can be executed in the remote address space. The active message

handler must execute quickly and to completion and not blockthe network hardware from

receiving other messages. The AM concept is implemented in both ARMCI [83] (called

Global Procedure Calls) and GASNet[17]. However, it is too restrictive to be used as is in

the language. Our implementation of CAF’s distributed multithreading (DMT), described

in Chapter 9, uses AM to support language-level remote activities. However, DMT allows

arbitrarily long, potentially blocking computations spawned locally and remotely.

32

2.6.3 Multilisp

Halstead introduced the concept of thefuture in Multilisp [103]. It allows one to spawn a

concurrent computation and returns an undetermined value without blocking the caller. If

the return value is needed for computation in one of the following statements, the statement

blocks until the future executes and returns the real (determined) value. Futures enable lazy

evaluation of parallel work and allow transparent concurrency in functional languages on

shared-memory architectures.

2.6.4 Cilk

Cilk [63] is a language that enables concurrent execution ofseveral tasks on a shared-

memory multiprocessor. It introduces the concept of provably good “work-stealing” sched-

uler [15] that maintains load balancing among the processors transparently to the program-

mer. Cilk has the limitation that all tasks spawned within a function must complete before

the function returns. An implementation of Cilk for a distributed-memory architecture has

been reported [97]. It is based on principles of software shared-memory, and the sched-

uler’s heuristic is biased towards stealing “local” work. However, the performance results

were inconclusive and it is unlikely that a programming model without the notion of data

locality can perform well on large-scale distributed-memory machines for a broad range of

codes.

2.6.5 Java Remote Method Invocation

Java [113] offers theRemote Method Invocationmechanism that enables calling a method

of a remote object. The object must be registered with a global repository. The parameter

passing is done via a well-defined Java serialization/deserialization mechanism, though the

overhead is high. CAF is not an object-oriented language, and it is necessary to design

robust semantics of how parameters are passed to a co-subroutine and how the values can

be returned. We discuss these issues in Chapter 9.

33

Chapter 3

Background

We discuss the CAF programming model and run-time layer support for an efficient CAF

implementation. Then, we describe experimental platformsand parallel codes that we used

for our evaluation studies. Finally, we summarize the basics of data-flow analysis.

3.1 Co-array Fortran

CAF is a Single Program Multiple Data (SPMD) Partitioned Global Address Space (PGAS)

programming model based on a small set of extensions to Fortran 95. It has a two-level

memory model with local and remote data and provides the abstraction of globally acces-

sible memory both for cluster-based and for shared-memory architectures. Similar to MPI,

CAF is an explicitly-parallel programming model. CAF programmers partition data and

computation and use explicit communication and synchronization. Access to remote data

is done via one-sided read (GET) or write (PUT) communication.

An executing CAF program consists of a static collection of asynchronous process im-

ages (or images, for short). The number of images can be retrieved at run time by in-

voking the intrinsic functionnum images(). Each image has a unique index from one

to num images(), which can be retrieved via the intrinsic functionthis image().

The programmer controls the execution sequence in each image through explicit use of

Fortran 95 control constructs and through explicit use of synchronization intrinsics.

Below we describe CAF features related to this work. A more complete description of

the CAF language can be found elsewhere [88].

34

3.1.1 Co-arrays

CAF supports symmetric distributed data using a natural extension to Fortran 95 syntax.

For example, the declarationinteger::a(n,m)[*] declares a shared co-arraya with

n × m integers local to each process image. The dimensions insidebrackets are called

co-dimensions and define the co-shape; their number is called co-rank. Co-shape can be

thought of as an arrangement of all program images into a Cartesian topology without

periodic boundaries. For example, the declaration

integer::a(n,m)[2,4,*]

specifies a co-shape that represents a Cartesian topology with dimensions2× 4× 8 when

the total number of images is 64. We discuss the limitations of CAF co-shapes in Chap-

ter 5 and present the concept of co-spaces as a more general and flexible specification of

communication topologies for CAF.

Co-arrays may be static data specified byCOMMON or SAVE or they can be dynamic

data specified byALLOCATABLE. They can also be passed as procedure arguments. Co-

arrays may be declared for primitive types as well as user-defined types. A local section of

a co-array may be a singleton instance of a type rather than anarray of type instances.

3.1.2 Accessing co-arrays

Instead of explicitly coding message exchanges to access data residing in other process’

memories, CAF programmers can directly reference non-local values using an extension to

Fortran 95 syntax for subscripted references. For instance, processp can read the first col-

umn of co-arraya from processp+1 by referencinga(:,1)[p+1]. If the square brackets

are omitted, the reference is to the local co-array data. Remote co-array references naturally

induce a one-sided communication style in which all transfer parameters are supplied by

the image executing the communication and the target process image might not be aware

of the communication.

35

3.1.3 Allocatable and pointer co-array components

Allocatable and pointer co-array components can be used forasymmetric shared data struc-

tures. They can be of intrinsic or user-defined types. For example, a co-arraya may

have a pointer componentptr(:). a[p]%ptr(i:j) references the array section of

a%ptr located in imagep. An allocatable component must be allocated prior to use.

A pointer component must point to a co-array or Fortran 95 variable located in the local

memory. Brackets are allowed only for the first level of a co-array component access,

e.g., b(i,j)[p]%ptr1(x)%ptr2(:); the other levels are relative to the remote im-

agep and cannot have brackets. The rules for evaluating the implicit bounds,e.g., for

a a[p]%ptr(:) reference, are not precisely stated in the current CAF standard. We

assume that the implicit bound values are those on the targetimagep.

3.1.4 Procedure calls

Co-arrays are allowed to be procedure arguments and can be reshaped at a procedure call.

An explicit interface is required for co-array parameters.There are no local co-array vari-

ables since the procedure activation frame might not exist on every image. The original

CAF specification required implicit memory fences before and after each procedure call.

In [30], we argued that such memory fences make it impossibleto overlap communication

with a procedure’s computation. The requirement was removed in the updated language

specification [86].

3.1.5 Synchronization

CAF has async memory memory fence to explicitly complete all outstanding com-

munication operations issued by the invoking process image; this is a local operation.

sync all implements a synchronous barrier among all images.sync team is used

for synchronization among teams of two or more processes.

In [30], we considered augmenting CAF with unidirectional,point-to-point synchro-

nization primitives:sync notify andsync wait. sync notify(q) sends a non-

36

blocking notification message to process imageq; this notification is guaranteed to be seen

by imageq only after all communication events previously issued by the notifier to image

q have been committed intoq’s memory.sync wait(p) blocks its caller until it receives

a matching notification message from the process imagep. The updated CAF specifica-

tion [86] allows usingnotify team andwait team for unidirectional point-to-point

synchronization. The names of the unidirectional point-to-point synchronization primitives

in the CAF specification may change in the future; therefore,we refer to these primitives

asnotify(p) andwait(q) in the rest of the dissertation.

3.1.6 CAF memory consistency model

A memory consistency model defines legal orderings of how theresults of write operations

can be observed via read operations. Stricter memory consistency helps in developing and

debugging programs; but limiting the scope of legal code reorderings can result in lower

performance.

As of this writing, CAF’s memory consistency model is still being defined. For the

purposes of this work, we assume aweakmemory consistency model with the following

rules:

• Each image’s own data dependencies for accessing local datamust be preserved.

• The ordering of shared accesses is guaranteed only by synchronization primitives

such as the memory fencesync memory, global barriersync all, team synchro-

nizationsync team, andnotify/wait unidirectional point-to-point primitives.

The first rule enables leveraging existing scalar compiler technology for optimizing

local accesses in between synchronization points. It is essential for source-to-source trans-

lation and makes it legal to use a Fortran 95 compiler of the target architecture to optimize

translated code.

The second rule enables programmers and the compiler to makeassumptions about

the memory state and completed PUT/GET operations of imagesparticipating in a syn-

37

chronization event. The memory fencesync memory completes all outstanding memory

operations issued by the image before execution of the fence. Completion means that local

accesses have been flushed to memory, GETs have finished reading the remote memory,

and PUTs have been written to the remote memory. Global barriersync all implies that

every image executes an implicit memory fence right before participating in the barrier

synchronization. In other words, each image participatingin a barrier can assume that after

the return from the barrier, all memory operations issued byany participant prior to the

barrier have been completed.

There is still ongoing debate over what memory guarantees should be for point-to-point

(or team) synchronization. Two alternatives are being considered. First,notify(p)

may have an implicit memory fence, which completes all memory operations issued by the

invoking image beforep receives the notification. Second,notify(p) may have weaker

semantics explored by us forsync notify in [30]: a delivery ofnotify(p) from q

to p guarantees only that all PUTs/GETs issued byq to p have completed. The following

example illustrates the difference.

if (this_image()==q)
a[r] = ...
b[p] = ...
call notify(p)

end if
if (this_image()==p)

call wait(q)
end if

With the first proposal, the programmer can assume that botha[r] andb[p] PUTs

have completed whenp receives the notification. The semantics are intuitive; however,

no compiler optimization technology yet exists that can optimize this code to deliver best

performance. Most likely, an implementation would have to complete both PUTs before

executing thenotify(p); this exposes the communication and notification latency top.

In the second proposal,notify(p) received byp guarantees only thatb[p] has

completed, but does not guarantee thata[r] has completed (p 6= r). These semantics

might be less intuitive to the programmer; however, we have not yet observed CAF codes

38

that rely on the assumptions thata[r] must also complete. The compiler and run-time

can optimize this code to hide all communication and synchronization latency. During

our experimental studies, we noticed that the weaker notifysemantics enabled to deliver

noticeably higher performance and better scalability. Forthe rest of this work, we assume

the weaker form ofnotify(p).

We also assume similar (“closed group”) weak semantics for agroup barrier. Execution

of a group barrier guarantees that all PUTs/GETs executed byall images of the group before

the barrier and destined to any member image of the group havecompleted. No guarantees

are provided for a PUT/GET executed by any image of the group and destined to an image

that is a not a member of the group.

We believe that these weak semantics are intuitive enough and would not restrict the

compiler and run-time to deliver top performance. Alternatively, both forms ofnotify

and group barrier can co-exist and can be distinguished by anoptional extra parameter to

notify that specifies what memory guarantees to provide.

3.2 Communication support for PGAS languages

Message Passing Interface (MPI) [62, 112], thede factostandard for parallel programming,

uses two-sided (send and receive) message passing to transfer data between processes. With

two-sided communication, both the sender and the receiver explicitly participate in a com-

munication event and supply communication parameters. As aconsequence, both sender

and receiver temporarily set aside their computation to communicate data, which also has

heavy impact on the programming style. Having two processescomplete a send/receive

communication explicitly synchronizes them.

PGAS languages use one-sided communication to access remote data: GET is used

for a remote read and PUT is used for a remote write. In one-sided communication, only

the process, called the origin of communication, executingthe remote access specifies the

target process and all other communication parameters. No synchronization between the

origin and target processes takes place. From the programmer’s perspective, the target

39

image is not aware of the communication. Thus, the one-sidedmodel cleanly separates

data movement from synchronization, which can be particularly useful for development

of irregular applications. To achieve high performance with PGAS languages for a broad

class of applications, one-sided communication must be efficient. Co-array sections may

reference remote memory that is strided. Therefore, communication must be efficient not

only for co-array sections that reference contiguous memory (contiguous transfers) but also

for those that reference strided memory (strided transfers). Implementing an efficient one-

sided communication layer is not a trivial task due to interconnect hardware differences.

On shared-memory platforms, such as the SGI Altix 3000, one-sided communication

can be performed for globally addressable shared-memory bythe CPU, using load/store

instructions. As our recent study [48] demonstrated, on shared-memory architectures, fine-

grain one-sided communication is fastest with compiler generated load/store instructions,

and large contiguous transfers are done more efficiently by using a memory copy library

function optimized for the target platform.

On loosely-coupled architectures, a one-sided communication layer can take advan-

tage of Remote Direct Memory Access (RDMA) capabilities of modern networks, such

as Myrinet [9] and Quadrics [94]. During an RDMA data transfer, the Network Interface

Controller (NIC) controls data movement without interrupting the remote host CPU. This

enables the remote CPU to compute while communication is in progress.

Several specifications for one-sided communication were designed to encapsulate hard-

ware differences and to simplify PGAS compiler development[83, 17]. We describe Ag-

gregate Remote Memory Copy Interface (ARMCI) and GASNet, which we used to imple-

mentcafc’s run-time layer.

3.2.1 ARMCI

ARMCI [83] is a multi-platform library for high performanceone-sided communication.

ARMCI provides both blocking and non-blocking primitives for one-sided data move-

ment as well as primitives for efficient unidirectional point-to-point synchronization. On

40

some platforms, using split-phase primitives enables communication to be overlapped with

computation. ARMCI provides an excellent implementation substrate for global address

space languages because it achieves high performance on a variety of networks (includ-

ing Myrinet, Quadrics, and IBM’s switch fabric for its SP systems) as well as on shared-

memory platforms (Cray X1, SGI Altix3000, SGI Origin2000),while insulating its clients

from platform-specific implementation issues such as shared memory, threads, and DMA

engines. A notable feature of ARMCI is its support for efficient non-contiguous data trans-

fers [84], essential for delivering high performance with CAF. ARMCI provides support

for Global Procedure Calls (GPCs) on Myrinet, Quadrics, andInfiniBand interconnects.

GPCs enable execution of procedures in remote process. For the rest of the discussion, we

refer to ARMCI’s GPCs as Active Messages (AMs) [122].

3.2.2 GASNet

GASNet [17], standing for ”Global-AddressSpaceNetworking”, is another one-sided

communication library. The GASNet library is optimized fora variety of cluster and

shared-memory architectures and provides support for efficient communication by apply-

ing communication optimizations such as message coalescing and aggregation as well as

optimizing accesses to local shared data. As of this writing, GASNet has only a refer-

ence implementation for strided communication and shows lower performance for strided

transfers compared to ARMCI for some interconnects.

The design of GASNet is partitioned into two layers to make porting easier without

sacrificing performance. The lower level provides a core subset of functionality called the

GASNet core API. It is based on Active Messages [122], and is implemented directly on

top of each individual network architecture. The upper level is a more expressive inter-

face, called the GASNet extended API. It provides high-level operations to access remote

memory and various collective operations.

41

3.3 Experimental platforms

We used several cluster and non-uniform memory access (NUMA) shared-memory archi-

tectures to perform our experiments.

3.3.1 Itanium2+Myrinet2000 cluster (RTC)

The Rice Terascale Cluster (RTC) [102] is a cluster of 92 HP zx6000 workstations inter-

connected with Myrinet 2000. Each workstation node contains two 900MHz Intel Itanium

2 processors with 32KB/256KB/1.5MB of L1/L2/L3 cache, 4-8GB of RAM, and the HP

zx1 chipset. Each node is running the Linux operating system. We used the Intel Fortran

compiler versions 8.x-9.x for Itanium as our Fortran 95 back-end compiler.

3.3.2 Itanium2+Quadrics cluster (MPP2)

MPP2 consists of 2000 HP Long’s Peak dual-CPU workstations at the Pacific Northwest

National Laboratory (PNNL). The nodes are connected with Quadrics QSNet II (Elan 4).

Each node contains two 1.5GHz Itanium2 processors with 32KB/256KB/6MB L1/L2/L3

cache and 4GB of RAM. The operating system is Red Hat Linux. The back-end compiler

is the Intel Fortran compiler version 8.0.

3.3.3 Alpha+Quadrics cluster (Lemieux)

Lemieux is a cluster at the Pittsburgh Supercomputing Center (PSC). Each node is an SMP

with four 1GHz Alpha EV68 processors and 4GB of memory. The operating system is

OSF1 Tru64 v5.1A. The cluster nodes are connected with Quadrics QSNet (Elan3). The

back-end Fortran compiler used was Compaq Fortran V5.5.

3.3.4 Altix 3000 (Altix1)

The SGI Altix 3000 machine (Altix1) at Pacific Northwest National Laboratory (PNNL)

is a NUMA shared-memory multiprocessor that has 128 Itanium2 1.5GHz processors each

42

with 32KB/256KB/6MB L1/L2/L3 cache, and 128 GB RAM, runningthe Linux64 OS and

the Intel Fortran compiler version 8.1.

3.3.5 SGI Origin 2000 (MAPY)

The SGI Origin 2000 machine at Rice University has 16 MIPS R12000 processors with

8MB L2 cache and 10 GB RAM. It runs IRIX 6.5 and the MIPSpro Compilers version

7.3.1.3m

3.4 Parallel benchmarks and applications

Throughout our studies, we use several parallel codes to extensively evaluate the CAF

language, the quality of code generated by our CAF compiler,and performance of the run-

time communication library. Each code contains a regular orirregular computation that

represents the kernel of a realistic scientific application. These codes are widely regarded

as useful for evaluating the quality of parallel compilers and used in this thesis to evaluate

the effects of different optimization techniques.

For most of our experiments, we compare the parallel efficiency of different CAF ver-

sions to that of MPI version used as the baseline for comparison. We compute parallel effi-

ciency as follows. For each parallelizationρ, the efficiency metric is computed as ts
P×tp(P,ρ)

.

In this equation,ts is the execution time of the sequential version;P is the number of pro-

cessors;tp(P, ρ) is the time for the parallel execution onP processors using parallelization

ρ. Using this metric, perfect speedup would yield efficiency of 1.0 for each processor

configuration. We use efficiency rather than speedup or execution time as our compari-

son metric because it enables us to accurately gauge the relative performance of multiple

benchmark implementations across theentire range of processor counts and even across

different architectures.

43

3.4.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [12, 73] are implemented by the NASA Advanced

Supercomputing (NAS) Division group at the NASA Ames Research Laboratory. They

are designed to help evaluate the performance of parallel supercomputers. We used MPI,

OpenMP, and serial flavors of official NPB 2.3, NPB 3.0, and NPB2.3-serial releases

respectively [12, 73]. We implemented corresponding CAF versions by modifying com-

munication and synchronization in the MPI benchmarks, without changing the original

algorithms.

NAS MG. The MG multigrid kernel calculates an approximate solutionto the discrete

Poisson problem using four iterations of the V-cycle multigrid algorithm on an× n× n

grid with periodic boundary conditions [12]. MG’s communication is highly structured

and repeats a fixed sequence of regular patterns.

In the NAS MG benchmark, for each level of the grid, there are periodic updates of the

border region of a three-dimensional rectangular data volume from neighboring processors

in each of six spatial directions. Four buffers are used: twoas receive buffers and two

as send buffers. For each of the three spatial axes, two messages (except for the corner

cases) are sent using basic MPI send to update the border regions on the left and right

neighbors. Therefore, two buffers are used for each direction, one buffer to store data to be

sent and the other to receive the data from the correspondingneighbor. Because two-sided

communication is used, there is implicit two-way point-to-point synchronization between

each pair of neighbors.

NAS CG.The CG benchmark uses a conjugate gradient method to computean approxima-

tion to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix [12].

This kernel is typical of unstructured grid computations inthat it tests irregular long dis-

tance communication and employs sparse matrix vector multiplication. The irregular com-

munication employed by this benchmark is a challenge for cluster architectures.

NAS BT and SP. The NAS BT and SP benchmarks are two simulated computational

fluid dynamics (CFD) applications that solve systems of equations resulting from an ap-

44

proximately factored implicit finite difference discretization of three-dimensional Navier-

Stokes equations [12]. The principal difference between the codes is that BT solves block-

tridiagonal systems of 5x5 blocks, whereas SP solves scalarpenta-diagonal systems result-

ing from full diagonalization of the approximately factored scheme [12]. Both consist of an

initialization phase followed by iterative computations over time steps. In each time step,

boundary conditions are first calculated. Then the right hand sides of the equations are cal-

culated. Next, banded systems are solved in three computationally intensive bi-directional

sweeps along each of the x, y, and z directions. Finally, flow variables are updated. During

each time-step, loosely-synchronous communication is required before the boundary com-

putation, and tightly-coupled communication is required during the forward and backward

line sweeps along each dimension.

Because of the line sweeps along each of the spatial dimensions, traditional block dis-

tributions in one or more dimensions would not yield good parallelism. For this reason,

SP and BT use a skewed-cyclic block distribution known as multipartitioning [12, 81].

With multi-partitioning, each processor handles several disjoint blocks in the data domain.

Blocks are assigned to the processors so that there is an evendistribution of work for each

directional sweep, and that each processor has a block on which it can compute in each

step of every sweep. Using multipartitioning yields full parallelism with even load balance

while requiring only coarse-grain communication.

3.4.2 Sweep3D

The benchmark code Sweep3D [4] represents the heart of a realAccelerated Strategic Com-

puting Initiative (ASCI) application. It solves a one-group time-independent discrete ordi-

nates (Sn) 3D Cartesian (XYZ) geometry neutron transport problem. The XYZ geometry

is represented by an IJK logically rectangular grid of cells. The angular dependence is

handled by discrete angles with a spherical harmonics treatment for the scattering source.

The solution involves two steps: the streaming operator is solved by sweeps for each angle

and the scattering operator is solved iteratively.

45

do iq = 1, 8 ! octants
do mo = 1, mmo ! angle pipelining loop
do kk = 1, kb ! k-plane pipelining loop

receive from east/west into Phiib ! recv block I-inflows
receive from north/south into Phijb ! recv block J-inflows

...
! computation that uses and updates Phiib and Phijb
...

send Phiib to east/west ! send block I-outflows
send Phijb to north/south ! send block J-outflows

enddo
enddo

enddo

Figure 3.1 : Sweep3D kernel pseudocode.

Figure 3.2 : Wavefront communication in Sweep3D.

Sweep3D exploits wavefront parallelism. It uses a 2D spatial domain decomposition of

the I- and J-dimensions onto a 2D logical grid of processors.For efficient parallelization,

Sweep3D is coded to pipeline blocks of MK k-planes and MMI angles through this 2D

processor array. Thus, the wavefront exploits parallelismin both I- and J-directions simul-

46

taneously. Figure 3.1 shows a piece of pseudocode representing a high-level view of the

Sweep3D kernel. Figure 3.2 provides a visualization of a Sweep3D sweep on a 2D logical

processor grid: the boxes represent the processors, the sweep starts in the top left corner,

the arrows show the direction of PUT communication, and the thick solid line shows the

front of computation propagation in 2D distributed pipeline. A more complete description

of Sweep3D can be found in [4].

3.4.3 RandomAccess

The RandomAccess benchmark measures the rate of random memory updates. It is avail-

able in serial and MPI versions as a part of the HPC Challenge benchmark suite [1].

The serial version of RandomAccess1 declares a large arrayTable of 64-bit words

and a small substitution tablestable to randomize values in the large array. The array

Table has the size ofTableSize = 2n words. After theTable has been initialized,

the code performs a number of random updates onTable locations. The kernel of the

serial benchmark is shown in Figure 3.3 (a).

do i = 0, 4*TableSize
pos = <random number in

[0,TableSize-1]>
pos2 = <pos shifted to index

inside stable>
Table(pos) = Table(pos) xor

stable(pos2)
end do

(a) Sequential RandomAccess

do i = 0, 4*TableSize
gpos = <random number in

[0, GlobalTableSize-1]>
img = gpos div TableSize
pos = gpos mod TableSize
pos2 = <pos shifted to index

inside stable>
Table(pos)[img] = Table(pos)[img] xor

stable(pos2)
end do

(b) CAF RandomAccess

Figure 3.3 : RandomAccess Benchmark.

We implemented a fine-grain CAF version of the benchmark representing the global ta-

ble as a co-array. The aggregate size of theTable isGlobalTableSize=TableSize

× num images(), whereTableSize is the number of words residing in each image.

1We used the Table Toy Benchmark (08/01/97 version).

47

Every image has a private copy of the substitution table. Allimages concurrently generate

random global indices and perform the update of the correspondingTable locations. No

synchronization is used for concurrent updates (errors on up to 1% of the locations due to

race conditions are acceptable). The kernel for CAF variants of RandomAccess is shown

in Figure 3.3 (b).

A parallel MPI version [1] of RandomAccess uses buckets to locally cache updates

destined to remote memories. Each image has the number of buckets equal to the number

of processes; one bucket per destination processes. When a bucket becomes full, the code

executes MPIAlltoall symmetric collective communication to exchange updates among

processes. Each process receives updates destined to it from all processes and, then, applies

the updates to its local portion of theTable. Compared to the fine-grain CAF version, the

bucketed version improves locality and increases communication granularity. However, it

is more difficult to code and caching becomes problematic forlarge scale parallel machines.

We also implemented and experimented with several CAF bucketed versions. These results

can be found in Section 9.6.3.

3.4.4 Data-flow analysis

We briefly describe several concepts of data-flow analysis that we use in Chapters 6 and 7.

Control flow graph

A control flow graph (CFG) [35] represents flow of control in the program. It is a directed

graph,G = (N, E). Each noden ∈ N corresponds to a basic block (BB), a sequence

of operations that always execute together. Each edgee = (ni, nj) ∈ E corresponds to a

potential transfer of execution control from BBni to BB nj . A CFG has a unique entry

node and a unique exit node.

48

Static single assignment form

Single static assignment form (SSA) [41] is an intermediaterepresentation of the program

in which each variable is assigned exactly once. A program isin SSA form when it satisfies

two conditions: (1) each definition (assignment) has a distinct name and (2) each use refers

to exactly one definition. To satisfy these properties, a compiler must insertφ-functions

at control flow path merge points and then rename the variables to satisfy the single as-

signment property. SSA provides an intuitive and efficient namespace that incorporates the

information about the relation between definitions and uses, simplifying many compiler

analysis and optimization algorithms.

Dominance and postdominance

In a control flow graph, a nodea dominates a nodeb if every path from the CFG entry

node tob must pass througha. a strictly dominatesb if a dominatesb anda 6= b. A node

a is theimmediate dominatorof a nodeb if a dominatesb and every other dominator ofb

dominatesa [78]. A dominator treeis a tree in which the children of each node are those

it immediately dominates. Thedominance frontierof a CFG nodea is the set of all nodes

b such thata dominates a predecessor ofb, but does not strictly dominateb [41].

A nodea postdominates a nodeb if every path fromb to the CFG exit node passes

througha. The concepts of immediate postdominator and postdominator tree are similar to

those of dominators. Thereverse dominance frontierof a nodea can be computed as the

dominance frontier ofa on the reverse CFG; a reverse CFG can be obtained by reversing

each edge of the original CFG.

49

Chapter 4

Co-array Fortran for Distributed Memory Platforms

We discuss important design and implementation details ofcafc, a multi-platform open-

source Co-array Fortran compiler. Then, we present selected results of our evaluation stud-

ies [30, 47, 48, 31, 32] that we performed to determine what level of performance can be

delivered with CAF.

4.1 Rice Co-array Fortran compiler — cafc

We designed thecafc compiler for Co-array Fortran with the major goals of being portable

and delivering high performance on a multitude of platforms. To support multiple platforms

efficiently, cafc performs source-to-source transformation of CAF code intoFortran 95

code augmented with communication operations. By employing source-to-source transla-

tion,cafc aims to leverage the best back-end compiler available on thetarget platform to

optimize local computation. For communication,cafc typically generates calls to a one-

sided communication library; however, it can also generatecode that uses load and store

instructions to access remote data on shared-memory systems.

cafc uses OPEN64/SL [101] as the front-end. The OPEN64/SL project at Rice pro-

duced a nearly production-quality, multi-platform CAF/Fortran 95 front-end suitable for

source-to-source transformations. We have ported it to machines running Linux, Irix,

Tru64, and Solaris.

The engineering effort to portcafc to a new architecture is minor. First,cafc re-

quires OPEN64/SL that can be compiled with the GNU compilers available on most ar-

chitectures. Second, it requires a one-sided communication library such as ARMCI [83]

and GASNet [17] that is (or will be) available on most parallel machines. Finally, it must

50

be able to manipulate the Fortran 90 array descriptor (dope vector) of the target back-end

Fortran 95 compiler to manage and access co-array memory outside of Fortran 95 run-time

system to deliver best performance.

As of this writing, cafc supports COMMON, SAVE, ALLOCATABLE, and for-

mal parameter co-arrays of primitive and user-defined types, co-arrays with multiple co-

dimensions, co-array communication using array sections,CAF synchronization primi-

tives, and most of CAF intrinsic functions defined in the CAF specification [88]. Parallel

I/O is not supported. Support of allocatable co-array components was implemented using

ARMCI’s Global Procedure Calls (GPC).cafc compiles natively and runs on the fol-

lowing architectures: Pentium clusters with Ethernet interconnect, Itanium2 clusters with

Myrinet or Quadrics interconnect, Alpha clusters with Quadrics interconnect, SGI Origin

2000, and SGI Altix 3000.

4.1.1 Memory management

To support efficient access to remote co-array data on the broadest range of platforms,

memory for co-arrays is managed by the communication substrate separately from memory

managed conventionally by a Fortran 95 compiler’s languagerun-time system. Having

the communication substrate control allocation of co-array memory enables our generated

code to use the most appropriate allocation strategy for that platform. For instance, on

a Myrinet 2000-based cluster,cafc generates code that allocates data for co-arrays in

pinned physical memory; this enables the communication library to perform data transfers

on the memory directly, using the Myrinet adapter’s DMA engine.

4.1.2 Co-array descriptors and local co-array accesses

For CAF programs to perform well, access to local co-array data must be efficient. Since

co-arrays are not supported in Fortran 95,cafc needs to translate references to the local

portion of a co-array into valid Fortran 95 syntax. For performance, generated code must be

amenable to back-end compiler optimization. In an earlier study [48], we explored several

51

alternative representations for co-arrays. Our current strategy is to use a Fortran 95 pointer

to access local co-array data.

In cafc’s generated code, co-arrays are represented usingco-array descriptors, which

reside in the local memory of each process image. A co-array descriptor structure contains

two components. One component is a Fortran 90 pointer (a deferred shape array) used to

directly access the local portion of the co-array’s data. The second component is an opaque

handle (an integer of sufficient length to store a pointer) that represents any underlying

state for a co-array maintained by the communication substrate. For example, to repre-

sent a three-dimensional SAVE or COMMON co-array of real numbers,cafc generates a

descriptor such as the one shown here:

Type CoArrayDescriptor_Real8_3
integer(ptrkind) :: handle
real(kind=8), pointer:: ptr(:,:,:)

End Type CoArrayDescriptor_Real8_3

A co-array’shandle refers to a run-time representation that contains the the size of

co-array and additional information to locally compute thebase virtual address of the co-

array on each process image to use RDMA capabilities withoutthe need to contact a remote

image. Co-array shape and co-shape are not represented explicitly in the run-time layer.

Since co-array data is allocated outside the Fortran 95 run-time system,cafc needs to

initialize and manipulate compiler-dependent Fortran 95 array descriptors (dope vectors)

on a variety of target platforms. For historical reasons, weuse our own multi-compiler

library for this purpose. Alternatively, it is possible to employ the CHASM library [98]

from Los Alamos National Laboratory. CHASM is a tool to improve C++ and Fortran 90

interoperability. CHASM supplies a C++ array descriptor class which provides an interface

between C and Fortran 95 arrays. This allows arrays to be created in one language and then

passed to and used by the other language.

52

4.1.3 Co-array parameters

CAF allows programmers to pass co-arrays as arguments to procedures. According to the

CAF specification [87, 88], there are two types of co-array argument passing: by-value

and by-co-array.

To use by-value parameter passing of a co-array, one wraps a co-array actual parameter

in an additional set of parentheses,e.g., call foo((ca(1:n,k)[p])). In this case,

the CAF compiler first allocates a local temporary to hold thevalue of the remote co-array

section (ca(1:n,k) from processorp) for the duration of the call. Next, it fetches the

remote section from processorp. Then, it invokes the procedure. After the procedure

returns, the temporary is freed.

The pass by-co-array convention, e.g,call foo(ca(i,k)), has semantics sim-

ilar to Fortran’s by-reference parameter passing convention: only the local address of

ca(i,k) is passed down to the subroutine. Each co-array dummy argument to a pro-

cedure is declared as an explicit-shape co-array within theprocedure. It is illegal to pass a

remote co-array element by-co-array,e.g., call foo(ca(i,k)[p]). It is also illegal

to pass a co-array section to a subroutine since this might require copy-in-copy-out seman-

tics; this would interfere with memory consistency across procedure calls.cafc converts

each dummy argumentP passed by-co-array into two parameters:L— local portion of the

co-array — andH— the co-array handle. As part of the translation, all local references to

the dummy argumentP within the procedure are replaced by references toL, while remote

references through dummy argumentP useH to communicate data.

cafc also supports a pass by-reference convention with an explicit interface, in which

the callee receives the local part of a co-array as an array argument and treats it as a regular

array. This allows the programmer to reuse subroutines thatcompute over arrays for pro-

cessing local parts of co-arrays. Fortran 90 interfaces areused to differentiate what type of

calling convention should be used. An example is shown in Figure 4.1.

When declaring a procedure interface that receives a co-array by-reference, the dummy

argument’s shape (and co-shape) information may be omitted. A callee receiving a co-

53

interface
subroutine foo(a)

double precision a[*]
end subroutine foo
subroutine bar(b)

double precision b
end subroutine bar

end interface
double precision x(10,10)[5,*]

call foo(x(i,j)) ! pass by-co-array
call bar(x(i,j)) ! pass by-reference

Figure 4.1 : Using Fortran 90 interfaces to specify by-co-array and by-reference argument
passing styles.

array argument declares fresh shape and co-shape information; this can be used to reshape

a co-array in the callee if desired.

4.1.4 COMMON and SAVE co-arrays

CAF explicitly supports sequence association between local parts of co-arrays in COM-

MON blocks. Using Fortran EQUIVALENCE statements to associate co-array and non-co-

array memory is prohibited. Because of this restriction,cafc is able to split a COMMON

block containing both co-array and local variables into twoseparate COMMON blocks:

one containing only local variables and the other containing only co-array variables. The

latter co-array COMMON block is handled as described below.

Managing co-array memory outside of the Fortran 95 run-timesubsystem requires spe-

cial mechanisms for allocating and initializing SAVE and COMMON co-array variables.

During translation,cafc replaces declarations of static co-arrays with descriptors for the

separately allocated co-array storage. Whencafc-generated code begins execution, it

performs a two-step initialization process. First, it allocates storage for co-arrays. Second,

it initializes procedure-level views of SAVE and COMMON co-arrays by associating co-

array descriptors with the allocated memory and the communication substrate’s run-time

state.

54

For each procedure containing SAVE co-arrays,cafc generates an initialization rou-

tine that allocates memory for each SAVE co-array and sets upa descriptor for the co-array.

cafc generates an allocator procedure for each co-array COMMON block. An al-

locator for a co-array COMMON block reserves a contiguous chunk of storage for the

COMMON block’s set of co-arrays at program launch. Since different procedures may

declare different layouts for the same COMMON block, which we callviews, cafc syn-

thesizes one view initializer per procedure per COMMON block. Each view initializer is

invoked once at program launch after storage allocation to fill in a procedure-private copy

of a co-array descriptor for each co-array in the procedure’s view of the common block.

When linking a CAF program,cafc first examines the object files to collect the names

of all storage allocators and co-array descriptor and view initializers. Next,cafc synthe-

sizes a global initializer that calls each allocator and initializer. The global initializer is

called once at program launch before any user-written code executes.

4.1.5 Procedure splitting

SAVE and COMMON co-arrays are static and their properties are known to a CAF com-

piler at compile-time. These properties include: co-arraybounds, the fact that memory

occupied by a co-array is contiguous, and the lack of aliasing among such co-arrays. After

cafc translates a CAF program, a SAVE or COMMON co-arraya is represented with a

co-array descriptor; so local co-array accesses are done via Fortran 90 pointer in the gen-

erated code. Such accesses are difficult to optimize by the back-end compiler because the

information about bounds, contiguity, and lack of aliasingis not readily available for For-

tran 90 pointers. These properties were lost in translationand the back-end compiler must

rediscover them to produce fast code.

Consider the following lines that are common to both the CAF and Fortran+MPI ver-

sions of thecompute rhs subroutine of the NAS BT benchmark.

55

rhs(1,i,j,k,c) = rhs(1,i,j,k,c) + dx1tx1 * &
(u(1,i+1,j,k,c) - 2.0d0*u(1,i,j,k,c) + &
u(1,i-1,j,k,c)) - &
tx2 * (u(2,i+1,j,k,c) - u(2,i-1,j,k,c))

u andrhs reside in a single COMMON block in both sources. The CAF and Fortran+MPI

versions of the program declare identical data dimensions for these variables, except that

the CAF code adds a single co-dimension tou andrhs by appending a “[*]” to the end

of their declarations. After translation,cafc rewrites the declarations of theu andrhs

co-arrays with co-array descriptors that use a deferred-shape representation for co-array

data. References tou andrhs are rewritten to use Fortran 95 pointer notation as shown

here:

rhs%ptr(1,i,j,k,c) = rhs%ptr(1,i,j,k,c) + dx1tx1 * &
(u%ptr(1,i+1,j,k,c) - 2.0d0*u%ptr(1,i,j,k,c) + &
u%ptr(1,i-1,j,k,c)) - &
tx2 * (u%ptr(2,i+1,j,k,c) - u%ptr(2,i-1,j,k,c))

Our experimentation with several back-end Fortran 90 compilers showed that perfor-

mance of CAF codes with Fortran 90 pointers is up to 30% inferior to that of equivalent MPI

codes that use SAVE or COMMON variables. The main reason is that Fortran 90 pointer-

based representation complicates the alias analysis in theback-end compiler. In turn, this

precludes important loop optimizations. Some Fortran 95 compilers accept a compile-time

flag indicating the lack of aliasing among Fortran 95 pointers, but despite using the flag,

cafc-translated codes showed slower node performance than their MPI+Fortran counter-

parts.

We addressed this problem by automatically converting Fortran 90 pointers of SAVE

and COMMON co-array representation into explicit-shape procedure arguments, which are

contiguous and do not alias. Bounds of SAVE and COMMON co-arrays are constant, and,

thus, the argument bounds can be redeclared in a procedure. As the result, the properties

of SAVE and COMMON co-arrays are conveyed to the back-end Fortran 95 compiler.

We named the transformationprocedure splitting. cafc splits each procedure that ref-

erences SAVE and COMMON co-arrays into two subroutines: an inner procedure and an

outer procedure. The transformation is applied prior to anyother transformation involv-

56

subroutine f(a,b)
real a(10)[*], b(100), c(200)[*]
save c
... = c(50) ...
end subroutine f

(a) Original procedure

subroutine f(a,b)
real a(10)[*], b(100), c(200)[*]
save c
interface

subroutine f_inner(a,b,c_arg)
real a[*], b, c_arg[*]

end subroutine f_inner
end interface
call f_inner(a,b,c)
end subroutine f

subroutine f_inner(a,b,c_arg)
real a(10)[*], b(100), c_arg(200)[*]
... = c_arg(50) ...
end subroutine f_inner

(b) Outer and inner procedures after splitting.

Figure 4.2 : Procedure splitting transformation.

ing co-arrays. Pseudo-code in Figure 4.2 illustrates the effect of the procedure-splitting

transformation.

The outer procedure retains the same interface as the original one. It does not perform

any computation of the original procedure. Its purpose is todeclare original parameters and

the inner-procedure interface and to call the inner procedure, passing the arguments. The

inner procedure performs the computation of the original one and is created by applying

three changes to the original procedure. First, its argument list is extended with parameter

co-arrays corresponding to the SAVE and COMMON co-arrays referenced by the original

procedure. Second, explicit-shape co-array declarationsare added for each additional co-

array argument. Third, each reference to any SAVE or COMMON co-array is rewritten

with the reference to the corresponding co-array parameter. Figure 4.2 shows the effect of

57

rewriting the reference toc(50) in f with a reference toc arg(50) in f inner.

After the translation process, parameter co-arrays becomeexplicit-shape Fortran 95

dummy parameters, which do not alias according to Fortran 95specification. The final

result is that SAVE and COMMON co-arrays within the inner procedure are now dummy

arguments represented using explicit-shape arrays ratherthan deferred-shape arrays. There-

fore, the back-end compiler is conveyed the lack of aliasingamong SAVE and COMMON

co-arrays, their bounds, and their contiguity. Better aliasing information leads to more

precise dependence analysis and more aggressive loop optimizations. Knowing bounds

at compile-time may reduce register pressure. Knowing thatreferenced memory is con-

tiguous might improve software prefetching. While the procedure-splitting transformation

introduces extra procedure calls and slightly increases the code size, we have not observed

that it decreases performance. The procedure-splitting transformation allows many codes,

especially the ones with complex dependence patterns, to achieve the same level of scalar

performance as that of their MPI+Fortran counterparts [47,48].

4.1.6 Multiple co-dimensions

The CAF programming model does not limit the programmer to using a flat co-shape. In-

stead, the user can specify a multi-dimensional co-shape, with the same column-major con-

vention as regular Fortran code. This feature is of most use when the processor topology of

a problem is logically mapped onto a Cartesian processor grid without periodic boundaries.

The programmer has the ability to mold the co-shape to fit the logical processor grid. In-

dexing of a multi-dimensional organization of remote images is then straightforward using

this feature.

Let us consider a general co-shape definition,[lb1 : ub1, lb2 : ub2,

. . ., lbn : ubn, lbn+1 : ∗]. For SAVE and COMMON co-arrays the co-shape must

be specified using exclusively constants. A remote reference to [i1, i2, . . ., in, in+1]

corresponds to processor image
∑n+1

j=1 (ij − lbj) ∗ mj, where

58

m1 = 1 (4.1)

mj =
j−1∏

k=1

(ubk − lbk + 1) , 2 ≤ j ≤ n + 1 (4.2)

In order to support co-arrays with multiple co-dimensions,we augment the co-array

metadata used incafc-generated code with several co-shape variables. For a co-array

a with the co-shape definition[lb1 : ub1, lb2 : ub2, . . ., lbn : ubn, lbn+1 : ∗], we add the

following variables:

• a coLB i, for 1 ≤ i ≤ n + 1

• a coUB i, for 1 ≤ i ≤ n

• a ThisImage i, for 1 ≤ i ≤ n + 1

• a CoIndexMultiplier i, for 1 ≤ i ≤ n + 1

• a ThisImageVector

a coLB i, a coUB i anda CoIndexMultiplier i correspond directly tolbi,

ubi andmi. a ThisImage i anda ThisImageVector are used to precompute the

values returned by the CAF intrinsic functionthis image. According to the CAF speci-

fication,this image(a,i) returns the i-th co-space coordinate fora on the correspond-

ing process image. This value is precomputed ina ThisImage i. this image(a)

returns a vector containing the values ofthis image(a,i) for all the co-dimensions of

co-arraya. This vector is thus precomputed ina ThisImageVector.

We extend the initialization routines mentioned above to set up the co-shape meta-

data variables.a coLB i, a coUB i are trivially assigned using the co-array definition.

The variablesa CoIndexMultiplier i are computed iteratively using Formulas 4.1

and 4.2 form i. To computea ThisImage i we use the process image index returned

by this image as follows:

59

a ThisImage i = mod(div(this image() − 1, mi), (ubi − lbi + 1)) + lbi, for i = 1..n

a ThisImage i = div(this image()− 1, mi) + lbi, for i = n + 1

Note that a dead-code eliminator would remove unused co-shape variables generated

for dummy co-arrays. When generating code that computes theremote image number, the

CAF compiler replaces the multipliers by constants whenever possible.

One immediate consequence of the above scheme is that we can support co-shape re-

shaping during argument passing.cafc allows co-shapes of dummy co-array arguments

to be declared using specification expressions rather than only constants. The co-lower and

co-upper bounds variables are initialized by the corresponding specification expressions;

the rest of the computation to determine the “coIndexMultiplier” variables, the compo-

nents of “this image” variables, and the “this image vector”is performed as above. This

extension enables programmers to express processing on co-array arguments with variable

co-spaces, leading to more general code.

4.1.7 Intrinsic functions

cafc supports the CAF intrinsic functions:log2 images(), this image(),

num images(), andrem images(). To implement them efficiently, we precompute

their values at program launch and store them into scalars. At compile time, calls to these

functions are replaced by references to the corresponding scalars. A more complicated

strategy is employed to supportthis image(a) evaluated for a co-arraya. We com-

pute the components ofthis image once at program initialization for SAVE and COM-

MON co-arrays, and once per procedure invocation for dummy co-arrays. We replace calls

to this image(a) with a reference toa ThisImageVector. We replace calls to

this image(a,i) with a scalar variable ifi is a compile-time constant, and ifi is a

variable, we use an array reference intoa ThisImageVector.

60

4.1.8 Communication code generation

Communication events expressed with CAF’s bracket notation must be converted into For-

tran 95; however, this is not straightforward because the remote memory may be in a dif-

ferent address space. Although CAF provides shared-memorysemantics, the target archi-

tecture may not; a CAF compiler must perform transformations to bridge this gap.

Shared-memory machines

On a hardware shared-memory platform, the transformation is relatively straightforward,

since references to remote memory in CAF can be expressed as loads and stores to shared

locations. With proper initialization, Fortran 90 pointers can be used to directly address

non-local co-array data. The CAF run-time library providesthe virtual address of a co-

array on remote images; this is used to set up a Fortran 90 pointer for referencing the remote

co-array. An example of this strategy is presented in Figure4.3 (a) for the following code.

DO J=1, N
C(J)=A(J)[p]

END DO

The generated code accesses remote data by dereferencing a Fortran 90 pointer, for which

Fortran 95 compilers generate loads/stores. In Figure 4.3 (a), the procedureCafSetPtr

sets up the pointer and is called for every access; this adds significant overhead. Hoisting

pointer initialization outside the loop as shown in Figure 4.3 (b) can substantially improve

performance. To perform this optimization automatically,cafc needs to determine that

the process image index for a non-local co-array reference is loop invariant.

DO J=1,N
ptrA=>A(J)
call CafSetPtr(ptrA,p,A_h)
C(J)=ptrA

END DO

(a) Fortran 90 pointer to remote data

ptrA=>A(1:N)
call CafSetPtr(ptrA,p,A_h)
DO J=1,N

C(J)=ptrA(J)
END DO

(b) Hoisted Fortran 90 pointer initialization

Figure 4.3 : Fortran 90 pointer access to remote data.

61

In comparison to general library-based communication for cluster architectures,

load/store communication avoids unnecessary overhead dueto library calls. This is es-

pecially beneficial for applications with fine-grain communication. Our study [48] con-

tains a detailed exploration of the alternatives for performing communication on hardware

shared-memory systems. However, the load/store strategy cannot be used for cluster-based

systems with distributed memory.

Cluster architectures

To perform data movement on clusters,cafc must generate calls to a communication li-

brary to access data on a remote node. Moreover,cafc must manage storage to temporar-

ily hold remote data needed for a computation. For example, in the case of a read reference

of a co-array on another image,arr(:)=coarr(:)[p]+..., a temporary,temp, is

allocated just prior to the statement to hold the value of thecoarr(:) array section from

image p. Then, a call to get data from image p is issued to the run-time library. The state-

ment is rewritten asarr(:)=temp(:)+.... The temporary is deallocated immediately

after the statement. For a write to a remote image, such ascoarr(:)[p1,p2]=..., a

temporarytemp is allocated prior to the remote write statement; the resultof the evalua-

tion of the right-hand side is stored in the temporary; a callto a communication library is

issued to perform the write; and finally, the temporary is deallocated. When possible, the

generated code avoids using unneeded temporary buffers. For example, for an assignment

performing a co-array to co-array copy,cafc generates code to move the data directly

from the source into the destination.

Currently,cafc generates blocking communication operations. In our study[47], we

introduced non-blocking communication hints that enablecafc to exploit non-blocking

PUTs.

62

Hints for non-blocking communication

Overlapping communication and computation is an importanttechnique for hiding inter-

connect latency as well as a means for tolerating asynchronybetween communication part-

ners. However, as CAF was originally described [88], all communication must complete

before each procedure call in a CAF program. In a study of our initial implementation of

cafc, we found that obeying this constraint and failing to overlap communication with

independent computation hurt performance [30].

Ideally, a CAF compiler could always determine when it is safe to overlap communi-

cation and computation and to generate code automatically that does so. However, it is not

always possible to determine at compile time whether a communication and a computation

may legally be overlapped. For instance, if the computationand/or the communication

use indexed subscripts, making a conservative assumption about the values of indexed sub-

scripts may unnecessarily eliminate the possibility of communication/computation overlap.

In the presence of separate compilation, a CAF compiler cannot determine whether it is le-

gal to overlap communication with a called procedure without whole-program analysis.

To address this issue, we believe it is useful to provide a mechanism to enable knowl-

edgeable CAF programmers to provide hints as to when communication may be overlapped

with computation. Such a mechanism serves two purposes: it enables overlap when con-

servative analysis would not, and it enables overlap incafc-generated code today before

cafc supports static analysis of potential communication/computation overlap. While ex-

posing the complexity of non-blocking communication to users is not ideal, we believe it is

pragmatic to offer a mechanism to avoid performance bottlenecks rather than forcing users

to settle for lower performance.

To support communication/computation overlap in code generated bycafc, we im-

plemented support for three intrinsic procedures that enable programmers to demarcate the

initiation and signal the completion of non-blocking PUTs.We use a pair of intrinsic calls

to instruct thecafc run-time system to treat all PUT operations initiated between them as

non-blocking. We show this schematically below.

63

region_id = open_nb_put_region()
...
Put_Stmt_1
...
Put_Stmt_N
...
call close_nb_put_region(region_id)

Only one non-blocking region may be open at any particular point in a process image’s

execution. Each PUT operation that executes when a non-blocking region is open is asso-

ciated with theregion id of the open non-blocking region. It is a run-time error to close

any region other than the one currently open. Eventually, each non-blocking region that

was initiated must be completed with the call shown below.

call complete_nb_put_region(region_id)

The completion intrinsic causes a process image to wait at this point until the com-

pletion of all non-blocking PUT operations associated withregion id that the process

image initiated. It is a run-time error to complete a non-blocking region that is not currently

pending completion.

Using these hints, thecafc run-time system can readily exploit non-blocking com-

munication for PUTs and overlap communication with computation. Overlapping GET

communication associated with reads of non-local co-arraydata with computation would

also be useful. We are currently exploring how one might sensibly implement support

for overlapping GET communication with computation, either by initiating GETs early or

delaying computation that depends upon them.

Alternative code generation strategy for PUTs

It would be interesting to consider another code generationstrategy that enables non-

blocking PUTs and does not require the programmer to providehints. The strategy is

similar to the one described in Section 4.1.8 for distributed-memory machines.cafc can

always allocate a temporary to store the result of the right-hand side (RHS) of a remote co-

array assignment statement. The data movement can be initiated as a non-blocking PUT

64

operation. It is safe to proceed with the execution of the next statement right after the PUT

because the RHS value resides in a temporary that is not accessible by the user code. Deal-

location of this temporary must be delayed until the PUT completes. The run-time layer

can keep track of all such PUTs “in flight”.

PUTs can be completed safely in several ways. First, the underlying communication

layer can invoke a callback indicating PUT completion, if such a mechanism is supported.

This callback can deallocate the temporary. Second, all PUTs must be completed before

the program executes a synchronization statement. Temporaries can be deallocated at this

time. Third, the run-time layer can limit the number of non-completed PUTs and complete

them in first-in-first-out order, deallocating corresponding temporaries in addition. Fourth,

the run-time layer can complete some outstanding PUTs and deallocate corresponding tem-

poraries if the system is low on memory.

The only case when using a temporary may be avoided on a distributed memory ar-

chitecture is for a co-array assignment in which the right hand side is a variable,e.g.,

a(:)[p] = b(:). If b is not modified by local computation on all CFG paths from the

assignment statement to a synchronization statement (barrier or notify(p)), the PUT

can communicate data in-place and be non-blocking.

4.1.9 Allocatable and pointer co-array components

CAF provides allocatable and pointer co-array components to support asymmetric data

structures. For example, an allocatable componenta%ptr(:) might have different sizes

on different images or might not be allocated at all on some images. The current version

of cafc provides allocatable co-array components only for the ARMCI substrate with

support for Global Procedure Calls (GPCs) (see Section 3.2). We use GPCs as Active

Messages (AMs) [122] and refer to them as such in the following discussion.

65

Memory management for co-array components

The allocation and deallocation ofa%ptr are local operations. For the most effi-

cient remote data accesses, it is necessary to allocate components in special mem-

ory managed by the underlying communication library.cafc’s run-time layer uses

ARMCI Malloc local for this purpose. cafc implements deallocation using

ARMCI Free local.

Accesses to remote co-array components

a[p]%ptr1(i)%ptr2(:) is an example of an access to a co-array component. The

first reference of the chain (referred to as the head) is the co-array reference —a[p]. It

determines the process imagep relative to which the rest of the chain (referred to as the tail)

is dereferenced. The brackets are allowed only for the head reference. A local reference

does not have brackets.

cafc uses the same code generation strategy for local co-array accesses and for local

co-array component references. For example, a referencea(i)%ptr1(:) is rewritten as

a desc%ptr(i)%ptr1(:), wherea desc is the co-arraya descriptor.

However, remote accesses to co-array components are different from those to co-arrays.

A co-array access,e.g.,b(i,:)[p], refers to a strided memory sectionS, local or remote.

The start address and shape ofS can always be computed on the process imageq executing

the access.cafc can use strided PUT/GET to accessS without the need to contactp. On

the contrary, the start address and shape of the memory section corresponding to a co-array

component reference,e.g., a[p]%ptr1(i)%ptr2(:), may not be known locally onq.

There are two feasible approaches to support remote co-array component accesses.

The first uses GET to dereference the chain level by level. Forexample,q can GET the

remote dope vectora[p]%ptr1, determine the remote start address ofa[p]%ptr1(i),

and GET the next level dope vectora[p]%ptr1(i)%ptr2. a[p]%ptr1(i)%ptr2

determines the start address and shape of the remote co-array component reference

a[p]%ptr1(i)%ptr2(:); it is a strided memory sectionW . Only after that, the refer-

66

ence dataW can be updated via PUT or fetched via GET. The disadvantage ofthis approach

is that it exposes communication latency for each level of dereferencing; however, it may

be the only feasible option for architectures without AM support.

An alternative is to use an AM to obtain the start address and shape ofW in one step.

An AM executed onp has access top’s memory and can dereference the chain as a local

referencea%ptr1(am i)%ptr2(:), wheream i is the value of subscripti on q. This

approach is more efficient than the first one because it needs only one network message to

obtain the parameters ofW ; however, it requires AM support.

cafc implements the AM-based strategy using ARMCI with GPC support. It syn-

thesizes an accessor Fortran subroutine for each remote co-array component referenceR.

The accessor is called inside the AM handler onp and is given a vector of subscripts

sv. sv contains the values of non-constant and non-implicit subscripts of R; e.g., for

a(i,j+1)[p]%ptr1(5)%ptr2(k1:k2,7:), sv contains, in order, the values ofi,

j+1, k1, andk2 evaluated onq. The accessor subroutine computes the start address

and the extents of thea(sv(1),sv(2))%ptr1(5)%ptr2(sv(3):sv(4),7:)

reference in the process imagep address space; it uses the FortranSIZE intrin-

sic1. It also computes the extents of the reference dope vector inthe chain —

a(sv(1),sv(2)+1)%ptr1(5)%ptr2. A relevant code fragment is shown below:

commShape => a(sv(1),sv(2))%ptr1(5)%ptr2(sv(3):sv(4),7:)
addr = loc(commShape(1,1)) ! the start address of the section
shp(1) = SIZE(a(sv(1),sv(2))%ptr1(5)%ptr2, 1)
shp(2) = SIZE(commShape, 1)
shp(3) = SIZE(a(sv(1),sv(2))%ptr1(5)%ptr2, 2)
shp(4) = SIZE(commShape, 2)

The AM returns the start addressaddr and the vectorshp, containing extents, to

process imageq. Using the address and extents,q can compute the strided memory sec-

tion W similarly to how a Fortran 95 compiler computes a strided section for a pointer

ptr=>a(...) operation. Knowing the remote memory parameters,cafc (1) allocates

1SIZE(a,i) returns the extent of an array sectiona for dimensioni.

67

the temporary of proper size to hold off-processor data, (2)instructs ARMCI to PUT or

GET data (in the same way as done for a co-array access).

The described AM-based approach uses two communication operations: one to obtain

the remote memory section parameters, the other to transferdata via PUT/GET. It might

be possible to combine these two messages into one. For a PUT,the data and access

parameters can be sent together in one AM, usually if the datasize is not very large; inside

the accessor subroutine, the data must be copied into the remote memory section. For

a GET, if the size of transmitted data can be inferred locally, the temporary to hold off-

processor data can be allocated without the first AM. The address of this temporary and

access parameters can be sent in a request AM. A reply AM can return the requested data

in its payload and copy the data into the temporary. The current implementation ofcafc

does not support this optimization.

4.2 Experimental evaluation

We ported numerous parallel benchmarks and real applications into CAF and performed

extensive evaluation studies [30, 47, 48, 31, 32] to identify the sources of inefficiencies and

performance bottlenecks on a range of modern parallel architectures. Among the ported

applications (see Section 3.4) are NAS MG, CG, SP, BT, LU and EP Parallel Bench-

marks [12], ASCI Sweep3D [4], RandomAccess and STREAM HPC Challenge Bench-

marks [1], Spark98 [90], LBMHD [91], Parallel Ocean Program(POP) [114] and Jacobi

iteration. These codes are widely recognized as useful for evaluation of parallel program-

ming models.

Our studies [30, 47, 48, 31, 33] have shown that even without automatic communication

optimizations CAF codes compiled withcafc can match the performance and scalability

of their MPI counterparts on a range of cluster and hardware shared-memory systems.

Among these codes are regular and irregular parallel benchmarks and applications such as

the NAS benchmarks, Sweep3D, Spark98, and STREAM. We now briefly overview the

main conclusions of these studies and present selected results.

68

4.2.1 Co-array representation and local accesses

We investigated different co-array representations for local and remote accesses across a

range of architectures and back-end compilers. The result of this study [48] is that it is

acceptable to represent co-arrays as Fortran 90 pointers and use procedure splitting for

local accesses; however,cafc should use different communication strategies for cluster

and shared-memory architectures.

4.2.2 Communication efficiency

Cluster architectures offer only one option to communicatedata — to use a one-sided

communication library. On shared-memory architectures, it is also possible to access re-

mote data using hardware load and store instructions via Fortran 90 pointer dereferenc-

ing. Load/store communication has two advantages over the library-based communication.

First, it avoids temporaries to hold off-processor data necessary for computation and en-

ables utilizing both local memory and interconnect bandwidth. Second, for benchmarks

requiring fine-grain communication, such as RandomAccess,the load/store code genera-

tion strategy avoids expensive function calls and providesbetter performance. In contrast,

coarse-grain communication is more efficient when implemented using an architecture-

tuned memory copy routine for bulk data movement rather thandirect load/store.

Communication generation for generic parallel architectures

To access data residing on a remote node,cafc generates ARMCI (or GASNet) calls. Un-

less the statement causing communication is a simple copy, temporary storage is allocated

to hold non-local data.

Consider the statementa(:)=b(:)[p]+..., which reads co-array data forb from

another process image. First,cafc allocates a temporary,b temp, just prior to the state-

ment to hold the value ofb(:) from imagep. cafc adds a GET operation to retrieve the

data from imagep, rewrites the statement asa(:)=b temp(:)+... and inserts code

to deallocateb temp after the statement. For a statement containing a co-array write to a

69

DO J=1, N

C(J)=A(J)[p]

END DO

(a) Remote element access

DO J=1,N

call CafGetScalar(A_h, A(J), p, tmp)

C(J)=tmp

END DO

(b) General communication code

Figure 4.4 : General communication code generation.

remote image, such asc(:)[p]=..., cafc inserts allocation of a temporaryc temp

prior to the statement. Then,cafc rewrites the statement to store its result inc temp,

adds a PUT operation after the statement to perform the non-local write, and inserts code

to deallocatec temp. An example of this translation strategy is shown in Figure 4.4.

Communication generation for shared-memory architectures

Library-based communication adds unnecessary overhead for fine-grain communication on

shared-memory architectures. Loads and stores can be used to directly access remote data

more efficiently. Here we describe several representationsfor fine-grain load/store access

to remote co-array data.

Fortran 90 pointers. With proper initialization, Fortran 90 pointers can be usedto di-

rectly address non-local co-array data. The CAF run-time library provides the virtual

address of a co-array on remote images; this is used to set up aFortran 90 pointer for

referencing the remote co-array. An example of this strategy is presented in Figure 4.5

(a). The generated code accesses remote data by dereferencing a Fortran 90 pointer, for

which Fortran 90 compilers generate direct loads and stores. In Figure 4.5 (a), the pro-

cedureCafSetPtr is called for every access; this adds significant overhead. Hoisting

pointer initialization outside the loop as shown in Figure 4.5 (b) can substantially improve

performance. To perform this optimization automatically,cafc needs to determine that

the process image index for a non-local co-array reference is loop invariant.

70

DO J=1,N

ptrA=>A(J)

call CafSetPtr(ptrA,p, A_h)

C(J)=ptrA

END DO

(a) Fortran 90 pointer to remote data

ptrA=>A(1:N)

call CafSetPtr(ptrA,p,A_h)

DO J=1,N

C(J)=ptrA(J)

END DO

(b) Hoisted Fortran 90 pointer initialization

Figure 4.5 : Fortran 90 pointer access to remote data.

POINTER(ptr, ptrA)

...

DO J=1,N

ptr = shmem_ptr(A(J), p)

C(J)=ptrA

END DO

(a) Cray pointer to remote data

POINTER(ptr, ptrA)

...

ptr = shmem_ptr(A(1), p)

DO J=1,N

C(J)=ptrA(J)

END DO

(b) Hoisted Cray-pointer initialization

Figure 4.6 : Cray pointer access to remote data.

Vector of Fortran 90 pointers. An alternate representation that doesn’t require pointer

hoisting for good performance is to precompute a vector of remote pointers for all the

process images per co-array. This strategy should work wellfor parallel systems of modest

size. Currently, all shared-memory architectures meet this requirement. In this case, the

remote reference in the code example from Figure 4.4 (a) would become:

C(J) = ptrArrayA(p)%ptrA(J).

Cray pointers. We also explored a class of shared-memory code generation strategies

based on the SHMEM library. After allocating shared memory with shmalloc, one can

useshmem ptr to initialize a Cray pointer to the remote data. This pointercan then be

used to access the remote data. Figure 4.6 (a) presents a translation of the code in Figure 4.4

usingshmem ptr. Without hoisting the pointer initialization as shown in Figure 4.6 (b),

this code incurs a performance penalty similar to the code shown in Figure 4.5 (a).

71

Fine-grain applications on shared-memory architectures

In our study [48], we evaluated the quality of source-to-source translation for applications

where fine-grain accesses are preferred due to the nature of the application. Previous stud-

ies have shown the difficulty of improving the granularity offine-grain shared-memory

applications [125]. We use the RandomAccess benchmark, described in Section 3.4, as an

analog of a complex fine-grain application.

The results of RandomAccess with different co-array representations and code gener-

ation strategies are presented in Table 4.1 for the SGI Origin 2000 architecture and in Ta-

ble 4.2 for the SGI Altix 3000 architecture. The results are reported in MUPs,106 updates

per second, per processor for two main table sizes: 1MB and 256MB per image, simulating

an application with modest memory requirements and an application with high memory re-

quirements. All experiments were done on a power-of-two number of processors, so that

we can replacedivs andmods with fast bit operations.

Version size per proc = 1MB size per proc = 256 MB

procs. 1 2 4 8 16 1 2 4 8 16

CAF vect. of F90 ptrs. 10.06 1.04 0.52 0.25 0.11 1.12 0.81 0.57 0.39 0.2

CAF F90 pointer 0.31 0.25 0.2 0.16 0.15 0.24 0.23 0.21 0.18 0.12

CAF Cray pointer 12.16 1.11 0.53 0.25 0.11 1.11 0.88 0.58 0.4 0.21

CAF shmem 2.36 0.77 0.44 0.25 0.11 0.86 0.65 0.53 0.36 0.19

CAF general comm. 0.41 0.31 0.25 0.2 0.09 0.33 0.3 0.28 0.23 0.14

OpenMP 18.93 1.18 0.52 0.32 0.17 1.1 0.81 0.62 0.45 0.23

MPI bucket 2048 15.83 4.1 3.25 2.49 0.1 1.15 0.85 0.69 0.66 0.1

Table 4.1 : RandomAccess performance on the Origin 2000 in MUPs per processor.

Each table presents results in MUPs per processor for seven variants of RandomAccess.

CAF vector of F90 ptrs.uses a vector of Fortran 90 pointers to represent co-array data.

CAF F90 pointeruses Fortran 90 pointers to directly access co-array data.CAF Cray

pointer uses a vector of integers to store the addresses of co-array data. A Cray pointer

is initialized in place to point to remote data and then used to perform an update.CAF

72

Version size per proc = 1MB size per proc = 256 MB

procs. 1 2 4 8 16 32 1 2 4 8 16 32

CAF vect. of F90 ptrs. 47.66 14.85 3.33 1.73 1.12 0.73 5.02 4.19 2.88 1.56 1.17 0.76

CAF F90 pointer 1.6 1.5 1.14 0.88 0.73 0.55 1.28 1.27 1.1 0.92 0.74 0.59

CAF Cray pointer 56.38 15.60 3.32 1.73 1.13 0.75 5.14 4.23 2.91 1.81 1.34 0.76

CAF shmem 4.43 3.66 2.03 1.32 0.96 0.67 2.57 2.44 1.91 1.39 1.11 0.69

CAF general comm. 1.83 1.66 1.13 0.81 0.63 0.47 1.37 1.34 1.11 0.81 0.73 0.52

OpenMP 58.91 15.47 3.15 1.37 0.91 0.73 5.18 4.28 2.96 1.55 1.17 —

MPI bucket 2048 59.81 21.08 16.40 10.52 5.42 1.96 5.21 3.85 3.66 3.36 3.16 2.88

Table 4.2 : RandomAccess performance on the Altix 3000 in MUPs per processor.

shmemusesshmem put andshmem get functions called directly from Fortran.CAF

general comm.uses the ARMCI functions to access co-array data.MPI bucket 2048is

bucketed MPI version with a bucket size of 2048 words.OpenMPuses the same fine-

grained algorithm as the CAF versions; it uses a private substitution table and performs

first-touch initialization of the global table to improve memory locality.

The best representations for fine-grain co-array accesses are the Cray pointer and the

vector of Fortran 90 pointers. The other representations, which require a function call for

each fine-grain access, yield inferior performance. TheMPI bucket 2048row is presented

for reference and shows that an algorithm with better locality properties and coarser-grain

communication clearly achieves better performance. It is worth mentioning that the buck-

eted MPI implementation is much harder to code compared to a fine-grain CAF version.

The OpenMP version of the benchmark performs as well as the best CAF version, due to

similar fine-grained access patterns.

Coarse-grain applications on shared-memory architectures

To evaluate our code generation strategy for codes with coarse-grain communication on

hardware shared-memory platforms, we selected two benchmarks, MG and SP, from the

NAS Parallel Benchmarks [12, 73], widely used for evaluating parallel systems.

73

We compare four versions of the benchmarks: the standard 2.3MPI implementation,

two compiler-generated CAF versions based on the 2.3 distribution, and the official 3.0

OpenMP [73] versions of SP and MG.CAF-clusteruses the Fortran 90 pointer co-array

representation and the ARMCI functions that rely on an architecture-optimized memory

copy subroutine supplied by the vendor to perform data movement. CAF-shmuses the

Fortran 90 pointer co-array representation, but uses Fortran 90 pointers to access remote

data. The OpenMP version of SP incorporates structural changes made to the 3.0 serial

version to improve cache performance on uniprocessor machines, such as fusing loops

and reducing the storage size for temporaries; it also uses a1D strategy for partitioning

computation that is better suited for OpenMP.

In the CAF versions, all data transfers are coarse-grain communication arising from

co-array section assignments. We rely on the back-end Fortran 90 compiler to scalarize the

transformed copies efficiently inCAF-shm. Sequential performance measurements used as

a baseline were performed using the NPB 2.3-serial release.

For each benchmark, we present the parallel efficiency of theMPI, CAF and OpenMP

implementations. On an Altix, we evaluate these benchmarksfor both thesingleanddual

processor configurations. Thesingleplacement corresponds to running one process per

dual-processor node; in thedualplacement two processes are run on both CPUs of a node,

sharing the local memory bandwidth. The experimental results for problem size class C are

shown on the Figures 4.7 and 4.8. For SP, both CAF versions achieve similar performance

— comparable to the standard MPI versions. For MG, theCAF-clusterversion performs

better than theCAF-shmversion. Since both versions use coarse-grain communication, the

performance difference shows that the architecture-tunedmemory-copy subroutine per-

forms better than the compiler scalarized data copy; it effectively hides the interconnect

latency by keeping the optimal number of memory operations in flight. TheCAF-cluster

version outperforms the MPI version for both the single and dual configurations. The re-

sults for the OpenMP versions are not directly comparable since they are based on version

3.0 source, but they are known to be well designed and tuned for OpenMP execution. The

74

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CAF−cluster, Altix 3000 single
CAF−shm, Altix 3000 single
MPI Altix 3000 single
OpenMP Altix 3000 single
CAF−cluster, Altix 3000 dual
CAF−shm, Altix 3000 dual
MPI Altix 3000 dual
OpenMP Altix 3000 dual

Figure 4.7 : Comparison of parallel efficiencies of the MPI, CAF with general communi-
cation, CAF with shared-memory communication, and OpenMP versions of the NAS SP
benchmark on an SGI Altix 3000.

OpenMP performance is good for a small number of processors (up to 8-9), but then tails

off compared to the MPI and CAF versions.

4.2.3 Cluster architectures

Without efficient communication, a parallel program yieldspoor performance and scalabil-

ity. On cluster architectures, communication vectorization and aggregation are essential to

increase the granularity of communication. An advantage ofCAF over other languages is

that communication vectorization can be conveniently expressed in the source code using

Fortran 90 triplet notations. Thus, programmers do not needto use temporary communi-

cation buffers to pack/unpack strided data. In reality, manual packing/unpacking provides

the best performance on some architectures due to inefficiencies of run-time libraries [47].

75

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CAF−cluster, Altix 3000 single
CAF−shm, Altix 3000 single
MPI Altix 3000 single
OpenMP Altix 3000 single
CAF−cluster, Altix 3000 dual
CAF−shm, Altix 3000 dual
MPI Altix 3000 dual
OpenMP Altix 3000 dual

Figure 4.8 : Comparison of parallel efficiencies of the MPI, CAF with general communi-
cation, CAF with shared-memory communication, and OpenMP versions of the NAS MG
benchmark on an SGI Altix 3000.

In [30], we identified that other transformations are usefulto increase performance.

The conversion of GETs into PUTs allows exploiting the RDMA capabilities of certain

interconnect,e.g., Myrinet 2000 [9], that have support for RDMA PUT, but not forGET.

Another benefit of this transformation is that a value can be PUT to the destination as soon

as it is produced. While the opportunities for automatic conversion are hard to identify by

the compiler, it is a code style recommendation to the programmers.

In our multi-platform performance evaluation study [47], we provided detailed analysis

of what transformations are necessary for CAF codes to matchthe performance of MPI

versions for NAS MG, SP, BT, CG, and LU. The experiments were performed on three

cluster architectures (see Section 3.3): the Alpha+Quadrics cluster, the Itanium2+Myrinet

cluster, and the Itanium2+Quadrics cluster. Here we summarize the results for NAS MG

76

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CAF Alpha+Quadrics
MPI Alpha+Quadrics
CAF Itanium2+Myrinet
MPI Itanium2+Myrinet
CAF Itanium2+Quadrics
MPI Itanium2+Quadrics

Figure 4.9 : Comparison of MPI and CAF parallel efficiency forNAS MG on Al-
pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

and BT. The complete results of our study can be found elsewhere [47].

The important optimizations for MG are: communication vectorization, point-to-point

synchronization, and using PUTs for communication. Figure4.9 illustrates that our CAF

version of NAS MG class C (5123, 20 iterations) achieves performance superior to that of

the MPI version on all three platforms. On the Alpha+Quadrics cluster, our CAF version

outperforms MPI by up to 16% (11% on 128 processors); on the Itanium2+Myrinet cluster,

the CAF version of MG exceeds the MPI performance by up to 30% (3% on 64 processors);

on the Itanium2+Quadrics cluster, MG CAF surpasses MPI by upto 18% (7% on 128

processors). The best-performing CAF version uses procedure splitting and non-blocking

communication.

The MPI implementation of NAS BT attempts to hide communication latency by over-

77

4 9 16 25 36 49 64 81 100 121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CAF Alpha+Quadrics
MPI Alpha+Quadrics
CAF Itanium2+Myrinet
MPI Itanium2+Myrinet
CAF Itanium2+Quadrics
MPI Itanium2+Quadrics

Figure 4.10 : Comparison of MPI and CAF parallel efficiency for NAS BT on Al-
pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadrics clusters.

lapping communication with computation, using non-blocking communication primitives.

The high-payoff code transformations for the CAF version are communication vectoriza-

tion, packing/unpacking of strided communication, and trade-off between communication

buffer space and amount of necessary synchronization. The performance achieved by the

CAF version of BT class C (1623, 200 iterations) is presented in Figure 4.10. On the Al-

pha+Quadrics cluster, the performance of the CAF version ofBT is comparable to that of

the MPI version. On the Itanium2+Myrinet cluster, CAF BT outperforms the MPI versions

by as much as 8% (and is comparable for 64 processors); on the Itanium2+Quadrics cluster,

our CAF version of BT exceeds the MPI performance by up to 6% (3% on 121 processors).

78

4.2.4 Point-to-point vs. barrier-based synchronization

The original CAF specification [87] had support only for barrier and team synchroniza-

tion. In our studies [47, 30, 31, 32], we demonstrated that itis necessary to use unidirec-

tional, point-to-point synchronization (notify and wait)to match the performance of MPI

codes; for instance, NAS CG class A showed up to 59% improvement for 64-processor runs

when using point-to-point synchronization instead of barriers. Point-to-point synchroniza-

tion provides two benefits over barrier-based synchronization. First, fewer synchronization

messages are required when each processor synchronizes with a small subset of neighbor

processors (nearest-neighbor communication). Second, point-to-point synchronization al-

lows more asynchrony in the sense that processors synchronize only with the necessary

subset of neighbors and the synchronization is not collective. On the contrary, a barrier

synchronizes all process images and every image is delayed waiting for the slowest one.

The updated CAF language specification [86] provides unidirectional point-to-point syn-

chronization primitives.

However, programming using point-to-point synchronization is hard. In Chapters 5, 6,

and 7, we develop a technique that would enable automatic conversion of barriers into

weaker point-to-point synchronization for a large class ofparallel codes.

4.2.5 Improving synchronization via buffering

We found that using extra communication buffers can reduce the amount of synchroniza-

tion, e.g., for X-, Y- and Z-sweeps in NAS SP and BT. In our study [31, 32],we presented

a hand-codedmulti-buffercommunication scheme for Sweep3D that exceeds the perfor-

mance of the MPI version by up to 10% on several architectures. Chapter 8 presents multi-

version variables (MVVs) that simplify development of suchapplications with producer-

consumer communication patterns by insulating programmers from the details of buffering

and pipelined synchronization. At the same time, experiments show that MVVs deliver the

performance of the best hand-optimized (multi-buffer) versions.

79

4.2.6 Performance evaluation of CAF and UPC

We performed a thorough comparison of CAF and UPC programming models [33] using

NAS benchmarks. The study revealed that it is much more difficult to match the perfor-

mance of MPI+Fortran codes in UPC in comparison to CAF. The main reason is that UPC

uses C as the target sequential language and does not supporttrue multi-dimensional array

abstraction. We compared the performance of MPI, CAF, and UPC versions of NAS MG,

CG, SP, and BT (see Section 3.3) on four parallel architectures (see Section 3.3): the Ita-

nium2+Myrinet cluster, the Alpha+Quadrics cluster, and the SGI Altix 3000 and the SGI

Origin 2000 shared-memory machines. We usedcafc to compile CAF codes and the

Berkeley and the Intrepid UPC compilers to compile the UPC versions of the benchmarks.

In the following, we summarize the results for the NAS MG and SP codes. A more detailed

description of our study and results can be found elsewhere [33].

Unified Parallel C Compilers

The Berkeley UPC (BUPC) compiler [28] performs source-to-source translation. It first

converts UPC programs into platform-independent ANSI-C compliant code, tailors the

generated code to the the target architecture (cluster or shared-memory), and augments

it with calls to the Berkeley UPC run-time system, which in turn, invokes a lower level

one-sided communication library called GASNet [17]. The GASNet library is optimized

for a variety of target architectures and delivers high performance communication by ap-

plying communication optimizations such as message coalescing and aggregation as well

as optimizing accesses to local shared data. We used both the2.0.1 and 2.1.0 versions of

the Berkeley UPC compiler in our study.

The Intrepid UPC (IUPC) compiler [71] is based on the GCC compiler infrastructure

and supports compilation to shared-memory systems including the SGI Origin, Cray T3E,

and Linux SMPs. The GCC-UPC compiler used in our study is version 3.3.2.9, with the

64-bit extensions enabled. This version incorporates inlining optimizations and utilizes the

GASNet communication library for distributed memory systems.

80

NAS MG

Figures 4.11 (a) and (b) present the performance of classes A(problem size2563) and

C (problem size5123) on an Itanium2 cluster with a Myrinet 2000 interconnect. The MPI

curve is the baseline for comparison as it represents the performance of the NPB-2.3 official

benchmark. TheCAF curve represents the efficiency of the fastest code variant written in

Co-array Fortran and compiled withcafc. To achieve high performance, theCAF code

uses communication vectorization, synchronization strength reduction, procedure splitting

and non-blocking communication. TheCAF-barrier version is similar toCAF, but uses

barriers for synchronization.

In Figure 4.11, theBUPC, BUPC-restrict, BUPC-strided, andBUPC-p2pcurves dis-

play the efficiency of NAS MG coded in UPC and compiled with theBUPC compiler.

The UPC implementation uses a program structure similar to that of theMPI version. All

UPC versions declare local pointers for each level of the grid for more efficient access to

local portions of shared arrays. TheBUPC-restrict, BUPC-p2pandBUPC-strideddiffer

from BUPCby declaring these local pointers as restricted, using the C99restrict key-

word, to improve alias analysis in the back-end C compiler.BUPCandBUPC-restrictuse

barriers for interprocessor synchronization;BUPC-p2pand BUPC-strideduse point-to-

point synchronization implemented at the UPC language level. BUPC, BUPC-restrictand

BUPC-p2puseupc memput for bulk data transfers;BUPC-strideduses UPC extensions

to perform bulk transfers of strided data.

The results show thatCAFhas an efficiency comparable to that ofMPI; theCAF-barrier

performance is similar to that ofMPI for small numbers of CPUs, but the performance de-

grades for larger numbers of processors. The originalBUPCversion is as much as seven

times slower thanMPI andCAF. We identified three major causes for this performance

difference. The principal cause is lower scalar performance due to source-to-source trans-

lation issues, such as failing to convey aliasing information to the back-end compiler and

inefficient code generated for linearized indexing of multi-dimensional data in UPC. Sec-

ond, using barrier synchronization when point-to-point synchronization suffices degrades

81

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)
MPI
CAF
BUPC
CAF−barrier
BUPC−restrict
BUPC−p2p
BUPC−strided

(a) MG class A on Itanium2+Myrinet

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
CAF−barrier
BUPC−restrict
BUPC−p2p
BUPC−strided

(b) MG class C on Itanium2+Myrinet

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
BUPC−restrict
BUPC−p2p

(c) MG class B on Altix 3000

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
IUPC

(d) MG class B on Origin 2000

Figure 4.11 : Comparison of MPI, CAF, and UPC parallel efficiency for NAS MG.

performance and scalability. Third, communicating non-contiguous data in UPC is cur-

rently expensive.

Source-to-source translation challenges.The following code fragment is for the

residual calculation,resid, which is computationally intensive.MPI, CAF, andCAF-

barrier use multi-dimensional arrays to access private data.

82

subroutine resid(u,v,r,n1,n2,n3,...)
integer n1,n2,n3
double precision u(n1,n2,n3),v(n1,n2,n3),r(n1,n2,n3),a(0:3)

! loop nest accounting for 33% of total walltime
r(i1,i2,i3) = v(i1,i2,i3) - a(0) * u(i1,i2,i3) - ...
...

end subroutine resid

The corresponding routine in the UPC versions uses C pointers to access the local parts

of shared arrays as shown below.

typedef struct sh_arr_s sh_arr_t;
struct sh_arr_s {

shared [] double *arr;
};

void resid(shared sh_arr_t *u, shared sh_arr_t *v,
shared sh_arr_t *r, int n1, int n2, int n3, ...) {

#define u(iz,iy,ix) u_ptr[(iz)*n2*n1 + (iy)*n1 + ix]
#define v(iz,iy,ix) v_ptr[(iz)*n2*n1 + (iy)*n1 + ix]
#define r(iz,iy,ix) r_ptr[(iz)*n2*n1 + (iy)*n1 + ix]

double *restrict u_ptr, *restrict v_ptr, *restrict r_ptr;
u_ptr = & u[MYTHREAD].arr[0];
v_ptr = & v[MYTHREAD].arr[0];
r_ptr = & r[MYTHREAD].arr[0];
// loop nest accounting for 60% of total walltime
r(i3, i2, i1) = v(i3, i2, i1) - a[0] * u(i3, i2, i1) - ...
...

}

If u were used to access shared local data via UPC’s run-time address resolution for

shared pointers [21, 28], the performance would suffer fromexecuting a branch per data

access. The use ofu ptr, a regular C pointer, enables the local portion of the sharedarray

u to be accessed without the need for run-time address resolution.

In Fortran,u is a subroutine argument and cannot alias other variables, while in C,

u ptr is a pointer. Hence, lacking sophisticated alias analysis,a C compiler conservatively

assumes thatu ptr can alias other variables. In turn, this prevents the C compiler from

doing some high-level loop nest optimizations. Using Rice’s HPCToolkit [100, 79] (a

suite of tools for profile-based performance analysis usingstatistical sampling of hardware

performance counters) we analyzed one-processor versionsof MG class B. We discovered

that theBUPCversion ofresid had 2.08 times more retired instructions and executed ten

83

times slower than its Fortran counterparts. For the entire benchmark, the performance of

theBUPCversion was seven times lower (144 vs. 21 seconds).

To inform the back-end C compiler thatu ptr does not alias other variables, we anno-

tated the declaration ofu ptr with the C99restrict keyword. Restricting all relevant

pointers inresid resulted in a 20% reduction in the number of retired instructions and

yielded a factor of two speedup for this routine. Usingrestrict for BUPC-restrict

where it was safe to do so resulted in a 2.3 times performance improvement, reducing the

execution time to 63 seconds, only three times slower than MPI instead of the original

factor of seven.

With CAF, we encountered a similar difficulty with overly conservative assumptions

about aliasing in back-end Fortran compilers when computing on the local parts of COM-

MON/SAVE co-arrays. In CAF, global co-arrays do not alias, but their pointer-based rep-

resentation does not convey this information to back-end Fortran compilers. To address

this problem, we developed a source-to-source transformation known as procedure split-

ting (see Section 4.1.5). This transformation eliminates overly conservative assumptions

about aliasing by transforming a pointer-based representation for co-array data into one

based on dummy arguments, which are correctly understood tobe free of aliases.

While alias analysis of UPC programs can be improved by having programmers or (in

some cases) UPC compilers add arestrict keyword, there is another fundamental issue

preventing efficient optimization of scientific C codes. TheFortran code snippet above uses

multi-dimensional arrays with symbolic bounds, expressedas specification expressions by

parameters passed to theresid subroutine. In UPC MG, the macrou creates the syn-

tactic illusion of a multi-dimensional array, but in fact, this macro linearizes the subscript

computation. C does not have the ability to indexu using a vector of subscripts. Thus, to

safely reorder such references during optimization, C compilers must perform dependence

analysis of linearized subscripts, which is harder than analyzing a vector of subscripts. This

tends to degrade the precision of dependence analysis, which limits the ability of C com-

pilers to exploit some high-level optimizations, and, thus, yields slower code. To estimate

84

the performance degradation due to linearized subscripts in C, we linearized subscripts

in a Fortran version ofresid. This change doubled the execution time of the Fortran

version ofresid and degraded the overall performance of MG class B by 30% on the

Itanium2+Myrinet cluster.

Point-to-point synchronization. In MG, each SPMD thread needs to synchronize

only with a small number of neighbors. While a collective barrier can be used to provide

sufficient synchronization, it provides more synchronization than necessary. Our experi-

ments show that unnecessary collective synchronization degrades performance on loosely-

coupled architectures. This effect can be seen in Figures 4.11 (a) and (b) by comparing

the efficiency of theBUPC-restrictandBUPC-p2pversions. We derivedBUPC-p2pfrom

BUPC-restrictby using a reference language-level implementation of point-to-point syn-

chronization. The performance boost is evident for the larger number of processors and

amounts to 49% for class A and 14% for class C in 64 processor executions. The class A

executions benefit more from using point-to-point synchronization because they are more

communication bound. A similar effect can be seen for CAF: for 64 processors,CAF-

barrier shows a 54% slowdown for class A and a 18% slowdown for class C.2

Non-contiguous data transfers. For certain programs, efficient communication of

non-contiguous data can be essential for high efficiency. For MG, the y-direction transfers

of BUPC-restrictare performed using several communication events, each transferring a

contiguous chunk of memory equal to one row of a 3D volume. TheBUPC-stridedversion

is derived fromBUPC-p2p. It moves data in the y-direction by invoking a library primitive

to perform a strided data transfer; this primitive is a member of a set of proposed UPC

language extensions for strided data transfers [18]. Even using Berkeley’s reference im-

plementation of the strided communication operation (as opposed to a carefully-optimized

implementation) yielded a 28% performance improvement ofBUPC-stridedoverBUPC-

p2p for class A on 64 processors and a 13% efficiency improvementsfor class C on 64

2In later studies (see Chapter 7), we eliminated redundant barriers and observed somewhat smaller im-

provements.

85

processors. The most efficient communication can be achieved by packing data into a con-

tiguous communication buffer and sending it as one contiguous chunk. A version that uses

packing is marginally more efficient thanBUPC-strided, thus, we do not show it on the

plot.

While in most cases using the UPC strided communication extensions is more con-

venient than packing and unpacking data on the source and destination, we found it more

difficult to use such library primitives than simply readingor writing multi-dimensional co-

array sections in CAF using Fortran 90 triplet notation, which cafc automatically trans-

forms into equivalent strided communication. For CAF programs, a compiler can automat-

ically infer the parameters of a strided transfer, such as memory strides, chunk sizes, and

stride counts; whereas in UPC, these parameters must be explicitly managed by the user.

Figure 4.11 (c) presents the performance results of NAS MG class B (problem size

2563) for the Altix 3000 architecture. TheMPI, CAF, BUPC, BUPC-restrict, andBUPC-

p2p curves are similar to the ones presented for the Itanium2+Myrinet 2000 cluster. We

used the same versions of the Intel Fortran and C compilers. Therefore, we expected similar

trends for the scalar performance ofMPI, CAF andBUPC. Indeed,MPI andCAFversions

show comparable performance, whileBUPC is up to 4.5 times slower andBUPC-restrict

is 3.6 times slower thanCAF. The efficiency of all programs is lower on this architecture

compared to that on the Itanium2+Myrinet2000 cluster, because in our experiments on the

Altix architecture we ran two processes per dual node, sharing the same memory bus.

For CAF, using barrier-based instead of point-to-point synchronization does not cause

a significant loss of performance on this architecture for 32or fewer processors. However,

for 64 processors, we observed a performance degradation of29% when CAF MG used

barriers for synchronization. For UPC,BUPC-p2poutperformsBUPC-restrictby 52% for

NAS MG on 64 processors.

Figure 4.11 (d) presents the performance results on the Origin 2000 machine for NAS

MG class B (problem size2563). The MPI curve corresponds to the original MPI ver-

sion implemented in Fortran. TheCAF curve gives the performance of the optimized CAF

86

version with the same optimizations as described previously, except that non-blocking com-

munication is not used, because the architecture supports only synchronous interprocessor

memory transfers. TheBUPCandIUPC curves describe the performance of the UPC ver-

sion of MG compiled with the Berkeley UPC and the Intrepid UPCcompilers, respectively.

TheCAF version slightly outperforms theMPI version due to more efficient one-sided

communication [48]. TheMPI version slightly outperformsBUPCwhich, in turn, slightly

outperformsIUPC. The MIPSPro C compiler, which is used as a back-end compilerfor

BUPC, performs more aggressive optimizations compared to the Intel C compiler. In fact,

using therestrict keyword does not yield additional improvement, because thealias

analysis done by the MIPSPro C compiler is more precise. Nonetheless, it is our belief that

the lack of multi-dimensional arrays in the C language prevents the MIPSPro C compiler

from applying high-level loop transformations such as unroll & jam and software pipelin-

ing, resulting in an 18% slowdown ofBUPCMG class B on one processor relative to the

one-processorMPI version. TheIUPC version was compiled with the Intrepid compiler

based on GCC [71], which performs less aggressive optimization than the MIPSPro com-

piler. Lower scalar performance of theIUPC version results in a similar 48% slowdown.

The one-processorBUPCversions of MG class A execute approximately 17% slower

than the correspondingCAF version (65 seconds vs. 55 seconds). To determine the cause

of this performance difference, we used SGI’sperfex hardware counter-based analysis

tool to obtain a global picture of the application’s behavior with regards to the machine

resources. A more detailed analysis using SGI’sssrun and Rice’s HPCToolkit led us to

conclude that theBUPC version completes 51% more loads than theCAF version. The

cause of this was the failure of the MIPSPro C compiler to apply loop fusion and align-

ment to the most computationally intensive loop nest in the application (in theresid()

routine). The MIPSPro Fortran compiler performed loop fusion and alignment. This re-

duced the memory traffic by reusing results produced in registers, which in turn improved

the software-pipelined schedule for the loop. We expect similar issues to inhibit the perfor-

mance of other less computationally intensive loops in the BUPC-compiled application.

87

NAS SP

Figure 4.12 (a) shows the parallel efficiency curves for NAS SP class C (problem size1623)

on the Itanium2+Myrinet2000 cluster. TheMPI curve serves as the baseline for compari-

son and represents the performance of the original NPB-2.3 SP benchmark. TheCAFcurve

shows the performance of the fastest CAF variant. It uses point-to-point synchronization

and employs non-blocking communication to better overlap communication with compu-

tation. TheBUPCandBUPC-restrictcurves show the performance of two versions of SP

compiled with the Berkeley UPC compiler.

The performance of theCAF version is roughly equal to that ofMPI. Similar to the

other UPC NAS benchmarks compiled using the back-end Intel Ccompiler, the scalar

performance suffers from poor alias analysis: the one-processor version ofBUPCclass C

is 3.3 times slower than the one-processorMPI version. Using therestrict keyword to

improve alias analysis yielded a performance boost: the one-processor version ofBUPC-

restrictclass C is 18% faster thanBUPC. The trend is similar for larger numbers of CPUs.

There is a conceptual difference in the communication implementation of the dimen-

sional sweeps inCAF andBUPC. The CAF implementation uses point-to-point synchro-

nization, while the UPC implementation uses split-phase barrier synchronization. In gen-

eral, it is simpler to use split-phase barrier synchronization; however, for NAS SP, point-to-

point and split-phase barrier synchronization are equallycomplex. Since barrier synchro-

nization is stronger than necessary in this context, it could potentially degrade performance.

Figure 4.12 (b) reports the parallel efficiency of theMPI, CAF, andBUPCversions of

NAS SP class C (problem size1623) on the Alpha+Quadrics platform. It can be observed

that the performance ofCAF is slightly worse than that ofMPI. We attribute this to the lack

of non-blocking notification support in the CAF run-time layer. The performance of the

BUPCversion is lower than that ofMPI due to worse scalar performance of the C code: it

is 1.4 times slower for one processor and increases to 1.5 times slower for 121 processors.

The use of therestrict keyword does not have any effect on performance because of

the high quality dependence analysis of the Alpha C compiler.

88

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
BUPC−restrict

(a) SP class C on Itanium2+Myrinet

1 4 9 16 25 36 49 64 81 100121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC

(b) SP class C on Alpha+Quadrics

1 4 9 16 25 36 49 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
BUPC−restrict

(c) SP class C on Altix 3000

1 4 9 16 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MPI
CAF
BUPC
IUPC

(d) SP class B on Origin 2000

Figure 4.12 : Comparison of MPI, CAF, and UPC parallel efficiency for NAS SP.

Figure 4.12 (c) shows the efficiency ofMPI, CAF, BUPC, andBUPC-restrictversions

of NAS SP class C (problem size1623) on the Altix 3000 system. The performance ofCAF

andMPI is virtually identical, whileBUPCis a factor of two slower on four processors (we

were not able to run the one-processor version due to memory constraints). Using the

restrict keyword improves performance by 17% on average.

Figure 4.12 (d) shows the parallel efficiency ofMPI, CAF, BUPC, andIUPC versions

of NAS SP for class B (problem size1023) on the Origin 2000 machine. The performance

89

of CAF is very close to that ofMPI. Both UPC versions have similar performance and are

slower thanMPI or CAF. Again, the difference is attributable to lower scalar performance.

For the one-processor SP class B,BUPCwas 57% slower thanMPI.

We observed that the one-processor BUPC-compiled version of SP class A executes ap-

proximately 43% slower than the correspondingMPI version. Using hardware performance

counters, we found that the BUPC-compiled version executedtwice as many instructions

as the CAF version.

A detailed analysis of this difference using HPCToolkit andSGI’s ssrun helped us

identify that a computation-intensive, single-statementloop nest present in both versions

was getting compiled ineffectively for UPC. In Fortran, theloop, which accesses multi-

dimensional array parameters, was unrolled & jammed to improve outer loop reuse and

software pipelined by the MIPSPro Fortran compiler. The corresponding UPC loop, which

accesses 1D linearized C arrays through pointers, was not unrolled or software pipelined

by the MIPSPro C compiler, leading to less efficient code. This more than doubled the

number of graduated instructions for the loop in theBUPCversion compared to theMPI

version.

The generated code for the Fortran loop was able to reuse not only floating point data,

but integer address arithmetic as well. We believe that thisspecific observation applies to

many of the single-statement computationally intensive loops present in SP’s routines. For

multi-statement loops, the difference in the number of executed instructions between the

UPC and MPI versions was not as significant. Such loops already have opportunities for

reusing address arithmetic and floating point values even without applying transformations

such as unroll & jam.

90

Chapter 5

Co-spaces: Communication Topologies for CAF

The co-array co-shape [86] defines how a co-array is mapped onto CAF program

images. It is defined by a declaration or allocation of a co-array variable, e.g.,

integer a[4,2,*]. The target image of each PUT/GET is specified for a co-array

access by using one or more co-subscripts [86] with bracket notation,e.g., a[1,2,3].

The co-shape maps a co-dimension subscript vector into a linear image index in the range

from 1 tonum images(). This index is used to identify the target image for a one-sided

communication operation. The co-shape “arranges” images into a virtualcommunication

topology, which is analogous to a Cartesian space without periodic boundaries.

While convenient for a limited number of applications that use processor decomposi-

tions of a Cartesian shape without periodic boundaries, a multi-dimensional co-shape is

not well suited to express other communication topologies.As a result, programmers of-

ten useneighbor arraysto store the target image indices of each image’s communication

partners. Neighbor arrays are used to implement commonly-used communication topolo-

gies. A neighbor array on imagep stores the image indices of the logical communication

partners with whomp communicates via PUT/GET. For example, in an application that

uses a 3D data decomposition onto processors, a 3-element vector successor of suc-

cessors and a 3-element vectorpredecessor of predecessors can be used to store the

image indices of logical successor and predecessor images along each of the coordinate

axes. The programmer can declare a co-array used for data exchange between images as

integer a[*] and use neighbor arrays to specify the target of one-sided communi-

cation,e.g., a[successor(dim)], wheredim ∈ [1, 3]. This idiom appears in many

scientific CAF codes such as NAS benchmarks and Sweep3D.

91

Neighbor arrays can express an arbitrary communication topology; however, they have

two major disadvantages. First, they are not standardized and they are typically used to im-

plement commonly used topologies in an ad-hoc way. This imposes the burden of topology

implementation on programmers. Second, neighbor arrays complicate compiler analysis of

communication patterns, because they are initialized and used explicitly, and it is hard to

infer the properties of the communication topology from theinitialization code and com-

munication structure from their usage.

We explore using communication topologies to replace multi-dimensional co-shapes in

CAF. We focus on three commonly used communication topologies: group, Cartesian, and

graph, inspired by MPI communicators and process topologies [112, 62]. We call CAF

communication topologiesco-spacesby analogy with CAF’s co-dimension, co-rank, co-

shape, etc., co-array terminology [86]. Co-spaces are CAF programming model objects,

in the sense that they can be a part of the language or run-timelibrary and compiler (see

Section 5.5), that take the place of ad-hoc neighbor arrays.They provide a mapping from a

virtual communication topology to the linear image number in the range[1, N], whereN is

the total number of images. This number can be used to specifythe target image of not only

communication, but also synchronization or a co-function invocation (see Chapter 9). The

goal of co-spaces is to improve programmability by providing commonly used reusable

abstractions to programmers. Besides, co-spaces expose the information about the com-

munication topology and communication partners to a CAF compiler which enables global

program analysis (see Chapter 6) and powerful communication and synchronization opti-

mization such as synchronization strength reduction (see Chapter 7).

In the rest of this chapter, we discuss CAF co-shapes in more detail and formalize the

concept of group, Cartesian, and graph co-spaces. Chapters6 and 7 describe how co-spaces

help the global analysis and optimization of CAF programs.

92

5.1 Communication topologies in CAF

Each co-array declaration/allocation in CAF defines a co-array co-shape [86] that can

be thought of as a Cartesian communication topology or processor space. For instance,

integer a(10,10)[*] defines co-arraya that has a 1D Cartesian communication

topology without periodic boundaries where each image is identified by a unique num-

ber from 1 tonum images(). The declarationinteger b(100)[N,*] specifies a

co-array with a 2D Cartesian processor decomposition without periodic boundaries where

images are arranged into a virtual 2D array of processors in column-major order. A part

of b is associated with each process image that is identified by a pair of coordinates(i, j)

in a 2D Cartesian processor space with dimensionsN andM , whereM is the minimum

number such thatN ×M ≥ num images(). The legal coordinate values are1 ≤ i ≤ N

and1 ≤ j ≤ M with an additional constraint onj: the process image indexp, computed

asp = (i − 1) + N × (j − 1) + 1, must not exceed the number of images. For example,

if the total number of images is three and a co-array is declared asa[2,*], the legal co-

dimension indices are:(1, 1) corresponding to process image index1, (2, 1) to 2, (1, 2) to

3. However, referencing image(2, 2), which corresponds to process image index4, causes

a critical run-time error. The topology is incompletely filled in the sense that coordinate

(2, 2) is legal in the virtual topology, but there is no process image associated with it. This

inconsistency would require programmers to implement extra logic to address corner cases

for communication. To date, we have not seen an application that uses such an incompletely

filled co-shape. Additional details of CAF co-space semantics can be found in [86].

We summarize the weaknesses of the CAF’s multi-dimensionalco-shape before for-

malizing the concept of co-spaces that, we think, is a betterabstraction to express the target

of one-sided communication in many CAF applications.

• As mentioned above, a co-array co-shape provides only one communication topology

type – a Cartesian processor grid without periodic boundaries. To express any other

type of topology, programmers declare co-arrays with only one co-dimension and

typically use neighbor arrays that provide the mapping fromthe application’s virtual

93

topology into the image index. This approach is ad-hoc and error-prone.

• A co-shape may be incompletely filled if the product of all co-dimensions is not equal

to the number of process images, which requires extra programming logic to handle

special cases.

• A co-shape is not inherited across a procedure call. It has tobe redeclared afresh in

each subroutine for each co-array dummy argument. Usually,the co-shape informa-

tion is passed as extra arguments to the subroutine.

• The target images of point-to-point and team synchronization [86] are specified dif-

ferently than those of communication. Synchronization primitives accept only image

indices; the co-shape does not exist for them. Programmers can use neighbor ar-

rays or theimage index intrinsic function [86] to obtain the target image of a

synchronization event, whereimage index(a,sub) returns the process image

index corresponding to to the set of co-subscriptssub for co-arraya. Both of these

approaches are cumbersome.

• A co-shape can be used to specify the target of a co-subroutine/co-function invoca-

tion discussed in detail in Chapter 9.

• A co-shape is defined across all process images. It is not useful for expressing com-

munication topologies for subsets of process images.

• Co-shape Cartesian coordinates are global. Many codes are better expressed using

coordinates relative to each image. For example, consider an application based on

nearest-neighbor communication. It is easier and more intuitive to think about the

communication partners in relative terms,e.g., my left neighbor, my right neighbor,

etc. Theimage index intrinsic can be used for Cartesian topologies without peri-

odic boundaries; otherwise, a natural choice is to use neighbor arrays.

• Because co-shapes are not expressive enough, programmers have to use neighbor

94

arrays to specify communication target images. The communication topology in-

formation specified using a neighbor array is known to the programmer, but nearly

impossible to infer automatically by a CAF compiler. However, understanding com-

munication topology is essential for analysis and optimization of communication &

synchronization.

General inconvenience and complication of compiler analysis when communication is

expressed via co-array co-shapes and neighbor arrays forced us to rethink the organization

of process topologies in CAF. We believe that more general and reusable group, Cartesian,

and graph co-spaces will simplify programming of many CAF codes and enable program

analysis by exposing the properties of communication topologies and PUT/GET targets to

CAF compilers.

5.2 Co-space types

The MPI standard [112, 62] has extensive support for communicators and process topolo-

gies using a design based on years of experience. We leveragethese ideas to design group,

Cartesian, and graphco-spaces– virtual communication topologies in CAF. A co-space

is a CAF object that represents a virtual communication topology. In essence, co-spaces

encapsulate the same information as the neighbor arrays, but they do this in a systematic

way. Each co-space object represents an ordered group of images that might have a logical

structure overlaid on the members of the group. For a Cartesian co-space, this structure

can be a Cartesian topology with or without periodic boundaries. For a graph co-space, the

relation among images is determined by a directed graph. In addition, a group co-space

enables the programmer to permute the image indices of an existing co-space group or to

specify a subset of a process group. Each co-space type has a well-defined interface, pre-

sented below. The interface includes functionality for creating and destroying co-spaces

and a number of topology query functions such as membership and neighbor relationship.

Each co-space has a group of member images ordered by their unique rank. The size

of a co-space is the size of its group. Each member has a uniquerank from the interval

95

[0, N−1], whereN is the group size. Each member is a real image with the index from the

[1, num images()] range. The image index is used to specify the target image of PUT/GET

or synchronization. A co-space provides a mapping from the group rank to the image

index. For example, group ranks 0, 1, and 2 may correspond to image indices 1, 4, and

7. In addition, the group co-space allows permutation of themembers of the group. For

example, group ranks 0, 1, and 2 may correspond to image indices 7, 1, and 4. A new co-

space can be created by a collective operation among the members of an existing co-space.

There is a predefinedCAF WORLD co-space that includes all process images from 1

to num images() ordered according to their ranks from 0 tonum images()−1. It

corresponds to a co-array declaration with one co-dimension and the lower bound of 0,

e.g., a(10)[0:*]. CAF WORLD has the topology of a 1D Cartesian co-space without

periodic boundaries.

We use the following notation for the co-space specification:

• Each function is prefixed withCSto provide the co-space interface namespace.

• A co-space parameter of typetype(XXX) can be of any co-space type:

type(Group) for group co-space,type(Cartesian) for Cartesian, or

type(Graph) for graph; or the parameter can also beCAF WORLD.

• An argument in brackets,e.g., [x], is optional. Notation[x=a]means that optional

argumentx has default valuea. In particular,image=this image() means that

the optional argumentimage is not present, and its value is the index of the invoking

process image.

• NOERROR is an integer constant that indicates that a function call was successful.

• NORANK is an integer constant that indicates that there is no rank associated with an

image.

• NOIMAGE is an integer constant that indicates that the image does notexists.

96

Most functionality of the group co-space management is the same for Cartesian and

graph co-spaces, and we describe it only for the group co-space.

5.2.1 Group

This section formalizes the interface functions for group co-spaces.

• CS Create
integer function CS Create(cs, ecs, member, [rank])

type(Group), intent(out) :: cs
type(XXX), intent(in) :: ecs
logical, intent(in) :: member
integer, intent(in), optional :: rank

Creates a new group co-space objectcs; returnsNOERROR if successful. Only im-

ages of an existing co-spaceecs participate in the collective call. Ifmember is

equal to.true., the invoking image becomes a member of the new co-space with

the rank equal torank. rank determines the rank of the image in the group and

can define a permutation of group members. If rank is not specified, the ordering

of images incs is consistent with their ordering in theecs group. rank must be

unique for each member ofcs. rank determines the ordering of the image in the

group and must be in the range from 0 toCS Size(cs)−1, whereCS Size(cs)

returns the size of the group.

• CS Destroy

subroutine CS Destroy(cs)
type(XXX), intent(inout) :: cs

Destroys the co-space objectcs of any type. Ifcs is CAF WORLD, it is a critical

run-time error.

• CS Image
integer function CS Image([cs=CAF WORLD], [rank])

type(XXX), intent(in), optional :: cs
integer, intent(in), optional :: rank

97

Returns the image index for the group member with rankrank. rank must be in

[0,CS Size(cs)−1] range. Ifrank is not specified, it is assumed to be the rank

of the invoking image returned by theCS Rank(cs) function, so a call without the

rank argument is equivalent to CAF’sthis image() intrinsic.

• CS Rank
integer function CS Rank([cs=CAF WORLD], [image=this image()])

type(XXX), intent(in), optional :: cs
integer, intent(in), optional :: image

Returns the co-space group rank of process image with indeximage. Returns

NORANK if the image is not a member ofcs. If image is not specified, the in-

voking image is assumed.

• CS Size
integer function CS Size([cs=CAF WORLD])

type(XXX), intent(in), optional :: cs

Returns the size of the co-spacecs.

• CS IsMember
logical function CS IsMember(cs, [image=this image()])

type(XXX), intent(in) :: cs
integer, intent(in), optional :: image

Returns.true. if the process image with indeximage is a member of the co-

spacecs. If co-space objectcs is uninitialized,CS IsMember returns.false..

• CS Group
subroutine CS Group(cs, images)

type(XXX), intent(in) :: cs
integer, intent(out) :: images(*)

Fills theimages array argument with the indices of co-spacecs images in the order

of their member ranks. The array should be sufficiently long,at leastCS Size(cs),

to fit all image indices.

98

5.2.2 Cartesian

This section formalizes the interface functions for Cartesian co-spaces.

• CS Create
integer function CS Create(cs, ecs, numDims, dims, [periods],
[order])

type(Cartesian), intent(out) :: cs
type(XXX), intent(in) :: ecs
integer, intent(in) :: numDims
integer, intent(in) :: dims(numDims)
integer, intent(in), optional :: periods(numDims)
integer, intent(in), optional :: order

Creates a new Cartesian co-space objectcs; returnsNOERROR if successful. Only

images of an existing co-spaceecs participate in the call. Each member ofecs

becomes a member ofcs with the same group rank.numDims, dims, periods,

andorder must be the same on every invoking image. ThenumDims is the num-

ber of dimensions of the Cartesian topology; it must be positive. The size of each

dimension is determined by thedims(i), 1 ≤ i ≤numDims; it must be positive.

dims(1:numDims) defines the shape of the Cartesian topology in the column-

major order. The product of all dimensions must be equal to the number ofcs group

members. Ifperiods(i) is equal to.false., dimensioni is not periodic; oth-

erwise, it is periodic. Ifperiods is not specified, all dimensions are assumed to

be periodic. The optional parameterorder determines the arrangement of dimen-

sions. It can be eitherCS ColumnMajor or CS RowMajor. As the names imply,

the first corresponds to the column-major order, the second –to the row-major order.

The default order is row-major.

• CS Neighbor for one axis
integer function CS Neighbor(cs, axis, offset, [image=this image()])

type(Cartesian), intent(in) :: cs
integer, intent(in) :: axis
integer, intent(in) :: offset
integer, intent(in), optional :: image

Returns the image index of theoffset-th Cartesian neighbor along the dimension

axis. axis must have the value in[1, N], whereN is the number of dimensions.

99

Theoffset can be positive, negative, or zero. The offset of zero corresponds to the

coordinates of the invoking image and the function returns the index of the invoking

image. If dimensionaxis is not periodic and the neighbor does not exist, the call

returnsNOIMAGE.

• CS Neighbor for several axes
integer function CS Neighbor(cs, offsets, [image=this image()])

type(Cartesian), intent(in) :: cs
integer, intent(in) :: offsets(*)
integer, intent(in), optional :: image

Returns the image index of the Cartesian topology member specified by the offset

vectoroffsets. offsets(i) is the offset along dimensioni, 1 ≤i≤ N , where

N is the number of the topology dimensions. If the member does not exist, the call

returnsNOIMAGE.

• CS GetNumDimensions
integer function CS GetNumDimensions(cs)

type(Cartesian), intent(in) :: cs

Returns the number of dimensions of the Cartesian topology.

• CS GetDimensions
subroutine CS GetDimensions(cs, dims)

type(Cartesian), intent(in) :: cs
integer, intent(out) :: dims(*)

Fills the integer arraydims with the dimension sizes of the Cartesian co-spacecs.

• CS GetPeriods
subroutine CS GetPeriods(cs, periods)

type(Cartesian), intent(in) :: cs
logical, intent(out) :: periods(*)

Fills the logical arrayperiods with the periods of the Cartesian co-spacecs.

• CS CartCoords
subroutine CS CartCoords(cs, coords, [image=this image()])

type(Cartesian), intent(in) :: cs
integer, intent(out) :: coords(*)
integer, intent(in), optional :: image

100

Returns the integer arraycoords of the imageimage coordinates in the Cartesian

co-spacecs; the lower bound of each dimension is 0.

• CS HasNeighbor for one axis
logical function CS HasNeighbor(cs, axis, offset,
[image=this image()])

type(Cartesian), intent(in) :: cs
integer, intent(in) :: axis
integer, intent(in) :: offset
integer, intent(in), optional :: image

Returns.false. if CS HasNeighbor(cs,axis,offset,image) returns

NOIMAGE; otherwise, returns.true.. In other words, returns.true. iff the

neighbor with offsetoffset along dimensionaxis exists.

• CS HasNeighbor for several axes
logical function CS HasNeighbor(cs, offsets, [image=this image()])

type(Cartesian), intent(in) :: cs
integer, intent(in) :: offsets(*)
integer, intent(in), optional :: image

Returns .false. if CS HasNeighbor(cs,offsets,image) returns

NOIMAGE; otherwise, returns.true..

5.2.3 Graph

A graph communication topology is an arbitrary distributeddirected multi-graphG =

(V, E). The vertices of the graph are the process images ofcs. Each edgee =

(p1, p2, 〈c, ic〉) from imagep1, p1 ∈ V , to imagep2, p2 ∈ V , is classified by a pair of

“coordinates”: edge classc and indexic within the class. An edgee represents a potential

one-sided communication or synchronization operation executed by imagep1 and directed

towards imagep2. Note that an undirected edge can be expressed with two corresponding

directed edges, potentially doubling the memory requirement. However, most real codes

benefit from directional edges, and we do not provide an interface for the support of undi-

rected edges. The intent of the edge classc is to group edges of the same type and index

101

them withinc via edge indexic. This is useful for expressing communication for a gener-

alized block data distribution (see Section 5.3 for a detailed example).

• CS Create
integer function CS Create(cs, ecs, numNbrs, nbrs,
[numClasses=1])

type(Graph), intent(out) :: cs
type(XXX), intent(in) :: ecs
integer, intent(in) :: numNbrs(numClasses)
integer, intent(in) :: nbrs(*)
integer, intent(in), optional :: numClasses

Creates a new graph co-space objectcs; returnsNOERROR if successful. Only im-

ages of an existing co-spaceecs participate in the call. Each member ofecs be-

comes a member ofcs with the same rank. Each invoking imagep specifies a local

part of the graph – all graph edges emanating fromp. The collective co-space cre-

ation operation may reconstruct the entire distributed graph.

numClasses specifies the number of edge classes. Each edge class is a unique

number from[1,numClasses]. For each edge classc, there arenumNbrs(c)

outgoing edgesTc with edge indicesic, ic ∈ [1, numNbrs(c)]. The source of

each edgee, e ∈ Tc, is the invoking imageI. The nbrs image array specifies

the sink of every edgee, e ∈ Tc. Let Sc be the start position of classc edge

sinks innbrs, thenS1 = 1, Sc = Sc−1 + numNbrs(j), c > 1. Therefore, set

Tc = {e|e = (I, nbrs(Sc + ic − 1), 〈c, ic〉), ic ∈ [1, numNbrs(c)]}. SetT of all

outgoing edges isT =
⋃

c∈[1,numClasses] Tc.

• CS Neighbors
subroutine CS Neighbors(cs, nbrs, [classid=1], [dir=successor],
[nbrIndex], [image=this image()])

type(Graph), intent(in) :: cs
integer, intent(out) :: nbrs(*)
integer, intent(in), optional :: classid
integer, intent(in), optional :: dir
integer, intent(in), optional :: nbrIndex
integer, intent(in), optional :: image

The subroutine identifies a set of edgesW according to the argument values. It

returns the arraynbrs with process image indices for the set of process images

102

D that are the end points ofW edges. The parameterdir determines whetherD

consists of sources or sinks ofW edges. Ifdir is equal tosuccessor, D consists

of edge sinks:D = {∀w ∈ W |sink(w)}. If dir is equal topredecessor, D

consists of edge sources:D = {∀w ∈ W |source(w)}. The default value ofdir is

successor.

If dir is equal tosuccessor, W consists of edges emanating from process image

I with indeximage that have edge classclassid and edge indexnbrIndex. If

nbrIndex is not present,W consists of all such edges with classclassid. In

this case,D consists of the same neighbor image indices in the same orderthat were

specified to the co-spacecs creation call on imageimage for edge classclassid.

If nbrIndex is present,W contains a single edge (or it is an empty set) correspond-

ing to a potential one-sided operation;CS Neighbor function can be used to more

conveniently retrieve this single image index.

If dir is equal topredecessor, W consists of edges with sinkI, edge class

classid, and class indexnbrIndex. Note that there can be several incoming

edges for a pair ofclassid andnbrIndex and the order of these edges is not

defined. ItnbrIndex is not present,W consists of all edges with sinkI and edge

classclassid.

• CS GetNumNeighbors
integer function CS GetNumNeighbors(cs, [classid=1],
[dir=successor], [nbrIndex], [image=this image()])

type(Graph), intent(in) :: cs
integer, intent(in), optional :: classid
integer, intent(in), optional :: dir
integer, intent(in), optional :: nbrIndex
integer, intent(in), optional :: image

Returns the number of neighbor images in thenbrs array returned by the

CS Neighbors(cs,nbrs,classid,dir,nbrIndex,image) call.

103

• CS Neighbor
integer function CS Neighbor(cs, nbrIndex, [classid=1],
[image=this image()])

type(Graph), intent(in) :: cs
integer, intent(in) :: nbrIndex
integer, intent(in), optional :: classid
integer, intent(in), optional :: image

Returns the neighbor image returned in thenbrs array by the

CS Neighbors(cs,nbrs,classid,successor,nbrIndex, image)

call. If the nbrs array is empty (neighbor does not exist), the call returns

NOIMAGE. This function can be used to specify the target of one-sidedoperation

more conveniently than usingCS Neighbors subroutine.

5.3 Co-space usage examples

Group co-space

Group co-space can be used to create a group of images. This isparticularly useful for

coupled applications such as the Community Climate System Model (CCSM) [50] that

operate in independent but interacting groups of images. A Cartesian or graph co-space can

further be used to impose additional communication topology structure on these groups.

Group co-space can be used to create an alternative numbering of images if the one pro-

vided by the run-time library at startup is not satisfactory. A typical example is a mapping

of processes on a cluster with dual-processor nodes. Duringour experiments, we encoun-

tered a problem that the cluster job scheduler assigned image numbers by binding processes

to processors in the following order:n1 : 1, n2 : 1, . . . , nk : 1, n1 : 2, . . . , nk : 2, where

ni : j denotesj-th processor of thei-th node. However, the ordering that yields better

performance isn1 : 1, n1 : 2, n2 : 1, n2 : 2, . . . , nk : 1, nk : 2. Group co-spacemyworld

can be created as shown in the following pseudocode and can beused later to specify the

target images of one-sided operations.

104

myRank = CS Rank(CAF WORLD)
numProcs = CS Size(CAF WORLD)
if (myRank < numProcs/2)

myNewRank = myRank * 2
else

myNewRank = (myRank-numProcs/2)*2+1
end if
call CS Create(myworld, CAF WORLD, .true., myNewRank)

Cartesian co-space

This is the most commonly used co-space type. For example, 2DJacobi iteration may use

a 2D Cartesian co-space with periodic boundary conditions and dimensionsN×M . Such

a co-space can be constructed via

call CS Create(cart NxM, CAF WORLD, 2, (/ N,M /))

The neighbors can be obtained via theCS Neighbor function,e.g., the left neighbor

is CS Neighbor(cart NxM, 1, -1).

Programmers might find it convenient to use a preprocessor todeclare shorter and

more intuitive macros to specify the target for common communication successors. For

example,left(cart NxM) can be used to specify the left neighbor in a Cartesian

co-space. It can be defined as theCS Neighbor(cart NxM, 1, -1) macro. Sim-

ilarly, right(cart NxM) can be defined asCS Neighbor(cart NxM, 1, 1),

up(cart NxM) can be defined asCS Neighbor(cart NxM, 2, 1), etc.

Graph co-space

Graph co-space can be used to express arbitrary communication topologies, for instance, a

sum reduction in the NAS CG benchmark for a group of images, a transpose communica-

tion pattern for a 1D FFT [1], or the communication pattern for an unstructured mesh.

Graph co-space can also be used to express a communication topology for generalized

block data decompositions. Figure 5.1 shows an example of such 2D decomposition in

which the data is distributed in such a way that each process imagei is given a single data

105

Figure 5.1 : An example of a generalized block distribution.

block denoted viai. One can use graph co-space to represent communication partners and

express a shadow-region exchange, using edge classes to group all communication partners

in the same spatial direction. For a 2D generalized block data decomposition, class 1 can

stand for all communication partners on the left, 2 – on the right, 3 – on the top, and 4

– on the bottom. Figure 5.2 shows the code for graph co-space creation on image5 and

! co-space setup
numClasses = 4 ! 1 is left, 2 is right, 3 is up, 4 is bottom
if (CS Image()==5) then

numNbrs = (/ 1, 3, 2, 2 /) ! the number of neighbors for each class 1-4
nbrs = (/ 4, 6, 7, 11, 2, 3, 9, 10 /) ! neighbor images of image 5

end if
... ! set up neighbors on other images
call CS Create(cs, CAF WORLD, numClasses, numNbrs, nbrs)

! shadow region exchange
call sync all()
do class = 1, 4 ! for every spatial direction

do ni = 1, CS GetNumNeighbors(cs, class) ! for every neighbor index
nbr = CS Neighbor(cs, ni, class) ! the communication partner
! perform communication; slb, sub - remote bounds; llb, lub - local bounds
A(slb1(class,ni):sub1(class,ni), slb2(class,ni):sub2(class,ni))[nbr]=

A(llb1(class,ni):lub1(class,ni), llb2(class,ni):lub2(class,ni))
end do

end do
call sync all()

Figure 5.2 : Shadow region exchange for a 2D generalized block data distribution.

106

shadow region exchange. Arraysslb1, slb2, sub1, andsub2 contain the bounds of

shadow regions on neighbor images; arraysllb1, llb2, lub1, andlub2 arrays contain

the bounds of the communicated tile inner data.

5.4 Properties of co-space neighbor functions

A one-sided operationO with the target expressed via theCS Neighbor function corre-

sponds to an edge in the directed graph that represents either Cartesian or graph communi-

cation topology. Let imagep be the source and imageq be the sink of this edge. Below,

we show properties of theCS Neighbor function that are essential for determining the

source ofO. Chapter 6 shows how, using these properties, to determine the origin image(s)

of O for several communication patterns common for scientific codes. In turn, Chapter 7

uses the origin image information to convert barriers into point-to-point synchronization.

Cartesian co-space.

Let q=CS Neighbor(cs,axis,offset,p). If q is not equal toNOIMAGE, then

CS Neighbor(cs,axis,-offset,q) returnsp.

In other words, if image p performs O to image q specified via

CS Neighbor(cs,axis,offset), then imageq is able to compute the origin

image ofO via CS Neighbor(cs,axis,-offset), which returnsp.

Similarly, letq=CS Neighbor(cs,offsets,p). If q is not equal toNOIMAGE,

thenCS Neighbor(cs,-offsets,q) returnsp.

Graph co-space.

Let q=CS Neighbor(cs,idx,classid,p). If q is not equal toNOIMAGE, then

execution ofCS Neighbors(cs,srcNbrs,classid, predecessor,idx,q)

returns the setsrcNbrs of images that are the source points of edges with class

classid, class indexidx, and sinkq;

and p ∈ srcNbrs. Clearly, for each member imagesrcNbrs(i), where

107

i∈[1,CS GetNumNeighbors(cs,classid,predecessor,idx,q)],

CS Neighbor(cs,idx,classid,srcNbrs(i)) returnsq.

5.5 Implementation

The co-space abstraction is a powerful concept and, in our opinion, should be included

into the CAF programming model. There are two feasible options. First, co-spaces can be

CAF language abstractions. This choice would make the concept available in every imple-

mentation of a CAF compiler, but it would also require more implementation effort from

vendors. Second, the co-space abstraction can be implemented as a standard CAF module.

A CAF compiler; however, must understand the semantics of co-space interface functions

to perform program analysis and optimization. Under this approach, some CAF compilers

might not provide co-space abstraction support. In our opinion, more programmers’ ex-

perience with co-spaces and more vendor CAF compiler implementations are required to

make co-spaces a part of the CAF language.

Co-spaces expose topological properties of a group of images to the compiler. The

information about local state is available to every image. However, the state on remote

images,e.g., edges of a graph co-space, is not. The co-space interfaces are not designed

to enforce any implementation decisions or how much of the distributed state should be

cached locally. The first choice is to cache all distributed state locally on every image,e.g.,

during co-space creation. This would eliminate the overhead of contacting other images

during remote information lookup. On the other hand, it might not be a feasible solution

for massively parallel machines, because the representation of the relation could be large.

The second choice is not to cache any information locally andcontact remote images when

necessary; however, with this option the overhead might be high. Alternatively, a dynamic

caching scheme can be used to remember only some co-space properties of remote im-

ages,e.g., s set of graph co-space neighbors of remote images that wereretrieved during

execution.

We extendedcafc with a prototype support for group, Cartesian, and graph co-

108

spaces. The implementation uses a Fortran 95 module to declare the co-space types:

type(Group) for group,type(Cartesian) for Cartesian, andtype(Graph) for

graph co-spaces. Each type has only oneinteger(8) field that is an opaque handle stor-

ing a pointer to the run-time co-space representation. The co-space interface functions are

module subroutines; Fortran 95 module interfaces allow us to have several functions with

the same name via overloading. The module subroutines are thin wrappers around C func-

tions that implement the co-space logic. The current implementation of graph co-spaces

caches the entire graph locally when a graph co-space is created.

We used co-spaces to express communication in Jacobi iteration and NAS MG and

CG benchmarks. These codes were successfully optimized by the SSR optimization and

yielded performance comparable to that of hand-coded versions with point-to-point syn-

chronization. The details of SSR and experiments can be found in Chapter 7.

109

Chapter 6

Analyzing CAF Programs

CAF is an explicitly-parallel SPMD programming language. The programmer has great

flexibility in data partitioning, communication, and synchronization placement as well as

full control over the partitioning of computation. However, CAF is impenetrable to com-

piler analysis under the current language specification, making CAF programmers share

the burden of optimizing CAF codes for portable high performance.

6.1 Difficulty of analyzing CAF programs

To analyze communication and synchronization in explicitly-parallel CAF programs, a

compiler needs to relate control flow and reason about valuesof several program images.

This is a difficult task, undecidable in the general case, because parallel control flow and

each image values are defined by the programmer via variablesthat are local to each im-

age. CAF offers very few opportunities to infer facts about other images from purely local

information.

We focus on inferring the communication structure that is typical for a large class of

scientific codes. Namely, nearest-neighbor codes where each process image communicates

to a small subset of process images. We concentrate on detecting communication events

(PUTs/GETs) that are executed by all images of a co-space1, where the target image index

is expressed via a co-spaceCS Neighbor function with arguments that are the same on

each process image of the co-space. Under certain conditions, such statements can be

converted from one-sided PUTs/GETs synchronized with barriers into more efficient two-

sided communication, which does not need barriers. In such cases, surrounding barriers

1Co-spaces are communication topologies explained in Chapter 5.

110

may be automatically removed from the code to yield better asynchrony tolerance and

higher performance. To make such analysis possible, we explore extending CAF with two

language constructs based on features in the Titanium language [66] in addition to the co-

spaces introduced in Chapter 5.

6.2 Language enhancements

We explore extending CAF with two new CAF constructs: textual group barrier and group

single-valued coercion operator. A textual group barrier ensures that all processes of a pro-

cess group execute the same instance of the barrier. Group single-valued coercion operator

specifies that a value is the same on every process that is a member of the group. A group

is defined by a co-space of any type; we use term co-space and group interchangeably.

6.2.1 Textual group barriers

A global textual barrier is a synchronization primitive introducedin the Titanium lan-

guage [66]. A global textual barrier must be executed by all processes and all processes

must execute the same barrier statement. In a strongly typedlanguage such as Tita-

nium [66], it is possible to statically verify whether a program using only global textual

barriers for synchronization is deadlock free. However, global textual barriers require that

all processes execute the same barrier statement, which is a serious limitation for applica-

tions such as CCSM [50], working as a collection of independent but interacting groups of

processes. Without strong type system in CAF, it is not possible to statically verify whether

all global barriers are textual. Nonetheless, it is possible to detect some instances of textual

barriers that may cause a deadlock.

The limitation of the global textual barriers and the lack ofstrong type system in CAF

suggest thattextual group barriersshould be used for synchronization. A textual barrier

of a co-spacecs is a barrier statement that must be executed by all process images of co-

spacecs. It is specified in the program viacall barrier(cs), and we denote it as

Bcs. A textual co-space barrier means that all process images ofthe co-space participate in

111

the barrier and signal arrival at the barrier by executing the same program statement. The

compiler, in turn, can infer that some program statements,e.g., in the same basic block as

the barrier statement, are also executed by all process images of the co-space.

In CAF, a barrier has an implicit memory fence associated with it, so textual co-space

barriers are statements at which the memories of all co-space images becomeconsistent.

Consistency across the memories means that all accesses to shared variables issued before

the barrier have completed; such an access is a local co-array access, a GET, or a PUT.

A barrier satisfies all data dependencies between all co-space images (inter-image data

dependencies) and this fact is known by all co-space images upon return from a barrier call.

We will rely on this observation in Chapter 7 to optimize synchronization while preserving

program correctness by satisfying all inter-image dependencies using asymptotically more

efficient point-to-point synchronization.

6.2.2 Group single values

The concept ofsingle-valued(SV) expressions was introduced by Aiken and Gay [6]. A

SV expression evaluates to the same value onall process images. Titanium [66] uses the

single type qualifier to declare a variable as single-valued. Further, Titanium’s type

system enables one to statically prove that all such variables are assigned only single values.

Because CAF lacks a strong type system and Titanium’s singlevalues must be

the same onall the processes, we explore extending CAF with a coercion operator

single(cs,exp), rather than directly borrowing Titanium’ssingle type qualifier.

single(cs,exp) serves as a compiler hint to indicate that expressionexp evaluates to

the same value on all process images that belong to co-spacecs. The single-valued prop-

erty can be propagated through the control flow graph (CFG) using static single assignment

form (SSA), described in Section 3.4.4, to infer more singlevalues that will be born during

execution.

112

6.3 Inference of group single values and group executable statements

Titanium defines a set of type system inference rules [66] forglobal single values. The

inference can be done via generating a set of data flow constraints using CFG and SSA

and solving the constraints to obtain the maximal set of single values [6]. A subset of the

inference rules and the inference algorithm can be adapted for CAF to infer co-space single

values as well asgroup-executable(GE) statements that are textually executed either by all

images of the group or by none; all other statements are non-group-executable (NGE).

6.3.1 Algorithm applicability

We use SV and GE properties to analyze communication events and convert expensive

barrier synchronization into asymptotically more efficient point-to-point synchronization.

This synchronization strength reduction transformation (SSR) is shown in detail in Chap-

ter 7. We designed SSR to optimize real scientific codes. Since such codes usually use

only structured control flow, we designed the SV & GE inference algorithm for only struc-

tured control flow. Under this assumption, SV & GE inference can be done as a forward

propagation problem on CFG using SSA. For unstructured control flow, the inference can

be done by adapting the solution presented in [6].

The forward propagation algorithm handles structured control constructs such as

IF-THEN-ELSE, IF-THEN, and FortranDO loops. Supporting this subset is sufficient

to SSR-optimize all known to us CAF codes. The inference is done for a subroutine

with textual co-space barrierBcs statements and co-space single-valued coercion opera-

torssingle(cs,exp), where co-spacecs is the subroutine invariant.

6.3.2 Forward propagation inference algorithm

We use both a CFG and SSA form to simultaneously forward propagate GE and SV proper-

ties. The SSA is used to propagate SV using a three-state lattice with top (⊤), single-valued

(SV), and bottom (⊥) states.⊤ corresponds to unvisited state,SV means that the value is

single-valued and⊥means that the value may (we sayis) not be single-valued (NSV). The

113

procedure initialize
w ← ∅
for each basic blockb

state(b)← GE
w ← w ∪ {b}

for each SSA namev
if x is defined on entry to the subroutine

latval(x)← ⊥
else

latval(x)← ⊤

Figure 6.1 : SV & GE inference initialization step.

meet operator∧ is defined by rules:Any∧⊤ = Any, SV ∧SV = SV , Any∧⊥ = ⊥. The

result of the meet operator involving an SSAφ-function is the meet of its arguments. Con-

stants and expressions coerced withsingle(cs,exp) are SV. A new SV can be born

as a result of evaluating an expression, consisting only of SV terms and constants, in a GE

statement. For example, ifa, b andi are SV, the expressionsa+1, a+b(i), b(2 : i−1), and

a == 8 yield a single-valued result for all process images in a co-space if the expressions

are evaluated byall images of the co-space. However, the same expressions are non-single

if they are not evaluated by all images of the co-space. The expressionsa + j, b(j), and

j == 8 are non-single ifj is non-single.

Our inference algorithm is an iterative fixed point optimistic algorithm. It uses the

SSA form namespace, so each namex is defined exactly once. We associate a lattice cell

with each SSA namex, denoted aslatval(x). meet denotes the meet operator∧. Each

basic blockb has a state, denoted asstate(b), associated with it.state(b) can be either

group-executable (GE) or non-group-executable (NGE).

The initialization stepinitialize shown in Figure 6.1 optimistically sets the state of

each basic block toGE and adds the basic block to the worklistw. It initializes all lattice

cells to⊤ except for the SSA names defined on entry to the subroutine, which are initialized

to⊥.

114

procedure propagate
while w 6= ∅

changed← ∅
while w 6= ∅

select basic blockb, b ∈ w
w ← w − {b}
for eachφ-nodeΦ in b, evalPhiNode(b, Φ)
for each statements in b, evalStmt(b, s)

w ← changed

Figure 6.2 : SV & GE inference propagation step.

The propagation steppropagate shown in Figure 6.2 symbolically evaluates eachΦ-

node (evalPhiNode) and each statement (evalStmt) of each basic block taken from the

worklist w.

Lattice values propagate along SSA edges and the GE propertypropagates over CFG

edges. If during evaluation any state of a basic blocka changes,a is added to the worklist

changed. The algorithm can only lower values and can only re-mark basic blocks asNGE,

so it is monotonic and converges. It yields a conservative approximation of all co-space

single values and GE basic blocks.

Figure 6.3 showsevalPhiNode that evaluates an SSAΦ-node. When control flow

procedure evalPhiNode(b, Φ)
// b is a basic block,Φ is aφ-nodex = φ(. . .)
if state(b) = GE

v ← evalExpr(φ(. . .))
else

v ← ⊥
if latval(x) 6= v

// propagatev to uses ofx along SSA edges
for each basic blockz containing uses ofx

changed← changed ∪ {z}
latval(x)← v

Figure 6.3 : Evaluation of aΦ-node.

115

procedure evalStmt(b, s)
// b is the basic block,s is the statement
if s is an assignment,call evalAssignment(b, s)
if s is anIF-THEN-ELSE, call evalIfThenElse(b, s)
if s is aDO loop,call evalDo(b, s)
if state(b) = NGE

for each dominator tree successorz of b such thatstate(z) = GE
state(z)← NGE
changed← changed ∪ {z}

Figure 6.4 : Evaluation of a statement and propagation of theNGE property.

merges values in an SSAφ-function, the resulting value is non-single (⊥) if either the

φ-function is executed in aNGE basic block or one of its arguments is non-single (⊥).

Figure 6.4 showsevalStmt that evaluates a statement of type assignment,

IF-THEN-ELSE, or DO. Subroutine (and function) calls modify lattice values of SSA

names according to their side effects; this information is incorporated in the SSA form. If a

basic block isNGE, the non-group-executable property propagates to all of its successors

in the dominator tree, which are marked asNGE.

Figure 6.5 showsevalAssignment that evaluates an assignment statement. The RHS

is evaluated iff the statement is GE, otherwise the result ifnon-single-valued (⊥). If the

procedure evalAssignment(b, s)
// s is a scalar assignmentx = e
if state(b) = GE

v ← evalExpr(e)
else

v ← ⊥
if latval(x) 6= v

// propagatev to uses ofx along SSA edges
for each basic blockz containing uses ofx

changed← changed ∪ {z}
latval(x)← v

Figure 6.5 : Evaluation of an assignment statement.

116

procedure evalIfThenElse(b, s)
// let sc be the conditional expression
// let st be the CFG successor BB of the true branch andsf – of the false branch
if state(b) = GE

c← evalExpr(sc)
else

c← ⊥
if c = ⊥ andstate(st) = GE

// make if-branches NGE
state(st)← NGE
state(sf)← NGE
changed← changed ∪ {st} ∪ {sf}

Figure 6.6 : Evaluation of anIF-THEN-ELSE statement.

value of LHSx lattice cell changes, this fact is propagated to all uses ofx along the SSA

edges by adding the basic blocks of uses to the worklistchanged. Note that the algorithm

can be extended to handle array element and section expressions.

Figure 6.6 showsevalIfThenElse that evaluates anIF-THEN-ELSE statement. If

the conditional of theIF-THEN-ELSE (or IF-THEN) statement is SV and the statement

is GE, the CFG successors that correspond to theTHEN- andELSE-branches must be

GE; otherwise, the successors are NGE. Note that aSELECT statement can be handled

similarly.

Figure 6.7 showsevalDo that evaluates aDO statement. In our CFG, aDO loop is

always preconditioned. TheDO loop entry node has only two CFG successors: the first

corresponds to the first node of the loop body, the second corresponds to a no-op statement

inserted right after theENDDO of theDO loop. The range or loop control expression of a

DO loop is SV iff the lower bound, upper bound, and stride are SV;otherwise, the range

is NSV. TheDO loop rules for GE propagation treat the loop as a region of CFG. If the

loop statement is GE and even if the loop conditional is NSV, meaning that the loop can

execute different numbers of times on different process images, the control flow of all

process images is GE after theDO loop execution (right afterENDDO). If a DO loop entry

117

procedure evalDo(b, s)
// let lb, ub, str be lower bound, upper bound, and stride of theDO loop range
// let sb be the first basic block of theDO loop body
if state(b) = GE

// compute the lattice value of the range
r ← meet(evalExpr(lb), evalExpr(ub), evalExpr(str))

else

r ← ⊥
if r = ⊥ andstate(sb) = GE

// make theDO loop body NGE
state(sb)← NGE
changed← changed ∪ {sb}

Figure 6.7 : Evaluation of aDO statement.

node is GE and the loop control expression is SV, both successors are GE. If aDO loop

entry node is GE and the loop control expression is NSV, theENDDO successor is GE, but

the loop body CFG successor is NGE. Note that it is possible toextend the algorithm to

handleCYCLE andEXIT loop control statements as well asWHILE loops.

Figure 6.8 showsevalExpr that evaluates an expression. Constants are SV. Values

procedure evalExpr(e)
if e is a constant,return SV
if e is single(cs,exp), return SV
if e is an SSA namex, return latval(x)
if e is a unary operatore = uop(e1), return evalExpr(e1)
if e is a binary operatore = bop(e1, e2)

return meet(evalExpr(e1), evalExpr(e2))
if e is a n-ary operatore = op(e1, . . . , en)

return meet(evalExpr(e1), . . . , evalExpr(en))
if e is aφ-functionφ(e1, . . . , en), return meet(latval(e1), . . . , latval(en))
if e is a co-space function or CAF intrinsics, evaluate according to its semantics,e.g.,

if e is CS IsMember(cs1)
if cs1 = cs, return SV , else return ⊥

Figure 6.8 : Evaluation of an expression.

118

coerced withsingle(cs,exp) are SV. The SSA name value is its lattice cell value.

evalExpr evaluates the value of operators andφ-functions using the meet operator. Com-

piler recognizable functions, such as co-space functions and CAF intrinsics, are handled

according to their semantics; Figure 6.8 shows an example for theCS IsMember func-

tion.

In addition to the SV & GE inference, the algorithm performs limited program ver-

ification. For correct program execution, each basic block containing textual co-space

barrier Bcs call must be GE. Similarly, each co-space single value coercion operator

single(cs,exp) must be evaluated in a GE basic block. If either condition is vio-

lated, the algorithm warns the programmer about a potentialproblem and specifies to the

next analysis phase (SSR) that the subroutine is not analyzable.

We implemented this inference algorithm incafc. The algorithm is sufficient for the

analysis of communication structure in most CAF scientific codes, and the SSR optimiza-

tion uses its results. A more general, constrained-based, algorithm can be used to extend

the inference to non-structured control flow, if the need arises.

6.4 Analysis of communication structure

Most parallel applications do not express communication inan arbitrary way, but rather

structure communication in a certain way. For example, manynearest-neighbor codes work

in phases: processes perform computation and then exchangeboundaries with their neigh-

bor processes. Our analysis algorithm focuses on detectingsuch structured communication.

We assume that the inference of group-executable (GE) statements and group single-

valued (SV) values has been done as described in Section 6.3.We say that a communication

event (PUT/GET) isanalyzableif it falls into one of the communication patterns described

in the rest of this chapter. In Chapter 7, we show how SSR optimizes two communication

Patterns 6.1 and 6.2, described in the following sections.

119

6.4.1 Analyzable group-executable PUT/GET

Pattern 6.1 (Analyzable GE PUT/GET) A group-executable PUT/GET with the target

image index specified via a co-spaceCS Neighbor function with group single-valued

arguments.

This is a common communication pattern found in kernels of many nearest-neighbor

scientific codes such as NAS benchmarks, Jacobi iteration, LBMHD, etc. For example,

each process performs communication to a neighbor process in the same spatial direction.

Such communication patterns are typical for a Cartesian processor grid, so the Cartesian co-

space does an excellent job of capturing the properties of the communication topology and

expressing communication relative to each process image via the co-spaceCS Neighbor

function. However, a graph co-space is also used, for instance to perform group reductions

among a collection of neighbors in the NAS CG benchmark (see Figure 7.45) or a transpose

in a distributed FFT.

Let us consider Jacobi iteration on a 2D matrixN × K with periodic boundary

conditions. The matrix is decomposed into slabs along the second dimension and

equally distributed among all process images. The size of each slab isN × M , M =

K
num images()

. The matrix is represented by two co-arraysreal(8)::a(1:N,0:M+1)

andreal(8)::b(1:N,0:M+1). Each Jacobi iteration locally computes a five-point

stencil into co-arraya using values from co-arrayb; on the following iteration, the roles

of a andb are changed. The remote data necessary for local computation is stored in the

shadow regions.a(1:N,0) contains border values that correspond toa(1:N,M) of the

left neighbor;a(1:N,M+1) contains border values that correspond toa(1:N,0) of the

right neighbor. After the local computation is done, each process image updates its left and

right neighbor shadow regions with its border values using PUT, as shown in Figure 6.9.

Figure 6.10 shows the communication done by one of the process images. It is natural to

organize all process images using a 1D Cartesian co-spacecs with periodic boundaries

to represent communication topology and to express neighbors for the shadow region ex-

change phase.

120

! perform local computation: a(i,j) = ...

! exchange shadow regions
call barrier(cs)
a(:, 0)[CS_Neighbor(cs,1,+1)] = a(:,M) ! PUT to the right neighbor
a(:,M+1)[CS_Neighbor(cs,1,-1)] = a(:,1) ! PUT to the left neighbor
call barrier(cs)

! perform local computation: b(i,j) = ...

Figure 6.9 : Jacobi iteration shadow region exchange for periodic boundaries.

I n n e rR e g i o n
B o r d e rR e g i o n s

S h a d o wR e g i o n s
P U TL e f t P U TR i g h t

Figure 6.10 : Jacobi shadow region exchange for one processor.1 2 3 4
Figure 6.11 : Periodic boundary communication to the right for four processes.

In the first PUT statement, every process image of the co-spacecs communicates data

to its right neighbor. The pattern is visualized in Figure 6.11 for an execution on four

processors; for each process image, the right arrow shows the target process image of com-

munication. The pattern is known oneveryprocess image of co-spacecs because the state-

ment is GE and the target of the PUT is expressed viaCS Neighbor(cs,a,o) function

121

1 2 3 4
T a r g e t

O r i g i n
Figure 6.12 : Targets and origins of communication to the right for Jacobi iteration with
periodic boundaries.

1 2 3 4O r i g i n
T a r g e t

Figure 6.13 : The target (image 3) and the origin (image 1) of communication to the right
for process image 2.

call with SV arguments: axisa and offseto. Each co-space process image can compute the

origin image of this communicationlocally using theCS Neighbor(cs,a,-o) func-

tion call; in this case, the origin is the left neighbor, and the “inversion” of the pattern

showing the origin of communication is depicted as dotted left arrows in Figure 6.12. To

clarify, Figure 6.13 shows the target and the origin processimages for process image 2.

It is important that the arguments are single-valued and thecommunication is GE be-

122

cause each process image can compute the origin of communication from purely localin-

formation without the need to contact another image. If the statement were not GE, an im-

age would not know what images participate in the communication event. If the arguments

were not single-valued, an image would not know how to compute the origin image of com-

munication using only local values. In either case, it wouldneed to contact other process

image(s) to determine which is the origin of communication,incurring high overhead and

rendering any optimization ineffective. In some sense, an analyzable GE PUT/GET creates

a topology “layer” (e.g., see Figure 6.11), a sub-topology of the co-space, determined by

the SV layer arguments to theCS Neighbor function. The entire layer is known to each

process image locally. The origin(s) of communication initiated onto process imagep is

the source(s) of the sub-topology directed graph edge incident onp.

We summarize these ideas in the following observations. Note that there is only one

origin image for a GE analyzable PUT/GET on a Cartesian co-space, but that there can be

several origins of communication for a GE analyzable PUT/GET on a graph topology.

Observation 6.1 For a Cartesian co-spacecs,

(a) the origin image index of an analyzable GE PUT/GET with the target image index

expressed viaCS Neighbor(cs,a,o) function with the co-space single-valued argu-

ments can be computed asCS Neighbor(cs,a,-o), wherea denotes the axis param-

eter, ando denotes the offset parameter.

(b) the origin image index of an analyzable GE PUT/GET with the target image index ex-

pressed viaCS Neighbor(cs,ov) function with the co-space single-valued arguments

can be computed asCS Neighbor(cs,-ov), whereov denotes the vector of offsets

parameter.

123

Observation 6.2 For a graph co-spacecs, there can be several origin image in-

dices of an analyzable GE PUT/GET with the target image indexexpressed via the

CS Neighbor(cs,nbrIndex,classid) function call with SV arguments. Each

image can locally compute the set of origin image indicesorgNbrs by calling

CS Neighbors(cs,orgNbrs,predecessor,classid,nbrIndex).

Run-time vs. source-level guards for communication/synchronization

The Jacobi iteration example above uses a 1D Cartesian co-space with periodic boundaries,

and every image of the co-space executes communication. Butwhat if the communication

topology is Cartesian without periodic boundaries? There are two possible ways to express

the communication as well as synchronization when not all images of co-space participate

in the event.

! perform local computation: a(i,j) = ...

! exchange shadow regions
call barrier(cs)
if (CS_HasNeighbor(cs,1,+1)) then
a(:,0)[CS_Neighbor(cs,1,+1)]=a(:,M) ! PUT to the right, if it exists

endif
...
call barrier(cs)

! perform local computation: b(i,j) = ...

Figure 6.14 : Jacobi iteration shadow region exchange for non-periodic boundaries.1 2 3 4
Figure 6.15 : Non-periodic boundary communication to the right for four processes.

First, the programmer can guard the communication explicitly as shown in Figure 6.14.

On four process images, this induces a communication pattern visualized in Figure 6.15.

The compiler can recognize this pattern and determine the origin of communication on

every co-space image as shown in Figure 6.16 and visualized in Figure 6.17 with dotted

124

if (CS_HasNeighbor(cs,1,-1)) then ! if left exists
origin = CS_Neighbors(cs,1,-1) ! left neighbor

else
origin = NOIMAGE ! no left neighbor

endif

Figure 6.16 : The origin image index for the communication tothe right with non-periodic
boundaries.

1 2 3 4
T a r g e t

O r i g i n
Figure 6.17 : Targets and origins of communication to the right for Jacobi iteration with
non-periodic boundaries.

left arrows. However, the programmer has already specified the fact that the neighbors do

not exist for the co-space border images when (s)he created the co-space; in our example,

via non-periodic boundaries.

An alternative approach is to delegate the guard handling tothe run-time layer and avoid

communication/synchronization guards in the source code altogether. TheCS Neighbor

functions return the process image index if the neighbor image exists, otherwise they re-

turn the specialNOIMAGE value. Communication and synchronization primitives interpret

the NOIMAGE value, specified as the target, as a no-op rather than a real communica-

tion/synchronization operation. This is analogous to the approach adopted by MPI for

handling non-existing processor ranks in send/receive [112, 62].

For example, the Jacobi iteration code with non-periodic boundaries shown in Fig-

125

ure 6.14 will be exactly the same as the one with the periodic boundaries, without guards

in the source code; the run-time will know how to perform communication correctly based

on the co-space properties and co-space interpretation.

The run-time handling of guards for communication/synchronization improves pro-

grammability because it removes guards from the source program. It also simplifies com-

piler analysis. The compiler can analyze (and optimize) such communication in the same

way as for an analyzable GE PUT/GET of Pattern 6.1.

6.4.2 Analyzable non-group-executable PUT/GET

Pattern 6.2 (Analyzable NGE PUT/GET) A non-group-executable PUT/GET with the

target image index specified via a co-spaceCS Neighbor function with group single-

valued arguments.

This is a less common communication pattern and can be found,for example, in the

NAS MG extrapolation subroutine shown in Figure 7.39. The relevant piece of code is

shown in Figure 6.18.

The guardgive ex(axis,level) is not single-valued, so not all co-space images

execute communication, and it is not possible to infer the origin of communication from

only local information. However, if the arguments of theCS Neighbor function are SV,

it means that they are available and SV in one of the group-executable dominators of the

communication event basic block. If the communication operation were moved outside the

IF-THEN in Figure 6.18, it would become an analyzable GE PUT/GET (Pattern 6.1) and

...
call barrier(cs)
! axis is single-valued
if (give_ex(axis, level)) then ! non-single-valued guard
... ! pack data into buffM(1:buff_len,1)
buffM(1:buff_len,2)[CS_Neighbor(cs,axis,-1)] = buffM(1:buff_len,1)

endif
...
call barrier(cs)

Figure 6.18 : Non-single-valued guard in NAS MG extrapolation subroutine.

126

could be optimized similarly. We will rely on this observation in Chapter 7 to optimize an

analyzable NGE PUT/GET for structured control flow.

6.4.3 Other analyzable communication patterns

We show several other communication patterns found in CAF codes that we studied and

sketch how they can be optimized.

Language-level naive broadcast/reduction

The following code fragment shows a naive implementation ofa broadcast in CAF. It can

also be coded using a graph co-space.

call barrier()
if (this_image() == 1) then

do i = 2, num_images()
a(i)[i] = a(1)

enddo
endif
call barrier()

A CAF compiler could determine that only image1 performs communication to every

other image[2, num images()]. This pattern can be replaced by an efficient, platform-tuned

library broadcast subroutine. A less preferable solution is to replace barriers with point-to-

point synchronization as shown below:

if (this_image() == 1) then
do i = 2, num_images()

call wait(i)
a(i)[i] = a(1)
call notify(i)

enddo
else

call notify(1)
call wait(1)

endif

Language-level naive implementations of reductions can behandled similarly. Note

that language-level naive reduction/broadcast can also beoptimized for a group of images.

127

! notify every neighbor that it is safe to update my shadow regions
do class = 1, 4 ! 1 is left, 2 is right, 3 is up, 4 is bottom

numOrgNbrs = CS GetNumNeighbors(cs,class,predecessor) ! number of origins
call CS Neighbors(cs,orgNbrs,class,predecessor) ! origins of the class
call notify(orgNbrs,numOrgNbrs) ! notify all origin neighbors of the class

end do

! shadow region exchange, no barriers
do class = 1, 4 ! for every spatial direction

do ni = 1, CS GetNumNeighbors(cs,class) ! for every neighbor index
nbr = CS Neighbor(cs,ni,class) ! the communication partner
! wait permission to overwrite remote shadow region
call wait(nbr)
! perform communication; slb, sub - remote bounds; llb, lub - local bounds
A(slb1(class,ni):sub1(class,ni), slb2(class,ni):sub2(class,ni))[nbr]=

A(llb1(class,ni):lub1(class,ni), llb2(class,ni):lub2(class,ni))
! indicate completion of remote shadow region update
call notify(nbr)

end do
end do

! wait for every neighbor to finish updating my shadow regions
do class = 1, 4

numOrgNbrs = CS GetNumNeighbors(cs,class,predecessor) ! number of origins
call CS Neighbors(cs,orgNbrs,class,predecessor) ! origins of the class
call wait(orgNbrs,numOrgNbrs) ! wait for all origin neighbors of the class

end do

Figure 6.19 : Shadow region exchange for a 2D generalized block data distribution ex-
pressed using point-to-point synchronization.

Generalized block distribution

A CAF compiler could detect communication patterns similarto the one shown in Sec-

tion 5.3 for the shadow region exchange of a 2D generalized block data distribution. De-

tailed explanation of this example is available in Section 5.3 (see graph co-space usage).

The code for shadow region exchange shown in Figure 5.2 can betransformed to use

point-to-point synchronization instead, as shown in Figure 6.19; note thatnotify() and

wait() accept sets of process image indices.

128

Chapter 7

Synchronization Strength Reduction

Synchronization strength reduction (SSR) is an optimization that replaces textual barrier-

based synchronization with cheaper point-to-point synchronization while preserving the

meaning of the program. This chapter presents a procedure-scope SSR algorithm for op-

timizing CAF codes. Code generated using SSR for several benchmarks delivered perfor-

mance comparable to that of hand-optimized codes using point-to-point synchronization.

7.1 Motivation

A textual co-space barrier is conceptually the simplest synchronization primitive to use.

Textual barrier statements divide program text and execution into phases or epochs that are

the same for all of co-space members. We say that an invocation of a textual barrier closes

one epoch and opens another epoch. In CAF, execution of a barrier for co-spaceC ensures

that all shared accesses done by each process image ofC destined to data co-located with

any process image ofC in the preceding epoch have completed before any such an access

in the following epoch. Hence, the programmer does not need to synchronize individual

accesses between members of the group; the barrier synchronizes all of them. For example,

Barrier2 in Figure 7.1 enforces the ordering of the PUT (a[q]=x) and GET (y=a[q])

by synchronizing all process images. In compiler terms, an invocation of a textual barrier

ensures that all local and inter-image data dependencies “crossing” (the end points belong

to different epochs) the barrier are preserved. However, a barrier delays all images until the

slowest one has arrived and might synchronize images that donot need to be synchronized.

In Figure 7.1, only imagesp, q, andr need to be synchronized for the communication

shown. Note that the arrows show the communication direction for the origin process

129

I m a g e p I m a g e q I m a g e r I m a g e NI m a g e 1
B a r r i e r 1B a r r i e r 2B a r r i e r 3

a [q] = x
y = a [q]

t i m e
w o r k 1w o r k 2 w o r k 2w o r k 1

Figure 7.1 : Synchronization with textual barriers.

I m a g e p I m a g e q I m a g e r I m a g e NI m a g e 1
B a r r i e r 1B a r r i e r 2 a [q] = xn o t i f y (q) w a i t (p)n o t i f y (r) w a i t (q)

t i m e
w o r k 1w o r k 2 w o r k 2w o r k 1

B a r r i e r 3 y = a [q]
Figure 7.2 : Synchronization with notify/wait.

image that initiates communication to the target process image where the memory being

accessed is located; for a PUT, the communication directioncoincides with the direction

of the data movement; for a GET, the communication directionis the opposite of the data

movement direction. Oversynchronized codes are not asynchrony tolerant and result in

suboptimal performance as we showed in prior studies [30, 47, 48, 31, 33].

As an alternative to barriers, programmers can use unidirectional point-to-point

notify/wait synchronization (see Section 3.1), which scales much better. Figure 7.2

shows how point-to-point synchronization can be used to synchronizep andr (andq) with-

130

I m a g e p I m a g e q I m a g e r I m a g e NI m a g e 1
B a r r i e r 1 a [q] = xw o r k 1w o r k 2 w o r k 2w o r k 1
B a r r i e r 3

n o t i f y o r i g i n

w a i t f o r o r i g i n
B a r r i e r 2 n o t i f y (q) w a i t (p)n o t i f y (r) w a i t (q)y = a [q]

t i m e
Figure 7.3 : Synchronization with textual barriers.

out Barrier2. If it is also safe to use notify/wait instead ofBarrier1 andBarrier3, the

code can be transformed as shown in Figure 7.3, which would likely be much faster than

the original code using barriers shown in Figure 7.1. However, developing codes using

point-to-point synchronization is hard because programmers must synchronize individual

shared data accesses and, in some cases, carefully orchestratenotify/wait to obtain

best performance.

The SSR optimization enables programmers to use textual barriers for synchronization.

Using SSR, the compiler replaces these barriers with point-to-point synchronization, pre-

serving program correctness while improving performance and scalability. SSR replaces a

barrier with point-to-point synchronization only betweenimages thatmayhave inter-image

data dependencies.

7.2 Intuition behind SSR

Using point-to-point synchronization correctly requiresknowing the origin and target of

a communication event (PUT/GET), or event for short. However, in an explicitly-parallel

131

PGAS language such as CAF, the programmer specifies only the target of each communi-

cation, but not the origin. It is the job of the compiler to infer the origin of communica-

tion from program code, which is difficult, undecidable in general case. In Chapter 6, we

present a novel technique that enables one to infer origin(s) of communication patterns that

are typical in a large class of the nearest-neighbor scientific codes. The analysis uses a com-

bination of a co-space, textual co-space barriers, and co-space single-valued expressions to

determine the communication structure for two Patterns 6.1and 6.2, stated in Chapter 6.

We restate the patterns here:

• Analyzable group-executable PUT/GET.

A group-executable (GE) PUT/GET with the target image indexspecified via a co-

spaceCS Neighbor function with group single-valued arguments.

• Analyzable non-group-executable PUT/GET.

A non-group-executable (NGE) PUT/GET with the target imageindex specified via

a co-spaceCS Neighbor function with group single-valued arguments.

Here, we focus on optimizing these two communication patterns by converting barrier-

based synchronization into point-to-point synchronization, if legal and profitable. Initially,

we will not consider moving the communication or changing the communication primitive.

We later consider such optimizations in Section 7.9.

7.2.1 Correctness of SSR for analyzable group-executable PUTs/GETs

Let us consider how an analyzable group-executable PUT/GETcan be optimized in a

straight line code with several textual co-space barriers.We consider a group-executable

communication pattern where each process image of a 4×2 Cartesian co-spacecs with

periodic boundaries PUTs data to its right neighbor along the first dimension. We de-

noteCS Neighbor(cs,1,+1) asright(cs), andCS Neighbor(cs,1,-1) as

left(cs). Figure 7.4 (a) presents pseudocode for this communication. Figure 7.5 shows

a visualization of this pattern for eight process images.

132

1 ... = a
2 call barrier()

3 a[right(cs)] = ...

4 call barrier()
5 ... = a

(a) GE PUT to the right

1 ... = a
! former barrier

2a call notify(left(cs))
2b call wait(right(cs))
3 a[right(cs)] = ...
4a call notify(right(cs))
4b call wait(left(cs))

! former barrier
5 ... = a

(b) permission and completion notify/wait pairs

Figure 7.4 : A PUT to the right for a 4×2 Cartesian co-space with periodic boundaries.1 2 3 4
5 6 7 8

Figure 7.5 : A PUT to the right neighbor on a 4×2 Cartesian co-space with periodic bound-
aries.

The compiler can infer the origin of this communication event, which is the neighbor

process image on the left, as shown in Section 6.4, and inserttwo notify/wait pairs as shown

in Figure 7.4 (b) to synchronize the event. When it is safe (see below), the surrounding

barriers can be removed.

The notify/wait pair in lines 2a and 2b of Figure 7.4 (b) gives“permission” to access

data on the right co-space neighbor after the neighbor finishes accessing co-arraya locally.

We call this synchronization thepermission notify, np, andpermission wait, wp; np/wp

denotes a permission pair. Figure 7.6 shows the permission notify and permission wait

operations involving imagey. The permission notify issued by the process imagey tells

133

t i m e

x(l e f t (c s)) z(r i g h t (c s))y
pp

a [r i g h t (c s)] = …c
c

… = a

… = a
Figure 7.6 : Synchronization with direct communication partners (relative toy view).

the origin image of communicationx, which is the left neighbor ofy in co-spacecs, that

it is safe to access co-arraya on y. Execution of the permission wait byy waits for a

permission notify from the target image of communicationz, which is the right neighbor

of y in co-spacecs, that tellsy that it is safe to access co-arraya on z. It is safe for an

image to access co-arraya on its right neighbor after the permission wait completes.

The notify/wait pair in lines 4a and 4b of Figure 7.4 (b) signals “completion” of the data

access to the target image, so that the target image will be able to safely access co-array

a locally. We call this synchronization thecompletion notify, nc, andcompletion wait, wc;

nc/wc denotes a completion pair. Figure 7.6 shows the completion notify and completion

134

wait operations involving imagey. The completion notify issued byy signals to the target

imagez that y has finished accessingz’s co-arraya. Execution of the completion wait

by y waits for a completion notify from the origin imagex that tellsy thatx has finished

accessing co-arraya on y. It is safe for an image to accessa locally after the completion

wait completes.

The permission & completion pairs safely synchronize the target and origin images of

communication (both PUTs and GETs) by enforcing inter-image data dependencies with

thedirectcommunication partners. The permission pair ensures that the read ofa on line 1

of Figure 7.4 (b) by each process image finishes before its left neighbor overwritesa with

the PUTa[right(cs)] on line 3; the completion pair ensures that this PUT finishes

before the read ofa on line 5. However, barrier-based synchronization does more. It also

enforcestransitiveinter-image data dependencies.

Let us consider an example of communication to the right neighbor followed by com-

munication to the upper neighbor. Letup(cs) denoteCS Neighbor(cs,2,+1), and

down(cs) denoteCS Neighbor(cs,2,-1). Figure 7.7 (a) shows the pseudocode.

Consider the barrier on line 4. As shown in Figure 7.7 (b), thebarrier can be replaced with

a completion pair for the communication to the right inserted before the former barrier,

on lines 4a and 4b, and a permission pair for the communication to the upper neighbor

inserted after the former barrier, on lines 4c and 4d. This enforces transitive dependencies.

Thinking relative to some process image, we notice that the transitive dependencies are

enforced by the sequential execution of the completion wait, call wait(left(cs)),

on line 4b and the permission notify,call notify(down(cs)), on line 4c. This syn-

chronization ensures that the PUTa[right(cs)] has completed on an image before

its value is read by the GETa[up(cs)]. Figure 7.8 shows communication from image

1 to image2 (arrow with label(1)) followed by communication from image6 to image2

(arrow with label(2)). Figure 7.9 shows the time diagram of how image2 enforces an inter-

image dependence between image1 that writesa[2] and image6 that readsa[2] with

the pattern of notify/wait synchronization shown in Figure7.7 (b). Other process images

135

1 a = a + 1
2 call barrier()

3 a[right(cs)] = ...

4 call barrier()

5 ... = a[up(cs)]

6 call barrier()
7 a = a + 1

(a) PUTs to the right and above

1 a = a + 1
2 call barrier()

! permission notify(left) ?
! permission wait(right) ?

3 a[right(cs)] = ...
4a call notify(right(cs)) ! completion
4b call wait(left(cs)) ! completion

! former barrier
4c call notify(down(cs)) ! permission
4d call wait(up(cs)) ! permission
5 ... = a[up(cs)]

! completion notify(up) ?
! completion wait(down) ?

6 call barrier()
7 a = a + 1

(b) enforcing transitive inter-image dependencies

Figure 7.7 : Communication to the right neighbor followed bycommunication to the upper
neighbor for a 4×2 Cartesian co-space with periodic boundaries.

perform these operations as well with their communication partners, but only the opera-

tions incident on image2 are shown in Figure 7.9. The thick arrows denote the direction of

communication, not the direction where data is moving; thinarrows denote unidirectional

point-to-point synchronization messages. The dependencebetween image1 and image6 is

enforcednot by a direct synchronization between them but rather transitively via ordering

of the completion pair between images1 and2 and the permission pair between images2

and6 that results from the execution order of the completion waiton image2 before the

permission notify on image2.

Since the permission & completion pairs enforce all data dependencies between ac-

cesses to co-arraya on lines 3 and 5, they are sufficient to preserve the meaning ofthe

program, and the barrier on line 4 can be removed. This would usually result in faster exe-

cution because the code uses one-way synchronization messages with shorter critical path

than that of barrier synchronization. The question is: should we also insert a permission

pair to synchronize the PUT on line 3 and a completion pair to synchronize the GET on line

5 instead of the barriers on lines 2 and 6, respectively? If all data dependencies crossing

1361 2 3 4
5 6 7 8(2)

(1)

Figure 7.8 : Communication for images1 and6 accessing the same co-arraya[2].

B a r r i e r 1
B a r r i e r 2

t i m eB a r r i e r 3

1
a [r i g h t (c s)] = …

62
cw r i t ea [2]

p p… = a [u p (c s)]r e a da [2]
c

Figure 7.9 : Time diagram for communication for images1 and6 accessing the same co-
array memorya[2].

the barrier on line 2 can be analyzed and synchronized with point-to-point synchroniza-

tion, then it would be profitable to remove this barrier, replacing it with an equivalent set of

137

point-to-point synchronization that enforces all such dependencies. If this cannot be done,

the barrier on line 2 must be left intact, and a permission pair should not be generated for

the PUT on line 3 since the barrier on line 2 already synchronizes it properly. Similar rea-

soning applies to the barrier on line 6. This intuition lays afoundation for our reducibility

analysis and the following observation.

We say that a barrierb reaches a communication evente if there is a barrier-free path

in the control flow graph (CFG) fromb to e. We say that an evente reachesb if there is a

barrier-free path in the CFG frome to b.

Observation 7.1 A textual co-space barrierb can safely be removed from the code and

replaced by an equivalent set of point-to-point permission& completion synchronization

pairs that preserve correctness iff (1) each communicationevent that may reachb in any

execution can be analyzed and is synchronized with one or more completion pairs, and

(2) each communication event thatb may reach in any execution can be analyzed and is

synchronized with one or more permission pairs.

7.2.2 Correctness of SSR for analyzable non-group-executable PUTs/GETs

So far, we have considered only analyzable group-executable PUT/GET. Using point-to-

point synchronization to synchronize an analyzable non-group-executable PUT/GET is

slightly different. An example of such an event is shown in Figure 6.18. Intuitively, we

can place a permission pair and a completion pair around theif statement, as shown in

Figure 7.10. This preserves correctness, but may introduceunnecessary point-to-point syn-

chronization for images that do not actually perform the PUTon line 4. In experiments

(see Section 7.8.2), we found that codes with such extra point-to-point synchronization are

less synchronous and faster than their barrier-based counterparts because the critical path

of unidirectional notify messages is shorter than that of a barrier.

For a non-group-executable PUT/GET, permission & completion pairs cannot be placed

138

...
! former barrier

1 call notify(CS_Neighbor(cs,axis,+1)) ! permission notify
2 call wait(CS_Neighbor(cs,axis,-1)) ! permission wait
3 if (give_ex(axis, level)) then ! non-single-valued guard
4 ... ! pack data into buffM(1:buff_len,1)
5 buffM(1:buff_len,2)[CS_Neighbor(cs,axis,-1)] = buffM(1:buff_len,1)
6 endif
7 call notify(CS_Neighbor(cs,axis,-1)) ! completion notify
8 call wait(CS_Neighbor(cs,axis,+1)) ! completion wait

...
! former barrier

Figure 7.10 : Non-single-valued guard in NAS MG extrapolation subroutine synchronized
with permission & completion pairs instead of barriers.

directly around the event as for analyzable group-executable PUT/GET since notify and

wait of each completion & permission pair must be matched andnot all images would

necessarily perform the synchronization (see Section 6.4.2). Instead, one could place a

permission pair earlier in execution, in a group-executable CFG noden that executes if the

event executes, provided that it is possible to compute the target image of communication in

n. Such placement would enable the compiler to find the origin(s) of communication. Thus,

the best node to place a permission pair is theclosest1 group-executable CFG dominatord

of the event, provided the arguments of theCS Neighbor function can be computed in

d; note that if the arguments are available ind, they are single-valued ind. Otherwise, SSR

cannot optimize synchronization for a non-group-executable event. If a permission pair can

be placed, the corresponding completion pair can be placed in the closest group-executable

CFG postdominatorp of the event node, later in execution than the event. Note that d and

p are control equivalent for the structured control flow that we support and the shape of our

CFG (see Section 7.3).

The described synchronization with permission & completion pairs instead of barriers

ensures correct synchronization because the placements ofthe permission & completion

pairs are no further from the communication than the textualbarriers they replace; thus,

the permission & completion pairs provide equivalent synchronization. Let us consider the

1To execute as little unnecessary point-to-point synchronization as possible.

139

case of the permission pair. Lete be the non-group-executable event CFG node,cGEdom

be the closest group-executable dominator ofe. With the CFG restricted to structured

control flow, any CFG nodeb that belongs to a path fromcGEdom to e is non-group-

executable according the the inference algorithm in Section 6.3. Therefore,b cannot contain

a textual co-space barrier; if it does, it is a program error,a possible deadlock, and SSR is

not applied. Similar reasoning holds for the completion pair.

7.2.3 Hiding exposed synchronization latency

It is common for scientific codes to perform some local work between communication

events. Figure 7.11 (a) shows an example and denotes local work aswork1 andwork2.

Figure 7.11 (b) shows the synchronization using permission& completion pairs inserted

right around the PUTa[right(cs)]. Placing the permission pair right before an event

exposes the latency to deliver the permission notify message because, assuming that exe-

cution of all images is approximately balanced, every imageissues a permission notify and

immediately blocks in a permission wait until the corresponding permission notify mes-

sage arrives from a remote image. Similarly, placing the completion pair right after an

event exposes both the latency to transfer data and the latency to deliver the completion

notify message.

If legal, it is profitable to move the permission notify earlier in the execution and the

completion wait later in the execution, as shown in Figure 7.11 (c). This overlaps the per-

mission notify latency with local computationwork1, and the PUT and completion notify

latencies withwork2. We limit the movement of a permission notify by the availability

of arguments (inputs) forCS Neighbor function to compute the origin(s) of commu-

nication2 and by the upward barrier(s)3. However, we limit the movement of a comple-

2In the presence of control flow, we accumulate the execution guard along the way and do not move a

permission notify and a completion wait outside of loops. Wepostpone this discussion until Section 7.6.
3Because the synchronization must happen somewhere betweenexecution of the barrier and the event. It

may be possible to move a permission notify past the upward barrier(s), preserving inter-image data depen-

140

...
call barrier()

work1

a[right(cs)]=...

work2

call barrier()
...

(a) barrier-based syn-

chronization

...
! former barrier

work1
call notify(left(cs))
call wait(right(cs))
a[right(cs)] = ...
call notify(right(cs))
call wait(left(cs))
work2

! former barrier
...

(b) synchronization with per-

mission & completion pairs

...
! former barrier
call notify(left(cs))
work1

call wait(right(cs))
a[right(cs)] = ...
call notify(right(cs))

work2
call wait(left(cs))
! former barrier
...

(c) pairwise synchronization

with latency hiding

Figure 7.11 : Communication to the right for a 4×2 Cartesian co-space with periodic
boundaries.

tion wait only by the downward barrier(s) because the origin(s) of communication can be

computed at the event’s permission wait point for both group-executable and non-group-

executable events, stored in compiler-generated temporaries, and used for synchronization

at the downward barrier(s). An invariant that must be maintained when moving a permis-

sion notify and a completion wait is (1) to execute asinglepermission notify per permission

wait execution and (2) to execute asinglecompletion wait per completion notify execution.

This essentially matches permission notify and permissionwait, and completion notify and

completion wait. In Section 7.6, we show a formal algorithm how to move a permission

notify and a completion wait maintaining the invariant.

7.3 Overview of procedure-scope SSR

We present an SSR algorithm that operates within a procedurescope. SSR can analyze

codes that use textual barriers of co-spacecs for synchronization andsingle(cs,exp)

to specify co-space single-valued expressions. The co-spacecs must be a single-valued

dencies; however, codes we have studied do not present opportunities for this.

141

procedure invariant. SSR supports codes with structured control flow in the form ofDO

loops andIF-THEN-ELSE or IF-THEN statements. The class of programs expressible

with this set of constructs is broad enough to include all scientific CAF codes that we

encountered. However, it is necessary to extend SSR’s scopebeyond a single procedure

to use SSR to optimize real scientific codes. In this dissertation, we use compiler hints to

achieve this effect until interprocedural analysis is available.

SSR has four major phases. We summarize them here; the rest ofthe chapter presents

them in detail.

• Preliminary analysis checks that SSR can be applied, prepares the CFG for the

following stages, identifies DO loop regions, and collects various information about

the CFG (see Section 7.4). Finally, this stage performs the inference of co-space

single values and group-executable statements as described in Chapter 6.

• Reducibility analysis detects analyzable group-executable and non-group-

executable PUTs/GETs and runs a fixed point iterative algorithm to find all textual

co-space barriers that can be reduced as well as to determinewhat notify/wait syn-

chronization is required to preserve program correctness if the barriers are to be elim-

inated.

• Optimization of notify/wait synchronization overlaps the latency of permission

and completion notifies with local computation and eliminates redundant notify/wait

synchronization.

• Code generationphase instantiates notify/wait synchronization and removes bar-

riers that are no longer necessary. In addition, it detects PUTs that can be made

non-blocking and converts them into non-blocking form.

In the next section, we begin with an overview of concepts used in SSR.

142

7.3.1 Notation and terminology

• A communication eventis either a PUT or a GET. Anevent placeholderis an “empty”

event used for analysis to simplify flow equations. In the following, aneventrefers

to either a communication event or an event placeholder; it is represented by an

Event data structure shown in Figure 7.19. Sometimes, we useeventto refer to a

communication event, when the difference is clear from the context.

• A synchronization fencelimits movement of notify/wait synchronization and helps to

simplify analysis flow equations. Its properties resemble that of abarrier; however, a

synchronization fence is never present in the code. We mightreplace a synchroniza-

tion fence with a barrier when it is either necessary or profitable. In the following, a

fencerefers to either a barrier or a synchronization fence.

• We say that a fencef reaches an evente if there is a fence-free path in the CFG from

f to e.

• We say that an evente reaches a fencef if there is a fence-free path in the CFG from

e to f .

• For a fencef , the seteventsBeforeFence(f) is the set of all events that reachf ;

the seteventsAfterFence(f) is the set of all events thatf reaches.

• For an evente, the setfencesBeforeEvent(e) is the set of all fences that reache;

the setfencesAfterEvent(e) is the set of all fences thate reaches.

• A barrierb is reducibleif it can be safely removed from the code by replacing it with

point-to-point permission & completion notify/wait pairs, coordinated with guards,

to preserve data access ordering.

• A communication evente is upwardly synchronizableif it is synchronized with a

permission pair instead of barriers that reache.

143

• A communication evente is downwardly synchronizableif it is synchronized with a

completion pair instead of barriers thate reaches.

• For a CFG noden, idom(n) denotes the immediate dominator ofn; ipostdom(n)

denotes the immediate postdominator ofn.

• A CFG node containing a fence is calledfence node. A CFG node containing a

barrier is calledbarrier node.

• FenceIDF stands for iterated dominance frontier [41] for fence CFG nodes. This

is the set of CFG nodes in which each member belongs to the iterated dominance

frontier of some fence node. Each node inFenceIDF , called a fence merge point,

is reachable by at least two different fences. We use fence merge points to recur

along different CFG paths while moving a permission notify upward in the CFG.

• FenceIRDF stands for iterated reverse dominance frontier for fence CFG nodes.

This is the set of CFG nodes in which each member belongs to theiterated reverse

dominance frontier of some fence node. Each node inFenceIRDF , called a fence

split point, reaches at least two different fences. We use fence split points to recur

along different CFG paths while moving a completion wait downward in the CFG.

Synchronization primitives

np andwp denote a permission notify(s) and a permission wait, respectively. nc andwc

denote a completion notify and a completion wait(s), respectively.

The primitives used fornp/wp andnc/wc arenot CAF’s notify andwait. CAF’s

primitives may be used by the programmer and are not composable. We use primitives

notify(cs,q)andwait(cs,r) that are similar to CAF’s, but they are “private” to co-

spacecs and appear only in compiler-generated code. Moreover, whilewp andnc always

have only one target image — the target image of communication, np and wc actually

denote sets of notifies/waits because there can be several origin images (e.g., for a graph

co-space). Section 7.7 has more detailed discussion.

144

D O l o o ph e a d e r
D O l o o pb o d y

Figure 7.12 : PreconditionedDO loop.

CFG shape

To simplify insertion and movement of notify/wait, our CFG follows the following guide-

lines:

1. Each CFG node contains at most one program statement and might contain SSAΦ-

nodes block at the node’s entry and/or SSA side effect block if the statement is a

procedure call. A side effect block contains definitions of SSA names that might be

modified by the corresponding procedure call. It is insertedafter the procedure call.

We would useΦ-node and side effect definitions to limit the upward movement of

computations (the target of communication) in the CFG.

2. For eachIF-THEN-ELSE or IF-THEN, there is a no-op (comment) statement in-

serted right after theENDIF in the source code, so that there are no critical edges4

4A critical edge is a CFG edge whose source has multiple successors and whose destination has multiple

predecessors.

145

E x i t

E n t r y

E x i tF e n c eE x i tE v e n t
E n t r yE v e n tE n t r yF e n c e

Figure 7.13 :EntryFence, EntryEvent, ExitEvent, andExitFence.

for nestedIF-THEN-ELSE/IF-THEN statements. In addition, allIF-THEN are

converted intoIF-THEN-ELSE.

3. EachDO loop is preconditioned and has the shape shown in Figure 7.12. Each loop

has only one entryn node and only one exit node, which is the same asn. The case of

unstructured control flow and exit branches from the loop is discussed in Section 7.9.

7.3.2 Synchronization and event placeholders

EntryFence is a synchronization fence at procedure entry.ExitFence is a synchroniza-

tion fence at procedure exit.EntryEvent is an event placeholder at procedure entry.

ExitEvent is an event placeholder at procedure exit. Figure 7.13 showstheir placement

in the CFG. These four placeholders are used to control barrier reducibility and event syn-

chronizability conditions at procedure entry and exit, as discussed in Section 7.5.

We augment eachDO loop that may execute a barrier withPreloop, Postloop,

146

D O 8 l o o ph e a d e rP r e b o d y
P r e l o o p

P o s t l o o pD O 8 l o o pb o d y
P o s t b o d y

Figure 7.14 : PreconditionedDO loop with Preloop, Postloop, Prebody, andPostbody
placeholders.

Prebody, and Postbody placeholders, as shown in Figure 7.14. Each place-

holder contains two nodes: one with a synchronization fence, the other with an

event placeholder. Preloop contains PreloopEvent, followed by PreloopFence.

Postloop containsPostloopFence, followed by PostloopEvent. Prebody contains

PrebodyFence, followed by PrebodyEvent. Postbody containsPostbodyEvent, fol-

lowed byPostbodyFence.

7.3.3 Pseudocode data structures

Figures 7.15, 7.16, 7.17, 7.18, and 7.19 show the data structures used in pseudocode in the

following sections.

Figure 7.15 shows theNode data structure that represent a CFG nodeb. The state

147

struct Node
state // GE or NGE
Φ-nodes // Φ-nodes of the node
stmt // program AST statement, only one

Figure 7.15 : CFG node structure.

struct Fence
reducible // reducible or non-reducible
node // CFG node
eventsBeforeFence // the set of eventsEvent that reach the fence
eventsAfterFence // the set of eventsEvent reachable by the fence

Figure 7.16 : Fence structure for a barrier or a synchronization fence.

struct Region
header // DO header node
preloopFence // Preloop fence of typeFence
postloopFence // Postloop fence of typeFence
prebodyFence // Prebody fence of typeFence
postbodyFence // Postbody fence of typeFence
preloopEvent // Preloop event placeholder of typeEvent
postloopEvent // Postloop event placeholder of typeEvent
prebodyEvent // Prebody event placeholder of typeEvent
postbodyEvent // Postbody event placeholder of typeEvent

Figure 7.17 :DO loop region structure.

struct P lace
node // CFG node
whereToInsert // insert notify/wait before or afternode.stmt
guardnp

// the guard expression fornp

Figure 7.18 : Place structure for a notify or a wait.

field specifies whetherb is group-executable or non-group-executable, as determined by

the inference analysis in Section 6.3. TheΦ-nodes field represents the SSA formΦ-nodes

of b. Thestmt field representsb’s Open64/SL Whirl abstract syntax tree (AST) statement.

Figure 7.16 shows theFence data structure that represents a fencef , which

148

struct Event
upwardlySynchronizable // synchronizable with anp/wp pair, or not
downwardlySynchronizable // synchronizable with anc/wc pair, or not
node // CFG node
fencesBeforeEvent // the set of fencesFence that reach the event
fencesAfterEvent // the set of fencesFence reachable by the event
image // the AST expression of the event’s target image
npP laces // set ofP lace for permission notifies
wpP lace // theP lace for permission wait
ncP lace // theP lace for completion notify
wcP laces // set ofP lace for completion waits

Figure 7.19 : Event structure for a PUT/GET or an event placeholder.

can be either a barrier or a synchronization fence. Thereducible field determines

the reducibility state of the fence, which can be reducible or non-reducible. The

node field specifies the CFG node off . The eventsBeforeFence field represents

the set eventsBeforeFence(f). The eventsAfterFence field represents the set

eventsAfterFence(f).

Figure 7.17 shows theRegion data structure that represents the CFG region for aDO

loop that may execute a barrier; noRegion structure is associated with aDO loop that does

not execute a barrier. Theheader field is theDO loop entry (and exit) CFG node. The other

fields represent helper communication fences and event placeholders for the reducibility

analysis and notify/wait optimization.

Figure 7.18 shows theP lace data structure for a placement of a notify or a wait

in the CFG. Thenode field is the CFG node in which the notify or wait resides and

will be inserted in the code generation stage. ThewhereToInsert field can be either

beforeStmt or afterStmt specifying whether to insert the notify/wait beforenode.stmt

or afternode.stmt, respectively. Theguardnp
field represents the AST expression for the

permission notify guard necessary for code generation to match the permission notify and

permission wait.

Figure 7.19 shows theEvent data structure that represents an evente, which can be a

149

PUT/GET or an event placeholder. TheupwardlySynchronizable field specifies whether

e should be synchronized with a permission pair. ThedownwardlySynchronizable field

specifies whethere should be synchronized with a completion pair. Thenode field is

e’s CFG node. The fieldsfencesBeforeEvent andfencesAfterEvent represent sets

fencesBeforeEvent(e) andfencesAfterEvent(e), respectively. For a PUT/GET, the

image field is e’s target image AST expression; for an analyzable PUT/GET, it is a call to

the co-spaceCS Neighbor function. Theimage field is undefined for event placeholders.

If e is upwardly synchronizable, thenpP laces field is the set of all CFG places fore’s

permission notifies, and thewpP lace field is the CFG place fore’s permission wait. Ife is

downwardly synchronizable, thencP lace field is the CFG place fore’s completion notify,

and thewcP laces field is the set of all CFG places fore’s permission waits.

7.3.4 Hints to increase SSR scope beyond the procedure level

The SSR algorithm presented in this dissertation works for the procedure scope; however,

optimization of real programs often requires a scope beyonda single procedure. We de-

scribe SSR hints here because they are incorporated into thefollowing stages of SSR.

The scope of SSR can be increased in three ways: devising an interprocedural analy-

sis, inlining procedures, and using hints. While a fully automatic solution is preferable,

cafc does not yet have infrastructure for any interprocedural analysis or procedure inlin-

ing, including interprocedural analysis or procedure inlining to support SSR. This leaves

us with two options. First, the programmer can inline procedures manually. Second, the

programmer can use directives to provide extra informationto cafc. We believe that the

second choice imposes less burden on programmers, and enables one to reap the benefits

of interprocedural SSR today. Moreover, even in the presence of interprocedural analysis

in the future, its capabilities would be limited by separatecompilation and libraries, unless

link-time analysis and code generation are used. Directives can be useful to improve opti-

mization in the absence of more sophisticated link-time optimization. We discuss the nature

of a possible interprocedural analysis in Section 7.9. We introduce twocafc directives to

150

convey information about remote co-array accesses and inter-image data dependencies be-

yond the scope of one procedure.

Thelocal attribute for a procedurefoo conveys the fact that neitherfoo nor any

procedure called transitively fromfoo performs any PUT/GET.

Thesynch context(cs) hint specifies a “synchronization clean point” for all co-

array accesses of co-spacecs at which all co-space inter-image data dependencies are

known to be enforced by either a barrier or point-to-point synchronization. We are par-

ticularly interested insynch context(cs) hints at procedure entry or exit, because

this enables SSR to optimize synchronization between consecutive procedure invocations.

Let’s assume that the invocations areI1 followed byI2; I1 executes procedureS1, andI2

executes procedureS2. Note thatS1 andS2 can be the same procedure.

At S1’s exit, synch context(cs) instructs SSR to complete allS1’s PUTs/GETs5

for the co-spacecs that reachS1’s exit. If possible, it is preferable to complete local-scope

communication by using point-to-point completion pairs; otherwise, SSR must synchronize

using a co-space barrier atS1’s exit. The hint indicates that it is safe to synchronize using

completion pairs because the following scope,e.g., I2 invocation ofS2, synchronizesS2’s

communication events reachable fromS2’s entry with point-to-point permission pairs, if

possible, or, otherwise, with a barrier. AtS2’s entry,synch context(cs) indicates

that all prior PUTs/GETs for co-spacecs have been completed by either a barrier or point-

to-point completion pairs. However, the hint also requiresus to synchronize allS2’s scope

communication events reachable fromS2’s entry by using point-to-point permission pairs,

if possible; otherwise, SSR must synchronize using a barrier atS2’s entry.

synch context(cs) hints bear a resemblance to a split synchronization fence: one

part of the fence is atS1’s exit for the invocationI1, the other is atS2’s entry for the invo-

cationI2, whereS1 andS2 can be the same procedure.synch context(cs) hints limit

the movement of permission & completion pairs, and they are the points where data depen-

dencies are enforced. However,synch context(cs) is stronger than a synchronization

5For each image, local co-array accesses are completed because of the image’s program execution.

151

fence because itmustbecome a barrier if it is not possible to use point-to-point synchro-

nization to synchronize local scope PUTs/GETs; a synchronization fence may become a

barrier only if profitable (see Section 7.5).

Our implementation supportssynch context(cs) inserted at procedure entry

or exit. At procedure entry, SSR might insert a barrier if asynch context(cs)

hint is present, but SSR cannot upwardly synchronize eventsreachable from the pro-

cedure entry by permission pairs. At procedure exit, SSR might insert a barrier if a

synch context(cs) hint is present, but SSR cannot downwardly synchronize events

reaching the exit of the procedure by completion pairs. If either of these barriers is instan-

tiated, SSR issues a warning message, because the barriers might increase the amount of

synchronization in the code. In scientific codes available to us, SSR never had to insert

such a barrier.

7.4 Preliminary analysis

First, we preprocess the program abstract syntax tree and insert an empty statement after

eachENDIF. This avoids critical CFG edges for nestedIF-THEN-ELSE/IF-THEN con-

structs. We convert allIF-THEN statements intoIF-THEN-ELSE statements to make the

CFG more uniform and to apply the same set of rules forIF-THEN-ELSE andIF-THEN

statements when moving notify and wait during the optimization phase. Also, our SSR

CFG has at most one statement in each CFG node.

Second, we verify that SSR can be applied by performing the following steps. If any

condition does not hold, we do not apply SSR.

1. Verifying control flow. We verify that the CFG contains onlyIF-THEN-ELSE and

IF-THEN control flow statements andDO loops.

2. Detecting SSR co-space.We verify whether all textual co-space barriers, co-space

coercion operators, andsynch context(cs) hints use the same co-space vari-

ablecs. cs must not be redefined in the procedure.

152

Third, to prepare the CFG for SSR analysis, we normalize its form by applying the

following transformations.

1. Insulating loops containing barriers from communication outside the loop.

EachDO loop is represented in the CFG as a pre-conditioned loop withexactly two

successors and two predecessors, as shown in Figure 7.12. SSR treats aDO loop that

may execute a barrier as an independent CFG region.

To detectDO loops that may execute a barrier, we declare abarrier helper variable

(BHV) and facilitate the SSA form. We insert a helper statement:BHV=BHV+1 right

after each barrier statement and build the SSA. EachDO loop whose header node has

aΦ-node forBHV may execute a barrier and represents aDO loop CFG region.

We insert four placeholders forPreloop, Postloop, Prebody, andPostbody syn-

chronization fences and event placeholders, as shown in Figure 7.14. The synchro-

nization fences separate the communication and synchronization inside the loop from

the outside. They also do not allow outside synchronizationto move past the loop

statement. The event placeholders are used to control how barrier non-reducibility

propagates into and out of the loop.

2. Insulating procedures from communication outside procedures.

Immediately after the CFG entry node, we insert theEntryFence synchronization

fence placeholder followed by theEntryEvent event placeholder. Immediately be-

fore the CFG exit node, we insert theExitEvent event placeholder, followed by the

ExitFence synchronization fence placeholder. This is shown in Figure7.13. The

fences are used to separate procedure communication/synchronization from the out-

side communication. For each call site of a procedure without local attribute, we

insert two event placeholders: one before the call site, theother after the call site.

The fences and events are used to analyze barrier reducibility in Section 7.5.

Fourth, we collect analysis data to support further analysis.

153

1. We construct the CFG and SSA form.

2. We compute the dominator tree (DT) and postdominator tree(PDT).

3. We perform the inference of group-executable (GE) statements and co-space single

values (SV), as described in Section 6.3.

4. We associate aNode structure with each CFG node. If the statement of the node is

group-executable, we initializeNode.state to GE; otherwise, it isNGE.

5. We associate aFence structure with each barrier and each synchronization fence.

6. We build iterated dominance frontier and iterated reverse dominance frontier for

fence nodes; we denote them asFenceIDF andFenceIRDF , respectively.

7. We associate aRegion structure with eachDO loop region. Note that aDO loop

region can reuse DT and PDT of the entire CFG that are restricted by thePrebody

andPostbody fences.

8. We associate anEvent structure with each communication event (PUT/GET) or an

event placeholder.

7.5 Reducibility analysis

The goal of reducibility analysis is to identify barriers that can bereduced; i.e., be removed

from the code and replaced by a set of permission & completionsynchronizations. The

analysis should not introduce more synchronization than the original code has. Thus, it

also determines whether a communication evente is upwardly synchronizableanddown-

wardly synchronizablewith point-to-point synchronization. The synchronizability property

of each end is independent from that of the other end. Ife is upwardly synchronizable, it

can safely be upwardly synchronized with a permission pair instead of barriers reaching

e. If e is downwardly synchronizable, it can safely be downwardly synchronized with a

154

completion pair instead of barriers thate reaches. In addition, the analysis also determines

the placement of the permission wait and the completion notify for each event.

Reducible barriers and synchronizable events can be detected by an optimistic mono-

tonic fixed-point iterative algorithm that propagates properties from fences to events and

from events to fences. The analysis initially assumes that all barriers are reducible. Intu-

itively, if an evente reaches barrierb ande is not downwardly synchronizable,b must be

non-reducible becauseb must be used to synchronizee to preserve a potential inter-image

data dependence emanating frome; thus,b cannot be removed from the code. Similarly, if

an evente reaches barrierb andb is non-reducible,b is already sufficient to synchronizee,

and a completion pair should not be generated fore not to introduce unnecessary synchro-

nization; thus,e should not be downwardly synchronizable. Similar reasoning applies for

the situation where a barrierb reaches an evente. We give more details while describing

the propagation step below.

7.5.1 Initialize flow equations

The initialization step consists of two parts. The first one determines whether each commu-

nication event is initially synchronizable as well as placement of a permission wait and a

completion notify for each PUT/GET. The second one deals with various flow conditions.

Initialize communication events

Figure 7.20 shows pseudocode for initializing the state of each communication evente.

e is non-analyzable if SSR cannot qualify it as an analyzable group-executable or non-

group-executable PUT/GET (see Patterns 6.1 and 6.2 in Chapter 6). For example,e is non-

analyzable if its target image is not expressed via a co-spaceCS Neighbor function, or if

theCS Neighbor function does not have single-valued arguments. Ife is non-analyzable,

SSR cannot synchronize it with point-to-point synchronization. Thus,e is not upwardly or

downwardly synchronizable. Ife is analyzable, we determine the placement fore’s wp and

nc and whethere is synchronizable, as shown in Figure 7.21, unlesse is a special event

155

procedure initializeCommunicationEvents
for each communication evente

if e is non-analyzable (not an analyzable GE or NGE PUT or GET)
e.upwardlySynchronizable← false
e.downwardlySynchronizable← false

else // analyzable GE or NGE PUT or GET
if ∃ DO loop regionR such that

there is a fence-free path in the CFG from theR.prebody fence toe and
there is a fence-free path frome to theR.postbody fence

// heuristic: avoid unnecessary synchronization in a loop executing a barrier
e.upwardlySynchronizable← false
e.downwardlySynchronizable← false

else

// determine the initial placement ofwp andnc

call determineInitialWpNcP lacement(e) // see Figure 7.21

Figure 7.20 : Detecting synchronizable PUT/GET events.

in aDO loop. If e executes in aDO loop containing a barrier (theDO loop has a regionR

associated with it) ande may execute without being synchronized with a barrier on some

iteration of the loop, we do not optimizee, not to introduce more synchronization into the

program. This is demonstrated by the following example:

do i = 1, 101
if (i == 101) then

call barrier(cs)
else

a(i)[CS_Neighbor(cs, i)] = b(i)
endif

enddo

If the barrier is reduced, the permission & completion pairsexecute on100 iterations of the

loop; however, the original version does not execute any synchronization except the barrier

on the last iteration. The original version would probably be faster than the reduced one.

Figure 7.21 determines the placement of a permission wait and a completion notify for

an analyzable group-executable/non-group-executable event. If the evente node is group-

executable, which corresponds to the first analyzable Pattern 6.1, a permission wait and a

156

procedure determineInitialWpNcP lacement(Event e)
// e is an analyzable GE or NGE PUT or GET
if e.node.state = GE // an analyzable GE PUT or GET

// placewp andnc at the node of the event
e.wpP lace← new P lace(e.node, beforeStmt)
e.ncP lace← new P lace(e.node, afterStmt)
e.upwardlySynchronizable← true
e.downwardlySynchronizable← true
return

else // an analyzable NGE PUT or GET
inputs← SSA names referenced by thee.image expression
// placewp: assume that the event cannot be analyzed by SSR
e.wpP lace← new P lace(e.node, beforeStmt)
e.upwardlySynchronizable← false
e.downwardlySynchronizable← false
while e.wpP lace.node.state = NGE

if ∃ SSA namen, n ∈ inputs, that is defined by either
e.wpP lace.node’s statement orΦ-nodes
return

// move to the immediate CFG dominator
e.wpP lace.node← idom(e.wpP lace.node, beforeStmt)

// found the closets GE dominator with available inputs to compute target image
if e.wpP lace.node is not aDO-loop entry node

// the event can be analyzed (e.wpP lace.node containsIF statement)
e.upwardlySynchronizable← true
e.downwardlySynchronizable← true
// placenc

e.ncP lace← new P lace(ipostdom(e.wpP lace.node, afterStmt))

Figure 7.21 : Determining synchronizable PUT/GET and placement forwp andnc.

completion notify can be placed right around the event in thesame node, as discussed in

Section 7.2;e is synchronizable. Ife is an analyzable non-group-executable PUT/GET, we

try to find the closest group-executable dominatord of e.node such that the SSA names

(inputs) referenced by the target image expressione.image are available ind, as discussed

in Section 7.2. Ifd is found,e is synchronizable, andd is the node to place a permission

wait; the immediate postdominator ofd is then the place for a completion notify. Ifd

157

cannot be found, SSR cannot analyzee and makese non-synchronizable. Note that our

implementation of SSR neither vectorizes permission & completion pairs nor hoists them

outside of aDO loop that does not contain a barrier because we have not encountered

opportunities in the codes that we have studied. We discuss this possibilities in Section 7.9.

Initialize reducibility state

Figure 7.22 shows pseudocode for the rest of initialization. Each fence is optimistically

assumed to be reducible; each event placeholder is optimistically assumed to be synchro-

nizable.

To keep the flow equations uniform, we introduce two event placeholders, represented

by theEvent structure, with the same reducibility properties as a communication event.

TheEntryEvent placeholder is inserted in the CFG right after theEntryFence synchro-

nization fence at procedure entry. TheExitEvent is inserted right before theExitFence

synchronization fence at procedure exit, as shown in Figure7.13.

If a synch context(cs) hint at procedure entry is present, theEntryFence is

initialized to be reducible, and theEntryEvent is initialized to be synchronizable. Oth-

erwise, SSR must be conservative;i.e., it initializes them to be non-reducible and non-

synchronizable, respectively. In the propagation step, a non-reducibleEntryFence will

make all events reachable from the procedure entry upwardlynon-synchronizable, and a

downwardly non-synchronizableEntryEvent will make all fences reachable from the pro-

cedure entry non-reducible; this is exactly what we want when asynch context(cs)

hint at procedure entry is not present, which means that a downwardly non-synchronizable

communication event may reach the procedure invocation and, thus, the procedure entry.

If a synch context(cs) hint at procedure exit is present, theExitFence is ini-

tialized to be reducible, and theExitEvent is initialized to be synchronizable; otherwise,

SSR must be conservative and similar reasoning is applicable as for the procedure entry.

For each procedure call that may execute a PUT/GET (nolocal attribute), we insert

two event placeholders around the call site. SSR initializes them to be non-synchronizable

158

procedure initializeReducibilityState
// optimistically initialize all fences to be reducible
for each fencef

f.reducible← true

// optimistically initialize all event placeholders to be synchronizable
for each event placeholdere

e.upwardlySynchronizable← true
e.downwardlySynchronizable← true

// procedure entry
if there is nosynch context(cs) hint at procedure entry

EntryFence.reducible← false
EntryEvent.upwardlySynchronizable← false
EntryEvent.downwardlySynchronizable← false

// procedure exit
if there is nosynch context(cs) hint at procedure exit

ExitFence.reducible← false
ExitEvent.upwardlySynchronizable← false
ExitEvent.downwardlySynchronizable← false

// procedure calls containing possible PUT/GET
for each call site of a procedure without thelocal attribute

// let e1 ande2 be event placeholders before and after the call, respectively
e1.upwardlySynchronizable← false
e1.downwardlySynchronizable← false
e2.upwardlySynchronizable← false
e2.downwardlySynchronizable← false

Figure 7.22 : Initializing reducibility state.

because it cannot analyze events outside procedure scope and must be conservative. SSR

assumes that there might be non-synchronized communication events reachable from the

point right before the call site and reaching the point rightafter the call site; these pos-

sible unsynchronized conflicting communication events arerepresented by the two non-

synchronizable event placeholders.

159

procedure buildSets
// initialization
for each fencef

f.eventsBeforeFence← ∅
f.eventsAfterFence← ∅

for each evente
e.fencesBeforeEvent← ∅
e.fencesAfterEvent← ∅

for each evente
call moveUpward(e, e.node) // see Figure 7.24
call moveDownward(e, e.node) // see Figure 7.24

Figure 7.23 : BuildingfencesBeforeEvent, fencesAfterEvent, eventsBeforeFence,
andeventsAfterFence sets.

7.5.2 Detect reducible barriers and synchronizable communication events

To propagate non-reducibility of fences and non-synchronizability of events, we first

construct reachability sets. For each evente, we build fencesBeforeEvent(e) and

fencesAfterEvent(e) sets. For each fencef , we build eventsBeforeFence(f) and

eventsAfterFence(f) sets. The pseudocode for initialization and recursive traversal of

the CFG is shown in Figures 7.23 and 7.24.

We use synchronization fences to simplify flow equations. Synchronization fences are

not real barriers. They are present to give more control over howthe analysis treatsDO

loops, procedure calls, and procedure entry/exit. However, a synchronization fence may

become a real barrier when it is profitable or necessary to satisfy the assumptions of the

synch context(cs) hints, as discussed below.

Figure 7.25 shows the propagation step where information flows from events to fences

and from fences to events. Figure 7.26 shows how the results of the propagation step

are used to optimizeDO loops and to handlesynch context(cs) hints at procedure

entry/exit.

The first three steps, shown in Figure 7.25, iteratively, transitively propagate fence non-

160

procedure moveUpward(Event e, Node n)
if n contains a fencef

f.eventsAfterFence← f.eventsAfterFence ∪ {e}
e.fencesBeforeEvent← e.fencesBeforeEvent ∪ {f}
return

if n ∈ FenceIDF // a merge point for fences
for each nodep ∈ pred(n) // for each CFG predecessor (no back edges)

call moveUpward(e, p)
else

call moveUpward(e, idom(n)) // move to the immediate dominator

procedure moveDownward(Event e, Node n)
if n contains a fencef

f.eventsBeforeFence← f.eventsBeforeFence ∪ {e}
e.fencesAfterEvent← e.fencesAfterEvent ∪ {f}
return

if n ∈ FenceIRDF // a split point for fences
for each nodes ∈ succ(n) // for each CFG successor (no back edges)

call moveDownward(e, s)
else

call moveDownward(e, ipostdom(n)) // move to the immediate postdominator

Figure 7.24 : Recursive procedures to build reachability sets.

reducibility and event upward/downward non-synchronizability. Step I captures propaga-

tion of the fact that if an event cannot be synchronized safely with point-to-point synchro-

nization, barriers used to synchronize the event cannot be removed. Any upwardly non-

synchronizable evente that is reachable by a fencef makesf non-reducible since a barrier

must be used to enforce inter-image data dependencies (a permission pair is not enough).

Similarly, any downwardly non-synchronizable event that reaches a fencef makesf non-

reducible since a barrier must be used to enforce inter-image data dependences (a comple-

tion pair is not enough).

Step II captures propagation of the fact that if a fence used to synchronize an event

is non-reducible, it is unnecessary to synchronize the event with additional point-to-point

synchronization. If an evente reaches a non-reducible fencef , e is not downwardly syn-

161

procedure propagate
while any updated field changes value

// Step I. Propagate information from events to fences
for each evente such that¬e.upwardlySynchronizable

for each fencef such thatf ∈ e.fencesBeforeEvent
f.reducible← false

for each evente such that¬e.downwardlySynchronizable
for each fencef such thatf ∈ e.fencesAfterEvent

f.reducible← false

// Step II. Propagate information from fences to events
for each fencef such that¬f.reducible

for each evente such thate ∈ f.eventsBeforeFence
e.downwardlySynchronizable← false

for each evente such thate ∈ f.eventsAfterFence
e.upwardlySynchronizable← false

// Step III. Propagate information forDO loop regions
for eachDO loop regionR

// non-synchronizable events reaching body fences inside the loop
if ¬R.prebodyFence.reducible or ¬R.postbodyFence.reducible

call markNoSynchOptForLoop(R)
// non-synchronizable events outside of the loop
if (¬R.preloopFence.reducible or ¬R.postloopFence.reducible) and

(heuristic: the loop does not always execute a barrier)
call markNoSynchOptForLoop(R)

procedure markNoSynchOptForLoop(Region R)
R.prebodyEvent.downwardlySynchronizable← false
R.postbodyEvent.upwardlySynchronizable← false
R.prebodyFence← false; R.postbodyFence← false
R.preloopEvent.upwardlySynchronizable← false
R.postloopEvent.downwardlySynchronizable← false
R.preloopFence← false; R.postloopFence← false

Figure 7.25 : Iterative propagation step.

162

procedure finalize
// Step IV. Heuristic: isolate synchronizable events inside aDO loop region
// from non-synchronizable events outside the loop
for eachDO loop regionR

if ¬R.preloopFence.reducible and
R.prebodyFence.reducible and R.postbodyFence.reducible

insert a barrier inR.preloopFence.node
if ¬R.postloopFence.reducible and
R.prebodyFence.reducible and R.postbodyFence.reducible

insert a barrier inR.postloopFence.node

// Step V.Satisfy the assumptions ofsynch context(cs) hints
if there issynch context(cs) at procedure entry and¬EntryFence.reducible

insert a barrier inEntryFence.node at procedure entry and issue a warning
if there issynch context(cs) at procedure exit and¬ExitFence.reducible

insert a barrier inExitFence.node at procedure exit and issue a warning

Figure 7.26 : Post-propagation step.

chronizable. Similarly, if a non-reducible fencef reaches an evente, e is not upwardly

synchronizable. Note that, in part, this is a heuristic thatworked well for all scientific

codes available to us. The algorithm might have synchronized a communication event with

extra point-to-point synchronization to reduce additional barriers. For example, if a non-

reducible barrierb1 and a reducible barrierb2 reach an evente from above, we could still

synchronizee with a permission pair, which is redundant forb1, but may keep the state of

b2 reducible.

Before discussing steps III and IV, we explain Step V, which ensures that the assump-

tions of thesynch context(cs) hint hold. If asynch context(cs) hint is present

at procedureS1’s entry and theEntryFence is non-reducible, it means that SSR was not

able to use permission pairs to safely optimizeS1’s communication events reachable from

S1’s entry. Another SSR-optimized procedureS2, executing before an invocation ofS1,

with synch context(cs) hint at S2’s exit relies on the assumption thatS1’s events

reachable fromS1’s entry are synchronized (with either point-to-point synchronization or

163

a barrier); therefore, SSR inserts a barrier when it fails tooptimize events reachable from

S1’s entry. However, SSR warns the programmer that an extra barrier is inserted. The

reasoning is similar for the procedure exit. In all scientific codes that we have, SSR never

inserted a barrier at procedure entry or exit.

If a synch context(cs) hint is not present at procedure entry, theEntryFence

will make reachable events upwardly non-synchronizable. At the same time, down-

wardly non-synchronizableEntryEvent will make all reachable barriers and synchro-

nization fences non-reducible. Thus, SSR conservatively assumes that a downwardly non-

synchronizable event may reach an invocation of the procedure. Similar reasoning holds

for the procedure exit as well. There may be upwardly non-synchronizable communication

events following a procedure invocation.

Note that non-synchronizable event placeholders insertedaround each call site of a

procedure that may execute PUT/GET (nolocal attribute). For each call sitec, these

placeholders will make barriers and fences that are reachable by c and barriers and fences

that c reaches non-reducible. SSR conservatively assumes thatc may execute a non-

synchronizable communication event that may need to be synchronized by the barriers

of the procedure being analyzed.

SSR propagation for DO loops and profitability heuristics

EachDO loop that may execute a barrier is “insulated” into a CFGDO loop region from

the rest of the program, as shown in Figure 7.14, using four synchronization fences:

PreloopFence, PostloopFence, PrebodyFence, andPostbodyFence, and four event

placeholders:PreloopEvent, PostloopEvent, PrebodyEvent, and PostbodyEvent.

SSR uses these helper fences and events to have more control over how to propagate barrier

non-reducibility out of and into aDO loop region. For example, SSR may choose to insert a

real barrier beforeDO loop to “guard” optimizable communication/synchronization inside

the loop from an outside downwardly non-synchronizable event before the loop.

In step III, there are two possible cases. First, if there is anon-synchronizable event

164

inside the loop that is reachable by thePrebody fence or that reaches thePostbody fence,

SSRconservatively6 gives up optimizing the loop7. This case happens when an evente

inside the loopR, reachable fromR.prebodyFence or reachingR.postbodyFence, cannot

be optimized, making eitherR.prebodyFence or R.postbodyFence non-reducible. The

markNoSynchOptForLoop procedure marks all four helper fences non-reducible and

four helper events non-synchronizable, propagating non-reducibility to every path into or

out of the loop, toPrebody, Postbody, Preloop, andPostloop.

Propagation of non-reducibility inside aDO loop R is different. If SSR knows that

the loop executes at least one barrier, it does not propagateoutside non-reducibility into

the loop. The rationale is to optimize communication eventsinside the loop as much as

possible since loops usually execute many times. However, to “protect” the loop from

outside influence, SSR may insert a barrier before or after the loop in the post-propagation

step IV. The state ofR.preloopFence (or R.postloopFence) determines whether there is

outside non-reducibility;R.preloopFence (or R.postloopFence) could have received the

non-reducible property only from a non-synchronizable event outside of the loop. However,

what if the loop does not execute at all or might not execute a barrier as shown in the

following example:

do i = 1, 100
if (i == 101) then

call barrier(cs)
endif

enddo

In this case, we do not want to makePreloopFence or PostloopFence a real barrier, to

avoid increasing the amount of synchronization. Thereforein our SSR implementation, the

heuristic in step III is formulated as “there is a barrier-free path from loopPrebodyFence

to PostbodyFence or the loop trip is zero”. The heuristic formulation means that the loop

does not always execute a barrier.

6There was no point to explore better heuristics without scientific codes that might use them.
7SSR might still be able to optimize a CFG region inside the loop that is isolated by barriers from the

influence of these non-synchronizable events.

165

After the analysis reaches a fixed point, step IV may insert real barriers at the loop

PreloopFence or/andPostloopFence fence places to protect loop internal synchroniz-

able events from external non-synchronizable events. Notethat the heuristic in step III

guarantees that a real barrier is inserted only if the loop always executes a barrier.

7.6 Optimization of notify/wait synchronization

After reducibility analysis, for each communication evente (PUT/GET), SSR knows

whether to generate a permission pair (ife.upwardlySynchronizable is equal totrue)

and/or to generate a completion pair (ife.downwardlySynchronizable is equal totrue).

However, placement of the permission notify and the completion wait should be optimized

to overlap the permission and completion notify synchronization latencies with local com-

putation, as discussed in Section 7.2.3. We first present an algorithm which does this, then

we discuss how to eliminate redundant notify/wait synchronization.

7.6.1 Hiding synchronization latency

Initially, a permission notify can be placed immediately before a permission wait for an

upwardly synchronizable communication event; a completion wait can be placed immedi-

ately after a completion notify for a downwardly synchronizable communication event. To

overlap the permission notify latency with local computation, the permission notify should

be moved earlier in the execution. To overlap the completionnotify latency with local com-

putation, the completion wait should be moved later in the execution. The driver procedure

is shown in Figure 7.27. It moves completion waits downward and permission notifies

upward. We describe the downward movement of waits first because it is simpler. Our

version of SSR uses barriers (or fences) to limit the movement. For downward movement,

SSR must maintain the property that a completion wait executes once iff the matching com-

pletion notify executes once. For upward movement, SSR mustmaintain the property that

a permission notify executes once iff the matching permission wait executes once. There-

fore, SSR must carefully guard the execution of the permission notify & completion wait

166

procedure moveWcAndNp

for each communication evente
if e.downwardlySynchronizable

call moveWcDownward(e, e.ncP lace.node)
if e.upwardlySynchronizable

inputs← SSA names referenced bye.image
guardnp

← true
call moveNpUpward(e, e.wpP lace.node, inputs, guardnp

)

procedure addP lace(SetOfP laces, n, whereToInsert, guardnp
= NULL)

place← new P lace(n, whereToInsert, guardnp
)

SetOfP laces← SetOfP laces ∪ {place}

Figure 7.27 : Movement of the completion waitwc and permission notifynp.

and, in particular, not move the permission notify & completion wait outside ofDO loops.

Note that this version of SSR does not support point-to-point synchronization vectorization

or hoisting.

The downward movement of a completion wait is simpler than upward movement of a

permission notify, because the completion wait executes after the completion notify. Thus,

whether the completion notify should execute can be captured in a compiler-generated

guard variable; this variable is used to match the executionof the completion notify and

the completion wait, as shown in Section 7.7. Note that the point-to-point synchronization

statements are group-executable; therefore, the state of the guard variable is the same for all

co-space images. In addition, the arguments of the communication target image specified

via aCS Neighbor function are evaluated at the permission wait point. Their values can

be stored in compiler-generated variables and used by the completion wait to compute the

origin(s) of communication, as shown in Section 7.7.

Figure 7.28 shows how downward movement is performed for a completion wait. The

movement starts at the location of the corresponding completion notify, which was found

during the reducibility analysis stage. When a fence is encountered, movement stops; this is

a new location for the completion wait. ProcedureaddP lace, shown in Figure 7.27, creates

167

procedure moveWcDownward(Event e, Node n)
if n contains a fence

// add a new place forwc before the fence statement
addP lace(e.wcP laces, n, beforeStmt)
return

if n ∈ FenceIRDF // a fence split point
for each nodes ∈ succ(n) // for each CFG successor

call moveWcDownward(e, s)
else

p← ipostdom(n)
// do not morewc outside of aDO loop
if 〈n, p〉 is aDO loop back edge

// add a new place forwc as the last statement ofDO-loop body
addP lace(e.wcP laces, n, afterStmt)
return

else

call moveWcDownward(e, p)

Figure 7.28 : Downward movement of a completion waitwc.

a newP lace and adds it to the set of alle.wcP laces places. When a fence split point is

encountered, the procedure recurs over all CFG successors to find all reachable fences.

This cannot move the completion wait out of aDO loop containing a barrier, because such a

loop has aPostbodyFence limiting the downward movement. Otherwise, the completion

wait is moved to the immediate postdominatorp node. The presented SSR version does

not move the completion wait outside of aDO loop that does not execute barriers (not a

region) by checking whether〈n, p〉 is aDO loop back edge. If〈n, p〉 is a back edge, we

stop the movement. When we append a new completion wait placeto the sete.wcP laces

of all completion wait CFG places, we also check for duplicates so that there is only one

completion wait per place; this is incorporated into the setunion operation and not shown

in Figure 7.28.

Figure 7.29 shows how SSR moves a permission notify upward, earlier in the execu-

tion. The process is similar to the downward movement of a completion wait; however,

168

procedure moveNpUpward(Event e, Node n, inputs, guardnp
)

// inputs are SSA names necessary to computee.image andguardnp

// guardnp
is the guard ofnp to matchnp andwp executions

if n contains a fence
// add a new place fornp after the fence statement
addP lace(e.npP laces, n, afterStmt, guardnp

)
return

if ∃ name ∈ inputs such thatname is killed byn.stmt or proc.-call side effects
// add a new place fornp aftern’s statement
addP lace(e.npP laces, n, afterStmt, guardnp

)
return

if ∃ name ∈ inputs such thatname is killed byn.Φ-nodes
// add a new place fornp beforen’s statement unless it is aDO loop
addP lace(e.npP laces, n, (n.stmt is aDO)? afterStmt : beforeStmt, guardnp

)
return

if n ∈ FenceIDF // a fence merge point
for each nodep ∈ pred(n) // for each CFG predecessor

call moveNpUpward(e, p, inputs, guardnp
)

else

d← idom(n)
if 〈d, n〉 is aDO loop body entry edge // do not movenp outside of aDO loop

// add a new place fornp as the first statement of theDO loop body
addP lace(e.npP laces, n, beforeStmt, guardnp

)
return

else

if ipostdom(d) 6= n // moving outside of anIF-THEN-ELSE
// let d.stmt be anIF-THEN-ELSE with guard expressionguardif

if n is the then-branch successor ofd
guardnp

← (guardif ∧ guardnp
)

else // n is the else-branch successor ofd
guardnp

← (¬guardif ∧ guardnp
)

inputsguardif
← SSA names referenced byguardif

inputs← inputs ∪ inputsguardif

// d andn are control equivalent; sameguardnp
andinputs

call moveNpUpward(e, d, inputs, guardnp
)

Figure 7.29 : Upward movement of a permission notifynp.

169

we must also ensure that SSA names’inputs, used to evaluate the target image of com-

municatione.image as well as the permission notify guardguardnp
, are available at each

permission notify place. The movement starts at the corresponding permission wait node,

which was found during the reducibility analysis stage. Theguardnp
expression is initially

true, which corresponds to executing the permission wait right after the corresponding per-

mission notify; hence, the initial inputs are the SSA names of the e.image expression (see

Figure 7.27).

If a fence is encountered, the movement stops and a new place is created. TheP lace

structure also contains the guard expression used by the code generation stage to guard

execution of the permission notify at the nodeP lace.node (see Section 7.7). If one of

the SSA names necessary to perform guarded execution of the permission notify is killed,

the movement stops and a new permission notify place is created. If a fence merge point

is encountered, the movement recursively proceeds into each CFG predecessor. Similar to

the downward motion, SSR cannot move the permission notify outside anyDO loop (region

or not). Otherwise, the permission notify is moved into the immediate CFG dominator.

Three cases are possible. First, if we move the permission notify outside of an

IF-THEN-ELSE along the then-branch, we must ensure that the permission notify ex-

ecutes iff the control takes the true-branch during programexecution. Thus, we extend the

guardnp
with a conjunction of theIF guard expressionguardif . Second, if we move the

permission notify outside of anIF-THEN-ELSE else-branch, we extend theguardnp
with

a conjunction of the negatedIF guard expression¬guardif . Third, if we move the permis-

sion notify to a control-equivalent dominator, there is no need to change theguardnp
(and

the inputs as a consequence). Accumulation of the guard expression is somewhat similar

to if-conversion. Each permission notify placement node and the corresponding permission

notify guard defines auniquecontrol-flow path in the CFG of how execution reaches the

location of the permission wait; therefore, for each execution of the permission wait, there

is one and only one execution of the matching permission notify.

Note that SSR limits the motion of a permission notify and a completion wait with bar-

170

call barrier(cs)

x[left(cs)] = ...

y[left(cs)] = ...

call barrier(cs)

(a) Events with the same target

! former barrier
call notify(right(cs)) ! permission (x)
call notify(right(cs)) ! permission (y) Redundant
call wait(left(cs)) ! permission (x)
x[left(cs)] = ...
call notify(left(cs)) ! completion (x) Redundant
call wait(left(cs)) ! permission (y) Redundant
y[left(cs)] = ...
call notify(left(cs)) ! completion (y)
call wait(right(cs)) ! completion (x) Redundant
call wait(right(cs)) ! completion (y)
! former barrier

(b) SSR-transformed code

Figure 7.30 : Redundant point-to-point synchronization inSSR-transformed code.

riers (fences). It does not differentiate between individual inter-image data dependencies,

but rather treats each variable as the entire memory, just asthe barrier does, and therefore, it

is a suboptimal over-approximation. However, this is sufficient to optimally SSR-optimize

all CAF codes available to us that would benefit from the transformation.

7.6.2 Eliminating redundant point-to-point synchronization

We present two techniques that eliminate redundant permission & completion pairs for a

set of communication eventsE such that every communication evente, e ∈ E, reaches a

single barrierbpostdom ande is reachable by a single barrierbdom. This is a typical case for

many scientific codes.

Eliminating redundant notify/wait for PUTs/GETs with the s ame target image

Under SSR placement for permission & completion pairs, communication events with the

same target image that execute in the same communication epoch defined by textual barriers

bdom andbpostdom might induce redundant point-to-point synchronization. Figure 7.30 (a)

shows an example of two PUTs to the same target image, the neighbor on the left8. Fig-

8left(cs) is a macro for CS Neighbor(cs,1,-1). right(cs) is a macro for

CS Neighbor(cs,1,+1)

171

procedure optimizeEventsWithTheSameTargetImage
for each pair of communication eventse1 ande2, e1 6= e2

if e1 ands2 satisfy Rule I (we1

p dominateswe2

p)
e2.upwardlySynchronizable← false

if e1 ande2 satisfy Rule II (ne2

c postdominatesne1

c)
e1.downwardlySynchronizable← false

Figure 7.31 : Marking redundant synchronization.

ure 7.30 (b) shows SSR-transformed code, which has redundant point-to-point synchro-

nization. The permission notifynx
p and waitwx

p for co-arrayx are sufficient to upwardly

synchronize the PUT forx andalso the PUT fory; therefore,ny
p andwy

p pair is redundant

(denoted asRedundant in Figure 7.30 (b)). Similarly, theny
c andwy

c pair is sufficient to

synchronize both PUTs and makes thenx
c andwx

c pair redundant (denoted asRedundant

in Figure 7.30 (b)).

In the general case, it is hard to determine when the targets of two communication

events are the same. We do it for analyzable group-executable/non-group-executable events

whoseCS Neighbor arguments are either the same constants or the same SSA names.

We now formulate two rules, generalizing the example, for finding redundant notify/wait

pair; the algorithms are straight-forward and we do not showtheir pseudocode.

Let e1 ande2 be two communication events with the same target image.

Rule I. If barrier bdom is the only barrier that reaches bothe1 ande2 andwe1

p dominates

we2

p , thenwe2

p andne2

p are redundant.ne1

p andwe1

p are sufficient to upwardly synchronize

bothe1 ande2.

Rule II. If barrier bpostdom is the only barrier that bothe1 ande2 reach andne2

c post-

dominatesne1

c , thenne1

c andwe1

c are redundant.ne2

c andwe2

c are sufficient to downwardly

synchronize bothe1 ande2.

Figure 7.31 shows pseudocode to make events with redundant synchronization pairs

non-synchronizable, so that the following code-generation stage (see Section 7.7.2) does

not instantiate redundant point-to-point synchronization.

172

call barrier(cs)
do i = 1, 1000
... compute a using b ...
// exchange shadow regions
a(:,M+1)[left(cs)] = a(:,1) ! left neighbor shadow region
a(:, 0)[right(cs)] = a(:,M) ! right neighbor shadow region
call barrier(cs)
... compute b using a ...
// exchange shadow regions
b(:,M+1)[left(cs)] = b(:,1) ! left neighbor shadow region
b(:, 0)[right(cs)] = b(:,M) ! right neighbor shadow region
call barrier(cs)

done}

Figure 7.32 : Shadow region exchange for Jacobi iteration.

Eliding redundant notify/wait for a Cartesian co-space

A symmetric nearest-neighbor exchange is a typical communication pattern found,e.g., in

the shadow-region exchange of Jacobi iteration. Figure 6.10 shows a visualization of the

shadow region-exchange for Jacobi iteration decomposed along the second dimension onto

a 1D Cartesian topology with periodic boundaries (see Section 6.4). Figure 7.32 shows

the relevant piece of pseudocode, in which each process image exchanges data with its

neighbor process images on the left and on the right.

When there is such symmetry, after SSR places permission & completion pairs, the

completionnc/wc pair of a communication to the left (right) is similar to the permission

np/wp pair of a communication to the right (left). Only one of thesetwo pairs is necessary

to correctly enforce the corresponding inter-image data dependencies; the other pair can be

elided. We select to elide the permission pair.

Let us consider a fragment of SSR-transformed code, shown inFigure 7.33, for state-

mentsa(:,M+1)[left(cs)]=a(:,1) andb(:,0)[right(cs)]=b(:,M). The

completion pair of the first PUT (fora) already enforces inter-image data dependencies

that the permission pair was inserted to enforce for the second PUT (forb); therefore, the

permission pair forb(:,0)[right(cs)]=b(:,M) is not necessary.

173

...
a(:,M+1)[left(cs)] = a(:,1) ! left neighbor shadow region
call notify(left(cs)) ! completion
...
call wait(right(cs)) ! completion
...
! former barrier
call notify(left(cs)) ! permission
...
call wait(right(cs)) ! permission
b(:, 0)[right(cs)] = b(:,M) ! right neighbor shadow region
...

Figure 7.33 : A fragment of SSR-generated code for Jacobi shadow region exchange.

Figure 7.34 (a) shows the SSR-transformed Jacobi shadow-region exchange code,

in which each communication epoch is optimized independently from the others. Fig-

ure 7.34 (b) shows optimized code where epochs are optimizedtogether; it has half as much

of the original synchronization, as the other half was removed (crossed out statements) due

to the symmetry. The barrier before the loop is necessary to upwardly synchronize com-

munication events inside the loop that are reachable from the loop entry (since we removed

the permission pairs); the overhead of the barrier before the loop is minimal compared to

that of redundant point-to-point synchronization of unoptimized code in the loop. We also

optimize epochs “wrapped” around the loop back-edge. Figure 7.35 (b) shows why each

synchronization event was removed by SSR. Note that if we eliminated completion pairs

instead of permission pairs, we would insert the barrier after the loop.

We optimize the case when each communication event is reachable by a single barrier

and reaches a single barrier. Letb be the barrier9 separating two communication epochs.

The epochepoch1 precedesb; the epochepoch2 succeedsb. Figure 7.36 shows high-level

pseudocode for the elision of permission pairs. Lete be a communication event inepoch2

used to upwardly synchronize variablex. We try to movee’s permission notify upward,

9b can correspond toPrebodyFence andPostbodyFence fences;i.e., it is “wrapped” around aDO loop

back-edge.

174

! fence
do i = 1, 1000

! fence
call notify(right(cs)) !na(:,M+1)

p

call notify(left(cs)) !na(:,0)
p

... computea usingb ...
! exchange shadow regions

call wait(left(cs)) !wa(:,M+1)
p

a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) !na(:,M+1)
c

call wait(right(cs)) !wa(:,0)
p

a(:,0)[right(cs)] = a(:,M)

call notify(right(cs)) !na(:,0)
c

call wait(right(cs)) !wa(:,M+1)
c

call wait(left(cs)) !wa(:,0)
c

! fence
call notify(right(cs)) !nb(:,M+1)

p

call notify(left(cs)) !nb(:,0)
p

... computeb usinga ...
! exchange shadow regions

call wait(left(cs)) !wb(:,M+1)
p

b(:,M+1)[left(cs)] = b(:,1)

call notify(left(cs)) !nb(:,M+1)
c

call wait(right(cs)) !wb(:,0)
p

b(:,0)[right(cs)] = b(:,M)

call notify(right(cs)) !nb(:,0)
c

call wait(right(cs)) !wb(:,M+1)
c

call wait(left(cs)) !wb(:,0)
c

! fence
done

(a) SSR-transformed code

call barrier(cs)
do i = 1, 1000

! fence
call notify(right(cs)) !na(:,M+1)

p

call notify(left(cs)) !na(:,0)
p

... computea usingb ...
! exchange shadow regions

call wait(left(cs)) !wa(:,M+1)
p

a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) !na(:,M+1)
c

call wait(right(cs)) !wa(:,0)
p

a(:,0)[right(cs)] = a(:,M)

call notify(right(cs)) !na(:,0)
c

call wait(right(cs)) !wa(:,M+1)
c

call wait(left(cs)) !wa(:,0)
c

! fence
call notify(right(cs)) !nb(:,M+1)

p

call notify(left(cs)) !nb(:,0)
p

... computeb usinga ...
! exchange shadow regions

call wait(left(cs)) !wb(:,M+1)
p

b(:,M+1)[left(cs)] = b(:,1)

call notify(left(cs)) !nb(:,M+1)
c

call wait(right(cs)) !wb(:,0)
p

b(:,0)[right(cs)] = b(:,M)

call notify(right(cs)) !nb(:,0)
c

call wait(right(cs)) !wb(:,M+1)
c

call wait(left(cs)) !wb(:,0)
c

! fence
done

(b) After synchronization elision

Figure 7.34 : SSR-reduced Jacobi iteration shadow region exchange.

beyondb into epoch1, perhaps, wrapping around theDO loop back-edge. If we find an event

e1 that is control equivalent withe ande1’s completion notify has the same target image as

e’s permission notify, thene’s permission pair is redundant. While movinge’s permission

notify earlier in the execution, we check thatx is not accessed betweene1’s completion

notify and b. If this is not the case, such an access creates a potential inter-image data

dependence that is not downwardly synchronized withe1’s completion pair; thus,e’s per-

175

! fence
do i = 1, 1000

! fence
call notify(right(cs)) !na(:,M+1)

p

call notify(left(cs)) !na(:,0)
p

... computea usingb ...
! exchange shadow regions

call wait(left(cs)) !wa(:,M+1)
p

a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) !na(:,M+1)
c

call wait(right(cs)) !wa(:,0)
p

a(:,0)[right(cs)] = a(:,M)

call notify(right(cs)) !na(:,0)
c

call wait(right(cs)) !wa(:,M+1)
c

call wait(left(cs)) !wa(:,0)
c

! fence
call notify(right(cs)) !nb(:,M+1)

p

call notify(left(cs)) !nb(:,0)
p

... computeb usinga ...
! exchange shadow regions

call wait(left(cs)) !wb(:,M+1)
p

b(:,M+1)[left(cs)] = b(:,1)

call notify(left(cs)) !nb(:,M+1)
c

call wait(right(cs)) !wb(:,0)
p

b(:,0)[right(cs)] = b(:,M)

call notify(right(cs)) !nb(:,0)
c

call wait(right(cs)) !wb(:,M+1)
c

call wait(left(cs)) !wb(:,0)
c

! fence
done

(a) SSR-transformed code

call barrier(cs)
do i = 1, 1000

! fence
! n

a(:,M+1)
p elided: covered bynb(:,0)

c

! n
a(:,0)
p elided: covered bynb(:,M+1)

c

... computea usingb ...
! exchange shadow regions

! w
a(:,M+1)
p elided: covered bywb(:,0)

c

a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) !na(:,M+1)
c

! w
a(:,0)
p elided: covered bywb(:,M+1)

c

a(:,0)[right(cs)] = a(:,M)

call notify(right(cs)) !na(:,0)
c

call wait(right(cs)) !wa(:,M+1)
c

call wait(left(cs)) !wa(:,0)
c

! fence
! n

b(:,M+1)
p elided: covered byna(:,0)

c

! n
b(:,0)
p elided: covered byna(:,M+1)

c

... computeb usinga ...
! exchange shadow regions

! w
b(:,M+1)
p elided: covered bywa(:,0)

c

b(:,M+1)[left(cs)] = b(:,1)

call notify(left(cs)) !nb(:,M+1)
c

! w
b(:,0)
p elided: covered bywa(:,M+1)

c

b(:,0)[right(cs)] = b(:,M)

call notify(right(cs)) !nb(:,0)
c

call wait(right(cs)) !wb(:,M+1)
c

call wait(left(cs)) !wb(:,0)
c

! fence
done

(b) After synchronization elision

Figure 7.35 : SSR-reduced Jacobi iteration shadow region exchange: explanation for the
synchronization elision.

mission pair must be used to synchronize the dependence, andit cannot be removed. The

implementation is straightforward using the information for the permission & completion

pair placement. After this optimization, each upwardly synchronizable evente that was

optimized is made upwardly non-synchronizable (e.upwardlySynchronizable = false)

to avoid generating the redundant permission pair. SSR enhanced with this strategy re-

176

procedure elideSynchronizationPairs
for each evente such that there is only onenpP lace andnpP lace.guardnp

= true
// let e.image−1 denote Cartesian inversion ofe’s target image expressione.image
// try to find a “covering” completion notify by moving permission notify upward
n← npP lace.node
wrapped← false
while true

if any input ofe.image is defined inn // cannot movenp earlier in execution
break

if n contains a completion notify for evente1 such thate1.image = e.image−1

ande1.ncP lace.node andnpP lace.node are control equivalent
// found a “covering” completion pair: elidee’s permission pair
e.upwardlySynchronizable← false
if wrapped = true // wrapped around aDO loop back edge

makeR.preloopFence a real barrier
break

if e’s co-array variable is accessed inn.stmt // potential inter-image dependence
break

if n is the prebody fence nodeR.PrebodyFence of aDO loop regionR
// wrap around the back edge
n← R.postbodyFence’s node
wrapped← true
continue

d← idom(n)
if d is not control equivalent ton // coming from within control flow

break

n← d // move upward to the immediate dominator
if n = npP lace.node // already visited the node

break

Figure 7.36 : Eliding redundant permission pairs for a Cartesian co-space.

moves redundant permission pairs in the Jacobi iteration, so that the performance of an

SSR-optimized version matches that of hand-optimized codethat uses manually placed

point-to-point synchronization.

177

7.7 Code generation

The information collected in the previous stages of SSR mustbe instantiated, which pro-

duces a faster code with better synchronization. We first describe synchronization primi-

tives used by SSR.

7.7.1 Synchronization primitives for SSR

SSR should not use CAF’snotify andwait point-to-point synchronization primitives,

because the programmer may use them to synchronize the program; this might interfere

with the compiler-generated code. Instead, SSR uses theN(cs,q) andW(cs,r) prim-

itives, which are similar tonotify andwait, to replace all textual barriers of co-space

cs. N(cs,q) andW(cs,r) are not visible to the programmer and their state is private to

the co-spacecs, which allows the compiler to freely mix CAF’s primitives aswell asN/W

of other co-spaces.N(cs,q) andW(cs,r) can only be executed by members ofcs, and

the target imagesq andr must be members ofcs.

The implementation ofN/W is similar to that ofnotify andwait pairwisecounters.

There are two possibilities. The first option is to maintain the full set of pairwise counters,

one for each pair of images. This results inO(P) space usage per each co-space image,

whereP is the size of the co-space group. Thus, this option is feasible for medium-scale

parallel architectures, but might not be feasible for large-scale clusters, for which maintain-

ing the entire set of pairwise counters may result in high memory-space overhead. As of

this writing,cafc runtime implementation maintains the entire set of pairwise counters.

The second option is based on the observation that most scientific codes communi-

cate only with a relatively small subset of neighbors. Thus,pairwise synchronization state

should be created on-demand during execution, only when twoimages synchronize the

first time for the co-space. This is similar to the process of establishing a connection for a

multi-version variable; see Section 8.3. When imagep waits/notifies imageq, their pair-

wise synchronization state is established on bothp andq, e.g., by using an Active Message

(AM). Each pairwise counter state isO(1); more precisely,p’s state withq has three in-

178

tegers to track how many notifiesp sent toq, how many notifiesp received fromq, and

how many notifies, received fromq, p consumed. Because the counter is pairwise, an im-

plementation can use the RDMA PUT operation to update the remote value of received

notifications. The total space requirement on imagep is O(N), whereN is the number

of neighbors with whichp synchronizes during execution. Since scientific codes usually

synchronize many times with the same neighbors, the overhead of establishing a synchro-

nization state is amortized. This option makes SSRN/W primitive implementation feasible

for a large-scale parallel architecture.

Note that eventcounts [99] could potentially be used for SSRsynchronization; however,

the abstraction of eventcount is more general because several images can increment an

event count. Therefore, an implementation would use an AM for each synchronization

event unless the network hardware supports an atomic remoteincrement operation. The

proposed pairwise scheme relies on the fact that only one image can update the remote

counter state. Therefore, the state of the counter is known on both target and origin images

of synchronization, and the origin image can use RDMA PUT, which is available on most

interconnects, to update the target image’s number of received notifies. This would result

in a potentially more efficientN/W synchronization than an AM-based synchronization via

eventcounts.

N/W are basic primitives. In addition, SSR uses theNorgs primitive to notify sev-

eral origin images ofnp and theWorgs primitive to wait for several origin images ofwc.

Norgs(cs,args) andWorgs(cs,args), used to executenp andwc of a communi-

cation evente, take the arguments of the co-spaceCS Neighbor(cs,args) function,

which ise’s target image expressione.image. Knowing these arguments,Norgs/Worgs

implementation can determine the origin(s) of communication (see Section 6.4) and use

N/W to perform notify/wait for each origin image.

179

7.7.2 Code transformation

Figure 7.37 shows high-level pseudocode for SSR code generation. Implementation spe-

cific details are not shown. Code generation relies on the fact that notify/wait statements are

group-executable, the run-time layer handles guards (see Section 6.4), and the co-space ob-

ject contains distributed knowledge about the communication topology. For each upwardly

synchronizable communication evente, we generatenp statement for eache’s np place

place. If place.guardnp
expression is not symbolically equal to.true., we generate an

IF-THEN statement to guard the execution of theNorgs call, which notifies all origin

images ofe. Then we insert a call toW in thee.wpP lace.node to wait for a permission (wp)

from the target image to access data. The generated calls areinserted either before or after

place.node.stmt according to the value of theplace.whereToInsert field.

For each downwardly synchronizable evente, we first capture the values of the

e.image’s CS Neighbor function arguments in compiler-generated variablesargs at the

place ofwp (e.wpP lace.node, not nc); the arguments are guaranteed to be available there

for both group-executable and non-group-executable events by thewp placement algorithm

(see Section 7.5.1). We insert a call toN in thee.ncP lace.node to indicate the completion

of the data access (nc) to the target image. Then, we generate a guard variablewecGuard

to match the executions ofnc andwcs. wecGuard is initialized to.false. at procedure

entry. Its value becomes.true. via the assignment statement ine.ncP lace.node iff np

executes . To execute only onewc, we generate anIF-THEN statement that resetswecGuard

to .false. and executesWorgs call to wait for all origin images ofe. It is necessary to

resetwecGuard because an execution can reach severalwc places; in this respect,wecGuard

performs the same role as thenp guards.

Finally, all reducible barriers are removed from the code. Note that some barriers

(aroundDO loops or at procedure entry/exit) might be inserted during reducibility anal-

ysis.

180

procedure generateCode
for each communication evente

if e.upwardlySynchronizable
// generate permission notifiesnps
for eachplace ∈ e.npP laces

args← arguments ofe.image CS Neighbor function
stmt←“call Norgs(cs, args)”
if place.guardnp

expression6= .true.
stmt←“if (place.guardnp

) then stmt endif”
insertstmt in place.node

// generate permission waitwp

stmt←“call W(cs, e.image)”
insertstmt in e.wpP lace.node

if e.downwardlySynchronizable
generate variablesargs to storee.image’s CS Neighbor arguments
assignargs in e.wpP lace.node // they may not be available ine.ncP lace.node
// generate completion notifync

stmt←“call N(cs, CS Neighbor(cs, args))”
insertstmt in e.ncP lace.node
// generate completion waitswcs
generate a guard variablewecGuard for e’s wc

insert statement “wecGuard = .false.” at procedure entry
insert statement “wecGuard = .true.” in e.ncP lace.node
for eachplace ∈ e.wcP laces

stmt←“if (wecGuard) then
wecGuard = .false.
call Worgs(cs, args)

endif”
insertstmt in place.node

// remove reducible barriers
for each barrierb

if b.reducible
deleteb.node.stmt from the program

Figure 7.37 : Code generation.

181

7.7.3 Generation of non-blocking PUTs

The task of generating non-blocking PUTs is orthogonal to SSR and should be a part of

cafc’s alternative code generation strategy described on Page 63, which is not yet sup-

ported. We implemented prototype support for non-blockingPUTs generation so that SSR

delivers the performance of hand-optimized codes that use non-blocking PUT directives

described in Section 3.1.

In our experiments, each remote access is a co-array to co-array copyA, whichcafc

optimizes not to use a temporary for the right hand side (RHS), as discussed in Sec-

tion 4.1.8. To make such a PUT non-blocking, SSR checks that the SSA name ofA’s

RHS is not redefined before the epoch closing barrier(s). If this is the case, it is safe to

make PUT non-blocking and communicate data in-place.

Sincecafc does not yet have full support for non-blocking PUTs, we implemented

limited support as part of SSR only for the case in which each PUT is reachable by only

one barrierb1 and reaches only one barrierb2, and all PUTs of the epoch can be made non-

blocking; when full support for non-blocking PUTs is available, this functionality should

be removed from SSR. Then, we insert theopen nb put region directive atb1 and

the close nb put region directive, followed by thecomplete nb put region

directive atb2 to instruct the run-time to issue non-blocking PUTs insteadof blocking (see

Section 3.1). All such PUTs are completed atb2.

7.8 Experimental evaluation

We extendedcafcwith prototype support for group, Cartesian, and graph co-spaces, com-

munication analysis, and SSR. As of this writing,cafc does not support interprocedural

analysis or automatic procedure inlining. Global and groupbarriers are implemented using

MPI barriers.

We tested the effectiveness of the SSR algorithm for Jacobi iteration and the NAS MG

and CG benchmarks, described in Section 3.4. We performed our experiments on an Ita-

182

nium2 cluster with a Myrinet 2000 interconnect (RTC) described in Section 3.3.

We modified the benchmarks to use co-spaces and textual co-space barriers. We de-

note these versions as XXX-CAF-BARRIER, where the XXX- prefix stands for Jacobi-,

MG-, or CG-. The communication subroutines in the NAS MG and CG benchmarks were

annotated with thelocal andsynch context(cs) hints to compensate forcafc’s

lack of interprocedural analysis. SSR-optimized versionsof XXX-CAF-BARRIER are de-

noted as XXX-CAF-SSR. We compare the performance and scalability of XXX-CAF-SSR

versions with our fastest hand-optimized versions (XXX-CAF-HAND), original MPI ver-

sions (XXX-MPI), and two barrier-based versions: XXX-CAF-BARRIER and XXX-CAF-

GLOB-BARR. XXX-CAF-GLOB-BARR uses global barriers for synchronization rather

than co-space barriers. All versions of each benchmark havethe same local computation

and differ only in communication and synchronization.

In summary, our experiments show that SSR-optimized versions deliver the perfor-

mance of hand-optimized CAF versions and roughly the same level of performance as that

of MPI versions. In comparison to barrier-based versions, the SSR-optimized versions

show noticeably better scalability and deliver higher performance for executions on a large

number of processors.

7.8.1 Jacobi iteration

We studied Jacobi iteration decomposed onto a 2D Cartesian processor grid with peri-

odic boundaries. Compared with the original CAF version, using a 2D Cartesian co-space

slightly simplified Jacobi-CAF-BARRIER because the Cartesian abstraction logic is hid-

den inside the run-time layer. The programmer just specifiesparameters to theCS Create

call, while in the original CAF version, the programmer has to explicitly code the decom-

position logic.

The Jacobi-CAF-SSR version has synchronization that is almost identical to that of

Jacobi-CAF-HAND version. The only difference is that SSR inserts a barrier before the

time-step loop, as explained in Section 7.6.2 (see Figures 7.34 (b) and 7.35 (b)). This

183

Problem size 32 64

10242 11.42% 16.31%

20482 6.13% 12.22%

40962 2.00% 4.38%

81922 1.17% 2.15%

163842 1.16% 1.11%

Table 7.1 : Performance improvement of Jacobi-CAF-SSR overJacobi-CAF-BARRIER
for 32- and 64-processor executions.

barrier contributes to the program execution time insignificantly, and the performance of

Jacobi-CAF-SSR and Jacobi-CAF-HAND versions is virtuallythe same.

Table 7.1 shows the run-time improvement of the Jacobi-CAF-SSR version over the

Jacobi-CAF-BARRIER version of different problem sizes for32- and 64-processor ex-

ecutions. As expected, smaller problems benefit more from using faster point-to-point

synchronization because the ratio of synchronization timeto computation time is higher.

The performance gain is larger for 64-processor executionsbecause point-to-point syn-

chronization is asymptotically more efficient than barrier-based synchronization and scales

much better.

7.8.2 NAS MG

NAS MG performs computation on several distributed hierarchical grids (see Section 3.4);

each grid is identified via a level. The number of processes assigned to each grid depends

on the problem size and the total number of processorsN , which is always a power of two.

NAS MG might decrease the number of processors assigned to compute on a coarser grid

to increase the computation to communication ratio in the border exchangecomm3 sub-

routine. Each grid is decomposed onto a Cartesian communication topology with periodic

boundaries. The topology can be 1D, 2D, or 3D depending on thenumber of processors.

184

subroutine comm3(u,n1,n2,n3,level,cs)
... ! modules and includes
integer n1, n2, n3, level, axis
double precision :: u(n1,n2,n3)
type(Cartesian) cs ! co-space

call synch_context(cs)
if (CS_IsMember(cs)) then ! single-valued

if (num_images() .ne. 1) then ! single-valued guard
do axis = 1, 3 ! single-valued range

call barrier(cs)
... ! pack data into buffM(1:buff_len,1)
buffM(1:buff_len,2)[CS_Neighbor(cs,axis,-1)] = buffM(1:buff_len,1)
... ! pack data into buffP(1:buff_len,1)
buffP(1:buff_len,2)[CS_Neighbor(cs,axis,+1)] = buffP(1:buff_len,1)
call barrier(cs)
... ! unpack data from buffM(1:buff_len,2)
... ! unpack data from buffP(1:buff_len,2)

end do
else

do axis = 1, 3
call comm1p(axis,u,n1,n2,n3,level) ! commfree subroutine

end do
endif

else
call zero3(u,n1,n2,n3)

endif
call synch_context(cs)

end subroutine comm3

Figure 7.38 : NAS MGcomm3 boundary exchange subroutine for the MG-CAF-BARRIER
version.

In this implementation, a coarser grid has a lower level number. The topology of the

coarser grid at levell is either the same as or “nested” in the topology of the next finer

grid at level(l + 1). For example, the 3D decomposition onto 16 images is4×2×2 for the

level-two (and higher) grid and2×2×2 for the level-one grid. All 16 processors compute

on the finer level-two grid; however, only the even-numberedprocessors (total 8) along

dimension X compute on the coarser level-one grid. Figure 7.40 (disregarding arrows for

the moment) shows one of two XY-planes of the images’ topology for the level-two grid;

in this diagram, darker circles correspond to the processors active in the images’ topology

for level one. In other words, the topology of images active as part of the coarser grid at

level l along axisa may be every other image alonga of the encompassing topology of the

finer grid level(l + 1). In the original MPI version, the topologies are represented via the

nbr(a,d,l) array of neighbors, wherea = 1, 2, 3 is the axis,d = −1, 1 is the direction,

185

subroutine comm3_ex(u,n1,n2,n3,level,cs)
... ! modules and includes
integer n1, n2, n3, level, axis
double precision :: u(n1,n2,n3)
type(Cartesian) cs ! co-space

call synch_context(cs)
if (num_images() .ne. 1) then ! single-valued guard
if (single(cs,level) .le. single(cs,max_ex_l)) then ! single-valued guard

if (CS_IsMember(cs)) then ! single-valued
do axis = 1, 3 ! single-valued range

if (single(cs,do_ex(axis,level))) then ! single-valued
call barrier(cs)
if (give_ex(axis,level)) then ! non-single-valued

... ! pack data into buffM(1:buff_len,1)
buffM(1:buff_len,2)[CS_Neighbor(cs,axis,-1)] = buffM(1:buff_len,1)
... ! pack data into buffP(1:buff_len,1)
buffP(1:buff_len,2)[CS_Neighbor(cs,axis,+1)] = buffP(1:buff_len,1)

endif
call barrier(cs)
if (take_ex(axis,level)) then ! non-single-valued

... ! unpack data from buffM(1:buff_len,2)

... ! unpack data from buffP(1:buff_len,2)
endif

end if
enddo

end if
end if

else
do axis = 1, 3

call comm1p_ex(axis,u,n1,n2,n3,level) ! commfree subroutine
end do

endif
call synch_context(cs)

end subroutine comm3_ex

Figure 7.39 : NAS MGcomm3 ex inter-image extrapolation subroutine for the MG-CAF-
BARRIER version.

andl is the level number. Thedead(l) array specifies whether the image in involved in

computation on the grid at levell.

There are two types of communication in NAS MG: a boundary exchange and an

inter-processor extrapolation/interpolation between two adjacent grid levels. To exchange

boundaries at levell, each image of levell topology executes thecomm3 subroutine.

comm3 exchanges cell boundaries with up to six spatial neighbors.The inter-processor

extrapolation subroutinecomm3 ex communicates data between images of two adjacent

grid levels if their communication topologies arenot identical; Figure 7.40 provides a visu-

alization of this communication pattern along axis X for NASMG on 16 processors (only

186

Figure 7.40 : One XY-plane of inter-processor extrapolation communication from coarser
grid (level one) to finer grid (level two) in NAS MG on 16 processors.

one XY-plane shown). Letmax ex lev be the maximum level for which MG performs

the extrapolation step because the topologies of these levels are different; this is a single

value. An extrapolation communication is performed by all images of the level(l + 1)

topology. If the levell topology has two-times fewer images along axisa, the members of

level l send data to both theira-axis neighbors in level(l + 1) topology, which receive the

data (see Figure 7.40 for an example). The described two-sided communication is guarded

by give ex andtake ex arrays in the original MPI version. So as not to execute the

barrier unless there is communication incomm3 ex, we augmented the barrier-based ver-

sion with thedo ex(a,l) single-valued array that determines whether the extrapolation

communication is necessary for axisa on levell.

The MG-MPI version uses two-sided send/receive communication where partner im-

ages are determined by thenbr array. Thegive ex, andtake ex arrays determine

which images participate in an extrapolation step.

The MG-CAF-HAND version is similar to MG-MPI. It utilizes the samenbr,

give ex andtake ex arrays, but uses one-sided PUTs to move data andnotify and

wait, guarded by thegive ex andtake ex arrays in the extrapolation step, for syn-

chronization.

187

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MG−MPI
MG−CAF−HAND
MG−CAF−SSR
MG−CAF−BARRIER
MG−CAF−GLOB−BARR

Figure 7.41 : NAS MG class A on an Itanium2 cluster with a Myrinet 2000 interconnect.

MG-CAF-BARRIER declares an array of Cartesian co-spacescs(l), one co-spacecsl

per levell, which are created at the beginning of the program. Each co-spacecsl mimics

the information of thenbr(a,d,l) array for levell. MG-CAF-BARRIER uses textual

co-space barriers and the co-spaceisMember(cs) function (instead of thedead(l)

array) to determine whether the image is a member ofcsl. Thecomm3 ex subroutine,

shown in Figure 7.39, also usesgive ex andtake ex arrays to guard communication.

MG-CAF-GLOB-BARR is similar to MG-CAF-BARRIER, but uses global barrier for

synchronization rather than a co-space barrier.

MG-CAF-SSR is the MG-CAF-BARRIER version optimized by SSR.The SSR opti-

mization applied tocomm3 andcomm3 ex reduces barriers to point-to-point synchroniza-

tion. comm3 is shown in Figure 7.38. Its synchronization is optimally reduced to that

of the MG-CAF-HAND version. However, thegive ex array guarding communication

188

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MG−MPI
MG−CAF−HAND
MG−CAF−SSR
MG−CAF−BARRIER
MG−CAF−GLOB−BARR

Figure 7.42 : NAS MG class B on an Itanium2 cluster with a Myrinet 2000 interconnect.

in the extrapolation subroutinecomm3 ex (see Figure 7.39) is not single-valued. Thus,

SSR placeswp andnc outside of the correspondingIF-THEN statement. This results in

extra notification messages because not all images communicate. In contrast, MG-CAF-

HAND uses the optimal number of notification messages because the programmer knows

thatgive ex andtake ex arrays guard two-sided communication and can be used to

precisely guardnotify andwait. SSR does not have this knowledge and must placewp

andnc around theif (give ex(axis,level)) statement. This induces one extra

notification message per image ofcsl+1, totaling two times more synchronization messages

vs. the hand-coded optimal solution. However, this increase does not cause performance

degradation because extra notifications do not contribute to the critical path.

It is possible to make SSR use the optimal number of notifications for this example in

two ways. First, an additional set of graph co-spaces can be used to express the extrapola-

189

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

MG−MPI
MG−CAF−HAND
MG−CAF−SSR
MG−CAF−BARRIER
MG−CAF−GLOB−BARR

Figure 7.43 : NAS MG class C on an Itanium2 cluster with a Myrinet 2000 interconnect.

tion communication patters. Second,give3 ex(axis,level) can be expressed with

the co-spaceCS isMember functions ofcsl andcsl+1; however, this requires extending

SSR with a special-case analysis and multi-version code generation (for the case when

csl 6∈ csl+1).

The parallel efficiency of NAS MG is shown in Figures 7.41, 7.42, and 7.43 for classes

A (2563 size, 4 iterations), B (2563 size, 20 iterations), and C (5123 size, 20 iterations),

respectively. The performance of MG-MPI is slightly betterfor smaller problem sizes and

somewhat worse for a larger, class C problem. The performance of MG-CAF-HAND and

MG-CAF-SSR is roughly the same despite extra synchronization messages in the extrap-

olation step. MG-CAF-GLOB-BARR slightly outperforms MG-CAF-BARRIER, which is

somewhat surprising because the former uses MPI global barriers, while the latter uses MPI

group barriers that synchronize fewer process images. It appears that the MPI developers

190

subroutine transpose_exchange(w,v,send_start,exch_recv_length)
... ! modules and includes
double precision w(na/num_proc_rows+2)
double precision v(na/num_proc_rows+2)[*]
integer send_start, exch_recv_length
integer j

call synch_context(cs)
call barrier(cs)
if (single(cs,l2npcols) .ne. 0) then ! l2npcols is single-valued
v(1:exch_recv_length)[CS_Neighbor(cs,1)] = &

w(send_start:send_start+exch_recv_length-1)
else
do j = 1, exch_recv_length

v(j) = w(j)
enddo

endif
call barrier(cs)
call synch_context(cs)

end subroutine transpose_exchange

Figure 7.44 : Exchange with the transpose image in CG-CAF-BARRIER version.

subroutine scalar_sum_reduction(var)
... ! modules and includes
double precision var
double precision, save :: buf[*]
integer i

call synch_context(cs)
do i = 1, single(cs,l2npcols) ! l2npcols is single-valued
call barrier(cs)
buf[CS_Neighbor(cs,i+1)] = var ! (i+1) to skip the exchange_proc
call barrier(cs)
var = var + buf

enddo
call synch_context(cs)

end subroutine scalar_sum_reduction

Figure 7.45 : Group scalar sum reduction for CG-CAF-BARRIERversion.

optimized the more commonly used global barrier better thanthe group barrier. Compared

to the faster barrier-based version, MG-CAF-SSR outperforms MG-CAF-GLOB-BARR by

18% for classes A and B, and by 7% for class C on 64 processors.

7.8.3 NAS CG

The NAS CG benchmark has a rather complex communication pattern. The processors are

partitioned into groups that perform several types of sum reductions among the members

191

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CG−MPI
CG−CAF−HAND
CG−CAF−SSR
CG−CAF−BARRIER
CG−CAF−GLOB−BARR

Figure 7.46 : NAS CG class A on an Itanium2 cluster with a Myrinet 2000 interconnect.

of the group. In addition, each image might communicate withthe (transpose) exchange

image of another group. The CG-MPI version uses thereduce exch proc array and

exch proc scalar variables to represent the communication neighborsfor send/receive.

The CG-CAF-HAND version mimics the MPI two-sided communication by using PUTs

and point-to-point synchronization. The CAF-CG-BARRIER constructs a graph co-space

to encapsulate the information of thereduce exch proc andexch proc variables,

exposing it tocafc. Figure 7.44 shows the code for the processor exchange. A scalar sum

reduction subroutine is shown in Figure 7.45. With the help of thesynch context(cs)

hints, SSR optimizes the synchronization of all NAS CG communication subroutines to that

of the optimal hand-optimized version.

The parallel efficiency of NAS CG is shown in Figures 7.46, 7.47, and 7.48 for classes A

(14000 size, 15 iterations), B (75000 size, 75 iterations),and C (150000 size, 75 iterations),

192

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CG−MPI
CG−CAF−HAND
CG−CAF−SSR
CG−CAF−BARRIER
CG−CAF−GLOB−BARR

Figure 7.47 : NAS CG class B on an Itanium2 cluster with a Myrinet 2000 interconnect.

respectively. CG-MPI scales better than the optimized CAF versions for class A because

MPI uses the eager protocol with implicit buffering (see Chapter 8). It shows slightly

inferior performance for larger class B and C problem sizes.SSR optimizes the CG-CAF-

BARRIER version into CG-CAF-SSR that has the same point-to-point synchronization as

that of the optimal hand-optimized CG-CAF-HAND version. Both CG-CAF-SSR and CG-

CAF-HAND versions demonstrate the same performance and scalability.

Co-space barriers in CG-CAF-BARRIER are global barriers because the CG graph

co-space includes all process images. As a consequence, theperformance of CG-CAF-

BARRIER and CG-CAF-GLOB-BARR is the same. The SSR optimization boosts the

performance of CG-CAF-BARRIER by 51% for class A, 28% for class B, and 19% for

class C on 64 processors compared to the non-optimized CG-CAF-BARRIER version.

193

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

CG−MPI
CG−CAF−HAND
CG−CAF−SSR
CG−CAF−BARRIER
CG−CAF−GLOB−BARR

Figure 7.48 : NAS CG class C on an Itanium2 cluster with a Myrinet 2000 interconnect.

7.9 Discussion

The main contribution of Chapters 5, 6, and 7 is the novel technology that makes com-

munication analysis of explicitly-parallel CAF programs possible via a combination of

co-spaces, textual co-space barriers, and co-space singlevalues. We identified a subset of

this problem that covers nearest-neighbor codes, which include a large class of scientific

applications. We devised the procedure-scope SSR transformation that analyzes and opti-

mizes communication patterns typically found in real scientific codes. We extendedcafc

with a prototype support for SSR. Our experiments demonstrate that SSR-optimized codes

show significant performance improvement and better scalability than their barrier-based

counterparts; in fact, SSR-optimized versions achieve theperformance level of their best

hand-optimized CAF and MPI counterparts. In our experiments for 64-processor execu-

194

tions, SSR-optimized codes show performance improvementsof up to 16.3% for Jacobi

iteration, up to 18% for NAS MG, and up to 51% for NAS CG.

In the future, it would be interesting to consider several promising research directions:

1. Interprocedural analysis for SSR.The main shortcoming of procedure-scope SSR

is the need forsynch context(cs) directives to increase SSR scope beyond

one procedure. There are two ways to address this limitation. First, SSR can use

procedure inlining; however, inlining is not possible for recursive procedures and

might produce a scope with several co-spaces. Second, interprocedural SSR could

analyze whether unsynchronized communication (PUTs/GETs) may reach an invo-

cation of a procedure or unsynchronized communication may emerge after an in-

vocation of a procedures (unsynchronized PUTs/GETs may reach the end ofs).

Essentially, the interprocedural SSR analyze would collect the information conveyed

to the procedure-scope SSR viasynch context() directives placed at proce-

dure entry/exit. In addition, interprocedural analysis would reduce the need for

single(cs,exp) coercion operators because some single values can be inferred

from the scope surrounding a procedure invocation.

2. Unstructured control flow. We have not observed scientific codes that use unstruc-

tured control flow for communication; however, extending SSR to support arbitrary

control flow may increase its applicability. A few modifications to the presented

SSR version will enable support of unstructured control flow. First, SSR should

use constraints-based inference of co-space single valuesand group-executable state-

ments similar to the analysis presented by Aikenet al. [6]. Second, loops should be

identified as strongly connected components (SCCs).wp andnc placement as well

asnp andwc movement should be limited by SCC’s entry and exit nodes.

3. Hoisting and vectorization of notify/wait. It is possible to extend our SSR algo-

rithm to perform hoisting of the permission and/or completion pairs for a PUT/GET

executed inside a loop that does not contain a barrier, if arguments of the PUT/GET’s

195

target image expression are loop invariants. The algorithmfor determining the initial

placement of permission wait and completion notify in Figure 7.21 is a good can-

didate for such an extension. Hoisting would reduce the amount of SSR-generated

point-to-point synchronization for such PUTs/GETs. Additionally, SSR can be ex-

tended to perform vectorization of the permission notify and completion wait for a

PUT/GET inside a loop that does not execute a barrier, if the PUT/GET’s image ex-

pression arguments are vectorizable. This would provide for more local computation

to overlap permission and completion notifies with. Becausewe have not observed

opportunities for these optimizations in existing codes, we did not pursue further

investigation.

4. Optimization of the communication primitive. Our SSR algorithm does not

change the communication primitive, but it might be beneficial to do so. After

SSR analysis, it is possible to use two-sided communicationprimitives, e.g., non-

blocking send/receive, to implement communication; the implementation of these

primitives can use additional memory to perform buffering,enhancing asynchrony

tolerance and improving performance (see Chapter 8 for a more involved related

discussion). Two-sided communication enables compiler-based packing/unpacking

of strided communication; this would be the best way to achieve peak efficiency of

strided data transfers. In some cases, SSR could convert GETs into PUTs (or vice

versa), which has two benefits. First, architectures with RDMA support for PUT,

but without RDMA support for GET, would utilize the interconnect hardware more

efficiently for codes that use PUTs. Second, push-style (PUTs) communication is

usually more efficient than pull-style (GETs) communication in PGAS languages be-

cause GET exposes communication latency (unless it is optimized by the compiler,

which is hard).

5. Analysis and optimization of other communication patterns. It is possi-

ble to detect and optimize other communication patterns than analyzable group-

196

executable/non-group-executable PUTs/GETs. Examples ofthese patterns (see Sec-

tion 6.4) include language-level implementation of naive reduction or broadcast, bor-

der exchange in generalized block distribution, and finite element codes.

An open question. We do not yet know how to analyze scopes that use communi-

cation/synchronization for several co-spaces. Though we have not seen several co-spaces

used in one scope, such analysis would benefit codes that do. Without codes to motivate

this optimization, we do not think it is worth exploring.

197

Chapter 8

Multi-version Variables

Many parallel applications send streams of values between processes. Processes that pro-

duce values are known as producers; ones that consume valuesare known as consumers.

We refer to such a communication pattern as producer-consumer communication. Scien-

tific producer-consumer codes are, for example, wavefront applications such as the ASCI

Sweep3D benchmark, line-sweep applications such as the NASBT and SP benchmarks,

and loosely-synchronous applications.

A successful parallel programming model must provide a convenient way to express

common communication patterns such as producer-consumer and deliver high performance

at the same time. The two-sided nature of producer-consumercommunication is easy to ex-

press using the message-passing primitives send and receive. Message-passing implemen-

tations of producer-consumer also achieve good performance. Partitioned Global Address

Space (PGAS) languages employ the SPMD programming style with one-sided commu-

nication to read and write shared data. To achieve high performance producer-consumer

communication on clusters, programmers have to explicitlymanage multiple communi-

cation buffers, pipeline point-to-point synchronization, and use non-blocking communi-

cation [32]. In essence, PGAS languages are ill-suited for efficient producer-consumer

communication, especially for distributed memory architectures.

We first motivate the need for better producer-consumer communication support in

CAF. Next, we briefly summarize a study that we performed for the ASCI Sweep3D bench-

mark, a parallel wavefront application, to gain a deeper understanding of programmability

and performance issues that arise with producer-consumer patterns using one-sided com-

munication. Then, we present the concept of multi-version variables (MVVs) — a solu-

198

r e c e i v e
t i m e

p r o d u c ev a l u e i
c o n s u m ev a l u e i

s e n d
p r o d u c e r c o n s u m e r

p r o d u c ev a l u e i + 1
s e n d d o n e r e c e i v e d o n e

c o n s u m ev a l u e i p 1
t r a n s f e r v a l u e ia n d s y n c h r o n i z e

Figure 8.1 : Producer-consumer in MPI using the two-sided send and receive primitives.

tion we devised to simplify development of high performanceproducer-consumer codes in

CAF. Finally, we present an experimental evaluation that studies the utility of MVVs for

Sweep3D and the NAS BT and SP benchmarks.

8.1 Motivation

The Message Passing Interface (MPI) offers two-sided communication that is simple and

natural for producer-consumer applications. The time diagram in Figure 8.1 shows how

data can be transferred from a producer, which only sends data, to a consumer, which only

receives data. Using the send and receive primitives is conceptually the simplest way to

express producer-consumer communication and will be our “golden” standard to evaluate

producer-consumer programmability. As it will be clear from the following discussion,

send/receive communication can also deliver high performance by using extra storage to

buffer communicated data. The send and receive primitives insulate programmers from the

details of buffer management and synchronization, providing simplicity of programming.

In PGAS languages, however, programmers are responsible for explicit buffer management

and complex synchronization. We first consider two scenarios, called the one-buffer and

199

multi-buffer schemes, for supporting producer-consumer communication in CAF. Then,

we discuss the progress issue with MPI buffering and available MPI send and receive prim-

itives.

To understand why producer-consumer communication is hardto express in PGAS lan-

guages, let us consider the case of producer-consumer communication between two pro-

cesses. The consumer can pull values from the producer usinga GET. This would ex-

pose full communication latency and lead to performance degradation, unless the compiler

can prefetch data ahead of time. However, compiler analysisfor prefetching is hard for

explicitly-parallel SPMD programs and is unlikely to be effective for many codes. There-

fore, we focus on the case where the producer pushes values tothe consumer. Processp

produces a value and transfers it to the consumer processq using a PUT to store the value

in a shared variablebuffer. In one-sided communication model, synchronization must

be used to signal the consumer that the value is available; orin compiler terminology, to

enforce the interprocessor true data dependence. However,the producer cannot PUT a new

value intobuffer unless the consumer finished using the current value stored inbuffer.

To avoid having the producer overwrite a value inbuffer that is still in use, the consumer

must signal the producer when it is save to overwritebuffer; or in compiler terminology,

to enforce the interprocessor anti-dependence due tobuffer reuse. Figure 8.2 provides

a visualization of this scenario. The dotted lines denote waiting time due to exposed anti-

dependence synchronization latency on the producer or due to exposed communication and

true dependence synchronization on the consumer.

While it is not possible to avoid the synchronization due to the true data dependence,

it is possible to avoid the synchronization due to the anti-dependence if a new memory

location is used for every produced value. In reality, memory is limited and must be reused.

Let us consider two possible implementations that we call the one-buffer and multi-buffer

schemes.

The one-buffer scheme uses only one variablebuffer to store the values. The syn-

chronization between the producer and consumer must enforce the anti-dependence before

200

P U T
w a i t

w a i t d o n e
v a l u e i i sa v a i l a b l e w a i t d o n e

w a i tn o t i f yb u f f e ri s f r e e

p r o d u c e r c o n s u m e r

t i m e

p r o d u c ev a l u e i

c o n s u m ev a l u e ip r o d u c ev a l u e i + 1

c o n s u m ev a l u e i » 1

n o t i f y t r a n s f e r v a l u e ii n t o b u f f e r

Figure 8.2 : Producer-consumer in CAF using one buffer.

the producer can safely PUT a new value into the consumer’sbuffer; this corresponds

to the arrow labeled as “buffer is free” in Figure 8.2. This synchronization may delay the

producer from transferring a newly produced value to the consumer and computing the

next value for two reasons. First, the latency of the synchronization operation is exposed.

Second, and more important, the consumer can safely synchronize only when it finished

using the current value inbuffer, which can be past the time when the producer finishes

producingvaluei and arrives at thewait synchronization event. This leads to the producer

and consumer “coupling” and a non-asynchrony tolerant program with low performance.

Not only the consumer must wait for the producer to deliver a new value (this is unavoid-

able), but also the producer must wait for the consumer’s buffer to become available (as we

201p r o d u c e r c o n s u m e r

t i m e
P U Tn o t i f yw a i tw a i t d o n e

p r o d u c ev a l u e i + 1 w a i t d o n ew a i tn o t i f y

P U Tn o t i f yw a i tw a i t d o n ep r o d u c ev a l u e i é 1
p r o d u c ev a l u e i

c o n s u m ev a l u e i é 1
v a l u e i é 1 i sa v a i l a b l eb u f f e r Yi s f r e e (x ö y) w a i t d o n ew a i tn o t i f y

c o n s u m ev a l u e i é 2

c o n s u m ev a l u e i

t r a n s f e r v a l u e i é 1i n t o b u f f e r X

v a l u e i i sa v a i l a b l eb u f f e r Xi s f r e e (z ö x)
t r a n s f e r v a l u e ii n t o b u f f e r Z

Figure 8.3 : Producer-consumer in CAF using multiple buffers.

shall see, this can be avoided by using several buffers). In other words, any delay in either

the producer or consumer causes the delay in the other.

The multi-buffer scheme uses several independent buffers,e.g., elements of an array

buffer(M). This allows the producer and consumer to work more independently and re-

sults in asynchrony tolerant code. The producer can PUT a newvalue into a free buffer,

e.g., bufferZ, while the consumer uses another instancebufferX, as shown in Figure 8.3.

This has the effect of moving the anti-dependence synchronization,e.g., the arrow labeled

202

as “bufferX is free” in Figure 8.3, earlier in time, overlapping it with computation on

the producer. As soon as the consumer is done usingbufferX, it can notify the producer

that bufferX is free; this corresponds to the arrow labeled as “bufferX is free” in Fig-

ure 8.3. The early notification removes the anti-dependencesynchronization latency from

the critical path.

Implementing producer-consumer communication patterns in PGAS languages using

one-sided communication is awkward because programmers must manage synchronization

for the true and anti-dependencies in addition to the data movement. With one buffer, the

latency of communication and synchronization is exposed. Using multiple buffers may

hide the latency; however, this requires enormous programming effort to manage buffers

and carefully place the anti-dependence synchronization to remove it from the critical path.

In addition, to achieve the best performance, data movementshould be non-blocking to

overlap communication (PUT) latency with computation on the producer. To summarize,

one-sided communication and explicit synchronization of PGAS languages are not suited

well for expressing two-sided in nature producer-consumercommunication.

In contrast, two-sided communication (e.g., MPI send/receive) offers simpler and more

natural programming style for producer-consumer applications. Programmers can sim-

ply use MPI send and receive for both data movement and synchronization, as shown in

Figure 8.1. Two-sided communication offers implicit synchronization and buffer man-

agement with their implementation hidden inside the MPI library. However, since MPI

primitives must be general enough to handle arbitrary communication, this can result in

suboptimal performance due to extra memory copying/registration/unregistration and ex-

posed synchronization and data transfer latency, especially when MPI uses the rendezvous

protocol for large messages (see Section 2.4.1). As we showed in our prior study [32], the

performance of multi-buffer code in CAF can exceed that of MPI code.

So far, we have considered producer-consumer communication in which the producer

only sends data and the consumer only receives data. A typical communication pattern

is the exchange of shadow regions in loosely-synchronous codes such as Jacobi iteration.

203

Structuring an SPMD program so that processes send data and then receive data might lead

to a deadlock. The reason is that the send primitive (MPI Send) is blocking and, in general,

needs a matching receive (MPI Recv) to transfer data and unblock. For example, when

MPI uses rendezvous protocol, if each process executes send, all processes block waiting

for matching receives, which are never executed, leading toa deadlock. There are several

ways to avoid the deadlock for such codes; we briefly mention some of them here, while

a detailed explanation can be found elsewhere [61]. First, if MPI uses the eager protocol

(see Section 2.4.1),MPI Send is usually non-blocking; however, this is not guaranteed by

the MPI standard. Second, programmers can order sends and receives, so that some pro-

cesses execute sends, while others execute receives. This might not be possible or easy for

some codes. Third, programmers can use the combined send andreceiveMPI Sendrecv

primitive; however, this does not allow codes in which each process image consecutively

performs several sends followed by corresponding receives. Fourth, programmers can use

buffered sendsMPI Bsend. They must register a buffer before usingMPI Bsend and

determine the adequate buffer size. Finally, programmers can use non-blocking receive

MPI Irecv or non-blocking sendMPI Isend, which “register” a receive or send buffer

with MPI temporarily, for one receive/send operation;MPI Waitmust be used to complete

non-blocking operations.

The producer-consumer communication patterns are typicalin many applications such

as Sweep3D, the NAS benchmarks, Jacobi iteration, and in general, any application that

performs shadow region exchange. We argued in Chapter 7 thatit is simpler to use barriers

for synchronization, while the SSR optimization can replace barriers with more efficient

point-to-point synchronization. However, it is not natural to use barriers for synchroniza-

tion in all cases;e.g., using point-to-point synchronization allows a more natural program-

ming style of wavefront computations such as Sweep3D. Also,SSR is not applicable in all

cases, and SSR does not perform buffer management, which is important for hiding latency

in producer-consumer communication.

Since producer-consumer communication is difficult to program in CAF and hard to

204

do iq = 1, 8 ! octants
do mo = 1, mmo ! angle pipelining loop
do kk = 1, kb ! k-plane pipelining loop

receive from east/west into Phiib ! recv block I-inflows
receive from north/south into Phijb ! recv block J-inflows

...
! computation that uses and updates Phiib and Phijb
...

send Phiib to east/west ! send block I-outflows
send Phijb to north/south ! send block J-outflows

enddo
enddo

enddo

Figure 8.4 : Sweep3D kernel pseudocode.

optimize by compiler, we explore extending CAF with a language construct —multi-

version variables— that simplifies development of high performance producer-consumer

codes. Multi-version variables offer the simplicity of MPItwo-sided programming style

and deliver performance of hand-coded multi-buffer solution. Programmers specify how

many versions (buffers) an MVV should have both for correctness (to avoid deadlock and to

make progress) and performance. Thecommit primitive is equivalent to send and is used

to enqueue a new version to an MVV. Theretrieve primitive is equivalent to receive

and is used to dequeue the next versions from an MVV. Next, we recap our evaluation study

of Sweep3D wavefront application, which further motivatesthe need for MVVs.

8.2 Sweep3D case study

The benchmark code Sweep3D [4] represents the heart of a realAccelerated Strategic

Computing Initiative application; see Section 3.4.2 for description. Sweep3D exploits two-

dimensional wavefront parallelism on a 2D logical grid of processors, shown in Figure 3.2.

Figure 8.4 shows pseudocode representing a high-level viewof the Sweep3D kernel.

205

...
if (receiving from I pred) then

! notify I pred that the local Phiib buffer is ready to accept new data
call notify(I pred)
! wait for the new data to arrive from the I pred
call wait(I pred)

endif
! similar for the J-dimension

...
! computation that uses and updates Phiib and Phijb
...

if (sending to I succ) then
! wait for I succ notification that its Phiib is ready to accept new data
call wait(I succ)
! transfer the data to the I succ using contiguous non-blocking PUT
start the region of non-blocking PUTs
Phiib(:,:,:)[I succ] = Phiib(:,:,:)
! notify the I succ that the new data has been sent
call notify(I succ)
stop and complete the region of non-blocking PUTs

endif
! similar for the J-dimension
...

Figure 8.5 : Sweep3D-1B kernel pseudocode.

8.2.1 Programmability

To investigate the impact of different CAF coding styles, weimplemented several CAF

versions of the Sweep3D and compared their performance withthat of the MPI version —

Sweep3D-MPI. The difference among the versions is in the communication and synchro-

nization implementation, while the local computation is similar. Here, we consider only

two CAF versions that we developed: Sweep3D-1B, which uses one communication buffer

per dimension, and Sweep3D-3B, which uses three communication buffers per dimension.

The complete details of the study can be found elsewhere [32].

Sweep3D-1B was developed from the original MPI code by declaring its Phiib and

Phijb arrays as co-arrays and using non-blocking PUT to communicate them in-place.

For the I-direction communication, the code is presented inFigure 8.5; I pred and

I succ denote the predecessors and successors in the sweep for the I-dimension. For

the J-direction communication, the code is similar except that the process image commu-

nicates thePhijb array with its J-predecessor and with its J-successor.

206

! start the ‘‘available buffer notification pipeline’’ (only one recv buffer)
call notify(I pred)
...
if (receiving from I pred) then

! wait for the data from the I pred
call wait(I pred)

endif
! similar for the J-dimension

...
! computation that uses and updates Phiib and Phijb
...

if (sending to I succ) then
finalize the previous non-blocking PUT to the I succ
! now one of the buffers is free; make it the next receive buffer

endif
if (receiving from I pred) then

! notify the I pred that there is a buffer available to receive new data
call notify(I pred) ! this matches wait(I succ) from the previous iteration

endif
if (sending to I succ) then

! wait for I succ notification that it has a buffer ready to accept new data
call wait(I succ)
start the region of non-blocking communication with index phiib wrk idx
! transmit the new data to the I succ using non-blocking contiguous PUT
Phiib(:,:,:,phiib wrk idx)[I succ] = Phiib(:,:,:,phiib wrk idx)
! notify the I succ that more data is available
call notify(I succ)
stop the region of non-blocking communication with index phiib wrk idx
advance phiib wrk idx for the next stage

endif
! similar for the J-dimension
...
! wind down the ‘‘available buffer notification pipeline’’ (only one recv buffer)
call wait(I succ)

Figure 8.6 : Sweep3D-3B kernel pseudocode.

The Sweep3D-1B communication is very similar to that of the MPI version when MPI

uses the rendezvous protocol. The data movement statement —assignment toPhiib —

communicates the same data as the send/receive pair of the MPI version. Thenotify and

wait provide synchronization analogous to that induced by an MPIsend/receive pair. For

Sweep3D-1B, there is no data copy fromPhiib or Phijb into an auxiliary communica-

tion buffer; the data is delivered directly in-place. In contrast, the MPI version might use

additional memory registration/unregistration or extra data copies to/from a communica-

tion buffer to move the data, ifPhiib andPhijb are not allocated in registered memory

and the interconnect hardware requires communicated data to reside in registered memory.

207

Sweep3D-3B aims to overlap PUTs with computation on the successor to hide commu-

nication latency. It uses additional storage, namely, three instances ofPhiib andPhijb

to overlap communication with computation. In the wavefront steady state, one instance

of Phiib can be used to receive the data from the I-predecessor; at thesame time another

instance can be used to perform the local computation, whilethe third instance can be used

to hold data being communicated to the I-successor (three-buffer scheme). For shared-

memory architectures without hardware support for asynchronous data transfers such as

SGI Altix 3000, in which all data transfers are performed with load/store, a two-buffer

scheme, in which one buffer is used for local computation andthe other is used for a PUT

performed by a predecessor, is likely to yield the best performance. To manage the in-

stances as a circular-buffer (to avoid unnecessary copies), we added an extra high order di-

mension toPhiib. Similarly, we use three instances ofPhijb to enable communication

and computation overlap for the wavefront parallelism in the J-direction. The simplified

pseudocode for the three-buffer scheme is given in Figure 8.6.

Note that more than three buffers can be used. Our implementation is general and

supports an arbitrary number of buffers holding incoming data from the predecessor and

outgoing data to the successor. However, we did not encounter a case that using more

additional buffers improved performance. On platforms that support non-blocking PUT and

notify, the code uses non-blocking communication directives [47](see Section 4.1.8) to

overlap communication with local computation, otherwise only blocking PUT is used.

8.2.2 Performance

We evaluated the performance of our CAF and MPI variants of Sweep3D on four plat-

forms described in Section 3.3: an Alpha+Quadrics (Elan3) cluster, an Itanium2+Quadrics

(Elan4) cluster, an Itanium2+Myrinet2000 cluster, and an SGI Altix 3000.

For the Sweep3D benchmark, we compare the parallel efficiency of the MPI and CAF

versions; the parallel efficiency metric is explained in Section 3.4. We use efficiency rather

than speedup or execution time as our comparison metric because it enables us to accurately

208

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.7 : Sweep3D of size 50x50x50 on an Alpha cluster witha Quadrics Elan3 inter-
connect.

gauge the relative performance of multiple benchmark implementations across theentire

range of processor counts. Sweep3D-MPI shows the efficiencyof the standard MPI ver-

sion; Sweep3D-1B and Sweep3D-3B stand for the efficiency of the one- and multi-buffer

CAF versions. We present results for sizes 50x50x50, 150x150x150, and 300x300x300,

with per job memory requirements of 16MB, 434MB, and 3463MB,respectively.

The results for the Alpha cluster with a Quadrics Elan3 interconnect are shown in Fig-

ures 8.7, 8.8, and 8.9. The results for the Itanium2 cluster connected with Quadrics Elan4

are presented in Figures 8.10, 8.11, and 8.12. Figures 8.13,8.14, and 8.15 displays the

results for the Itanium2 cluster with a Myrinet 2000 interconnect. Finally, the results for

the SGI Altix 3000 machine are given in Figures 8.16, 8.17, and 8.18.

Our results show that for Sweep3D we usually achieve scalability comparable to or

better than that of the MPI version on the cluster architectures and outperform MPI by up

to 10% on the SGI Altix 3000 with hardware shared memory.

On the Alpha cluster, the Sweep3D-3B version slightly outperforms the MPI version

for the 50x50x50 problem size, while MPI outperforms Sweep3D-3B for the 150x150x150

209

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.8 : Sweep3D of size 150x150x150 on an Alpha cluster with a Quadrics Elan3
interconnect.

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.9 : Sweep3D of size 300x300x300 on an Alpha cluster with a Quadrics Elan3
interconnect.

problem size, and they perform comparably for the 300x300x300 problem size1. The

1We do not have access to the experimental platform to measurewhy the speedup is superlinear for the

300x300x300 problem size. However, a plausible explanation is that parallel versions have larger cumulative

cache size than the one-processor sequential Sweep3D version.

210

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.10 : Sweep3D of size 50x50x50 on an Itanium2 clusterwith a Quadrics Elan4
interconnect.

Sweep3D-3B version enables better asynchrony tolerance; by using multiple communica-

tion buffers, it reduces the wait time of the producer process image for a buffer to become

available to transfer data, using a PUT, to the consumer process image. On this platform,

the ARMCI implementation ofnotify uses a memory fence and, thus, is blocking. While

we can overlap the PUT to the successor with the PUT from the predecessor (both per-

formed as independent RDMA by the NIC, as described in Section 3.2), we cannot overlap

the PUT with computation on the producer process image. As expected, the one-buffer ver-

sion Sweep3D-1B performs worse than the multiple-buffer Sweep3D-3B version and the

MPI version because the synchronization and communicationlatency induced by buffer

reuse anti-dependency is on the critical path.

On the Itanium2 cluster with a Quadrics Elan4 interconnect,MPI and Sweep3D-3B out-

perform Sweep3D-1B for the 50x50x50 problem size because the application is commu-

nication bound and Sweep3D-1B exposes the latency of the buffer reuse anti-dependence

synchronization. Since the messages for the 50x50x50 problem size are small, MPI uses

the eager protocol, performing library-level buffering, that removes the anti-dependence

synchronization from the critical path and overlaps it withthe computation. Similarly,

211

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.11 : Sweep3D of size 150x150x150 on an Itanium2 cluster with a Quadrics Elan4
interconnect.

6 12 24 32 36 48 64 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.12 : Sweep3D of size 300x300x300 on an Itanium2 cluster with a Quadrics Elan4
interconnect.

Sweep3D-3B hides the synchronization latency by using multiple communication buffers.

For this problem size, the performance of MPI and Sweep3D-3Bis roughly similar. For a

larger 150x150x150 problem size, MPI and Sweep3D-3B also outperform Sweep3D-1B.

212

6 12 24 36 48 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.13 : Sweep3D of size 50x50x50 on an Itanium2 clusterwith a Myrinet 2000
interconnect.

However, Sweep3D-3B shows noticeably better performance than that of MPI, which uses

the eager protocol. We were not able to determine exactly what causes this, but a plausi-

ble explanation is that MPI performs extra memory copies while using the eager protocol,

polluting the cache and leading to the performance degradation. For a large 300x300x300

problem size2, the communication message size is large; thus, MPI switches to the ren-

dezvous protocol and shows the performance equivalent to that of Sweep3D-1B. Sweep3D-

3B still uses extra communication buffers similar to the MPI’s eager protocol and enjoys

10% higher performance due to removing the synchronizationfrom the critical path.

On the Itanium2 cluster with a Myrinet 2000 interconnect, the MPI version outper-

forms Sweep3D-1B for the 50x50x50 problem size and shows comparable performance

for the 150x150x150 and 300x300x300 problem sizes. The Sweep3D-3B version performs

comparably to the MPI version for the 50x50x50 problem size and outperforms it for the

150x150x150 and 300x300x300 problem sizes. For Sweep3D, performance is primarily

2The speedup of Sweep3D-3B is superlinear because the efficiency is computed relative to a “synthetic”

serial execution time of Sweep3D, which was computed as the time of the MPI version on 6 processors

multiplied by 6 since the cluster configuration did not allowus to run the sequential Sweep3D on one node.

213

6 12 24 36 48 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.14 : Sweep3D of size 150x150x150 on an Itanium2 cluster with a Myrinet 2000
interconnect.

6 12 24 36 48 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.15 : Sweep3D of size 300x300x300 on an Itanium2 cluster with a Myrinet 2000
interconnect.

determined by how quickly the next value ofPhiib andPhijb can be delivered to the

remote memory (to the consumer). Using several communication buffers or the eager pro-

tocol reduces this latency by removing it from the critical path. The speedups are superlin-

214

6 12 24 32 36 48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.16 : Sweep3D of size 50x50x50 on an SGI Altix 3000.

ear for the 50x50x50 and 150x150x150 problem sizes because the number of L3 data cache

misses in sequential Sweep3D version is significantly higher than that in parallel versions

for this architecture. Using HPCToolkit [100, 79], we determined that, for the 50x50x50

problem size, the total (per job) number of L3 data cache misses is 5.1 times larger for

sequential version compared to that of the 6-processor MPI version; for the 150x150x150

problem size, this number is 2.81 times larger. We attributethis difference to larger com-

bined L3 cache size in parallel execution. For the 300x300x300 problem size, it was not

possible to measure the execution time of the serial versionbecause of memory constraints;

instead, we use “synthetic” serial execution time computedas the time of 6-processor MPI

version multiplied by 6.

An SGI Altix 3000 does not have non-blocking communication;thus, the Sweep3D-3B

version uses only two buffers. The MPI version shows better performance than Sweep3D-

1B for the 50x50x50 problem size due to using the eager protocol and removing synchro-

nization from the critical path. It looses to Sweep3D-3B because of extra memory copying

while Sweep3D-3B communicates data in-place. The Sweep3D-1B and MPI versions per-

form comparably for the 150x150x150 problem size. For the 300x300x300 problem size,

215

6 12 24 32 36 48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.17 : Sweep3D of size 150x150x150 on an SGI Altix 3000.

6 12 24 32 36 48
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

Sweep3D−MPI
Sweep3D−CAF−1B
Sweep3D−CAF−3B

Figure 8.18 : Sweep3D of size 300x300x300 on an SGI Altix 3000.

MPI uses the rendezvous protocol and performs extra memory copying, demonstrating

inferior performance comparing to the CAF versions. As expected, Sweep3D-3B shows

the best performance for all problem sizes by communicatingdata in-place without extra

memory copies and removing the anti-dependence synchronization off the critical path.

216

8.3 Language support for multi-version variables

To simplify development of high performance scientific codes with producer-consumer

communication, we explore extending CAF with a new languageconstruct calledmulti-

version variables(MVVs). An MVV is declared similarly to a regular CAF variable using

themultiversion attribute. As the name implies, an MVV can store several values;

however, the program can read or write only one value — thecurrent version— at a time.

Values are managed with the semantics of a queue. Conceptually, each MVV has a queue

that records the ordering of values in the MVV. A value is enqueued in the order in which

it was committed to the MVV. Values are consumed (retrieved)in the order in which they

were committed, which is ensured by the queue.

When a producer imagep commits the first value into an MVVmvv located on con-

sumer imageq3, we say thatp establishes aconnection. The connection state has several

receivebuffers to store unconsumed versions committed byp into the MVV mvv located

on q. The ordering of committed values is ensured bymvv’s queue since several pro-

ducers can concurrently commit new values (each commits into its own set of buffers), so

the ordering is global rather than per producer. An MVV instance on a process image is

guaranteed to store at leastN unconsumed (pending) versionsper connection(per each

producer image that commits to the MVV). This means thatN consecutive commits from

the same producer are guaranteed to succeed without blocking the producer. The value of

N is specified by the programmer. The default value ofN is 1, meaning that there can

be one unconsumed buffered valueper connection, or one commit per producer will suc-

ceed without blocking. This suits well for most scientific applications that benefit from

using MVVs. There is also a way to specify the number of versions for a particular MVV

connection.

Producers commit values using thecommit primitive and consumers retrieve values

using theretrieve primitive. When a producer commits a new value and there is an

3p andq can be the same process image.

217

empty buffer, the value is written into this buffer and the producer continues execution.

If there is no free buffer, the producer blocks until a bufferbecomes available. When

the consumer retrieves the next available version, the consumer’s instance of the MVV is

updated with the next value in the queue and the buffer occupied by the previous version

is freed and made available for the corresponding producer.If there is no available value,

the consumer blocks until a value is committed. The consumercan also test whether a new

version is available without blocking. Note that producersand consumers can be different

images or threads running within an image.

MVVs add limited support for buffered two-sided communication in CAF. The num-

ber of buffers is specified by the programmer; however, the run-time layer manages the

buffer automatically. As for MPI, the right number of bufferis necessary for algorith-

mic correctness — to avoid the deadlock and to make progress (see Section 8.1) — and

for performance. Thecommit andretrieve primitives combine data movement with

synchronization. MVVs’ two-sided nature makes them a convenient abstraction to ex-

press producer-consumer communication in scientific codes. Run-time management of

additional buffers enables MVVs to achieve the same level ofperformance as that of the

hand-optimized multi-buffer scheme (see Section 8.2.2), while the programmer is insulated

from the details of buffer management, communication, and synchronization.

8.3.1 Declaration

An MVV variable is declared as a regular CAF variable that in addition uses the

multiversion attribute. An MVV can be of an intrinsic Fortran 95 type or a user-

defined type (UDT). If an MVV is of UDTT, typeT or any of its nested UDTs cannot

have allocatable, pointer, or multi-version components; in other words, typeT must have

statically known size. An MVV can be a scalar, an explicit shape array, an allocatable,

or a component of a UDTQ. An MVV can be declared in a module. An MVV can be a

subroutine argument and requires an explicit interface.

There are local and co-array (with brackets[]) MVVs. The local form simplifies the

218

1) type(T), save, multiversion :: a0, a1(10), ca0[*], ca2(10,10)[*]
2) type(T), allocatable, multiversion :: b0, b2(:,:), cb0[:], cb1(:)[:]
3) type(T), multiversion :: c0, c1(:), c11(N), cc0[*], cc1(:)[*], cc2(N,M)[*]
4) type Q

type(T), multiversion :: v0
type(T), multiversion :: v1(100)
type(T), allocatable, multiversion :: y0
type(T), allocatable, multiversion :: y2(:,:)

end type Q
5) type (Q), save :: q0, q2(10,10), cq0[*], cq2(10,10)[*]
6) type (Q), allocatable :: r0, r2(:,:), cr0[:], cr2(:,:)[:]

Figure 8.19 : MVV declarations.

development of producer-consumer multithreaded codes when several threads of execu-

tion are enabled within one process image with distributed multithreading presented in

Chapter 9. Co-array MVVs are used for inter-image producer-consumer communication;

however, co-array PUT/GET access is prohibited; instead,commit andretrieve must

be used. Figure 8.19 shows examples of MVV declarations of UDT T; the declarations of

MVVs of intrinsic types are similar.

Example (1) declares SAVE scalar and explicit shape array and co-array MVVs; (2) de-

clares allocatable array and co-array MVVs; declarations in (3) are used for subroutine pa-

rameters; (4) declares typeQ with multi-versioned components; (5) declares SAVE scalar,

explicit shape array, and co-array variables with multi-version components; (6) declares

allocatable scalar, array, and co-array variables with multi-version components.

An MVV cannot be COMMON or sequence-associated because the semantics of se-

quence association are too complex and the feature would notadd additional benefits. An

MVV cannot have the TARGET or POINTER attributes to avoid aliasing that would com-

plicate the semantics of MVVs. Similar to co-array subroutine parameters, MVVs can be

passed in three different ways: using Fortran 77 convention, using Fortran 95 interface

to pass an MVV as an MVV-object, or to pass only the current version. If a parameter

MVV is passed as an MVV-object, it inherits the multi-version property in the subroutine;

otherwise, the parameter becomes a regular Fortran 95 variable.

219

8.3.2 Operations with MVVs

Variable accesses.

Writes to an MVVmvv update the current version. Reads frommvv return the current

version value. If an MVV is a co-array or a co-array component, it is illegal to remotely

access it using the bracket notation. Instead of co-array PUT/GET specified via brackets

([]), programmers must usecommit andretrieve to control versions. The restriction

is a compile-time check. It avoids unpleasant side effects when a new version is retrieved,

gives compiler and runtime more opportunities for optimization, and does not reduce the

expressiveness.

Allocation and deallocation.

A local or UDT component MVV with theallocatable attribute can be allocated using

theallocate statement, which is similar to allocation of Fortran 95 allocatable variables.

Fortran 95deallocate is used to deallocate the MVV. Note that allocation and deallo-

cation are local operations and do not involve synchronization with other images.

A co-array MVV is allocated in the same way as co-arrays: theallocate call is

collective among all images of the program and each image must specify the same shape

for the MVV. Deallocation is done via the global collectivedeallocate call. Note that

bothallocate anddeallocate have an implicit global barrier.

Committing values.

A new value can be committed into an MVVmvv by using thecommit operator

commit(mvv, val, [live=true])

The mvv argument denotes an instance of an MVV that can be local,e.g., mvv or

a%mvv, or remote specified via the bracket syntax,e.g., mvv[p] or a[p]%mvv. The re-

motecommit commits valueval into the instance of an MVV located on the target image

220

p. An MVV can be a scalar, array, or a UDT component,e.g., mvv[p], mvv(:,:)[p],

a[p]%mvv(:), a(i,k)[p]%mvv(:,:). The default co-shape of a co-array MVV is

that of a co-arraya[*]. Co-space objects described in Chapter 5 can be used to impose a

topology on a co-array MVV.

The value being committed is taken from theval argument, whose element type must

be the same as that ofmvv. If val is a constant, the committed value is equal toval

expanded to the size ofmvv. If val is a variable, it can be a co-array, co-array component,

Fortran 95 variable, local MVV, or local instance of a co-array MVV (note that a value

cannot be read from an MVV instance located in a remote process image). Ifval is an

MVV, the current value of the MVVval is committed.val can also be an expression,

e.g., a result of a computation or an array element/section of a variable.

Thelive parameter tocommit is an optional argument that, if.false., indicates

that the value ofval is not live in the process image performing thecommit after the

commit call. Thelive parameter helps to avoid an unnecessary data copy when a value

is committed from an MVV, as explained in Section 8.6.

The order of versions committed into an MVVmvv is maintained on the consumer

usingmvv’s queue. If there is only one producer committing values, the values will be

consumed in the same order in which they were committed. If several producers interleave

commits tomvv, two cases are possible. First, if producers do not synchronize between

themselves, the order of values inmvv’s queue is determined by the hardware and run-time

layer timing. If producers synchronize, the order of commits will be that enforced by their

synchronization. We discuss these issues in more detail in Section 8.5.

Retrieving values.

A new version can be updated using theretrieve operator

retrieve(mvv, [var], [image], [ready])

The statement updatesmvv with the next version in the queue. The previous version

221

value is lost. If there is no available next version, theretrieve operator blocks until a

new value is committed. The MVVmvvmust be a local instance; we also discuss extending

the MVV concept with remote retrieves in Section 8.8. The optional parametervar can

be supplied to copy the updated value formmvv intovar; var must a local variable. This

may save a line of code for the programmers who would have to perform the assignment

explicitly. It also allows non-conformant assignments (see below) and provides additional

information to the compiler and run-time layer. The optional parameterimage serves

two purposes. First, it is information for the run-time layer to expect a version from the

producer imagep. Second, it is useful for debugging to explicitly indicate that the next

retrieved version must be committed from the producer imageimage. When the optional

LOGICAL parameterready is specified,retrieve sets it to.true. if there is a value

available for retrieval, otherwise it is set to.false.; theretrieve does not block and

does not retrieve a value.

To maintain simple and intuitive semantics ofcommit andretrieve, we purpose-

fully limit versions that they accept to onlyfull-sizeversions, whose size is the same as that

of the MVV. Partial versions might be useful for some applications, but they complicate the

semantics and robustness of the concept. However, we do not require theshapeof commit-

ted and retrieved versions to coincide with the shape of the multi-version variable; only the

size must be that of the MVV. The rationale is that some scientific codes such as NAS BT

would benefit from non-conformant remote co-array assignments,e.g., a(1:N,1:M)[p]

= b(1:M,1:N). In CAF, programmers would use Fortran 95RESHAPE intrinsic or an

auxiliary buffer to perform such an assignment.

Note that we do not provide aretrieve primitive that retrieves a remote version from

another image. While it is possible to extend the concept with such remote retrievals, we

have not seen a compelling case where it might be useful. For producer-consumer codes

in a distributed environment, it is important to get data to the consumer as fast as possible.

PUT or commit are better suited for this purpose because the producer can initiate the

data transfer as soon as the value is produced and potentially overlap the communication

222

latency with local computation. GET or remoteretrieve do not hide the data transfer

latency unless optimized by a compiler,e.g., split-phase GET. Such optimization, however,

is difficult and unlikely to be effective in the general case.

Buffer tuning.

The default number of buffers to store unconsumed (pending)versions per connection (per

each producer committing into the MVV) is defined during the compiler installation or

program startup. Most scientific codes require buffering for only one unconsumed version

per connectionfor both correctness and high performance. However, different producer-

consumer communication patterns might require different number of buffers; moreover

different images might require different number of buffersfor the same co-array multi-

version variable. We provide the ability to fine-tune the number of MVV versions by using

purge andmv set num versions functions.

purge(mvv) explicitly deallocates all unused send and unconsumed receive buffers.

Note that for most scientific codes that can benefit from usingMVVs, this should not be

necessary. For example, in nearest-neighbor codes, each image communicates only with a

small, fixed subset of neighbor images; therefore, the set ofMVV buffers does not grow

too large and stabilizes during execution.

mv set num versions(mvv,K,[image]) instructs the run-time to use at least

K buffers per connection for an MVVmvv (a local instance). If the optional parame-

ter image is present, thenK is the number of receive buffers onmvv’s process image

(consumer) to store unconsumed versions committed from theproducer imageimage.

mv set num versions(mvv,K,[image]) is not a collective call. In fact, the num-

ber of versionsK that a co-array MVV can hold does not need to be the same on every

image; it is a local property.

223

8.4 Examples of multi-version variable usage

In general, MVVs are a good abstraction for a large class of nearest-neighbor scientific

codes where each image streams a sequence of values to a fixed set of neighbor images.

This class of scientific applications includes wavefront (e.g., Sweep3d), line-sweep (e.g.,

NAS BT and SP), and loosely-coupled (e.g., Jacobi iteration) codes. MVVs can also be

used for intra-node producer-consumer codes if several threads of execution are allowed

inside one image (see Chapter 9).

MVVs might not be the best abstraction for irregular codes (e.g., RandomAccess,

Spark98) where each image might communicate with all other images in the program,

which might result in excessive MVV buffering and degraded performance. MVVs in-

sulate programmers from managing the timing of the anti-dependence synchronization

due to buffer reuse. However, if no such synchronization is necessary due to an appli-

cation algorithm (e.g., if the application can use fixed known number of communication

buffers between each synchronization stage), this synchronization might introduce extra

overhead. We believe that programmability benefits provided by MVVs in many cases out-

weigh slight performance loss due to the buffer reuse synchronization. Also, MVVs might

not deliver the best performance if there is not enough localcomputation to overlap the

anti-dependence synchronization with.

We now show several real application kernels that can benefitfrom using MVVs.

8.4.1 Sweep3D

The Sweep3D-3B and even Sweep3D-1B kernels shown in Figures8.6 and 8.5, respec-

tively, become much simpler when using multi-versionPhiib andPhijb variables as

shown on Figure 8.20. When using MVVs, the kernel is simple and intuitive and looks

very much like that of the MPI version. At the same time, it candeliver comparable or

better performance as shown in Section 8.7.

224

...
if (receiving from I pred) then

retrieve(Phiib)
endif
! similar for the J-dimension
...
! computation that uses and updates Phiib and Phijb
...
if (sending to I succ) then

commit(Phiib[I succ], Phiib)
endif
! similar for the J-dimension
...

Figure 8.20 : Sweep3D kernel pseudocode with multi-versionbuffers.

8.4.2 NAS SP and BT forward [xyz]-sweeps

Figure 8.21 shows how the forward sweep along spatial dimension x in NAS SP can be

expressed via MVVs; again, the code is very similar to that oftwo-sided MPI. Sweeps

in y- and z-dimensions have similar communication. NAS BT forward sweeps also have

similar communication structure.

do stage = 1, ncells
...
! receive the next xf buff from the x-predecessor in the sweep
if (stage .ne. 1) then ! first stage

retrieve(xf buff)
endif
...
! computation that uses values of xf buff out-of-buffer
...
! pack xf buff to send to the x-successor in the sweep
! send xf buff to the x-successor
if (stage .ne. ncells) then ! last stage

commit(xf buff[x succ], xf buff)
endif
...

done

Figure 8.21 : NAS SP pseudocode for forward sweep along x dimension expressed via
MVVs.

225

do stage = 1, ncells
...
! receive the next xf recv buff(stage) from the x-predecessor
if (stage .ne. 1) then ! first stage

call wait(x pred)
endif
...
! computation that uses values of xf recv buff(stage) out-of-buffer
...
! pack xf send buff(stage) to send to the x-successor in the sweep
! complete previous non-blocking PUT region
if (stage .ne. 1) then

complete non-blocking PUT region with index stage-1
endif
! transfer xf send buff(stage) to the x-successor
if (stage .ne. ncells) then ! last stage

start non-blocking PUT region with index stage
xf recv buff(...,stage+1)[x succ] = xf send buff(...,stage)
stop non-blocking PUT region with index stage
! notify the x-successor that the buffer has been updated
call notify(x succ)

endif
...

done

Figure 8.22 : NAS SP pseudocode for forward sweep along x dimension in CAF that uses
a buffer per stage.

If the kernel is coded using PUT/GET, the user has to also insert point-to-point syn-

chronization statements, manage several communication buffers, and non-blocking PUT

directives to obtain high performance. For instance, it is possible to use a separate com-

munication buffer per stage to avoid the synchronization due to buffer anti-dependence,

as shown in Figure 8.22. This is relatively simple kernel to program; however, excessive

buffering may increase cache pressure when buffers are large. Alternatively, the three-

buffer scheme can be used similar to how it is done for the Sweep3D kernel in Figure 8.6,

but to achieve high performance, the programmers would haveto code complex synchro-

nization (more complex than shown in Figure 8.22). With MVVs, the synchronization and

buffering are hidden from the programmer inside thecommit andretrieve primitives.

226

8.4.3 NAS SP and BT backward [xyz]-substitutions

Figure 8.23 presents pseudocode for the x-dimension backward substitution stage in NAS

BT. Substitutions for y- and z-dimensions are similar. As with the forward sweeps, using

MVVs simplifies coding of the backward substitution stages in NAS BT and ST, while also

delivering high performance. In addition, this example also demonstrates how MVVs can

reduce programmers’ effort for writing packing/unpackingcode.

do stage = ncells, 1, -1
...
if (stage .ne. ncells) then ! first stage

retrieve(xb buff, backsub info(0:JMAX-1,0:KMAX-1,1:BLOCK SIZE,cell))
endif
...
! intense computation
...
if (stage .ne. 1) then ! last stage

commit(xb buff[x pred], rhs(1:BLOCK SIZE,0,0:JMAX-1,0:KMAX-1,cell))
endif
...

done

Figure 8.23 : NAS BT pseudocode for backward substitution inx dimension.

Using an MVV enables to ”reshape” communicated data withoutmaking programmers

use an auxiliary communication buffer and write the packing/unpacking code in the case

when communication could be expressed as an assignment of two non-conformant co-

array sections. For example, the following code would be a natural way to express in-

place communication in NAS BT, but it is illegal in CAF because the shapes ofrhs and

backsub info references are non-conformant

backsub_info(0:JMAX-1,0:KMAX-1,1:BLOCK_SIZE,remote_cell)[x_pred] =
rhs(1:BLOCK_SIZE,0,0:JMAX-1,0:KMAX-1,cell)}

The intent of the assignment is to transfer elements as shownin Figure 8.24. The code

would perform fine-grain element accesses and must be optimized by the compiler. It is

also possible to use Fortran 95RESHAPE intrinsic.

The sizes of therhs andbacksub info sections are the same. The CAF version

uses a contiguous 1D buffersend buf to pack data fromrhs at the source, transfer

227

do j = 0, JMAX-1
do k = 0, KMAX-1

do b = 1, BLOCK SIZE
backsub info(j,k,b,remote cell)[x pred] = rhs(b,0,j,k,cell)

enddo
enddo

enddo

Figure 8.24 : Data transfer in x-dimension backward substitution of the NAS BT bench-
mark.

send buf into a 1D contiguous co-array bufferrecv buf, and unpackrecv buf into

backsub info on the destination. It requires declaring the auxiliary communication

buffers and writing packing/unpacking code. Using MVVs relieves programmers from

both.

The MVV xb buff for the x-dimension is declared as a 1D allocatable array

double precision,allocatable,multiversion::xb_buff(:)

The packing/unpacking is done by the run-time layer inside the commit and

retrieve primitives. MVV packing/unpacking code enumerates all elements of a sec-

tion as a DO-loop nest that accesses the elements in column-major order, which is a typical

case. If an alternative element enumeration is desired, theprogrammer can use DO loops

and pack/unpack variables into/from the current version ofan MVV.

In addition, all data transfers done by the MVV run-time layer are contiguous. Exper-

iments show [47, 48, 33] that source-level packing/unpacking is necessary to achieve the

best communication efficiency for strided transfers on someinterconnect. Thus, MVVs

naturally take care of user-level packing/unpacking that programmers would have to do

manually to compensate for inefficient support for strided communication in most inter-

connects and one-sided communication libraries.

Finally, with MVVs, the programmers uselocal array subscripts, which is easier than

tracking remoteco-array subscripts of a PUT/GET. In the example above, the program-

mer needs to know the indices of the remote co-array sectionbacksub info, e.g.,

228

remote cell, which is not equal to the local cell numbercell. In some cases,

maintaining the information about remote co-array shapes locally was a major inconve-

nience that we noticed during our evaluation studies. When using MVVs, commit and

retrieve use the local value ofcell.

8.5 Relation of MVVs, GETs/PUTs, and synchronization

The semantics of thecommit andretrieve primitives are not those of PUT/GET. There

can be several unconsumed buffered versions in an MVV that are “invisible” to the pro-

grammers. The next value in the sequence will become visibleonly when the consumer

executesretrieve; in this respect, it is not intuitive to associate PUT withcommit

and GET withretrieve. Synchronization statements provide certain guarantees for

GET/PUT completion and ordering. However, buffered versions in an MVV are retrieved

explicitly by the consumer image and may even be retrieved after several synchronization

events between the producer and consumer. This makes it impossible to provide program-

ming model guarantees for the ordering between observing the results ofcommits (avail-

able viaretrieves), and PUT/GET and synchronization.

On the other hand,commit has more intuitive relation to PUTs/GETs and synchro-

nization; note thatcommit does not make the value visible, onlyretrieve can do it.

Sincecommit implies synchronization (similar to unidirectional point-to-point notifica-

tion) with thecommit’s target image, PUTs/GETs that were issued before must complete

according to the memory consistency model described in Section 3.1.6. The default case is

to complete only prior PUTs/GETs issued to the target process image before the committed

version is made available for retrieval on the target image;this is equivalent to the semantics

of the weakernotify. The optional parametermode=strict can be passed tocommit

to completeall prior PUTs/GETs. Intuitively, if the programmer uses MVVs to implement

synchronization between two images, the semantics ofcommit andretrieve are those

of notify andwait: the effects of PUT/GET communication prior tocommit must be

visible top when the value is retrieved.

229

What is more important for MVVs is the ordering of committed versions. In the case

of a single producer, the version ordering is that of a stream. If imagep executes two

commits, the value of the firstcommit is always retrieved before the value of the second.

The case of multiple producers is more subtle. If two imagesp andq commit values into

an instance of an MVV located on imager, two cases are possible. First, if there was

no synchronization betweenp andq’s commits, the order of versions is undefined and

determined by the timing in the hardware and run-time layer implementation. Second,

if there was a synchronization event,e.g., a barrier or a notify/wait pair that ordered the

execution ofcommits, the value of the firstcommit is guaranteed to be retrieved before

the value of the second. These semantics are intuitive with respect to the meaning of

synchronization.

8.6 Implementation

We describe a prototype implementation of MVVs based on Active Messages (AM) [122].

If AMs are not available on the target platform, the run-timelayer implementation of

commit andretrieve primitives can poll the network emulating AMs. The implemen-

tation is conceptually similar to that of the multi-buffer scheme described in Section 8.1;

however, it does not use CAF’s notify/wait primitives.

8.6.1 An implementation based on Active Messages

Initially, an MVV has buffer only for one version — the current version that can be ac-

cessed locally via read and write. When producer imagep commits the first value to an

instance of an MVV located on imageq, it sends an AM to establish a connection. The

AM allocatesN receive buffers onq, whereN is the default number of buffers per connec-

tion. These buffers are used to accept values committed fromp, so thatN commits from

p will succeed without blockingp. The reply AM makes the buffer addresses available

on p. They can be used later to communicate versions fromp to q, e.g., using RDMA,

without the need to contactq. The connection can also be established byretrieve if

230

the optional parameterimage is specified and the consumer image executesretrieve

before the first commit from imageimage. Note that the connection is established without

programmer’s involvement.

For an MVV mvv, assuming that the connection has been established, thecommit

implementation must transfer and enqueue the committed value intomvv. Eachmvv has a

queue that records the global order of commits from several producers. The producer knows

locally whether there is an available receive buffer on the consumer since the fact that a

version committed by the producer has been consumed, thus, one of the corresponding

receive buffers becomes free, is communicated to the producer in the implementation of

retrieve (see below). If there is no available receive buffer, the producer is blocked

and waits for a buffer to become available. When there is an available receive buffer, the

producer can transfer the value and enqueue it in two ways; which one should be used

depends on the version size, communication substrate, and the AM implementation.

In the case of large data size, the value is transferred into the receive buffer,e.g., using

RDMA PUT. Next, the producer sends a synchronization AM thatenqueues the version

on the consumer. In the case of small data size, the value can be transferred with the

synchronization AM. This AM enqueues the next MVV version and must copy the value

from the AM ephemeral payload memory into the MVV receive buffer, from where it

will be retrieved later. An implementation uses an auxiliary send buffer(s) to make data

movements non-blocking to overlap it with computation on the producer.

Theretrieve implementation is straightforward. If there is no available version in

the queue to retrieve,retrieve blocks4 and waits for a version to become available. Oth-

erwise,retrievemakes the next enqueued value the current version, available for access

in the program; the previous version is lost. Next, the run-time layer sends a synchroniza-

tion AM to the producer containing the address of the free receive buffer indicating that the

buffer is ready to accept a new version; for efficient implementation, this message should

be non-blocking.

4retrieve can also poll the network.

231

The data copy on the consumer is not necessary if the MVV’s current version is repre-

sented via F90 pointer. Instead of copying the data, the implementation adjusts the address

of the F90 array descriptor to point to the buffer containingthe next version data. Similarly,

if the producer commits a value to an MVVmvv1 from another MVVmvv2 andmvv2’s

current version will be dead after the commit,mvv2’s current version F90 pointer is ad-

justed to point to a free send buffer ofmvv2; the former current version buffer ofmvv2

becomes a send buffer. Liveness analysis orcommit’s optional argumentlive set to

.false. can determine when the committed value is not live.

We now describe several possible extensions to our prototype implementation. The re-

quirement for MVVs to make progress is to have at leastN receive buffers per connection.

If there is not enough memory for buffering, this is a critical run-time error. However, the

run-time layer can implement a smarter buffering scheme rather than aborting the program.

For example, if there is an open connection with some producer that has not been active

recently and none of the buffers is used, the connection can be closed freeing some mem-

ory. Similarly, some unoccupied buffers from open connections can be deallocated freeing

the memory. If there are no buffers to deallocate and more memory is needed, the program

should be aborted with the resource limit reached message. Note that scientific applications

that can benefit from MVVs should not experience excessive buffering.

Another type of adaptation policy is actually to increase the number of buffers per

connection. Having more buffers enables to send the buffer-free synchronization AM ear-

lier and remove it from the critical path. Thus, ifcommit does not have a free receive

buffer, e.g., because there is not enough computation on the producer to overlap the anti-

dependence synchronization latency with, the run-time layer may allocate an additional

receive buffer(s) in the hope to hide this latency. The extrabuffering should be done care-

fully not to cause a memory shortage. A good heuristic would be to limit the maximum

memory usage per connection. This would enable many versions for small size MVVs —

exactly what is necessary to hide the buffer reuse synchronization latency without excessive

memory usage.

232

8.6.2 Prototype implementation incafc

We designed and implemented a prototype compiler and run-time support for MVVs in

cafc. The runtime uses Pthreads [82] and ARMCI with AMs.cafc translator was ex-

tended to accept a subset of the MVV specification. This subset includes allocatable MVVs,

allocate, commit, andretrieve primitives, which enabled us to compile and eval-

uate the performance of several parallel codes such as Sweep3D and the NAS SP and BT

benchmarks expressed via MVVs. The support for themultiversion attribute was not

implemented in the Open64/SL front-end; instead an MVV is identified by themv iden-

tifier prefix. The prototype represents an MVV using a F90 pointer and an opaque handle

to store the run-time state; this is similar to co-array representation. The implementation

allows a fixed number of unconsumed versions per connection.We have yet to find real sci-

entific codes for which smarter buffer management would yield benefits and can justify the

development effort. The implementation uses F90 pointer adjustment to reduce memory

copies. It also uses non-blocking AMs or PUTs for top efficiency wherever possible. When

a version is committed from a large MVV, the prototype uses anadditional send buffer(s)

to enable non-blocking RDMA PUT. If thelive argument tocommit is .false., F90

pointer adjustment is also used on the producer to avoid extra memory copies.

8.7 Experimental evaluation

We used MVVs to implement kernels of three benchmarks: Sweep3D and the dimensional

forward and backward sweeps in the NAS BT and SP benchmarks ([xyz] solve sub-

routines). Using MVVs resulted in much cleaner code compared to the best hand-coded

variants in CAF becausecommit andretrieve encapsulate the buffering, point-to-

point synchronization, and non-blocking communication, which the programmer would

otherwise have to code explicitly. The performance of the three codes was measured on an

Itanium2 cluster with a Myrinet 2000 interconnect (RTC), described in Section 3.3. It is

the only platform where bothcafc and ARMCI with AM support are available.

233

8.7.1 Sweep3D

We expected the performance of MVV versions to be comparableto that of the hand-coded

multi-buffer one and, therefore, better than that of the MPIversion for the cases when the

multi-buffer version outperforms MPI. Compared to the hand-optimized multi-buffer, an

implementation of the MVV abstraction adds extra overhead.The sources of overhead

include extra messages to communicate the control information, higher memory require-

ments for buffering, and extra memory copies. In hand-optimized programs, such over-

heads might be avoided because of specific application-level information. For example,

hand-coded Sweep3D-3B uses three buffers per communication axis (I/J). When the sweep

changes the direction, it changes communication partners,swapping predecessors and suc-

cessors. Because of the ordering guaranteed by the wavefront, the programmer knows that

it is algorithmically safe to reuse the same set of buffers since the former communication

partner must have consumed the prior version and its buffersare free and ready to accept

new data. However, the MVV run-time does not have such knowledge and uses five buffers

per communication axis: the current version buffer and a pair of send and receive buffers

per communication direction. It is possible to reduce this number to four by using only

one send buffer for both directions because the decision whether to reuse a send buffer is

purely local and does not involve synchronization with other images (as opposed to the

reuse of receive buffers). Note that Sweep3D and NAS BT and SPcommunicate several

times in the same direction (using the same receive buffer),thus, the increased cache foot-

print is amortized and might affect the application only when the communication direction

changes.

Figures 8.13, 8.14 and 8.15 (see Section 8.2.2) present the parallel efficiency of

Sweep3D of the 50x50x50, 150x150x150 and 300x300x300 problem sizes. Sweep3D-3B

represents the performance of the multi-buffer version of Sweep3D, the fastest available

hand-optimized parallelization. The MVV-based version shows roughly identical perfor-

mance to that of the Sweep3D-3B version for the 150x150x150 and 300x300x300 prob-

lem sizes. It slightly (less than 0.5%) outperforms Sweep3D-3B for the small 50x50x50

234

problem size because it uses non-blocking AM-based synchronization messages, while the

current version of the ARMCI library does not provide truly non-blockingnotify used in

Sweep3D-3B. ARMCI’s notify executes a fence before sendingthe non-blocking notifica-

tion PUT. Because thenotify follows the non-blocking PUT immediately in Sweep3D-

3B, the PUT essentially becomes blocking, leading to a slight performance degradation

for the small problem size. The effect becomes marginal for the larger 150x150x150 and

300x300x300 problem sizes because the communication to computation ratio decreases.

Note that both MVV-based and Sweep3D-3B versions show comparable or better perfor-

mance than that of the MPI version (see discussion in Section8.2.2).

The MVV-based version uses F90 pointer adjustment on both producers and consumers

to avoid extra memory copies and specifies the optionalimage argument toretrieve.

We also evaluated three other MVV-based versions to measurea potential performance loss

due to extra memory copies. The first version performed a datacopy only on the producer

from the current version buffer into the send buffer. The second version performed a data

copy from the receive buffer into the current version bufferon the consumer. The third

copied data on both producer and consumer. All MVV-based versions performed roughly

identical, and performance fluctuations were statistically insignificant in our experiments;

however, extra memory copies may degrade the performance ofsome codes.

In addition, we evaluated the effect when a consumer, ratherthan a producer, establishes

the connection. This may happen when the consumer executes aretrieve with the

image argument before the producer performs the firstcommit, and has the effect of

removing the connection establishment latency from the critical path. For regular codes, the

gain is amortized over many communications between the sameproducer and consumer,

thus, knowing the origin of communication has negligible effect.

8.7.2 NAS BT and SP

Figures 8.25, 8.26, and 8.27 present parallel efficiency forexecutions of NAS BT of A

(643), B (1023), and C (1623) classes, respectively. The results were obtained on an Ita-

235

4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

BT−MPI
BT−CAF
BT−CAF−MV

Figure 8.25 : NAS BT class A on an Itanium2 cluster with a Myrinet 2000 interconnect.

4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

BT−MPI
BT−CAF
BT−CAF−MV

Figure 8.26 : NAS BT class B on an Itanium2 cluster with a Myrinet 2000 interconnect.

nium2 cluster with a Myrinet 2000 interconnect (RTC). BT-MPI stands for the efficiency

of the standard MPI version (see Section 3.4). BT-CAF is the efficiency of the best hand-

coded CAF version, which uses a different buffer for each stage of the forward sweeps and

backward substitutions, thus, avoiding the anti-dependence synchronization due to buffer

236

4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

BT−MPI
BT−CAF
BT−CAF−MV

Figure 8.27 : NAS BT class C on an Itanium2 cluster with a Myrinet 2000 interconnect.

reuse altogether. BT-CAF-MV is the efficiency of the versionthat uses MVVs to imple-

ment the forward sweeps and backward substitutions. BT-CAF-MV uses two MVVs per

dimension: one to communicate LHS border regions in the forward sweep, the other to

communicate RHS borders in forward and backward sweeps.

For all problem sizes, the performance of BT-CAF-MV is roughly equal to that of

BT-CAF because (1) the latency of the anti-dependence synchronization in the BT-CAF-

MV version is overlapped with computation and does not contribute to the critical path,

and (2) even though AM-based non-blocking synchronizationin the BT-CAF-MV is more

efficient than that of thenotify implementation, the effect is minor due to significant

local computation. The performance of the MPI version is somewhat better than that of

both CAF versions5.

Figures 8.28, 8.29, and 8.30 show parallel efficiency for executions of NAS SP of A

5For earlier RTC configuration, the performance of BT-CAF andBT-MPI was almost the same. BT-CAF

version, and as a consequence, BT-CAF-MV, showed worse performance after a recent series of RTC software

updates. For the purposes of this discussion, comparing theperformance of the CAF versions to that of MPI

is not that important.

237

1 4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

SP−MPI
SP−CAF
SP−CAF−MV

Figure 8.28 : NAS SP class A on an Itanium2 cluster with a Myrinet 2000 interconnect.

1 4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

SP−MPI
SP−CAF
SP−CAF−MV

Figure 8.29 : NAS SP class B on an Itanium2 cluster with a Myrinet 2000 interconnect.

(643), B (1023), and C (1623) classes, respectively. SP-MPI, SP-CAF, and SP-CAF-MV

correspond to parallel efficiency of the standard MPI, best hand-optimized CAF, and MVV-

based versions. The structure of the forward sweeps and backward substitutions is similar

to that of the NAS BT versions. SP-CAF-MV uses one MVV per dimension that replaces

238

1 4 9 16 25 36 49 64 81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Processors

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

SP−MPI
SP−CAF
SP−CAF−MV

Figure 8.30 : NAS SP class C on an Itanium2 cluster with a Myrinet 2000 interconnect.

the buffer co-array used for communication in forward and backward [xyz] solve

sweeps. Thecommit andretrieve primitives remove the point-to-point synchroniza-

tion and non-blocking communication directives from the code as well as allow using the

local subscripts (cell indices) to specify parameters of communication (see Section 8.4.3),

making the code simpler and more intuitive.

The performance of the SP-CAF-MV version is somewhat betterthan that of the best

hand-coded SP-CAF version for classes A and B because SP-CAF-MV’s synchronization

messages are non-blocking. For the large, class C, problem size, computation dominates

this slight difference, so SP-CAF and SP-CAF-MV have roughly similar performance.

8.8 Discussion

There are many options for simplifying producer-consumer communication in CAF. One

can simply use MPI, which is designed for general two-sided communication. MPI

might introduce extra memory overhead (copies, registration/unregistration) and, if it

uses the rendezvous protocol, expose communication latency, resulting in suboptimal

239

performance. MVVs essentially encapsulate the multi-buffer communication scheme

and can deliver higher performance than MPI. With MVVs, the producer always knows

the destination receive buffer on the consumer and using F90pointer adjustment can

avoid extra memory copies, transferring data in-place. Alternatively, the abstraction of a

stream/link/channel/pipe is also a good candidate for producer-consumer communication;

however, it requires an explicit connection and is likely toexhibit extra memory copies be-

cause the destination memory of communication is not known until the value is read from

the stream.

MVVs bear resemblance to the Clocked Final (CF) model [106],but programmers are

more involved in the process of controlling versions when developing codes using MVVs.

First, the number of MVV versions per connection is explicitly defined by the program-

mer who specifies the minimum number of versions necessary for the application to make

progress or for obtaining the best performance. Second,commit andretrieve explic-

itly define and control versions. While the CF model guarantees determinacy and deadlock

freedom and is a more convenient abstraction for scientific applications, there is not yet a

parallel implementation of CF; thus, it is not yet clear whether CF can deliver high perfor-

mance. In contrast, MVVs are capable of delivering high performance today for a large

class of scientific applications with producer-consumer communication, while offering a

much simpler programming style compared to CAF without them.

There are several reasons that influenced our decision to make MVVs a language-level

rather than library-based abstraction. First, themultiversion attribute fits well into the

existing type system. The compiler can check the correctness of MVV parameter pass-

ing to thecommit andretrieve primitives. The compiler can also use an opaque

handle to represent the run-time state of an MVV freeing the programmer from declar-

ing and passing around a special object. Second, the compiler can ensure that accesses

to remote MVVs using the bracket notation are prohibited to avoid unexpected side ef-

fects when versions are retrieved. Third,commit andretrieve primitives can be used

for MVVs of any user-defined type; a library-based implementation does not permit such

240

overloading in Fortran 95. Fourth, the compiler and run-time can establish connections

on demand, without programmer’s involvement, and use F90 pointer adjustment to avoid

unnecessary memory copies because the compiler and runtimecontrol how MVV memory

is allocated/deallocated. Achieving the same in a library-based implementation would re-

quire programmers allocate/deallocate memory specially.To summarize, MVVs are more

convenient and expose more information to the compiler and run-time as a language-level

abstraction.

Expressing high performance producer-consumer communication in PGAS languages

is difficult. MVVs are a language-level abstraction for CAF that both improves programma-

bility and provides more information to the compiler and run-time, which can tailor it to a

particular architecture to deliver the best performance. Our research showed that MVVs are

applicable to a large set of scientific codes that include wavefront and line-sweep applica-

tions; they can also be used in loosely-synchronous applications. MVVs significantly sim-

plify development of wavefront applications, such as Sweep3D, and deliver performance

comparable to that of the fastest CAF hand-optimized versions and comparable to or bet-

ter than that of MPI-based counterparts, especially if MPI uses rendezvous protocol for

send/receive communication, on a range of parallel architectures. We counted extra lines

of code (LOC) necessary to implement CAF versions of Sweep3Dcompared to the MPI

version. For Sweep3D-1B, this number is 12. For Sweep3D-3B,this number is 70. The

MVV-based version has the same communication style as the MPI version and does not in-

troduce extra lines. It is, however, questionable whether LOC is a good metric to estimate

programmability gains. The total Sweep3D LOC is 2182; the number of LOC for buffer

management, communication, and synchronization is small compared to the computational

LOC. Nevertheless, our feeling is that implementing eitherMPI or MVV-based version is

much simple than implementing the Sweep3D-3B version; because it is not the number of

lines that matters, but the complexity of reasoning about communication/synchronization

— where to insert these lines and how difficult it is to debug the program. Programming

Sweep3D-3B is much harder than any other Sweep3D version because the programmer is

241

responsible for orchestrating the anti-dependence synchronization pipeline (start-up, steady

state, and wind-down code), managing buffers in a circular fashion, and using non-blocking

PUT directives; this also requires relating events from different loop iterations. Both MPI

and MVV-based versions hide this complexity inside the run-time layer. A good analogy

here is that programmers should not software pipeline a short loop critical for performance

by hand even though it would increase the code size by only a few lines. Also, MVVs

greatly simplify coding of line-sweep applications, such as the NAS BT and SP bench-

marks, and deliver performance comparable to that of the best hand-optimized MPI and

CAF counterparts. Based on our research, we believe that MVVs are a promising exten-

sion to CAF.

As scientific community gains more experience using MVVs, itwould also be inter-

esting to consider whether MVVs can benefit from extensions such as GET-style remote

retrieve, commits and retrieves for partial versions, and an adaptive buffer management

strategy.

242

Chapter 9

Toward Distributed Multithreading in Co-array Fortran

The success of a new programming language is imposed by its ubiquitous availability,

acceptable programmability, and its ability to deliver high performance on a wide range

of computation platforms. The growing popularity of hybridcluster architectures with

multi-core multiprocessor nodes creates a demand for CAF with explicit language-level

multithreading that enables one to co-locate computation with data and to exploit hard-

ware threads. This chapter presentsco-functions(CFs) andco-subroutines(CSs), language

constructs to support distributed multithreading (DMT) inCAF.

9.1 Motivation

Currently, CAF is an SPMD programming language with only onethread of computation

per process image, as shown in Figure 9.1. Under this limitation, even the simple task of

efficiently finding the maximum value of a co-array section that is located in a remote im-

age memory and can be concurrently accessed by several process images is problematic.

The local image must obtain exclusive access to the remote co-array section, fetch it over

the network, and find the maximum (or worse, use remote element-wise accesses to find

the maximum if the communication is not vectorized) and, finally, release exclusive access.

This code would have very low performance. Alternatively, acomputation can be shipped

to be co-located with the data that it accesses. On behalf of arequesting image, the remote

processor can acquire exclusive access to the co-array section locally, efficiently find the

maximum among its local values, release exclusive access and send the result to the re-

questing processor. However, with only one thread of computation per image, the logic of

the program would be much more complicated than it might be. To perform a computation,

243

I m a g e 1 I m a g e 2 I m a g e N
Figure 9.1 : Execution model of classical SPMD CAF.

the remote thread would have to interrupt its own computation and poll for remote requests.

Moreover, the question of how often to poll is a difficult problem in itself.

The code to find a remote maximum can be significantly simplified if several threads

are available for every image and the language permits one tospawna remotecomputa-

tion (or activity or thread; the three are used interchangeably hereafter). Computations

spawned remotely have affinity to the remote memory and enable one to cope with the in-

terconnect latencies for accessing remote data inherent incluster and NUMA architectures.

The current image can spawn a remote activity without changing the logic of the “main”

remote thread that would be solely responsible for computation and not for servicing re-

mote requests. While compilers could identify some pieces of code that could be shipped

closer to data they access, it is unlikely that the compilerswould be able to detect all such

computations.

Examples of such data structures are linked lists, trees, graphs, queues, etc.; their parts

are located in remote memory. Such data structures are commonly used in parallel search

applications and often require complex,multi-stepaccesses due to pointer dereferencing.

Such accesses can be compiled into efficient code for parts ofdata structures located in a

node’s local memory. However, if a multi-step access is performed to a part of data structure

located in another node’s memory, the number of network transactions required is typically

proportional to the number of dereferencing steps; this is particularly inefficient on cluster

architectures. Instead of accessing remote data through multiple levels of indirection over

the network, it would be better to declare the code corresponding to a remote access as

244

I m a g e 1 I m a g e 2 I m a g e N
Figure 9.2 : Execution model of CAF with distributed multithreading.

a subroutine and execute it in the remote image address space. In essence, this converts

remote data accesses into local accesses since code will nowbe local to the data structure.

This is another example demonstrating a broader concept of computation shipping.

While a compiler could detect some remote accesses and without user intervention “ship”

them to the remote processor, it would not be able to detect and optimize all such ac-

cesses. Extending CAF with language-levelblockingandnon-blockingco-function and

co-subroutine remote calls, analogous to classical remote procedure calls, enhances the

expressiveness of the language, makes it easier to use for some codes, and improves per-

formance of codes that heavily manipulate data structures located in a remote memory, as

we show in this chapter.

If a computation can be spawned remotely, there is little difficulty in supporting spawn-

ing a computation locally as well. Adding the ability to spawn another computation or

activity locally makes CAF a multithreaded language, as shown in Figure 9.2. In fact,

not only does local multithreading remove a semantic inconsistency, but also it provides

an efficient mechanism for fully exploiting multi-core multiprocessor nodes. If several

computations within a process image are independent, they can be executed concurrently,

utilizing all available processing power of the node, without the need to create an image

per CPU core.

The language-level distributed multithreading conceptually changes CAF’s execution

model. Under this model, co-arrays should be considered as aconvenient shortcut to “pas-

sively” access remote data. Each image would represent alocality domainand physically

245

own a portion of partitioned global address space. Each image might have several threads

executing concurrently. From the language point of view, there is no distinction between

computations initiated by local or remote threads. Any thread can spawn or initiate another

thread in the local image or in a different remote image. Thismore general execution model

enhances CAF’s expressiveness and simplifies programming of certain application classes

such as parallel search problems.

Distributed multithreading requires mechanisms to synchronize threads. CAF’s criti-

cal section [86] is an inadequate, inflexible abstraction. We believe that usinglocksand

condition variablesis a better way to synchronize threads within a process image. For

inter-image synchronization, DMT can use tagged barriers,tagged point-to-point synchro-

nization, or eventcounts [99]1.

Below are a few detailed examples that further motivate and clarify the distributed mul-

tithreaded execution model of CAF.

9.1.1 Accesses to remote data structures

Without the distributed multithreading support, it is not possible to implement, say, a local

linked list in CAF that can be efficiently accessed by remote images on a cluster. Remote

insertion or deletion of an element at a certain position requires the ability to search the

list efficiently. The remote search might require many network transactions, one for each

remote list element. On the other hand, each of these operations can be coded as a subrou-

tine that is spawned inside the image that owns the remote linked list. With this approach,

remote insertion, deletion, or search requires only two network messages: to initiate a re-

quest and to return the result. This is a significant improvement over the classical solution

in CAF. Similar arguments apply to other commonly used data structures that must be

accessed efficiently by remote images.

1Eventcounts are explored by Cristian Coarfa in his companion thesis [29].

246

9.1.2 One-sided master-slave programming style

To efficiently utilize all processors, many parallel searchalgorithms require a fair division

of work among processors; this usually amounts to a fair division of an enormous search

space. A typical example is the traveling salesman problem (TSP) [104]. In a branch-

and-bound TSP implementation, a tree-like search space is huge and the best known cycle

length should be used to prune the search space even if the search is done on a massively

parallel machine. Pruning creates the necessity for load balancing the processors since

some of them might run out of work faster then the others. The problem can be solved

using a master-slave paradigm. The master manages the distribution of the search space

and the value of the best path length; the clients update and query the master for the best

length and ask for more work. This scheme requires a dedicated process to maintain the

state and to service requests, which can become a bottleneckon parallel architectures with

very large number of processors such as Blue Gene/L [56].

DMT CAF enables an efficient and natural implementation without a dedicated mas-

ter process. When a processor runs out of work, it grabs a portion of unexplored search

space from a different processor. In a simple case, a repository of search space states (e.g.,

“available for search”/”already explored”/”being explored”) is stored on a single processor,

called therepository processorR. Other processors spawn remote activities onP to obtain

parts of the search space. This could be viewed as a one-sidedanalog to the classical two-

sided master-slave approach. The programmer does not need to structure the computation

of the repository processor to periodically poll for and service remote requests; the run-

time system takes care of that. The repository processor canalso perform useful work by

exploring a part of the search space. If the centralized repository becomes a bottleneck, the

state can be distributed across several process images. Clearly, distributed multithreading

would enable a much simpler implementation of a distributedrepository solution compared

to that in classical CAF.

Many applications in bioinformatics,e.g., parallel large scale phylogeny reconstruc-

tion [49, 34], and other areas that heavily rely on efficient parallel search can benefit from

247

distributed multithreading. These applications can be programmed in three ways:

1. using a client-server model with one or more process(es)dedicatedto servicing re-

mote requests,

2. employing one or more extra threads per process image to explicitly service remote

requests, or

3. spawning remote threads on demand to access remote state.

In the first scheme, one or more processes do not perform useful work and CPU re-

sources might be wasted if they run on dedicated CPUs. This can happen if a cluster

job scheduling software does not allow an asymmetric numberof processes per node (as

was the case for our experimental platform) or if it is not trivial to start the master as an

extra process on one of the client nodes. Both the first and second schemes require the

programmer to implement a two-sided communication protocol by encoding requests and

marshaling their parameters and return values. In addition, the programmer must explicitly

create and terminate threads or maintain a pool of threads tobe able to service more than

one request at a time. The third approach relieves the programmer from implementing such

a protocol. Instead, the logic is implemented via co-functions/co-subroutines (CFs/CSs).

Remote computations are created implicitly on demand and implicitly terminated by the

run-time when finished. The compiler and run-time marshal the parameters and return val-

ues without programmer’s involvement. Thus, the third approach provides the most flexible

and natural programming style.

9.1.3 Remote asynchronous updates

Some algorithms have shared state that is accessed frequently by many processors. On a

distributed memory platform, it is usually beneficial to privatize this state replicating it in

every memory for faster access. However, if a process modifies the state, it must propa-

gate the change to other processors. Fortunately, many algorithms, such as parallel search,

248

have some tolerance to using stale state. The updates need not be synchronized through-

out the system, but rather asynchronously propagated to other processors, increasing the

asynchrony tolerance of a distributed algorithm.

A typical representative of such asynchronous updates is the propagation of the best cy-

cle length in a parallel branch-and-bound TSP, which is usedas the search pruning criteria.

Updating the best cycle length by spawning asynchronous remote activities is efficient and

natural for the following reasons.

The event of finding a shorter cycle by a processor is completely asynchronous with

respect to other processors. If barriers were used to propagate the best cycle length, the

application would advance in lock step; this is an oversynchronized solution that is not

asynchrony tolerant, and any delay on one processor will cause a delay on the other proces-

sors. A non-blocking broadcast cannot be used because it does not protect the best length

from concurrent updates by several simultaneous broadcasts. If a co-array is used to store

the shortest length on every image, GETs and PUTs on this co-array must be protected by

synchronization,e.g., a distributed lock. If the image that found a shorter cycle is to up-

date its length on every other image, it has to acquire the distributed lock, read the remote

co-array value, test whether the new value is still smaller (because meanwhile another pro-

cessor might have found even a shorter cycle and updated the best length), and if so update

co-array value in remote memory, and release the lock.

A better solution is to spawn asynchronous remote activities on every image to update

the shortest cycle length. Such an activity spawned on imagep acquires a locklp, local

to p, updates the best length, if necessary, and releaseslp. This approach is more efficient

because synchronization necessary to protect the best length is local to each process image.

The program code is also cleaner because remote operations are logically grouped into a

user-defined multi-step operation, which is spawned and executed remotely.

249

9.1.4 Other applications

DMT enables chains of activity invocations, where an activity a1 spawns an activitya2

that, in turn, spawns an activitya3 and so on. Using chains, global propagation of the

shortest tour length might use a logarithmic depth tree-structured distribution pattern. High-

Performance Linpack Benchmark [93] uses a source-level non-blocking broadcast, a good

candidate to implement using DMT activity chains. Activitychains can also be used to

implementcounting networks[10] and diffracting trees[110] on a distributed memory

machine.

9.2 DMT design principles

The goal of DMT is to enable co-location of computation with data to reduce exposed

interconnect latency and to exploit hardware parallelism within a cluster node. We believe

that DMT design must provide a uniform mechanism to support remote and local activities.

In this section, we overview run-time support necessary forDMT and our major design

decisions.

9.2.1 Concurrent activities within a node

With the increasing number of available CPUs in multi-core multiprocessor cluster nodes,

it is essential that the CAF parallel programming model exploit this parallelism. There

are several ways to do it. First, programmers could use both CAF and OpenMP.

CAF provides locality control, while using OpenMP within a CAF process image on a

multiprocessor/multi-core node would enable one to exploit loop-level or task parallelism

(via SPMD regions); however, OpenMP is not well suited for recursive divide-and-conquer

or nested parallelism. Second, several CAF images can run within one node. Neither

of these is flexible enough if an application benefits from different forms of parallelism

expressed via several concurrent activities within one CAFimage. Several concurrent ac-

tivities naturally require some sort of thread support fromthe run-time layer; we assume

250

that each run-time thread executes only one activity at a time. The questions to answer are

whether run-time threads should be cooperative and how manyconcurrent threads should

be allowed.

Cooperative threads have run-until-block semantics. Theyrely on the threads to ex-

plicitly relinquish control once they are at a stopping point. Therefore, the number of

concurrently running cooperative threads cannot exceed the number of node’s processing

elements. For some applications, cooperative multithreading offers some advantages be-

cause context switches for cooperative activities happen at well-defined points; moreover,

when there is only one run-time thread executing cooperative activities within a process,

these activities do not need to be synchronized. However, ifactivities execute long compu-

tations, other activities cannot run and the system becomesnon-responsive. In particular,

this precludes servicing (responding to) requests from other images. Codes that require

responsiveness have to be structured to break a long computation into smaller pieces and

yield control in between to attend to other activities. Thisis a rather strong demand that

would make the execution model less appealing to scientific programmers. In addition, the

requirement of cooperative multithreading will restrict the compiler’s ability to automati-

cally break long computations. We believe that the programming model should not require

activities to be cooperative. DMT activities are preemptable; i.e., an activity can be pre-

empted by another activity at an arbitrary point. An implementation, on the other hand, can

provide an option to execute a program with the guarantees ofcooperative multithreading;

which might be especially useful for programs with only one run-time thread executing

cooperative activities within a process.

If an operating system (OS) provides support for preemptable threads,e.g., Pthreads,

a DMT can be implemented efficiently by exploiting these threads to execute activities.

However, operating systems for the largest scalable systems, Blue Gene/L [56] and Cray

XT3 [38], currently do not provide support for OS multithreading. With only one thread of

execution, it is unlikely that one can implement DMT to deliver high performance. Instead

of relying on the operating system to context switch threads, the compiler would have to

251

insert explicityield instructions in the code that relinquish control to the activity sched-

uler, which multiplexes activities. How to placeyield instructions to also deliver high

performance is outside the scope of this work. Fortunately,there is a strong indication that

thread support will be available on these architectures in the future as they move to multi-

core processors with larger number of cores. The HPCS programming languages X10 [69],

Chapel [39], and Fortress [7] will require OS threads to efficiently support concurrent activ-

ities. ZeptoOS [92], an open-source Linux operating systemdesigned to work on petascale

machines such as Blue Gene/L and Cray XT3, is a good candidateto enable OS thread

support on these two architectures. Interestingly, the ZeptoOS development team recently

announced plans to support function-call shipping for x86-based petascale machines [92]

(8/2/06). In the following discussion, we focus on the case when the OS provides support

for threads.

Another important issue is how many concurrent computations can/should be active

simultaneously. We believe that the programming model should conceptually allow an

unbounded number of concurrent activities so as not to restrain the programming style

by the inability of the system to make progress when too many activities are blocked.

An implementation can execute each activity in a separate OSthread. Unfortunately, the

performance degrades when there are too many concurrently running threads. However,

most applications do not need many concurrent activities. Apragmatic approximation to

the conceptual model is to maintain apool of threadsthat execute queued pending activities

one after another. The minimum size of the pool has to be specified to the run-time by the

programmer because it depends on the algorithmic properties of the application and there

are no known techniques to determine it automatically in thegeneral case. The number

of concurrent activities also affects performance. Too many concurrent activities leads to

performance degradation because of context switches and cache contention. Too few might

lead to poor responsiveness. Since the performance aspect of a parallel programming model

is very important, an implementation is encouraged to provide “knobs”,e.g., thread pool

size, to tune the performance of an application.

252

We believe that any implementation should provide at least two mechanisms to spawn

asynchronous activities. The first should enable an unbounded number of concurrent activ-

ities, but might not deliver the best performance. The second should enable only a certain

number of concurrent activities,e.g., limited by the thread pool size. The implementation

should also expose facilities to control the parameters of the thread pool.

9.2.2 Remotely initiated activities

Any distinction between activities initiated locally or remotely should be minimized. Local

activities are created by activities running within a process image and can be added for im-

mediate scheduling. Remote activities initiated on process imagep are added for schedul-

ing only afterp has serviced its interconnect interface incoming queue.p can attend to the

network in two ways, using an interrupt-based or polling-based approach. Which approach

is used determines the responsiveness or how quickly a remotely initiated activity can be

added for execution. We discuss each of these approaches in turn.

The interrupt-based approach is used by the ARMCI communication library. ARMCI

uses a dedicated thread, called the server thread, to service the network. Conceptually, the

server thread sleeps waiting for a network request to arrive. When a request arrives, the

thread is unblocked and processes the request. This mechanism provides good responsive-

ness because remotely initiated activities can be added forscheduling with little delay. If

a node has an unused CPU, the server thread can opportunistically poll the network rather

than sleep waiting for a request2. In this case, polling decreases the response time, which

benefits single threaded programs; however, server thread polling is likely to consume extra

CPU cycles in a DMT multithreaded program, limiting its applicability. Because handling

of remote requests is asynchronous, hence the name interrupt-based approach, with respect

to image’s running activities, the server thread can cause undesirable interference, for ex-

ample, by evicting a portion of running activities’ cache due to a data copy.

2This isnot the polling-based approach because the server thread is polling the network interface, not an

application thread.

253

The polling-based approach uses the application’s thread(s) to attend to the network

at well-defined points. There is no server thread; instead, remote requests are serviced

when application code calls either run-time layer functions (implicit polling) or an explicit

function,e.g., poll. The advantage of this approach is that remote requests are processed

at well-known points in the program, thus, localizing the interference caused by processing

remote requests to these places. The disadvantage of this approach is that the node may

not be responsive to the network requests, for instance, when the application thread(s) is

performing a long local computation. For codes that need responsiveness, programmers

would have to insert explicit polling instructions in long computations.

If the execution model is restricted to the polling-based approach, the compiler has very

limited capabilities to insert polling instructions automatically. Compiler-inserted polling

instructions are not “controlled” by the programmer. They have the effect of asynchronous

request processing, analogous to the interrupt-based approach. This violates the assump-

tions of the polling-based approach and nullifies its advantage. Moreover, if the architecture

does not have thread support, polling (explicit, implicit,and/or compiler-generated) is the

only option to make progress.

The polling-based approach would pose an extra burden on thescientific programmer

to insert explicit polling instructions. It also severely restricts the ability of a compiler to

automatically insert polling instructions, which is vitalfor supporting multithreading on

architectures without OS thread support. The interrupt-based approach provides better pro-

grammability and does not restrict the compiler to automatically insert polling instructions,

but might lead to degraded performance due to asynchronous data copying or activity in-

terference. In summary, none of the approaches provides a universally good solution. We

believe that the programming model should not sacrifice programmability and shouldnot

guarantee that remote requests are processed at certain places in the code. Under this as-

sumption, the compiler is also free to insert polling instructions. An implementation may

provide support for both interrupt-based and polling-based approaches as well as the ability

to explicitly disable/enable processing of remote requests.

254

9.2.3 Host environment of activities and parameter passing

DMT must provide the ability to co-locate computation with data. In CAF, data resides in

a particular process image, specified explicitly by the programmer. The host environment

of an activity must naturally be the target process imagep where the activity executes.

Each activity should be able to access co-arrays on any imageas well as global (SAVE,

COMMON, MODULE) and heap variables ofp.

Programmers should be able to pass values to newly created activities and receive re-

sults back. Locally created activities can access these values directly since they are sharing

the same process memory. A pragmatic approach to passing parameters to a remote ac-

tivity is to make a “snapshot”, or closure of values, at spawnpoint and make these values

available to the activity. Similarly, when activities return values to the origin image, they

must carry the values back and place them in the result variables in the origin image.

9.2.4 Synchronization

Concurrent activities must be able to synchronize. We believe that synchronization prim-

itives must be built on widely-accepted concepts and must not introduce significant over-

head. DMT provides different mechanisms for intra-image and inter-image synchroniza-

tion. Locks and condition variables [82] are good candidates for synchronization of local

activities. They are familiar to programmers and, in the absence of contention, do not in-

cur much overhead. We assume standard (release consistency) semantics for locks where

a lock executes a local memory fence operation that propagates results of writes into the

node’s memory making them visible to other threads active onthe node.

Process images are synchronized by CAF’s barrier and team synchronization primitives

called byone of the activities running within each image. Inter-image synchronization

primitives should be extended to use an additionaltag parameter, whose interpretation is

user-defined. Tags enable several synchronization contexts per process image, executed by

different activities. In some sense, tags enable synchronization of particular remote activ-

ities, and each image can participate in several such synchronization events. The number

255

of tags is defined by a particular implementation. It is pragmatic to assume that a tag is

represented by a 64-bit integer, so the number of available tags should not be a problem.

Locks and tagged inter-image synchronization can be combined to synchronize groups of

activities from different images. An alternative approach, explored by Cristian Coarfa [29],

is to use eventcounts [99] for both inter-image and intra-image synchronization.

9.2.5 Extensions to the memory consistency model

DMT introduces a few additional rules for CAF’s memory consistency model defined in

Section 3.1.6.

Locks and condition variables assume the standard release consistency. Accesses

to variables declared with thevolatile attribute have the same semantics as in For-

tran 95 [5]. These two conditions allow the compiler to perform standard sequential op-

timization in between synchronization points to deliver high scalar performance. DMT

should provide alocal memory fence operation that propagates results of writes into the

node’s memory making them visible to other threads active onthe node, to be able to write

language-level primitives for intra-image synchronization. The DMT lock release opera-

tion has an implicit local memory fence to make the writes of the thread leaving a critical

section visible to other node’s threads.

An open question.

It is not entirely clear what the memory consistency model should be for remotely-spawned

activities, especially for chains of remotely-spawned activities. There is not enough expe-

rience with using distributed multithreading in scientificcodes to define the exact model

yet. We describe two candidates.

The first is more intuitive for the programmer, but may cause performance degrada-

tion. A spawned activityA “knows” the execution history of the origin activityO, which

includes local co-array reads/writes, co-array PUTs/GETs, synchronization calls, and com-

pleted activities performed byO prior to spawningA. Intuitively, A should observe the

256

a = 1
a[2] = 2
a[3] = 3
call foo()[2]
x1 = b

(a) code on image 1

cosubroutine foo
x2 = a[1]
y2 = a
z2 = a[3]
call bar()[3]
return

(b) foo on image 2

cosubroutine bar
x3 = a[1]
y3 = a[2]
z3 = a
b[1] = 10
return

(b) bar on image 3

Figure 9.3 : Activity chain (note that[] denote remote co-array references).

results of these operations when it starts. Likewise, whenA returns,O should observe the

results ofA’s execution up toA’s return point. Pseudocode in Figure 9.3 shows a scenario

for a chain of activities initiated using blocking spawn. Image1 spawns an activityfoo

on image2. In turn,foo spawns an activitybar on image3. a andb are co-arrays;x1,

x2, x3, y1, y2, z2, andz3 are local variables. The value ofx2 should be1; the value

of y2 should be2; but what should be the value ofz2? If foo spawns an activitybar on

image3, andbar reads the value ofa, this value should be3. Thus,x3 should be1, y3

should be2, z3 should be3. Implementation techniques that ensure thatz3 is equal3, but

z2 is equal to something else, and offer performance gain are unlikely to exist. Due to this

observation, the value ofz2 must be2. Finally, the value ofx1 on image1 should be10

afterfoo returns.

One feasible implementation strategy is to execute a memoryfence right before spawn-

ing (call in Figure 9.3) a new activity and right before a spawned activity returns

(return in Figure 9.3). The memory fence in a multithreaded environment completes

outstanding memory operations issued by the activity rather than by all activities running

within the image. The overhead of memory fence operations might be high for fine-grain

activities. While a CAF compiler could possibly uncover opportunities to eliminate or

weaken fences in some cases, an implementation may also support hints to indicate that a

memory fence is not necessary.

Our second memory consistency model is less intuitive for the programmer, but allows

257

cosubroutine foo(a, n)
integer, intent(IN) :: n
integer :: a(n)[*]
...

end cosubroutine foo

(a) co-subroutinefoo

cofunction bar(i)
integer, intent(IN) :: i
double precision bar
...

end cofunction bar

(b) co-functionbar

Figure 9.4 : Examples of CS and CF declarations.

an efficient implementation that can potentially hide all communication latency. Under this

model, an activity spawned in imagep can observe only results of PUTs issued by the

spawner top prior to spawning the activity (similar to the semantics of the weak notify).

This guarantees only that the value ofy2 is 2; x2 andx3 need not be1.

9.3 Language support for DMT in CAF

This section defines a small set of language extensions to adddistributed multithreading to

CAF.

9.3.1 Language constructs

• Thecosubroutine (CS) andcofunction (CF) keywords are used to declare

a subroutine or a function that can be spawned. Figure 9.4 shows two declaration

examples. Theintent attribute [5] specifies the intended usage of a CS/CF (CS

for short) dummy argument.intent(IN) indicates that CS must not change the

value of the argument.intent(OUT) means that CS must not use the argument

before it is defined.intent(INOUT) argument may be used to communicate in-

formation to CS and return information. If the intent attribute is not specified, it is

intent(INOUT).

• Thecall, spawn andship keywords are used to spawn CS/CF remotely or lo-

258

cally. call is used for blocking spawning; it is a “syntactic sugar” forspawn that

is used for non-blocking spawning.spawn returns an explicit handle used to await

the completion of the activity later.ship is used for non-blocking spawn without a

return value (note that CFs cannot beship-ed because they always return a value).

By analogy to local and remote co-array accesses,call, spawn, ship, or CF invo-

cationwithout[] (brackets) indicate than an activity is initiated locally,as shown in

Figure 9.6.call, spawn, ship, or CF invocationwith [] (brackets) indicate than

an activity is initiated remotely in the process image specified in the[], as shown in

Figure 9.7.

• Thereply keyword-statement is used by the CS/CF to return values to the spawner

and to enable the spawner to continue execution, if the spawner is blocked waiting

for the spawnee’s reply. Note thatreply is not equivalent toreturn; the spawnee

might proceed execution afterreply until it returns (executing areturn). Fig-

ure 9.5 shows an example ofreply usage.

cosubroutine foo(int a)
integer, intent(INOUT) :: a
a = a + 1
! return the value of a to the spawner image
reply
! perform some additional work
call bar(a)
...

end cosubroutine foo

Figure 9.5 : Using areply to returnINOUT andOUT parameters to the spawner.

• The await reply(handle) construct is used to await the completion of the

activity initiated via a non-blockingspawn that returned handlehandle. Fig-

ures 9.6 (3) and 9.7 (3) show the usage ofawait reply.

• The sync keyword-statement completes co-subroutines that were spawned with

ship, as shown in Figures 9.6 (4) and 9.7 (4).

259

• Theget id() intrinsic returns the activity ID, a unique number within the process

image index for each activity, constant for the lifetime of the activity.

• Theget spawner image() intrinsic returns the process image index from which

the activity was initiated.

• Theget spawner id() intrinsic returns the ID of the activity that spawned the

current activity.

• Typetype(CAFMutex) declares a mutex object for intra-image synchronization

(see Section 9.2.4).caf lock(mutex) andcaf unlock(mutex) acquire and

releasemutex.

• Typetype(CAFCond) declares a condition variable for intra-image synchroniza-

tion (see Section 9.2.4).caf cond wait(cond) puts the activity to sleep on a

condition variablecond. caf cond signal(cond) wakes up an activity sleep-

ing on the condition variablecond; caf cond broadcast(cond)wakes up all

such activities.

• Thelocal memory fence() intrinsic flushes all writes of the current activity to

memory. It can be used to write codes with data races that require stronger ordering

guarantees,e.g., for custom intra-image synchronization.

• Theyield keyword-statement instructs the run-time to yield the execution of the

current activity.

• The poll keyword-statement instructs the run-time to process remotely initiated

activities.

260

1 call foo(...)
foo executes in the context of the local image

and the spawner is blocked untilfoo replies

2 a = bar(...)*i + 5

bar executes in the context of the local im-

age; the spawner is blocked untilbar replies at

which point the statement is computed

3

handle = spawn foo(...)

...

call await_reply(handle)

foo executes in the context of the local image;

the spawner continues execution and must block

in await reply until foo replies

4

ship foo(...)

...

sync

foo executes in the context of the local image;

the spawner continues execution right away and

never waits forreply; sync blocks until such

spawns complete (by explicit reply or return)

5

a = bar1(...)*i +

bar2(...) +

bar3(...) + 7

bar1, bar2, andbar3 executeconcurrently

in the context of the local image; the spawner is

blocked until all three reply at which point the

statement is computed

Figure 9.6 : Locally initiated activities (no[] after CF/CS; the spawnee image is the same
as the spawner image).

9.3.2 DMT semantics

Declaration

Thecosubroutine andcofunction keywords are necessary for the declaration of

a CS/CF to enable separate compilation. They indicate to a compiler that the program

unit requires special calling convention and parameter handling. Figure 9.4 shows two

declaration examples.

261

1 call foo(...)[p]
foo executes in the context of the spawnee’s im-

agep; the spawner is blocked tillfoo replies

2 a = bar(...)[p]*i+7

bar executes in the context of the spawnee’s im-

agep; the spawner is blocked untilbar replies

at which point the statement is computed

3

handle = spawn foo(..)[p]

...

call await_reply(handle)

foo executes in the context of the spawnee’s

imagep; the spawner continues execution and

blocks inawait reply until foo replies

4

ship foo(...)[p]

...

sync

foo executes in the context of the spawnee’s

imagep; the spawner continues execution right

away and never waits forreply; sync blocks

until such spawns complete (by explicit reply or

return)

5

a = bar1(...)*i +

bar2(...)[p] +

bar3(...)[q] + 7

bar1, bar2, andbar3 executeconcurrently

in the context of their images: local,p andq re-

spectively; the spawner is blocked until all three

reply at which point the RHS expression is com-

puted

Figure 9.7 : Remotely initiated activities (the spawnee image is specified in[]).

Execution and execution context

A CS/CF spawned on imagep is said to be executed in the context of imagep. There is

little difference between locally and remotely-spawned CSs. A CS behaves as if it were a

thread running in imagep.

A CS can access co-array data and private data of imagep, e.g., COMMON, SAVE,

MODULE, and heap variables. The co-array local part for a CS is the one that resides in the

262

cofunction bar()
integer bar
...
bar = ...

end cofunction bar

(a) co-function

cosubroutine bar_sub(bar_res)
integer, intent(OUT) :: bar_res
...
bar_res = ...

end cosubroutine bar_sub

(b) equivalent co-subroutine

Figure 9.8 : Conversion of a co-function into the equivalentco-subroutine.

spawnee imagep memory. A CS can access co-arrays on other images. CSs can partici-

pate in intra- and inter-image synchronization. CSs can allocate private variables as well as

co-arrays; however, remotely-spawned CSs cannot allocate/deallocate parameters or return

pointers. CAF intrinsic functions are computed relative toimagep. A CS can call sub-

routines/functions and can also spawn CSs. CSs can perform arbitrarily long computations

and block in synchronization3 or I/O.

CS/CF co-space

A co-array declaration or allocation defines a co-shape usedto compute the target process

image index of a remote co-array access. On the contrary, a CSdeclaration does not define

any co-shape. Instead, a CS/CF has an implicit 1D co-shape[*], which corresponds

to process image indices in the range[1, num images()]. The target process image

index of acall, spawn, ship, or co-function invocation can be specified as an integer

numberi, i ∈ [1, num images()], or using the interface functions ofCAF WORLD, group,

Cartesian, or graph co-spaces (see Chapter 5).

Blocking spawning and semantics ofcall

A call used to initiate a blocking CS is just “syntactic sugar” for anon-blockingspawn

completed right after it was initiated as shown in Figure 9.9.

3Note that a deadlock is possible,e.g., the spawnee tries to acquire a lock held by the spawner and the

spawner is blocked incall waiting for the spawnee toreply. DMT does not prevent deadlocks; it is

programmers’ responsibility.

263

call foo(...)[p]

(a) blocking spawn

tmpHandle = spawn foo(...)[p]
call await_reply(tmpHandle)

(b) equivalent non-blocking spawn

Figure 9.9 : Blocking and equivalent non-blocking CS spawn.

Figures 9.6 (1,2) and 9.7 (1,2) present the blocking style ofspawning local and remote

activities. If no brackets are present, a CS/CF is spawned inthe local image; if brackets are

present, a CS/CF is spawned in the image defined by the expression in the brackets. Even

though the statement in Figure 9.6 (1) looks like a regular Fortran 95 subroutine call, its

semantics are different as follows from the discussion below. Co-functions, Figures 9.6 (2)

and 9.7 (2), are always blocking because their return valuesare necessary to execute the

statement. A co-functionbar is converted into an equivalent co-subroutinebar sub by

passing the return value as an extra argumentbar res and rewriting all assignments to

bar as assignments tobar res; Figure 9.8 shows an example of such a conversion. After

bar sub replies, the value returned in thebar res variable is used in computation in the

place of the corresponding function call.

Using these two transformation, all blocking CF and CS spawns can be converted into

the form shown in Figures 9.6 (3) and 9.7 (3), which is the focus of our further discussion.

Semantics of non-blockingspawn

The spawn construct creates a spawnee activity that runs concurrently with the

spawner. The spawner does not block. The spawner representsthe spawnee via a

spawn handle, e.g., type(DMTActivity)::handle. When the spawner executes a

await reply(handle), it blocks and waits for a reply from the spawnee; after the re-

ply is received, the spawner continues execution. The return INOUT andOUT parameters

become available to the spawner at the point ofawait reply.

Statements with several co-function calls,e.g., in Figures 9.6 (5) and 9.7 (5), are of

particular interest. All three CFs can be executed concurrently, perhaps in different process

264

images. The order of evaluation is not defined and full control over side effects is left to

the programmer. To clarify the semantics, let us consider the statement in Figure 9.7 (5).

It is transformed into the following equivalent piece of code, assuming CFsbari, i ∈ [1, 3],

were converted into CSsbari sub. The CSs execute concurrently and all three intermediate

temporaries are available after the lastawait reply.

h1 = spawn bar1_sub(..., tmp1)
h2 = spawn bar2_sub(..., tmp2)[p]
h3 = spawn bar3_sub(..., tmp3)[q]
call await_reply(h1)
call await_reply(h2)
call await_reply(h3)
a = tmp1*i + tmp2 + tmp3 + 7

Fortran 95 allows but does not mandate short-circuit evaluation of boolean expres-

sions [5]. Similarly, DMT allows but does not mandate short-circuit evaluation of boolean

expressions containing CF invocations; the choice is left to a particular implementation.

Semantics ofreply

Thereply keyword-statement is a “remote return” that unblocks the spawner and returns

the values ofINOUT andOUT parameters to the spawner. If the spawner if blocked in a

await reply statement,reply allows it to continue execution. Only onereply is

allowed; execution of more than onereply in the same invocation of CS/CF is a critical

run-time error. If a CS/CF returns and noreply has been explicitly issued, the run-time

layer deliver an implicitreply to the spawner. At the spawner side, all state associated

with the activity is deleted when the matchingawait reply executes. The spawnee

activity can; however, continue execution until it returns.

Only CSs/CFs can executereply. Calling reply in a regular Fortran 95 subrou-

tine/function results in a compile-time error.

Termination of concurrent activities

An activity terminates upon execution of an explicitreturn or when it reaches the last

statement. If it has not executed areply, the run-time sends an implicitreply to the

265

spawner. All state associated with a terminated activity onthe spawnee’s image is deal-

located. Fortranstop [5] statement aborts the entire program and terminates the process

image; as a result, all activities within the image are terminated.

Parameter passing

Parameter passing conventions for locally- and remotely-spawned activities are slightly

different, but we believe that this is necessary to reduce overhead of spawning for local

activities. Locally-spawned activities run in the same address space as the spawner. In this

case, parameters are passed using the same rules as for Fortran 95 subroutine parameter

passing; there are no restrictions. However, remote activities cannot access (non-co-array)

arguments directly. Whenspawn executes, the spawner marshalsIN andINOUT non-co-

array parameters by packing them into a buffer and transferring them to the target process

image, where the run-time layer makes them available for thespawnee. Upon execution

of a reply, the spawnee marshalsINOUT andOUT non-co-array parameters and trans-

fers them to the spawner’s image, where the run-time layer unpacks them into the proper

variables. The lifetime of a remotely-spawned activity’s arguments is the duration of the

activity. To marshal parameters, it is necessary to know their sizes; therefore, there are

additional restrictions on the types of arguments passed toremotely-spawned activities.

Non-co-array arguments of a remote CS are allowed to be localscalars, arrays, and

Fortran 95 pointers of primitive and user-defined types as well as subroutine/CS/CF point-

ers. Parameters of user-defined types with an allocatable orpointer fields (either in the

parameter type itself or one of its field types) are passed by “shallow” copy. Otherwise,

they would require transmitting of all data reachable by theparameter pointer components

to the remote process image. This would degrade performance, increase the number of side

effects, and complicate the implementation. Most importantly, it would defeat the purpose

of shipping computation closer to data if the computation must drag all data linked with it

to the remote memory. Because parameter packing/unpackingand communication incurs

overhead, it is recommended that programmers do not pass large actual arguments to CSs.

266

However, this is purely the programmer’s decision. One could even implement commu-

nication, packing/unpacking of strided communication, communication aggregation, etc.

using CSs that transfer data as parameters.

Marshaling requires knowing parameter sizes and shapes. The size and shape of scalar

arguments are always known. In Fortran 95, the shape of arrayparameters is defined by

their declarations with dimensions declared in terms of specification expressions [5],e.g.,

integer a(N+1), whereN is also a parameter to the subroutine or a global variable4.

In CAF, global variables referenced in specification expressions are private to each image

and may have different values on different images. One may not use global variables in

specification expressions of a CS/CF; this is a compile-timecheck. If a value of a global

variable needs to be used, it can always be passed as an extra argument to CS/CF. With this

restriction, all array and co-array shapes are properly dimensioned when evaluated on the

spawner or spawnee. If a parameter is passed by Fortran 95 pointer, the caller passes a dope-

vector that specifies the shape information necessary for marshaling. If Fortran 95 pointer

points to a strided memory section, it is likely that an implementation would compact

the section, transmit the contiguous message over the network, and adjust the Fortran 95

pointer on the spawnee to point to the contiguous memory section corresponding to the

parameter data. DMT cannot support marshaling of parameters with unknown sizes,e.g.,

array arguments with an implicit bound.

Co-array arguments are passed differently than Fortran 95 variables. A co-array exists

in the spawnee’s image, so no co-array data is transferred. Instead, the co-array parameter

becomes local to the spawnee’s image, as if the argument was passed in the context of the

remote image (see Section 9.4).

Semantics ofship

Thereply construct incurs extra overhead if the corresponding spawnis remote; thus,

if the reply is not semantically necessary, it should be avoided. One example is a CS that

4Here, we also assume that variables of a host subroutine are “global” to the spawnee.

267

updates a remote counter and returns nothing to the spawner.Another example is a CS

that we developed for a fine-grain implementation of the RandomAccess HPC Challenge

benchmark [1]. It performs remote XOR updates of random memory locations; we present

pseudocode and description in Section 3.4.3. Sending areply message for each XOR

update would effectively reduce the interconnect bandwidth available for sending updates

by half. Theship operator shown in Figures 9.6 (4) and 9.7 (4) is designed for codes

that spawn many non-blocking remote computations, for which individual replies are not

necessary. A shipped co-subroutine is not allowed to returna value. Thus, it can have only

IN parameters (a compile time check).

The spawner of a co-subroutinefoo does not block and does not have any language-

level state (e.g., handle) to check whetherfoo has completed. Aship-ed CS may com-

plete by either returning or executing areply statement. Thesync keyword-statement

waits for the completion of activities spawned viaship.

Semantics ofsync

ship-ed activities belong to aship-epoch, or epoch for short. An epoch is defined by

execution of successivesyncs. Eachship-ed activity belongs to only one epoch. Each

epoch belongs to aship-context. By analogy to Cilk [63], a subroutine/CS/CF invocation

implicitly creates a ship-context; the subroutine return implicitly completes (sync) all

incomplete activitiesship-ed from the context and destroys the ship-context. We adopted

these semantics to provide Cilk-like activity invocationsfor local, and remote, activities.

This benefits programmability of codes with recursive parallelism, and the programmer

does not have to think about explicit completions of ship-contexts. A unique program-level

ship-context is live for the duration of the program.sync completes allship-ed activities

within the current epoch and starts a new epoch. It isnot a collective call.

Enforcing an implicitsync at the end of a (co-)subroutine restricts how a ship-epoch is

defined. Some codes do not need to know at all whethership-ed activities have completed

because they can obtain this information from the algorithmic properties of the applica-

268

tion. For instance, one would need toship a chain of activities to implement counting

networks [10]. However, the result does not need to be returned to the original spawner

through the “reversed” multi-hop chain; it can be sent directly to the original spawnerO

if O’s index is passed along the chain. If the subroutine/co-subroutinereturn enforces

the completion of theseship-ed activities, it exposes the synchronization latency. We

suggest to use anosync directive at the start of a (co-)subroutine to not create a new ship-

context. Activitiesship-ed from such a subroutine belong to the current ship-epoch and

ship-context.

To give finer control over the management ofship-ed activities, it might be

useful to have a directionalsync(p), which completes allships destined top.

Another useful extension might be to support explicit ship-epochs,e.g., using e =

start ship epoch() andend ship epoch(e). sync(e) completes allships

from the epoch with the IDe.

9.4 DMT implementation and experience

We designed and implemented prototype support5 for DMT and evaluated function ship-

ping for several codes such as TSP and RandomAccess. The DMT prototype also

supports the run-time aggregation of compiler-recognizedfine-grain activities (see Sec-

tion 9.5.2). Currently non-supported features include: co-functions (instead, a program-

mer can use an equivalent co-subroutine with the extraOUT argument), co-subroutine

parameters of user-defined types, subroutine pointers and parameters passed by For-

tran 95 pointer, support for implicit ship-contexts (thereis only one program-level ship-

context), and easy-to-implement features such asget id()6, get spawner image(),

5There is no front-end support forcall, spawn, andship. We specify them via a function call,e.g.,

handle=spawns(foo(args),target), wherefoo is actually a co-subroutine, represented as a co-

function whose return value is ignored.
6For example, for Pthreads, it is possible to attach a contextto the thread running the activity and retrieve

the context later.

269

get spawner id(), yield, andpoll that we did not need for our experiments. The

implementation uses ARMCI with Global Process Calls (see Section 3.2.1), which are

referred to as Active Messages (AM), to execute computationin remote process and the

Linux Pthreads [82] library to support intra-image multithreading. Currently,cafc with

DMT is available only for an Itanium2 cluster with a Myrinet 2000 interconnect. This is

the only platform where bothcafc and ARMCI with AM support are available today. We

now briefly discuss the major implementation decisions and our experience with DMT.

9.4.1 Implementation overview

DMT uses Pthreads threads to execute activities. We refer tothese threads as run-time

threads. Run-time threads are synchronized via Pthreads mutexes and condition variables.

Mutexes and and condition variables are implemented using the corresponding Pthreads

primitives.

The cafc compiler supports marshaling ofIN, INOUT, andOUT scalar, array, and

co-array parameters. For each original co-subroutine,cafc creates a stub functionS1 and

a subroutineS2. The spawner callsS1 at the spawn site to marshal arguments and to invoke

an AM that sends the activity for execution in the target image7. The AM invokesS2, which

executes in the context of the spawnee image and performs thesame computation as the

original co-subroutine.

Eachship-ed activity has a context on the spawnee. All other activities have contexts

on both the spawner and spawnee. A context is a data structurerepresenting the run-time

state of the activity. The spawner context is created when the activity is spawned; the exe-

cution of the AM handler on the spawnee creates the spawnee context. The spawner context

has information about the activity ID, spawn type, spawnee image index, arguments,S2’s

address, reply state, activity ship-parameters (ship-context and ship-epoch), and other im-

plementation specific details. The spawnee context has information about the activity ID,

7We focused mainly on remote function shipping and did not optimize parameter passing for locally-

spawned activities; passing parameters locally does not require marshaling.

270

spawn type, spawner image index, spawner’s context address, arguments,S2’s address,

reply and termination states, activity ship-parameters, and other implementation-specific

details.

FunctionS1 has the argument list of the original co-subroutine extended with two pa-

rameters: the spawnee image numberp and the type of spawnt. It performs the following

steps.S1 computes the sizes (rounded up according to the arguments’ alignments) ofIN,

OUT, andINOUT non-co-array arguments to know the size of the argument buffer. S1 in-

structs the run-time to create a spawner context and to allocate the argument buffer.S1

instructs the run-time layer to pack the arguments into the buffer one after another since

Fortran 95 passes scalar and array arguments by-address andtheir sizes, intents, and types

are known. The run-time layer uses padding to start each argument with an offset that is

multiple of the argument’s natural alignment; so the size ofthe argument buffer may be

slightly larger than the total size of all arguments.

Co-array arguments require different handling.cafc converts each co-array parameter

into two: the co-array handleH and the address of the local partL. The spawner usesL to

compute the local co-array address that is valid in the target’s image address space. This is

possible since every image has the co-array start addressesfor every other image.H is a

pointer to the co-array run-time descriptor data structureresiding in the spawner’s memory.

To locate the co-array descriptor in the spawnee’s memory,cafc uses a co-array IDid

that is a unique number for each co-array in the program. Therefore, a parameter co-array

is represented in the argument buffer via two fields: its local part remote address andid.

Finally, S1 instructs the run-time layer to initiate a non-blocking AM that transfers the

information necessary to start the activity in the target process image. This information

includes the relevant part of the spawner context: the activity ID, spawn type, spawner’s

context address,S2’s address, ship-parameters, and arguments. The information about

arguments includes the values ofIN andINOUT arguments as well as argument offsets in

the argument buffer and their sizes necessary to unmarshal the arguments. The spawner’s

context address is used to located the activity spawner context on the spawner when the

271

activity replies (alternatively, one could attach state toa Pthread).S1 returns the address of

the spawner context as the spawn handle used to complete the activity later.

SubroutineS2 has the argument list of the original co-subroutine extended with the

spawnee context handle parametersch. S2 executes the same code as the original co-

subroutine. The run-time layer usessch to associate the spawnee context with the activity.

Throughsch, the run-time layer can find the spawnee context,e.g., to perform areply

operation. The AM handler creates the activity spawnee context. It copies the information

from the AM payload, which does not exist after the AM handlerreturns, into the spawnee

context. In addition, it creates a vectorv of pointers to represent the addresses ofS2’s

arguments; the pointers are in the same order as the arguments of S2. The AM handler

computes the elements ofv by calculating the addresses ofIN, INOUT, andOUT argu-

ments, which reside in the spawnee context argument buffer.It also determines the address

of the co-array descriptor for each co-array argument usingthe co-array ID. Finally, the

AM handler enqueues the activity for execution and returns.

An activity (spawnee context) waits in the activity ready queueQ until it is dequeued

and executed by one of the run-time layer threads. The threadexecutes the activity by

calling S2. The arguments ofS2 are the addresses fromv; Fortran 95 passes scalar and

array arguments by-reference. The activity terminates when S2 returns.

9.4.2 Spawn types

DMT enables the programmer to specify how to execute a co-subroutine to deliver best

performance. There are three spawn modes: the AM-style mode(AM-mode), the thread

pool mode (Pool-mode), and the thread mode (Thread-mode).

Thecall am, spawn am, andship am constructs spawn an activity in AM-mode.

AM-mode means that it is possible to execute the activity by any run-time thread, even a

thread that is already executing a different non-AM-mode activity. Typically, a run-time

thread executes only one activitya; however, an AM-mode activityb can “preempt”a and

run to completion. When a run-time thread has two user computations,b must be restricted.

272

An AM-mode activity should execute fast and should not blockits run-time thread by sleep-

ing on a condition variable, participating in an inter-image synchronization, or waiting for

a spawned activity. If it acquires locks, it must not acquirethe same lock(s) that have been

acquired and are still held by the preempted user computation that the thread was running,

not to cause a deadlock. An AM-mode activity is atomic with respect to other activities;

if a run-time thread executing an AM-mode activity is preempted, it does not execute an-

other activity until it finishes the current one. AM-mode activities are useful to control the

number of concurrent run-time threads as discussed below; some of our implementations

of the RandomAccess benchmark use this mode to perform remote updates efficiently (see

Section 9.6.3).

The call, spawn, and ship constructs spawn an activity in Pool-mode. The

DMT runtime maintains a pool of threads to execute Pool-modeactivities. The

programmer can control the size of the pool either by settingan environment vari-

ableDMT THREAD POOL SIZE or by callingdmt set pool size(num threads).

Each process image can have different number of threads in its pool. Pool-mode is less re-

strictive than AM-mode; an activity is free to perform arbitrarily long computations, block,

and participate in intra- and inter-image synchronization. The run-time thread running a

Pool-mode activity is taken from the thread pool for the lifetime of the activity and can-

not be preempted to execute another activity, except an AM-mode activity. The number

of concurrentPool-mode activities cannot exceed the pool size. There maybe queued

pending activities waiting to be executed. It is the programmer’s responsibility to setup

an adequate thread pool size to accommodate the concurrencyneeds of the application.

Too small of a thread pool may lead to a resource deadlock due to the lack of a run-time

thread to execute a pending activitya essential for the system to make progress,e.g., if

other activities, holding the pool threads, are blocked waiting for a’s actions. Too large

thread pool may lead to performance degradation due to activity interference and context

switching overhead. Unbounded number of threads can be obtained by either dynamically

callingdmt set pool size(num threads) or using Thread-mode spawns.

273

Thecall thread, spawn thread, andship thread constructs spawn an ac-

tivity in Thread-mode. DMT creates a new run-time thread to execute the activity. This

thread is active for the lifetime of the activity. Creating anew run-time thread is expensive;

so Thread-mode is most useful for long-lasting activities.Thread-mode bypasses the re-

source deadlock possible with Pool-mode activities because the number of run-time threads

is practically unlimited.

The programmer can use AM-mode, Pool-mode, and Thread-modefunctionality to

specify the best way to execute activities. While the compiler may be able to determine

the best mode in some cases,e.g., to convert a localcall into a Fortrancall (see Sec-

tion 9.5.3), it cannot do so in all cases.

9.4.3 ship and sync support

ship andsync are used for activities that do not return any state to the spawner. For

example, our fine-grain implementation of the RandomAccessbenchmark, which performs

many remote fine-grain XOR updates of random memory locations, benefits from this. The

spawner does not need to know that a particular update has completed; it only needs to

know when all updates have completed. In fact, if an explicitacknowledgment (reply)

were sent to the spawner for each update, this would significantly reduce the effective

interconnect bandwidth.sync is used to complete all activities of the ship-epoch at once.

The implementation challenge is to supportsync semantics without sending individual

replies and to maintain as little state as possible to track potentially out-of-order completion

of ship-ed activities. We present our solution.

Eachship-ed activity is identified by two ship-parameters: ship-context8 C and ship-

epochEC . They are assigned by thespawnerwhen the activity isship-ed and “inherited”

on the spawnee. The spawner assigns each epoch ofC an epoch-ID from a monotoni-

cally increasing sequence.sync closes the active ship-epoch ofC and starts a new one.

Note that another activity can initiateship-ed activities in the new epoch whileship-ed

8As of this writing, our prototype implementation of DMT supports only one program-level ship-context.

274

activities of a previous epoch have not yet completed. The spawner maintains a set of coun-

tersI〈C,EC〉,p, wherep ∈ [1, num images()]; I〈C,EC〉,p is equal to the number of activities

initiated top in ship-contextC and ship-epochEC — 〈C, EC〉.

Thefirst activity of 〈C, EC〉 ship-ed byq top, creates the epochEC context onp that

has a counterF〈C,EC〉,q equal to the number of completed9 (finished)〈C, EC〉 activities on

p that wereship-ed byq to p.

When q’s activity a executessync, it closesEC and waits for completion of all

I〈C,EC〉,p 〈C, EC〉 activities, p ∈ [1, num images()]. a sends anepoch-completedAM,

carrying the value ofI〈C,EC〉,p, to each imagep, if I〈C,EC〉,p > 0, and waits for the

activities-completedAM replies. Whenp receives the epoch-completed AM fromq and

F〈C,EC〉,q = I〈C,EC〉,p, it sends the activities-completed AM reply toq. a is blocked until it

receives all activities-completed AM replies.

9.4.4 Support of dynamically linked libraries

For an SPMD program, the static addresses of all subroutinesand functions are the same

on all process images. However, dynamically linked libraries present a minor engineering

difficulty since they can be loaded into different address ranges on different images. If

a dynamically linked library subroutineS needs to be invoked in a remote process, an

implementation can useS’s handle to findS’s address in the remote process. The current

DMT implementation does not support dynamically linked libraries.

9.4.5 Polling

Run-time layer polling should be avoided when executing a multithreaded application to

not waste CPU resources that can be used to perform useful computation. During our

experimentation, we encountered two cases when run-time layer polling degraded perfor-

mance.

9An activity is completed if it either replied or terminated.

275

We disabled the ARMCI server thread polling because it was consuming a noticeable

fraction of CPU resources, slowing down useful computation. In our experiments, the

server thread executes a blockinggm receive Myrinet call and becomes active for a

brief period of time only when a network request arrives.

The MPICH barrier implementation for Myrinet, whichcafc runtime uses to imple-

mentsync all, polls the network. While this is not a problem for single-threaded SPMD

programs, it degrades performance of multithreaded codes that use MPICH barriers. Alter-

native implementations of the barrier primitive are necessary for multithreaded codes.

9.4.6 Number of concurrent threads

The number of threads concurrently sharing a CPU affects theapplication’s performance.

For most scientific codes, one thread per physical CPU would probably deliver the best per-

formance. However, one thread per process image limits the responsiveness of DMT be-

cause remote activities are executed only when the network is serviced. This can delay the

propagation of asynchronous events,e.g., the best cycle length in TSP, or cause a resource

deadlock if the application requires two or more concurrentthreads to make progress. This

might require a compiler to insertpoll instructions automatically or would make pro-

grammers restructure code to insert explicitpoll statements. The optimal number of

concurrent run-time threads to achieve the best performance with reasonable programming

effort is application-specific; moreover, it can differ fordifferent run-time phases of the

application. Three spawn modes,dmt set pool size(num threads), andpoll

allow the programmer to tune the application. For example, our fastest implementation of

the RandomAccess benchmark (see Section 9.6.3), assuming it runs on a single processor

node, uses AM-modeship am to apply remote XOR updates and sets the thread pool

size to zero. This enables it to have exactly one run-time thread per CPU. This thread ex-

ecutes both code generating XOR updates and remotelyship-ed activities to apply XOR

updates, maintaining a balance between update generation and application. We discuss

several RandomAccess implementations in detail in Section9.6.3.

276

9.4.7 Activity interference

In a multithreaded application, threads compete for cache/TLB, which can result in

cache/TLB contention and thrashing. If an activitya performing computation is preempted

by another activityb that accesses a large array, execution ofb might evict a large portion of

cache, degradinga’s performance. In the current implementation of DMT, it is the respon-

sibility of the programmer to reduce/avoid such problems. For example, the programmer

can synchronize activities,e.g., via a condition variable, to control when interfering activi-

ties are executed rather than rely on DMT.

Alternatively, a DMT implementation can support cooperative activities. The program-

mer controls exactly when activities relinquish control, so cache-sensitive computations are

not unexpectedly preempted.

Ideally, the underlying thread library should provide the capability to suspend threads,

e.g., by changing their priorities. It would then be possible to extend DMT with

suspend activities on pe() and resume activities on pe(). The first

statement reserves a processing element,e.g., a CPU core, for the current activity and

allows it to run uninterrupted by other activities until other activities are resumed by the

second statement. None of the currently available thread libraries supports this functional-

ity.

Our DMT implementation revealed that the way activities arescheduled affects perfor-

mance. Our prototype implementation favors the activitiesspawned remotely in AM-mode

over local computation. If too many remote activities are waiting on nodep, p stops accept-

ing new requests because there are no available network buffers or memory. Meanwhile,

other nodes keep retransmitting requests targeted onp wasting CPU cycles that could have

been productively spent. In the current implementation of DMT, when an activity executes

spawn, it first processes AM-mode pending activities initiated by other process images.

This frees the resources faster and limits the generation rate of new activities in the system.

Clearly, scenarios exist for which this simple heuristic would not deliver the best perfor-

mance because of load imbalance. For top performance, the programmer is still responsible

277

for load-balancing the application properly, especially for not swamping a node with a lot

of activities.

9.5 Compiler and run-time optimizations for function shipping

DMT enables explicit support for computation shipping and multithreading. However,

the compiler and run-time layer can detect some optimization opportunities without user

intervention. We outline a few promising directions.

9.5.1 Compiler recognition and aggregation of remote operations

The compiler can detect snippets of code heavily accessing remote data. If profitable, it

can convert them into remotely-spawned co-subroutines, sparing programmers the effort

to write such co-subroutines. In particular, the compiler can detect regions of code with

a lot of fine-grain remote updates or compiler-recognizableremote operations,e.g., XOR

updatesa(i)[p]=XOR(a(i)[p],v) in RandomAccess,without intervening synchro-

nization. Since each remote fine-grain operation causes a network message, it is profitable

to aggregate several of them into one coarser-grain networkmessage that is expanded into

several operations on the target image. A synchronization event completes all buffered

remote operations.

The following piece of code is another example:

do i = 1, N
a(i)[p] = a(i)[p] + 1

end do

The operations are fine-grain remote activities that can be aggregated (similar to com-

munication vectorization) into a coarser-grain remote activity. The code can also be

expressed in the vector forma(1:N)[p]=a(1:N)[p]+1 and converted into a co-

subroutine, if profitable.

278

9.5.2 Remote fine-grain operations/accesses aggregation

For irregular codes, vectorization and compile time aggregation might not be possible.

However, the compiler can detect regions of code with a lot ofunsynchronized fine-grain re-

mote operations/accesses,e.g., XOR updates in RandomAccess (see Section 9.6.3). These

operations can beaggregatedto increase the granularity of network messages. The com-

piler can instruct the run-time layer to aggregate these updates/operations to buffer them

and deliver when the buffer gets full or a synchronization event happens.

It is also possible to perform aggregation of fine-grain remote operations by the com-

piler, rather than by the run-time layer. The compiler, knowing that the next segment of the

code performs many fine-grain operations, can request buffers from run-time layer and gen-

erate aggregation code in the translated program, avoidinga function call to the run-time

layer.

It is important to bundle the requests of similar type together, effectively compressing

the remote request operation code such as +, -, /, *, XOR, PUT.When decoding an ag-

gregated message, the run-time executes operations in a loop and applies them using the

operation code and arguments.

Our DMT prototype implements run-time aggregation of fine-grain compiler-

recognized remote operations: +,-,/,*,XOR, and PUT, whichwe used to experiment with

fine-grain RandomAccess (see Section 9.6.3). Compiler support for automatic recognition

of fine-grain operations was not implemented; instead our prototype implementation pro-

vides a special function that we used to indicate fine-grain operations to the runtime-layer:

call caf op i8(opcode,location,value,dest), whereopcode is the code

op of a fine-grain operationx[dest]=x[dest] op value, location is a co-array ele-

ment ofinteger(8) type,value is the second operand, anddest is the target image.

9.5.3 Optimization of spawn

With the help of interprocedural analysis, the compiler mayreplace local

call/spawn/ship or CF invocation with a regular Fortran 95/CAFcall or function

279

invocation, avoiding the overhead of spawning the activity. For instance, ifspawn is

blocking and the spawnee does not have an explicitreply in its body (reply in this case

coincides with thereturn), it is safe to replacespawn with Fortran 95call because

the spawner is blocked until the spawnee returns and the spawnee does not exist beyond

thecall point.

9.6 Experimental evaluation

We evaluate DMT using three codes: a micro-benchmark that computes the maximum

value of a co-array section to show potential performance gains by shipping computation

closer to data; a branch-and-bound implementation of a TSP solver to evaluate the benefits

for parallel search applications; and several versions of the RandomAccess benchmark to

stress the implementation and reveal limitations. All results are obtained on an Itanium2

cluster with a Myrinet 2000 interconnect (RTC) described inSection 3.3.

9.6.1 Maximum of a remote co-array section

Figure 9.10 (log-log-scale) presents the results for threecodes that find a maximum value

of a co-array section. Each curvelocal, GET, andCF, presents the normalized time to

find the maximum value of a contiguous co-array section ofN double precision num-

bers as a function ofN . The curves are normalized to thelocal time, solocal is a con-

stant line 1.0. Thelocal line corresponds to the time to compute the maximum locally:

res=mymaxval(a,n). TheGET line shows the time to compute the maximum of a re-

mote co-array section done by fetching the section and performing the computation locally:

res=mymaxval((a(1:n)[p])). It uses a temporary buffer to store the off-processor

data used in local computation. TheCF line presents the time to compute the maximum

using a co-function to ship themymaxval computation to data, rather than the data to

280

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

Size of a double precision co−array section

N
or

m
al

iz
ed

 to
 lo

ca
l a

ve
ra

ge
 ti

m
e

Time to find the maximum of a co−array section

GET
CF
local

Figure 9.10 : Normalized (to local) time to find a maximum value of a co-array section.

computation:res=cmymaxval(a,n)[p]. The co-function is shown below.

cofunction cmymaxval(a, n)
integer, intent(IN) :: n
double precision :: a(n)[*]
double precision :: cmymaxval, mymaxval

cmymaxval = mymaxval(a, n)
end cofunction cmymaxval

The versions to compare areGET andCF; local is shown for completeness. For this

reason, Figure 9.11 displays the same data normalized to thetime of theCF version. Note

that both local and remote computations are not interruptedby other computations. All

versions usemymaxval to compute the maximum instead of Fortran 95maxval intrin-

sic because implementation of themaxval intrinsic by the Intel Fortran compiler v9.0

delivered very poor performance.

281

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Size of a double precision co−array section

N
or

m
al

iz
ed

 to
 C

F
 a

ve
ra

ge
 ti

m
e

Time to find the maximum of a co−array section

GET
CF
local

Figure 9.11 : Normalized (to CF) time to find a maximum value ofa co-array section.

CF shows slightly lower, but comparable toGET performance for the array section

size of up to 64 double precision numbers. The reason is that ARMCI GET is somewhat

cheaper than heavier-weight ARMCI AM, and DMT adds more overhead because of pa-

rameter marshaling and extra bookkeeping. For array sections larger than 64,CF clearly

outperformsGETby shipping computation to imagep. For array sections of 256K double

precision values, the performance ofCF is within 25% of that oflocal and becomes almost

identical for larger sections because computation dominates communication inCF. The

GETversion is 46% slower for 1024 section size and the performance gap gets much wider

for larger section sizes becauseGET fetches a large amount of data over the network.

These results demonstrate the potential for function shipping on the example of a con-

tiguous co-array section. It is expected that for more complex data structures, such as

282

linked lists, trees, queues, etc., function shipping wouldyield higher performance benefits

when accessing remote portions of such data structures by hiding communication latency.

9.6.2 Traveling Salesman Problem

An important motivation for DMT is to simplify the development of parallel search applica-

tions without sacrificing performance. Many such applications are programmed using the

master-slave paradigm. More efficient implementations (e.g., using threads and polling)

are possible, but they are harder to develop. To test whetherit can be done easier with

DMT without performance loss, we implemented a version of a parallel TSP solver that

uses a branch-and-bound algorithm [104]. The algorithm finds the exact shortest cycle by

performing the exhaustive search. To make it parallel, the search tree is cut at some level

creating subproblems identified by a unique path prefix. The length of the shortest cycle

found so far is used as the pruning criteria. Each image has its private copy of the shortest

length that is eventually updated with the global best value. We implemented MPI and

CAF versions of TSP; both use the same code to solve subproblems locally, but differ in

how the subproblems are obtained and how the best length value is updated.

The MPI version uses a master-slave scheme. The master is responsible for generating

subproblem prefixes, maintaining the global best length, and servicing requests from the

clients. The clients obtain the best length and a subproblemfrom the master, solve the sub-

problem locally, and, if necessary, update the best length on the master. The master process

does not perform “useful” computation (solve subproblems). To better utilize all available

CPUs, it is necessary for the master process to share a processor with a client process. If a

parallel machine’s job scheduling subsystem does not allowan asymmetric number of pro-

cesses per node, as is the case for our RTC cluster, such sharing is problematic. However,

the application can be rewritten to run the master thread in one of the process images.

The CAF version does not reserve a process to be the master. Itimplements a

centralized repository solution, which can be thought of asa one-sided master-slave

scheme. One image is the repository image. It maintains the search space state and en-

283

cosubroutine getSubproblemFromRepository(prefix)
...
integer, intent(out) :: prefix(1:n_cities)

! lock the search tree data structure
call caf_lock(treeLock)
! execute local code to generate prefix
call getSubproblem(prefix)
! unlock the search tree data structure
call caf_unlock(treeLock)

end cosubroutine

Figure 9.12 : Co-subroutine to obtain a new subproblem path prefix.

sures its consistency. All images contact the repository process imagerepository

when they run out of work and obtain new subproblem prefixes via spawning a CS

getSubproblemFromRepository.

call getSubproblemFromRepository(prefix)[repository]

Figure 9.12 shows thegetSubproblemFromRepository co-subroutine. The

repository image application thread is doing useful work — solving subproblems. Reposi-

tory image DMT helper threads, which are hidden from the programmer, execute activities

that request new subproblems. These activities use a lock for mutually exclusive access

to the search space data structures. When an image finds a shorter cycle, it propagates

its length to all other images by spawning the CSupdateBestLength, shown in Fig-

ure 9.13, per image usingship as shown in Figure 9.1410.

Our MPI and CAF versions execute the same code to generate a new subproblem. How-

ever, in CAF, this logic is declared as a co-subroutine that returns the prefix to the spawning

image. A second difference is how the shortest cycle length propagates to other images. In

the MPI version, the best length is sent to the master first, then other images get the updated

10We could also introduce amultiship construct that would ship the same computation to several im-

ages; this is analogous to broadcast, but executes code rather than just communicates data.

284

cosubroutine updateBestLength(length)
...
integer, intent(in) :: length

! lock the best length
call caf_lock(bestLengthLock)
! update the best length
if (length < bestLength) then
bestLength = length

end if
! unlock the best length
call caf_unlock(bestLengthLock)

end cosubroutine

Figure 9.13 : Co-subroutine to update the best length.

! update best length on all images
if (myLength < newLength) then
do i = 1, num_images()
ship updateBestLength(newLength)

end do
end if

Figure 9.14 : Code to update the best length.

value when they request a new subproblem. In DMT, when an image finds a shorter cycle,

it spawns asynchronous activities to update the best lengthon all other images and contin-

ues execution without waiting for these activities to complete. The updates are propagated

directly to other images bypassing the repository image11. Thus, the CAF version has the

advantage that the pruning criteria is propagated faster throughout the system.

The parallel efficiency of two TSP instances is presented in Figures 9.15 and 9.16.

Both instances find the shortest cycle for 18-city cliques where locations of the cities were

randomly generated. TheTSP-MPI-1peandTSP-MPI-2pecurves show the performance

of the MPI version runs with one and two processes per dual-processor node, respectively.

TSP-CAF-1peandTSP-CAF-2pestand for the performance of the DMT CAF version with

11It is also possible to propagate the update in a tree-like fashion usingO(log(num images())) steps.

285

2 4 8 16 32 64
0

0.5

1

1.5

2

Number of Dual Nodes

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

TSP−CAF−2pe
TSP−MPI−2pe
TSP−CAF−1pe
TSP−MPI−1pe

Figure 9.15 : Traveling salesman problem for 18 cities (seed=1).

one and two subproblem solving threads, called solvers, pernode. ForTSP-CAF-2pe,

the second solver is an activity spawned (ship thread) locally that executes the same

code as the first solver. The second solver was necessary to utilize both CPUs of a dual-

processor node because the available ARMCI implementationdoes not allow running two

process images per node with a Myrinet 2000 adapter. The performance of versions with

two solving threads per node is almost two times faster than that of the single-process-per-

node versions for both MPI and CAF.

The performance ofTSP-CAF-1peis double than that ofTSP-MPI-1pefor two nodes

becauseTSP-MPI-1pededicates one node to be the master.TSP-MPI-2peversion has

four processes on two nodes: one master and three workers, soits performance is only

25% lower than that ofTSP-CAF-2pe, which uses all four CPUs. As the number of nodes

increases, the performance of the MPI versions approaches that of the CAF version because

286

2 4 8 16 32 64
0

0.5

1

1.5

2

Number of Dual Nodes

E
ffi

ci
en

cy
: S

pe
ed

up
/(

N
um

be
r

of
 p

ro
ce

ss
or

s)

TSP−CAF−2pe
TSP−MPI−2pe
TSP−CAF−1pe
TSP−MPI−1pe

Figure 9.16 : Traveling salesman problem for 18 cities (seed=2).

the fraction of wasted CPU resources decreases. It is hard toquantitatively measure the

contribution of faster shortest cycle length propagation for CAF versions. However, we

did notice that the fraction of wasted CPU time due to the reserved master process is not

exactly 1
N

, whereN is the number of MPI processes, but slightly higher.

9.6.3 RandomAccess

The RandomAccess benchmark [1]12 presents a challenge for every existing architecture

and programming model. It updates random locations in a hugetable (see Section 3.4.3).

The table is equally distributed among the nodes of a parallel machine. Each node generates

a set of updates to random locations in the table. Each updateinvolves performing an XOR

12We used the Table Toy Benchmark (08/01/97 version).

287

to adjust the value of a random location in the table. Errors in up to 1% of the table entries

due to data races are allowed.

Rather than performing individual updates, the MPI versionuses a bucketing strategy

to bundle several updates that must be delivered to the same destination process. The code

uses a set of buckets, one bucket for each MPI process. When a bucket is full, the process

participates in anMPI AlltoAll exchange, receiving updates from all other processes to

apply to the local portion of the table. This process continues until all updates by all nodes

are done.

We implemented several versions of RandomAccess using classic CAF and DMT CAF

to stress our DMT implementation and to get a deeper understanding of performance issues.

We compared the performance of our versions with that of the MPI bucketed version [1],

the reference standard for the RandomAccess benchmark. Allversions are either fine-

grain or bucketed-based; we did not implement more sophisticated algorithms that perform

aggregation and routing of updates.

Figure 9.17 shows the weak scaling in billion (109) of updates per second per dual-

processor node of different CAF and MPI versions on the RTC cluster. The main table size

is 512MB per node, the bucket size is 4KB per destination.

MPI bucketed versions

RA-MPI-1peandRA-MPI-2peare the MPI bucketed versions with one and two processes

per node, respectively. They are used as the baselines for the comparison.RA-MPI-2pe

shows two times better performance overRA-MPI-1pefor one node because it uses both

CPUs of a dual-processor node.RA-MPI-2peuses the table size of 256MB per process, to-

taling 512MB per node.RA-MPI-2pescales worse thanRA-MPI-1peand does not achieve

twice as high performance. The reason that neither MPI version scales well is the use of

MPI AlltoAll to exchange cached updates. While the RandomAccess random number

generator is reasonably uniform, it does not fill limited-size buckets equally. This results

in slightly larger than necessary data transfers becauseMPI AlltoAll exchanges full

288

1 2 4 8 16 32 64
1

2

3

4

5

6

7

8

9
x 10

−3

Number of Dual Nodes

B
ill

io
n(

10
9)

U
pd

at
es

 p
er

 s
ec

on
d

pe
r

no
de

 [G
U

P
/s

]

RA−CAF−ship−2s
RA−CAF−ship−1s
RA−CAF−spawn
RA−CAF−ship−2s+2th
RA−MPI−2pe
RA−MPI−1pe
RA−CAF−call
RA−CAF−runtime_aggr

Figure 9.17 : RandomAccess with 512MB per node table and 4KB bucket size.

size buckets and some of them might not be filled entirely. Further,MPI AlltoAll, be-

ing a collective call, enforces lock-step parallel exchanges; this precludes some processes

waiting inMPI AlltoAll for others to generate more updates for the next round. Con-

sequently, running on twice the number of CPUs,RA-MPI-2pescales worse thanRA-MPI-

1pedoes.

Fine-grain CAF versions

CAF’s one-sided model enables us to express a fine-grain version (see Section 3.4.3), in

which each generated update is not cached locally but applied right away,e.g.,

table(loc)[p] = XOR(table(loc)[p], v)

289

cafc without DMT support compiles this code to a GET, XOR, and PUT,resulting

in two exposed interconnect latencies per update. As expected, the performance is poor,

and we do not show it in Figure 9.17.cafc with DMT support can compile this code to

ship (ship am) the XOR operation to the remote image. However, the performance is still

poor, though slightly better than that of the version in classical CAF, because the run-time

overhead for performing fine-grain remote operations is high. For this reason, we do not

show the performance of this version in Figure 9.17.

Run-time aggregation in DMT CAF

cafc with DMT could recognize the remote XOR operation and instruct the run-time to

aggregate it. Compiler support for the recognition of such operations is not yet imple-

mented; however, we manually replaced the remote XOR updatewith a special run-time

function to evaluate the performance of run-time aggregation. The run-time aggregates

such operations into buffers, one per destination, to increase the granularity of the remote

activity and to avoid sending many small network messages. This aggregation is analogous

to how the MPI bucketed version caches XOR updates, but is done automatically by run-

time layer without the need to modify the source code. The aggregation process stores the

operation code (XOR) and arguments of each operation (its address in the remote memory

and its XOR-value). It also compresses the operation code bybundling operations with the

same code issued consecutively and storing the operation code only once per bundle13 (see

Section 9.5.2).

RA-CAF-runtimeaggr shows the performance of the fine-grain run-time-layer-

aggregated version in Figure 9.17. It is roughly two times worse than that ofRA-MPI-1pe

version. However, it yields several orders of magnitude performance improvement com-

pared to the non-aggregated fine-grain versions. Therefore, run-time aggregation may still

be a valid technique for complex irregular codes where application-level aggregation is al-

gorithmically hard. The performance degradation is causedby the overhead of a function

13This scheme is analogous to run-length encoding [124].

290

cosubroutine xorBucket(table, numUpdates, locations, values)
...
! the main table, tableSize is the size of the local part
integer(8) :: table(0:tableSize-1)[*]
! number of updates to apply
integer, intent(in) :: numUpdates
! locations in the table to update
integer, intent(in) :: locations(numUpdates)
! values to XOR to the updated table locations
integer(8), intent(in) :: values(numUpdates)

do i = 1, numUpdates
table(locations(i)) = XOR(table(locations(i)),values(i))

end do
end cosubroutine

Figure 9.18 : Co-subroutine to apply XOR updates.

call, one for each update, to perform the run-time-layer aggregation. The execution of re-

mote operations does not incur a function call per update. Instead, an aggregated packet

is decoded on the destination and each XOR update is applied in a loop using the oper-

ation code and arguments. To avoid the aggregation functioncalls,cafc could ask the

run-time layer to provide buffers and then generate code to perform the aggregation in the

source code. However, we do not believe this strategy to be sufficiently general to justify a

non-trivial implementation incafc.

CAF version with blocking spawn

The other RA-CAF versions use buckets to cache remote XOR updates similar to that of the

MPI bucketed version. When a bucket to a particular destination is full, the activity shown

in Figure 9.18 is spawned to apply cached XOR updates in the remote image. The entire

bucket is passed as an argument to the co-subroutine performing remote updates. An activ-

ity is initiated only when a bucket is completely full (except the very last bundle), which dif-

ferentiates these versions from MPI, where partial bucketsmight be transferred. RA-CAF

versions do not use collective communication and may achieve much better asynchrony

291

tolerance than MPI versions usingMPI AlltoAll. Local updates are applied as soon

as they are generated. Each CAF version has thread(s) generating updates and thread(s)

applying updates. Properly tuning the number of threads is key to good performance.

RA-CAF-calluses one thread per image to generate updates and blocking spawn to

apply remote updates usingxorBucket. Its performance is inferior to the other bucketed

RA-CAF versions because the blocking spawn exposes not onlythe network latency to

spawn the activity but also the latency to execute the activity in the target image. The

latter latency includes not only the time to apply XOR updates, but also the time waiting

to be scheduled: activities from all other nodes compete forexecution scheduling within

the target image. While waiting for the blocking spawn to complete, the local application

thread does not perform useful computation such as generating new XOR updates, initiating

other remote activities, or applying updates received fromother images. Because of this

wasted time,RA-CAF-callperforms poorly.

CAF version with non-blocking spawn

RA-CAF-spawnhides the exposed latency by using non-blocking AM-mode spawns

(spawn am) to apply remote updates. When a bucketbp for imagep becomes full for

the first time, a non-blocking activity is spawned to applybp updates inp. Meanwhile,

the current image continues to generate updates. It can reuse bp because spawn copiesbp

values (table locations and XOR values) into a run-time layer buffer. RA-CAF-spawnis

coded using one spawn handle per destination, which enablesone in flight spawn per target

image. Whenbp becomes full again, the image waits for the completion of theprevious

non-blocking spawn destined top (to reuse the spawn handle variables), which is likely to

be completed by this time. Thus, theRA-CAF-spawnversion hides the latency ofspawn

by overlapping it with computation and enjoys much better performance thanRA-CAF-call.

In fact, the performance is almost twice as good as that of theRA-MPI-2peversion because

non-blocking spawns enable better asynchrony tolerance — each image generates updates

more independently from what the other images are doing.

292

The DMT runtime is configured to have two run-time threads, anapplication thread and

a pool thread, providing exactly one thread per CPU. Whenever the application thread ex-

ecutesspawn am and there are pending activities from the other images, it helps the pool

thread to process these activities; this maintains the balance between the speeds of gen-

eration and application of XOR updates. The performance of the benchmark is primarily

bound by the TLB performance because each update is likely tocause a TLB miss. Having

two threads applying XOR updates enables to utilize both TLBunits of the node.

While delivering good performance,RA-CAF-spawnversion is harder to implement

thanRA-CAF-callbecause the programmer must explicitly manage the spawn handles.

CAF versions with ship

RA-CAF-ship-1sis similar toRA-CAF-call, but uses AM-mode ship (ship am) to apply

remote updates. The programmer gets both high performance of the RA-CAF-spawnver-

sion and simplicity of theRA-CAF-callversion. The performance ofRA-CAF-ship-1sis

slightly higher than that ofRA-CAF-spawnbecause (1)ship is a non-blocking spawn

without reply and (2) more than one activity can be spawned onthe target image from

the same origin image; in comparison,RA-CAF-spawncan spawn only one activity be-

cause it reuses handle variables. At the same time,RA-CAF-ship-1sis as simple to code as

RA-CAF-callbecause the programmer does not manage explicitspawn handles.

While the performance ofRA-CAF-spawnandRA-CAF-ship-1sexceeds that ofRA-

MPI-2pe for runs on four and more nodes, it is lower for one- and two-node runs. The

reason is that both CAF versions have only one application thread per node generating XOR

updates, whileRA-MPI-2pehas two such threads. For small number of nodes, the amount

of work done by application threads is greater than that doneby pool threads applying

XOR updates. In fact, the pool thread does not perform any work for executions on one

node since the application thread applies local updates andthere are no remote updates.

Thus, the pool thread is underutilized resulting in lower overall performance.

Since the current ARMCI implementation does not allow two CAF process images per

293

cluster node for a Myrinet 2000 interconnect, we created theRA-CAF-ship-2sversion to

evaluate the effect of having two application threads.RA-CAF-ship-2sis a version based

on RA-CAF-ship-1s, but it runs two application threads, called solvers, generating (and

applying) XOR updates. Each solver executes half the total XOR updates per image and

uses its own set of buckets. The second solver is spawned locally using ship thread.

We set the thread pool size to be zero to have exactly one run-time thread per CPU. The

solver threads spawn activities in AM-mode (ship am) and execute them.

The performance ofRA-CAF-ship-2sis virtually the same as that of theRA-MPI-2pe

version on two nodes and exceeds it for runs on larger number of nodes. RA-CAF-ship-

2sshows a bit better performance than that ofRA-CAF-spawnandRA-CAF-ship-1sat the

expense of slightly more complicated code to have the secondapplication thread, which

would not be necessary with the two-image-per-node configuration.

To estimate the effect of “wrong” number of threads per image, we evaluated theRA-

CAF-ship-2s+2thversion based onRA-CAF-ship-2s. RA-CAF-ship-2s+2thruns four run-

time threads per node: two solver threads and two pool threads. The performance ofRA-

CAF-ship-2s+2this much worse thanRA-CAF-ship-2sbecause the application threads that

generate XOR updates compete for CPUs with the pool threads that only execute remote

activities; our understanding is that this results inbursty, and overall lower, update genera-

tion speed.

Note thatRA-MPI-2peuses 256MB tables per process (512MB per node), while all

other versions use 512MB tables per process. However, this did not give much advantage

to RA-MPI-2pebecause the TLB performance for random updates of 512MB and 256MB

tables is roughly the same.

The presented RA-CAF versions were used to evaluate the DMT prototype implemen-

tation. DMT enabled a simpler implementation of the RandomAccess benchmark and

demonstrated better performance than MPI for up to 128-CPU runs. However, the bucket-

based approach might not scale well on very large scale clusters, such as IBM Blue Gene/L

with 128K processors and small memory nodes, because the bucket size would decrease as

294

the number of processors increases. This would result in a lot of small network messages

carrying remote updates. A different, software-routing algorithm is necessary to deliver the

best RandomAccess performance on large systems.

9.7 Discussion

We argued for the need of function shipping and multithreading in the CAF parallel pro-

gramming model and described potential applications of distributed multithreading in sci-

entific codes. We evaluated DMT design principles and presented a DMT specification for

CAF. Our prototype implementation of DMT incafc enabled us to evaluate the benefits

of function shipping for programmability and performance.

DMT improves programmability of applications that benefit from asynchronous activ-

ities. DMT makes one-sided access to remote parts of complexdata structures practical

without the need to implement a two-sided master-slave scheme; this directly benefits pro-

grammability and may benefit performance of parallel searchapplications. Our branch-

and-bound TSP implementation in DMT CAF is simpler than a master-slave message-

passing implementation in MPI. The simplicity comes from not having to implement a

two-sided protocol when using DMT; instead, the programmercan use co-functions to ex-

ecute asynchronous remote activities. This is more intuitive than message passing and very

much resembles using regular function calls. DMT-based TSPdemonstrates better perfor-

mance because the MPI implementation dedicates a processorto be the master, which does

not perform useful computation.

Our micro-benchmark to compute the maximum value of a co-array section enabled us

to quantify the performance gain due to co-locating computation with data. As expected,

the benefit increases as the size of a remote co-array sectiongets larger. For large sections,

it is up to 40 times faster to ship computation and get the result back than fetch data and

obtain the result locally. We expect this benefit to be even higher for more complex data

structures such as remote linked lists, queues, etc.

Performance and scalability of DMT-based RandomAccess exceeds that of the MPI

295

bucketed version due to better asynchrony tolerance. MPI version usesMPI AllToAll

reduction, which delays processes to wait for the slowest, resulting in poor scalability and

low performance. DMT-based version uses asynchronous remote activities and does not

synchronize with other processes. However, it is importantto configure DMT to use the

right number of run-time threads and to load-balance the application to obtain best perfor-

mance. Currently, DMT leaves these tasks to the programmer;however, it provides three

types of spawns and the ability to control the number of run-time threads.

It would be interesting to consider whether it is possible touse DMT to perform auto-

matic load-balancing on distributed memory machines for a large class of applications. An-

other promising research direction is to improve OS thread support to enable applications,

rather than the OS, to schedule threads; this will provide better control over scheduling

of concurrent activities and user-defined scheduling policies in DMT and other emerging

multithreaded languages. Finally, it would be interestingto investigate in detail possi-

ble compiler optimizations for function shipping and localmultithreading; for example,

selecting the most appropriate spawn type, aggregating fine-grain remote activities, and

scheduling activities to reduce interference (e.g., scheduling concurrently CPU-bound and

memory-bound activities within a multi-core multiprocessor node).

296

Chapter 10

Conclusions and Future Directions

The quest to find a parallel programming model that is ubiquitous, expressive, easy to use,

and capable of delivering high performance is a difficult one. The Message Passing Inter-

face (MPI) remains thede factoparallel programming model today despite a huge effort

to find alternatives that are easier to use. In this dissertation, we principally explored the

design and implementation of Co-array Fortran (CAF) as a representative of the emerging

Partitioned Global Address Space (PGAS) languages, which also include Unified Parallel

C (UPC) and Titanium.

10.1 Contributions

The primary contributions of this dissertation include:

• design and implementation ofcafc, the first multi-platform CAF compiler for dis-

tributed and shared-memory machines (joint work with Cristian Coarfa),

• performance studies to evaluate the CAF and UPC programmingmodels (joint work

with Cristian Coarfa),

• design, implementation, and evaluation of new language features for CAF, including

communication topologies, multi-version variables, and distributed multithreading,

• a novel technique to analyze explicitly-parallel SPMD programs that facilitates opti-

mization, and

• a synchronization strength reduction transformation for automatically replacing

barrier-based synchronization with more efficient point-to-point synchronization.

297

Our joint studies show that CAF programs can achieve the samelevel of performance

and scalability as equivalent MPI codes; however, development of high performance codes

in CAF is as difficult as when using MPI.

In this dissertation, I show that extending CAF with language-level communication

topologies, multi-version variables, and distributed multithreading will increase program-

mers’ productivity by simplifying the development of high performance codes.

10.1.1 Design, implementation, and performance evaluation of cafc

We designed and implementedcafc, the first multi-platform CAF compiler for distributed

and shared-memory architectures.cafc is a widely portable source-to-source translator.

By performing source-to-source translation,cafc can leverage the best Fortran 95 com-

piler available on the target architecture to compile translated programs, and the ARMCI

and GASNet communication libraries to support systems witha range of interconnect fab-

rics, including Myrinet, Quadrics, and shared memory.

We ported many parallel benchmarks into CAF and performed extensive evaluation

studies [30, 47, 48, 31, 32, 33] to investigate the quality ofthe CAF programming model

and its ability to deliver high performance. An important result of our studies is that CAF

codes compiled withcafc can match the performance and scalability of their MPI coun-

terparts. We identified three classes of performance impediments that initially precluded

CAF codes from achieving the same level of performance and scalability as that of their

MPI counterparts. They include scalar performance of a translated program, communica-

tion efficiency, and synchronization.

Scalar performance. We found that source-to-source translation of co-arrays introduces

apparent aliasing in the translated program due tocafc’s representation of co-arrays via

implicit shape arrays. This hinders the platform’s Fortran95 compiler to efficiently op-

timize code accessing local co-array data. We developed aprocedure splitting transfor-

mationthat converts each procedures referencingCOMMON andSAVE co-array local data

298

into two subroutiness1 ands2. s1 resembless, but instead of performing computation,

it calls s2 and passes the co-arrays as arguments.s2 performs the original computation

in which eachCOMMON andSAVE co-array reference is converted into a reference to the

corresponding co-array parameter. Incafc, co-array arguments are represented via ex-

plicit shape subroutine dummy arguments, which do not aliasin Fortran 95. As a result,

the lack of aliasing amongCOMMON andSAVE co-arrays, their bounds and contiguity are

conveyed to the Fortran 95 compiler. The procedure splitting transformation implemented

in cafc enables a translated program to achieve the same level of scalar performance as

an equivalent Fortran 95 program that usesCOMMON andSAVE variables.

Communication efficiency. Our experiments showed that it is imperative to vectorize

and/or aggregate communication on distributed memory machines to deliver performance

and scalability; without coarse-grain communication, theperformance is abysmal on clus-

ter architectures. For strided data transfers, it is also important to pack the data at the

source and unpack it on the destination to achieve the best communication efficiency. For-

tunately, CAF enables source-level communication vectorization, aggregation, and pack-

ing/unpacking. With CAF, one can get high performancetoday rather than wait for a

mature implementation of a vectorizing CAF compiler. However, automatic compiler

transformations such as communication vectorization and aggregation, studied by Cris-

tian Coarfa [29], will be important to broaden the class of CAF programs that can achieve

high performance and to improve the performance portability of CAF programs across a

range of architectures.

Synchronization. The burden that PGAS languages impose on programmers is the need

to synchronize shared one-sided data access. We observed that using barriers for synchro-

nization was much simpler than using point-to-point synchronization, which is painstaking

and error-prone. However, point-to-point synchronization may provide much better scal-

ability; we observed up to a 51% performance improvement forthe NAS CG benchmark

(14000 size) for a 64-processor execution.

299

We observed that using extra communication buffers can remove from the critical path

anti-dependence synchronization due to buffer reuse. Thisyielded up to a 12% performance

improvement for the ASCI Sweep3D benchmark (150x150x150 size) as compared to the

standard MPI version. However, coding such multi-buffer solutions is difficult due to the

need for explicit buffer management and complex point-to-point synchronization.

CAF and UPC. We also compared CAF with UPC and found that it is easier to match

MPI’s performance with CAF for regular scientific codes. We attribute this to the more

explicit nature of communication in CAF and language-levelsupport for multi-dimensional

arrays.

10.1.2 Enhanced language, compiler, and runtime technology for CAF

Co-spaces: communication topologies for CAF. We found that CAF’s multi-

dimensional co-shape is not convenient and expressive enough to be useful for organizing

parallel computation. It does not provide support for process groups, group communica-

tion topologies, nor expression of communication partnersrelative to the process image.

Instead, programmers often use Fortran 95 arrays and integer arithmetic to represent com-

munication partners. Such ad hoc methods of structuring parallel computation render CAF

impenetrable to compiler analysis.

We explored replacing CAF’s multi-dimensional co-shapes with more expressive com-

munication topologies, called co-spaces, such as group, Cartesian, and graph. They sim-

plify programming by providing convenient abstractions for organizing parallel computa-

tions. Group co-space enables support for process groups aswell as remapping process

image indices. Cartesian or graph co-spaces are used to impose a Cartesian or graph com-

munication topology on a group; they provide functionalityto systematically specify the

targets of communication and point-to-point synchronization. These abstractions, in turn,

expose the structure of communication to the compiler, facilitating compiler analysis and

optimization.

300

Communication analysis. We devised a novel technology for analyzingexplicitly-

parallel CAF programs suitable for a large class of scientific applications with structured

communication. When parallel computation is expressed viaa combination of a co-space,

textual co-space barriers, and co-space single-valued expressions, the CAF compiler can

infer communication patterns from explicitly-parallel code. As of this writing, commu-

nication analysis is limited to a procedure scope with structured control flow. Our work

focuses on two patterns that are common for nearest-neighbor scientific codes. The first

pattern is a group-executable PUT/GET in which the target image is expressed via a co-

space interface neighbor function with co-space single-valued arguments. The second is a

non-group-executable PUT/GET with the target image expressed via a co-space interface

neighbor function with co-space single-valued arguments.Knowing the communication

pattern for each process image of the co-space enables determination of the origin image(s)

of communication locally. This is a fundamental enabling analysis for powerful communi-

cation and synchronization optimizations such as synchronization strength reduction.

Synchronization strength reduction. We developed a procedure-scope synchronization

strength reduction (SSR) optimization that replaces textual co-space barriers with asymp-

totically more efficient point-to-point synchronization where legal and profitable. This

transformation is both difficult and error-prone for application developers to exploit man-

ually at the source code level. SSR optimizes the communication patterns inferred by our

analysis of communication partners. As of this writing, it operates on a procedure scope

with a single co-space and textual co-space barriers for synchronization. To extend SSR’s

applicability to real codes, we use compiler hints to compensate for the lack of interpro-

cedural analysis. Understanding communication structureenables the CAF compiler to

convert barrier-based synchronization into more efficientform. We investigated the con-

version of textual co-space barriers into point-to-point synchronization. SSR-optimized

programs are more asynchrony tolerant and show better scalability and higher performance

than their barrier-based counterparts.

301

We implemented prototype support for SSR incafc. SSR-optimized Jacobi itera-

tion, NAS MG, and NAS CG benchmarks show performance comparable to that of our

fastest hand-optimized versions that use point-to-point synchronization. Compared to their

barrier-based counterparts, they demonstrate noticeableperformance improvements. For

64-processor executions on an Itanium2 cluster with a Myrinet 2000 interconnect, we ob-

served run-time improvements of 16% for a 2D Jacobi iteration of10242 size, 18% for NAS

MG classes A and B, and 51% for NAS CG class A. In our prior studies, we observed sim-

ilar benefits from using point-to-point synchronization instead of barriers on other parallel

platforms and for other benchmarks as well.

Multi-version variables. Many scientific codes such as wavefront, line-sweep, and

loosely-coupled parallel applications exhibit the producer-consumer communication pat-

tern, in which the producer(s) sends a stream of values to theconsumer(s). Expressing

high performance producer-consumer communication in PGASlanguages is difficult. The

programmer has to explicitly manage several communicationbuffers, orchestrate complex

point-to-point synchronization (to hide the latency of anti-dependence synchronization due

to buffer reuse), and use non-blocking communication.

We explored extending CAF with multi-version variables (MVVs), a language-level ab-

straction we devised to simplify the development of high performance codes with producer-

consumer communication. An MVV can store more than one value. Only one value can be

accessed at a time; others are queued by the runtime. A producer commits new values into

an MVV and a consumer retrieves them. MVVs offer limited support for two-sided com-

munication in CAF, which is a natural choice when developingproducer-consumer codes.

MVVs simplify program development by insulating the programmer from the details of

buffer management, complex point-to-point synchronization, and non-blocking communi-

cation.

MVVs are the right abstraction for codes in which each process communicates streams

of values to a small subset of processors. MVVs might not be the best abstraction for

302

codes in which each process communicates data to a lot of processes, which might cause

excessive MVV buffering. While MVVs insulate the programmer from managing the anti-

dependence synchronization, sometimes no such synchronization is necessary because it

is enforced elsewhere in the application. However, we believe that programmability ben-

efits of the MVV abstraction outweigh slight performance losses due to unnecessary anti-

dependence synchronization in this case.

We extended CAF with prototype support for MVVs. MVVs significantly simplify

development of wavefront applications such as Sweep3D, andMVV-based codes deliver

performance comparable to that of the fastest CAF multi-buffer hand-optimized versions,

up to 39% better than that of CAF one-buffer versions, and comparable to or better (up to

12%) than that of their MPI counterparts on a range of parallel architectures. MVVs greatly

simplify coding of line-sweep applications, such as the NASBT and SP benchmarks, and

deliver performance comparable to that of the best hand-optimized MPI and CAF versions.

Distributed multithreading. Distributed memory is necessary for the scalability of mas-

sively parallel systems [80]. Systems in which memory is co-located with processors con-

tinue to dominate the architecture landscape. The nodes of these distributed memory ar-

chitectures are also becoming parallel,e.g., multi-core multiprocessors. Distributed multi-

threading (DMT) is based on the concepts of function shipping and multithreading, which

provide two benefits. First, DMT enables co-locating computation with data. Second, it

enables exploiting hardware threads available within a node. DMT usesco-subroutines

andco-functionsto co-locate computation with data and to enable local and remote asyn-

chronous activities. Using DMT to co-locate computation with data is an effective way of

avoiding exposed latency, especially when performing complex operations on remote data

structures. In addition, concurrent activities running within a node would enable utilizing

available hardware parallelism.

We presented design principles behind multithreading in anSPMD language and pro-

vided the DMT specification for CAF, featuring blocking and non-blocking activities that

303

can be spawned remotely or locally. We extendedcafc with prototype support for DMT.

We developed a micro-benchmark to compute the maximum valueof a co-array section

to quantify the performance gain due to co-locating computation with data. In our experi-

ments on an Itanium2 cluster with a Myrinet 2000 interconnect, we observed that, for large

sections, it is up to 40 times faster to ship computation and get the result back than fetch

data and obtain the result locally; for accesses to more complex remote data structures, this

benefit is likely to be much higher. We developed several fine-grain and bucketed versions

of the RandomAccess benchmark to gain a better understanding for DMT design. Our ex-

perimentation revealed that it is necessary to use a pool of OS threads to execute activities,

rather than to spawn each activity in a separate OS thread, todeliver best performance; it

is also necessary to allow programmers to control the threadpool to tune the runtime for

the application’s concurrency needs. Better asynchrony tolerance allowed the performance

of a DMT-based implementation of bucketed RandomAccess to exceed that of the standard

MPI version, which usesMPI AlltoAll to exchange remote updates.

We found that DMT improves programmability of applicationsthat benefit from asyn-

chronous activities. We experimented with a branch-and-bound traveling salesman problem

(TSP), which we selected as representative of parallel search applications. We found that

the DMT-based CAF version is simpler than a master-slave message-passing implemen-

tation in MPI. The simplicity comes from not having to implement a two-sided protocol

when using DMT; instead, the programmer can use co-functions to execute asynchronous

remote activities. DMT-based TSP demonstrates better performance, because, in our ex-

periments, the MPI implementation dedicates a processor tobe the master, and this mater

processor does not perform useful computation.

10.2 Future Directions

New technology and infrastructure developed in this dissertation will enable us to investi-

gate a set of interesting ideas in the future. We outline a fewpromising research directions.

304

Extending CAF analysis and communication/synchronization optimization. To de-

velop scalable, high performance explicitly-parallel programs, programmers must use ef-

ficient communication and orchestrate complex point-to-point synchronization, which is

difficult. Barriers are the simplest synchronization mechanism to use in PGAS languages.

Thus, the role of the compiler is to enable application developers to use barriers for syn-

chronization, while optimizing communication and synchronization into a more efficient

form delivering performance and scalability. SSR is an example of such an optimization.

As of this writing, our novel CAF analysis and SSR are limitedto a procedure scope

with single co-space and structured control flow. It is possible to extend the analysis to

handle arbitrary control flow (see discussion in Section 7.9). There is also a good indi-

cation that interprocedural analysis can be developed to eliminate the necessity of hints

for SSR. Such analysis would include: (1) detecting whethera procedure may access lo-

cal or remote co-arrays or perform synchronization in any invocation; (2) propagation of

single values across procedure calls; (3) propagation of unsynchronized PUT/GET across

procedure boundaries. It is still an open question whether an analysis can be developed to

analyze scopes where communication/synchronization is done for multiple co-spaces.

In addition to SSR, our CAF analysis technology enables a setof promising communi-

cation and synchronization optimizations. SSR does not change the communication prim-

itive. Doing so will enable conversion of one-sided PUT/GETcommunication into two-

sided send and receive. Such two-sided communication can bebuffered, and would enable

us to automatically generate more asynchrony tolerant code, since buffering can move anti-

dependence synchronization off the critical path, and packing/unpacking of strided com-

munication. Conversion of GET into PUT will enable us to utilize interconnect RDMA

capabilities, when accessing remote data via PUTs, for architectures with RDMA support

for PUTs, but not for GETs. The push (PUTs) strategy would also enable us to hide ex-

posed latency inherent to the pull (GETs) strategy as well asto tile producer-consumer loop

nests to entirely hide communication latency.

Finally, our SSR algorithm is not based on array section dependence analysis. Devel-

305

oping such an analysis, which must also include remote co-array sections, might improve

the precision of our CAF analysis and SSR; however, we have not yet seen opportunities

that would benefit from such analysis in the limited set of codes we have studied.

Enhancing multi-version variables and beyond. Producer-consumer communication

is typical in many scientific codes; however, it is difficult to develop scalable, high per-

formance producer-consumer applications in PGAS languages. We offer MVVs as a

pragmatic and convenient way to simplify development of high-performance producer-

consumer codes in CAF.

It would be interesting to consider whether multi-version variables can benefit from

extensions such as GET-style remoteretrieve, thecommit andretrieve primitives

of partial MVV versions, and an adaptive buffer management strategy.

It is worth investigating the stream abstraction as an alternative to MVVs, especially for

codes that stream values of unequal size. While streams are amore general abstraction than

MVVs, they would require the programmer to establish explicit connections. For streams,

it would also be harder to optimize unnecessary memory copies, which MVVs achieve via

adjusting an F90 pointer.

The clocked final model (CF) [106] is another more general alternative to MVVs that

does not require the programmer to specify the number of buffers and explicitly manage

commits andretrieves. It would be interesting to investigate whether it is possible

to develop sophisticated compiler and runtime technology to optimize CF-based scientific

codes to deliver as high performance as that of using MVVs on arange of parallel archi-

tectures.

Improving thread support in programming languages. Co-locating computation with

data and utilizing intra-node parallelism is essential to fully utilize hardware capabilities

of modern parallel architectures. While experimenting with distributed multithreading, we

discovered that operating systems do not provide adequate support for precisely controlling

multithreading for high performance codes. A promising research direction is to work

306

with OS developers to develop an efficient, flexible, and portable threading system that

enables applications, rather than the OS, to schedule threads. This would enable us to

extend a multithreaded programming model with user-definedscheduling policies that best

accommodate the concurrency needs of the application, as well as compiler analysis and

optimization to appropriately mix & schedule concurrent computations. Better run-time

support would also be necessary to enable massive (millionsof threads) multithreading

within a node.

Finally, it is worth investigating whether a programming model can provide convenient

abstractions for efficient work-sharing that can be optimized for automatic load-balancing

in the presence of distributed memory.

307

Bibliography

[1] HPC Challenge Benchmarks.http://www.hpcchallenge.org.

[2] Sisal language tutorial. http://tamanoir.ece.uci.edu/projects/

sisal/sisaltutorial/01.Introduction.html.

[3] The SUIF compiler system.http://suif.stanford.edu/suif.

[4] Accelerated Strategic Computing Initiative. The ASCI Sweep3D benchmark

code. http://www.llnl.gov/asci benchmarks/asci/limited/

sweep3d/asci sweep3d.html, 1995.

[5] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.Fortran 95

handbook: complete ISO/ANSI reference. The MIT Press, Cambridge, MA, 1997.

[6] A. Aiken and D. Gay. Barrier inference. InProceedings of the 25th Annual ACM

SIGPLAN Symposium on Principles of Programming Languages, pages 342–354,

San Diego, CA, Jan. 1998.

[7] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S. Jr.,

and SamTobin-Hochstadt. The Fortress language specification, v1.0α. http://

research.sun.com/projects/plrg/fortress.pdf, Sept. 2006.

[8] R. Allen and K. Kennedy.Optimizing Compilers for Modern Architectures. Morgan

Kaufmann Publishers, San Fransisco, CA, 2002.

[9] ANSI. Myrinet-on-VME Protocol Specification (ANSI/VITA 26-1998). American

National Standard Institute, Washington, DC, 1998.

308

[10] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,

41(5):1020–1048, Sept. 1994.

[11] R. Bagrodia and V. Austel. UC user manual, v1.4.http://pcl.cs.ucla.

edu/projects/uc/uc-manual.ps.

[12] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A.Woo, and M. Yarrow.

The NAS parallel benchmarks, v2.0. Technical Report NAS-95-020, NASA Ames

Research Center, Moffett Field, CA, Dec. 1995.

[13] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.ACM Trans-

actions on Computer Systems, pages 39–59, Feb. 1984.

[14] W. Blumeet al. Polaris: The next generation in parallelizing compilers,. In Pro-

ceedings of the 7th Workshop on Languages and Compilers for Parallel Computing,

Ithaca, NY, Aug. 1994.

[15] R. Blumofe and C. Leiserson. Scheduling multithreadedcomputations by work

stealing. InProceedings of the 35th Annual Symposium on Foundations of Com-

puter Science, pages 356–368, Santa Fe, NM, Nov. 1994.

[16] O. A. R. Board. The OpenMP Application Program Interface (API) v2.5. http:

//www.openmp.org/drupal/mp-documents/spec25.pdf, May 2005.

[17] D. Bonachea. GASNet specification, v1.1. Technical Report CSD-02-1207, Univer-

sity of California at Berkeley, Berkeley, CA, Oct. 2002.

[18] D. Bonachea. Proposal for extending the UPC memory copylibrary functions and

supporting extensions to GASNet, v1.0. Technical Report LBNL-56495, Lawrence

Berkeley National Laboratory, Berkeley, CA, Oct. 2004.

[19] Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. PGHPF – an

optimizing High Performance Fortran compiler for distributed memory machines.

Scientific Programming, 6(1):29–40, 1997.

309

[20] D. C. Cann. The optimizing SISAL compiler. Technical Report UCRL-MA-110080,

Lawrence Livermore National Laboratory, Livermore, CA, Apr. 1992.

[21] F. Cantonnet, Y. Yao, S. Annareddy, A. Mohamed, and T. El-Ghazawi. Performance

monitoring and evaluation of a UPC implementation on a NUMA architecture. In

Proceedings of the International Parallel and DistributedProcessing Symposium,

Nice, France, Apr. 2003.

[22] B. L. Chamberlain, S. J. Deitz, and L. Snyder. A comparative study of the NAS

MG benchmark across parallel languages and architectures.In Proceedings of Su-

percomputing, Dallas, TX, Nov. 2000.

[23] B. Chapman, P. Mehrotra, and H. P. Zima. Enhancing OpenMP with features for

locality control. InProceedings of the 8th ECMWF Workshop on the Use of Paral-

lel Processors in Meteorology “Towards Teracomputing”, pages 301–313, Reading,

United Kingdom, Nov. 1998.

[24] D. Chavarrı́a-Miranda.Advanced Data-Parallel Compilation. PhD thesis, Rice Uni-

versity, Houston, TX, Dec. 2003.

[25] D. Chavarrı́a-Miranda and J. Mellor-Crummey. An evaluation of data-parallel com-

piler support for line-sweep applications. InProceedings of the 11th International

Conference on Parallel Architectures and Compilation Techniques, Charlottesville,

VA, Sept. 2002.

[26] D. Chavarrı́a-Miranda and J. Mellor-Crummey. An evaluation of data-parallel com-

piler support for line-sweep applications.The Journal of Instruction-Level Paral-

lelism, 5, Feb. 2003. (http://www.jilp.org/vol5). Special issue with se-

lected papers from: The Eleventh International Conferenceon Parallel Architec-

tures and Compilation Techniques, September 2002. Guest Editors: Erik Altman

and Sally McKee.

310

[27] D. Chavarrı́a-Miranda, J. Mellor-Crummey, and T. Sarang. Data-parallel compiler

support for multipartitioning. InEuropean Conference on Parallel Computing,

Manchester, United Kingdom, Aug. 2001.

[28] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A perfor-

mance analysis of the Berkeley UPC compiler. InProceedings of the 17th ACM

International Conference on Supercomputing, San Francisco, CA, June 2003.

[29] C. Coarfa.Portable High Performance and Scalability of Partitioned Global Address

Space Languages. PhD thesis, Rice University, Houston, TX, Jan. 2007.

[30] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-Array Fortran

performance and potential: An NPB experimental study. InProceedings of the 16th

International Workshop on Languages and Compilers for Parallel Computing, num-

ber 2958 in LNCS, College Station, TX, Oct. 2003. Springer-Verlag.

[31] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. Experiences with Sweep3D im-

plementations in Co-Array Fortran. InProceedings of the Los Alamos Computer

Science Institute Fifth Annual Symposium, Santa Fe, NM, Oct. 2004. Distributed on

CD-ROM.

[32] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. Experiences with Sweep3D imple-

mentations in Co-Array Fortran.Journal of Supercomputing, 36(2):101–121, May

2006.

[33] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi, A. Mo-

hanti, Y. Yao, and Chavarrı́a-Miranda. An evaluation of Global Address Space

Languages: Co-Array Fortran and Unified Parallel C. InProceedings of the 10th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Chicago, IL, June 2005.

[34] C. Coarfa, Y. Dotsenko, L. Nakhleh, J. Mellor-Crummey,and U. Roshan. PRec-I-

DCM3: A parallel framework for fast and accurate large scalephylogeny reconstruc-

311

tion. InProceedings of the 2005 International Workshop on High Performance Com-

puting in Medicine and Biology, Fukuoka, Japan, July 2005.Best Paper Award.

[35] K. D. Cooper and L. Torczon.Engineering a Compiler. Morgan Kaufmann Pub-

lishers, San Fransisco, CA, 2004.

[36] Cray, Inc. Cray X1 server.http://www.cray.com.

[37] Cray, Inc. Cray X1E server.http://www.cray.com.

[38] Cray, Inc. Cray XT3.http://www.cray.com/products/xt3.

[39] Cray, Inc. Chapel specification v0.4.http://chapel.cs.washington.

edu/specification.pdf, Feb. 2005.

[40] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta,

T. von Eicken, and K. A. Yelick. Parallel programming in Split-C. In Proceedings

of Supercomputing, pages 262–273, Nov. 1993.

[41] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An efficient method

of computing static single assignment form. InProceedings of the 16th Annual ACM

Symposium on the Principles of Programming Languages, Austin, TX, Jan. 1989.

[42] L. Dagum and R. Menon. OpenMP: An industry-standard APIfor shared-memory

programming.IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[43] A. Darte, D. Chavarrı́a-Miranda, R. Fowler, and J. Mellor-Crummey. Generalized

multipartitioning for multi-dimensional arrays. InProceedings of the International

Parallel and Distributed Processing Symposium, Fort Lauderdale, FL, Apr. 2002.

Selected asBest Paper.

[44] A. Darte and R. Schreiber. A linear-time algorithm for optimal barrier placement.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

Chicago, IL, June 2005.

312

[45] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and potential: an

NPB experimental study. InProceedings of the 18th International Workshop on

Languages and Compilers for Parallel Computing, Hawthorne, NY, Oct. 2005.

[46] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer,

P. Lieverse, K. A. Vissers, and G. Essink. YAPI: applicationmodeling for signal

processing systems. InDAC ’00: Proceedings of the 37th conference on Design

Automation, pages 402–405, Los Angeles, CA, 2000. ACM Press.

[47] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A multiplatform Co-Array Fortran

compiler. InProceedings of the 13th International Conference of Parallel Architec-

tures and Compilation Techniques, Antibes Juan-les-Pins, France, Sept.–Oct. 2004.

[48] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey, and D. Chavarrı́a-Miranda. Experi-

ences with Co-Array Fortran on hardware shared memory platforms. InProceed-

ings of the 17th International Workshop on Languages and Compilers for Parallel

Computing, West Lafayette, IN, Sept. 2004.

[49] Y. Dotsenko, C. Coarfa, L. Nakhleh, J. Mellor-Crummey,and U. Roshan. PRec-I-

DCM3: A parallel framework for fast and accurate large scalephylogeny reconstruc-

tion. International Journal of Bioinformatics Research and Applications, 2(4):407–

419, 2006.

[50] J. B. Drake, P. W. Jones, and G. R. Carr, Jr. Overview of the software design of

the community climate system model.International Journal of High Performance

Computing Applications, 19:177–186, 2005.

[51] J. A. for Marine-Earth Science and Technology. Earth Simulator. http://www.

es.jamstec.go.jp/esc/eng.

[52] H. P. F. Forum. High Performance Fortran language specification, v2.0. http:

//dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/hpf-v20,

Jan. 1997.

313

[53] I. Foster. Strand and PCN: Two generations of compositional programming lan-

guages. Technical Report MCS-P354-0293, Argonne NationalLaboratories, Ar-

gonne, IL, 1993.

[54] I. Foster and K. M. Chandy. Fortran M: A language for modular parallel program-

ming. Technical Report MCS-P237-0992, Argonne National Laboratories, Argonne,

IL, June 1992.

[55] V. Freeh and G. Andrews.fsc: A SISAL compiler for both distributed and shared-

memory machines. Technical Report 95-01, University of Arizona, Tucson, AZ,

Feb. 1995.

[56] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.

Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,

B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overviewof the Blue Gene/L

system architecture.IBM Journal of Research and Development, 49(2/3):195, 2005.

[57] D. A. Garza-Salazar and W. Bohm. D-OSC: a SISAL compilerfor distributed-

memory machines. InProceedings of the 2nd Parallel Computation and Scheduling

Workshop, Ensenada, Mexico, Aug. 1997.

[58] C. Grelck. Implementing the NAS benchmark MG in SAC. InProceedings of the

16th International Parallel and Distributed Processing Symposium, Fort Lauderdale,

FL, Apr. 2002.

[59] C. Grelck and S.-B. Scholz. SAC – from high-level programming with arrays to

efficient parallel execution. InProceedings of the 2nd International Workshop on

High Level Parallel Programming and Applications, pages 113–125, Paris, France,

June 2003.

[60] C. Grelck and S.-B. Scholz. Towards an efficient functional implementation of the

NAS benchmark FT. InProceedings of the 7th International Conference on Parallel

314

Computing Technologies, volume 2763 ofLecture Notes in Computer Science, pages

230–235, Nizhni Novgorod, Russia, Sept. 2003. Springer-Verlag.

[61] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming

with Message-Passing Interface. The MIT Press, Cambridge, MA, 1994.

[62] W. Gropp, M. Snir, B. Nitzberg, and E. Lusk.MPI: The Complete Reference. The

MIT Press, Cambridge, MA, second edition, 1998.

[63] S. T. Group. Cilk 5.3.2 reference manual.http://supertech.lcs.mit.

edu/cilk/manual-5.3.2.pdf, June 2000.

[64] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K. Wang, W. Ching,

and T. Ngo. An HPF compiler for the IBM SP2. InProceedings of Supercomputing,

San Diego, CA, Dec. 1995.

[65] R. Gupta. The fuzzy barrier: a mechanism for high speed synchronization of proces-

sors. InProceedings of the 3rd International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 54–63, Boston, MA,

1989. ACM Press.

[66] P. N. Hilfinger, D. O. Bonachea, K. Datta, D. Gay, S. L. Graham, B. R. Liblit,

G. Pike, J. Z. Su, and K. A. Yelick. Titanium language reference manual. Tech-

nical Report UCB/EECS-2005-15, University of California at Berkeley, Berkeley,

CA, Nov. 2005.

[67] J. P. Hoeflinger. Extending OpenMP to clusters.http://cache-www.intel.

com/cd/00/00/28/58/285865 285865.pdf, 2005.

[68] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel. OpenMP for networks of SMPs.Journal

of Parallel and Distributed Computing, 60(12):1512–1530, Dec. 2000.

315

[69] IBM Corporation. Report on the experimental language X10, draft v0.41.

http://domino.research.ibm.com/comm/research projects.

nsf/pages/x10.index.html/$FILE/ATTH4YZ5.pdf, Feb. 2006.

[70] Intel Corporation. Cluster OpenMP user’s guide v9.1 rev4.1. http://

cache-www.intel.com/cd/00/00/32/91/329148 329148.pdf, May

2006.

[71] Intrepid Technology Inc. GCC Unified Parallel C.http://www.intrepid.

com/upc.

[72] T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization in explic-

itly parallel systems. InProceedings of the International Conference on Parallel

Architectures and Compilation Techniques, Montreal, Canada, Aug. 1994.

[73] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS parallel

benchmarks and its performance. Technical Report NAS-99-011, NASA Ames Re-

search Center, Moffett Field, CA, Oct. 1999.

[74] A. Kamil, J. Su, and K. Yelick. Making sequential consistency practical in Titanium.

In Proceedings of Supercomputing, Seattle, Washington, Nov. 2005.

[75] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually

aligned barriers. InProceedings of the 18th International Workshop on Languages

and Compilers for Parallel Computing, Hawthorne, NY, Oct. 2005.

[76] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Distributed

shared memory on standard workstations and operating systems. In Proceedings

of the Winter 1994 USENIX Conference, pages 115–131, San Francisco, CA, Jan.

1994.

[77] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Per-

formance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

316

[78] T. Lengauer and R. E. Tarjan. A fast algorithm for findingdominators in a flowgraph.

ACM Transactions on Programming Languages and Systems, 1(1):121–141, 1979.

[79] J. Mellor-Crummey, R. Fowler, G. Marin, and N. Tallent.HPCView: A tool for top-

down analysis of node performance.The Journal of Supercomputing, 23:81–101,

2002. Special Issue with selected papers from the Los Alamos Computer Science

Institute Symposium.

[80] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on

shared-memory multiprocessors.ACM Transactions on Computer Systems, 9(1):21–

65, 1991.

[81] V. Naik. A scalable implementation of the NAS parallel benchmark BT on dis-

tributed memory systems.IBM Systems Journal, 34(2):273–291, 1995.

[82] B. Nichols, D. Buttlar, and J. P. Farrell.Pthreads Programming. O’Reilly & Asso-

ciates, Inc., Sebastopol, CA, 1996.

[83] J. Nieplocha and B. Carpenter. ARMCI: A portable remotememory copy library

for distributed array libraries and compiler run-time systems.Lecture Notes in Com-

puter Science, 1586:533–546, 1999.

[84] J. Nieplocha, V. Tipparaju, and D. Panda. Protocols andstrategies for optimiz-

ing performance of remote memory operations on clusters. InProceedings of the

Workshop on Communication Architecture for Clusters (CAC02) of IPDPS’02, Fort

Lauderdale, Florida, Apr. 2002.

[85] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and

E. Ayguadé. Leveraging transparent data distribution in OpenMP via user-level dy-

namic page migration.Lecture Notes in Computer Science, 1940:415–427, 2000.

[86] R. W. Numrich and J. Reid. Co-arrays in the next Fortran standard. SIGPLAN

Fortran Forum, 24(2):4–17, 2005.

317

[87] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. Tech-

nical Report RAL-TR-1998-060, Rutherford Appleton Laboratory, Didcot, United

Kingdom, Aug. 1998.

[88] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming.ACM

Fortran Forum, 17(2):1–31, Aug. 1998.

[89] H. Ogawa and S. Matsuoka. OMPI: optimizing MPI programsusing partial eval-

uation. In Proceedings of the 1996 ACM/IEEE conference on Supercomputing

(CDROM), page 37, Pittsburgh, PA, 1996. IEEE Computer Society.

[90] D. R. O’Hallaron. Spark98: Sparse matrix kernels for shared memory and message

passing systems. Technical Report CMU-CS-97-178, Carnegie Mellon University,

Pittsburgh, PA, Oct. 1997.

[91] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific computations on

modern parallel vector systems. InProceedings of Supercomputing, Pittsburgh, PA,

Nov. 2004.

[92] Pete Beckman,et al. ZeptoOS: the small Linux for big computers.http://

www-unix.mcs.anl.gov/zeptoos.

[93] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL– a portable implementa-

tion of the high-performance linpack benchmark for distributed-memory computers.

http://www.netlib.org/benchmark/hpl, 2004.

[94] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics network:

High performance clustering technology.IEEE Micro, 22(1):46–57, Jan.–Feb. 2002.

[95] S. Prakash, M. Dhagat, and R. Bagrodia. Synchronization issues in data-parallel

languages. InProceedings of the 6th Workshop on Languages and Compilers for

Parallel Computing, pages 76–95, Aug. 1993.

318

[96] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and K. Knobe. Space-Time

Memory: A parallel programming abstraction for interactive multimedia applica-

tions. In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 183–192, Atlanta, GA, May 1999.

[97] K. H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, MIT Depart-

ment of Electrical Engineering and Computer Science, Cambridge, MA, June 1998.

[98] C. Rasmussen, M. Sottile, and T. Bulatewicz. CHASM language interoperabil-

ity tools. http://sourceforge.net/projects/chasm-interop, July

2003.

[99] D. P. Reed and R. K. Kanodia. Synchronization with eventcounts and sequencers.

Communications of the ACM, 22(2):115–123, 1979.

[100] Rice University. HPCToolkit performance analysis tools. http://www.

hipersoft.rice.edu/hpctoolkit.

[101] Rice University. Open64/SL compiler and tools.http://hipersoft.cs.

rice.edu/open64.

[102] Rice University. Rice Terascale Cluster.http://rcsg.rice.edu/rtc.

[103] J. Robert H. Halstead. MULTILISP: a language for concurrent symbolic computa-

tion. ACM Transactions on Programming Languages and Systems, 7(4):501–538,

1985.

[104] S. H. Roosta.Parallel Processing and Parallel Algorithms. Springer, New York,

NY, 2000.

[105] H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 TFLOPS three-dimensional

fluid simulation for fusion science with HPF on the Earth Simulator. InProceedings

of the 2002 ACM/IEEE conference on Supercomputing, pages 1–14. IEEE Computer

Society Press, Nov. 2002.

319

[106] V. Saraswat, R. Jagadeesan, A. Solar-lezama, and C. von Praun. Determinate

imperative programming: A clocked interpretation of imperative syntax. http:

//www.saraswat.org/cf.pdf, July 2005. Submitted for publication.

[107] V. Sarkar and D. Cann. POSC – a partitioning and optimizing SISAL compiler. In

Proceedings of the 4th International Conference on Supercomputing, pages 148–

164, Amsterdam, The Netherlands, June 1990. ACM Press.

[108] M. L. Scott. The Lynx distributed programming language: motivation, design and

experience.Computer Languages, 16(3-4):209–233, Sept. 1991.

[109] S. L. Scott. Synchronization and communication in theT3E multiprocessor. In

Architectural Support for Programming Languages and Operating Systems, pages

26–36, Cambridge, MA, Oct. 1996.

[110] N. Shavit and A. Zemach. Diffracting trees.ACM Transactions on Computer Sys-

tems, 14(4):385–428, 1996.

[111] Silicon Graphics, Inc. The SGI Altix 3000 global shared-memory archi-

tecture. http://www.sgi.com/servers/altix/whitepapers/tech

papers.html, 2004.

[112] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, andJ. Dongarra.MPI: The

Complete Reference. The MIT Press, Cambridge, MA, 1995.

[113] Sun Microsystems, Inc. Java 2 platform standard edition 5.0 API specification.

http://java.sun.com/j2se/1.5.0/docs/api.

[114] The Climate, Ocean and Sea Ice Modeling (COSIM) Team. The Parallel Ocean

Program (POP).http://climate.lanl.gov/Models/POP.

[115] The Portland Group Compiler Technology, STMicroelectronics, Inc. PGHPF

compiler user’s guide.http://www.pgroup.com/doc/pghpf ug/hpfug.

htm.

320

[116] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for stream-

ing applications. InProceedings of the International Conference on Compiler Con-

struction, pages 179–196, Grenoble, France, Apr. 2002.

[117] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Teleport

Messaging for distributed stream programs. InProceedings of the 10th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, Chicago,

IL, June 2005.

[118] C.-W. Tseng. Communication analysis for shared and distributed memory machines.

In Proceedings of the Workshop on Compiler Optimizations on Distributed Memory

Systems, San Antonio, TX, Oct. 1995.

[119] C.-W. Tseng. Compiler optimizations for eliminatingbarrier synchronization. In

Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 144–155, Santa Barbara, CA, 1995.

[120] A. Uno. Software of the Earth Simulator.Journal of the Earth Simulator, 3:52–59,

Sept. 2005.

[121] UPC Consortium. UPC language specifications, v1.2. Technical Report LBNL-

59208, Lawrence Berkeley National Laboratory, Berkeley, CA, 2005.

[122] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages:

A mechanism for integrated communication and computation.In Proceedings of the

19th International Annual Symposium on Computer Architecture, pages 256–266,

Gold Coast, Australia, 1992.

[123] Wikipedia. Kahn process networks.http://en.wikipedia.org/wiki/

Kahn process networks.

[124] Wikipedia. Run-length encoding. http://en.wikipedia.org/wiki/

Run-length encoding.

321

[125] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.The SPLASH-2 programs:

Characterization and methodological considerations. InProceedings of the 22th

International Symposium on Computer Architecture, pages 24–36, Santa Margherita

Ligure, Italy, June 1995.

[126] K. Zhang, J. Mellor-Crummey, and R. Fowler. Compilation and runtime-

optimizations for software distributed shared memory. InLCR’00: Selected Pa-

pers from the 5th International Workshop on Languages, Compilers, and Run-Time

Systems for Scalable Computers, pages 182–191, London, United Kingdom, 2000.

Springer-Verlag.

