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Abstract

The Message Passing Interface (MPI) is the library-basegramming model employed
by most scalable parallel applications today; howeves ot easy to use. To simplify
program development, Partitioned Global Address Spaca@ Gnguages have emerged
as promising alternatives to MPI. Co-array Fortran (CARgium, and Unified Parallel C
are explicitly parallel single-program multiple-data damages that provide the abstraction
of a global shared memory and enable programmers to useigde-cmmunication to
access remote data. This thesis focuses on evaluating P&#@8dges and explores new
language features to simplify the development of high parémce programs in CAF.

To simplify program development, we explore extending CAifhvabstractions for
group, Cartesian, and graph communication topologiesweatall co-spaces. The com-
bination of co-spaces, textual barriers, and single vaérexbles effective analysis and
optimization of CAF programs. We present an algorithm farctyonization strength re-
duction (SSR), which replaces textual barriers with faptant-to-point synchronization.
This optimization is both difficult and error-prone for déygers to perform manually.
SSR-optimized versions of Jacobi iteration and the NAS M@ @& benchmarks yield
performance similar to that of our best hand-optimizedarss and demonstrate signifi-
cant improvement over their barrier-based counterparts.

To simplify the development of codes that rely on produarstimer communication,
we explore extending CAF with multi-version variables (M¥V MVVs increase pro-

grammer productivity by insulating application develgp&om the details of buffer man-



agement, communication, and synchronization. Sweep3C5 BA and NAS SP codes
expressed using MVVs are much simpler than the fastest baded variants, and experi-
ments show that they yield similar performance.

To avoid exposing latency in distributed memory systemsexmore extending CAF
with distributed multithreading (DMT) based on the conceptunction shipping. Func-
tion shipping facilitates co-locating computation witht@laas well as executing several
asynchronous activities in the remote and local memory. DM&s co-subroutines/co-
functions to ship computation with either blocking or ndodking semantics. A proto-
type implementation and experiments show that DMT simgliievelopment of parallel
search algorithms and the performance of DMT-based Randosss exceeds that of the

reference MPI implementation.
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Chapter 1

Introduction

Modern scientific progress heavily relies on computer satioihs that are becoming more
complex, memory demanding, and computation hungry. Horyéwve computation power
of individual processor cores is limited by clock frequendyp satisfy the demand, com-
puter manufacturers have shifted their focus towards marallel hardware. Not only
high-end super computers but also personal desktops atoptapgre becoming multipro-
cessor and multi-core. Unfortunately, software develaprpeactices and tools for parallel
and concurrent computing are lagging behind. For paralt@@mamming to flourish, it will
require a programming model that ubiquitous expressiveandeasy to useavhile also
providing transparergerformance portability

Today, thede factostandard for programming scalable parallel systems is thgskige
Passing Interface (MPI) [62]. MPI is a low-level librarygsal parallel programming model
based on two-sided communication that is implemented oonstlevery parallel platform.
In parallel programs based on MPI, application developaxs Hull control over perfor-
mance critical decisions such as data decomposition, ctatipu partitioning, and com-
munication placement. While MPI is a powerful instrumenthia hands of an experienced
programmer, most developers have found that it is difficudt @rror-prone to write parallel
programs using the MPI model. Due to the library-based eabfiMPl communication,
MPI programs are not well-suited to compiler-based impnoset, which leaves applica-
tion developers solely responsible for choreographingranication and computation to
achieve high performance.

There has been significant interest in trying to improve tloglpctivity of parallel pro-

grammers by either using automatic parallelization teghes, such as those found in the



Polaris compiler [14], or language-based parallel prognamy models that abstract away
most of the complex details of library-based high perforoeaoommunication. The two
parallel programming models that have received attentiom fthe scientific community
are OpenMP [42] and High Performance Fortran (HPF) [77]. El@v, both of these mod-
els have significant shortcomings that reduce their ufiityvriting portable, scalable, high
performance parallel programs. OpenMP programmers hiéieedontrol over data layout;
as a result, OpenMP programs are difficult to map efficiemtlglistributed memory plat-
forms. In contrast, HPF enables programmers to explictdlytiol the mapping of data to
processors; however, to date, commercial HPF compilers fagked to deliver high perfor-
mance for a broad range of programs. Experience with earfy¢dihpilers has shown that
in the absence of very capable parallelizing compilers,atucial to provide programmers
with sufficient control to enable them to employ sophisecgparallelizations by hand.

The family of partitioned global address space (PGAS) laggs, including Co-array
Fortran (CAF) [86], Unified Parallel C (UPC) [121], and Titam [66], has attracted inter-
est as a promising alternative to MPI because it offers thsidn of shared memory. CAF,
UPC, and Titanium employ the single-program-multiplead¢ggPMD) model for paral-
lel programming and are simple extensions to widely-usaduages, Fortran 95, C, and
Java, respectively. The global address space abstradttbese languages naturally sup-
ports a one-sided communication style, considered eastemare convenient to use than
MPI's two-sided message passing. With communication amtheynization as part of
the language, programs written in these languages are mueable to compiler-directed
communication optimization than MPI's library-based coomeation; however, in PGAS
languages, programmers retain full control over critiedidions necessary to achieve high
performance.

The goal of this thesis is to evaluate the PGAS programmindehtm identify lim-
itations and find ways to address them by programming modetawement, compiler
optimization, and sophisticated run-time engineeringqoije application developers with

an easier to use, more expressive and ubiquitously avaifablgramming model that de-



livers performance comparable to that of hand-tuned caoales Variety of applications on

a broad range of modern parallel architectures.

1.1 Thesis overview

This research mainly explores Co-array Fortran, a membénePGAS family of lan-
guages. CAF is based on a small set of extensions to FortraD/As is of special interest
for the scientific community because many legacy codes ateewin Fortran and many
parallel high performance codes are developed using Faatrd MPI. To inspire the com-
munity to incrementally port these codes into CAF and to tigvaew CAF applications,
Co-array Fortran must be easy to use and deliver high peaiocenon a range of parallel
platforms.

CAF was designed by Cray for tightly-coupled architectwéh globally addressable
memory featuring low communication latency and high comication bandwidth. The
performance results for a CAF version of the NAS MG benchnpjak were promising
on the Cray T3E [22]. However, it was not clear whether effiti@AF implementations
could be engineered for a range of architectures includirayesl-memory, cluster, and
hybrid platforms to deliver high performance for a broadctpen of applications.

The research described in this dissertation was performéda parts. The first part
was joint work with Cristian Coarfa on the design and implatagon ofcaf c, a research
CAF compiler for distributed- and shared-memory systemsd, several evaluation stud-
ies [30, 47, 48, 31, 32, 33] to investigate the quality of tleF(programming model and
its ability to deliver high performance. Using numerousgtiat applications and bench-
marks, we showed that the performancecaff c-compiled codes matches that of their
hand-tuned MPI counterparts on a range of parallel ardiites. However, developing
high performance programs using classical CAF [87, 86]yadaas difficult and error-
prone as writing the equivalent MPI codes. The second pastim@dependent research
focused on exploring enhancements the CAF programming himdemplify the develop-

ment of high performance codes in CAF.



My thesis is thaextending CAF with language-level communication top@sgmulti-
version variables, and distributed multithreading wilchease programmers’ productivity

by simplifying the development of high performance cobfeparticular,

e Extending CAF with communication topologies will equip grammers with com-
monly used abstractions for organizing program procesaetifate compiler com-

munication analysis, and support more efficient colleatm@mmunication.

e Using communication topologies (in the form of co-spaces) single-valued ex-
pressions enables a CAF compiler to perform conversiorxti&tbarriers into faster
point-to-point synchronization; this relieves the pragraer of the burden of orches-
trating complex synchronization while delivering the leseperformance compara-

ble to that of hand-optimized codes.

e Enhancing CAF with multi-version variables simplifies thevdlopment of wave-
front and other producer-consumer applications by inswdaéhe programmer from

the details of buffer management and synchronization.

e Adding distributed multithreading to CAF enables compotato be co-located with
data to avoid exposing communication latency, simplifieeas to remote complex
data structures, and enables several asynchronous iastivitthe remote and local

memory.

1.2 Contributions of joint work

This section briefly summarizes the contributions of joitrkwith Cristian Coarfa.

First, we provide a brief overview of CAF language constssucén executing CAF
program consists of a fixed number of asynchronous procesgesn The images use co-
arrays to access distributed data. For exampiéeger: : a(n, n) [ ] declares a shared
co-arraya with n x m integers local to each process image. The dimensions ibsad&ets

are called co-dimensions. Co-arrays may be declared fordesmed or primitive types. A



local section of a co-array may be a singleton instance gba tgtther than an array of type
instances. Remote sections of a co-array can be accessesingytibe bracket notation.
For example, procegs can access the first column of co-ar@yrom procesp+1 by
referencinga(:, 1) [ p+1] . A remote co-array access induces one-sided communication
in the sense that only one image knows about the access;rtjet tiamage is not aware of
the communication. A remote co-array assignment trarssiate a one-sided remote write
(PUT). A remote co-array reference translates into a odedsiemote read (GET).

We designed and implemented a Co-array Fortran compiddrc, that supports most
of the original CAF language specification [87]. It is thetfinsultiplatform open-source
CAF compiler. It is a source-to-source translator, basedhenOPEN64/SL [101] in-
frastructure, that transforms a CAF program into a Fortrarpfbgram augmented with
communication and synchronization code tailored to thgetaarchitecture.

We ported several parallel benchmarks and applicatioms@A&F and useataf c to
compile them. We performed extensive evaluation [30, 47,348 32] of these codes to
identify the underlying causes of inefficiencies and perfance bottlenecks on a range of
modern parallel architectures. An important result is desti@tion that a broad variety of
CAF codescan match, and sometimes exceed, the performance of equivadenttuned
MPI variants on a range of shared-memory and cluster prator

We performed a thorough comparison of the CAF and UPC progriagnmodels for
several benchmarks that perform computations on multedsional arrays [33]. It re-
vealed that it is harder to match the performance of MPI caddgsUPC. The main reason
is that UPC uses C as the target sequential language, whikk language support for
multi-dimensional arrays.

We identified performance bottlenecks that kept CAF progrdmom matching the
MPI’s performance, fixed some of them, and suggested coériges to alleviate the oth-
ers untilcaf c’s infrastructure matures.

Thecaf c compiler uses source-to-source translation to leveragfeteaget platform’s

best Fortran 95 compiler to optimize sequential Fortran 1@g@am. The translation pro-



cess must not inhibit the ability of the target Fortran 95 pder to generate high per-
formance code. We investigated different co-array reprtasiens for local and remote
co-array accesses across a range of architectures an@bddompilers. The result of our
study [48] is that it is acceptable to represent co-arrayScasan 95 pointers. However,
the translation process might not convey the shapes anafadlasing for static co-arrays
to the target platform’s Fortran 95 compiler, resulting ubsptimal scalar performance.
We devised a technique, called procedure splitting [4 &t tpresents static co-arrays as
procedure parameters conveying static co-array shapetekaf aliasing to the target
platform’s Fortran 95 compiler. This enabledf c-translated sequential program to have
scalar performance similar to that of an equivalent For@&program.

Lack of efficient communication in parallel programs hirgleerformance and scalabil-
ity. On cluster architectures, communication vector@atnd communication aggregation
are essential to increase the granularity of communicatidn advantage of CAF over
other languages is that communication vectorization cacolpgeniently expressed in the
source code using Fortran 95 triplet notatiomg, a( 1, : ) [ p] . However, array sections
not contiguous in memory lead to strided communication iabt supported efficiently
by the existing communication libraries. Programmers &hage contiguous temporary
buffers and packing/unpacking of communicated data talyeb performance [47]. We
also investigated the possibility of enabling non-blogke@mmunication using hints [47].

In CAF, several process images can access the same shaeBdgrammers must use
explicit synchronization to ensure the correct order ohsaccesses. CAF provides global
barrier and team synchronization. We observed that usirmgebdvased synchronization is
simpler, but results in suboptimal performance and pooiabddy. As expected, point-
to-point synchronization between a pair of images is feater yields higher performance
and scalability [47]; however, this performance comes atdst of greater programming
complexity. Using several co-arrays for communicatioretbgr with point-to-point syn-
chronization might reduce the number of synchronizatiossages and/or remove them

from the critical path [31, 32].



Chapter 4 provides additional details and results of ountjstiudies.

1.3 Research contributions

The second part of this dissertation explores extensiotisee CAF programming model
that simplify the development of high performance paralfglications by either providing
missing language features or enabling better compileyarsalWe explore extending CAF
with language-level communication topologies called paegs, multi-version variables,
and distributed multithreading. The combination of coegs textual co-space barriers,
and co-space single-valued expressions enables synzationi strength reduction, which

helps a CAF compiler to replace textual barriers with fagt@nt-to-point synchronization.

1.3.1 CAF communication topologies — co-spaces

CAF differs from the other PGAS languages in that progransnesiplicitly specify the
target image of a remote co-array access. For instajce] references the portion of
co-array data located in images memory. A co-array can have several co-dimensions
and its declaration defines a co-shapg, i nt eger a[ 2, *] arranges process images
into a2 x 3 Cartesian grid without periodic boundaries when the nurobprocess images
is 6. However, co-shape has several disadvantages describetbihin Section 5.1. The
topology can be incompletely filled if the number of imagesasdivisible by the product
of co-shape dimensions. Co-shape provides only one typerofrzinication topology for
all process images forcing programmers to re-implemerdltgpes of other types that are
more suitable for the application needs. In turn, this ndy eamposes a burden on the
programmers but also complicates compiler analysis.

We explore replacing the notion of co-shape in CAF with supfow group Cartesian
andgraphcommunication topologies, based on the ideas of MPI comoabmis and pro-
cess topologies [62, 112]. In CAF, an instance of a commutioicdopology is called a
co-space Co-spaces provide reusable abstractions for organipplication’s images into

groups with Cartesian or graph communication topologiak specifying the target of a



remote co-array access. Each co-space has a set of intenf@tens that enable program-
mers to specify communication targets in a systematic wayddition, a CAF compiler
can use these functions to symbolically analyze a numbesrahton communication pat-

terns, which enables several powerful communication andhepnization optimizations.

1.3.2 Synchronization strength reduction

We present an algorithm for one such optimization, callegbkyonization strength reduc-
tion (SSR). Where legal, SSR tries to replace barriers vagheir point-to-point synchro-
nization. To do so successfully, it requirextual co-space barrierand co-space single
valuesdescribed in detail in Chapter 6, which are based on simdacepts from Tita-
nium [66, 75]. A textual barrier guarantees that images @besthe same barrier statement.
A single-valued expression evaluates to the same value mua of images. Single-valued
expressions, used in control statements sudhFasTHEN- EL SE, enable the compiler to
reason about the control flow of a group of images. We expbaeneling CAF with textual
co-space barriers and co-space single-value hints to @i&8R. We focus on optimizing
common communication patterns. For instance, when evesgénaccesses a co-array on
its left neighbor in a Cartesian topology. If such a statemeexecuted by images of a
co-space and the target image is specified via co-spacéaicgeiunctions with co-space
single-valued arguments, a CAF compiler would be able tbyaeahe communication pat-
tern. Such analysis enables every co-space image to datethe origin(s) of one-sided
communication locally, without the need to contact otheages. Using this knowledge,
in certain cases a CAF compiler might be able to replace &Xtarriers and one-sided
communication with two-sided communication.

SSR works within procedure scopes that use only structuratta flow in the form
of | F- THEN- EL SE statements anBO loops. Without inter-procedural communication
analysis or automatic procedure inlining, its applicaypiis limited. We explore a set of
SSR compiler directives to overcome this limitation unitkr-procedural analysis is avail-

able. We implemented prototype support for synchronizagioalysis and SSR ioaf c.



Several SSR-optimized CAF codes annotated with the SSRtidies show performance
comparable to that of hand-coded versions that use poipbitat synchronization and are
noticeably faster than their barrier-based counterpatis.details of CAF program analy-

sis and SSR can be found in Chapters 6 and 7.

1.3.3 Multi-version variables

PGAS languages are concurrent in that several threads ofigxe can access the same
shared variable simultaneously either locally or using-sided communication. The pro-
grammer is responsible for synchronization of these trgeall typical communication
pattern found in wave-front and producer-consumer apijpdica is sending a stream of
values from one processor to another. The processor tharages and sends values is
called the producer; the processor that receives the vaduealed the consumer. CAF
implementation of such a producer-consumer pattern tiediyihigh performance is not
trivial for a distributed memory machine [31, 32]. Imagesnsmit data using co-arrays
as communication buffers. If a consumer uses only one conuation buffer to accept
data, the producer has to wait for the consumer to finish usiadguffer before sending
a new value. This results in an algorithm that is not asynoytolerant. To obtain high
performance, the programmer has to manage several comationibuffers and use point-
to-point synchronization [31, 32]. In fact, developing Bumdes using MPI's two-sided
buffered communication is easier.

We explore extending CAF witmulti-versionvariables (MVVs) to simplify develop-
ment of wave-front and other producer-consumer codes. AWVMEn store more than
one value. A sequence of values is managed with the sematicstream: the producer
commits new values and the consumer retrieves them in the sater. MVVs increase
programmer productivity by insulating the programmer fritra details of buffer manage-
ment and synchronization. Producer-consumer codes esquteta MVVs are cleaner and
simpler than their hand-optimized counterparts, and exprts show that they deliver

similar performance.
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1.3.4 Distributed multithreading

CAF provides co-arrays to efficiently access remote arraysaalar data. However com-
pared to the other PGAS languages, it fails to provide efficienguage constructs and
semantics for accessing complex data structures suchtaighd trees located iemote
memory. We explore extending CAF withstributed multithreadindDMT) to avoid ex-
posing communication latency. DMT is based on the concefuradtion shipping, which
facilitates co-locating computation with data as well aaldes several asynchronous ac-
tivities in the remote and local memory. DMT usss-subroutinesand co-functions by
analogy with co-arrays, to spawn a new thread of computdtically or remotely. We
explore the impact of DMT on the CAF execution model and sdiosuof co-subroutine
parameter passing. A prototype implementation and exgertissshowed that DMT sim-
plifies development of parallel search algorithms withoutedicated master; and DMT-
based RandomAccess [1] code, which performs asynchrommae®m updates of a huge

distributed table, exceeds that of the standard MPI verfsioa medium-size cluster.

1.4 Thesis outline

Chapter 2 reviews several approaches to parallel prograghamd, where applicable, com-
pares and contrasts them with our solutions. Chapter 3 gesibackground information
necessary for understanding our approaches and methaoe®iogChapters 4-9. Chap-
ter 4 describes interesting details of work with Cristiara@a oncaf c engineering and
performance evaluation studies. Chapters 5, 6 and 7 presesgaces, program analysis
and SSR. Chapters 8 and 9 focus on multi-version variablgsliatributed multithreading.
Finally, Chapter 10 summarizes the results of our researdidescusses promising future

research directions.
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Chapter 2

Related Work

This chapter starts with an overview of existing Co-arraytfam compilers. Next, it sum-
marizes several programming models and parallel progragmparadigms with the em-
phasis on features and optimization techniques relatedasetaddressed in this disser-
tation. Where appropriate, our ideas are compared andastett with the existing ap-

proaches.

2.1 CAF compilers

As of this writing, there exist only two CAF compiler implemtations: one is available
on Cray X1E [37], X1 [36], and T3E [109] architectures, théestis a multi-platform
CAF compiler developed at Rice University [30, 47]. The C&AF compiler is available
only for Cray architectures that provide globally accelesibemory, where each processor
can access memory of other processors through a high-bdtigiow-latency memory
subsystem. These architectures are perfect for CAF. Intfaebriginal CAF specification
was influenced by the assumption of “good” hardware. To trst b&our knowledge,
there is no publication about the design, engineering, gridnazations of the Cray CAF
compiler. However, vector registers on X1 & X1E and E-regjision T3E enable access to
remote co-array data directly, without the need to alloea&mporary in local memory to
store off-processor data for the duration of a computatidris enables streaming remote
data directly into a local computation. This approach rezgiminor modifications to the
existing Fortran compiler, but it cannot be employed fom#ectures that lack globally
accessible memory. Several studies [22, 91] showed thagdHermance of several CAF
codes (NAS MG and LBMHD) compiled with the Cray CAF compilecceeded that of
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the equivalent MPI versions on these architectures for esons. First, PUT/GET can
be translated into lightweight hardware operations, whécbhheaper than performing a
procedure call for MPI send/receive. Second, MPI may usaexémory copies to perform
two-sided communication, increasing cache pressure.

The other CAF compiler i€af ¢ developed at Rice Universitycaf ¢ is a multi-
platform open-source compiler that, in contrast to the Cray CAF alemgenerates code
for a range of cluster and shared-memory architectuwra$c is a source-to-source trans-
lator. It transforms a CAF program into an equivalent For®a program augmented with
communication and synchronization code. To accommodattes! architectures;af c
uses intermediate temporaries to hold off-processor dathé duration of a computation
and utilizes the ARMCI [83] or GASNet [17] library to perforUT/GET. We showed
that the performance of a broad variety of CAF codes compii¢iiicaf ¢ can match that
of their MPI counterparts. We do not have an implementationad ¢ for Cray architec-
tures and did not perform a comparison study. We presentaetbtdescription ot af ¢

design choices and engineering effort in Chapter 4.

2.2 Data-parallel and task-parallel languages

In this section, we provide a detailed overview of severahgerallel and task-parallel
models such as High-Performance Fortran (HPF) [52, 77],n®e[42], UC [11], and
SUIF system [3] for automatic parallelization. We first diss how the analysis and opti-
mization of Partitioned Global Address Space language@&@®Gwhich include Co-array
Fortran (CAF), Unified Parallel C (UPC), and Titanium, aredent from those of data-
parallel and task-parallel languages.

The intent of data-parallel and task-parallel programntamguages is to simplify par-
allel programming by providing high-level abstractions &xpressing parallelism. How-
ever, mapping these abstractions onto parallel architestefficiently is a difficult task.
In these models, programmers do not have full control ovgreaformance critical paral-

lelization decisions such as data decomposition, comipuatpartitioning, data movement,
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and synchronization. They must rely on compilers to delnigh performance.

In general, compiler implementations of task- and datalfgilanguages have not been
able to deliver high performance for a variety of applicai@n a wide range of parallel
architectures, especially for distributed-memory platfs. As a consequence, these pro-
gramming models have not received general acceptance.udoweliance on the compiler
to deliver performance has spurred development of many gdengmalysis techniques and
communication/synchronization optimizations.

Unfortunately, not all technology for analysis and optiatian of data- and task-parallel
languages can readily be adopted for analysis and optimizat PGAS languages. CAF,
UPC, and Titanium arexplicitly-parallelsingle-program multiple-data (SPMD) languages.
They can benefit from traditional analysis and optimizateshniques, such as scalar opti-
mizations and communication vectorization/aggregatioat, rely on control flow and val-
ues of asingleprocess of an SPMD parallel program. However, new comaighnriology
is necessary to relate control-flow and values of several SPMcesses.

In data- and task-parallel languages, the compiler dedlsstriucturedparallelism ex-
pressed via sequential program statements, data-disbribdirectives, or special parallel
execution statements/directivesd, SPMD regions or parallel loops). The programming
model exposes the structure of parallelism to the comphlatr ¢ften can analyze and “un-
derstands” this structure. The analysis of explicitlyghi@t languages such as CAF is
different. A programmer creates an arbitrary parallel ppogand parallelism is defined by
the program’s semantics. In this respect, the parallelssianstructured” and the compiler
mustinfer its structure to analyze and optimize communication andssonization. One
contribution of this work is a technique for imposing comgdign structure on CAF pro-
grams that both simplifies program development and enablgss and optimization of
communication/synchronization.

We now describe several data-parallel and task-paraltgjramming models and ap-

proaches to their analysis and optimizations in more detail
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2.2.1 High-Performance Fortran

High Performance Fortran (HPF) [52, 77] is a data-paradieblage. To use HPF, a pro-
grammer annotates a sequential Fortran program with dsti@bdtion directives. For
distributed-memory systems, an HPF compiler transfornis phogram into a parallel
SPMD program, in which the data is distributed across thesad the system. HPF com-
pilers use mathematical representation, expressed asdnsor sets, for data elements
owned by each processor. These sets are used to determipatedion partitioning guided
by theowner-computes rulg] — the owner of the left-hand side of each assignment must
compute the right-hand side expression. Analysis of siyftect references is used to de-
termine off-processor data necessary for computation.anbéysis starts with a sequential
program and the compiler can leverage traditional analysds optimization technology.
Since the compiler is solely responsible for transforming sequential program into an
SPMD program, it “understands” the computation structarg, global control flow, and
can generate efficient two-sided communication.

There are several implementations of HPF compilers thaalaleeto deliver good per-
formance primarily for regular, dense scientific codes aresad architectures. Chavarria’s
thesis [24] and his joint work with Mellor-Crummey [26, 23]j@ved that, using the dHPF
compiler, it is possible to match the performance of MPI Eggular, dense scientific codes
on several architectures. A notable feature of dHPF is stifpoogeneralized multiparti-
tioning [27, 43]. Gupteet al. [64] discuss the design, implementation, and evaluation of
the pHPF compiler done at IBM Research; they show good sjpseidu several regular
benchmarks. PGHPF [115, 19] is a commercial HPF compilenfiki&s1. Both pHPF and
PGHPF have limited support for communication optimizatbébioops with carried depen-
dence along distributed dimensions. Sakagatral.[105] showed that IMPACT-3D plasma
simulation code compiled with HPF/ES [120] achieved 45%efpieak performance when
running on 512 nodes on the Earth Simulator [51].

While HPF improves programmability and can deliver highf@enance for regu-

lar scientific applications, it has two disadvantages thatvgnted HPF from achieving
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widespread acceptance. First, programmers have littleaaver the parallelization pro-
cess;i.e, if an HPF compiler makes a wrong parallelization decisiors very hard for
the programmer to intervene and undo the “harm”, and anyMetgion requires immense
knowledge about the compiler internals. As a consequeheeg is not enough evidence
that HPF can deliver performance for a broad class of agmitst Second, a good HPF
compiler implementation requires heroic effort, which msklPF less appealing as a prag-
matic programming model. In contrast, CAF sacrifices prognability, but allows pro-
grammers to retain much more control over performancecatitiecisions to obtain the
same level of performance as that of hand-optimized MPI €otteaddition, the effort to

implement a CAF compiler is modestg, refer tocaf ¢ engineering details in Chapter 4.

2.2.2 OpenMP

OpenMP [42] is a task-parallel directive-based prograngnmiodel that offers a fork-join
model for parallelism with a focus on loop parallelizatiémcomparison to the CAF, UPC,
and Titanium languages, OpenMP provides no means to theggnoger for controlling the
distribution of data among processors. As a result, it iy Verd to map efficiently onto
a distributed-memory architecture. There are two major@gghes to optimize OpenMP
for a cluster architecture. The first approach is to use destatbution directives. For ex-
ample, Chapmast al. [23] proposes a set of data-distribution directives, basedimilar
features of HPF, to enable programmers to control dataitgealOpenMP. However, this
complicates OpenMP as a programming model and requiretasicampiler technology
as for HPF to deliver high performance, which is hard for aldrolass of applications. As
of this writing, the OpenMP specification [16] does not haagaedistribution directives.
The second approach is based on clever engineering of thienaufayer to exploit data
locality, perhaps, with the help of the compiler. Nikolopmsiet al. [85] describes and
evaluates a mechanism for data-distribution and redigtab in OpenMP without pro-
grammer intervention. The approach is effective for fiximgpinitial page placement on

a coherent-cache non-uniform memory access architeataMJUMA). Hu et al. [68] de-
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scribes and evaluates an implementation of OpenMP thattheefreadMarks software

distributed shared-memory (SDSM) system [76]. Their expents show that speedups
of multithreaded TreadMarks programs are within 7-30% efNMtP| versions for several

benchmarks on 16 processors (an IBM SP2 cluster of four poocessor SMPs). Clus-

ter OpenMP [70, 67] is a commercial implementation of OpenfigiPclusters based on

SDSM. Hoeflinger [67] compares speedups of several apgitatun on an Itanium2-

based cluster using Cluster OpenMP and on an Itanium2-lfesedvare shared-memory
machine using OpenMP. The results show that it is possibéehieve a good percentage
of the performance of a hardware shared-memory machine tustecby using Cluster

OpenMP.

While some codes parallelized using OpenMP can achieve geddrmance on small-
scale SMPs and even clusters, in our study [48], we obsehatddr other codes OpenMP
does not scale well even for non-uniform memory access (NYstrared-memory archi-
tectures such as SGI Altix [111]. In general, it is hard toogtftly parallelize codes that
use multi-dimensional arrays [126]. Using OpenMP might lgmad parallelization strat-
egy for applications that have high data localigyg, primarily stride one accesses) and
little fine-grain synchronization. The recent shift tonardulti-core multiprocessor archi-
tectures might increase the significance of OpenMP as a @muging model to achieve
performance on multi-core multiprocessor nodes. Howe&ypenMP (especially, without
data-distribution directives) is unlikely to deliver gopdrformance on large-scale cluster
architectures. OpenMP can be used together with CAF to gxpdmallelism available
within a multi-core multiprocessor node. In this combioatiCAF provides data locality
and inter-node parallelism, while OpenMP allows to palakecode accessing only local

data to exploit intra-node parallelism.

223 UC

UC [11] uses thendex-setdata-type angbar keyword to explicitly specify parallel ex-

ecution of statements, which is more suited to shared-mgmachines.par specifies
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a well-defined parallel region “understandable” by the cibenp The compiler performs
data mapping according to built-in heuristics and can péendata dynamically, if neces-
sary [95]. The programmer can also provide a hint how the demghould map the data.
The compiler computes a synchronization graph for geoh region based on the sequen-
tial data dependence graph. Renaming (extra storage) igmdregnt are used to reduce the
number of interprocessor dependencies. Other dependamcist be preserved by using
synchronization.

Prakaslet al.[95] devised a set of techniques to reduce the number ofdvaraind/or
to replace barriers with cheaper clustered synchronizatidata parallel languages. They
demonstrate them for UC [11], which has thar construct to specify a parallel region.
They use a greedy algorithm to minimize the number of barmeicessary to preserve the
dependencies in thear region. They eliminate barriers by breaking each analyzdhta
dependency (subscripts can be inverted at compile timé)seihd/receive communication
and a temporary to store the result of the send. In additi@y, tise run-time techniques
such as fuzzy barriers [65] and non-blocking send/receiverther optimize the program.
Our SSR algorithm relies on the analysis of explicitly-p@te&SPMD CAF programs to
detect communication patterns via the interpretation dkstipts used to reference off-

processor data.

2.2.4 Compiler-based parallelization

The SUIF [3] parallelizing compiler performs automatic glbglization of a sequential
source program. Parallelism is created by the compiler &ndtsred as a collection of
fork-join SPMD regions synchronized with barriers. Theseriers may lead to oversyn-
chronized code and cause unnecessary overhead. Tsengpfes8hts an algorithm for
eliminating barriers or replacing them with counters by &yimg communication analy-
sis developed for distributed memory machines [118]. Compation analysis determines
how data flows between processors. If processors accessmipisocessor data in two ad-

jacent SPMD regions, they do not communicate and no synaton is required. Thus,
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if communication analysis detects that the producers andwuers of all data shared be-
tween two SPMD regions are identical (the same procesdwe)parrier between these

two regions can be eliminated. If inter-processor data nm@ré is necessary, it may be

possible to replace a barrier with counter-based poirmgeiot synchronization. Since the

excessive use of counters is not efficient, the compiler thsa, one counter per a pair of

processors, only for the cases of simple communicatioepetisuch as nearest-neighbor,
one-to-many, and many-to-one. These patterns are idendised on the system of linear
inequalities corresponding to data movement between psocs.

SUIF parallelizes a sequential (implicitly-parallel) gram. CAF is explicitly-parallel
with explicit data movement and synchronization. The nigva our communication anal-
ysis is to use a combination of co-spaces, textual co-spaceets, and co-space single-
valued expressions to infer communication patterns in a @atgram. If profitable, our
synchronization strength reduction algorithm replaceasidrs with more efficient point-
to-point synchronization for the inferred patterns. We nggfy and wait, which are sim-
ilar to CAF'snot i f y/wai t, unidirectional point-to-point synchronization prirmvigis per
Co-space processor group so that notify/wait of differenspaces do not interfere. The
implementation of co-space notify and wait conceptuallgsugairwise counters between
each pair of co-space processors. However, we suggesatatiga counter state on de-
mand at runtimej.e., to create a real counter for a pair of processors iff parpadint
synchronization between them happens. This is necessayuice the memory overhead
of having a counter for each pair of processors on a large-geaallel machines such as

Blue Genel/L [56].

2.3 PGAS programming models

There are three Partitioned Global Address Space (PGAS)@grogramming languages:
Co-array Fortran, Unified Parallel C (UPC) and Titanium. yhaee based on Fortran, C,
and Java, respectively. Each PGAS language extends itddagsage with a set of con-

structs to enable explicit SPMD parallel programming. Ehiemo “best” PGAS language.
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Each one offers some advantages and has some disadvatitegisely that the choice of
the language would be determined by its base sequentialdgeg In this respect, CAF has
an advantage, because many high performance scientifis toalierequire parallelization
are implemented in Fortran. In the following, we compare G#th UPC and Titanium as

well as review compiler analysis technology for Titanium.

2.3.1 Unified Parallel C

UPC [121] is an explicitly-parallel extension of ISO C thapports a global address space
programming model for writing SPMD parallel programs. I tdPC model, SPMD
threads share a part of their address space. The sharedispageally “flat”. Physi-
cally, it is partitioned into fragments, each with a speeis$ociation (affinity) to a given
thread. UPC declarations give programmers control ovedisigibution of data across
the threads; they enable a programmer to associate datahsithread primarily manip-
ulating it. A thread and its associated data are typicallppea by the system into the
same physical node. Being able to associate shared data Witead makes it possible to
exploit locality. In addition to shared data, UPC threads ltave private data always co-
located with its thread. UPC supports dynamic shared metygation. UPC provides
theupc _f oral | work-sharing construct that distributes loop iterationsaading to the
loop affinity expression that indicates which iterationsua on each thread. UPC adds
several keywords to C that enable it to express a rich setigdtprand shared pointers.
UPC has a memory model with relaxed and strict variables egses to relaxed variables
can be reordered for performance, while strict variables lwa used for language-level
synchronizationg.g, point-to-point synchronization [33]. The language défer range
of synchronization constructs. Among the most interesyigchronization concepts in
UPC is the split-phase fuzzy barrier [65], which enablesrlepping local computation
and inter-thread synchronization. Bonachea [18] propassst of UPC extensions that
enable strided data transfers and overlap of communicahdrcomputation.

CAF is different from UPC in that it does not provide the ahstion of a “flat” shared
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address space. CAF has a simple two-level memory model acéd And remote memory.
In CAF, the programmer explicitly specifies the target ofreeemmunication or synchro-
nization. Thus, UPC is more convenient to use for irreguta-firain codes. On the other
hand, CAF enables a compiler to distinguish between locghlamote accesses at compile
time for free: co-array accesses with brackets are usuaihpte, co-array accesses without
brackets are always local. This enables CAF compilers tonige local references well,
while in UPC, the programmer needs to cast shared pointéosabC pointers to increase
efficiency of local accesses [33]. Such casting elimindtesun-time overhead associated
with each shared-pointer dereferencing. We found that émsd scientific codes, it is es-
sential to use C99est ri ct local pointers to indicate lack of aliasing to C compilers to
achieve better scalar performance [33].

CAF is based on Fortran 95 and inhemtsilti-dimensionabrrays. The lack of multi-
dimensional arrays in C and UPC can be an obstacle for adgiéwgh performance due
to less precise dependence analysis [33]; because withaltitadimensional arrays, the
compiler must analyze linearized polynomial array sulpgsywhich is a much harder task
than analysis of multi-dimensional vector subscripts fadtirdimensional arrays. CAF
provides array and co-array sections enabling programtoersnveniently express com-
munication vectorization in the source code. In UPC, progners must use library-based
primitives [18] to express bulk and strided communicatenlear disadvantage compared
to CAF. In CAF, co-arrays are equivalent to UPC relaxed \deiss UPC'’s strict variables
can be used to implement custom synchronization primiue as unidirectional point-
to-point synchronization [33]. It is possible to impleméantguage-level synchronization
in CAF as well; to ensure ordering of co-array accessesranogiers can use the memory

fence and CAF’s synchronization primitives.

2.3.2 Titanium

Titanium [66] is an explicitly-parallel SPMD language bdsm Java. It has a few advan-

tages over both CAF and UPC, mainly in what Java can offer Granlan 95 developers.
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It is an object-oriented, strongly-typed language. It hadbgge collected memory as well
as zone-based managed memory for performance. It suppattsdimensional arrays.
Remote memory is accessed using global pointerd; tloal type qualifier is used to in-
dicate that a pointer points to an object residing in thelldeanesne (memory), thus com-
piler optimizations are possible for local references. $tieng type system guarantees
compile-time deadlock prevention for programs that usg textual barriers for synchro-
nization; however, the current version of Titanium allow$yglobal textual barriers. Since
every process of a parallel program must participate in bajlextual barrier, applications
such as CCSM [50] that operate in independent, interactiagps of processes cannot be
readily expressed in Titanium, using only global textuatieas for synchronization, with-
out major re-engineering. The focus of Titanium languagggieand implementation is
on providing sequential memory consistency without sawnidj performance [74]. It was
shown that Titanium can match the performance of FortrantHdiPthe NAS MG, CG,
and FT benchmarks on several architectures [45]. Titarsurgss-language application
support can alleviate sequential code performance issuealling optimized computation

kernels implemented in Fortran 95 or C.

Compiler analysis for Titanium

Aiken et al.[6] use barrier inference to verify that an SPMD programiis&urally correct;
i.e., the program executes the same number of barriers. Thegred the notion of
single-valuedexpressions that evaluate to the same value on every prodésy used
the si ngl e type qualifier to mark single-valued variables and devedopeset of type
inference rules to statically verify that an SPMD progranstisicturally correct. They
proved their ideas on a simple procedural languagend adapted them for Split-C [40]
and Titanium. However, their analysis is limited only tolggbtextual barriers.

Kamil and Yelick [75] usetextually aligned barrierqreferred to as textual barriers
hereafter) as well as single-valued expressions to funtherove the analysis of Titanium

and to statically verify that a program that uses only teidbaariers for synchronization is
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deadlock-free. Textual barriers enforce all processegdowge the same barrier statement.
Thus, the control flow graph (CFG) [35] can be partitionedrpiiove the precision of
the concurrency analysis [74], which determines the setldtatements that may run
concurrently. This reduces the number of memory fencesssacg to provide sequential
consistency in Titanium [74]. Their analysis is also lindite global textual barriers.
Global textual barriers pose a severe limitation when immgleting loosely-coupled ap-
plications such as CCSM [50] that execute in independetatranting groups of processes.
Our analysis in Chapter 6 uses textual co-space (or groupelsmand co-space single-
valued expressions as compiler hints rather than eleméats/pe system for two reasons.
First, type inference for group textual barriers and groagls values is hard, if not im-
possible, in the case of several groups, and no inferenceithigns exist to date. Second,
CAF cannot be made a strongly-typed language. Aigeal. [6] use the CFG and sin-
gle static assignment form (SSA) [41] to derive constraiatssingle-valued expressions.
Solving the system of these constraints yields the maximtabssingle values. This ap-
proach can be adopted for the inference of single values¢orsgpace” in a scope where
synchronization is done only via textual co-space barmérthe same co-spacg. We
devised a simpler forward propagation inference algorignesented in Chapter 6. While
our solution is less general and limited to structured adrtow, it is sufficient for the
synchronization strength reduction (SSR) optimizatioespnted in Chapter 7, that works

only for structured control flow.

2.3.3 Barrier synchronization analysis and optimization

Jeremiassen and Eggers [72] use the presence of barrieggdorp non-concurrency anal-
ysis of explicitly-parallel programs. Their algorithm, del on barrier synchronization
graph and live variable analysis, partitions the prograim &nset of non-concurrent phases
that are delimited by barriers. A phase is a set of statentleatsnay execute concurrently
between two global barriers. They apply their analysis thuce false sharing. It is not

clear whether SSR can benefit from non-concurrency analyg@nmunication analysis
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for SSR uses textual co-space barriers to rely on the facathao-space processes execute
the same program statement.

Darte and Schreiber [44] present a linear-time algorithmnimimizing the number
of global barriers in an SPMD program. The authors acknogédetthat minimizing the
number of barriers might not yield best performance becapsenized barrier placement
may introduce load imbalance. SSR replaces textual coedpaiers with point-to-point

synchronization and does not introduce load imbalance.

2.4 Message-passing and RPC-based programming models

PGAS languages use one-sided communication to accessoctgs data. Since several
threads of execution can access the same shared data,ahgsades are concurrent. Pro-
grammers must usexplicit synchronization to ensure the proper ordering of accesses t
shared data. In contrast, programming models based onitd&d-sommunication do not
use explicit synchronization. In two-sided communicatibath communication partners
participate in a communication event, which synchronibhesrtimplicitly. For some com-
munication patternsg.g, producer-consumer, two-sided communication is morerahtu
and simpler to use. In addition, an implementation of a twie@ mechanism can use extra
storage to buffer communicated data for better asynchmeyance between the producer
and consumer. In the one-sided programming model, progeashave to manage all de-
tails of buffering and pipelined synchronization explicib get high performance [31, 32].
In this dissertation, we explore multi-version variablesagractical and efficient solu-
tion to simplify program development of high-performancées with producer-consumer
communication in CAF. We first describe two-sided commutocain MPI. Then we pro-
vide an overview of several programming languages thatgsudate two-sided communi-

cation via the abstraction of a stream/link/channel/pipe.
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2.4.1 Message Passing Interface

MPI [62] is a library-based programming model that is theefactostandard for parallel
programming today. Writing parallel programs using MPI @&d) because programmers
are responsible for managing all details of parallelizatidata decomposition, compu-
tation partitioning, communication, and synchronizatidn return, MPI programs can
achieve high performance and good scalability for a vawégodes. The ability to deliver
performance and availability on almost every platform hanadle MPI the programming
model of choice for parallel computing today.

The strength of MPI is that it can be used with almost any @ogning language.
Program developers do not need to learn another programanggage to parallelize an
application. However, codes written using MPI are hardeogiimize because MPI is
a library, which limits opportunities for compiler optingidon. Communication in MPI
programs is expressed in a detailed form, which makes it toaadalyze.

Ogawaet al. [89] developed the Optimizing MPI (OMPI) system to reducéwsare
overhead of MPI calls especially for applications with figeained communication. OMPI
removes much of the excess overhead of MPI function callsfMyyl@ying partial evalua-
tion techniques, which exploit static information of MPllsalt also utilizes pre-optimized
template functions for further optimization. OMPI work datfrom a decade ago; commu-
nication latency is now much more significant than CPU ovadhd@ue to MPI function
calls. However, reducing the overhead of library functiafiscsto perform communication
and synchronization is likely to improve the performanceades with a lot of fine-grain
communication, especially pipelined wavefront appli@as, in any parallel programming
model. In this respect, CAF provides better performancéapdity. For example, a CAF
compiler could generate code to use load/stexg,(via F90 pointers) to perform fine-
grain accesses on a shared-memory architecture, elimgte overhead of function calls
altogether [48].

Compared to MPI, CAF offers programmers more convenieniasyfor communica-

tion based on Fortran 95 array sections as well as type/sttageking for co-array ac-
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cesses. A CAF compiler has more opportunities for efficiaitbting of generated code
to the target architecture and run-time layer without thedn® modify the source pro-
gram. For example, it can generate code to use CPU load/storector instructions
for remote co-array accesses on shared-memory archigectdr CAF compiler can also
vectorize and/or aggregate remote co-array accesses sterciuchitectures and generate
non-blocking communication. Our evaluation studies [30Q,48B, 31, 32, 33] showed that
even without compiler support for optimizations, it is pbgsto achieve the same level of
performance in CAF as with MPI. However, achieving high perfance without optimiza-
tions is as hard as for MPI. A part of this thesis exploresrakieg CAF with abstractions
that simplify development of high-performance codes in CAF, the multi-version vari-
ables to compensate for the lack of two-sided communicati@AF.

MPI uses send and receive library primitives to expressdided message passing. An
implementation usually supports two communication mo@agjer and rendezvous com-
munication protocols. The eager protocol is used for smalisages. The send operation
does not require a matching receive to send data; insteadatia is copied into an auxil-
iary buffer on the sender and then communicated to the reGeivis communicated into
an auxiliary buffer on the receiver and then copied to theidlgson, when the receiver
participates in communication. The rendezvous protocoked for large messages; the
sender does not start data transmission and is blocked ¢hisdit a matching receive is
executed by the receiver. The eager protocol enables lastgachrony tolerance, but uses
more memory for buffering and exhibits extra memory copf&sme interconnects such as
Myrinet require that data being communicated resides iisteggd memory. Because MPI
can transfer arbitrary user variables and some of them nsgea @ unregistered memory,
MPI might incur extra memory registration/copying/uniggation overhead. For in-core
scientific applications, a CAF compiler can avoid this oearth by allocating co-arrays in
registered memory without the programmer’s intervention.

CAF’s multi-version variables (MVVs) are a language cowmsty not a library primi-

tive. Thus, they are more amenable to compiler-based amitions. Communication via
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MVVs resembles the MPI eager protocol. The sender knowsdteeas of the destination
memory for each data transfer, which has two advantagesniEmeory can be allocated
from a special memory pook.g, registered memory and extra memory copies can be
avoided at the source (with proper compiler analysis orshiand destination by adjusting
MVV’s Fortran 90 array descriptor (see Chapter 8). To sunmeaiCAF’'s MVVs offer
clean and simple semantics of two-sided communication amddeliver comparable or

better performance than that of MPI's send/receive.

2.4.2 Message passing in languages

Several languages encapsulate two-sided communicateothei abstraction of a stream
(or link/channel/pipe). We believe that these abstrastiare too general, better-suited
for distributed programming rather than SPMD high perfanoeaprogramming. MVVs
provide less generality, but, in our opinion, are more coresmt to use in a broad class
of scientific applications. They can also be optimized toigextra memory copies by
communicating data in-place; this is hard to do for the maeegal stream abstraction.
In addition, some of message-passing languages providtedimapabilities for executing
code in remote process. Our distributed multithreadingudised in Chapter 9 is more
general and flexible.

Lynx. Scott presents Lynx [108] with the abstraction of thek, a two directional
communication channel for type-checked message passinks are first-class objects in
Lynx and can be passed to other processes, supporting dymapalogy changes. Lynx
is well-suited for the programming of distributed systems &lient-server applications.
Because links are a rather general abstraction, enablergirter-program communication,
it is not clear whether it is possible to optimize them to dslithe best performance.

Lynx’s links provide a form of cooperative multithreadinggach communicating pro-
gram. Lynx allows only one active thread per program, andh eaosumer executes code
with run-until-block semantics when it handles a message.wa discuss in Chapter 9,

only one hardware thread of execution per program is notgmtuexploit the parallelism
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available within modern cluster nodes with parallel exegutontexte.g, multi-core mul-
tiprocessors; also, run-until-block semantics are not@mpate for multithreaded high per-
formance computing. In Lynx, consumers can use the “eaglyte¢o unblock producers;
this concept inspired the “remote return”gpl y) concept in distributed multithreading
(see Section 9.3).

Fortran M. Fosteret al. propose Fortran M [54] that usebannelsto plug together
Fortran processes. Channels are used for passing messtgee tasks. Fortran M al-
lows variable message sizes, dynamic topology changesnang-to-one communication.
Compared to MVVs, channels require explicit connection aredharder to optimize.

Strand and PCN. Strand and PCN [53] are compositional programming langsiage
designed by Foster. Strand is commonly used as a coordinianguage to control the
concurrent execution of sequential modules. It has onlglstassignment (definitional)
variables used to communicate values from producers touco&s and to synchronize
them. A stream of values, accumulated in a list, is used tonconicate data; these lists
need to be garbage collected. While Strand is a powerful syimbnd distributed pro-
gramming language, it is ill-suited for numeric codes. FPaog Composition Notation
(PCN) improves on Strand in combining declarative and impe programming. Both
Strand and PCN are hard to optimize because of single-assigfnvariables and garbage
collection. It is not clear whether they can deliver perfanoe of hand-optimizes MPI or
MVV-based codes.

Teleport Messaging.Thieset al. proposeTleleport MessaginfL17] to solve the prob-
lem of precise handling of events across parallel systermtrGomessages that change
the state are treated as special data messages. When areeeeives a control message,
it invokes the associated handler that changes the comdsmpstate. Because control
messages flow with the data in the stream, data dependemé@sesthe precise timing
(with respect to the data stream) of executing the actionechby a control message. This
approach enables optimizing the signal processing ajpigitss modeled in a Cyclo-Static

Dataflow languages.g, Streamlt [116], by exposing the true data dependence toaime
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piler. Teleport Messaging provides limited capabilities €xecution of code in a remote
process; however, it is too restrictive for multithreadingnany scientific applications.
Space-Time Memory. Ramachandraet al. developed the&Space-Time Memorgb-
straction [96] — a dynamic concurrent distributed datacitrite for holding time-sequenced
data. STM is designed for interactive multimedia applmasito simplify complex buffer
management, intertask synchronization, and meeting safitime constraints. STM has
globally knownchannelsvhere threads can PUT a data item with a timestamp and GET
a data item with a timestamp. The semantics of PUT and GET @g-in and copy-
out. Unused memory is globally garbage collected. If useelctly in the program, STM
requires programmers to establish connections, which is\@cessary with MVVs, and
pack/unpack strided transmitted data, which is usuallynemtessary with MVVs. We
could use STM as a vehicle to implement MVVs; however, as ishiliiting, an STM im-
plementation is available only for a cluster of Alpha SMPsmimg Digital UNIX. Also, an
STM-based implementation of MVVs is likely to have more dwaad than a lighter-weight

implementation based on Active Messages (AM).

2.5 Concurrency in imperative languages

Another approach to simplify the development of concurgograms is to enable vari-
ables that can hold infinitely many values managed with tineasgics of a stream. The
simplicity comes from removing the anti- and output dep@&wtes due to variable memory

reuse.

2.5.1 Single-Assignment C

Grelck and Scholz present Single Assignment C (SAC) [59]ueely functional array
processing language. Programming in SAC can be thought pfaggamming in Static
Single Assignment form (SSA) [41]. Each assignment is dowe & new memory loca-
tion, thus, there are no anti- and output data dependentiésle this simplifies many

compiler optimizations and enables detection of paralte)ithe compiler is fully respon-
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sible for code optimization. SAC is a functional programgiianguage and, in practice,
does not offer a “natural” programming style for imperatisaguage programmers. Sev-
eral studies [59, 58, 60] reported reasonable performaemdts for a few benchmarks,
including NAS MG and FT, on a 12-processor SUN Ultra Entesigpd000 shared-memory
multiprocessor; however, no comparison was done with eiigliparallel models such as
Fortran+MPI, CAF, or UPC. As of this writing, there is no irepientation of SAC for a

cluster. It would be interesting to see whether a functiter@guage without the notion of
data locality can be optimized to deliver high performanodasge-scale cluster architec-

tures for a broad class of scientific applications.

2.5.2 Data-flow and stream-based languages

Streams and Iteration in a Single Assignment Language —+[3isa- is a general-purpose,
single assignment, functional programming language wrtbhtsemantics, automatic par-
allelization, and efficient array handling. The strong pahSisal is that programs are
deterministic, regardless of platform or environment. é8avSisal compiler implementa-
tions for distributed- and shared-memory platforms wepsred [20, 55, 107, 57]. Good
performance was demonstrated for small-scale parallehimes. It would be interesting
to see whether Sisal, which does not offer programmers amns® control data distri-
bution, can be optimized to deliver high performance ondasgale distributed-memory
machines such as Blue Gene/L.

Many data-flow and stream-based domain specific languaggs,YAPI [46], used
for signal processing systems are based on Kahn processmist(KPNs) [123], a dis-
tributed model of computation where a group of processesraected by communication
channels. Processes communicate via unbounded firsstrofit (FIFO) data channels.
Processes read and write atomic data elements or tokensafndnio channels. Writing
to a channel is non-blockingge. it always succeeds and does not stall the process, while
reading from a channel is blockinge., a process that reads from an empty channel will

stall and can only continue when the channel contains sefficlata items. Given a spe-
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cific input (token) history for a process, the process mustdierministic in that it always
produces the same outputs (tokens). Timing or executiogr @iorocesses must not affect
the result and, therefore, processes are not allowed tatestput channel for existence
of tokens without consuming them. The KPN computation maslébo restrictive for
general-purpose scientific applications. It is also umjikkat the abstraction of channels
that can hold infinitely many tokens in-flight would be opta®d in CAF to deliver the
best performance. We limit the number of unconsumed vesdiwat can be buffered by a
multi-version variable and block the producer that triesdgonmit another value until one

of the buffered values is consumed.

2.5.3 Clocked final model

Saraswatt al. proposed theclocked final(CF) model [106] to address the difficulty of
concurrency in imperative languages and express condwapghcations in a natural way
similar to sequential code. CF guaranties determinacy aadldck freedom. Under CF,
each mutable locatiom.g, shared scalar or an array element, is associated vaithched
streamof immutable (final) values. Writers write the location affelient stream indices
and readers consume the locations at a particular indeketétis no value to read at the
index, the reader blocks until the value is available. Theash is conceptually infinite.
In practice, the number of items buffered for a stream shbeldounded, and analysis
is required to determine the right buffer size. While thecapt looks appealing, experi-
mental evidence is required to prove that the CF model carpbmized to deliver high
performance for a variety of codes on a range of parallefgiais. In our approach, pro-
grammers explicitly specify which variables are multisien and, thus, will be used for
data streaming. The number of versions that an MVV can hdldite and can be specified
explicitly by the programmer. We chose to support only “P&tyile” (push strategy) multi-
version variables (MVVs), since they deliver the best penfance for distributed-memory
machines; we could also extend MVVs to support “GET-stypeil( strategy) retrieves, but

this inherently exposes communication latency. There eamutiple producers that com-
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mit values into an MVV located on process imagéut there is only one consumer process
image —p — that retrieves vales locally. While MVVs are less gendnahtthe CF model,

they can simplify development of many parallel codes antvelehigh performance today.

2.6 Function shipping

The distributed multithreading for CAF evaluated in thisriwes based on the concept of
function shipping. While function shipping has been usedhany contexts, the novelty of

this research is the first design and evaluation of functioppsng for CAF.

2.6.1 Remote procedure calls

The idea of performing a computation by the remote processguite old. TheRemote
Procedure Calls (RPC]13] provide the ability to invoke a procedure remotely; uhpa-
rameters can be passed by-value and the result returneddodoekcaller. This is a library-
based approach and the programmer is responsible for pemamarshaling/unmarshaling

and thread management.

2.6.2 Active Messages

Eickenet al.[122] proposéictive Messages (AMANn AM header contains the address of a
user-level handler that is executed on message arrivalthatimessage body as argument.
Thus, arbitrary user code can be executed in the remotesgigipace. The active message
handler must execute quickly and to completion and not bibelnetwork hardware from
receiving other messages. The AM concept is implementedtin ARMCI [83] (called
Global Procedure Calls) and GASNet[17]. However, it is testrictive to be used as is in
the language. Our implementation of CAF’s distributed mthréading (DMT), described
in Chapter 9, uses AM to support language-level remoteitiesv However, DMT allows

arbitrarily long, potentially blocking computations spaa@d locally and remotely.
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2.6.3 Multilisp

Halstead introduced the concept of fla¢urein Multilisp [103]. It allows one to spawn a
concurrent computation and returns an undetermined vaifilwt blocking the caller. If
the return value is needed for computation in one of theWohg statements, the statement
blocks until the future executes and returns the real (detexd) value. Futures enable lazy
evaluation of parallel work and allow transparent conauryein functional languages on

shared-memory architectures.

2.6.4 Cilk

Cilk [63] is a language that enables concurrent executioseskral tasks on a shared-
memory multiprocessor. It introduces the concept of priwgbod “work-stealing” sched-

uler [15] that maintains load balancing among the procedsansparently to the program-
mer. Cilk has the limitation that all tasks spawned withiuadtion must complete before
the function returns. An implementation of Cilk for a dibtited-memory architecture has
been reported [97]. It is based on principles of softwareedvanemory, and the sched-
uler’s heuristic is biased towards stealing “local” workowgver, the performance results
were inconclusive and it is unlikely that a programming masi¢hout the notion of data

locality can perform well on large-scale distributed-meymoachines for a broad range of

codes.

2.6.5 Java Remote Method Invocation

Java [113] offers th&®emote Method Invocatianechanism that enables calling a method
of a remote object. The object must be registered with a ¢ie@p@sitory. The parameter
passing is done via a well-defined Java serialization/tisstion mechanism, though the
overhead is high. CAF is not an object-oriented languagd,itis necessary to design
robust semantics of how parameters are passed to a co-tnbrand how the values can

be returned. We discuss these issues in Chapter 9.
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Chapter 3

Background

We discuss the CAF programming model and run-time layer adppr an efficient CAF
implementation. Then, we describe experimental platfantsparallel codes that we used

for our evaluation studies. Finally, we summarize the lsasiaata-flow analysis.

3.1 Co-array Fortran

CAF is a Single Program Multiple Data (SPMD) PartitionedkzlbAddress Space (PGAS)
programming model based on a small set of extensions toafo®b. It has a two-level
memory model with local and remote data and provides theatigin of globally acces-
sible memory both for cluster-based and for shared-memuatytactures. Similar to MPI,
CAF is an explicitly-parallel programming model. CAF pragrmers partition data and
computation and use explicit communication and synchadidn. Access to remote data
is done via one-sided read (GET) or write (PUT) communicatio

An executing CAF program consists of a static collectionsyfrechronous process im-
ages (or images, for short). The number of images can bevettiat run time by in-
voking the intrinsic functiomumi nmages() . Each image has a unique index from one
to numi mages(), which can be retrieved via the intrinsic functiomi s_i mage() .
The programmer controls the execution sequence in eacheitteigugh explicit use of
Fortran 95 control constructs and through explicit use athlyonization intrinsics.

Below we describe CAF features related to this work. A momagiete description of

the CAF language can be found elsewhere [88].
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3.1.1 Co-arrays

CAF supports symmetric distributed data using a naturaresibn to Fortran 95 syntax.
For example, the declaratiomt eger : : a(n, m [ *] declares a shared co-arraywith

n x m integers local to each process image. The dimensions ifmsalkets are called

co-dimensions and define the co-shape; their number isdcadleank. Co-shape can be
thought of as an arrangement of all program images into ae€lart topology without

periodic boundaries. For example, the declaration
integer::a(n,ml[2,4,x*]

specifies a co-shape that represents a Cartesian topoltiggiwiension® x 4 x 8 when
the total number of images is 64. We discuss the limitatidrSAF co-shapes in Chap-
ter 5 and present the concept of co-spaces as a more genériddxhle specification of
communication topologies for CAF.

Co-arrays may be static data specified@MVION or SAVE or they can be dynamic
data specified bYALLOCATABLE. They can also be passed as procedure arguments. Co-
arrays may be declared for primitive types as well as usenetbtypes. A local section of

a co-array may be a singleton instance of a type rather thamray of type instances.

3.1.2 Accessing co-arrays

Instead of explicitly coding message exchanges to accdasrelsiding in other process’
memories, CAF programmers can directly reference nonH@daes using an extension to
Fortran 95 syntax for subscripted references. For instgmoees$ can read the first col-

umn of co-array from procesp+1 by referencin@( : , 1) [ p+1] . If the square brackets
are omitted, the reference is to the local co-array data.dRepo-array references naturally
induce a one-sided communication style in which all tranpegameters are supplied by
the image executing the communication and the target psaoesge might not be aware

of the communication.
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3.1.3 Allocatable and pointer co-array components

Allocatable and pointer co-array components can be useabfjonmetric shared data struc-
tures. They can be of intrinsic or user-defined types. Fomg@, a co-arraya may
have a pointer componept r (:). a[ p] %ptr (i:]) references the array section of
a%t r located in image. An allocatable component must be allocated prior to use.
A pointer component must point to a co-array or Fortran 9%awée located in the local
memory. Brackets are allowed only for the first level of a c@a component access,
eg,b(i,j)[p]%trl(x)%tr2(:); the other levels are relative to the remote im-
agep and cannot have brackets. The rules for evaluating the @mfplounds,e.g, for
aa[p] %otr(:) reference, are not precisely stated in the current CAF arandWe

assume that the implicit bound values are those on the tengetep.

3.1.4 Procedure calls

Co-arrays are allowed to be procedure arguments and casieped at a procedure call.
An explicit interface is required for co-array parameté@rsere are no local co-array vari-
ables since the procedure activation frame might not existvery image. The original
CAF specification required implicit memory fences beford after each procedure call.
In [30], we argued that such memory fences make it impossabeerlap communication
with a procedure’s computation. The requirement was rechavehe updated language

specification [86].

3.1.5 Synchronization

CAF has async_nmenory memory fence to explicitly complete all outstanding com-
munication operations issued by the invoking process im#ge is a local operation.
sync_al I implements a synchronous barrier among all imagegnc_t eamis used
for synchronization among teams of two or more processes.

In [30], we considered augmenting CAF with unidirectiornabjnt-to-point synchro-

nization primitives:sync_noti fy andsync_wai t. sync_noti fy(q) sends a non-
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blocking notification message to process imggthis notification is guaranteed to be seen
by imageq only after all communication events previously issued l®yribtifier to image

g have been committed intgs memory.sync_wai t ( p) blocks its caller until it receives
a matching notification message from the process inpagéhe updated CAF specifica-
tion [86] allows usingnot i f y_t eamandwai t _t eamfor unidirectional point-to-point
synchronization. The names of the unidirectional poirpomnt synchronization primitives
in the CAF specification may change in the future; therefare refer to these primitives

asnoti fy(p) andwai t (q) inthe rest of the dissertation.

3.1.6 CAF memory consistency model

A memory consistency model defines legal orderings of howehbelts of write operations
can be observed via read operations. Stricter memory densishelps in developing and
debugging programs; but limiting the scope of legal codedeangs can result in lower
performance.

As of this writing, CAF's memory consistency model is stifibg defined. For the
purposes of this work, we assumevaakmemory consistency model with the following

rules:

e Each image’s own data dependencies for accessing locahietiabe preserved.

e The ordering of shared accesses is guaranteed only by $ymzation primitives
such as the memory fensg nc _nmenor y, global barriesync _al | , team synchro-

nizationsync _t eam andnot i f y/wai t unidirectional point-to-point primitives.

The first rule enables leveraging existing scalar compéehnology for optimizing
local accesses in between synchronization points. It esndiss for source-to-source trans-
lation and makes it legal to use a Fortran 95 compiler of thgetaarchitecture to optimize
translated code.

The second rule enables programmers and the compiler to asstenptions about

the memory state and completed PUT/GET operations of impgegipating in a syn-
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chronization event. The memory fensgnc _nmenor y completes all outstanding memory
operations issued by the image before execution of the fébaapletion means that local
accesses have been flushed to memory, GETs have finishedgehdiremote memory,
and PUTs have been written to the remote memory. Globaldsatyinc _al | implies that
every image executes an implicit memory fence right bef@eig@pating in the barrier
synchronization. In other words, each image participatiragbarrier can assume that after
the return from the barrier, all memory operations issueciy participant prior to the
barrier have been completed.

There is still ongoing debate over what memory guaranteasigive for point-to-point
(or team) synchronization. Two alternatives are being iclened. First,noti fy(p)
may have an implicit memory fence, which completes all mgnoperations issued by the
invoking image befor@ receives the notification. Secontht i f y(p) may have weaker
semantics explored by us feync_noti fy in [30]: a delivery ofnoti fy(p) fromq
to p guarantees only that all PUTS/GETSs issuedjltp p have completed. The following
example illustrates the difference.

if (this_imge()==0q)
afr]
bl p]
call notify(p)

end if

if (this_imge()==p)
call wait(q)

end if

With the first proposal, the programmer can assume thatdjotj andb[ p] PUTs

have completed whep receives the notification. The semantics are intuitive; éxew,
no compiler optimization technology yet exists that cariroje this code to deliver best
performance. Most likely, an implementation would have aenplete both PUTs before
executing thenot i f y( p) ; this exposes the communication and notification latengy. to
In the second proposahot i f y( p) received byp guarantees only thdi[ p] has
completed, but does not guarantee thpt | has completedy( # ). These semantics

might be less intuitive to the programmer; however, we hanteyet observed CAF codes
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that rely on the assumptions thaftr | must also complete. The compiler and run-time
can optimize this code to hide all communication and synaizedion latency. During
our experimental studies, we noticed that the weaker nesfypantics enabled to deliver
noticeably higher performance and better scalability. tRerrest of this work, we assume
the weaker form ohot i fy(p) .

We also assume similar (“closed group”) weak semantics fipoap barrier. Execution
of a group barrier guarantees that all PUTS/GETs executad mgages of the group before
the barrier and destined to any member image of the groupdwawpleted. No guarantees
are provided for a PUT/GET executed by any image of the grodjpdastined to an image
that is a not a member of the group.

We believe that these weak semantics are intuitive enoughwauld not restrict the
compiler and run-time to deliver top performance. Altewely, both forms ofnoti fy
and group barrier can co-exist and can be distinguished lmp#aaonal extra parameter to

not i f y that specifies what memory guarantees to provide.

3.2 Communication support for PGAS languages

Message Passing Interface (MPI) [62, 112],dledactostandard for parallel programming,
uses two-sided (send and receive) message passing tetrdatf between processes. With
two-sided communication, both the sender and the recexgdicély participate in a com-
munication event and supply communication parameters. éanaequence, both sender
and receiver temporarily set aside their computation toroamicate data, which also has
heavy impact on the programming style. Having two processesplete a send/receive
communication explicitly synchronizes them.

PGAS languages use one-sided communication to accesser@laiat GET is used
for a remote read and PUT is used for a remote write. In onedstc@mmunication, only
the process, called the origin of communication, executiegremote access specifies the
target process and all other communication parameters.yhchsonization between the

origin and target processes takes place. From the programperspective, the target
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image is not aware of the communication. Thus, the one-sidedel cleanly separates
data movement from synchronization, which can be partibulaseful for development

of irregular applications. To achieve high performancenVRGAS languages for a broad
class of applications, one-sided communication must beiafi. Co-array sections may
reference remote memory that is strided. Therefore, congation must be efficient not

only for co-array sections that reference contiguous mgrfeantiguous transfers) but also
for those that reference strided memory (strided transférgplementing an efficient one-
sided communication layer is not a trivial task due to inbareect hardware differences.

On shared-memory platforms, such as the SGI Altix 3000, s\ded communication
can be performed for globally addressable shared-memoihdy¥PU, using load/store
instructions. As our recent study [48] demonstrated, omexhenemory architectures, fine-
grain one-sided communication is fastest with compileregated load/store instructions,
and large contiguous transfers are done more efficientlysoygua memory copy library
function optimized for the target platform.

On loosely-coupled architectures, a one-sided commuaicddyer can take advan-
tage of Remote Direct Memory Access (RDMA) capabilities afdarn networks, such
as Myrinet [9] and Quadrics [94]. During an RDMA data tramstee Network Interface
Controller (NIC) controls data movement without interingtthe remote host CPU. This
enables the remote CPU to compute while communication isagrpss.

Several specifications for one-sided communication wesgyded to encapsulate hard-
ware differences and to simplify PGAS compiler developnj88t 17]. We describe Ag-
gregate Remote Memory Copy Interface (ARMCI) and GASNeictvlwe used to imple-

mentcaf c’s run-time layer.

3.2.1 ARMCI

ARMCI [83] is a multi-platform library for high performancene-sided communication.
ARMCI provides both blocking and non-blocking primitivesrfone-sided data move-

ment as well as primitives for efficient unidirectional pito-point synchronization. On
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some platforms, using split-phase primitives enables comaation to be overlapped with
computation. ARMCI provides an excellent implementatiabstrate for global address
space languages because it achieves high performance orety v networks (includ-
ing Myrinet, Quadrics, and IBM’s switch fabric for its SP sg1s) as well as on shared-
memory platforms (Cray X1, SGI Altix3000, SGI Origin200@hile insulating its clients
from platform-specific implementation issues such as sharemory, threads, and DMA
engines. A notable feature of ARMCI is its support for effitiaon-contiguous data trans-
fers [84], essential for delivering high performance witAfC ARMCI provides support
for Global Procedure Calls (GPCs) on Myrinet, Quadrics, BrithiBand interconnects.
GPCs enable execution of procedures in remote processhé&oedt of the discussion, we
refer to ARMCI's GPCs as Active Messages (AMs) [122].

3.2.2 GASNet

GASNet [17], standing for Global-AddressSpace Networking”, is another one-sided

communication library. The GASNet library is optimized farvariety of cluster and

shared-memory architectures and provides support foiegfficommunication by apply-

ing communication optimizations such as message coatgsrid aggregation as well as
optimizing accesses to local shared data. As of this writtB§SNet has only a refer-

ence implementation for strided communication and showslgerformance for strided

transfers compared to ARMCI for some interconnects.

The design of GASNet is partitioned into two layers to maketipg easier without
sacrificing performance. The lower level provides a coresstibf functionality called the
GASNet core API. It is based on Active Messages [122], anchidemented directly on
top of each individual network architecture. The upper llése more expressive inter-
face, called the GASNet extended API. It provides highdleperations to access remote

memory and various collective operations.
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3.3 Experimental platforms

We used several cluster and non-uniform memory access (N)BWared-memory archi-

tectures to perform our experiments.

3.3.1 Itanium2+Myrinet2000 cluster (RTC)

The Rice Terascale Cluster (RTC) [102] is a cluster of 92 HE02Q workstations inter-
connected with Myrinet 2000. Each workstation node costawo 900MHz Intel Itanium
2 processors with 32KB/256KB/1.5MB of L1/L2/L3 cache, 4BGf RAM, and the HP
zx1 chipset. Each node is running the Linux operating sysé@ used the Intel Fortran

compiler versions 8.x-9.x for Itanium as our Fortran 95 banki compiler.

3.3.2 Itanium2+Quadrics cluster (MPP2)

MPP2 consists of 2000 HP Long’s Peak dual-CPU workstatiotiseaPacific Northwest
National Laboratory (PNNL). The nodes are connected witadpas QSNet Il (Elan 4).
Each node contains two 1.5GHz Itanium2 processors with 328&KB/6MB L1/L2/L3

cache and 4GB of RAM. The operating system is Red Hat Linuxe Béck-end compiler

is the Intel Fortran compiler version 8.0.

3.3.3 Alpha+Quadrics cluster (Lemieux)

Lemieux is a cluster at the Pittsburgh Supercomputing C€R®C). Each node is an SMP
with four 1GHz Alpha EV68 processors and 4GB of memory. Therapng system is
OSF1 Tru64 v5.1A. The cluster nodes are connected with eea@SNet (Elan3). The

back-end Fortran compiler used was Compaq Fortran V5.5.

3.3.4 Altix 3000 (Altix1)

The SGI Altix 3000 machine (Altix1) at Pacific Northwest Natal Laboratory (PNNL)

is a NUMA shared-memory multiprocessor that has 128 Ita@itrtbGHz processors each
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with 32KB/256KB/6MB L1/L2/L3 cache, and 128 GB RAM, runnitige Linux64 OS and

the Intel Fortran compiler version 8.1.

3.3.5 SGI Origin 2000 (MAPY)

The SGI Origin 2000 machine at Rice University has 16 MIPS QRI2processors with
8MB L2 cache and 10 GB RAM. It runs IRIX 6.5 and the MIPSpro Cders version
7.3.1.3m

3.4 Parallel benchmarks and applications

Throughout our studies, we use several parallel codes ensixely evaluate the CAF
language, the quality of code generated by our CAF comggitet,performance of the run-
time communication library. Each code contains a regularregular computation that
represents the kernel of a realistic scientific applicatibinese codes are widely regarded
as useful for evaluating the quality of parallel compilensl aised in this thesis to evaluate
the effects of different optimization techniques.

For most of our experiments, we compare the parallel effoyieri different CAF ver-
sions to that of MPI version used as the baseline for comparid/e compute parallel effi-
ciency as follows. For each parallelizatipythe efficiency metric is computed %

In this equationt, is the execution time of the sequential versidhis the number of pro-
cessorst, (P, p) is the time for the parallel execution ghprocessors using parallelization
p. Using this metric, perfect speedup would yield efficienéyld® for each processor
configuration. We use efficiency rather than speedup or ¢éxgctime as our compari-
son metric because it enables us to accurately gauge thwegarformance of multiple
benchmark implementations across #regire range of processor counts and even across

different architectures.
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3.4.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [12, 73] are implementgthie NASA Advanced
Supercomputing (NAS) Division group at the NASA Ames Resledraboratory. They
are designed to help evaluate the performance of paraleresamputers. We used MPI,
OpenMP, and serial flavors of official NPB 2.3, NPB 3.0, and NEB8-serial releases
respectively [12, 73]. We implemented corresponding CAFsiems by modifying com-
munication and synchronization in the MPI benchmarks, eithchanging the original
algorithms.

NAS MG. The MG multigrid kernel calculates an approximate solutiorthe discrete
Poisson problem using four iterations of the V-cycle muitigalgorithm on an x n x n
grid with periodic boundary conditions [12]. MG’s commuaiion is highly structured
and repeats a fixed sequence of regular patterns.

In the NAS MG benchmark, for each level of the grid, there ameqalic updates of the
border region of a three-dimensional rectangular datammeltrom neighboring processors
in each of six spatial directions. Four buffers are used: &asoeceive buffers and two
as send buffers. For each of the three spatial axes, two gess¢axcept for the corner
cases) are sent using basic MPI send to update the bordensegn the left and right
neighbors. Therefore, two buffers are used for each doectine buffer to store data to be
sent and the other to receive the data from the correspomeiigdpbor. Because two-sided
communication is used, there is implicit two-way pointpgioint synchronization between
each pair of neighbors.

NAS CG. The CG benchmark uses a conjugate gradient method to cormupaigproxima-

tion to the smallest eigenvalue of a large, sparse, symenatsitive definite matrix [12].
This kernel is typical of unstructured grid computationghat it tests irregular long dis-
tance communication and employs sparse matrix vector phcHtion. The irregular com-
munication employed by this benchmark is a challenge fasteluarchitectures.

NAS BT and SP.The NAS BT and SP benchmarks are two simulated computational

fluid dynamics (CFD) applications that solve systems of &qoa resulting from an ap-
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proximately factored implicit finite difference discredizon of three-dimensional Navier-
Stokes equations [12]. The principal difference betweerctides is that BT solves block-
tridiagonal systems of 5x5 blocks, whereas SP solves goatda-diagonal systems result-
ing from full diagonalization of the approximately factdrecheme [12]. Both consist of an
initialization phase followed by iterative computationsotime steps. In each time step,
boundary conditions are first calculated. Then the rightilsdes of the equations are cal-
culated. Next, banded systems are solved in three compuigdiiy intensive bi-directional
sweeps along each of the x, y, and z directions. Finally, flaviables are updated. During
each time-step, loosely-synchronous communication igired before the boundary com-
putation, and tightly-coupled communication is requiredng the forward and backward
line sweeps along each dimension.

Because of the line sweeps along each of the spatial dines)diaditional block dis-
tributions in one or more dimensions would not yield goodaialism. For this reason,
SP and BT use a skewed-cyclic block distribution known astipadtitioning [12, 81].
With multi-partitioning, each processor handles seveigbaht blocks in the data domain.
Blocks are assigned to the processors so that there is ardisighution of work for each
directional sweep, and that each processor has a block arhvwthtan compute in each
step of every sweep. Using multipartitioning yields fultakelism with even load balance

while requiring only coarse-grain communication.

3.4.2 Sweep3D

The benchmark code Sweep3D [4] represents the heart of Acealerated Strategic Com-
puting Initiative (ASCI) application. It solves a one-gmtime-independent discrete ordi-
nates (Sn) 3D Cartesian (XYZ) geometry neutron transpaflpm. The XYZ geometry

is represented by an 1JK logically rectangular grid of cell e angular dependence is
handled by discrete angles with a spherical harmonicsmeattfor the scattering source.
The solution involves two steps: the streaming operatavligesl by sweeps for each angle

and the scattering operator is solved iteratively.
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doig =1, 8 I octants
do no = 1, nmo I angle pipelining | oop
do kk =1, kb I k-plane pipelining | oop
receive fromeast/west into Phiib I recv block I-inflows
receive fromnorth/south into Phijb ! recv block J-inflows
I conputation that uses and updates Phiib and Phijb
send Phiib to east/west I send bl ock |-outfl ows
send Phijb to north/south I send bl ock J-outfl ows
enddo
enddo
enddo

Figure 3.1 : Sweep3D kernel pseudocode.

Figure 3.2 : Wavefront communication in Sweep3D.

Sweep3D exploits wavefront parallelism. It uses a 2D spdtimnain decomposition of
the I- and J-dimensions onto a 2D logical grid of processbes.efficient parallelization,
Sweep3D is coded to pipeline blocks of MK k-planes and MMllaaghrough this 2D

processor array. Thus, the wavefront exploits paralleiisboth I- and J-directions simul-
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taneously. Figure 3.1 shows a piece of pseudocode repmggenhigh-level view of the
Sweep3D kernel. Figure 3.2 provides a visualization of a€p88® sweep on a 2D logical
processor grid: the boxes represent the processors, tlepstarts in the top left corner,
the arrows show the direction of PUT communication, and tinektsolid line shows the
front of computation propagation in 2D distributed pipelifA more complete description

of Sweep3D can be found in [4].

3.4.3 RandomAccess

The RandomAccess benchmark measures the rate of randomrynepaates. It is avail-
able in serial and MPI versions as a part of the HPC Challeegetmark suite [1].

The serial version of RandomAccésieclares a large arrajabl e of 64-bit words
and a small substitution tabst abl e to randomize values in the large array. The array
Tabl e has the size ofabl eSi ze = 2" words. After theTabl e has been initialized,
the code performs a number of random update§abl e locations. The kernel of the

serial benchmark is shown in Figure 3.3 (a).

do i = 0, 4xTableSize do i = 0, 4xTabl eSize
pos = <random nunber in gpos = <random nunber in
[0, Tabl eSi ze- 1] > [0, G obal Tabl eSi ze-1] >
pos2 = <pos shifted to index img = gpos div Tabl eSize
i nsi de stabl e> pos = gpos nod Tabl eSi ze
Tabl e(pos) = Tabl e(pos) xor pos2 = <pos shifted to index
st abl e(pos2) i nsi de stabl e>
end do Tabl e(pos)[img] = Tabl e(pos)[inmg] xor
st abl e(pos2)
end do
(a) Sequential RandomAccess (b) CAF RandomAccess

Figure 3.3 : RandomAccess Benchmark.

We implemented a fine-grain CAF version of the benchmarkesgnting the global ta-
ble as a co-array. The aggregate size offthbl e is@ obal Tabl eSi ze=Tabl eSi ze

x numi mages( ), whereTabl eSi ze is the number of words residing in each image.

1We used the Table Toy Benchmark (08/01/97 version).
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Every image has a private copy of the substitution tableimAdiges concurrently generate
random global indices and perform the update of the correipg Tabl e locations. No
synchronization is used for concurrent updates (errorspoio 1% of the locations due to
race conditions are acceptable). The kernel for CAF vasiahRandomAccess is shown
in Figure 3.3 (b).

A parallel MPI version [1] of RandomAccess uses buckets tally cache updates
destined to remote memories. Each image has the number kétstequal to the number
of processes; one bucket per destination processes. Wherketbecomes full, the code
executes MPRKlltoall symmetric collective communication to exchangedates among
processes. Each process receives updates destined to délfqparocesses and, then, applies
the updates to its local portion of tAabl e. Compared to the fine-grain CAF version, the
bucketed version improves locality and increases comnatinit granularity. However, it
is more difficult to code and caching becomes problematitafge scale parallel machines.
We also implemented and experimented with several CAF lladkeersions. These results

can be found in Section 9.6.3.

3.4.4 Data-flow analysis

We briefly describe several concepts of data-flow analysisvile use in Chapters 6 and 7.

Control flow graph

A control flow graph (CFG) [35] represents flow of control ieprogram. It is a directed
graph,G = (N, E). Each node: € N corresponds to a basic block (BB), a sequence
of operations that always execute together. Each edggn;,n;) € E corresponds to a
potential transfer of execution control from BB to BB n,;. A CFG has a unique entry

node and a unique exit node.
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Static single assignment form

Single static assignment form (SSA) [41] is an intermediapgesentation of the program
in which each variable is assigned exactly once. A program$SA form when it satisfies
two conditions: (1) each definition (assignment) has artistiame and (2) each use refers
to exactly one definition. To satisfy these properties, amtanmust insert-functions

at control flow path merge points and then rename the vasablesatisfy the single as-
signment property. SSA provides an intuitive and efficiearhespace that incorporates the
information about the relation between definitions and usesplifying many compiler

analysis and optimization algorithms.

Dominance and postdominance

In a control flow graph, a node dominates a node if every path from the CFG entry
node tob must pass through. « strictly dominates if « dominates$ anda # b. A node

a is theimmediate dominatoof a nodeb if « dominated and every other dominator of
dominates: [78]. A dominator treds a tree in which the children of each node are those
it immmediately dominates. Thaominance frontieof a CFG node: is the set of all nodes

b such thatz dominates a predecessortpbut does not strictly dominate[41].

A nodea postdominates a nodeif every path fromb to the CFG exit node passes
througha. The concepts of immediate postdominator and postdomitra®are similar to
those of dominators. Theverse dominance fronti@f a nodea can be computed as the
dominance frontier of, on the reverse CFG; a reverse CFG can be obtained by reversing

each edge of the original CFG.
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Chapter 4

Co-array Fortran for Distributed Memory Platforms

We discuss important design and implementation detaitsabfc, a multi-platform open-
source Co-array Fortran compiler. Then, we present seleetrilts of our evaluation stud-
ies [30, 47, 48, 31, 32] that we performed to determine whadllef performance can be
delivered with CAF.

4.1 Rice Co-array Fortran compiler —caf c

We designed theaf ¢ compiler for Co-array Fortran with the major goals of beingtable
and delivering high performance on a multitude of platforifssupport multiple platforms
efficiently, caf ¢ performs source-to-source transformation of CAF code kaddran 95
code augmented with communication operations. By emptpgource-to-source transla-
tion, caf ¢ aims to leverage the best back-end compiler available otatiyet platform to
optimize local computation. For communicati@af c typically generates calls to a one-
sided communication library; however, it can also genecatte that uses load and store
instructions to access remote data on shared-memory system

caf c uses @EN64/SL [101] as the front-end. TheF@N64/SL project at Rice pro-
duced a nearly production-quality, multi-platform CAFfffan 95 front-end suitable for
source-to-source transformations. We have ported it tohmas running Linux, Irix,
Tru64, and Solaris.

The engineering effort to podaf ¢ to a new architecture is minor. Firstaf c re-
quires PEN64/SL that can be compiled with the GNU compilers availablemost ar-
chitectures. Second, it requires a one-sided communicéboary such as ARMCI [83]

and GASNet [17] that is (or will be) available on most paraftechines. Finally, it must
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be able to manipulate the Fortran 90 array descriptor (deptov) of the target back-end
Fortran 95 compiler to manage and access co-array memasigeutf Fortran 95 run-time
system to deliver best performance.

As of this writing, caf ¢ supports COMMON, SAVE, ALLOCATABLE, and for-
mal parameter co-arrays of primitive and user-defined typesrrays with multiple co-
dimensions, co-array communication using array secti@Q#s; synchronization primi-
tives, and most of CAF intrinsic functions defined in the CAfedfication [88]. Parallel
I/O is not supported. Support of allocatable co-array comepds was implemented using
ARMCI’'s Global Procedure Calls (GPCg.af c compiles natively and runs on the fol-
lowing architectures: Pentium clusters with Ethernetrcdanect, Itanium2 clusters with
Myrinet or Quadrics interconnect, Alpha clusters with Queslinterconnect, SGI Origin
2000, and SGI Altix 3000.

4.1.1 Memory management

To support efficient access to remote co-array data on thadbet range of platforms,
memory for co-arrays is managed by the communication salesteparately from memory
managed conventionally by a Fortran 95 compiler’'s languagetime system. Having
the communication substrate control allocation of coyam&mory enables our generated
code to use the most appropriate allocation strategy fdrpledform. For instance, on

a Myrinet 2000-based clustetaf ¢ generates code that allocates data for co-arrays in
pinned physical memory; this enables the communicatioatibto perform data transfers

on the memory directly, using the Myrinet adapter’s DMA ergi

4.1.2 Co-array descriptors and local co-array accesses

For CAF programs to perform well, access to local co-arrag daust be efficient. Since
co-arrays are not supported in Fortran 88f ¢ needs to translate references to the local
portion of a co-array into valid Fortran 95 syntax. For parfance, generated code must be

amenable to back-end compiler optimization. In an eartigdys[48], we explored several
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alternative representations for co-arrays. Our curreatesjy is to use a Fortran 95 pointer
to access local co-array data.

In caf c’s generated code, co-arrays are represented gshagray descriptorswhich
reside in the local memory of each process image. A co-amagrptor structure contains
two components. One component is a Fortran 90 pointer (ardefehape array) used to
directly access the local portion of the co-array’s datae 3&cond component is an opaque
handle (an integer of sufficient length to store a pointea} tlepresents any underlying
state for a co-array maintained by the communication satestrFor example, to repre-
sent a three-dimensional SAVE or COMMON co-array of real bars,caf ¢c generates a
descriptor such as the one shown here:

Type CoArrayDescriptor_Real 8 3

i nteger(ptrkind) :: handle
real (ki nd=8), pointer:: ptr(:,:,:)

End Type CoArrayDescriptor_Real 8_3

A co-array’'shandl e refers to a run-time representation that contains the teedi
co-array and additional information to locally compute Haesse virtual address of the co-
array on each process image to use RDMA capabilities witth@uteed to contact a remote
image. Co-array shape and co-shape are not representédtixiol the run-time layer.

Since co-array data is allocated outside the Fortran 95ini@systemgaf ¢ needs to
initialize and manipulate compiler-dependent Fortran 8&yadescriptors (dope vectors)
on a variety of target platforms. For historical reasons,use our own multi-compiler
library for this purpose. Alternatively, it is possible tmploy the CHASM library [98]
from Los Alamos National Laboratory. CHASM is a tool to impeoC++ and Fortran 90
interoperability. CHASM supplies a C++ array descript@ss which provides an interface
between C and Fortran 95 arrays. This allows arrays to bésct@aone language and then

passed to and used by the other language.



52

4.1.3 Co-array parameters

CAF allows programmers to pass co-arrays as arguments tegwoes. According to the
CAF specification [87, 88], there are two types of co-arrayuarent passing: by-value
and by-co-array.

To use by-value parameter passing of a co-array, one wrapgsaay actual parameter
in an additional set of parenthesesy, cal | foo((ca(1:n,k)[p])). Inthiscase,
the CAF compiler first allocates a local temporary to holdvakie of the remote co-array
section ¢a( 1: n, k) from processop) for the duration of the call. Next, it fetches the
remote section from processpr Then, it invokes the procedure. After the procedure
returns, the temporary is freed.

The pass by-co-array convention, eagl | foo(ca(i, k)), has semantics sim-
ilar to Fortran's by-reference parameter passing coneantionly the local address of
ca(i, k) is passed down to the subroutine. Each co-array dummy arguimex pro-
cedure is declared as an explicit-shape co-array withiptbeedure. It is illegal to pass a
remote co-array element by-co-arrayy, cal | foo(ca(i, k)[p]). Itisalso illegal
to pass a co-array section to a subroutine since this mightneecopy-in-copy-out seman-
tics; this would interfere with memory consistency acrosspdure callscaf ¢ converts
each dummy argumef passed by-co-array into two parametefs— local portion of the
co-array — and{ — the co-array handle. As part of the translation, all loefrences to
the dummy argumen® within the procedure are replaced by references, t@hile remote
references through dummy arguméhtise’{ to communicate data.

caf c also supports a pass by-reference convention with an éplierface, in which
the callee receives the local part of a co-array as an argayvaent and treats it as a regular
array. This allows the programmer to reuse subroutinesctirapute over arrays for pro-
cessing local parts of co-arrays. Fortran 90 interfacesised to differentiate what type of
calling convention should be used. An example is shown inrféid.1.

When declaring a procedure interface that receives a @y-ag-reference, the dummy

argument’s shape (and co-shape) information may be omittedallee receiving a co-
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interface
subroutine foo(a)
doubl e precision af*]
end subroutine foo
subrouti ne bar (b)
doubl e precision b
end subroutine bar
end interface
doubl e precision x(10,10)[5, *]

call foo(x(i,j)) ! pass by-co-array
call bar(x(i,j)) ! pass by-reference

Figure 4.1 : Using Fortran 90 interfaces to specify by-aaaand by-reference argument
passing styles.

array argument declares fresh shape and co-shape informttis can be used to reshape

a co-array in the callee if desired.

4.1.4 COMMON and SAVE co-arrays

CAF explicitly supports sequence association between |oads of co-arrays in COM-
MON blocks. Using Fortran EQUIVALENCE statements to asateco-array and non-co-
array memory is prohibited. Because of this restrictmaf, ¢ is able to splita COMMON
block containing both co-array and local variables into separate COMMON blocks:
one containing only local variables and the other contgiminly co-array variables. The
latter co-array COMMON block is handled as described below.

Managing co-array memory outside of the Fortran 95 run-8oiesystem requires spe-
cial mechanisms for allocating and initializing SAVE and KZRION co-array variables.
During translationcaf ¢ replaces declarations of static co-arrays with descdiarthe
separately allocated co-array storage. Whai c-generated code begins execution, it
performs a two-step initialization process. First, it alites storage for co-arrays. Second,
it initializes procedure-level views of SAVE and COMMON eorays by associating co-
array descriptors with the allocated memory and the comeatioin substrate’s run-time

State.
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For each procedure containing SAVE co-arrayaf ¢ generates an initialization rou-
tine that allocates memory for each SAVE co-array and segsdgscriptor for the co-array.

caf c generates an allocator procedure for each co-array COMMI{dbkb An al-
locator for a co-array COMMON block reserves a contiguousnéhof storage for the
COMMON block’s set of co-arrays at program launch. Sincéedént procedures may
declare different layouts for the same COMMON block, whioh eall views caf ¢ syn-
thesizes one view initializer per procedure per COMMON kloEach view initializer is
invoked once at program launch after storage allocatiorltm fa procedure-private copy
of a co-array descriptor for each co-array in the procegwiew of the common block.

When linking a CAF prograntaf c first examines the object files to collect the names
of all storage allocators and co-array descriptor and viethalizers. Nextcaf ¢ synthe-
sizes a global initializer that calls each allocator antiahzer. The global initializer is

called once at program launch before any user-written creeutes.

4.1.5 Procedure splitting

SAVE and COMMON co-arrays are static and their propertieskaiown to a CAF com-
piler at compile-time. These properties include: co-atraynds, the fact that memory
occupied by a co-array is contiguous, and the lack of algpamong such co-arrays. After
caf c translates a CAF program, a SAVE or COMMON co-areais represented with a
co-array descriptor; so local co-array accesses are daneovtran 90 pointer in the gen-
erated code. Such accesses are difficult to optimize by ttle dérad compiler because the
information about bounds, contiguity, and lack of aliasmgot readily available for For-
tran 90 pointers. These properties were lost in translatm@hthe back-end compiler must
rediscover them to produce fast code.

Consider the following lines that are common to both the CA# Rortran+MPI ver-

sions of theconput e_r hs subroutine of the NAS BT benchmark.
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rhs(1,i,j,k,c) =rhs(l,i,j,k,c) + dxltxl » &
(u(l,i+1,j,k,c) - 2.0dO*u(l,i,j,k,c) + &
u(l,i-1,j,k,c)) - &

tx2 » (u(2,i+1,j,k,c) - u(2,i-1,j,k,c))
u andr hs reside in a single COMMON block in both sources. The CAF andr&o+MPI
versions of the program declare identical data dimensionghese variables, except that
the CAF code adds a single co-dimensiomutandr hs by appending a[*+] ” to the end
of their declarations. After translationaf c rewrites the declarations of theandr hs
co-arrays with co-array descriptors that use a deferregeshepresentation for co-array

data. References to andr hs are rewritten to use Fortran 95 pointer notation as shown

here:
rhs%tr(1,i,j,k,c) =rhsW%tr(1,i,j,k,c) + dxltxl » &
(u%ptr(1,i+1,j,k,c) - 2.0dOxu%ptr(1,i,j,k,c) + &
udptr(l,i-1,j,k,c)) - &

tx2 + (udptr(2,i+1,j,k,c) - u%ptr(2,i-1,j,k,c))

Our experimentation with several back-end Fortran 90 ctergpshowed that perfor-
mance of CAF codes with Fortran 90 pointers is up to 30% iofea that of equivalent MPI
codes that use SAVE or COMMON variables. The main reasoraisfbrtran 90 pointer-
based representation complicates the alias analysis inatieend compiler. In turn, this
precludes important loop optimizations. Some Fortran 9bpiters accept a compile-time
flag indicating the lack of aliasing among Fortran 95 pomitéut despite using the flag,
caf c-translated codes showed slower node performance tharMi+Fortran counter-
parts.

We addressed this problem by automatically convertingr&or®0 pointers of SAVE
and COMMON co-array representation into explicit-shapgepdure arguments, which are
contiguous and do not alias. Bounds of SAVE and COMMON casariare constant, and,
thus, the argument bounds can be redeclared in a procedartheAesult, the properties
of SAVE and COMMON co-arrays are conveyed to the back-entt&oO5 compiler.

We named the transformatigmocedure splittingcaf ¢ splits each procedure that ref-
erences SAVE and COMMON co-arrays into two subroutines:naer procedure and an

outer procedure. The transformation is applied prior to atfer transformation involv-
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subroutine f(a,b)
real a(10)[+*], b(100), c(200)[*]
save ¢
= ¢c(50) ...
end subroutine f

(a) Original procedure

subroutine f(a,b)
real a(10)[=*], b(100), c(200)][*]
save c
interface
subroutine f_inner(a,b,c_arg)
real a[+*], b, c_arg[*]
end subroutine f_inner
end interface
call f_inner(a,b,c)
end subroutine f

subroutine f_inner(a,b,c_arg)

real a(10)[=*], b(100), c_arg(200)][*]
= c_arg(50) ..

end subroutine f_inner

(b) Outer and inner procedures after splitting.

Figure 4.2 : Procedure splitting transformation.

ing co-arrays. Pseudo-code in Figure 4.2 illustrates tfecebf the procedure-splitting
transformation.

The outer procedure retains the same interface as the argie. It does not perform
any computation of the original procedure. Its purpose detdare original parameters and
the inner-procedure interface and to call the inner promechassing the arguments. The
inner procedure performs the computation of the origina and is created by applying
three changes to the original procedure. First, its argaifistns extended with parameter
co-arrays corresponding to the SAVE and COMMON co-arrafjeyeaced by the original
procedure. Second, explicit-shape co-array declaraaonsdded for each additional co-
array argument. Third, each reference to any SAVE or COMM®OMcay is rewritten

with the reference to the corresponding co-array paraméigure 4.2 shows the effect of
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rewriting the reference to( 50) inf with a reference ta_ar g(50) inf _i nner.

After the translation process, parameter co-arrays beaphcit-shape Fortran 95
dummy parameters, which do not alias according to Fortrasg@eification. The final
result is that SAVE and COMMON co-arrays within the innergedure are now dummy
arguments represented using explicit-shape arrays e deferred-shape arrays. There-
fore, the back-end compiler is conveyed the lack of aliasimgpng SAVE and COMMON
co-arrays, their bounds, and their contiguity. Bettersatig information leads to more
precise dependence analysis and more aggressive loopizgitons. Knowing bounds
at compile-time may reduce register pressure. Knowing risf@renced memory is con-
tiguous might improve software prefetching. While the ghare-splitting transformation
introduces extra procedure calls and slightly increasesdtie size, we have not observed
that it decreases performance. The procedure-splittargstormation allows many codes,
especially the ones with complex dependence patternshievecthe same level of scalar

performance as that of their MPI+Fortran counterparts 447,

4.1.6 Multiple co-dimensions

The CAF programming model does not limit the programmer togia flat co-shape. In-
stead, the user can specify a multi-dimensional co-shaigietlre same column-major con-
vention as regular Fortran code. This feature is of most ussnwhe processor topology of
a problem is logically mapped onto a Cartesian processomgthout periodic boundaries.
The programmer has the ability to mold the co-shape to fitdigechl processor grid. In-
dexing of a multi-dimensional organization of remote im&ggethen straightforward using
this feature.

Let us consider a general co-shape definition[1lb, : ub;, 1b, : ubs,
oo vy 1by s uby, 1byyq %] For SAVE and COMMON co-arrays the co-shape must
be specified using exclusively constants. A remote referdondi,, iy, ..., i, int1]

corresponds to processor imagé’; (i; — 1b;) * my, where



58

j—1
mj =[] (ubx —1bg+1),2<j<n+1 (4.2)

k=1

In order to support co-arrays with multiple co-dimensiong, augment the co-array
metadata used inaf c-generated code with several co-shape variables. For arap-a
a with the co-shape definitiofib; : uby, 1b;, : uby, ..., 1b, : ub,, 1b,y4 : %], we add the

following variables:

e acolLBl,for1<i<n-+1

a_coUBl ,for1 <i<n

a_Thislmage.li,for1 <i<n+1

a ColndexMultiplieri,fort<i<n-+1

a_Thi sl rageVect or

a_colLB.,acoUB.i anda_Col ndexMul tiplier_ correspond directly tab;,
ub; andm;. a_Thi sl mage_i anda_Thi sl rageVect or are used to precompute the
values returned by the CAF intrinsic functibhi s_i nage. According to the CAF speci-
fication,t hi s_i mage( a, i ) returns the i-th co-space coordinate&oon the correspond-
ing process image. This value is precomputea ihi sl mage. . t hi s_i mage(a)
returns a vector containing the valued ¢fi s_i mage( a, i ) for all the co-dimensions of
co-arraya. This vector is thus precomputedanThi sl mageVect or .

We extend the initialization routines mentioned above tougethe co-shape meta-
data variablesa_coLB.i , a_.coUBL.i are trivially assigned using the co-array definition.
The variablesa_Col ndexMul ti pli er i are computed iteratively using Formulas 4.1
and 4.2 formi . To computea_Thi sl mage_i we use the process image index returned

byt hi s_i mage as follows:
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a_-ThisImage_i = mod(div(this_image() — 1,m;), (ub; —1b; + 1))+ 1b;,fori =1..n
a_ThisImage_i = div(this_image() — 1,m;) + 1b;,fori =n+1

Note that a dead-code eliminator would remove unused cpestariables generated
for dummy co-arrays. When generating code that compute®thete image number, the
CAF compiler replaces the multipliers by constants whenpussible.

One immediate consequence of the above scheme is that wegporsco-shape re-
shaping during argument passingaf ¢ allows co-shapes of dummy co-array arguments
to be declared using specification expressions rather thigrconstants. The co-lower and
co-upper bounds variables are initialized by the corredpmnspecification expressions;
the rest of the computation to determine the “colndexMii#ip variables, the compo-
nents of “this image” variables, and the “this image vecterperformed as above. This
extension enables programmers to express processing amagoarguments with variable

co-spaces, leading to more general code.

4.1.7 Intrinsic functions

caf ¢ supports the CAF intrinsic functionsog2_i mages(),t hi s_i nage(),

numi mages(), andr emi nages(). To implement them efficiently, we precompute
their values at program launch and store them into scalarsopile time, calls to these
functions are replaced by references to the correspondialgrs. A more complicated
strategy is employed to suppdrhi s_i mrage(a) evaluated for a co-arrag. We com-
pute the components thi s_i mage once at program initialization for SAVE and COM-
MON co-arrays, and once per procedure invocation for dumoagrcays. We replace calls
tot hi s_.i mage(a) with a reference t@a_Thi sl mageVect or. We replace calls to
t hi s_i mage(a, i) with a scalar variable if is a compile-time constant, andiifis a

variable, we use an array reference iatdhi sl mageVect or .
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4.1.8 Communication code generation

Communication events expressed with CAF’s bracket natatiast be converted into For-
tran 95; however, this is not straightforward because thete memory may be in a dif-
ferent address space. Although CAF provides shared-messomantics, the target archi-

tecture may not; a CAF compiler must perform transformatianbridge this gap.

Shared-memory machines

On a hardware shared-memory platform, the transformasiorlatively straightforward,
since references to remote memory in CAF can be expressedds and stores to shared
locations. With proper initialization, Fortran 90 poirgezan be used to directly address
non-local co-array data. The CAF run-time library providles virtual address of a co-
array on remote images; this is used to set up a Fortran 9@gpéam referencing the remote
co-array. An example of this strategy is presented in Figu8ga) for the following code.

DO J=1, N

a(J) =A(J) [ p]

END DO
The generated code accesses remote data by dereferen@nigeen PO pointer, for which
Fortran 95 compilers generate loads/stores. In Figuread,3He procedur€af Set Pt r
sets up the pointer and is called for every access; this agdsgisant overhead. Hoisting
pointer initialization outside the loop as shown in Figurg @) can substantially improve
performance. To perform this optimization automaticatlgf ¢ needs to determine that

the process image index for a non-local co-array referentmop invariant.

DO J=1, N ptr A=>A(1: N)
ptr A=>A(J) call CafSetPtr(ptrA p,A_h)
call Caf SetPtr(ptrA p, A h) DO J=1, N
C(J)=ptrA C(J)=ptrA(J)
END DO END DO
(a) Fortran 90 pointer to remote data (b) Hoisted Fortran 90 pointer initialization

Figure 4.3 : Fortran 90 pointer access to remote data.
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In comparison to general library-based communication fluster architectures,
load/store communication avoids unnecessary overheadodiigrary calls. This is es-
pecially beneficial for applications with fine-grain comnzation. Our study [48] con-
tains a detailed exploration of the alternatives for perfioig communication on hardware
shared-memory systems. However, the load/store stragegyot be used for cluster-based

systems with distributed memory.

Cluster architectures

To perform data movement on clustecgf ¢ must generate calls to a communication li-
brary to access data on a remote node. More@adrc must manage storage to temporar-
ily hold remote data needed for a computation. For examplde case of a read reference
of a co-array on another imagat r (:)=coarr(:)[p]+...,atemporaryi enp, is
allocated just prior to the statement to hold the value otthar r (: ) array section from
image p. Then, a call to get data from image p is issued to thime library. The state-
mentis rewrittenaarr (:) =t enp(:) +. ... The temporary is deallocated immediately
after the statement. For a write to a remote image, sucoasr (:)[ pl, p2]=...,a
temporaryt enp is allocated prior to the remote write statement; the resulbe evalua-
tion of the right-hand side is stored in the temporary; atwalk communication library is
issued to perform the write; and finally, the temporary islideated. When possible, the
generated code avoids using unneeded temporary bufferex&mple, for an assignment
performing a co-array to co-array copyaf ¢ generates code to move the data directly
from the source into the destination.

Currently,caf ¢ generates blocking communication operations. In our sfddy we
introduced non-blocking communication hints that enaidé c to exploit non-blocking

PUTSs.
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Hints for non-blocking communication

Overlapping communication and computation is an importacinique for hiding inter-
connect latency as well as a means for tolerating asynchyetwyeen communication part-
ners. However, as CAF was originally described [88], all omumication must complete
before each procedure call in a CAF program. In a study of mitinl implementation of
caf c, we found that obeying this constraint and failing to overtmmunication with
independent computation hurt performance [30].

Ideally, a CAF compiler could always determine when it issst@af overlap communi-
cation and computation and to generate code automatitatydbes so. However, it is not
always possible to determine at compile time whether a connzation and a computation
may legally be overlapped. For instance, if the computasiod/or the communication
use indexed subscripts, making a conservative assumptaurt ¢he values of indexed sub-
scripts may unnecessarily eliminate the possibility of ommication/computation overlap.
In the presence of separate compilation, a CAF compilerataaietermine whether it is le-
gal to overlap communication with a called procedure withwloiole-program analysis.

To address this issue, we believe it is useful to provide ahai@em to enable knowl-
edgeable CAF programmers to provide hints as to when conuation may be overlapped
with computation. Such a mechanism serves two purposesaliles overlap when con-
servative analysis would not, and it enables overlapahc-generated code today before
caf c supports static analysis of potential communication/cataipon overlap. While ex-
posing the complexity of non-blocking communication torsse not ideal, we believe it is
pragmatic to offer a mechanism to avoid performance batks rather than forcing users
to settle for lower performance.

To support communication/computation overlap in code geerd bycaf c, we im-
plemented support for three intrinsic procedures thatlenaogrammers to demarcate the
initiation and signal the completion of non-blocking PUT¥e use a pair of intrinsic calls
to instruct thecaf ¢ run-time system to treat all PUT operations initiated bemvihem as

non-blocking. We show this schematically below.
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region_id = open_nb_put_region()
Put_Stnt_1

Put_Stmt _N

caI | close_nb_put_region(region_id)

Only one non-blocking region may be open at any particul@mtpo a process image’s
execution. Each PUT operation that executes when a norkiblpeegion is open is asso-
ciated with the egi on_i d of the open non-blocking region. It is a run-time error toselo
any region other than the one currently open. Eventualigh emn-blocking region that

was initiated must be completed with the call shown below.
call conplete_nb_put_region(region_id)

The completion intrinsic causes a process image to waitigtphint until the com-
pletion of all non-blocking PUT operations associated widgi on_i d that the process
image initiated. Itis a run-time error to complete a noneklag region that is not currently
pending completion.

Using these hints, theaf ¢ run-time system can readily exploit non-blocking com-
munication for PUTs and overlap communication with compata Overlapping GET
communication associated with reads of non-local co-agletg with computation would
also be useful. We are currently exploring how one might isgngmplement support
for overlapping GET communication with computation, eithe initiating GETs early or

delaying computation that depends upon them.

Alternative code generation strategy for PUTs

It would be interesting to consider another code generaticstegy that enables non-
blocking PUTs and does not require the programmer to prokides. The strategy is
similar to the one described in Section 4.1.8 for distridet@mory machinesaf ¢ can

always allocate a temporary to store the result of the rigintel side (RHS) of a remote co-

array assignment statement. The data movement can beadiaa a non-blocking PUT
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operation. It is safe to proceed with the execution of the s@atement right after the PUT
because the RHS value resides in a temporary that is notsalgieelsy the user code. Deal-
location of this temporary must be delayed until the PUT cletgs. The run-time layer
can keep track of all such PUTSs “in flight”.

PUTs can be completed safely in several ways. First, therlymglg communication
layer can invoke a callback indicating PUT completion, i€ls& mechanism is supported.
This callback can deallocate the temporary. Second, alldtdiist be completed before
the program executes a synchronization statement. Temg®an be deallocated at this
time. Third, the run-time layer can limit the number of nammpleted PUTs and complete
them in first-in-first-out order, deallocating correspaorgliemporaries in addition. Fourth,
the run-time layer can complete some outstanding PUTs aaltbdate corresponding tem-
poraries if the system is low on memory.

The only case when using a temporary may be avoided on abditgd memory ar-
chitecture is for a co-array assignment in which the rightchaide is a variablee.g,
a(:)[p] = b(:).Ifbisnotmodified by local computation on all CFG paths from the
assignment statement to a synchronization statemenidbarmoti fy(p)), the PUT

can communicate data in-place and be non-blocking.

4.1.9 Allocatable and pointer co-array components

CAF provides allocatable and pointer co-array componantsupport asymmetric data
structures. For example, an allocatable compoaéft r (: ) might have different sizes
on different images or might not be allocated at all on som&ges. The current version
of caf ¢ provides allocatable co-array components only for the ARMGbstrate with

support for Global Procedure Calls (GPCs) (see Section 3/ use GPCs as Active

Messages (AMs) [122] and refer to them as such in the follgwiiscussion.
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Memory management for co-array components

The allocation and deallocation @%pt r are local operations. For the most effi-
cient remote data accesses, it is necessary to allocateormmis in special mem-
ory managed by the underlying communication librargaf c’s run-time layer uses
ARMCI _Mal | oc_| ocal for this purpose. cafc implements deallocation using
ARMCI _Free_| ocal .

Accesses to remote co-array components

a[p] %ptrd1(i)%tr2(:) is an example of an access to a co-array component. The
first reference of the chain (referred to as the head) is thar@y reference —a[ p] . It
determines the process imggeelative to which the rest of the chain (referred to as tHg tai
is dereferenced. The brackets are allowed only for the hef@dence. A local reference
does not have brackets.

caf c uses the same code generation strategy for local co-arcagses and for local
co-array component references. For example, a refegnice%pt r 1(: ) is rewritten as
adescY%tr (i) %trl(:),wherea_desc isthe co-array descriptor.

However, remote accesses to co-array components areediffeom those to co-arrays.
A co-array acces®.g,b(i, :) [ p],refersto astrided memory sectiSnlocal or remote.
The start address and shapesafan always be computed on the process intageecuting
the accesscaf ¢ can use strided PUT/GET to acceéssvithout the need to contapt On
the contrary, the start address and shape of the memorgisectiresponding to a co-array
component reference,g, a[ p] %ot r 1(i ) %t r 2(: ), may not be known locally og.
There are two feasible approaches to support remote cg-@raponent accesses.

The first uses GET to dereference the chain level by levelekampleg can GET the
remote dope vect@|[ p] %ot r 1, determine the remote start addresajpp] %pt r 1(i ),
and GET the next level dope vectaf p] %ptr 1(i ) %ptr2. a[ p] Y%ptr1(i) %ptr2
determines the start address and shape of the remote go@naponent reference

a[p] %ptr1(i) %ptr2(:),;itisastrided memory sectioiv. Only after that, the refer-
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ence datdl” can be updated via PUT or fetched via GET. The disadvantaesaipproach
is that it exposes communication latency for each level oéf@eencing; however, it may
be the only feasible option for architectures without AM sag.

An alternative is to use an AM to obtain the start address aages ofil in one step.
An AM executed orp has access tp’s memory and can dereference the chain as a local
referencea%pt r 1(ami ) %ot r 2(: ), whereami is the value of subscript onq. This
approach is more efficient than the first one because it nedg®ne network message to
obtain the parameters &f ; however, it requires AM support.

caf ¢ implements the AM-based strategy using ARMCI with GPC suppt syn-
thesizes an accessor Fortran subroutine for each remaaap-component referende
The accessor is called inside the AM handlerpand is given a vector of subscripts
Sv. sv contains the values of non-constant and non-implicit suscof R; e.g, for
a(i,j+1)[p] %ptr1(5) %ptr2(kl: k2, 7:),sv contains, in order, the values iof
] +1, k1, andk2 evaluated org. The accessor subroutine computes the start address
and the extents of tha(sv(1),sv(2))%tr1(5)%tr2(sv(3):sv(4),7:)
reference in the process image address space; it uses the Fortr8hZE intrin-
sict. It also computes the extents of the reference dope vectahénchain —

a(sv(l),sv(2)+1) %tr1(5) %tr 2. Arelevant code fragment is shown below:

comBhape => a(sv(1),sv(2))%tr1(5)%tr2(sv(3):sv(4),7:)
addr = | oc(commthape(1,1)) ! the start address of the section

shp(1) = SIZE(a(sv(1l),sv(2))%tr1(5) %tr2, 1)
shp(2) = SIZE(commBhape, 1)
shp(3) = SIZE(a(sv(1l),sv(2))%tr1(5) %tr2, 2)
shp(4) = S| ZE(conmShape, 2)

The AM returns the start addressldr and the vectoshp, containing extents, to
process imagg. Using the address and extengsgcan compute the strided memory sec-
tion W similarly to how a Fortran 95 compiler computes a stridedisador a pointer

ptr=>a(...) operation. Knowing the remote memory parameteed,c (1) allocates

1SI ZE(a, i ) returns the extent of an array sect@fior dimension .
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the temporary of proper size to hold off-processor datajr(@&yucts ARMCI to PUT or
GET data (in the same way as done for a co-array access).

The described AM-based approach uses two communicaticatmes: one to obtain
the remote memory section parameters, the other to tradafarvia PUT/GET. It might
be possible to combine these two messages into one. For atA®Tata and access
parameters can be sent together in one AM, usually if thesizgas not very large; inside
the accessor subroutine, the data must be copied into theteememory section. For
a GET, if the size of transmitted data can be inferred locallg temporary to hold off-
processor data can be allocated without the first AM. Theestdof this temporary and
access parameters can be sent in a request AM. A reply AM tamrihe requested data
in its payload and copy the data into the temporary. The nturmeplementation otaf c

does not support this optimization.

4.2 Experimental evaluation

We ported numerous parallel benchmarks and real applieatido CAF and performed
extensive evaluation studies [30, 47, 48, 31, 32] to idgnii&é sources of inefficiencies and
performance bottlenecks on a range of modern parallel tathres. Among the ported
applications (see Section 3.4) are NAS MG, CG, SP, BT, LU aRdMarallel Bench-
marks [12], ASCI Sweep3D [4], RandomAccess and STREAM HP@IIEhge Bench-
marks [1], Spark98 [90], LBMHD [91], Parallel Ocean Progréa©OP) [114] and Jacobi
iteration. These codes are widely recognized as usefuMaluation of parallel program-
ming models.

Our studies [30, 47, 48, 31, 33] have shown that even withatioraatic communication
optimizations CAF codes compiled witaf ¢ can match the performance and scalability
of their MPI counterparts on a range of cluster and hardwhezesl-memory systems.
Among these codes are regular and irregular parallel beadteand applications such as
the NAS benchmarks, Sweep3D, Spark98, and STREAM. We nasilypoverview the

main conclusions of these studies and present selectdtsresu
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4.2.1 Co-array representation and local accesses

We investigated different co-array representations foal@nd remote accesses across a
range of architectures and back-end compilers. The restifi® study [48] is that it is
acceptable to represent co-arrays as Fortran 90 pointersisa procedure splitting for
local accesses; howeveraf ¢ should use different communication strategies for cluster

and shared-memory architectures.

4.2.2 Communication efficiency

Cluster architectures offer only one option to communictdéa — to use a one-sided
communication library. On shared-memory architecturess, also possible to access re-
mote data using hardware load and store instructions viadfoB0 pointer dereferenc-
ing. Load/store communication has two advantages oveiliteey-based communication.
First, it avoids temporaries to hold off-processor dataessary for computation and en-
ables utilizing both local memory and interconnect bandwidSecond, for benchmarks
requiring fine-grain communication, such as RandomAcd#ss|load/store code genera-
tion strategy avoids expensive function calls and provizgter performance. In contrast,
coarse-grain communication is more efficient when implee@musing an architecture-

tuned memory copy routine for bulk data movement rather thisatt load/store.

Communication generation for generic parallel architectues

To access data residing on a remote noadd,c generates ARMCI (or GASNet) calls. Un-
less the statement causing communication is a simple cepydrary storage is allocated
to hold non-local data.

Consider the statemea( : ) =b(:)[ p] +. . . , which reads co-array data forfrom
another process image. Firs&f c allocates a temporarip, _t enp, just prior to the state-
ment to hold the value df( : ) from imagep. caf ¢ adds a GET operation to retrieve the
data from image, rewrites the statementa¢: ) =b_tenp(:)+... and inserts code

to deallocatéd_t enp after the statement. For a statement containing a co-améy to a
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DO J=1, N DO J=1,N
C(J)=A(J) [ p] call CafGetScalar(A_h, A(J), p, tnp)
END DO C(J) =tnp

END DO

(2) Remote element access (b) General communication code

Figure 4.4 : General communication code generation.

remote image, such &g : ) [ p] =. . ., caf c inserts allocation of a temporap/t enp
prior to the statement. Thenaf c rewrites the statement to store its resulcint enp,
adds a PUT operation after the statement to perform the oxal-Write, and inserts code

to deallocate _t enp. An example of this translation strategy is shown in Figure 4

Communication generation for shared-memory architectures

Library-based communication adds unnecessary overheéiddéegrain communication on
shared-memory architectures. Loads and stores can beaideddtly access remote data
more efficiently. Here we describe several representafmmfine-grain load/store access

to remote co-array data.

Fortran 90 pointers. With proper initialization, Fortran 90 pointers can be usedli-
rectly address non-local co-array data. The CAF run-tirbeaty provides the virtual
address of a co-array on remote images; this is used to setRagpti@n 90 pointer for
referencing the remote co-array. An example of this stsategresented in Figure 4.5
(a). The generated code accesses remote data by derefigran€ortran 90 pointer, for
which Fortran 90 compilers generate direct loads and stdre&igure 4.5 (a), the pro-
cedureCaf Set Pt r is called for every access; this adds significant overheaaistiig
pointer initialization outside the loop as shown in Figurg ¢b) can substantially improve
performance. To perform this optimization automaticatlgf ¢ needs to determine that

the process image index for a non-local co-array referentmop invariant.
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DO J=1, N ptrA=>A(1: N)
ptr A=>A(J) call CafSetPtr(ptrA, p, A h)
call CafSetPtr(ptrA p, A_h) DO J=1, N
C(J)=ptrA C(J) =pt rA(J)
END DO END DO
(a) Fortran 90 pointer to remote data (b) Hoisted Fortran 90 pointer initialization

Figure 4.5 : Fortran 90 pointer access to remote data.

PO NTER(ptr, ptrA) PO NTER(ptr, ptrA)
DO J=1, N ptr = shmemptr(A(1l), p)
ptr = shmemptr(A(J), p) DO J=1, N
C(J)=ptrA C(J)=ptrA(J)
END DO END DO
(a) Cray pointer to remote data (b) Hoisted Cray-pointer initialization

Figure 4.6 : Cray pointer access to remote data.

Vector of Fortran 90 pointers. An alternate representation that doesn’t require pointer
hoisting for good performance is to precompute a vector ofate pointers for all the
process images per co-array. This strategy should workfargbarallel systems of modest
size. Currently, all shared-memory architectures mestréguirement. In this case, the
remote reference in the code example from Figure 4.4 (a)dvoetome:

C(J) = ptrArrayA(p) %ptrA(J).

Cray pointers. We also explored a class of shared-memory code generatmieges
based on the SHMEM library. After allocating shared memoithwhmel | oc, one can
useshnmempt r to initialize a Cray pointer to the remote data. This poirt@n then be
used to access the remote data. Figure 4.6 (a) presentsiatiamof the code in Figure 4.4
usingshrmempt r . Without hoisting the pointer initialization as shown irgkre 4.6 (b),

this code incurs a performance penalty similar to the codevshn Figure 4.5 (a).
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Fine-grain applications on shared-memory architectures

In our study [48], we evaluated the quality of source-torseuranslation for applications
where fine-grain accesses are preferred due to the nature application. Previous stud-
ies have shown the difficulty of improving the granularity fofe-grain shared-memory
applications [125]. We use the RandomAccess benchmarkrided in Section 3.4, as an
analog of a complex fine-grain application.

The results of RandomAccess with different co-array regregions and code gener-
ation strategies are presented in Table 4.1 for the SGI ©8Q00 architecture and in Ta-
ble 4.2 for the SGI Altix 3000 architecture. The results agorted in MUPs]0° updates
per second, per processor for two main table sizes: 1MB a6MBYer image, simulating
an application with modest memory requirements and an@gpn with high memory re-
qguirements. All experiments were done on a power-of-two Imemof processors, so that

we can replacdi vs andnods with fast bit operations.

Version size per proc = 1MB size per proc = 256 MB
gpocs. || 1 [ 2 | a | 8[| 1] 2] a] 8] 16

CAF vect. of F90 ptrs.|| 10.06 | 1.04 | 0.52 | 0.25| 0.11 || 1.12 | 0.81 | 0.57 | 0.39| 0.2
CAF F90 pointer 031|025| 02| 016| 015 0.24 | 0.23| 0.21| 0.18 | 0.12
CAF Cray pointer 12.16 | 1.11 | 0.53 | 0.25| 0.11 || 1.11 | 0.88 | 0.58 0.4 | 0.21
CAFshnmem 236 | 0.77 | 0.44| 0.25| 0.11 || 0.86 | 0.65| 0.53 | 0.36 | 0.19
CAF general comm. 041 | 031 0.25 0.2 | 0.09 || 0.33 03| 0.28| 0.23| 0.14
OpenMP 18.93 | 1.18 | 0.52 | 0.32 | 0.17 11| 081| 062 | 045 0.23

| mPibucket2048 || 15.83] 4] 325] 249] 01 115] 085] 069 | 066 0.1]

Table 4.1 : RandomAccess performance on the Origin 2000 ifPMpkr processor.

Each table presents results in MUPs per processor for sewemts of RandomAccess.
CAF vector of FO0 ptrs.uses a vector of Fortran 90 pointers to represent co-array da
CAF F90 pointeruses Fortran 90 pointers to directly access co-array d@taf Cray
pointer uses a vector of integers to store the addresses of co-aatay & Cray pointer

is initialized in place to point to remote data and then usegdrform an updateCAF
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Version size per proc = 1MB size per proc = 256 MB
#pocs. || 1 [ 2 | 4 | 8 [ w2 1] 2] a] 81| 3
CAF vect. of F90 ptrs.|| 47.66 | 14.85| 3.33| 1.73| 1.12| 0.73 || 5.02 | 419 | 2.88 | 1.56 | 1.17 | 0.76
CAF F90 pointer 1.6 15 1.14 0.88 | 0.73| 055 1.28 | 1.27 1.1 | 0.92 | 0.74 | 0.59
CAF Cray pointer 56.38 | 15.60 3.32 1.73| 1.13| 0.75|| 514 | 423 | 291 | 181 | 1.34| 0.76
CAFshrmem 443 | 366| 2.03| 132| 096| 067 | 257 | 244 | 191 | 1.39 | 1.11 | 0.69
CAF general comm. 1.83 1.66 1.13 081 | 063 | 047 1.37| 1.34| 1.11| 0.81| 0.73 | 0.52
OpenMP 58.91 | 15.47 3.15 137 091 | 0.73 || 5.18 | 428 | 296 | 1.55| 1.17 —

| MPibucket2048 || 59.81 | 21.08] 16.40 | 1052 | 5.42 | 1.96 || 5.21 ] 385 | 3.66 | 3.36 | 3.16 | 2.88 |

Table 4.2 : RandomAccess performance on the Altix 3000 in BIp& processor.

shmemusesshnmemput andshnemget functions called directly from FortranCAF
general comm.uses the ARMCI functions to access co-array daw#e| bucket 2048s
bucketed MPI version with a bucket size of 2048 word3penMPuses the same fine-
grained algorithm as the CAF versions; it uses a privatetguben table and performs
first-touch initialization of the global table to improve mery locality.

The best representations for fine-grain co-array accessdtea Cray pointer and the
vector of Fortran 90 pointers. The other representatiohs;iwrequire a function call for
each fine-grain access, yield inferior performance. Wird bucket 2048ow is presented
for reference and shows that an algorithm with better loclioperties and coarser-grain
communication clearly achieves better performance. Itaghvmentioning that the buck-
eted MPI implementation is much harder to code compared toeagiiain CAF version.
The OpenMP version of the benchmark performs as well as tsie@%&F version, due to

similar fine-grained access patterns.

Coarse-grain applications on shared-memory architecture

To evaluate our code generation strategy for codes withseegirain communication on
hardware shared-memory platforms, we selected two bengismelG and SP, from the

NAS Parallel Benchmarks [12, 73], widely used for evalugparallel systems.
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We compare four versions of the benchmarks: the standarl¥RI3mplementation,
two compiler-generated CAF versions based on the 2.3 biigion, and the official 3.0
OpenMP [73] versions of SP and MGAF-clusteruses the Fortran 90 pointer co-array
representation and the ARMCI functions that rely on an aechire-optimized memory
copy subroutine supplied by the vendor to perform data mevemCAF-shmuses the
Fortran 90 pointer co-array representation, but usesd&o@0 pointers to access remote
data. The OpenMP version of SP incorporates structuralggsamade to the 3.0 serial
version to improve cache performance on uniprocessor mashisuch as fusing loops
and reducing the storage size for temporaries; it also udd3 strategy for partitioning
computation that is better suited for OpenMP.

In the CAF versions, all data transfers are coarse-grainnoamcation arising from
co-array section assignments. We rely on the back-enddfo®® compiler to scalarize the
transformed copies efficiently @AF-shm Sequential performance measurements used as
a baseline were performed using the NPB 2.3-serial release.

For each benchmark, we present the parallel efficiency oM CAF and OpenMP
implementations. On an Altix, we evaluate these benchnfarksoth thesingleanddual
processor configurations. THngle placement corresponds to running one process per
dual-processor node; in tlieial placement two processes are run on both CPUs of a node,
sharing the local memory bandwidth. The experimental te$ai problem size class C are
shown on the Figures 4.7 and 4.8. For SP, both CAF versionsewahkimilar performance
— comparable to the standard MPI versions. For MG,@Ad--clusterversion performs
better than th€ AF-shimversion. Since both versions use coarse-grain commuoicatie
performance difference shows that the architecture-tunethory-copy subroutine per-
forms better than the compiler scalarized data copy; itcéffely hides the interconnect
latency by keeping the optimal number of memory operatiorfight. The CAF-cluster
version outperforms the MPI version for both the single aundl @onfigurations. The re-
sults for the OpenMP versions are not directly comparalplessihey are based on version

3.0 source, but they are known to be well designed and tunedgenMP execution. The
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Figure 4.7 : Comparison of parallel efficiencies of the MPAFOwith general communi-
cation, CAF with shared-memory communication, and OpenldiRigns of the NAS SP
benchmark on an SGI Altix 3000.

OpenMP performance is good for a small number of processprso(8-9), but then tails

off compared to the MPI and CAF versions.

4.2.3 Cluster architectures

Without efficient communication, a parallel program yigbd®r performance and scalabil-
ity. On cluster architectures, communication vectora@atnd aggregation are essential to
increase the granularity of communication. An advantagéAff over other languages is
that communication vectorization can be conveniently egped in the source code using
Fortran 90 triplet notations. Thus, programmers do not rieetgse temporary communi-
cation buffers to pack/unpack strided data. In reality, n@upacking/unpacking provides

the best performance on some architectures due to ineffieienf run-time libraries [47].
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Figure 4.8 : Comparison of parallel efficiencies of the MPAFOwith general communi-
cation, CAF with shared-memory communication, and OpenkiBigns of the NAS MG
benchmark on an SGI Altix 3000.

In [30], we identified that other transformations are uséfuincrease performance.
The conversion of GETs into PUTs allows exploiting the RDM#pabilities of certain
interconnecte.g, Myrinet 2000 [9], that have support for RDMA PUT, but not f8ET.
Another benefit of this transformation is that a value can & B the destination as soon
as it is produced. While the opportunities for automaticvession are hard to identify by
the compiler, it is a code style recommendation to the progrars.

In our multi-platform performance evaluation study [47¢ provided detailed analysis
of what transformations are necessary for CAF codes to ntaelperformance of MPI
versions for NAS MG, SP, BT, CG, and LU. The experiments werdgomed on three
cluster architectures (see Section 3.3): the Alpha+Quoadtuster, the Itanium2+Myrinet

cluster, and the Itanium2+Quadrics cluster. Here we summéne results for NAS MG
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Figure 4.9 : Comparison of MPI and CAF parallel efficiency fdAS MG on Al-
pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricstars.

and BT. The complete results of our study can be found elsen\HA&].

The important optimizations for MG are: communication weation, point-to-point
synchronization, and using PUTs for communication. Figugeillustrates that our CAF
version of NAS MG class C5(23, 20 iterations) achieves performance superior to that of
the MPI version on all three platforms. On the Alpha+Quagigluster, our CAF version
outperforms MPI by up to 16% (11% on 128 processors); on Hreum2+Myrinet cluster,
the CAF version of MG exceeds the MPI performance by up to 38%g@n 64 processors);
on the Itanium2+Quadrics cluster, MG CAF surpasses MPI byoup8% (7% on 128
processors). The best-performing CAF version uses proeeshlitting and non-blocking
communication.

The MPI implementation of NAS BT attempts to hide communaratatency by over-
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Figure 4.10 : Comparison of MPI and CAF parallel efficiency fAS BT on Al-
pha+Quadrics, Itanium2+Myrinet and Itanium2+Quadricstars.

lapping communication with computation, using non-blockcommunication primitives.
The high-payoff code transformations for the CAF versiom @mmunication vectoriza-
tion, packing/unpacking of strided communication, anderaff between communication
buffer space and amount of necessary synchronization. &Hermance achieved by the
CAF version of BT class C1623, 200 iterations) is presented in Figure 4.10. On the Al-
pha+Quadrics cluster, the performance of the CAF versidBilois comparable to that of
the MPI version. On the Itanium2+Myrinet cluster, CAF BT petforms the MPI versions
by as much as 8% (and is comparable for 64 processors); otathierh2+Quadrics cluster,

our CAF version of BT exceeds the MPI performance by up to 6% ¢8 121 processors).
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4.2.4 Point-to-point vs. barrier-based synchronization

The original CAF specification [87] had support only for barrand team synchroniza-
tion. In our studies [47, 30, 31, 32], we demonstrated thigtmecessary to use unidirec-
tional, point-to-point synchronization (notify and watit) match the performance of MPI
codes; for instance, NAS CG class A showed up to 59% improwéfae64-processor runs
when using point-to-point synchronization instead of ieast Point-to-point synchroniza-
tion provides two benefits over barrier-based synchromwizatirst, fewer synchronization
messages are required when each processor synchronihes svitall subset of neighbor
processors (nearest-neighbor communication). Secomak-foepoint synchronization al-
lows more asynchrony in the sense that processors synebronily with the necessary
subset of neighbors and the synchronization is not collectOn the contrary, a barrier
synchronizes all process images and every image is delaggohgvfor the slowest one.
The updated CAF language specification [86] provides uedtional point-to-point syn-
chronization primitives.

However, programming using point-to-point synchronizatis hard. In Chapters 5, 6,
and 7, we develop a technique that would enable automaticecsion of barriers into

weaker point-to-point synchronization for a large clasparallel codes.

4.2.5 Improving synchronization via buffering

We found that using extra communication buffers can redheeatnount of synchroniza-
tion, e.g, for X-, Y- and Z-sweeps in NAS SP and BT. In our study [31, 323, presented
a hand-codednulti-buffercommunication scheme for Sweep3D that exceeds the perfor-
mance of the MPI version by up to 10% on several architect@bapter 8 presents multi-
version variables (MVVs) that simplify development of suagbplications with producer-
consumer communication patterns by insulating prograraifinem the details of buffering
and pipelined synchronization. At the same time, expertmsinow that MVVs deliver the

performance of the best hand-optimized (multi-buffersians.
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4.2.6 Performance evaluation of CAF and UPC

We performed a thorough comparison of CAF and UPC programmiadels [33] using
NAS benchmarks. The study revealed that it is much more diffto match the perfor-
mance of MPI+Fortran codes in UPC in comparison to CAF. Themmeason is that UPC
uses C as the target sequential language and does not strpportulti-dimensional array
abstraction. We compared the performance of MPI, CAF, an@ Ugtsions of NAS MG,
CG, SP, and BT (see Section 3.3) on four parallel architest(see Section 3.3): the Ita-
nium2+Myrinet cluster, the Alpha+Quadrics cluster, angl 8GI Altix 3000 and the SGI
Origin 2000 shared-memory machines. We usad c to compile CAF codes and the
Berkeley and the Intrepid UPC compilers to compile the UPGiwoas of the benchmarks.
In the following, we summarize the results for the NAS MG aitic®des. A more detailed

description of our study and results can be found elsewl33ie [

Unified Parallel C Compilers

The Berkeley UPC (BUPC) compiler [28] performs sourcedarse translation. It first
converts UPC programs into platform-independent ANSI-@Ggliant code, tailors the
generated code to the the target architecture (clusteramedbmemory), and augments
it with calls to the Berkeley UPC run-time system, which imntuinvokes a lower level
one-sided communication library called GASNet [17]. The St library is optimized
for a variety of target architectures and delivers high @anance communication by ap-
plying communication optimizations such as message coalgsand aggregation as well
as optimizing accesses to local shared data. We used both(Heand 2.1.0 versions of
the Berkeley UPC compiler in our study.

The Intrepid UPC (IUPC) compiler [71] is based on the GCC cibenpinfrastructure
and supports compilation to shared-memory systems inajuitie SGI Origin, Cray T3E,
and Linux SMPs. The GCC-UPC compiler used in our study isiorr8.3.2.9, with the
64-bit extensions enabled. This version incorporateniimi optimizations and utilizes the

GASNet communication library for distributed memory sysse



80

NAS MG

Figures 4.11 (a) and (b) present the performance of classgsoblem size256%) and
C (problem size5123) on an Itanium2 cluster with a Myrinet 2000 interconnecte MPI
curve is the baseline for comparison as it represents ttierpgance of the NPB-2.3 official
benchmark. Th&€AF curve represents the efficiency of the fastest code variattewin
Co-array Fortran and compiled wittaf c. To achieve high performance, tAF code
uses communication vectorization, synchronization gfiteneduction, procedure splitting
and non-blocking communication. TH&AF-barrier version is similar toaCAF, but uses
barriers for synchronization.

In Figure 4.11, thdUPC, BUPC-restrici BUPC-strided andBUPC-p2pcurves dis-
play the efficiency of NAS MG coded in UPC and compiled with 8idPC compiler.
The UPC implementation uses a program structure simildrabdf theMPI version. All
UPC versions declare local pointers for each level of the fmi more efficient access to
local portions of shared arrays. TB&PC-restrict BUPC-p2pand BUPC-strideddiffer
from BUPCDby declaring these local pointers as restricted, using 8@&r@stri ct key-
word, to improve alias analysis in the back-end C compB&tPCandBUPC-restrictuse
barriers for interprocessor synchronizatidiJPC-p2pand BUPC-strideduse point-to-
point synchronization implemented at the UPC languagd.|&@PC, BUPC-restrictand
BUPC-p2puseupc_nenput for bulk data transfer®UPC-strideduses UPC extensions
to perform bulk transfers of strided data.

The results show th&AF has an efficiency comparable to thal®l; the CAF-barrier
performance is similar to that &Pl for small numbers of CPUs, but the performance de-
grades for larger numbers of processors. The origdt#PC version is as much as seven
times slower thartMPI and CAF. We identified three major causes for this performance
difference. The principal cause is lower scalar perforreathee to source-to-source trans-
lation issues, such as failing to convey aliasing infororatio the back-end compiler and
inefficient code generated for linearized indexing of mdlthensional data in UPC. Sec-

ond, using barrier synchronization when point-to-poimdayonization suffices degrades
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Figure 4.11 : Comparison of MPI, CAF, and UPC parallel efficiefor NAS MG.

performance and scalability. Third, communicating nontguous data in UPC is cur-
rently expensive.

Source-to-source translation challenges.The following code fragment is for the
residual calculationt esi d, which is computationally intensiveMPI, CAF, and CAF-

barrier use multi-dimensional arrays to access private data.
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subroutine resid(u,v,r,nl,n2,n3,...)

i nteger nl,n2,n3

doubl e precision u(nl,n2,n3),v(nl, n2,n3),r(nl, n2,n3),a(0:3)
I 1 oop nest accounting for 33%of total walltine

r(il1,i2,i3) =v(il,i2,i3) - a(0) * u(il,i2,i3) -

end subroutine resid

The corresponding routine in the UPC versions uses C paitierccess the local parts

of shared arrays as shown below.

typedef struct sh_arr_s sh_arr_t;
struct sh_arr_s {
shared [] double *arr

b

void resid( shared sh_arr_t =u, shared sh_arr_t =v,

shared sh_arr_t *r, int nl, int n2, int n3, ...) {
#define u(iz,iy,ix) uptr[(iz)*n2*xnl + (iy)*nl + ix]
#define v(iz,iy,ix) v_ptr[(iz)*n2*xnl + (iy)*nl + iXx]
#define r(iz,iy,ix) r_ptr[(iz)*n2*xnl + (iy)*nl + iXx]

doubl e *restrict u_ptr, *restrict v_ptr, *restrict r_ptr;

u ptr = & u MYTHREAD] . arr[ 0] ;
v_ptr = & V[ WTHREAD)] . arr[ 0] ;
r ptr = & r[ MYTHREAD)] . arr[ 0] ;

/1 1oop nest accounting for 60% of total walltine
r(i3, i2, il =v(i3, i2, il) - a[0] = u(i3, i2, il) -

}

If u were used to access shared local data via UPC’s run-timessldesolution for
shared pointers [21, 28], the performance would suffer fex@cuting a branch per data
access. The use afpt r, a regular C pointer, enables the local portion of the sharexy
u to be accessed without the need for run-time address resualut

In Fortran,u is a subroutine argument and cannot alias other variablege w C,
u_pt r is a pointer. Hence, lacking sophisticated alias analgstscompiler conservatively
assumes thai_pt r can alias other variables. In turn, this prevents the C ctanfriom
doing some high-level loop nest optimizations. Using RiddPCToolkit [100, 79] (a
suite of tools for profile-based performance analysis ustagstical sampling of hardware
performance counters) we analyzed one-processor version& class B. We discovered

that theBUPCversion ofr esi d had 2.08 times more retired instructions and executed ten
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times slower than its Fortran counterparts. For the enerecbmark, the performance of
theBUPCversion was seven times lower (144 vs. 21 seconds).

To inform the back-end C compiler thatpt r does not alias other variables, we anno-
tated the declaration af_pt r with the C99r est ri ct keyword. Restricting all relevant
pointers inr esi d resulted in a 20% reduction in the number of retired instounst and
yielded a factor of two speedup for this routine. Usingstri ct for BUPC-restrict
where it was safe to do so resulted in a 2.3 times performanpeovement, reducing the
execution time to 63 seconds, only three times slower thah iNB2ead of the original
factor of seven.

With CAF, we encountered a similar difficulty with overly ®rvative assumptions
about aliasing in back-end Fortran compilers when comguiimthe local parts of COM-
MON/SAVE co-arrays. In CAF, global co-arrays do not aliagt their pointer-based rep-
resentation does not convey this information to back-endr&wo compilers. To address
this problem, we developed a source-to-source transfasm&hown as procedure split-
ting (see Section 4.1.5). This transformation eliminatesrly conservative assumptions
about aliasing by transforming a pointer-based representéor co-array data into one
based on dummy arguments, which are correctly understooe ficee of aliases.

While alias analysis of UPC programs can be improved by lgggnegrammers or (in
some cases) UPC compilers addesst r i ct keyword, there is another fundamental issue
preventing efficient optimization of scientific C codes. Huetran code snippet above uses
multi-dimensional arrays with symbolic bounds, expressedpecification expressions by
parameters passed to thesi d subroutine. In UPC MG, the macro creates the syn-
tactic illusion of a multi-dimensional array, but in fadbjg macro linearizes the subscript
computation. C does not have the ability to indexsing a vector of subscripts. Thus, to
safely reorder such references during optimization, C dlmrgomust perform dependence
analysis of linearized subscripts, which is harder thatyaireg a vector of subscripts. This
tends to degrade the precision of dependence analysishuwimits the ability of C com-

pilers to exploit some high-level optimizations, and, thyields slower code. To estimate
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the performance degradation due to linearized subscmp@, iwe linearized subscripts
in a Fortran version of esi d. This change doubled the execution time of the Fortran
version ofr esi d and degraded the overall performance of MG class B by 30% en th
Itanium2+Myrinet cluster.

Point-to-point synchronization. In MG, each SPMD thread needs to synchronize
only with a small number of neighbors. While a collectiveriErcan be used to provide
sufficient synchronization, it provides more synchron@athan necessary. Our experi-
ments show that unnecessary collective synchronizatigrades performance on loosely-
coupled architectures. This effect can be seen in FigurkEk (4) and (b) by comparing
the efficiency of thdBUPC-restrictandBUPC-p2pversions. We deriveBUPC-p2pfrom
BUPC-restrictby using a reference language-level implementation oftgolpoint syn-
chronization. The performance boost is evident for thedargumber of processors and
amounts to 49% for class A and 14% for class C in 64 processmugions. The class A
executions benefit more from using point-to-point synciration because they are more
communication bound. A similar effect can be seen for CAF:G4 processorsCAF-
barrier shows a 54% slowdown for class A and a 18% slowdown for clas C.

Non-contiguous data transfers. For certain programs, efficient communication of
non-contiguous data can be essential for high efficiencyM&®, the y-direction transfers
of BUPC-restrictare performed using several communication events, eankféraing a
contiguous chunk of memory equal to one row of a 3D volume. BUPC-stridedversion
is derived fromBUPC-p2p It moves data in the y-direction by invoking a library priime
to perform a strided data transfer; this primitive is a mentfea set of proposed UPC
language extensions for strided data transfers [18]. EesamuBerkeley’s reference im-
plementation of the strided communication operation (gsepd to a carefully-optimized
implementation) yielded a 28% performance improvemerBdPC-stridedover BUPC-

p2p for class A on 64 processors and a 13% efficiency improvenfentslass C on 64

2In later studies (see Chapter 7), we eliminated redundaniebsand observed somewhat smaller im-

provements.
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processors. The most efficient communication can be adhigy@acking data into a con-
tiguous communication buffer and sending it as one contigwhunk. A version that uses
packing is marginally more efficient thalUPC-strided thus, we do not show it on the
plot.

While in most cases using the UPC strided communicationnextes is more con-
venient than packing and unpacking data on the source anicatesn, we found it more
difficult to use such library primitives than simply readioigwriting multi-dimensional co-
array sections in CAF using Fortran 90 triplet notation, etgaf ¢ automatically trans-
forms into equivalent strided communication. For CAF peogs, a compiler can automat-
ically infer the parameters of a strided transfer, such asaomg strides, chunk sizes, and
stride counts; whereas in UPC, these parameters must beitxphanaged by the user.

Figure 4.11 (c) presents the performance results of NAS M&SscB (problem size
2562) for the Altix 3000 architecture. TheIPI, CAF, BUPC, BUPC-restrict andBUPC-
p2p curves are similar to the ones presented for the Itanium2idy 2000 cluster. We
used the same versions of the Intel Fortran and C compiléexefore, we expected similar
trends for the scalar performanceMPI, CAF andBUPC. Indeed MPI andCAF versions
show comparable performance, whB&PCis up to 4.5 times slower anBlUPC-restrict
is 3.6 times slower tha@AF. The efficiency of all programs is lower on this architecture
compared to that on the Itanium2+Myrinet2000 cluster, beean our experiments on the
Altix architecture we ran two processes per dual node, sgdahe same memory bus.

For CAF, using barrier-based instead of point-to-pointckyonization does not cause
a significant loss of performance on this architecture fooBt&wer processors. However,
for 64 processors, we observed a performance degradatid@%fwhen CAF MG used
barriers for synchronization. For UPBUPC-p2poutperformsBUPC-restrictby 52% for
NAS MG on 64 processors.

Figure 4.11 (d) presents the performance results on ther@)0 machine for NAS
MG class B (problem size563). The MPI curve corresponds to the original MPI ver-

sion implemented in Fortran. TH&AF curve gives the performance of the optimized CAF
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version with the same optimizations as described prewpastept that non-blocking com-
munication is not used, because the architecture suppastspnchronous interprocessor
memory transfers. ThBUPCandIUPC curves describe the performance of the UPC ver-
sion of MG compiled with the Berkeley UPC and the Intrepid Ugd@pilers, respectively.
The CAF version slightly outperforms théP1 version due to more efficient one-sided
communication [48]. Th&PI version slightly outperformBUPCwhich, in turn, slightly
outperformslUPC. The MIPSPro C compiler, which is used as a back-end comfaiter
BUPC, performs more aggressive optimizations compared to tieé Gixcompiler. In fact,
using ther est ri ct keyword does not yield additional improvement, becauseatias
analysis done by the MIPSPro C compiler is more precise. thehess, it is our belief that
the lack of multi-dimensional arrays in the C language pnév¢ghe MIPSPro C compiler
from applying high-level loop transformations such as Ulil&gam and software pipelin-
ing, resulting in an 18% slowdown &UPC MG class B on one processor relative to the
one-processoPI version. TheUPC version was compiled with the Intrepid compiler
based on GCC [71], which performs less aggressive optiiz#tan the MIPSPro com-
piler. Lower scalar performance of thdPC version results in a similar 48% slowdown.
The one-process®BUPC versions of MG class A execute approximately 17% slower
than the correspondinQAF version (65 seconds vs. 55 seconds). To determine the cause
of this performance difference, we used SGi&r f ex hardware counter-based analysis
tool to obtain a global picture of the application’s behawioth regards to the machine
resources. A more detailed analysis using SG§s un and Rice’s HPCToolkit led us to
conclude that th®UPC version completes 51% more loads than @®&F version. The
cause of this was the failure of the MIPSPro C compiler to yappdp fusion and align-
ment to the most computationally intensive loop nest in hy@iaation (in ther esi d()
routine). The MIPSPro Fortran compiler performed loop dusand alignment. This re-
duced the memory traffic by reusing results produced in tegiswhich in turn improved
the software-pipelined schedule for the loop. We expecilginssues to inhibit the perfor-

mance of other less computationally intensive loops in tb®8-compiled application.
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NAS SP

Figure 4.12 (a) shows the parallel efficiency curves for N&iss C (problem sizis2?)

on the Itanium2+Myrinet2000 cluster. TIPI curve serves as the baseline for compari-
son and represents the performance of the original NPBR [3g8chmark. ThEAF curve
shows the performance of the fastest CAF variant. It usest{poipoint synchronization
and employs non-blocking communication to better overlapmunication with compu-
tation. TheBUPC andBUPC-restrictcurves show the performance of two versions of SP
compiled with the Berkeley UPC compiler.

The performance of th€AF version is roughly equal to that &PI. Similar to the
other UPC NAS benchmarks compiled using the back-end Intebi@piler, the scalar
performance suffers from poor alias analysis: the oneqs®ar version oBUPCclass C
is 3.3 times slower than the one-procedgét! version. Using the est ri ct keyword to
improve alias analysis yielded a performance boost: theppoeessor version @dUPC-
restrictclass C is 18% faster thalJPC. The trend is similar for larger numbers of CPUs.

There is a conceptual difference in the communication imgeletation of the dimen-
sional sweeps ICAF andBUPC. The CAF implementation uses point-to-point synchro-
nization, while the UPC implementation uses split-phasedyasynchronization. In gen-
eral, it is simpler to use split-phase barrier synchromrathowever, for NAS SP, point-to-
point and split-phase barrier synchronization are equaiyplex. Since barrier synchro-
nization is stronger than necessary in this context, it¢potentially degrade performance.

Figure 4.12 (b) reports the parallel efficiency of M€1, CAF, andBUPCversions of
NAS SP class C (problem si2€23) on the Alpha+Quadrics platform. It can be observed
that the performance @AFis slightly worse than that d¥PI. We attribute this to the lack
of non-blocking natification support in the CAF run-time éay The performance of the
BUPCversion is lower than that d#iPI due to worse scalar performance of the C code: it
is 1.4 times slower for one processor and increases to 1estaower for 121 processors.
The use of the est ri ct keyword does not have any effect on performance because of

the high quality dependence analysis of the Alpha C compiler



88

1 T 13
= MPI
-6~ CAF 10k 4
0.9 =0~ BUPC H )
! -8~ BUPC-restrict
11t : . 4
o8 7 .
2 3
@ o 8
Sorr B ool : . ]
<] <
Q Q.
o =08 : :
So6f S
5 5 | _a--- ol PR aEE N R L9
Eel Sog === T T Y. -
£ £ ‘ \o_ Al
Sosf g 5 -é 4
= o6 :
g )
Zo4r 1 Jost
8 P 2
2P e Tesa 4 Doa
;,>"". ___________ L T “‘-—--_.___-o--—o__’_-c 5
< i S Soal
g '-0--“9'"9--0'" @03
8021 T 8
E E
] o2l
0.1 B = MPI
011 -6 CAF
=0~ BUPC
0 | | | | 0 I | | I | |
1 9 16 25 36 49 64 1 4 9 16 25 36 49 64 81 100121
Number of Processors Number of Processors

(a) SP class C on Itanium2+Myrinet (b) SP class C on Alpha+Quadrics

1 T 13
= MPI
-6~ CAF 100
0.k -0~ BUPC
-8~ BUPC-restrict

111

@08l z

2 7%

o7 Sosol

o °

Q Q.

Sosl 508

E 5ol

E _ e LIS . . \\50.5

=] - S =1

Go4 e e p. Bosr

g - __ e-"" P - ~o” o

a -- 7

D03 bmmmme - 4 204

) 3

5 503t

8o02r b =

& G o2l
= MPI

0.1f B -6~ CAF
0.1f ~0- BUPC |
-e- IUPC
0 | | 0 I T
1 4 9 16 25 36 49 64 1 4 9 16 25
Number of Processors Number of Processors
(c) SP class C on Altix 3000 (d) SP class B on Origin 2000

Figure 4.12 : Comparison of MPI, CAF, and UPC parallel efficiefor NAS SP.

Figure 4.12 (c) shows the efficiency bIPI, CAF, BUPC, andBUPC-restrictversions
of NAS SP class C (problem siz62%) on the Altix 3000 system. The performance®AF
andMPl is virtually identical, whileBUPCis a factor of two slower on four processors (we
were not able to run the one-processor version due to menwstr@ints). Using the
restrict keyword improves performance by 17% on average.

Figure 4.12 (d) shows the parallel efficiencyMPI, CAF, BUPC, andlUPC versions
of NAS SP for class B (problem siZ€)23) on the Origin 2000 machine. The performance
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of CAFis very close to that oMPI. Both UPC versions have similar performance and are
slower tharMP1 or CAF. Again, the difference is attributable to lower scalar perfance.
For the one-processor SP clasRJPCwas 57% slower thaNPI.

We observed that the one-processor BUPC-compiled ver$i®R class A executes ap-
proximately 43% slower than the correspondwviBl version. Using hardware performance
counters, we found that the BUPC-compiled version execiweze as many instructions
as the CAF version.

A detailed analysis of this difference using HPCToolkit &@l’s ssr un helped us
identify that a computation-intensive, single-statemeanp nest present in both versions
was getting compiled ineffectively for UPC. In Fortran, tlo®p, which accesses multi-
dimensional array parameters, was unrolled & jammed to avgouter loop reuse and
software pipelined by the MIPSPro Fortran compiler. Theegwonding UPC loop, which
accesses 1D linearized C arrays through pointers, was mollesh or software pipelined
by the MIPSPro C compiler, leading to less efficient code.sThore than doubled the
number of graduated instructions for the loop in BigPC version compared to thelPI
version.

The generated code for the Fortran loop was able to reusenhofloating point data,
but integer address arithmetic as well. We believe thatgpeific observation applies to
many of the single-statement computationally intensieptopresent in SP’s routines. For
multi-statement loops, the difference in the number of atet instructions between the
UPC and MPI versions was not as significant. Such loops ajreade opportunities for
reusing address arithmetic and floating point values evémowi applying transformations

such as unroll & jam.
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Chapter 5

Co-spaces: Communication Topologies for CAF

The co-array co-shape [86] defines how a co-array is mappéd GAF program
images. It is defined by a declaration or allocation of a aayarvariable, e.g,

i nteger a[4, 2,*]. The target image of each PUT/GET is specified for a co-array
access by using one or more co-subscripts [86] with brackttion,e.g, a[ 1, 2, 3] .

The co-shape maps a co-dimension subscript vector inteearlimage index in the range
from 1 tonumi mages( ) . This index is used to identify the target image for a onedid
communication operation. The co-shape “arranges” imagesa virtualcommunication
topology which is analogous to a Cartesian space without periodiatharies.

While convenient for a limited number of applications thaeyprocessor decomposi-
tions of a Cartesian shape without periodic boundaries, ki-gimensional co-shape is
not well suited to express other communication topologhesa result, programmers of-
ten useneighbor arrayso store the target image indices of each image’s commuaicat
partners. Neighbor arrays are used to implement commasegg-communication topolo-
gies. A neighbor array on imagestores the image indices of the logical communication
partners with whonp communicates via PUT/GET. For example, in an applicati@t th
uses a 3D data decomposition onto processors, a 3-elemaot gseiccessor of suc-
cessors and a 3-element vecporedecessor of predecessors can be used to store the
image indices of logical successor and predecessor imdgeg each of the coordinate
axes. The programmer can declare a co-array used for datareye between images as
i nteger a[*] and use neighbor arrays to specify the target of one-sidathmi-
cation,e.g, a[ successor (di m ], wheredi me [1,3]. This idiom appears in many

scientific CAF codes such as NAS benchmarks and Sweep3D.
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Neighbor arrays can express an arbitrary communicatiooidégy; however, they have
two major disadvantages. First, they are not standardizédheey are typically used to im-
plement commonly used topologies in an ad-hoc way. This septhe burden of topology
implementation on programmers. Second, neighbor arraypplkocate compiler analysis of
communication patterns, because they are initialized aed explicitly, and it is hard to
infer the properties of the communication topology from ithigalization code and com-
munication structure from their usage.

We explore using communication topologies to replace nuliftiensional co-shapes in
CAF. We focus on three commonly used communication topekgiroup, Cartesian, and
graph, inspired by MPI communicators and process topododi2#2, 62]. We call CAF
communication topologieso-spacesy analogy with CAF’s co-dimension, co-rank, co-
shape, etc., co-array terminology [86]. Co-spaces are GAgramming model objects,
in the sense that they can be a part of the language or runkbnaey and compiler (see
Section 5.5), that take the place of ad-hoc neighbor arfBysy provide a mapping from a
virtual communication topology to the linear image numimethie rangel, N|, whereN is
the total number of images. This number can be used to sgeeitarget image of not only
communication, but also synchronization or a co-functivocation (see Chapter 9). The
goal of co-spaces is to improve programmability by prowdaommonly used reusable
abstractions to programmers. Besides, co-spaces exposefdhmation about the com-
munication topology and communication partners to a CAFmtenwhich enables global
program analysis (see Chapter 6) and powerful communitatia synchronization opti-
mization such as synchronization strength reduction ($epter 7).

In the rest of this chapter, we discuss CAF co-shapes in meteel énd formalize the
concept of group, Cartesian, and graph co-spaces. Ché&macs7 describe how co-spaces

help the global analysis and optimization of CAF programs.
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5.1 Communication topologies in CAF

Each co-array declaration/allocation in CAF defines a cayaco-shape [86] that can
be thought of as a Cartesian communication topology or gsmespace. For instance,
i nteger a(10,10)[*] defines co-array that has a 1D Cartesian communication
topology without periodic boundaries where each image éntified by a unique num-
ber from 1 tonumi mages() . The declaration nt eger b(100) [N, *] specifies a
co-array with a 2D Cartesian processor decomposition witperiodic boundaries where
images are arranged into a virtual 2D array of processorslimm-major order. A part
of b is associated with each process image that is identified ajrapcoordinatesi, j)
in a 2D Cartesian processor space with dimensigrsnd M, whereM is the minimum
number such tha¥V x M > numi mages() . The legal coordinate values are< 1 < N
andl < j < M with an additional constraint oft the process image index computed
asp = (i—1)+ N x (j — 1) + 1, must not exceed the number of images. For example,
if the total number of images is three and a co-array is dedlasa[ 2, =] , the legal co-
dimension indices arg(1, 1) corresponding to process image index2, 1) to 2, (1,2) to
3. However, referencing image, 2), which corresponds to process image indegauses
a critical run-time error. The topology is incompletelyddl in the sense that coordinate
(2,2) is legal in the virtual topology, but there is no process imagsociated with it. This
inconsistency would require programmers to implementdgigic to address corner cases
for communication. To date, we have not seen an applicatatruses such an incompletely
filled co-shape. Additional details of CAF co-space sentantan be found in [86].

We summarize the weaknesses of the CAF’s multi-dimensionahape before for-
malizing the concept of co-spaces that, we think, is a batistraction to express the target

of one-sided communication in many CAF applications.

e Asmentioned above, a co-array co-shape provides only anencmication topology
type — a Cartesian processor grid without periodic bouedaio express any other
type of topology, programmers declare co-arrays with omlg oo-dimension and

typically use neighbor arrays that provide the mapping ftbenapplication’s virtual
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topology into the image index. This approach is ad-hoc aratr-g@rone.

e A co-shape may be incompletely filled if the product of alldicrensions is not equal
to the number of process images, which requires extra pmogiag logic to handle

special cases.

e A co-shape is not inherited across a procedure call. It hag t@declared afresh in
each subroutine for each co-array dummy argument. Usudiaéyco-shape informa-

tion is passed as extra arguments to the subroutine.

e The target images of point-to-point and team synchrorond®86] are specified dif-
ferently than those of communication. Synchronizatiomgives accept only image
indices; the co-shape does not exist for them. Programnaarsise neighbor ar-
rays or thei mage_i ndex intrinsic function [86] to obtain the target image of a
synchronization event, wheiemage_i ndex( a, sub) returns the process image
index corresponding to to the set of co-subscriib for co-arraya. Both of these

approaches are cumbersome.

e A co-shape can be used to specify the target of a co-subsdabifiunction invoca-

tion discussed in detail in Chapter 9.

e A co-shape is defined across all process images. It is natilfsefexpressing com-

munication topologies for subsets of process images.

e Co-shape Cartesian coordinates are global. Many codesetier bxpressed using
coordinates relative to each image. For example, considapalication based on
nearest-neighbor communication. It is easier and moretiveLto think about the
communication partners in relative ternesg, my left neighbor, my right neighbor,
etc. Thei mage_i ndex intrinsic can be used for Cartesian topologies without-peri

odic boundaries; otherwise, a natural choice is to use beigérrays.

e Because co-shapes are not expressive enough, programaversohuse neighbor
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arrays to specify communication target images. The comeation topology in-
formation specified using a neighbor array is known to thegmmer, but nearly
impossible to infer automatically by a CAF compiler. Howgwenderstanding com-
munication topology is essential for analysis and optitnraof communication &

synchronization.

General inconvenience and complication of compiler anslyden communication is
expressed via co-array co-shapes and neighbor arraysifosc® rethink the organization
of process topologies in CAF. We believe that more genedlansable group, Cartesian,
and graph co-spaces will simplify programming of many CABe®and enable program
analysis by exposing the properties of communication tgies and PUT/GET targets to

CAF compilers.

5.2 Co-space types

The MPI standard [112, 62] has extensive support for comoatiois and process topolo-
gies using a design based on years of experience. We levitieggeideas to design group,
Cartesian, and grapto-spaces- virtual communication topologies in CAF. A co-space
is a CAF object that represents a virtual communication ltmpo In essence, co-spaces
encapsulate the same information as the neighbor array$hdyudo this in a systematic
way. Each co-space object represents an ordered group gésthat might have a logical
structure overlaid on the members of the group. For a Cartesd-space, this structure
can be a Cartesian topology with or without periodic bouregar=or a graph co-space, the
relation among images is determined by a directed graphddiitian, a group co-space
enables the programmer to permute the image indices of atirgkico-space group or to
specify a subset of a process group. Each co-space type has@defined interface, pre-
sented below. The interface includes functionality foratiregy and destroying co-spaces
and a number of topology query functions such as membersiip@ighbor relationship.
Each co-space has a group of member images ordered by thgireurank. The size

of a co-space is the size of its group. Each member has a uraglefrom the interval
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[0, N —1], whereN is the group size. Each member is a real image with the index the
[1,num_images()] range. The image index is used to specify the target imag&JofGET
or synchronization. A co-space provides a mapping from tloaig rank to the image
index. For example, group ranks 0, 1, and 2 may corresponchage indices 1, 4, and
7. In addition, the group co-space allows permutation ofrtfeenbers of the group. For
example, group ranks 0, 1, and 2 may correspond to imageaadicl, and 4. A new co-
space can be created by a collective operation among the ensmwiban existing co-space.
There is a predefine@AF_WORLD co-space that includes all process images from 1
to numi nmages() ordered according to their ranks from Onnomi mages() —1. It
corresponds to a co-array declaration with one co-dimenaia the lower bound of O,
e.g, a(10)[ 0: ] . CAFWORLD has the topology of a 1D Cartesian co-space without
periodic boundaries.

We use the following notation for the co-space specification

e Each function is prefixed wit€Sto provide the co-space interface namespace.

A co-space parameter of typeype( XXX) can be of any co-space type:
type( G oup) for group co-spacetype(Cartesi an) for Cartesian, or

t ype( G aph) for graph; or the parameter can also®@&_WORLD.

e Anargumentin brackete,g, [ X] , is optional. Notatiorh x=a] means that optional
argumeni has default valua. In particular,i mage=t hi s_i mage() means that
the optional argumentmage is not present, and its value is the index of the invoking

process image.
¢ NOERRORIs an integer constant that indicates that a function cadl sueccessful.

¢ NORANK is an integer constant that indicates that there is no rasdcested with an

image.

¢ NO MACE is an integer constant that indicates that the image doesasis.
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Most functionality of the group co-space management is #mesfor Cartesian and

graph co-spaces, and we describe it only for the group coespa

5.2.1 Group

This section formalizes the interface functions for groapspaces.

e CSCreate
i nteger function CSCreate(cs, ecs, nmenber, [rank])
type(Goup), intent(out) :: «cs
type(XXX), intent(in) :: ecs
logical, intent(in) :: nenber
integer, intent(in), optional :: rank

Creates a new group co-space obest returnsNOERROR if successful. Only im-
ages of an existing co-spaees participate in the collective call. Ifrenber is
equal to. t r ue. , the invoking image becomes a member of the new co-space with
the rank equal to ank. r ank determines the rank of the image in the group and
can define a permutation of group members. If rank is not &pdcithe ordering

of images incs is consistent with their ordering in thecs group. r ank must be
unigue for each member @fs. r ank determines the ordering of the image in the
group and must be in the range from 038_Si ze( cs) —1, whereCS_Si ze( cs)

returns the size of the group.

e CS Destroy

subrouti ne CS.Destroy(cs)
type(XXX), intent(inout) :: <cs

Destroys the co-space objecs of any type. Ifcs is CAF.WORLD, it is a critical

run-time error.

e CS.I mage
i nteger function CS.Inage([cs=CAFWORLD], [rank])
type(XXX), intent(in), optional :: cs

integer, intent(in), optional :: rank
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Returns the image index for the group member with raakk. r ank must be in
[0,CS_Si ze( cs) —1] range. Ifr ank is not specified, it is assumed to be the rank
of the invoking image returned by tlg&_Rank( cs) function, so a call without the

r ank argument is equivalent to CAFtshi s_i mage( ) intrinsic.

CS_Rank

i nteger function CS.Rank([cs=CAFWORLD], [image=this_.inage()])
type(XXX), intent(in), optional :: cs
integer, intent(in), optional :: inmage

Returns the co-space group rank of process image with indege. Returns
NORANK if the i mage is not a member ofs. If i mage is not specified, the in-

voking image is assumed.

CS.Si ze
i nteger function CS.Size([cs=CAFWORLD])
type(XXX), intent(in), optional :: cs

Returns the size of the co-space.

CS.I sMenmber

| ogi cal function CS.IsMenber(cs, [image=this.imge()])
type(XXX), intent(in) :: cs
integer, intent(in), optional :: inmage

Returns. t rue. if the process image with indexmage is a member of the co-

spacecs. If co-space objeats is uninitialized,CS_| sMenber returns. f al se. .

CS_.Goup

subrouti ne CS.Goup(cs, inmges)
type(XXX), intent(in) :: cs
integer, intent(out) :: inmages(*)

Fills thei mages array argument with the indices of co-spaseimages in the order
of their member ranks. The array should be sufficiently l@tgasiCS_Si ze( cs) ,

to fit all image indices.
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5.2.2 Cartesian

This section formalizes the interface functions for Caaeso-spaces.

e CSCreate
i nteger function CSCreate(cs, ecs, nunDinms, dins, [periods],
[order])
type(Cartesian), intent(out) :: <cs
type(XXX), intent(in) :: ecs
integer, intent(in) :: nunDins
integer, intent(in) :: dins(nunDi ns)
integer, intent(in), optional :: periods(nunDi ns)
integer, intent(in), optional :: order

Creates a new Cartesian co-space olgactreturnsNOERROR if successful. Only
images of an existing co-spaees participate in the call. Each member s
becomes a member of with the same group rankiunDi s, di ns, peri ods,
andor der must be the same on every invoking image. TilneDi ns is the num-
ber of dimensions of the Cartesian topology; it must be p@sitThe size of each
dimension is determined by tltB ns(i ), 1 < ¢ <nunDi ns; it must be positive.

di ms(1: nunDi ns) defines the shape of the Cartesian topology in the column-
major order. The product of all dimensions must be equalémtimber ots group
members. Iperi ods(i) isequalto. f al se., dimension is not periodic; oth-
erwise, it is periodic. lfperi ods is not specified, all dimensions are assumed to
be periodic. The optional parametarder determines the arrangement of dimen-
sions. It can be eitheZS_Col utmMaj or or CS_RowiVaj or . As the names imply,
the first corresponds to the column-major order, the secdodhke row-major order.
The default order is row-major.

CS_Nei ghbor for one axis
i nteger function CS.Nei ghbor(cs, axis, offset, [inage=this.nmage()])

type(Cartesian), intent(in) :: <cs
integer, intent(in) :: axis

integer, intent(in) :: offset

integer, intent(in), optional :: inmage

Returns the image index of tlog f set -th Cartesian neighbor along the dimension

axi s. axi s must have the value ifi, N|, whereN is the number of dimensions.
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Theof f set can be positive, negative, or zero. The offset of zero cpoeds to the
coordinates of the invoking image and the function retunesindex of the invoking
image. If dimensioraxi s is not periodic and the neighbor does not exist, the call
returnsNO MAGE.

CS_Nei ghbor for several axes
i nteger function CS.Neighbor(cs, offsets, [inmage=this.imge()])

type(Cartesian), intent(in) :: <cs
integer, intent(in) :: offsets(*)
integer, intent(in), optional :: inmage

Returns the image index of the Cartesian topology membaifggk by the offset
vectorof f set s. of f set s(i) is the offset along dimensian 1 <i < N, where
N is the number of the topology dimensions. If the member do¢&xist, the call
returnsNO MAGE.

CS_Get NunDi nensi ons

i nteger function CS.Get NunDi mensi ons(cs)
type(Cartesian), intent(in) :: cs

Returns the number of dimensions of the Cartesian topology.

CS_Cet Di nensi ons

subrouti ne CS_Get Di nensi ons(cs, dins)
type(Cartesian), intent(in) :: cs
integer, intent(out) :: dinms(x)

Fills the integer arragi ns with the dimension sizes of the Cartesian co-spaxe

CS_Get Per i ods

subrouti ne CS_Get Periods(cs, periods)
type(Cartesian), intent(in) :: cs
logical, intent(out) :: periods(*)

Fills the logical arrayper i ods with the periods of the Cartesian co-space

CS_Cart Coor ds

subrouti ne CS_Cart Coords(cs, coords, [image=this_mge()])
type(Cartesian), intent(in) :: <cs
integer, intent(out) :: coords(x*)
integer, intent(in), optional :: inmage
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Returns the integer arrayoor ds of the imagd nage coordinates in the Cartesian

co-spaces; the lower bound of each dimension is 0.

e CS HasNei ghbor for one axis

| ogi cal function CS_HasNei ghbor(cs, axis, offset,
[i mage=t hi s_.i mage()])

type(Cartesian), intent(in) :: cs
integer, intent(in) :: axis

integer, intent(in) :: offset

integer, intent(in), optional :: inmage

Returns. f al se. if CS.HasNei ghbor (cs, axi s, of f set, i mage) returns
NO MAGE; otherwise, returnstrue. . In other words, returnst r ue. iff the

neighbor with offsebf f set along dimensiomaxi s exists.

e CS_HasNei ghbor for several axes
| ogi cal function CSHasNei ghbor(cs, offsets, [image=this.inmage()])

type(Cartesian), intent(in) :: <cs
integer, intent(in) :: offsets(*)
integer, intent(in), optional :: inage
Returns . f al se. if CS_HasNei ghbor (cs, of fsets, i mage) returns

NO MAGE; otherwise, returnst r ue. .

5.2.3 Graph

A graph communication topology is an arbitrary distributicected multi-graph; =
(V,E). The vertices of the graph are the process imagesxf Each edgee =
(p1,p2, (c,i.)) from imagep;, p1 € V, to imageps, p» € V, is classified by a pair of
“coordinates”: edge classand index:. within the class. An edgerepresents a potential
one-sided communication or synchronization operatiorcebesl by image, and directed
towards image». Note that an undirected edge can be expressed with twospameing
directed edges, potentially doubling the memory requirgmelowever, most real codes
benefit from directional edges, and we do not provide anfexterfor the support of undi-

rected edges. The intent of the edge classto group edges of the same type and index
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them withinc via edge index.. This is useful for expressing communication for a gener-

alized block data distribution (see Section 5.3 for a detbélxample).

e CSCreate
i nteger function CSCreate(cs, ecs, numNbrs, nbrs,
[ nunCl asses=1])

type(Graph), intent(out) :: <cs

type(XXX), intent(in) :: ecs

integer, intent(in) :: nun\brs(nunCl asses)
integer, intent(in) :: nbrs(x)

integer, intent(in), optional :: nunC asses

Creates a new graph co-space objesf returnsNCERROR if successful. Only im-
ages of an existing co-spaees participate in the call. Each membereés be-
comes a member afs with the same rank. Each invoking imagespecifies a local
part of the graph — all graph edges emanating fgonThe collective co-space cre-

ation operation may reconstruct the entire distributegigra

nunCl asses specifies the number of edge classes. Each edge class isweuniq
number from[1,numCl asses]|. For each edge class there arenunmiNbr s( ¢)
outgoing edged. with edge indicesi., i. € [l,numNbrs(c)]. The source of
each edge, e € T, is the invoking imagel. Thenbr s image array specifies
the sink of every edge, ¢ € T.. Let S. be the start position of classedge
sinks innbrs, thenS; = 1, S. = S._; + numNbrs(j), ¢ > 1. Therefore, set
T. = {ele = (I,nbrs(S. + i, — 1),{c,i.)),i. € [1,numNbrs(c)|}. SetT of all
outgoing edges i#' = U.c[1 nunciasses] Le-

e CS_Nei ghbors

subrouti ne CS_Nei ghbors(cs, nbrs, [classid=1], [dir=successor],
[ nbrindex], [image=this.inmage()])

type(Gaph), intent(in) :: cs

integer, intent(out) :: nbrs(x)

integer, intent(in), optional :: <classid
integer, intent(in), optional :: dir
integer, intent(in), optional :: nbrlndex
integer, intent(in), optional :: inage

The subroutine identifies a set of edgés according to the argument values. It

returns the arraybr s with process image indices for the set of process images
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D that are the end points ¥ edges. The parametdr r determines whetheb
consists of sources or sinksdf edges. Idi r is equal tosuccessor, D consists
of edge sinks:D = {Vw € W|sink(w)}. If dir is equal topr edecessor, D
consists of edge sourced. = {Yw € W|source(w)}. The default value ofli r is

successor.

If di r is equaltssuccessor , W consists of edges emanating from process image
I with indexi mage that have edge clagd assi d and edge inderbr | ndex. If

nbr | ndex is not present}l consists of all such edges with claskassi d. In

this case D consists of the same neighbor image indices in the same thakewvere
specified to the co-spaces creation call on imagenage for edge class| assi d.

If nbr | ndex is present}/’ contains a single edge (or it is an empty set) correspond-
ing to a potential one-sided operatidZ®_Nei ghbor function can be used to more

conveniently retrieve this single image index.

If di r is equal topr edecessor, W consists of edges with sink, edge class
cl assi d, and class indexbr | ndex. Note that there can be several incoming
edges for a pair ofl assi d andnbr | ndex and the order of these edges is not
defined. Itnbr | ndex is not presentl/ consists of all edges with sinkand edge

classcl assi d.

CS_Get NumNei ghbor s
i nteger function CS.Get NunNei ghbors(cs, [classid=1],

[di r=successor], [nbrindex], [image=this_image()])
type(Gaph), intent(in) :: <cs
integer, intent(in), optional :: «classid
integer, intent(in), optional :: dir
integer, intent(in), optional :: nbrlndex
integer, intent(in), optional :: inmage

Returns the number of neighbor images in thers array returned by the

CS_Nei ghbor s(cs, nbrs, cl assi d, di r, nbrl ndex, i mage) call.
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e CS_Nei ghbor

i nteger function CS_.Nei ghbor(cs, nbrlndex, [classid=1],
[i mage=t hi s_.i mage()])

type(Gaph), intent(in) :: <cs

integer, intent(in) :: nbrlndex

integer, intent(in), optional :: <classid
integer, intent(in), optional :: inmage

Returns the neighbor image returned in thebrs array by the
CS_Nei ghbor s(cs, nbrs, cl assi d, successor, nbrl ndex, inmage)

call. If the nbrs array is empty (neighbor does not exist), the call returns
NO MAGE. This function can be used to specify the target of one-sajsztation

more conveniently than usir@S_Nei ghbor s subroutine.

5.3 Co-space usage examples
Group co-space

Group co-space can be used to create a group of images. Tpastisularly useful for
coupled applications such as the Community Climate SystesdeVi(CCSM) [50] that
operate in independent but interacting groups of imagesareSian or graph co-space can
further be used to impose additional communication toppkigucture on these groups.
Group co-space can be used to create an alternative numloérmages if the one pro-
vided by the run-time library at startup is not satisfact@ypical example is a mapping
of processes on a cluster with dual-processor nodes. Datingxperiments, we encoun-
tered a problem that the cluster job scheduler assignecamagbers by binding processes
to processors in the following orden; : 1,ny : 1,...,n, : 1,ny : 2,...,n : 2, Where
n; : j denotesj-th processor of the-th node. However, the ordering that yields better
performance is; : 1,n1 : 2,n0 : 1,n9 : 2,...,np : 1,0, : 2. Group co-spaceywor | d
can be created as shown in the following pseudocode and caseoklater to specify the

target images of one-sided operations.
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nyRank = CS_Rank( CAF_WORLD)
nunProcs = CS.Si ze( CAF-WORLD)
i f (nyRank < nunProcs/2)
myNewRank = myRank * 2
el se
myNewRank = (nmyRank- nunmProcs/2)*2+1
end if
call CS.Create(nmyworld, CAFWORLD, .true., nyNewRank)

Cartesian co-space

This is the most commonly used co-space type. For examplda2bbi iteration may use
a 2D Cartesian co-space with periodic boundary conditioxscamensionsV x M. Such

a co-space can be constructed via

call CS.Create(cart N\xM CAFWORLD, 2, (/ NM/) )

The neighbors can be obtained via & Nei ghbor function,e.g, the left neighbor
is CS_Nei ghbor (cart _N\xM 1, -1).

Programmers might find it convenient to use a preprocessdettare shorter and
more intuitive macros to specify the target for common comitation successors. For
example,l ef t (cart _NxM can be used to specify the left neighbor in a Cartesian
co-space. It can be defined as tB® _Nei ghbor (cart NxM 1, -1) macro. Sim-
ilarly, ri ght (cart _NxM can be defined a€S_Nei ghbor (cart NxM 1, 1),
up(cart _NxM can be defined &8S_Nei ghbor (cart _N\xM 2, 1), etc.

Graph co-space

Graph co-space can be used to express arbitrary commuami¢agologies, for instance, a
sum reduction in the NAS CG benchmark for a group of imagesgrespose communica-
tion pattern for a 1D FFT [1], or the communication patterndn unstructured mesh.
Graph co-space can also be used to express a communicaiaady for generalized
block data decompositions. Figure 5.1 shows an exampleatf 8D decomposition in

which the data is distributed in such a way that each proceage: is given a single data
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Figure 5.1 : An example of a generalized block distribution.

block denoted via. One can use graph co-space to represent communicatioresaand

express a shadow-region exchange, using edge classesipajroommunication partners
in the same spatial direction. For a 2D generalized block datomposition, class 1 can
stand for all communication partners on the left, 2 — on tgétri3 — on the top, and 4

— on the bottom. Figure 5.2 shows the code for graph co-spaed¢i@n on imagé and

I co-space setup

nunClasses = 4! 1 is left, 2 is right, 3is up, 4 is bottom

if (CS.nage()==5) then
numNbrs = (/ 1, 3, 2, 2 /) ! the nunber of neighbors for each class 1-4
nbrs = (/ 4, 6, 7, 11, 2, 3, 9, 10 /) ! neighbor inages of imge 5

end if

.. ! set up neighbors on other inages

call CSCreate(cs, CAFWORLD, nunCl asses, numNbrs, nbrs)

! shadow regi on exchange
call syncall ()
do cl ass 1, 4! for every spatial direction
do ni 1, CS_Get NumNei ghbors(cs, class) ! for every nei ghbor index
nbr = CS_Nei ghbor(cs, ni, class) ! the commrunication partner
I perform communication; slb, sub - renpte bounds; Ilb, lub - local bounds
A(sl bl(cl ass, ni):subl(class,ni), slb2(class,ni):sub2(class,ni))[nbr]=
A(l'1bl(class,ni):lubl(class,ni), Il1b2(class,ni):lub2(class,ni))
end do
end do
call syncall ()

Figure 5.2 : Shadow region exchange for a 2D generalizeklglata distribution.
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shadow region exchange. Arrag§bl, sl b2, subl, andsub2 contain the bounds of
shadow regions on neighbor images; ardayb1, | | b2,1 ubl, andl ub2 arrays contain

the bounds of the communicated tile inner data.

5.4 Properties of co-space neighbor functions

A one-sided operatio® with the target expressed via tli&_Nei ghbor function corre-
sponds to an edge in the directed graph that represents €giniesian or graph communi-
cation topology. Let imagp be the source and imaggbe the sink of this edge. Below,
we show properties of th€S_Nei ghbor function that are essential for determining the
source of0. Chapter 6 shows how, using these properties, to deterimenertgin image(s)
of O for several communication patterns common for scientifdeso In turn, Chapter 7

uses the origin image information to convert barriers irdmpto-point synchronization.

Cartesian co-space.

Let g=CS_Nei ghbor (cs, axi s, of fset, p). If g is not equal toNO MAGE, then
CS_Nei ghbor (cs, axi s, -of f set, q) returnsp.

In other words, if image p performs O to image g specified via
CS_Nei ghbor (cs, axi s, of f set), then imageq is able to compute the origin
image ofO via CS_Nei ghbor ( cs, axi s, - of f set ), which returng.

Similarly, letq=CS_Nei ghbor (cs, of f sets, p). If g is not equal taNO MAGE,
thenCS_Nei ghbor (cs, - of f set s, q) returnsp.

Graph co-space.

Let g=CS_Nei ghbor (cs, i dx, cl assi d, p). If g is not equal toNO MAGE, then
execution of CS_Nei ghbor s(cs, srcNbrs, cl assid, predecessor,idx,q)
returns the sesrcNbrs of images that are the source points of edges with class
cl assi d, class index dx, and sinkg;

and p € srcNors. Clearly, for each member imagsercNors(i), where
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i €[1,CS_CGet NumNei ghbor s(cs, cl assi d, predecessor, i dx, q) |,
CS_Nei ghbor (cs, i dx, cl assi d, srcNors(i)) returnsg.

5.5 Implementation

The co-space abstraction is a powerful concept and, in omiamp should be included
into the CAF programming model. There are two feasible oystid-irst, co-spaces can be
CAF language abstractions. This choice would make the qiresailable in every imple-
mentation of a CAF compiler, but it would also require morglementation effort from
vendors. Second, the co-space abstraction can be impledhasita standard CAF module.
A CAF compiler; however, must understand the semantics &fpaxe interface functions
to perform program analysis and optimization. Under thigrapch, some CAF compilers
might not provide co-space abstraction support. In ouriopinrmore programmers’ ex-
perience with co-spaces and more vendor CAF compiler im@hgations are required to
make co-spaces a part of the CAF language.

Co-spaces expose topological properties of a group of immémeéhe compiler. The
information about local state is available to every imagewkeler, the state on remote
images.e.g, edges of a graph co-space, is not. The co-space interfeze®tdesigned
to enforce any implementation decisions or how much of tis¢ributed state should be
cached locally. The first choice is to cache all distributiadeslocally on every image.g,
during co-space creation. This would eliminate the ovethefacontacting other images
during remote information lookup. On the other hand, it migbt be a feasible solution
for massively parallel machines, because the representatithe relation could be large.
The second choice is not to cache any information locallya@mdact remote images when
necessary; however, with this option the overhead mighidge Rlternatively, a dynamic
caching scheme can be used to remember only some co-spaeet@e of remote im-
ages.e.g, s set of graph co-space neighbors of remote images thatrefieved during
execution.

We extendedcaf ¢ with a prototype support for group, Cartesian, and graph co-
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spaces. The implementation uses a Fortran 95 module tordetla co-space types:
t ype( Group) for group,t ype( Cart esi an) for Cartesian, antlype( Gr aph) for
graph co-spaces. Each type has onlyioneeger ( 8) field that is an opaque handle stor-
ing a pointer to the run-time co-space representation. dhgpace interface functions are
module subroutines; Fortran 95 module interfaces allowousate several functions with
the same name via overloading. The module subroutinesiarevtappers around C func-
tions that implement the co-space logic. The current implaation of graph co-spaces
caches the entire graph locally when a graph co-space itedrea

We used co-spaces to express communication in Jacobicerand NAS MG and
CG benchmarks. These codes were successfully optimizedeb8$R optimization and
yielded performance comparable to that of hand-coded amessivith point-to-point syn-

chronization. The details of SSR and experiments can bedfou@hapter 7.
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Chapter 6

Analyzing CAF Programs

CAF is an explicitly-parallel SPMD programming languageheTprogrammer has great
flexibility in data partitioning, communication, and symchization placement as well as
full control over the partitioning of computation. Howey&AF is impenetrable to com-
piler analysis under the current language specificatiorkimyaCAF programmers share

the burden of optimizing CAF codes for portable high perfance.

6.1 Difficulty of analyzing CAF programs

To analyze communication and synchronization in expligurallel CAF programs, a
compiler needs to relate control flow and reason about valtissveral program images.
This is a difficult task, undecidable in the general caseabse parallel control flow and
each image values are defined by the programmer via varididéesre local to each im-
age. CAF offers very few opportunities to infer facts abaiieo images from purely local
information.

We focus on inferring the communication structure that @Edsl for a large class of
scientific codes. Namely, nearest-neighbor codes whefregacess image communicates
to a small subset of process images. We concentrate on idgteoimmunication events
(PUTs/GETSs) that are executed by all images of a co-Spadeere the target image index
is expressed via a co-spaC8_Nei ghbor function with arguments that are the same on
each process image of the co-space. Under certain comglittaich statements can be
converted from one-sided PUTs/GETs synchronized withidrarmto more efficient two-

sided communication, which does not need barriers. In sasbks; surrounding barriers

1Co-spaces are communication topologies explained in @h&pt
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may be automatically removed from the code to yield bettgnesrony tolerance and
higher performance. To make such analysis possible, we@expktending CAF with two
language constructs based on features in the Titanium #éy&gl66] in addition to the co-

spaces introduced in Chapter 5.

6.2 Language enhancements

We explore extending CAF with two new CAF constructs: tekgraup barrier and group
single-valued coercion operator. A textual group barmesuges that all processes of a pro-
cess group execute the same instance of the barrier. Gnogle-sialued coercion operator
specifies that a value is the same on every process that is denefithe group. A group

is defined by a co-space of any type; we use term co-space ang mpterchangeably.

6.2.1 Textual group barriers

A global textual barrier is a synchronization primitive introducedthe Titanium lan-
guage [66]. A global textual barrier must be executed by maltpsses and all processes
must execute the same barrier statement. In a strongly tigregiage such as Tita-
nium [66], it is possible to statically verify whether a prag using only global textual
barriers for synchronization is deadlock free. Howevesbgl textual barriers require that
all processes execute the same barrier statement, which iasskmitation for applica-
tions such as CCSM [50], working as a collection of indepandeat interacting groups of
processes. Without strong type system in CAF, it is not fds$o statically verify whether
all global barriers are textual. Nonetheless, it is posgibldetect some instances of textual
barriers that may cause a deadlock.

The limitation of the global textual barriers and the laclsttbng type system in CAF
suggest thatextual group barriersshould be used for synchronization. A textual barrier
of a co-spaces is a barrier statement that must be executed by all procesgasnof co-
spacecs. It is specified in the program viaal | barri er(cs), and we denote it as

B.,. A textual co-space barrier means that all process imagie ao-space participate in
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the barrier and signal arrival at the barrier by executirggame program statement. The
compiler, in turn, can infer that some program statementg,in the same basic block as
the barrier statement, are also executed by all procesemEghe co-space.

In CAF, a barrier has an implicit memory fence associateti wjtso textual co-space
barriers are statements at which the memories of all coespaages becomeonsistent
Consistency across the memories means that all accesdes¢a sariables issued before
the barrier have completed; such an access is a local cp-acceess, a GET, or a PUT.
A barrier satisfies all data dependencies between all coespaages (inter-image data
dependencies) and this fact is known by all co-space imgu@s return from a barrier call.
We will rely on this observation in Chapter 7 to optimize syranization while preserving
program correctness by satisfying all inter-image depeciés using asymptotically more

efficient point-to-point synchronization.

6.2.2 Group single values

The concept okingle-valuedSV) expressions was introduced by Aiken and Gay [6]. A
SV expression evaluates to the same valualbprocess images. Titanium [66] uses the
si ngl e type qualifier to declare a variable as single-valued. Fustiitanium’s type
system enables one to statically prove that all such varsadole assigned only single values.
Because CAF lacks a strong type system and Titanium’s singlees must be
the same orall the processes, we explore extending CAF with a coercionatmer
si ngl e(cs, exp), rather than directly borrowing Titanium&i ngl e type qualifier.
si ngl e(cs, exp) serves as a compiler hint to indicate that expressiom evaluates to
the same value on all process images that belong to co-ggacehe single-valued prop-
erty can be propagated through the control flow graph (CF@pustatic single assignment
form (SSA), described in Section 3.4.4, to infer more singleies that will be born during

execution.
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6.3 Inference of group single values and group executableagements

Titanium defines a set of type system inference rules [66pfobal single values. The
inference can be done via generating a set of data flow camstiasing CFG and SSA
and solving the constraints to obtain the maximal set oflsimglues [6]. A subset of the
inference rules and the inference algorithm can be adapte@XF to infer co-space single
values as well agroup-executabléGE) statements that are textually executed either by all

images of the group or by none; all other statements are nmupeexecutable (NGE).

6.3.1 Algorithm applicability

We use SV and GE properties to analyze communication evewtca@nvert expensive
barrier synchronization into asymptotically more effid¢ipoint-to-point synchronization.
This synchronization strength reduction transformati®8R) is shown in detail in Chap-
ter 7. We designed SSR to optimize real scientific codes. eSsnch codes usually use
only structured control flow, we designed the SV & GE infeeatgorithm for only struc-
tured control flow. Under this assumption, SV & GE inferenee be done as a forward
propagation problem on CFG using SSA. For unstructuredrabiidw, the inference can
be done by adapting the solution presented in [6].

The forward propagation algorithm handles structured rcbntonstructs such as
| F- THEN- ELSE, | F- THEN, and FortrarDO loops. Supporting this subset is sufficient
to SSR-optimize all known to us CAF codes. The inference isedimr a subroutine
with textual co-space barrigB., statements and co-space single-valued coercion opera-

torssi ngl e( cs, exp) , where co-spaces is the subroutine invariant.

6.3.2 Forward propagation inference algorithm

We use both a CFG and SSA form to simultaneously forward gatesGE and SV proper-
ties. The SSA is used to propagate SV using a three-stateelaiith top (T), single-valued
(SV), and bottom () states.T corresponds to unvisited statel” means that the value is

single-valued and. means that the value may (we saynot be single-valued (NSV). The
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procedure initialize
w <~ ()
for each basic block
state(b) «— GE
w «— w U {b}
for each SSA name
if x is defined on entry to the subroutine
latval(z) «+— L
else
latval(z) «— T

Figure 6.1 : SV & GE inference initialization step.

meet operaton is defined by rulesAny AT = Any, SVASV = SV, AnyAL = 1. The
result of the meet operator involving an SAunction is the meet of its arguments. Con-
stants and expressions coerced vgitmgl e( cs, exp) are SV. A new SV can be born
as a result of evaluating an expression, consisting onlywaieBns and constants, in a GE
statement. For example,df b andi are SV, the expressioast 1, a+b(i), b(2 : i — 1), and

a == 8 yield a single-valued result for all process images in agacs if the expressions
are evaluated bgll images of the co-space. However, the same expressionsrasngle

if they are not evaluated by all images of the co-space. Tpeesgions: + j, b(j), and

j == 8 are non-single ifi is non-single.

Our inference algorithm is an iterative fixed point optinastlgorithm. It uses the
SSA form namespace, so each name defined exactly once. We associate a lattice cell
with each SSA name, denoted asatval(z). meet denotes the meet operatar Each
basic blockb has a state, denoted a&ite(b), associated with it.state(b) can be either
group-executableXE) or non-group-executableV(GE).

The initialization stepnitialize shown in Figure 6.1 optimistically sets the state of
each basic block t6- £ and adds the basic block to the worklist It initializes all lattice
cellstoT except for the SSA names defined on entry to the subroutinehvaine initialized

to L.
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procedure propagate
while w # ()

changed « ()

while w # ()
select basic block, b € w
w — w — {b}
for eachg-node® in b, eval PhiNode(b, D)
for each statementin b, eval Stmt(b, s)

w «— changed

Figure 6.2 : SV & GE inference propagation step.

The propagation stepropagate shown in Figure 6.2 symbolically evaluates eaeh
node ¢val PhiNode) and each statementualStmt) of each basic block taken from the
worklist w.

Lattice values propagate along SSA edges and the GE propenagates over CFG
edges. If during evaluation any state of a basic bleckangesq is added to the worklist
changed. The algorithm can only lower values and can only re-markdi@ecks asvVG F,
So it is monotonic and converges. It yields a conservatiyw@pmation of all co-space
single values and GE basic blocks.

Figure 6.3 showswval PhiNode that evaluates an SS&-node. When control flow

procedure eval PhiNode(b, D)
I'b is a basic blockg is a¢-nodex = ¢(. . .)
if state(b) = GE
v «— eval Expr(o(...))
else
v— L
if latval(x) # v
/I propagate to uses ofr along SSA edges
for each basic block containing uses of
changed «— changed U {z}
latval(z) «— v

Figure 6.3 : Evaluation of &@-node.
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procedure eval Stmt (b, s)

I'bis the basic blocks is the statement

if s is an assignmengall eval Assignment (b, s)

if sis anl F- THEN- ELSE, call evall fThenElse(b, s)

if sis aDOloop, call evalDo(b, s)

if state(b) = NGE

for each dominator tree successasf b such thatstate(z) = GE

state(z) — NGE
changed < changed U {z}

Figure 6.4 : Evaluation of a statement and propagation oMb&- property.

merges values in an SSA-function, the resulting value is non-single ) if either the
¢-function is executed in & GFE basic block or one of its arguments is non-singlg. (

Figure 6.4 showsevalStmt that evaluates a statement of type assignment,
| F- THEN- ELSE, or DO. Subroutine (and function) calls modify lattice values &/S
names according to their side effects; this informationc®rporated in the SSA form. If a
basic block iSVNGE, the non-group-executable property propagates to alsautcessors
in the dominator tree, which are marked/8& F.

Figure 6.5 showsval Assignment that evaluates an assignment statement. The RHS

is evaluated iff the statement is GE, otherwise the resulbif-single-valued (). If the

procedure eval Assignment(b, s)

Il s is a scalar assignment= e

if state(b) = GE
v «— eval Expr(e)

else
v— L

if latval(x) # v
Il propagate to uses ofr along SSA edges
for each basic block containing uses of

changed «— changed U {z}

latval(z) «— v

Figure 6.5 : Evaluation of an assignment statement.
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procedure evall fThenElse(b, s)
I let s, be the conditional expression
Il'let s, be the CFG successor BB of the true branch @ind of the false branch
if state(b) = GE
¢ — eval Expr(s.)
else
c— L
if c = 1 andstate(s;) = GE
/I make if-branches NGE
state(s;) «— NGE
state(sy) «— NGE
changed «— changed U {s;} U {s}

Figure 6.6 : Evaluation of ahF- THEN- EL SE statement.

value of LHSz lattice cell changes, this fact is propagated to all usesabng the SSA
edges by adding the basic blocks of uses to the woridlist.ged. Note that the algorithm
can be extended to handle array element and section exguessi

Figure 6.6 showswvall fThenFElse that evaluates ahF- THEN- ELSE statement. If
the conditional of thé F- THEN- ELSE (or | F- THEN) statement is SV and the statement
is GE, the CFG successors that correspond toTtHEN- and EL SE-branches must be
GE; otherwise, the successors are NGE. Note thaEIBECT statement can be handled
similarly.

Figure 6.7 showswval Do that evaluates ®0 statement. In our CFG, BO loop is
always preconditioned. ThBO loop entry node has only two CFG successors: the first
corresponds to the first node of the loop body, the seconégonds to a no-op statement
inserted right after th&NDDO of the DOloop. The range or loop control expression of a
DOloop is SV iff the lower bound, upper bound, and stride are &Werwise, the range
is NSV. TheDO loop rules for GE propagation treat the loop as a region of OF@e
loop statement is GE and even if the loop conditional is NS&¥amng that the loop can
execute different numbers of times on different procesggasathe control flow of all

process images is GE after tB® loop execution (right afteENDDO). If a DOloop entry
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procedure evalDo(b, s)
Il'let [b, ub, str be lower bound, upper bound, and stride of l&loop range
I let s, be the first basic block of theOloop body
if state(b) = GE
/I compute the lattice value of the range
r «— meet(eval Expr(lb), eval Expr(ub), eval Expr(str))
else
re— 1
if r = L andstate(s,) = GE
/I make theDOloop body NGE
state(sy) «— NGE
changed «— changed U {sy}

Figure 6.7 : Evaluation of BO statement.

node is GE and the loop control expression is SV, both suocesse GE. If aDO loop
entry node is GE and the loop control expression is NSVANBDO successor is GE, but
the loop body CFG successor is NGE. Note that it is possibextend the algorithm to
handleCYCLE andEXI T loop control statements as well @kl LE loops.

Figure 6.8 showswval Expr that evaluates an expression. Constants are SV. Values

procedure eval Expr(e)
if e is a constantreturn SV
if eissi ngl e(cs, exp) ,return SV
if e is an SSA name, return latval(x)
if e is a unary operatar = uop(e; ), return eval Expr(e;)
if e is a binary operator = bop(e, e3)
return meet(eval Expr(e;), eval Expr(es))

if e is a n-ary operator = op(eq, ..., e,)
return meet(eval Expr(ey), ..., eval Expr(e,))
if e is ag-function¢(ey, . . ., e,), return meet(latval(e;), . .., latval(e,))

if e is a co-space function or CAF intrinsics, evaluate accgytiints semantics.g,
if e is C'S_IsMember(csl)
if csl = ¢s, return SV, else return L

Figure 6.8 : Evaluation of an expression.
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coerced withsi ngl e(cs, exp) are SV. The SSA name value is its lattice cell value.
eval Expr evaluates the value of operators agtlinctions using the meet operator. Com-
piler recognizable functions, such as co-space functios@AF intrinsics, are handled
according to their semantics; Figure 6.8 shows an examplth&CS_| sMenber func-
tion.

In addition to the SV & GE inference, the algorithm perfornmited program ver-
ification. For correct program execution, each basic blomhta@ining textual co-space
barrier B., call must be GE. Similarly, each co-space single value coeroperator
si ngl e(cs, exp) must be evaluated in a GE basic block. If either conditionids v
lated, the algorithm warns the programmer about a potepitcdllem and specifies to the
next analysis phase (SSR) that the subroutine is not artdé/za

We implemented this inference algorithmadaf c. The algorithm is sufficient for the
analysis of communication structure in most CAF scientifides, and the SSR optimiza-
tion uses its results. A more general, constrained-basgaritam can be used to extend

the inference to non-structured control flow, if the needesi

6.4 Analysis of communication structure

Most parallel applications do not express communicatioanrarbitrary way, but rather
structure communication in a certain way. For example, nmeayest-neighbor codes work
in phases: processes perform computation and then exchangearies with their neigh-
bor processes. Our analysis algorithm focuses on detesaictystructured communication.
We assume that the inference of group-executable (GE)nst¢atis and group single-
valued (SV) values has been done as described in Sectiow6.8ay that a communication
event (PUT/GET) imnalyzablef it falls into one of the communication patterns described
in the rest of this chapter. In Chapter 7, we show how SSR op¢isritwo communication

Patterns 6.1 and 6.2, described in the following sections.
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6.4.1 Analyzable group-executable PUT/GET

Pattern 6.1 (Analyzable GE PUT/GET) A group-executable PUT/GET with the target
image index specified via a co-spaC8_Nei ghbor function with group single-valued

arguments.

This is a common communication pattern found in kernels ofiynzearest-neighbor
scientific codes such as NAS benchmarks, Jacobi iteratiBMHD, etc. For example,
each process performs communication to a neighbor proodls same spatial direction.
Such communication patterns are typical for a Cartesiacgssor grid, so the Cartesian co-
space does an excellent job of capturing the propertieseatdinmunication topology and
expressing communication relative to each process imagegico-spac€S_Nei ghbor
function. However, a graph co-space is also used, for instemperform group reductions
among a collection of neighbors in the NAS CG benchmark (sp&€ 7.45) or a transpose
in a distributed FFT.

Let us consider Jacobi iteration on a 2D matfikX x K with periodic boundary
conditions. The matrix is decomposed into slabs along tlewrske dimension and

equally distributed among all process images. The size df skab isSN x M, M =

K
num_images()

andreal (8)::b(1: N, 0: Mt1) . Each Jacobi iteration locally computes a five-point

The matrix is represented by two co-arraysal (8)::a(1: N, 0: Mtl)

stencil into co-arraya using values from co-array; on the following iteration, the roles
of a andb are changed. The remote data necessary for local computatsbored in the
shadow regionsa( 1: N, 0) contains border values that correspona¢d.: N, M of the
left neighbor;a( 1: N, M+1) contains border values that corresponad.: N, 0) of the
right neighbor. After the local computation is done, eadabcpss image updates its left and
right neighbor shadow regions with its border values usibg Pas shown in Figure 6.9.
Figure 6.10 shows the communication done by one of the psaogsges. It is natural to
organize all process images using a 1D Cartesian co-spaaeith periodic boundaries
to represent communication topology and to express nerghbo the shadow region ex-

change phase.
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! performlocal conputation: a(i,j) = ...

I exchange shadow regi ons

call barrier(cs)

a(:, 0)[CS_Neighbor(cs,1,+1)]
a(:, Mt1)[ CS_Nei ghbor(cs, 1,-1)]
call barrier(cs)

a(:, M ! PUT to the right neighbor
a(:, 1) I PUT to the left neighbor

! performlocal computation: b(i,j) = ...

Figure 6.9 : Jacobi iteration shadow region exchange faogerboundaries.

Figure 6.10 : Jacobi shadow region exchange for one processo

Figure 6.11 : Periodic boundary communication to the righféur processes.

In the first PUT statement, every process image of the coespmcommunicates data
to its right neighbor. The pattern is visualized in Figur&l6for an execution on four
processors; for each process image, the right arrow sh@nariet process image of com-
munication. The pattern is known eneryprocess image of co-space because the state-

ment is GE and the target of the PUT is expressed@aNei ghbor ( cs, a, o) function
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Figure 6.12 : Targets and origins of communication to thatrigr Jacobi iteration with
periodic boundaries.

Target

©0~0 ®

Figure 6.13 : The target (image 3) and the origin (image 1)oofmunication to the right
for process image 2.

call with SV arguments: axia and offseb. Each co-space process image can compute the
origin image of this communicatiolecally using theCS_Nei ghbor ( cs, a, - 0) func-

tion call; in this case, the origin is the left neighbor, ahe tinversion” of the pattern
showing the origin of communication is depicted as dottéddeows in Figure 6.12. To
clarify, Figure 6.13 shows the target and the origin proo@sgjes for process image 2.

It is important that the arguments are single-valued anctdimemunication is GE be-
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cause each process image can compute the origin of comntionié@m purely localin-
formation without the need to contact another image. If taeesnent were not GE, an im-
age would not know what images participate in the commuiaoavent. If the arguments
were not single-valued, an image would not know how to comfh# origin image of com-
munication using only local values. In either case, it woudetd to contact other process
image(s) to determine which is the origin of communicatiaourring high overhead and
rendering any optimization ineffective. In some sense ratyaable GE PUT/GET creates
a topology “layer” €.g, see Figure 6.11), a sub-topology of the co-space, detethby
the SV layer arguments to tl@&S_Nei ghbor function. The entire layer is known to each
process image locally. The origin(s) of communicationiaé@d onto process imageis
the source(s) of the sub-topology directed graph edgeenctidnp.

We summarize these ideas in the following observations.e Nt there is only one
origin image for a GE analyzable PUT/GET on a Cartesian emepbut that there can be

several origins of communication for a GE analyzable PUTI®E a graph topology.

Observation 6.1 For a Cartesian co-spaces,

(a) the origin image index of an analyzable GE PUT/GET with thgdaimage index
expressed vi&S_Nei ghbor (cs, a, 0) function with the co-space single-valued argu-
ments can be computed @ _Nei ghbor ( cs, a, - 0) , wherea denotes the axis param-
eter, ando denotes the offset parameter.

(b) the origin image index of an analyzable GE PUT/GET with thhggaimage index ex-
pressed via€CS_Nei ghbor ( cs, ov) function with the co-space single-valued arguments
can be computed aSS_Nei ghbor ( cs, - ov), whereov denotes the vector of offsets

parameter.



123

Observation 6.2 For a graph co-spacecs, there can be several origin image in-
dices of an analyzable GE PUT/GET with the target image inebgxressed via the
CS_Nei ghbor (cs, nbr 1 ndex, cl assi d) function call with SV arguments. Each
image can locally compute the set of origin image indi@asgNbrs by calling

CS_Nei ghbor s(cs, orgNbrs, predecessor, cl assi d, nbr| ndex) .

Run-time vs. source-level guards for communication/synalonization

The Jacobi iteration example above uses a 1D Cartesianam® 8yth periodic boundaries,
and every image of the co-space executes communicatiorwlgattif the communication

topology is Cartesian without periodic boundaries? Thesewo possible ways to express
the communication as well as synchronization when not adlges of co-space participate

in the event.

! performlocal conmputation: a(i,j) = ...
I exchange shadow regi ons
call barrier(cs)
i f (CS_HasNei ghbor(cs, 1, +1)) then
a(:,0)[CS_Neighbor(cs,1,+1)]=a(:,M ! PUT to the right, if it exists
endi f

call barrier(cs)

! performlocal conputation: b(i,j) = ...

Figure 6.14 : Jacobi iteration shadow region exchange forperiodic boundaries.

©-0-0-0

Figure 6.15 : Non-periodic boundary communication to tigétrfor four processes.

First, the programmer can guard the communication exjliag shown in Figure 6.14.
On four process images, this induces a communication pattsualized in Figure 6.15.
The compiler can recognize this pattern and determine tiggnoof communication on

every co-space image as shown in Figure 6.16 and visualiz€dgure 6.17 with dotted
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if (CS_HasNei ghbor(cs,1,-1)) then I if left exists

origin = CS_Neighbors(cs, 1,-1) I left neighbor
el se

origin = NO MAGE ! no left neighbor
endi f

Figure 6.16 : The origin image index for the communicatioth®right with non-periodic
boundaries.

Target

O-@0=0-@

Figure 6.17 : Targets and origins of communication to thatrigr Jacobi iteration with
non-periodic boundaries.

left arrows. However, the programmer has already specifiedact that the neighbors do
not exist for the co-space border images when (s)he crelagecbtspace; in our example,
via non-periodic boundaries.

An alternative approach is to delegate the guard handlitigetoun-time layer and avoid
communication/synchronization guards in the source ctidgether. TheCS_Nei ghbor
functions return the process image index if the neighbogenaxists, otherwise they re-
turn the speciaNO MAGE value. Communication and synchronization primitivesrptet
the NO MAGE value, specified as the target, as a no-op rather than a reahuoica-
tion/synchronization operation. This is analogous to thpreach adopted by MPI for
handling non-existing processor ranks in send/receiva,[&2].

For example, the Jacobi iteration code with non-periodiariaaries shown in Fig-
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ure 6.14 will be exactly the same as the one with the periodimbaries, without guards
in the source code; the run-time will know how to perform commication correctly based
on the co-space properties and co-space interpretation.

The run-time handling of guards for communication/synaization improves pro-
grammability because it removes guards from the sourceranoglt also simplifies com-
piler analysis. The compiler can analyze (and optimizehss@mnmunication in the same
way as for an analyzable GE PUT/GET of Pattern 6.1.

6.4.2 Analyzable non-group-executable PUT/GET

Pattern 6.2 (Analyzable NGE PUT/GET) A non-group-executable PUT/GET with the
target image index specified via a co-spa® Nei ghbor function with group single-

valued arguments.

This is a less common communication pattern and can be fdon@xample, in the
NAS MG extrapolation subroutine shown in Figure 7.39. THeuant piece of code is
shown in Figure 6.18.

The guardgi ve_ex(axi s, | evel ) is not single-valued, so not all co-space images
execute communication, and it is not possible to infer thgilmrof communication from
only local information. However, if the arguments of #@8_Nei ghbor function are SV,
it means that they are available and SV in one of the grouptgable dominators of the
communication event basic block. If the communication apen were moved outside the
| F- THEN in Figure 6.18, it would become an analyzable GE PUT/GETt@Pa6.1) and

call barrier(cs)
! axis is single-val ued
if (give_ex(axis, level)) then ! non-single-valued guard
. ! pack data into buffM1:buff_len,1)
buf f M 1: buf f _I en, 2) [ CS_Nei ghbor (cs, axis,-1)] = buffM1: buff_len, 1)
endi f

call barrier(cs)

Figure 6.18 : Non-single-valued guard in NAS MG extrapalatsubroutine.
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could be optimized similarly. We will rely on this obsenatiin Chapter 7 to optimize an
analyzable NGE PUT/GET for structured control flow.
6.4.3 Other analyzable communication patterns

We show several other communication patterns found in CAfesdhat we studied and

sketch how they can be optimized.

Language-level naive broadcast/reduction

The following code fragment shows a naive implementatioa bfoadcast in CAF. It can
also be coded using a graph co-space.

call barrier()

if (this_image() == 1) then
do i = 2, num.images()
a(i)[i] = a(1)
enddo
endi f

call barrier()
A CAF compiler could determine that only imageerforms communication to every

other imagé2, num_images()|. This pattern can be replaced by an efficient, platform-dune

library broadcast subroutine. A less preferable solutsdio ireplace barriers with point-to-

point synchronization as shown below:

if (this_image() == 1) then
do i = 2, num.images()
call wait(i)
a(i)[i] = a(1)

call notify(i)
enddo
el se
call notify(1)
call wait(1)
endi f

Language-level naive implementations of reductions cahdmwlled similarly. Note

that language-level naive reduction/broadcast can aleptmized for a group of images.
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! notify every neighbor that it is safe to update my shadow regi ons
doclass =1, 4! 1is left, 2 is right, 3is up, 4 is bottom
numOr gNbrs = CS_Get NumNei ghbor s(cs, cl ass, predecessor) ! nunber of origins

call CS_Nei ghbors(cs, orgNbrs, cl ass, predecessor) ! origins of the class
call notify(orgNbrs, nunOrgNors) !' notify all origin neighbors of the class
end do

I shadow regi on exchange, no barriers

do class =1, 4! for every spatial direction
do ni =1, CS_GetNumNei ghbors(cs,class) ! for every nei ghbor index
nbr = CS_Nei ghbor (cs, ni,class) ! the communication partner

! wait permission to overwite renpte shadow region
call wait(nbr)
I performcomuni cation; slb, sub - renote bounds; |Ib, lub - |ocal bounds
A(sl bl(cl ass, ni):subl(class,ni), slb2(class,ni):sub2(class,ni))[nbr]=
A(l'I'bl(cl ass, ni):lubl(class,ni), Il1b2(class,ni):lub2(class,ni))
! indicate conpletion of renote shadow regi on update
call notify(nbr)
end do
end do

! wait for every neighbor to finish updating ny shadow regi ons
do class =1, 4
numOr gNbrs = CS_Get NumNei ghbor s(cs, cl ass, predecessor) ! nunber of origins

call CS_Nei ghbors(cs, orgNbrs, cl ass, predecessor) ! origins of the class
call wait(orgNors, nunOrgNors) ! wait for all origin neighbors of the class
end do

Figure 6.19 : Shadow region exchange for a 2D generalizeckldata distribution ex-
pressed using point-to-point synchronization.

Generalized block distribution

A CAF compiler could detect communication patterns simitathe one shown in Sec-
tion 5.3 for the shadow region exchange of a 2D generalizeckidata distribution. De-
tailed explanation of this example is available in Sectidh (See graph co-space usage).
The code for shadow region exchange shown in Figure 5.2 camahsformed to use
point-to-point synchronization instead, as shown in Feghil 9; note thatot i f y() and

wai t () accept sets of process image indices.
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Chapter 7

Synchronization Strength Reduction

Synchronization strength reduction (SSR) is an optimiwathat replaces textual barrier-
based synchronization with cheaper point-to-point syoictzation while preserving the
meaning of the program. This chapter presents a procedopesSSR algorithm for op-
timizing CAF codes. Code generated using SSR for severahearks delivered perfor-

mance comparable to that of hand-optimized codes using-pwipoint synchronization.

7.1 Motivation

A textual co-space barrier is conceptually the simplestbyonization primitive to use.
Textual barrier statements divide program text and exeouito phases or epochs that are
the same for all of co-space members. We say that an invooattia textual barrier closes
one epoch and opens another epoch. In CAF, execution of i@ibf@m co-spac&€’ ensures
that all shared accesses done by each process imagelestined to data co-located with
any process image @f in the preceding epoch have completed before any such assacce
in the following epoch. Hence, the programmer does not neeynchronize individual
accesses between members of the group; the barrier symodsa@fl of them. For example,
Barrier2 in Figure 7.1 enforces the ordering of the PLA[ ] =x) and GET y=a[ q] )

by synchronizing all process images. In compiler termspaodation of a textual barrier
ensures that all local and inter-image data dependenaiessing” (the end points belong
to different epochs) the barrier are preserved. Howevariadn delays all images until the
slowest one has arrived and might synchronize images thabidoeed to be synchronized.
In Figure 7.1, only imagep, g, andr need to be synchronized for the communication

shown. Note that the arrows show the communication diredioo the origin process
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Barrier 1
alql=x »
work1 — wor
>
Barrier 2
work?2 yq] work?2
&
Barrier 3
Image 1 | «uas | Image p Image q Imager | auus Image N
\4
time
Figure 7.1 : Synchronization with textual barriers.
Barrier 1
af[ql=x
work1 notifm::§ work1
. e Wait(p) 1
M work?2 notity(r)_]
T . work2
wait(q)
y=alq]
&
Barrier 3
Image 1 | «uas | Image p Image q Imager | suus Image N
\4
time

Figure 7.2 : Synchronization with notify/wait.

image that initiates communication to the target processyanwhere the memory being
accessed is located; for a PUT, the communication directoancides with the direction
of the data movement; for a GET, the communication direasdhe opposite of the data
movement direction. Oversynchronized codes are not asgngholerant and result in
suboptimal performance as we showed in prior studies [3048,731, 33].

As an alternative to barriers, programmers can use untthresd point-to-point
noti f y/wai t synchronization (see Section 3.1), which scales muchrbdtigure 7.2

shows how point-to-point synchronization can be used tolsyonizep andr (andq) with-
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notify origin

Bt 1 (,/V
sl x k1
work1 (Ht wor
notify :;‘
. oo WAD) ..
B2 | work2 not.fy(d\)
Wait(q) work2
9 ql
Y gu=
B 3
Image 1| ===« | Image p Image q Imager| ==== [ Image N

\2
time
wait for origin

Figure 7.3 : Synchronization with textual barriers.

out Barrier2. If itis also safe to use notify/wait instead Blurrierl and Barrier3, the
code can be transformed as shown in Figure 7.3, which wokedlylbe much faster than
the original code using barriers shown in Figure 7.1. Howesteveloping codes using
point-to-point synchronization is hard because programlemuust synchronize individual
shared data accesses and, in some cases, carefully cathastri f y/wai t to obtain
best performance.

The SSR optimization enables programmers to use textuatksafor synchronization.
Using SSR, the compiler replaces these barriers with gohpint synchronization, pre-
serving program correctness while improving performamzestalability. SSR replaces a
barrier with point-to-point synchronization only betweasrages thaiayhave inter-image

data dependencies.

7.2 Intuition behind SSR

Using point-to-point synchronization correctly requiteswing the origin and target of

a communication event (PUT/GET), or event for short. Howewean explicitly-parallel
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PGAS language such as CAF, the programmer specifies onlgitet tof each communi-
cation, but not the origin. It is the job of the compiler toanthe origin of communica-
tion from program code, which is difficult, undecidable imgeal case. In Chapter 6, we
present a novel technique that enables one to infer origafi®@mmunication patterns that
are typical in a large class of the nearest-neighbor s¢ientdes. The analysis uses a com-
bination of a co-space, textual co-space barriers, anghaoessingle-valued expressions to
determine the communication structure for two Patternsa6d 6.2, stated in Chapter 6.

We restate the patterns here:

e Analyzable group-executable PUT/GET.
A group-executable (GE) PUT/GET with the target image ingiggcified via a co-

spaceCS_Nei ghbor function with group single-valued arguments.

¢ Analyzable non-group-executable PUT/GET.
A non-group-executable (NGE) PUT/GET with the target imegiex specified via

a co-spac€S_Nei ghbor function with group single-valued arguments.

Here, we focus on optimizing these two communication pastéy converting barrier-
based synchronization into point-to-point synchronatif legal and profitable. Initially,
we will not consider moving the communication or changing¢bmmunication primitive.

We later consider such optimizations in Section 7.9.

7.2.1 Correctness of SSR for analyzable group-executabléJ¥s/GETs

Let us consider how an analyzable group-executable PUT/Gd&iTlbe optimized in a
straight line code with several textual co-space barrigvs.consider a group-executable
communication pattern where each process image of 24 @artesian co-spages with
periodic boundaries PUTs data to its right neighbor alorgfitst dimension. We de-
note CS_Nei ghbor (cs, 1, +1) asri ght (cs), andCS_Nei ghbor (cs, 1, -1) as

| ef t (cs) . Figure 7.4 (a) presents pseudocode for this communicéfigre 7.5 shows

a visualization of this pattern for eight process images.
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... = a 1 ... = a
call barrier() ! former barrier
2a call notify(left(cs))
2b call wait(right(cs))
3 afright(cs)] = ... 3 a[right(cs)] = ..
4a call notify(right(cs))
4b call wait(left(cs))

N -

4 call barrier() ! former barrier
5 ... =a 5 ... = a
(a) GE PUT to the right (b) permission and completion notify/wait pairs

Figure 7.4 : A PUT to the right for ax42 Cartesian co-space with periodic boundaries.

Figure 7.5 : A PUT to the right neighbor on &2 Cartesian co-space with periodic bound-
aries.

The compiler can infer the origin of this communication gyevhich is the neighbor
process image on the left, as shown in Section 6.4, and ingertotify/wait pairs as shown
in Figure 7.4 (b) to synchronize the event. When it is safe {glow), the surrounding
barriers can be removed.

The notify/wait pair in lines 2a and 2b of Figure 7.4 (b) giVpermission” to access
data on the right co-space neighbor after the neighbor gsislccessing co-arraylocally.
We call this synchronization theermission notifyn,,, andpermission waitw,; n,/w,
denotes a permission pair. Figure 7.6 shows the permissitfy mnd permission wait

operations involving imagg. The permission notify issued by the process imadells
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X y zZ
(left(cs)) (right(cs))

a[right(cs)]=...

ne —_|

\4
time
Figure 7.6 : Synchronization with direct communicationtpars (relative tg; view).

the origin image of communicatiary which is the left neighbor of in co-spacess, that
it is safe to access co-arrayon y. Execution of the permission wait hy waits for a
permission notify from the target image of communicationvhich is the right neighbor
of y in co-spacecs, that tellsy that it is safe to access co-arrayon z. It is safe for an
image to access co-arrayon its right neighbor after the permission wait completes.
The notify/wait pair in lines 4a and 4b of Figure 7.4 (b) sigrfaompletion” of the data
access to the target image, so that the target image will leetalsafely access co-array
a locally. We call this synchronization tlempletion notifyn., andcompletion waitw,;

n./w. denotes a completion pair. Figure 7.6 shows the completibifiyrand completion
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wait operations involving imagg. The completion notify issued hysignals to the target
imagez thaty has finished accessings co-arraya. Execution of the completion wait
by y waits for a completion notify from the origin imagethat tellsy thatz has finished

accessing co-arrag ony. It is safe for an image to acceadocally after the completion
wait completes.

The permission & completion pairs safely synchronize tingeiaand origin images of
communication (both PUTs and GETSs) by enforcing inter-isndgta dependencies with
thedirectcommunication partners. The permission pair ensureshbatad of on line 1
of Figure 7.4 (b) by each process image finishes before itaéafhbor overwritea with
the PUTa[ri ght (cs)] on line 3; the completion pair ensures that this PUT finishes
before the read ad on line 5. However, barrier-based synchronization doesemibralso
enforcedransitiveinter-image data dependencies.

Let us consider an example of communication to the rightiieag followed by com-
munication to the upper neighbor. Lep( cs) denoteCS_Nei ghbor (cs, 2, +1), and
down( cs) denoteCS_Nei ghbor (cs, 2,-1). Figure 7.7 (a) shows the pseudocode.
Consider the barrier on line 4. As shown in Figure 7.7 (b) dheier can be replaced with
a completion pair for the communication to the right inseérbefore the former barrier,
on lines 4a and 4b, and a permission pair for the communitatidhe upper neighbor
inserted after the former barrier, on lines 4c and 4d. Thisrers transitive dependencies.
Thinking relative to some process image, we notice that rfwesitive dependencies are
enforced by the sequential execution of the completion,wait| wait (|l eft(cs)),
on line 4b and the permission notifyal | noti f y(down(cs)), online 4c. This syn-
chronization ensures that the P@[ ri ght (cs)] has completed on an image before
its value is read by the GE&[ up(cs)] . Figure 7.8 shows communication from image
1 to image2 (arrow with label(1)) followed by communication from imagéto image2
(arrow with label(2)). Figure 7.9 shows the time diagram of how imagforces an inter-
image dependence between imdgibat writesa[ 2] and images that readsa[ 2] with

the pattern of notify/wait synchronization shown in Figut& (b). Other process images
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1 a=a+1 1 a=a+1

2 call barrier() 2 call barrier()
! permission notify(left) ?
! permission wait(right) *?

3 a[right(cs)] = ... 3 a[right(cs)] = ..
4a call notify(right(cs)) ! conpletion
4b call wait(left(cs)) I conpletion
4 call barrier() ! former barrier
4c call notify(down(cs)) I perm ssion
4d call wait(up(cs)) I perm ssion
5 ... = alup(cs)] 5 ... = alup(cs)]

! conpletion notify(up) ?
! conpletion wait(down) ?
6 call barrier() 6 call barrier()
7 a=-a+1 7 a=-a+1

(a) PUTs to the right and above (b) enforcing transitive inter-image dependencies

Figure 7.7 : Communication to the right neighbor followeddoynmunication to the upper
neighbor for a 42 Cartesian co-space with periodic boundaries.

perform these operations as well with their communicatiartrgers, but only the opera-
tions incident on image are shown in Figure 7.9. The thick arrows denote the diraafo
communication, not the direction where data is moving; grimows denote unidirectional
point-to-point synchronization messages. The dependsgteesen image and image is
enforcednot by a direct synchronization between them but rather trame$jtvia ordering
of the completion pair between imageand2 and the permission pair between images
ando6 that results from the execution order of the completion waiimage2 before the
permission notify on image.

Since the permission & completion pairs enforce all dataeddpncies between ac-
cesses to co-arrag on lines 3 and 5, they are sufficient to preserve the meaninbeof
program, and the barrier on line 4 can be removed. This wosldlly result in faster exe-
cution because the code uses one-way synchronization gessadéth shorter critical path
than that of barrier synchronization. The question is: &hate also insert a permission
pair to synchronize the PUT on line 3 and a completion paiyt@kronize the GET on line

5 instead of the barriers on lines 2 and 6, respectively?| diath dependencies crossing
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)

Figure 7.8 : Communication for imagésand6 accessing the same co-ariay?2] .

Q

Barrier 1

a[right(cs)]=...

write
n. 2
\\
\W

C
MI-IIIIIIIIIIIIIIIIIIIIIII--IIIIIIIIIIIII

I,
\\‘ Wp

read ...= a[up(cs)]
a[2]

Barrier 3

time
Figure 7.9 : Time diagram for communication for imadeasnd6 accessing the same co-
array memona[ 2] .

the barrier on line 2 can be analyzed and synchronized wittto-point synchroniza-

tion, then it would be profitable to remove this barrier, eghg it with an equivalent set of
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point-to-point synchronization that enforces all suchatefencies. If this cannot be done,
the barrier on line 2 must be left intact, and a permission gf@uld not be generated for
the PUT on line 3 since the barrier on line 2 already synclzemit properly. Similar rea-
soning applies to the barrier on line 6. This intuition layl®andation for our reducibility
analysis and the following observation.

We say that a barridr reaches a communication eveni there is a barrier-free path
in the control flow graph (CFG) frorhito e. We say that an evemtreache9 if there is a

barrier-free path in the CFG fromto b.

Observation 7.1 A textual co-space barrieb can safely be removed from the code and
replaced by an equivalent set of point-to-point permissfocompletion synchronization
pairs that preserve correctness iff (1) each communicagiaent that may reachin any
execution can be analyzed and is synchronized with one oe mmmpletion pairs, and
(2) each communication event thtatnay reach in any execution can be analyzed and is

synchronized with one or more permission pairs.

7.2.2 Correctness of SSR for analyzable non-group-executie PUTS/GETs

So far, we have considered only analyzable group-exe@2U0IT/GET. Using point-to-
point synchronization to synchronize an analyzable nawgrexecutable PUT/GET is
slightly different. An example of such an event is shown igufe 6.18. Intuitively, we
can place a permission pair and a completion pair around fthstatement, as shown in
Figure 7.10. This preserves correctness, but may introdaicecessary point-to-point syn-
chronization for images that do not actually perform the RiTline 4. In experiments
(see Section 7.8.2), we found that codes with such extrap@ipoint synchronization are
less synchronous and faster than their barrier-based eqants because the critical path
of unidirectional notify messages is shorter than that cdiaiér.

For a non-group-executable PUT/GET, permission & combgbairs cannot be placed
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I former barrier

1 call notify(CS_Neighbor(cs,axis,+1)) ! permission notify

2 call wait(CS_Neighbor(cs,axis,-1)) I perm ssion wait

3 if (give_ex(axis, level)) then ! non-single-valued guard

4 . | pack data into buffM1:buff_|len,1)

5 buf f M 1: buf f _I en, 2) [ CS_Nei ghbor (cs, axis,-1)] = buff M 1: buff_|en, 1)
6 endif

7 call notify(CS_Neighbor(cs,axis,-1)) ! conpletion notify

8 call wait(CS_Neighbor(cs, axis, +1)) ! conpletion wait

I forner barrier

Figure 7.10 : Non-single-valued guard in NAS MG extrapaatubroutine synchronized
with permission & completion pairs instead of barriers.

directly around the event as for analyzable group-exeteitaDT/GET since notify and
wait of each completion & permission pair must be matched rmotdall images would
necessarily perform the synchronization (see Sectior2)6.4nstead, one could place a
permission pair earlier in execution, in a group-exec@&#G node: that executes if the
event executes, provided that it is possible to computeatigetimage of communication in
n. Such placement would enable the compiler to find the oryioi{communication. Thus,
the best node to place a permission pair isdlesest group-executable CFG dominatér
of the event, provided the arguments of & Nei ghbor function can be computed in
d; note that if the arguments are available/jihey are single-valued ih Otherwise, SSR
cannot optimize synchronization for a non-group-exedetabent. If a permission pair can
be placed, the corresponding completion pair can be placeeiclosest group-executable
CFG postdominatgp of the event node, later in execution than the event. Notedthad
p are control equivalent for the structured control flow thatsupport and the shape of our
CFG (see Section 7.3).

The described synchronization with permission & complepairs instead of barriers
ensures correct synchronization because the placemettie permission & completion
pairs are no further from the communication than the textaatiers they replace; thus,

the permission & completion pairs provide equivalent syanfzation. Let us consider the

1To execute as little unnecessary point-to-point synclzation as possible.
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case of the permission pair. Lebe the non-group-executable event CFG nedd;dom

be the closest group-executable dominatoe.ofWith the CFG restricted to structured
control flow, any CFG nodé that belongs to a path fromG Edom to e is non-group-
executable according the the inference algorithm in Se&i8. Therefore) cannot contain

a textual co-space barrier; if it does, it is a program eagpssible deadlock, and SSR is

not applied. Similar reasoning holds for the completion.pai

7.2.3 Hiding exposed synchronization latency

It is common for scientific codes to perform some local workwsen communication
events. Figure 7.11 (a) shows an example and denotes locklasaor k1 andwor k2.
Figure 7.11 (b) shows the synchronization using permis&@ompletion pairs inserted
right around the PUR[ ri ght (cs) ] . Placing the permission pair right before an event
exposes the latency to deliver the permission notify messagause, assuming that exe-
cution of all images is approximately balanced, every imagees a permission notify and
immediately blocks in a permission wait until the corresgiog permission notify mes-
sage arrives from a remote image. Similarly, placing the gletron pair right after an
event exposes both the latency to transfer data and thecyaterdeliver the completion
notify message.

If legal, it is profitable to move the permission notify earlin the execution and the
completion wait later in the execution, as shown in Figufel {c). This overlaps the per-
mission notify latency with local computatiawr k1, and the PUT and completion notify
latencies withwor k2. We limit the movement of a permission notify by the availdpi
of arguments (inputs) fo€CS_Nei ghbor function to compute the origin(s) of commu-

nicatiort and by the upward barriers) However, we limit the movement of a comple-

2In the presence of control flow, we accumulate the executigrdyalong the way and do not move a
permission notify and a completion wait outside of loops. pstpone this discussion until Section 7.6.
3Because the synchronization must happen somewhere be¢xeention of the barrier and the event. It

may be possible to move a permission notify past the upwanmikg), preserving inter-image data depen-
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call barrier() I former barrier I former barrier
call notify(left(cs))
wor k1 wor k1 wor k1
call notify(left(cs))
call wait(right(cs)) call wait(right(cs))
a[right(cs)]=... a[right(cs)] = .. afright(cs)] = ...

call notify(right(cs)) call notify(right(cs))
call wait(left(cs))
wor k2 wor k2 wor k2
call wait(left(cs))
call barrier() I former barrier I former barrier

(@) barrier-based syn-(b) synchronization with per-(c) pairwise synchronization
chronization mission & completion pairs  with latency hiding

Figure 7.11 : Communication to the right for &2 Cartesian co-space with periodic
boundaries.

tion wait only by the downward barrier(s) because the of®ief communication can be
computed at the event’s permission wait point for both grexgcutable and non-group-
executable events, stored in compiler-generated temperand used for synchronization
at the downward barrier(s). An invariant that must be mamnet when moving a permis-
sion notify and a completion wait is (1) to executgiaglepermission notify per permission
wait execution and (2) to executsimglecompletion wait per completion notify execution.
This essentially matches permission notify and permiss@ity and completion notify and
completion wait. In Section 7.6, we show a formal algorithowihto move a permission

notify and a completion wait maintaining the invariant.

7.3 Overview of procedure-scope SSR

We present an SSR algorithm that operates within a proceshape. SSR can analyze
codes that use textual barriers of co-spasédor synchronization andi ngl e( cs, exp)

to specify co-space single-valued expressions. The coesma must be a single-valued

dencies; however, codes we have studied do not presenttapiiies for this.
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procedure invariant. SSR supports codes with structuretta@oflow in the form ofDO
loops and F- THEN- ELSE or | F- THEN statements. The class of programs expressible
with this set of constructs is broad enough to include akmsiiiic CAF codes that we
encountered. However, it is necessary to extend SSR’s doeymnd a single procedure
to use SSR to optimize real scientific codes. In this disgertawe use compiler hints to
achieve this effect until interprocedural analysis is klde.

SSR has four major phases. We summarize them here; the rthst dhapter presents

them in detail.

e Preliminary analysis checks that SSR can be applied, prepares the CFG for the
following stages, identifies DO loop regions, and colle@sous information about
the CFG (see Section 7.4). Finally, this stage performsriference of co-space

single values and group-executable statements as desaniapter 6.

e Reducibility analysis detects analyzable group-executable and non-group-
executable PUTsS/GETs and runs a fixed point iterative algaorio find all textual
co-space barriers that can be reduced as well as to detewhatenotify/wait syn-
chronization is required to preserve program correctriglss barriers are to be elim-

inated.

e Optimization of notify/wait synchronization overlaps the latency of permission
and completion notifies with local computation and elimgsatedundant notify/wait

synchronization.

e Code generationphase instantiates notify/wait synchronization and rezsdvar-
riers that are no longer necessary. In addition, it detett§sPthat can be made

non-blocking and converts them into non-blocking form.

In the next section, we begin with an overview of conceptslus&SR.
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7.3.1 Notation and terminology

e A communication evei either a PUT or a GET. Aevent placeholdds an “empty”
event used for analysis to simplify flow equations. In thdokwing, aneventrefers
to either a communication event or an event placeholders represented by an
FEvent data structure shown in Figure 7.19. Sometimes, weewsatto refer to a

communication event, when the difference is clear from thaext.

¢ A synchronization fendemits movement of notify/wait synchronization and helps t
simplify analysis flow equations. Its properties resemhi of abarrier; however, a
synchronization fence is never present in the code. We mggihdce a synchroniza-
tion fence with a barrier when it is either necessary or pabfé. In the following, a

fencerefers to either a barrier or a synchronization fence.

¢ \We say that a fencég reaches an eventif there is a fence-free path in the CFG from

ftoe.

¢ \We say that an eventreaches a fencgif there is a fence-free path in the CFG from

eto f.

e For a fencef, the seteventsBeforeFence(f) is the set of all events that reagh

the seteventsAfter Fence(f) is the set of all events thgtreaches.

e For an event, the setfencesBeforeEvent(e) is the set of all fences that reaeh

the setfencesAfter Event(e) is the set of all fences thatreaches.

e Abarrierd is reducibleif it can be safely removed from the code by replacing it with
point-to-point permission & completion notify/wait pajrsoordinated with guards,

to preserve data access ordering.

e A communication event is upwardly synchronizablé it is synchronized with a

permission pair instead of barriers that reach
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e A communication event is downwardly synchronizabiéit is synchronized with a

completion pair instead of barriers thateaches.

e For a CFG node:, idom(n) denotes the immediate dominatoraf ipostdom(n)

denotes the immediate postdominatonof

e A CFG node containing a fence is calléehce node A CFG node containing a

barrier is callecbarrier node

e Fencel DF stands for iterated dominance frontier [41] for fence CF@ea® This
is the set of CFG nodes in which each member belongs to theettdominance
frontier of some fence node. Each nodefiancel DF, called a fence merge point,
is reachable by at least two different fences. We use fenagemmoints to recur

along different CFG paths while moving a permission notipyvard in the CFG.

e Fencel RDF stands for iterated reverse dominance frontier for fenc& @bdes.
This is the set of CFG nodes in which each member belongs tiettated reverse
dominance frontier of some fence node. Each nodBdncel RDF, called a fence
split point, reaches at least two different fences. We usedesplit points to recur

along different CFG paths while moving a completion wait dovard in the CFG.

Synchronization primitives

n, andw, denote a permission notify(s) and a permission wait, ras@dg. n. andw,
denote a completion notify and a completion wait(s), respely.

The primitives used for,/w, andn./w. arenot CAF's noti fy andwai t . CAF’s
primitives may be used by the programmer and are not comfmsale use primitives
notify(cs, q) andwai t (cs, r) thatare similarto CAF’s, but they are “private” to co-
spacecs and appear only in compiler-generated code. Moreoverewhjlandn, always
have only one target image — the target image of communitatip and w. actually
denote sets of notifies/waits because there can be sevigial imnages €.g, for a graph

co-space). Section 7.7 has more detailed discussion.
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DO-loop
header

Figure 7.12 : PreconditionddOloop.

CFG shape
To simplify insertion and movement of notify/wait, our CF@&Ibws the following guide-

lines:

1. Each CFG node contains at most one program statement gihd contain SSAP-
nodes block at the node’s entry and/or SSA side effect blbthel statement is a
procedure call. A side effect block contains definitions 8ASames that might be
modified by the corresponding procedure call. It is insedgtiter the procedure call.
We would useP-node and side effect definitions to limit the upward moventdn

computations (the target of communication) in the CFG.

2. For each F- THEN- ELSE or | F- THEN, there is a no-op (comment) statement in-
serted right after th&NDI F in the source code, so that there are no critical etiges

4A critical edge is a CFG edge whose source has multiple ssoceand whose destination has multiple

predecessors.
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(DD DD

Figure 7.13 :EntryFence, EntryFEvent, ExitEvent, and Exit Fence.

for nestedl F- THEN- ELSE/I F- THEN statements. In addition, allF- THEN are
converted intd F- THEN- ELSE.

3. EachDOloop is preconditioned and has the shape shown in Figure E4éh loop
has only one entry node and only one exit node, which is the same.aghe case of

unstructured control flow and exit branches from the loopgsuksed in Section 7.9.

7.3.2 Synchronization and event placeholders

EntryFence is a synchronization fence at procedure enfy:it Fence is a synchroniza-
tion fence at procedure exitEntryFEvent is an event placeholder at procedure entry.
ExitFEvent is an event placeholder at procedure exit. Figure 7.13 sliogs placement

in the CFG. These four placeholders are used to controldsagducibility and event syn-
chronizability conditions at procedure entry and exit, @sassed in Section 7.5.

We augment eaclbO loop that may execute a barrier witRreloop, Postloop,
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DO-loop
header

Figure 7.14 : PreconditionedO loop with Preloop, Postloop, Prebody, and Postbody
placeholders.

Prebody, and Postbody placeholders, as shown in Figure 7.14. Each place-
holder contains two nodes: one with a synchronization fertbe other with an
event placeholder. Preloop contains PreloopEvent, followed by PreloopFence.
Postloop contains PostloopFence, followed by PostloopEvent. Prebody contains
Prebody Fence, followed by Prebody Event. Postbody containsPostbody Event, fol-
lowed by Postbody Fence.

7.3.3 Pseudocode data structures

Figures 7.15, 7.16, 7.17, 7.18, and 7.19 show the data stasctised in pseudocode in the
following sections.

Figure 7.15 shows th&/ode data structure that represent a CFG nédeThe state
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struct Node

state Il GE or NGE
d-nodes /I ®-nodes of the node
stmt /[ program AST statement, only one

Figure 7.15 : CFG node structure.

struct Fence

reducible /Il reducible or non-reducible

node /I CFG node

eventsBeforeFence Il the set of event&vent that reach the fence
eventsAfter Fence Il the set of event&vent reachable by the fence

Figure 7.16 : Fence structure for a barrier or a synchroiizdénce.

struct Region

header /I DOheader node

preloopFence Il Preloop fence of typeFence
postloopFence Il Postloop fence of typeFence

prebody Fence Il Prebody fence of typeFence

postbody Fence Il Postbody fence of typeF'ence
preloopEvent Il Preloop event placeholder of typEBvent
postloopEvent Il Postloop event placeholder of typBuvent
prebody Event Il Prebody event placeholder of typEvent
postbody Event Il Postbody event placeholder of typEvent

Figure 7.17 :-DOloop region structure.

struct Place

node /Il CFG node
whereTolnsert [l insert notify/wait before or aftetode.stmt
guard,,, /I the guard expression far,

Figure 7.18 : Place structure for a notify or a wait.

field specifies whethei is group-executable or non-group-executable, as detedriy
the inference analysis in Section 6.3. Theodes field represents the SSA for@nodes
of b. Thestmt field representsd’s Open64/SL Whirl abstract syntax tree (AST) statement.

Figure 7.16 shows thd’ence data structure that represents a fengte which
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struct Fvent

upwardlySynchronizable /I synchronizable with &,/w, pair, or not
downwardlySynchronizable I/ synchronizable with & /w,. pair, or not

node /I CFG node

fencesBe foreEvent Il the set of fenceg$’ence that reach the event
fencesAfter Event Il the set of fenceg’ence reachable by the event
image /Il the AST expression of the event's target image
n,Places Il set of Place for permission notifies

wy, Place I the Place for permission wait

nePlace Il the Place for completion notify

w.Places Il set of Place for completion waits

Figure 7.19 : Event structure for a PUT/GET or an event plalckdr.

can be either a barrier or a synchronization fence. Theéucible field determines
the reducibility state of the fence, which can be reducibtenon-reducible. The
node field specifies the CFG node of. The eventsBeforeFence field represents
the seteventsBeforeFence(f). The eventsAfterFence field represents the set
eventsAfter Fence(f).

Figure 7.17 shows th&egion data structure that represents the CFG region foOa
loop that may execute a barrier; Magion structure is associated withD®loop that does
not execute a barrier. Theader field is theDOloop entry (and exit) CFG node. The other
fields represent helper communication fences and even¢lpddaers for the reducibility
analysis and notify/wait optimization.

Figure 7.18 shows thé’lace data structure for a placement of a notify or a wait
in the CFG. Thenode field is the CFG node in which the notify or wait resides and
will be inserted in the code generation stage. ThereTolnsert field can be either
be foreStmt or after Stmt specifying whether to insert the notify/wait befatede.stmt
or afternode.stmt, respectively. Thguard,, field represents the AST expression for the
permission notify guard necessary for code generation tehrtae permission notify and
permission wait.

Figure 7.19 shows th&vent data structure that represents an eventhich can be a
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PUT/GET or an event placeholder. ThgwardlySynchronizable field specifies whether
e should be synchronized with a permission pair. ThenwardlySynchronizable field
specifies whethee should be synchronized with a completion pair. Thele field is
e’'s CFG node. The fieldgencesBe foreFEvent and fencesAfter Event represent sets
fencesBe foreEvent(e) and fencesAfter Event(e), respectively. For a PUT/GET, the
1mage field ise’s target image AST expression; for an analyzable PUT/GES,a call to
the co-spac€S_Nei ghbor function. Theimage field is undefined for event placeholders.
If e is upwardly synchronizable, the,Places field is the set of all CFG places fefs
permission notifies, and the, Place field is the CFG place fot’s permission wait. I is
downwardly synchronizable, the Place field is the CFG place fo's completion notify,

and thew.Places field is the set of all CFG places feis permission waits.

7.3.4 Hints to increase SSR scope beyond the procedure level

The SSR algorithm presented in this dissertation worksHermprocedure scope; however,
optimization of real programs often requires a scope beyosaigle procedure. We de-
scribe SSR hints here because they are incorporated infoltving stages of SSR.

The scope of SSR can be increased in three ways: devisingapnocedural analy-
sis, inlining procedures, and using hints. While a fullyamnatic solution is preferable,
caf c does not yet have infrastructure for any interproceduralyesis or procedure inlin-
ing, including interprocedural analysis or procedurenimig to support SSR. This leaves
us with two options. First, the programmer can inline prazed manually. Second, the
programmer can use directives to provide extra informatoraf c. We believe that the
second choice imposes less burden on programmers, ancesrmatd to reap the benefits
of interprocedural SSR today. Moreover, even in the presehaterprocedural analysis
in the future, its capabilities would be limited by sepam@iepilation and libraries, unless
link-time analysis and code generation are used. Direzte® be useful to improve opti-
mization in the absence of more sophisticated link-tim@woigation. We discuss the nature

of a possible interprocedural analysis in Section 7.9. Weduce twocaf ¢ directives to
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convey information about remote co-array accesses andimge data dependencies be-
yond the scope of one procedure.

Thel ocal attribute for a proceduréoo conveys the fact that neithé€loo nor any
procedure called transitively frofoo performs any PUT/GET.

Thesynch_cont ext (cs) hint specifies a “synchronization clean point” for all co-
array accesses of co-space at which all co-space inter-image data dependencies are
known to be enforced by either a barrier or point-to-poimayonization. We are par-
ticularly interested irsynch_cont ext (cs) hints at procedure entry or exit, because
this enables SSR to optimize synchronization between cotige procedure invocations.
Let’s assume that the invocations diefollowed by I5; I; executes procedur®, and/,
executes procedurs,. Note thatS; and.S, can be the same procedure.

At S;’s exit,synch_cont ext (cs) instructs SSR to complete all's PUTS/GETS
for the co-spaces that reacht;’s exit. If possible, it is preferable to complete local-peo
communication by using point-to-point completion paitsieywise, SSR must synchronize
using a co-space barrier 8t’s exit. The hint indicates that it is safe to synchronizengsi
completion pairs because the following scopg, I, invocation ofS,, synchronizes,’s
communication events reachable frgi¥is entry with point-to-point permission pairs, if
possible, or, otherwise, with a barrier. At’'s entry,synch_cont ext (cs) indicates
that all prior PUTS/GETS for co-spacs have been completed by either a barrier or point-
to-point completion pairs. However, the hint also requuss$o synchronize al$,’s scope
communication events reachable fréiyis entry by using point-to-point permission pairs,
if possible; otherwise, SSR must synchronize using a braatig,’s entry.

synch_cont ext ( cs) hints bear a resemblance to a split synchronization fenoe: o
part of the fence is a%;’s exit for the invocation/;, the other is af,’s entry for the invo-
cation/,, whereS; andS, can be the same procedusy/nch_cont ext (cs) hints limit
the movement of permission & completion pairs, and theylaebints where data depen-

dencies are enforced. Howevgy,nch_cont ext ( cs) is stronger than a synchronization

SFor each image, local co-array accesses are completeddsenhiine image’s program execution.
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fence because ihustbecome a barrier if it is not possible to use point-to-poymichiro-
nization to synchronize local scope PUTS/GETS; a synchatiain fence may become a
barrier only if profitable (see Section 7.5).

Our implementation supportsynch_cont ext (cs) inserted at procedure entry
or exit. At procedure entry, SSR might insert a barrier ifynch_cont ext (cs)
hint is present, but SSR cannot upwardly synchronize eves@ishable from the pro-
cedure entry by permission pairs. At procedure exit, SSRhimigsert a barrier if a
synch_cont ext (cs) hintis present, but SSR cannot downwardly synchronizeteven
reaching the exit of the procedure by completion pairs.ttegiof these barriers is instan-
tiated, SSR issues a warning message, because the bangdtsimsrease the amount of
synchronization in the code. In scientific codes availabled, SSR never had to insert

such a barrier.

7.4 Preliminary analysis

First, we preprocess the program abstract syntax tree aedt ian empty statement after
eachENDI F. This avoids critical CFG edges for nesteld- THEN- ELSE/I F- THEN con-
structs. We convert allF- THEN statements intb F- THEN- EL SE statements to make the
CFG more uniform and to apply the same set of rules for THEN- ELSE and| F- THEN
statements when moving notify and wait during the optimaraphase. Also, our SSR
CFG has at most one statement in each CFG node.

Second, we verify that SSR can be applied by performing theviong steps. If any

condition does not hold, we do not apply SSR.

1. Verifying control flow. We verify that the CFG contains onlyF- THEN- EL SE and

| F- THEN control flow statements argOloops.

2. Detecting SSR co-spacéWe verify whether all textual co-space barriers, co-space
coercion operators, argynch_cont ext (cs) hints use the same co-space vari-

ablecs. cs must not be redefined in the procedure.
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Third, to prepare the CFG for SSR analysis, we normalizeoits1fby applying the

following transformations.

1. Insulating loops containing barriers from communication outside the loop.

EachDOloop is represented in the CFG as a pre-conditioned loop exi#tttly two
successors and two predecessors, as shown in Figure 7 R2rezffs éDOloop that

may execute a barrier as an independent CFG region.

To detectDO loops that may execute a barrier, we declatmgier helper variable
(BHV) and facilitate the SSA form. We insert a helper statemBHWV=BHV+1 right
after each barrier statement and build the SSA. ExX@loop whose header node has

a ®-node forBHV may execute a barrier and represenXdoop CFG region.

We insert four placeholders fdPreloop, Postloop, Prebody, and Postbody Syn-
chronization fences and event placeholders, as shown uré=ig14. The synchro-
nization fences separate the communication and synclatmiznside the loop from
the outside. They also do not allow outside synchronizatomove past the loop
statement. The event placeholders are used to control hovertbaon-reducibility

propagates into and out of the loop.

2. Insulating procedures from communication outside procedues.

Immediately after the CFG entry node, we insert vetry Fence synchronization
fence placeholder followed by théntry Event event placeholder. Immediately be-
fore the CFG exit node, we insert tiiecit Fvent event placeholder, followed by the
Ezit Fence synchronization fence placeholder. This is shown in Figule3. The
fences are used to separate procedure communicationfsyriedtion from the out-
side communication. For each call site of a procedure withogal attribute, we
insert two event placeholders: one before the call sitepther after the call site.

The fences and events are used to analyze barrier redtycibiection 7.5.

Fourth, we collect analysis data to support further analysi
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1. We construct the CFG and SSA form.
2. We compute the dominator tree (DT) and postdominator(Bé&d).

3. We perform the inference of group-executable (GE) statgsnand co-space single

values (SV), as described in Section 6.3.

4. We associate & ode structure with each CFG node. If the statement of the node is

group-executable, we initializ& ode.state to GF; otherwise, it iSNGE.
5. We associate Aence structure with each barrier and each synchronization fence

6. We build iterated dominance frontier and iterated revetlesminance frontier for

fence nodes; we denote themi@sncel DF and Fencel RDF', respectively.

7. We associate &egion structure with eachbO loop region. Note that &0 loop
region can reuse DT and PDT of the entire CFG that are resdrizy thePrebody

and Postbody fences.

8. We associate aAvent structure with each communication event (PUT/GET) or an

event placeholder.

7.5 Reducibility analysis

The goal of reducibility analysis is to identify barrierstitan beeducedi.e., be removed
from the code and replaced by a set of permission & completymthronizations. The
analysis should not introduce more synchronization thanotiiginal code has. Thus, it
also determines whether a communication evestupwardly synchronizablanddown-
wardly synchronizablesith point-to-point synchronization. The synchronizéliproperty
of each end is independent from that of the other end.idfupwardly synchronizable, it
can safely be upwardly synchronized with a permission petelad of barriers reaching

e. If e is downwardly synchronizable, it can safely be downwardigchronized with a
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completion pair instead of barriers thateaches. In addition, the analysis also determines
the placement of the permission wait and the completiorfynfuir each event.

Reducible barriers and synchronizable events can be ddtegtan optimistic mono-
tonic fixed-point iterative algorithm that propagates mnies from fences to events and
from events to fences. The analysis initially assumes thaékariers are reducible. Intu-
itively, if an evente reaches barries ande is not downwardly synchronizablé must be
non-reducible becaugemust be used to synchronizdo preserve a potential inter-image
data dependence emanating frenthus,b cannot be removed from the code. Similarly, if
an event reaches barrigr andb is non-reducible} is already sufficient to synchronize
and a completion pair should not be generatecfoot to introduce unnecessary synchro-
nization; thuse should not be downwardly synchronizable. Similar reaspaipplies for
the situation where a barriérreaches an event We give more details while describing

the propagation step below.

7.5.1 Initialize flow equations

The initialization step consists of two parts. The first ortedmines whether each commu-
nication event is initially synchronizable as well as plaeat of a permission wait and a

completion notify for each PUT/GET. The second one dealk watious flow conditions.

Initialize communication events

Figure 7.20 shows pseudocode for initializing the stateaahecommunication evert

e is non-analyzable if SSR cannot qualify it as an analyzabdeigrexecutable or non-
group-executable PUT/GET (see Patterns 6.1 and 6.2 in @h@ptFor example; is non-
analyzable if its target image is not expressed via a coesp@d\ei ghbor function, or if
theCS_Nei ghbor function does not have single-valued argumentsidinon-analyzable,
SSR cannot synchronize it with point-to-point synchrotiaa Thus,e is not upwardly or
downwardly synchronizable. is analyzable, we determine the placementfenw, and

n. and whethee is synchronizable, as shown in Figure 7.21, unlessa special event
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procedure initializeCommunication Events
for each communication eveat
if e is non-analyzable (not an analyzable GE or NGE PUT or GET)
e.upwardlySynchronizable +— false
e.downwardlySynchronizable — false
else // analyzable GE or NGE PUT or GET
if 3 DOloop regionR such that
there is a fence-free path in the CFG from therebody fence toe and
there is a fence-free path frosrto the R.postbody fence
I/l heuristic: avoid unnecessary synchronization in a loggeting a barrier
e.upwardlySynchronizable — false
e.downwardlySynchronizable — false
else
/I determine the initial placement of, andn,
call determinelnitial W, N.Placement(e) Il see Figure 7.21

Figure 7.20 : Detecting synchronizable PUT/GET events.

in aDOloop. If e executes in O loop containing a barrier (thBOloop has a regiomk
associated with it) and may execute without being synchronized with a barrier onesom
iteration of the loop, we do not optimize not to introduce more synchronization into the
program. This is demonstrated by the following example:

doi =1, 101
if (i == 101) then
call barrier(cs)
el se
a(i)[ CS_Neighbor(cs, i)] = b(i)
endi f
enddo

If the barrier is reduced, the permission & completion paxscute ori00 iterations of the
loop; however, the original version does not execute anglsymization except the barrier
on the last iteration. The original version would probabdyfaster than the reduced one.
Figure 7.21 determines the placement of a permission wdiaatompletion notify for
an analyzable group-executable/non-group-executaklet eif the event node is group-

executable, which corresponds to the first analyzable fpa6té, a permission wait and a
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procedure determinelnitialW, N.Placement(Event e)
Il e is an analyzable GE or NGE PUT or GET
if e.node.state = GE Il an analyzable GE PUT or GET
I placew, andn, at the node of the event
e.w,Place < new Place(e.node, be foreStmt)
e.n.Place < new Place(e.node, a fter Stmit)
e.upwardlySynchronizable «— true
e.downwardlySynchronizable «— true
return
else // an analyzable NGE PUT or GET
inputs <— SSA names referenced by thémage expression
I placew,: assume that the event cannot be analyzed by SSR
e.w,Place < new Place(e.node, be foreStmt)
e.upwardlySynchronizable «+— false
e.downwardlySynchronizable +— false
while e.w,Place.node.state = NGE
if 3 SSA namen, n € inputs, that is defined by either
e.wp, Place.node’s statement of-nodes
return
/ move to the immediate CFG dominator
e.w,Place.node «— idom(e.w,Place.node, be foreStmt)
/l found the closets GE dominator with available inputs tmpate target image
if e.w, Place.node is not aDO-loop entry node
I the event can be analyzed:(, Place.node containd F statement)
e.upwardlySynchronizable «— true
e.downwardlySynchronizable «— true
Il placen,.
e.n.Place — new Place(ipostdom(e.w,Place.node, a fterStmt))

Figure 7.21 : Determining synchronizable PUT/GET and pizeet forw, andn,.

completion notify can be placed right around the event insdime node, as discussed in
Section 7.2¢ is synchronizable. I¢ is an analyzable non-group-executable PUT/GET, we
try to find the closest group-executable dominataf e.node such that the SSA names
(inputs) referenced by the target image expressionage are available inl, as discussed

in Section 7.2. Ifd is found, e is synchronizable, and is the node to place a permission

wait; the immediate postdominator dfis then the place for a completion notify. df
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cannot be found, SSR cannot analyzand makes non-synchronizable. Note that our
implementation of SSR neither vectorizes permission & detign pairs nor hoists them
outside of aDO loop that does not contain a barrier because we have not etered

opportunities in the codes that we have studied. We disbtispadssibilities in Section 7.9.

Initialize reducibility state

Figure 7.22 shows pseudocode for the rest of initializatiBach fence is optimistically
assumed to be reducible; each event placeholder is optaillgtassumed to be synchro-
nizable.

To keep the flow equations uniform, we introduce two eventgialders, represented
by the Event structure, with the same reducibility properties as a compation event.
The EntryEvent placeholder is inserted in the CFG right after #ietry F'ence synchro-
nization fence at procedure entry. Theit Event is inserted right before thexit Fence
synchronization fence at procedure exit, as shown in Figul8.

If a synch_cont ext (cs) hint at procedure entry is present, thaitryFence is
initialized to be reducible, and thentry Event is initialized to be synchronizable. Oth-
erwise, SSR must be conservatives,, it initializes them to be non-reducible and non-
synchronizable, respectively. In the propagation steprareducibleEntry Fence will
make all events reachable from the procedure entry upwarattysynchronizable, and a
downwardly non-synchronizablentry Event will make all fences reachable from the pro-
cedure entry non-reducible; this is exactly what we wantméisynch_cont ext ( cs)
hint at procedure entry is not present, which means that adewdly non-synchronizable
communication event may reach the procedure invocationthnd, the procedure entry.

If a synch_cont ext (cs) hint at procedure exit is present, théit Fence is ini-
tialized to be reducible, and théxit Fvent is initialized to be synchronizable; otherwise,
SSR must be conservative and similar reasoning is appé@abfor the procedure entry.

For each procedure call that may execute a PUT/GET @wal attribute), we insert

two event placeholders around the call site. SSR initialthem to be non-synchronizable
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procedure initialize Reducibility State
/I optimistically initialize all fences to be reducible
for each fencef
f.reducible «— true

/I optimistically initialize all event placeholders to bgnghronizable
for each event placeholder
e.upwardlySynchronizable «— true
e.downwardlySynchronizable «— true

Il procedure entry

if there is nasynch_cont ext (cs) hint at procedure entry
EntryFence.reducible «— false
EntryFEvent.upwardlySynchronizable — false
EntryFEvent.downwardlySynchronizable «— false

/l procedure exit

if there isnssynch_cont ext ( cs) hint at procedure exit
ExitFence.reducible — false
Exit Event.upwardlySynchronizable «+— false
Ezit Event.downwardlySynchronizable «+ false

/I procedure calls containing possible PUT/GET
for each call site of a procedure without thecal attribute
Il lete; ande, be event placeholders before and after the call, respéctive
er.upwardlySynchronizable < false
e1.downwardlySynchronizable «— false
es.upwardlySynchronizable < false
es.downwardlySynchronizable — false

Figure 7.22 : Initializing reducibility state.

because it cannot analyze events outside procedure scdpawst be conservative. SSR

assumes that there might be non-synchronized commumcetients reachable from the

point right before the call site and reaching the point rigfier the call site; these pos-

sible unsynchronized conflicting communication eventsrapgesented by the two non-

synchronizable event placeholders.
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procedure buildSets

Il initialization

for each fencef
f.eventsBeforeFence < ()
f.eventsAfter Fence « ()

for each event
e.fencesBeforeEvent « ()
e.fencesAfter Event «— ()

for each event
call moveUpward(e, e.node) Il see Figure 7.24
call move Downward(e, e.node) Il see Figure 7.24

Figure 7.23 : BuildingfencesBe foreEvent, fencesA fter Event, eventsBe foreFence,
andeventsAfter Fence Sets.

7.5.2 Detect reducible barriers and synchronizable communation events

To propagate non-reducibility of fences and non-synclzalnility of events, we first
construct reachability sets. For each eventwe build fencesBeforeEvent(e) and
fencesAfter Event(e) sets. For each fencg, we build eventsBeforeFence(f) and
eventsAfter Fence(f) sets. The pseudocode for initialization and recursiveensal of
the CFG is shown in Figures 7.23 and 7.24.

We use synchronization fences to simplify flow equationsicByonization fences are
not real barriers. They are present to give more control over timvanalysis treatBO
loops, procedure calls, and procedure entry/exit. Howevelynchronization fence may
become a real barrier when it is profitable or necessary tefgdhe assumptions of the
synch_cont ext (cs) hints, as discussed below.

Figure 7.25 shows the propagation step where informatievsfioom events to fences
and from fences to events. Figure 7.26 shows how the restltseopropagation step
are used to optimiz®0O loops and to handlsynch_cont ext (c¢s) hints at procedure
entry/exit.

The first three steps, shown in Figure 7.25, iterativelysiavely propagate fence non-
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procedure movelUpward(Event e, Node n)

if n contains a fencg
f.eventsAfter Fence < f.eventsAfter Fence U {e}
e.fencesBeforeEvent «— e.fencesBeforeEvent U {f}
return

if n € Fencel DF I/ a merge point for fences
for each node € pred(n) // for each CFG predecessor (no back edges)

call moveUpward(e, p)

else

call moveUpward(e,idom(n)) Il move to the immediate dominator

procedure move Downward(Event e, Node n)
if n contains a fencg
f.eventsBeforeFence «— f.eventsBeforeFence U {e}
e.fencesAfter Event « e.fencesAfter Event U {f}
return
if n € Fencel RDF Il a split point for fences
for each node € succ(n) / for each CFG successor (no back edges)
call move Downward(e, s)
else
call move Downward(e, ipostdom(n)) I/ move to the immediate postdominator

Figure 7.24 : Recursive procedures to build reachability.se

reducibility and event upward/downward non-synchroniigh Step | captures propaga-
tion of the fact that if an event cannot be synchronized gaféh point-to-point synchro-
nization, barriers used to synchronize the event cannoetm®ved. Any upwardly non-
synchronizable eventthat is reachable by a fengemakesf non-reducible since a barrier
must be used to enforce inter-image data dependenciesrtasgern pair is not enough).
Similarly, any downwardly non-synchronizable event tlegtahes a fencé makesf non-
reducible since a barrier must be used to enforce intereéndaga dependences (a comple-
tion pair is not enough).

Step Il captures propagation of the fact that if a fence useslyhchronize an event
is non-reducible, it is unnecessary to synchronize thetavegh additional point-to-point

synchronization. If an eventreaches a non-reducible fengee is not downwardly syn-
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procedure propagate
while any updated field changes value

/] Step . Propagate information from events to fences
for each event such that-e.upwardlySynchronizable
for each fencef such thatf € e.fencesBeforeEvent
f.reducible «— false
for each event such that-ec.downwardlySynchronizable
for each fencef such thatf € e. fencesAfter Event
f.reducible «— false

/I Step Il. Propagate information from fences to events
for each fenceg such that-f.reducible
for each event such that € f.cventsBeforeFence
e.downwardlySynchronizable «+— false
for each event such that € f.eventsAfter Fence
e.upwardlySynchronizable — false

I/l Step lll. Propagate information fddOloop regions
for eachDOloop regionR
/I non-synchronizable events reaching body fences inkeléobp
if ~R.prebodyFence.reducible or = R.postbody F'ence.reducible
call markNoSynchOptForLoop(R)
/I non-synchronizable events outside of the loop
if (—R.preloopFence.reducible or = R.postloopFence.reducible) and
(heuristic: the loop does not always execute a barrier)
call markNoSynchOptForLoop(R)

procedure markNoSynchOptFor Loop(Region R)
R.prebody Event.downwardlySynchronizable «— false
R.postbody Event.upwardlySynchronizable « false
R.prebody Fence «— false; R.postbodyFence «— false
R.preloopEvent.upwardlySynchronizable < false
R.postloop Event.downwardlySynchronizable «— false
R.preloopFence «— false; R.postloopFence «— false

Figure 7.25 : Iterative propagation step.
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procedure finalize
/I Step IV. Heuristic: isolate synchronizable events insida@loop region
/l from non-synchronizable events outside the loop
for eachDOloop regionR
if ~R.preloopFence.reducible and
R.prebody Fence.reducible and R.postbody F'ence.reducible
insert a barrier iR.preloopFence.node
if ~R.postloopF ence.reducible and
R.prebody Fence.reducible and R.postbody Fence.reducible
insert a barrier iR.postloopFence.node

/] Step V. Satisfy the assumptions efynch_cont ext (cs) hints

if there issynch_cont ext (cs) at procedure entry andEntry Fence.reducible
insert a barrier ilkntry Fence.node at procedure entry and issue a warning

if there issynch_cont ext (cs) at procedure exit ant Exit Fence.reducible
insert a barrier iRk xit Fence.node at procedure exit and issue a warning

Figure 7.26 : Post-propagation step.

chronizable. Similarly, if a non-reducible fengereaches an evemt e is not upwardly
synchronizable. Note that, in part, this is a heuristic thatked well for all scientific
codes available to us. The algorithm might have synchromzeommunication event with
extra point-to-point synchronization to reduce additidvariers. For example, if a non-
reducible barrieb; and a reducible barriér, reach an event from above, we could still
synchronize: with a permission pair, which is redundant fgr but may keep the state of
by reducible.

Before discussing steps Il and IV, we explain Step V, whinBwees that the assump-
tions of thesynch_cont ext ( ¢cs) hinthold. Ifasynch_cont ext ( ¢cs) hintis present
at procedures;’s entry and thenitry Fence is non-reducible, it means that SSR was not
able to use permission pairs to safely optimbz&s communication events reachable from
Sy’s entry. Another SSR-optimized procedute, executing before an invocation 6f,
with synch_cont ext (cs) hint atSy’s exit relies on the assumption thét’s events

reachable fronb,’s entry are synchronized (with either point-to-point syranization or
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a barrier); therefore, SSR inserts a barrier when it failsgbmize events reachable from
Si’s entry. However, SSR warns the programmer that an extnaebas inserted. The
reasoning is similar for the procedure exit. In all scieatdodes that we have, SSR never
inserted a barrier at procedure entry or exit.

If a synch_cont ext (cs) hintis not present at procedure entry, thetryFence
will make reachable events upwardly non-synchronizablet th® same time, down-
wardly non-synchronizablé&ntry Event will make all reachable barriers and synchro-
nization fences non-reducible. Thus, SSR conservatisdymes that a downwardly non-
synchronizable event may reach an invocation of the praeedsimilar reasoning holds
for the procedure exit as well. There may be upwardly norelsgamizable communication
events following a procedure invocation.

Note that non-synchronizable event placeholders insertednd each call site of a
procedure that may execute PUT/GET (nocal attribute). For each call site these
placeholders will make barriers and fences that are reéelgle and barriers and fences
that ¢ reaches non-reducible. SSR conservatively assumes:tiraty execute a non-
synchronizable communication event that may need to behsgnized by the barriers

of the procedure being analyzed.

SSR propagation for DO loops and profitability heuristics

EachDO loop that may execute a barrier is “insulated” into a CBGloop region from

the rest of the program, as shown in Figure 7.14, using fouclspnization fences:
PreloopFence, PostloopFence, PrebodyFence, and PostbodyFence, and four event
placeholders: PreloopFEvent, PostloopEvent, PrebodyFEvent, and PostbodyFvent.
SSR uses these helper fences and events to have more coetrbba to propagate barrier
non-reducibility out of and into BOloop region. For example, SSR may choose to insert a
real barrier befor®Oloop to “guard” optimizable communication/synchronipatinside

the loop from an outside downwardly non-synchronizablenelefore the loop.

In step lll, there are two possible cases. First, if there ma-synchronizable event
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inside the loop that is reachable by tReebody fence or that reaches th&stbody fence,
SSRconservatively gives up optimizing the loop This case happens when an event
inside the loopR, reachable fronk.prebody Fence or reachingR.postbody F'ence, cannot

be optimized, making eitheR.prebody F'ence or R.postbodyFence non-reducible. The
markNoSynchOptForLoop procedure marks all four helper fences non-reducible and
four helper events non-synchronizable, propagating eolugibility to every path into or
out of the loop, taPrebody, Postbody, Preloop, and Postloop.

Propagation of non-reducibility inside [BO loop R is different. If SSR knows that
the loop executes at least one barrier, it does not propagasede non-reducibility into
the loop. The rationale is to optimize communication evémégle the loop as much as
possible since loops usually execute many times. Howewéiprbtect” the loop from
outside influence, SSR may insert a barrier before or afeeloibp in the post-propagation
step IV. The state oR.preloopFence (or R.postloopFence) determines whether there is
outside non-reducibilityR.preloopFence (or R.postloopFence) could have received the
non-reducible property only from a non-synchronizablen¢weitside of the loop. However,
what if the loop does not execute at all or might not executaraidr as shown in the

following example:

doi =1, 100
if (i == 101) then
call barrier(cs)
endi f
enddo

In this case, we do not want to mak®&-eloopFence or PostloopFence a real barrier, to
avoid increasing the amount of synchronization. Therefooer SSR implementation, the
heuristic in step Il is formulated as “there is a barriexdpath from looPrebody Fence
to Postbody Fence or the loop trip is zero”. The heuristic formulation meanattthe loop

does not always execute a barrier.

5There was no point to explore better heuristics withoutrsifie codes that might use them.
’SSR might still be able to optimize a CFG region inside thepltmat is isolated by barriers from the

influence of these non-synchronizable events.
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After the analysis reaches a fixed point, step IV may inset lbarriers at the loop
PreloopFence orland PostloopFence fence places to protect loop internal synchroniz-
able events from external non-synchronizable events. Mwatethe heuristic in step I

guarantees that a real barrier is inserted only if the loogags executes a barrier.

7.6 Optimization of notify/wait synchronization

After reducibility analysis, for each communication even{PUT/GET), SSR knows
whether to generate a permission pairdifipwardlySynchronizable is equal totrue)
and/or to generate a completion pairdiflownwardlySynchronizable is equal totrue).
However, placement of the permission notify and the congailevait should be optimized
to overlap the permission and completion notify synchratian latencies with local com-
putation, as discussed in Section 7.2.3. We first presenganthm which does this, then

we discuss how to eliminate redundant notify/wait syncieatmon.

7.6.1 Hiding synchronization latency

Initially, a permission notify can be placed immediatelydrse a permission wait for an
upwardly synchronizable communication event; a comphetvait can be placed immedi-
ately after a completion notify for a downwardly synchrabie communication event. To
overlap the permission notify latency with local compudatithe permission notify should
be moved earlier in the execution. To overlap the completatify latency with local com-
putation, the completion wait should be moved later in thecakion. The driver procedure
is shown in Figure 7.27. It moves completion waits downwand permission notifies
upward. We describe the downward movement of waits first mea is simpler. Our
version of SSR uses barriers (or fences) to limit the moventer downward movement,
SSR must maintain the property that a completion wait exesoonce iff the matching com-
pletion notify executes once. For upward movement, SSR masitain the property that
a permission notify executes once iff the matching permrsgiait executes once. There-

fore, SSR must carefully guard the execution of the permimsabtify & completion wait
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procedure moveW AndN,
for each communication eveat

if e.downwardlySynchronizable
call moveW_.Downward(e, e.n.Place.node)

if e.upwardlySynchronizable
inputs < SSA names referenced byimage
guard,, < true
call moveN,Upward(e, e.w,Place.node, inputs, guard,,,)

procedure addPlace(SetO f Places, n, whereToInsert, guard,,, = NULL)
place < new Place(n, whereTolnsert, guard,,,)

SetO f Places < SetO f Places U {place}

Figure 7.27 : Movement of the completion wait and permission notify.,,.

and, in particular, not move the permission notify & comiaetwait outside oDOloops.
Note that this version of SSR does not support point-to{®yinchronization vectorization
or hoisting.

The downward movement of a completion wait is simpler thamamd movement of a
permission notify, because the completion wait executes tfe completion notify. Thus,
whether the completion notify should execute can be ca@turea compiler-generated
guard variable; this variable is used to match the execufadhe completion notify and
the completion wait, as shown in Section 7.7. Note that thetgo-point synchronization
statements are group-executable; therefore, the stdie gtiard variable is the same for all
co-space images. In addition, the arguments of the commatioctarget image specified
via aCS_Nei ghbor function are evaluated at the permission wait point. Thalu@s can
be stored in compiler-generated variables and used by theletion wait to compute the
origin(s) of communication, as shown in Section 7.7.

Figure 7.28 shows how downward movement is performed fomapbetion wait. The
movement starts at the location of the corresponding campleotify, which was found
during the reducibility analysis stage. When a fence is ent@yed, movement stops; this is

a new location for the completion wait. Procedut Place, shown in Figure 7.27, creates
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procedure moveW,.Downward(Event e, Node n)
if n contains a fence
/l add a new place fan,. before the fence statement
addPlace(e.w.Places,n, be foreStmt)
return
if n € Fencel RDF I a fence split point
for each node € succ(n) // for each CFG successor
call moveW_ .Downward(e, s)
else
p <« ipostdom(n)
/[ do not morew,. outside of aDOloop
if (n,p) is aDOloop back edge
/I add a new place fan, as the last statement BO-loop body
addPlace(e.w.Places,n, afterStmt)
return
else
call moveW,.Downward(e, p)

Figure 7.28 : Downward movement of a completion wait

a newPlace and adds it to the set of allw.Places places. When a fence split point is
encountered, the procedure recurs over all CFG successdargdtall reachable fences.
This cannot move the completion wait out dd@Iloop containing a barrier, because such a
loop has aPostbody Fence limiting the downward movement. Otherwise, the completion
wait is moved to the immediate postdominatonode. The presented SSR version does
not move the completion wait outside of¥ loop that does not execute barriers (not a
region) by checking whethémn, p) is aDO loop back edge. Ifn,p) is a back edge, we
stop the movement. When we append a new completion wait pheitee sete.w.Places
of all completion wait CFG places, we also check for dupbsato that there is only one
completion wait per place; this is incorporated into theusgon operation and not shown
in Figure 7.28.

Figure 7.29 shows how SSR moves a permission notify upwanieein the execu-

tion. The process is similar to the downward movement of aptetion wait; however,
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procedure moveN,Upward(Event e, Node n, inputs, guard,,)
Il inputs are SSA names necessary to computeage andguard,,,
Il guard,,, is the guard of,, to matchn, andw, executions
if n contains a fence
// add a new place fot, after the fence statement
addPlace(e.n,Places,n, afterStmt, guard,,,)
return
if 3 name € inputs such thatiame is killed by n.stmt or proc.-call side effects
// add a new place fot, aftern’s statement
addPlace(e.nyPlaces,n, after Stmt, guard,,,)
return
if 3 name € inputs such thatiame is killed by n.®-nodes
// add a new place fot, beforen’s statement unless it isBOloop
addPlace(e.nyPlaces,n, (n.stmt is aDO)? a fterStmt : be foreStmt, guard,,,)
return
if n € Fencel DF I/ a fence merge point
for each node € pred(n) // for each CFG predecessor
call moveN,Upward(e, p, inputs, guard,,,)
else
d «— idom(n)
if (d,n) is aDOloop body entry edge // do not mowg outside of aDOloop
// add a new place fot, as the first statement of tiloop body
addPlace(e.n,Places, n, be foreStmt, guard,,,)
return
else
if ipostdom(d) # n I/ moving outside of ah F- THEN- ELSE
Il letd.stmt be anl F- THEN- ELSE with guard expressioguard,
if n is the then-branch successordof
guard,, < (guard;y A\ guard,,)
else // n is the else-branch successorlof
guard,, < (~guard;y \ guard,,)
inputSguard,, < SSA names referenced pytard;
inputs < inputs U inpul Sguard,
Il d andn are control equivalent; sameard,,, andinputs
call moveN,Upward(e, d, inputs, guard,,,)

Figure 7.29 : Upward movement of a permission notify
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we must also ensure that SSA namagiuts, used to evaluate the target image of com-
municatione.image as well as the permission notify guagdard,,,, are available at each
permission notify place. The movement starts at the cooredipg permission wait node,
which was found during the reducibility analysis stage. §herd,  expression is initially
true, which corresponds to executing the permission wait rigiet éhe corresponding per-
mission notify; hence, the initial inputs are the SSA nanféb®c.image expression (see
Figure 7.27).

If a fence is encountered, the movement stops and a new @acedted. Thélace
structure also contains the guard expression used by the gegkration stage to guard
execution of the permission notify at the nofféace.node (see Section 7.7). If one of
the SSA names necessary to perform guarded execution oéthegsion notify is killed,
the movement stops and a new permission notify place isexdedt a fence merge point
is encountered, the movement recursively proceeds into @&G predecessor. Similar to
the downward motion, SSR cannot move the permission natifyide anyDOloop (region
or not). Otherwise, the permission notify is moved into timenediate CFG dominator.

Three cases are possible. First, if we move the permissioify mutside of an
| F- THEN- ELSE along the then-branch, we must ensure that the permissitify ea-
ecutes iff the control takes the true-branch during progeaecution. Thus, we extend the
guard,, with a conjunction of theé F guard expressiopuard;;. Second, if we move the
permission notify outside of anF- THEN- EL SE else-branch, we extend theard,,, with
a conjunction of the negatéd- guard expressionguard,¢. Third, if we move the permis-
sion notify to a control-equivalent dominator, there is ®ed to change theuard,,, (and
theinputs as a consequence). Accumulation of the guard expressiamsewghat similar
to if-conversion. Each permission notify placement nodiéthe corresponding permission
notify guard defines aniquecontrol-flow path in the CFG of how execution reaches the
location of the permission wait; therefore, for each exiecudf the permission wait, there
is one and only one execution of the matching permissioriynoti

Note that SSR limits the motion of a permission notify and mptetion wait with bar-
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call barrier(cs) ! fornmer barrier
call notify(right(cs)) ! perm ssion (x)
call notify(right(cs)) ! permission (y) Redundant

call wait(left(cs)) ! perm ssion (x)
x[left(cs)] = x[left(ecs)] = ...
call notify(left(cs)) ! conpletion (x) Redundant
call wait(left(cs)) I perm ssion (y) Redundant
y[left(cs)] = ... y[left(cs)] = ..
call notify(left(cs)) ! conpletion (y)
call wait(right(cs)) ! conmpletion (x) Redundant
call wait(right(cs)) I conpletion (y)
call barrier(cs) ! forner barrier
(a) Events with the same target (b) SSR-transformed code

Figure 7.30 : Redundant point-to-point synchronizatioB8R-transformed code.

riers (fences). It does not differentiate between indigidater-image data dependencies,
but rather treats each variable as the entire memory, jusedsarrier does, and therefore, it
is a suboptimal over-approximation. However, this is sidficto optimally SSR-optimize

all CAF codes available to us that would benefit from the tiGimsation.

7.6.2 Eliminating redundant point-to-point synchronization

We present two techniques that eliminate redundant peionigs completion pairs for a
set of communication even#s such that every communication event € F, reaches a
single barriet,,s.q4.m ande is reachable by a single barrigr,,,. This is a typical case for

many scientific codes.

Eliminating redundant notify/wait for PUTs/GETs with the s ame target image

Under SSR placement for permission & completion pairs, comoation events with the
same target image that execute in the same communicatich epéined by textual barriers
baom @Ndby,siaom Might induce redundant point-to-point synchronizatiorguife 7.30 (a)

shows an example of two PUTs to the same target image, thebwign the left. Fig-

8 eft(cs) is a macro for CS_Nei ghbor(cs, 1,-1). right(cs) is a macro for
CS_Nei ghbor (cs, 1, +1)
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procedure optimize EventsWithTheSameT argetImage
for each pair of communication eventsande,, e; # e,
if e; ands, satisfy Rule | {v;' dominatesu;?)
es.upwardlySynchronizable — false
if e; ande, satisfy Rule Il @2 postdominates:')
e1.downwardlySynchronizable «— false

Figure 7.31 : Marking redundant synchronization.

ure 7.30 (b) shows SSR-transformed code, which has redupdant-to-point synchro-
nization. The permission notify; and waitw; for co-arrayx are sufficient to upwardly
synchronize the PUT fax andalso the PUT foy; therefore,ny) andwp pair is redundant
(denoted asredundant in Figure 7.30 (b)). Similarly, the? andw? pair is sufficient to
synchronize both PUTs and makes tffeandw? pair redundant (denoted @&dundant
in Figure 7.30 (b)).

In the general case, it is hard to determine when the targetsamcommunication
events are the same. We do it for analyzable group-exeeidtalni-group-executable events
whoseCS_Nei ghbor arguments are either the same constants or the same SSA.names
We now formulate two rules, generalizing the example, fadifig redundant notify/wait
pair; the algorithms are straight-forward and we do not stiewr pseudocode.

Let e; ande, be two communication events with the same target image.

Rule I. If barrier by, is the only barrier that reaches bethande, andw;' dominates
wy?, thenw;? andng? are redundantn;' andwy' are sufficient to upwardly synchronize
bothe; andes.

Rule 11. If barrier by,staom IS the only barrier that both, ande, reach anch{> post-
dominates ¢!, thenn' andwg' are redundantn? andwg? are sufficient to downwardly
synchronize botla; ande,.

Figure 7.31 shows pseudocode to make events with redungachrenization pairs
non-synchronizable, so that the following code-genenasiage (see Section 7.7.2) does

not instantiate redundant point-to-point synchronizatio
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call barrier(cs)
doi =1, 1000
conpute a using b ..
/| exchange shadow regi ons
a(:,Mr1)[left(cs)] a(:,1) ! left neighbor shadow region
a(:, O)[right(cs)] a(:,M ! right neighbor shadow region
call barrier(cs)
conpute b using a ...
/| exchange shadow regi ons
b(:,Ml)[left(cs)] = Db(:,1) ! left neighbor shadow region
b(:, O)[right(cs)] b(:,M ! right neighbor shadow regi on
call barrier(cs)
done}

Figure 7.32 : Shadow region exchange for Jacobi iteration.

Eliding redundant notify/wait for a Cartesian co-space

A symmetric nearest-neighbor exchange is a typical comaation pattern founcg.g, in
the shadow-region exchange of Jacobi iteration. Figuré shibws a visualization of the
shadow region-exchange for Jacobi iteration decomposag dhe second dimension onto
a 1D Cartesian topology with periodic boundaries (see 8ed@i4). Figure 7.32 shows
the relevant piece of pseudocode, in which each processeireathanges data with its
neighbor process images on the left and on the right.

When there is such symmetry, after SSR places permissionngplagion pairs, the
completionn./w, pair of a communication to the left (right) is similar to thermission
n,/w, pair of a communication to the right (left). Only one of théwe pairs is necessary
to correctly enforce the corresponding inter-image dafeeddencies; the other pair can be
elided. We select to elide the permission pair.

Let us consider a fragment of SSR-transformed code, showigure 7.33, for state-
mentsa(:, Mtl)[left(cs)]=a(:,1) andb(:,0)[right(cs)]=b(:,M.The
completion pair of the first PUT (foa) already enforces inter-image data dependencies
that the permission pair was inserted to enforce for therse8WT (forb); therefore, the

permission pair fob(:, 0)[ri ght(cs)]=b(:, M is not necessary.
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a(:, ML) [left(cs)] =a(:,1) ! left neighbor shadow regi on
call notify(left(cs)) I conpl etion
call wait(right(cs)) I conpl etion

I former barrier
call notify(left(cs)) I perm ssion

call wait(right(cs)) I perm ssion
b(:, O)[right(cs)] =Db(:,M ! right neighbor shadow region

Figure 7.33 : A fragment of SSR-generated code for Jacohishaegion exchange.

Figure 7.34 (a) shows the SSR-transformed Jacobi shadgiarreexchange code,
in which each communication epoch is optimized indepengdram the others. Fig-
ure 7.34 (b) shows optimized code where epochs are optirtogether; it has half as much
of the original synchronization, as the other half was reeabicrossed out statements) due
to the symmetry. The barrier before the loop is necessarpwardly synchronize com-
munication events inside the loop that are reachable frenoibp entry (since we removed
the permission pairs); the overhead of the barrier befagddbp is minimal compared to
that of redundant point-to-point synchronization of unimized code in the loop. We also
optimize epochs “wrapped” around the loop back-edge. EiguB5 (b) shows why each
synchronization event was removed by SSR. Note that if waietted completion pairs
instead of permission pairs, we would insert the barrieardfie loop.

We optimize the case when each communication event is rbkchg a single barrier
and reaches a single barrier. liebe the barrie¥ separating two communication epochs.
The epoctepoch, precede9; the epochepoch, succeeds. Figure 7.36 shows high-level
pseudocode for the elision of permission pairs. &bt a communication event ipoch,

used to upwardly synchronize variabde We try to movee’s permission notify upward,

9 can correspond t®rebody Fence and Postbody Fence fencesij.e,, it is “wrapped” around &0 loop

back-edge.
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I fence call barrier(cs)

doi=1, 1000 doi=1,1000
I fence I fence
call notify(right(cs))  1nat-M cal-rotifyrightes)—mul D)
call notify(left(cs))  1naC? cat-notiflefiies))—tnal

... computey usingb ...
I exchange shadow regions

call wait(left(cs)) LoD
a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs))  !noG:M+D
call wait(right(cs)) w2
a(:,0)[right(cs)] = a(:,M)

call notify(right(cs))  !1n2¢?

... computes usingb ...

I exchange shadow regions
' oM 1)

a(;,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) 2 M+D)
YA a(:,0)

a(:,0)[right(cs)] = a(:;,M)

call notify(right(cs)) !ne¢?

call wait(right(cs)) ~ twe™* Y call wait(right(cs)) ~ lw2tM )
call wait(left(cs)) 10 call wait(left(cs)) 120

! fence ! fence

call notify(right(cs))  n5C* ) L DM D)
call notify(left(cs))  !n20) salinetifydefesy— Lol

... compute usinga ...
I exchange shadow regions

call wait(left(cs)) Ll
b(:,M+1)[left(cs)] = b(:,1)

call notify(left(cs))  1n2GM+D
call wait(right(cs)) !w,f;(:"))
b(:,0)[right(cs)] = b(:,M)

call notify(right(cs))  n2¢%

... compute usinga ...

I exchange shadow regions
. b(:,M+1)

b(: M+1)[left(cs)] = b 1)

call notify(left(cs)) | p2GM+D)
e L DC.0)

b(:,0)[right(cs)] = b(:,M)

call notify(right(cs))  1n2¢?

call wait(right(cs)) ~ tuwr ™Y call wait(right(cs)) ~ tw2¢M
call wait(left(cs) ~ lwe” call wait(left(cs)) 1wl
! fence I fence

done done

(a) SSR-transformed code (b) After synchronization elision

Figure 7.34 . SSR-reduced Jacobi iteration shadow regiohasge.

beyondb into epoch, perhaps, wrapping around tB®loop back-edge. If we find an event
e that is control equivalent with ande;’s completion notify has the same target image as
e’'s permission notify, them’s permission pair is redundant. While moviag permission
notify earlier in the execution, we check thatis not accessed betweeps completion
notify andb. If this is not the case, such an access creates a poterigalinmage data

dependence that is not downwardly synchronized with completion pair; thusg’s per-
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I fence call barrier(cs)
doi=1,1000 doi=1, 1000
! fence ! fence
call notify(right(cs))  1nat-M I natM+Y alided: covered by2(+?)
b(:,M+1)

call notify(left(cs))  1naC?
... computey usingb ...

I exchange shadow regions
call wait(left(cs)) LoD
a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs))  !noG:M+D
call wait(right(cs)) w2
a(:,0)[right(cs)] = a(:,M)

1 nat9 elided: covered by
... compute usingb ...

I exchange shadow regions
w2&MHD elided: covered by??)
a(:,M+1)[left(cs)] = a(:,1)

call notify(left(cs)) ~ !noGM+D

1 w0 elided: covered by
a(:,0)[right(cs)] = a(:;,M)

call notify(right(cs))  !n¢"” call notify(right(cs))  !n2¢%

call wait(right(cs)) ~ twet MY call wait(right(cs)) ~ lwsM Y
call wait(left(cs)) 10 call wait(left(cs)) 120

! fence ! fence

call notify(right(cs))  !ny" | nbCMHD elided: covered byt
call notify(left(cs))  !ny " | G0 glided: covered byd(M+D

... compute usinga ...

I exchange shadow regions

call wait(left(cs)) Ll
b(:,M+1)[left(cs)] = b(:,1)

... compute usinga ...

I exchange shadow regions

I wg(hM‘H) a(:,0)

elided: covered by,
b(:;,M+1)[left(cs)] = b(:,1)

call notify(left(cs)) ~ !ne " call notify(left(cs))  !nlCM+D
call wait(right(cs))  lwb” 1 wb0) elided: covered byy2 M)
b(:,0)[right(cs)] = b(:,M) b(:,0)[right(cs)] = b(:,M)
call notify(right(cs))  tn¢™® call notify(right(cs))  1n2*
call wait(right(cs))  twp M call wait(right(cs)) w2
call wait(left(cs) ~ lwe” call wait(left(cs)) 1wl
! fence ! fence

done done

(a) SSR-transformed code (b) After synchronization elision

Figure 7.35 : SSR-reduced Jacobi iteration shadow regiohamge: explanation for the
synchronization elision.

mission pair must be used to synchronize the dependencé, @athot be removed. The
implementation is straightforward using the information the permission & completion
pair placement. After this optimization, each upwardly dymnizable event that was
optimized is made upwardly non-synchronizablewardlySynchronizable = false)

to avoid generating the redundant permission pair. SSRneeldawith this strategy re-
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procedure elideSynchronization Pairs

for each event such that there is only ong, Place andn,, Place.guard,,, = true
Il let e.image™' denote Cartesian inversion @6 target image expressienmage
Il try to find a “covering” completion notify by moving pernsi®n notify upward
n « nyPlace.node
wrapped «— false
while true
if any input ofe.image is defined inn  // cannot mover, earlier in execution
break
if n contains a completion notify for eveat such thak,.image = e.image™!
ande;.n.Place.node andn,Place.node are control equivalent
// found a “covering” completion pair: elidés permission pair
e.upwardlySynchronizable +— false
if wrapped = true [/ wrapped around BOloop back edge
makeR.preloopFence a real barrier
break

if e's co-array variable is accessedirstmt // potential inter-image dependence

break
if n is the prebody fence node. Prebody Fence of aDOloop regionRR
I/l wrap around the back edge
n «— R.postbody Fence's node
wrapped «— true
continue
d < idom(n)
if d is not control equivalentte // coming from within control flow
break
n < d /I move upward to the immediate dominator
if n = n,Place.node [/ already visited the node
break

Figure 7.36 : Eliding redundant permission pairs for a Gaate co-space.

moves redundant permission pairs in the Jacobi iteratiorthat the performance of an

SSR-optimized version matches that of hand-optimized ¢bdeuses manually placed

point-to-point synchronization.
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7.7 Code generation

The information collected in the previous stages of SSR rbeshstantiated, which pro-
duces a faster code with better synchronization. We firstrdes synchronization primi-
tives used by SSR.

7.7.1 Synchronization primitives for SSR

SSR should not use CAFisot i fy andwai t point-to-point synchronization primitives,
because the programmer may use them to synchronize theaprpgitis might interfere
with the compiler-generated code. Instead, SSR useN(tbhs, q) andWcs, r) prim-
itives, which are similar tamot i f y andwai t , to replace all textual barriers of co-space
cs.N(cs, q) andWcs, r) are notvisible to the programmer and their state is private t
the co-spaces, which allows the compiler to freely mix CAF’s primitives a&ll asN'W

of other co-spacedN( cs, q) andW cs, r) can only be executed by membersaf, and
the target imageg andr must be members afs.

The implementation o/Wis similar to that olnot i f y andwai t pairwisecounters.
There are two possibilities. The first option is to maintdie tull set of pairwise counters,
one for each pair of images. This results(MP) space usage per each co-space image,
whereP is the size of the co-space group. Thus, this option is féasip medium-scale
parallel architectures, but might not be feasible for lesgale clusters, for which maintain-
ing the entire set of pairwise counters may result in high wrgrspace overhead. As of
this writing, caf ¢ runtime implementation maintains the entire set of paievagunters.

The second option is based on the observation that mosttificie@des communi-
cate only with a relatively small subset of neighbors. Tipastwise synchronization state
should be created on-demand during execution, only whenirtvagies synchronize the
first time for the co-space. This is similar to the processstélgishing a connection for a
multi-version variable; see Section 8.3. When imag®aits/notifies imagej, their pair-
wise synchronization state is established on Ipoéimdq, e.g, by using an Active Message

(AM). Each pairwise counter state ¢3(1); more preciselyp’s state withg has three in-
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tegers to track how many notifigssent tog, how many notifies received fromy, and
how many notifies, received frop) p consumed. Because the counter is pairwise, an im-
plementation can use the RDMA PUT operation to update thetewalue of received
notifications. The total space requirement on imade O(N), whereN is the number

of neighbors with whictp synchronizes during execution. Since scientific codesllysua
synchronize many times with the same neighbors, the ovdrbieastablishing a synchro-
nization state is amortized. This option makes 3¥Rprimitive implementation feasible
for a large-scale parallel architecture.

Note that eventcounts [99] could potentially be used for S@ithronization; however,
the abstraction of eventcount is more general becauseateweages can increment an
event count. Therefore, an implementation would use an AMefch synchronization
event unless the network hardware supports an atomic reimo&ment operation. The
proposed pairwise scheme relies on the fact that only ongencan update the remote
counter state. Therefore, the state of the counter is knawboth target and origin images
of synchronization, and the origin image can use RDMA PUTictis available on most
interconnects, to update the target image’s number ofwedeiotifies. This would result
in a potentially more efficien/Wsynchronization than an AM-based synchronization via
eventcounts.

N/Ware basic primitives. In addition, SSR uses Mg gs primitive to notify sev-
eral origin images of., and theWor gs primitive to wait for several origin images af..
Nor gs(cs, args) andWr gs(cs, ar gs), used to execute, andw,. of a communi-
cation event, take the arguments of the co-sp&® Nei ghbor ( cs, ar gs) function,
which ise’s target image expressienimage. Knowing these argumentblpr gs/\Wor gs
implementation can determine the origin(s) of communisa(see Section 6.4) and use

N'Wto perform notify/wait for each origin image.
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7.7.2 Code transformation

Figure 7.37 shows high-level pseudocode for SSR code gemerdmplementation spe-
cific details are not shown. Code generation relies on theHhatnotify/wait statements are
group-executable, the run-time layer handles guards (set08 6.4), and the co-space ob-
ject contains distributed knowledge about the commurocabpology. For each upwardly
synchronizable communication eventwe generatey, statement for each’s n, place
place. If place.guard,,, expression is not symbolically equal td r ue. , we generate an
| F- THEN statement to guard the execution of fder gs call, which notifies all origin
images of. Then we insert a call tdvin thee.w, Place.node to wait for a permissiony,)
from the target image to access data. The generated callssaréed either before or after
place.node.stmt according to the value of th@ace.whereTolnsert field.

For each downwardly synchronizable eventwe first capture the values of the
e.image's CS_Nei ghbor function arguments in compiler-generated variabless at the
place ofw, (e.w,Place.node, notn.); the arguments are guaranteed to be available there
for both group-executable and non-group-executable swsnthew, placement algorithm
(see Section 7.5.1). We insert a callNan the e.n.Place.node to indicate the completion
of the data access.() to the target image. Then, we generate a guard varigiheard
to match the executions aof. andw,.S. wiGuard is initialized to. f al se. at procedure
entry. Its value becomest r ue. via the assignment statementdm,.Place.node iff n,
executes . To execute only one, we generate ahF- THEN statement that reset8Guard
to. f al se. and execute®or gs call to wait for all origin images oé. It is necessary to
resetwSGuard because an execution can reach severgllaces; in this respectiGuard
performs the same role as thgguards.

Finally, all reducible barriers are removed from the codeote\that some barriers
(aroundDO loops or at procedure entry/exit) might be inserted durieducibility anal-

ysis.
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procedure generateCode
for each communication eveat
if e.upwardlySynchronizable
Il generate permission notifiegs
for eachplace € e.n,Places
args < arguments oé.zmage CS_Nei ghbor function
stmt «"call Norgs(cs,args)”
if place.guard,,, eXpressiont .true.
stmt «"if (place.guard,,) then stmt endif”
insertstmt in place.node
/I generate permission wait,
stmt «"“call W(cs,e.image)
insertstmt in e.w, Place.node

if e.downwardlySynchronizable
generate variableg gs to storec.image’s CS_Nei ghbor arguments
assignurgs in e.w, Place.node I/ they may not be available inn.Place.node
/I generate completion notify..
stmt «"call N(cs,CS_Neighbor(cs,args))”
insertstmt in e.n.Place.node
/I generate completion waits.s
generate a guard variabiGuard for e's w..
insert statementW®Guard = .false.” at procedure entry
insert statementitGuard = .true.” in e.n.Place.node
for eachplace € e.w.Places
stmt «"“if (wSGuard) then
weGuard = .false.
call Worgs(cs,args)
endif”
insertstmt in place.node

/I remove reducible barriers
for each barrieb
if b.reducible
deleteb.node.stmt from the program

Figure 7.37 : Code generation.
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7.7.3 Generation of non-blocking PUTs

The task of generating non-blocking PUTSs is orthogonal t& $8d should be a part of
caf c’s alternative code generation strategy described on Pagettich is not yet sup-
ported. We implemented prototype support for non-bloclily's generation so that SSR
delivers the performance of hand-optimized codes that osebtocking PUT directives
described in Section 3.1.

In our experiments, each remote access is a co-array taap-@pyA, whichcaf c
optimizes not to use a temporary for the right hand side (RHS)discussed in Sec-
tion 4.1.8. To make such a PUT non-blocking, SSR checks tleaSiSA name ofd’s
RHS is not redefined before the epoch closing barrier(s)hi$f is the case, it is safe to
make PUT non-blocking and communicate data in-place.

Sincecaf ¢ does not yet have full support for non-blocking PUTs, we iempénted
limited support as part of SSR only for the case in which eddh 8 reachable by only
one barrie; and reaches only one barrigr, and all PUTs of the epoch can be made non-
blocking; when full support for non-blocking PUTSs is availle, this functionality should
be removed from SSR. Then, we insert thgen_nb_put _r egi on directive atb; and
the cl ose_nb_put _r egi on directive, followed by theconpl et e_nb_put _r egi on
directive ath, to instruct the run-time to issue non-blocking PUTSs insteblocking (see

Section 3.1). All such PUTs are completed-at

7.8 Experimental evaluation

We extended af ¢ with prototype support for group, Cartesian, and graphpasss, com-
munication analysis, and SSR. As of this writim@f ¢ does not support interprocedural
analysis or automatic procedure inlining. Global and groapiers are implemented using
MPI barriers.

We tested the effectiveness of the SSR algorithm for Jatetaition and the NAS MG

and CG benchmarks, described in Section 3.4. We performedxmeriments on an Ita-
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nium2 cluster with a Myrinet 2000 interconnect (RTC) ddsed in Section 3.3.

We modified the benchmarks to use co-spaces and textualace-g@rriers. We de-
note these versions as XXX-CAF-BARRIER, where the XXX- ptefiands for Jacobi-,
MG-, or CG-. The communication subroutines in the NAS MG ai@l i&nchmarks were
annotated with thé ocal andsynch_cont ext (c¢s) hints to compensate faraf c’s
lack of interprocedural analysis. SSR-optimized versminsXX-CAF-BARRIER are de-
noted as XXX-CAF-SSR. We compare the performance and stigtath XXX-CAF-SSR
versions with our fastest hand-optimized versions (XXXFHAAND), original MPI ver-
sions (XXX-MPI), and two barrier-based versions: XXX-CAARRIER and XXX-CAF-
GLOB-BARR. XXX-CAF-GLOB-BARR uses global barriers for sgironization rather
than co-space barriers. All versions of each benchmark treseame local computation
and differ only in communication and synchronization.

In summary, our experiments show that SSR-optimized vessdeliver the perfor-
mance of hand-optimized CAF versions and roughly the saua ¢&¢ performance as that
of MPI versions. In comparison to barrier-based versiohs, 3SR-optimized versions
show noticeably better scalability and deliver higher parfance for executions on a large

number of processors.

7.8.1 Jacobi iteration

We studied Jacobi iteration decomposed onto a 2D Cartes@regsor grid with peri-
odic boundaries. Compared with the original CAF versiomaga 2D Cartesian co-space
slightly simplified Jacobi-CAF-BARRIER because the Cadesabstraction logic is hid-
deninside the run-time layer. The programmer just spe@aeameters to theS_Cr eat e
call, while in the original CAF version, the programmer hagxplicitly code the decom-
position logic.

The Jacobi-CAF-SSR version has synchronization that iostindentical to that of
Jacobi-CAF-HAND version. The only difference is that SSReirts a barrier before the
time-step loop, as explained in Section 7.6.2 (see Figuig$ (b) and 7.35 (b)). This
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Problem size 32 64

10242 11.42%| 16.31%

20482 6.13%| 12.22%
40962 2.00%| 4.38%
81922 1.17%| 2.15%
163842 1.16%| 1.11%

Table 7.1 : Performance improvement of Jacobi-CAF-SSR dseobi-CAF-BARRIER
for 32- and 64-processor executions.

barrier contributes to the program execution time insigaifily, and the performance of
Jacobi-CAF-SSR and Jacobi-CAF-HAND versions is virtudtly same.

Table 7.1 shows the run-time improvement of the Jacobi-G&R version over the
Jacobi-CAF-BARRIER version of different problem sizes 8#- and 64-processor ex-
ecutions. As expected, smaller problems benefit more fromgusster point-to-point
synchronization because the ratio of synchronization toneomputation time is higher.
The performance gain is larger for 64-processor executi@rause point-to-point syn-
chronization is asymptotically more efficient than barbased synchronization and scales

much better.

7.8.2 NAS MG

NAS MG performs computation on several distributed hidrenal grids (see Section 3.4);
each grid is identified via a level. The number of processsigasd to each grid depends
on the problem size and the total number of procesdgnshich is always a power of two.
NAS MG might decrease the number of processors assignedrtpute on a coarser grid
to increase the computation to communication ratio in thelé&oexchange onmnB sub-
routine. Each grid is decomposed onto a Cartesian comntiondapology with periodic

boundaries. The topology can be 1D, 2D, or 3D depending onuh#er of processors.
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subrouti ne cormB(u, n1, n2,n3, 1 evel, cs)
! nodul es and i ncl udes
integer nl, n2, n3, level, axis
doubl e precision :: u(nl,n2,n3)
type(Cartesian) cs ! co-space

call synch_context(cs)

if (CS_IsMenber(cs)) then I singl e-val ued
if (num.inmages() .ne. 1) then ! singl e-val ued guard
do axis =1, 3 ! single-val ued range

call barrier(cs)
... ! pack data into buffM1:buff_len,1)
buf f M 1: buff _| en, 2) [ CS_Nei ghbor (cs, axi s, -1)]
... ! pack data into buffP(1:buff_len,1)
buf f P(1: buff_| en, 2) [ CS_Nei ghbor (cs, axi s, +1) ]
call barrier(cs)
. | unpack data from buffM1: buff_len, 2)
. ! unpack data from buffP(1: buff_Ien,2)
end do
el se
do axis =1, 3
call commlp(axis,u,nl, n2,n3,level) ! comfree subroutine
end do
endi f
el se
call zero3(u,nl, n2,n3)
endi f
call synch_context(cs)
end subroutine commB

buf f M 1: buff _l en, 1)

buf f P(1: buf f_I en, 1)

Figure 7.38 : NAS MG onmB boundary exchange subroutine for the MG-CAF-BARRIER
version.

In this implementation, a coarser grid has a lower level neinhe topology of the
coarser grid at level is either the same as or “nested” in the topology of the next fin
grid at level(/ + 1). For example, the 3D decomposition onto 16 imageis<gx2 for the
level-two (and higher) grid an?2lx2x 2 for the level-one grid. All 16 processors compute
on the finer level-two grid; however, only the even-numbgreatessors (total 8) along
dimension X compute on the coarser level-one grid. Figu4® {disregarding arrows for
the moment) shows one of two XY-planes of the images’ topplog the level-two grid;
in this diagram, darker circles correspond to the processctive in the images’ topology
for level one. In other words, the topology of images actiggart of the coarser grid at
levell along axisa may be every other image alongf the encompassing topology of the
finer grid level(l 4+ 1). In the original MPI version, the topologies are represénia the

nbr (a, d, | ) array of neighbors, where= 1, 2, 3 is the axisd = —1, 1 is the direction,
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subrouti ne commB_ex(u, nl,n2,n3, I evel, cs)
! nodul es and i ncl udes
integer nl, n2, n3, level, axis
doubl e precision :: u(nl,n2,n3)
type(Cartesian) cs ! co-space

call synch_context(cs)

if (num.inages() .ne. 1) then ! singl e-val ued guard
if (single(cs,level) .le. single(cs,max_ex_l)) then ! single-valued guard
if (CS_IsMenber(cs)) then I singl e-val ued
do axis =1, 3 ! singl e-val ued range
if (single(cs,do_ex(axis,level))) then ! singl e-val ued
call barrier(cs)
if (give_ex(axis,level)) then ! non-singl e-val ued

! pack data into buffM1:buff_len,1)
buf f M 1: buf f _I| en, 2) [ CS_Nei ghbor (cs, axis,-1)] = buff M 1: buff_len, 1)
... ! pack data into buffP(1:buff_len,1)
buf f P(1: buf f _I| en, 2) [ CS_Nei ghbor (cs, axi s, +1)] = buffP(1: buff_l en, 1)

endi f
call barrier(cs)
if (take_ex(axis,level)) then ! non-singl e-val ued
I unpack data from buffM1: buff_|en, 2)
I unpack data from buffP(1: buff_Ien,2)
endi f
end if
enddo
end if
end if
el se
do axis =1, 3
call commlp_ex(axis,u,nl,n2,n3, level) ! comfree subroutine
end do
endi f

call synch_context(cs)
end subroutine commB_ex

Figure 7.39 : NAS MG ommB_ex inter-image extrapolation subroutine for the MG-CAF-
BARRIER version.

and! is the level number. Thdead( | ) array specifies whether the image in involved in
computation on the grid at level

There are two types of communication in NAS MG: a boundaryharge and an
inter-processor extrapolation/interpolation betweea adjacent grid levels. To exchange
boundaries at level, each image of level topology executes theomrmB subroutine.
commB exchanges cell boundaries with up to six spatial neighb®fee inter-processor
extrapolation subroutineomB_ex communicates data between images of two adjacent
grid levels if their communication topologies aretidentical; Figure 7.40 provides a visu-

alization of this communication pattern along axis X for NM& on 16 processors (only
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Figure 7.40 : One XY-plane of inter-processor extrapotatommunication from coarser
grid (level one) to finer grid (level two) in NAS MG on 16 prosess.

one XY-plane shown). Letax_ex_lev be the maximum level for which MG performs
the extrapolation step because the topologies of theskslawe different; this is a single
value. An extrapolation communication is performed by alhges of the leve{l + 1)
topology. If the level topology has two-times fewer images along axithe members of
levell send data to both theiraxis neighbors in levell + 1) topology, which receive the
data (see Figure 7.40 for an example). The described twemsidmmunication is guarded
by gi ve_ex andt ake_ex arrays in the original MPI version. So as not to execute the
barrier unless there is communicatiorciormB_ex, we augmented the barrier-based ver-
sion with thedo_ex( a, | ) single-valued array that determines whether the extréipala
communication is necessary for axisn levell.

The MG-MPI version uses two-sided send/receive commupitathere partner im-
ages are determined by tiddr array. Thegi ve_ex, andt ake_ex arrays determine
which images participate in an extrapolation step.

The MG-CAF-HAND version is similar to MG-MPI. It utilizes & samenbr,
gi ve_ex andt ake_ex arrays, but uses one-sided PUTs to move datananid f y and
wai t , guarded by thgi ve_ex andt ake_ex arrays in the extrapolation step, for syn-

chronization.
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Figure 7.41 . NAS MG class A on an Itanium2 cluster with a Mgti@000 interconnect.

MG-CAF-BARRIER declares an array of Cartesian co-spas€d ) , one co-spaces;
per levell, which are created at the beginning of the program. Eactpaoess; mimics
the information of thenbr (a, d, | ) array for levell. MG-CAF-BARRIER uses textual
co-space barriers and the co-spasMenber (cs) function (instead of thelead( | )
array) to determine whether the image is a memberspf The cormB_ex subroutine,
shown in Figure 7.39, also usgsve_ex andt ake_ex arrays to guard communication.

MG-CAF-GLOB-BARR is similar to MG-CAF-BARRIER, but usesaflal barrier for
synchronization rather than a co-space batrrier.

MG-CAF-SSR is the MG-CAF-BARRIER version optimized by SSRe SSR opti-
mization applied t@ onmB andcomB_ex reduces barriers to point-to-point synchroniza-
tion. commB is shown in Figure 7.38. Its synchronization is optimallgueed to that

of the MG-CAF-HAND version. However, thgi ve_ex array guarding communication
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Figure 7.42 : NAS MG class B on an Itanium2 cluster with a MgtiA000 interconnect.

in the extrapolation subroutineormB_ex (see Figure 7.39) is not single-valued. Thus,
SSR placesy, andn,. outside of the correspondirig-- THEN statement. This results in
extra notification messages because not all images comatanitn contrast, MG-CAF-
HAND uses the optimal number of notification messages bectnesprogrammer knows
thatgi ve_ex andt ake_ex arrays guard two-sided communication and can be used to
precisely guardhot i f y andwai t . SSR does not have this knowledge and must place
andn. around the f (gi ve_ex(axis, | evel )) statement. This induces one extra
notification message per imagewf, ;, totaling two times more synchronization messages
vs. the hand-coded optimal solution. However, this inczed®es not cause performance
degradation because extra notifications do not contriloutieet critical path.

It is possible to make SSR use the optimal number of notiboatfor this example in

two ways. First, an additional set of graph co-spaces carsée 1o express the extrapola-
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Figure 7.43 : NAS MG class C on an Itanium2 cluster with a MgtiR000 interconnect.

tion communication patters. Secorgl,ve3_ex(axi s, | evel ) can be expressed with
the co-spac€S.i sMenber functions ofcs; andcs;,1; however, this requires extending
SSR with a special-case analysis and multi-version codergéaon (for the case when
csi & CSit1)-

The parallel efficiency of NAS MG is shown in Figures 7.41,%7 .dnd 7.43 for classes
A (256° size, 4 iterations), B266° size, 20 iterations), and G12° size, 20 iterations),
respectively. The performance of MG-MPI is slightly befi@r smaller problem sizes and
somewhat worse for a larger, class C problem. The performahMG-CAF-HAND and
MG-CAF-SSR is roughly the same despite extra synchromzanessages in the extrap-
olation step. MG-CAF-GLOB-BARR slightly outperforms MGAE-BARRIER, which is
somewhat surprising because the former uses MPI globaébgrwhile the latter uses MPI

group barriers that synchronize fewer process images.pkag that the MPI developers
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subroutine transpose_exchange(w, v, send_start, exch_recv_| ength)
! nodul es and incl udes
doubl e precision w(na/ num proc_rows+2)
doubl e precision v(na/ num proc_rows+2) [ *]
integer send_start, exch_recv_|ength
integer j

call synch_context(cs)
call barrier(cs)

if (single(cs,|2npcols) .ne. 0) then I I 2npcol s is single-val ued
v(1l:exch_recv_l ength)[CS_Neighbor(cs,1)] = &
w(send_start:send_start+exch_recv_| ength-1)
el se
do j =1, exch_recv_length
v(j) =wij)
enddo
endi f

call barrier(cs)
call synch_context(cs)
end subroutine transpose_exchange

Figure 7.44 : Exchange with the transpose image in CG-CARRHKR version.

subroutine scal ar_sum reduction(var)
! nmodul es and i ncl udes
doubl e precision var
doubl e precision, save :: buf[*]
integer i

call synch_context(cs)

do i =1, single(cs,!|2npcols) ! | 2npcol s is single-val ued
call barrier(cs)
buf [ CS_Nei ghbor (cs, i +1)] = var I (i+1) to skip the exchange_proc

call barrier(cs)
var = var + buf
enddo
call synch_context(cs)
end subroutine scal ar_sumreduction

Figure 7.45 : Group scalar sum reduction for CG-CAF-BARRN&Rsion.

optimized the more commonly used global barrier better thargroup barrier. Compared
to the faster barrier-based version, MG-CAF-SSR outperédViG-CAF-GLOB-BARR by

18% for classes A and B, and by 7% for class C on 64 processors.

7.8.3 NASCG

The NAS CG benchmark has a rather complex communicatioarpatthe processors are

partitioned into groups that perform several types of suducgons among the members
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Figure 7.46 : NAS CG class A on an Itanium2 cluster with a MgtiB000 interconnect.

of the group. In addition, each image might communicate With(transpose) exchange
image of another group. The CG-MPI version usesrtbduce_exch_pr oc array and
exch_pr oc scalar variables to represent the communication neighboisend/receive.
The CG-CAF-HAND version mimics the MPI two-sided communica by using PUTs
and point-to-point synchronization. The CAF-CG-BARRIE&structs a graph co-space
to encapsulate the information of theduce_exch_proc andexch_pr oc variables,
exposing ittacaf c. Figure 7.44 shows the code for the processor exchange.ld stan
reduction subroutine is shown in Figure 7.45. With the héghesynch_cont ext (cs)
hints, SSR optimizes the synchronization of all NAS CG comimation subroutines to that
of the optimal hand-optimized version.

The parallel efficiency of NAS CG is shown in Figures 7.46,77ahd 7.48 for classes A
(14000 size, 15 iterations), B (75000 size, 75 iteratioasyl, C (150000 size, 75 iterations),
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Figure 7.47 . NAS CG class B on an Itanium2 cluster with a Mgtri2000 interconnect.

respectively. CG-MPI scales better than the optimized CAFsions for class A because
MPI uses the eager protocol with implicit buffering (see @iea 8). It shows slightly
inferior performance for larger class B and C problem si&&R optimizes the CG-CAF-
BARRIER version into CG-CAF-SSR that has the same poirgetiot synchronization as
that of the optimal hand-optimized CG-CAF-HAND version.tB&G-CAF-SSR and CG-
CAF-HAND versions demonstrate the same performance arialsiity.

Co-space barriers in CG-CAF-BARRIER are global barriersabse the CG graph
co-space includes all process images. As a consequencpettoemance of CG-CAF-
BARRIER and CG-CAF-GLOB-BARR is the same. The SSR optiniiraboosts the
performance of CG-CAF-BARRIER by 51% for class A, 28% forssld, and 19% for

class C on 64 processors compared to the non-optimized CEGEMRRIER version.
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Figure 7.48 : NAS CG class C on an Itanium2 cluster with a Mstr2000 interconnect.

7.9 Discussion

The main contribution of Chapters 5, 6, and 7 is the novelreldgy that makes com-
munication analysis of explicitly-parallel CAF programesgible via a combination of
co-spaces, textual co-space barriers, and co-space salgks. We identified a subset of
this problem that covers nearest-neighbor codes, whidiodeca large class of scientific
applications. We devised the procedure-scope SSR tranafmn that analyzes and opti-
mizes communication patterns typically found in real stifencodes. We extendedaf c
with a prototype support for SSR. Our experiments demotestinat SSR-optimized codes
show significant performance improvement and better siéyathan their barrier-based
counterparts; in fact, SSR-optimized versions achievepdréormance level of their best

hand-optimized CAF and MPI counterparts. In our experiméot 64-processor execu-
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tions, SSR-optimized codes show performance improvenwnip to 16.3% for Jacobi
iteration, up to 18% for NAS MG, and up to 51% for NAS CG.

In the future, it would be interesting to consider severahpising research directions:

1. Interprocedural analysis for SSR.The main shortcoming of procedure-scope SSR
is the need forsynch_cont ext (cs) directives to increase SSR scope beyond
one procedure. There are two ways to address this limitatforst, SSR can use
procedure inlining; however, inlining is not possible facursive procedures and
might produce a scope with several co-spaces. Secondpriotedural SSR could
analyze whether unsynchronized communication (PUTs/GEBY reach an invo-
cation of a procedure or unsynchronized communication nmagrge after an in-
vocation of a procedure (unsynchronized PUTS/GETs may reach the end)of
Essentially, the interprocedural SSR analyze would cotlezinformation conveyed
to the procedure-scope SSR \#@gnch_cont ext () directives placed at proce-
dure entry/exit. In addition, interprocedural analysiswdoreduce the need for
si ngl e(cs, exp) coercion operators because some single values can besthferr

from the scope surrounding a procedure invocation.

2. Unstructured control flow. We have not observed scientific codes that use unstruc-
tured control flow for communication; however, extendindR38 support arbitrary
control flow may increase its applicability. A few modificatis to the presented
SSR version will enable support of unstructured control fldwirst, SSR should
use constraints-based inference of co-space single vahagegroup-executable state-
ments similar to the analysis presented by Aike¢ml. [6]. Second, loops should be
identified as strongly connected components (SC@g)andn. placement as well

asn, andw, movement should be limited by SCC’s entry and exit nodes.

3. Hoisting and vectorization of notify/wait. It is possible to extend our SSR algo-
rithm to perform hoisting of the permission and/or comletpairs for a PUT/GET

executed inside a loop that does not contain a barrier, ifraemts of the PUT/GET'’s
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target image expression are loop invariants. The algorittrdetermining the initial
placement of permission wait and completion notify in Fegur21 is a good can-
didate for such an extension. Hoisting would reduce the amnouSSR-generated
point-to-point synchronization for such PUTs/GETs. Adiitlly, SSR can be ex-
tended to perform vectorization of the permission notifd @empletion wait for a
PUT/GET inside a loop that does not execute a barrier, if th€/BET'’s image ex-
pression arguments are vectorizable. This would providenfare local computation
to overlap permission and completion notifies with. Becaumsénave not observed
opportunities for these optimizations in existing codes, did not pursue further

investigation.

. Optimization of the communication primitive. Our SSR algorithm does not
change the communication primitive, but it might be benafito do so. After
SSR analysis, it is possible to use two-sided communicaironitives, e.g, non-
blocking send/receive, to implement communication; thplementation of these
primitives can use additional memory to perform bufferieghancing asynchrony
tolerance and improving performance (see Chapter 8 for a&nmwolved related
discussion). Two-sided communication enables comp#ésed packing/unpacking
of strided communication; this would be the best way to aehgeak efficiency of
strided data transfers. In some cases, SSR could convers GEITPUTSs (or vice
versa), which has two benefits. First, architectures withVRRDsupport for PUT,
but without RDMA support for GET, would utilize the intercoect hardware more
efficiently for codes that use PUTs. Second, push-style @@ddmmunication is
usually more efficient than pull-style (GETs) communicatio PGAS languages be-
cause GET exposes communication latency (unless it is g@drby the compiler,
which is hard).

. Analysis and optimization of other communication patterns It is possi-

ble to detect and optimize other communication patterns @naalyzable group-



196

executable/non-group-executable PUTS/GETs. Exampldeest patterns (see Sec-
tion 6.4) include language-level implementation of nae@uction or broadcast, bor-

der exchange in generalized block distribution, and fingkenent codes.

An open question. We do not yet know how to analyze scopes that use communi-
cation/synchronization for several co-spaces. Thoughave ot seen several co-spaces
used in one scope, such analysis would benefit codes that dbowcodes to motivate

this optimization, we do not think it is worth exploring.
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Chapter 8

Multi-version Variables

Many parallel applications send streams of values betwearepses. Processes that pro-
duce values are known as producers; ones that consume @a®i&BOWN as consumers.
We refer to such a communication pattern as producer-cosaommunication. Scien-
tific producer-consumer codes are, for example, wavefrppli@tions such as the ASCI
Sweep3D benchmark, line-sweep applications such as the BIA&d SP benchmarks,
and loosely-synchronous applications.

A successful parallel programming model must provide a enom@nt way to express
common communication patterns such as producer-consurdeiediver high performance
at the same time. The two-sided nature of producer-conscom@munication is easy to ex-
press using the message-passing primitives send andeebédssage-passing implemen-
tations of producer-consumer also achieve good performapartitioned Global Address
Space (PGAS) languages employ the SPMD programming styteamie-sided commu-
nication to read and write shared data. To achieve high padoce producer-consumer
communication on clusters, programmers have to expliotinage multiple communi-
cation buffers, pipeline point-to-point synchronizati@nd use non-blocking communi-
cation [32]. In essence, PGAS languages are ill-suited fiozient producer-consumer
communication, especially for distributed memory arattitees.

We first motivate the need for better producer-consumer conication support in
CAF. Next, we briefly summarize a study that we performedherASCIl Sweep3D bench-
mark, a parallel wavefront application, to gain a deepereustanding of programmability
and performance issues that arise with producer-consuat&rps using one-sided com-

munication. Then, we present the concept of multi-versiamables (MVVs) — a solu-
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producer consumer

produce consume
value; value, ,
send

: receive
send done :
receive done

transfer value;
and synchronize

produce consume
value,,, value;

time

Figure 8.1 : Producer-consumer in MPI using the two-sided send receive primitives.

tion we devised to simplify development of high performapoeducer-consumer codes in
CAF. Finally, we present an experimental evaluation thadists the utility of MVVs for
Sweep3D and the NAS BT and SP benchmarks.

8.1 Motivation

The Message Passing Interface (MPI) offers two-sided connration that is simple and
natural for producer-consumer applications. The time miagin Figure 8.1 shows how
data can be transferred from a producer, which only sends tiaa consumer, which only
receives data. Using the send and receive primitives iseginelly the simplest way to
express producer-consumer communication and will be oold&n” standard to evaluate
producer-consumer programmability. As it will be clearnfrahe following discussion,

send/receive communication can also deliver high perfanady using extra storage to
buffer communicated data. The send and receive primitn&gdate programmers from the
details of buffer management and synchronization, pragdimplicity of programming.

In PGAS languages, however, programmers are responsitggpbcit buffer management

and complex synchronization. We first consider two scesacalled the one-buffer and
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multi-buffer schemes, for supporting producer-consunoenmunication in CAF. Then,
we discuss the progress issue with MPI buffering and aviailst®| send and receive prim-
itives.

To understand why producer-consumer communication istoagpress in PGAS lan-
guages, let us consider the case of producer-consumer coication between two pro-
cesses. The consumer can pull values from the producer as®®gT. This would ex-
pose full communication latency and lead to performanceattgion, unless the compiler
can prefetch data ahead of time. However, compiler anafgsiprefetching is hard for
explicitly-parallel SPMD programs and is unlikely to beegffive for many codes. There-
fore, we focus on the case where the producer pushes valtles tmnsumer. Procegs
produces a value and transfers it to the consumer pragassig a PUT to store the value
in a shared variablbuf f er . In one-sided communication model, synchronization must
be used to signal the consumer that the value is availabl@; @ympiler terminology, to
enforce the interprocessor true data dependence. Howleggoducer cannot PUT a new
value intobuf f er unless the consumer finished using the current value stotmdif er .

To avoid having the producer overwrite a valudunf f er that is still in use, the consumer
must signal the producer when it is save to overwsiié f er ; or in compiler terminology,
to enforce the interprocessor anti-dependence dbeitd er reuse. Figure 8.2 provides
a visualization of this scenario. The dotted lines denotiingatime due to exposed anti-
dependence synchronization latency on the producer oodexpbsed communication and
true dependence synchronization on the consumer.

While it is not possible to avoid the synchronization duehte true data dependence,
it is possible to avoid the synchronization due to the agpahdence if a new memory
location is used for every produced value. In reality, mgm®limited and must be reused.
Let us consider two possible implementations that we callahe-buffer and multi-buffer
schemes.

The one-buffer scheme uses only one varidhiéf er to store the values. The syn-

chronization between the producer and consumer must enfloecanti-dependence before
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producer consumer

produce
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. consume
walit value,
notify
wait
wait done ransier value, |
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PUT ;
notify :
v.vait done
produce value, is
available
value;, , consume
value;
time

Figure 8.2 : Producer-consumer in CAF using one buffer.

the producer can safely PUT a new value into the consurberfd er ; this corresponds

to the arrow labeled adbtifferis free” in Figure 8.2. This synchronization may delay the
producer from transferring a newly produced value to thesaarer and computing the
next value for two reasons. First, the latency of the synaizedion operation is exposed.
Second, and more important, the consumer can safely symekronly when it finished
using the current value ipuf f er , which can be past the time when the producer finishes
producingvalue; and arrives at theai t synchronization event. This leads to the producer
and consumer “coupling” and a non-asynchrony tolerant garmogwith low performance.
Not only the consumer must wait for the producer to deliveew malue (this is unavoid-

able), but also the producer must wait for the consumertbtd become available (as we
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Figure 8.3 : Producer-consumer in CAF using multiple bstfer

shall see, this can be avoided by using several buffers)thier avords, any delay in either
the producer or consumer causes the delay in the other.

The multi-buffer scheme uses several independent bukegs,elements of an array
buf f er (M . This allows the producer and consumer to work more indepathdand re-
sults in asynchrony tolerant code. The producer can PUT avadve into a free buffer,
e.g, buffery, while the consumer uses another instamcefery, as shown in Figure 8.3.

This has the effect of moving the anti-dependence synckation,e.g, the arrow labeled
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as ‘buf ferx is free” in Figure 8.3, earlier in time, overlapping it witlormputation on
the producer. As soon as the consumer is done usififlery, it can notify the producer
thatbuffery is free; this corresponds to the arrow labeled @asf'fery is free” in Fig-
ure 8.3. The early notification removes the anti-dependsyoehronization latency from
the critical path.

Implementing producer-consumer communication pattemBGAS languages using
one-sided communication is awkward because programmessmanage synchronization
for the true and anti-dependencies in addition to the dateement. With one buffer, the
latency of communication and synchronization is exposeding multiple buffers may
hide the latency; however, this requires enormous proghageiffort to manage buffers
and carefully place the anti-dependence synchronizatioenove it from the critical path.
In addition, to achieve the best performance, data movestenild be non-blocking to
overlap communication (PUT) latency with computation oa poducer. To summarize,
one-sided communication and explicit synchronization GAS languages are not suited
well for expressing two-sided in nature producer-consucoermunication.

In contrast, two-sided communicatioa§, MPI send/receive) offers simpler and more
natural programming style for producer-consumer appboat Programmers can sim-
ply use MPI send and receive for both data movement and synidation, as shown in
Figure 8.1. Two-sided communication offers implicit syrmfization and buffer man-
agement with their implementation hidden inside the MPidil. However, since MPI
primitives must be general enough to handle arbitrary comaoation, this can result in
suboptimal performance due to extra memory copying/regien/unregistration and ex-
posed synchronization and data transfer latency, espeaibén MPI uses the rendezvous
protocol for large messages (see Section 2.4.1). As we shiowaur prior study [32], the
performance of multi-buffer code in CAF can exceed that of Rtitle.

So far, we have considered producer-consumer commumciativhich the producer
only sends data and the consumer only receives data. A tygpoamunication pattern

is the exchange of shadow regions in loosely-synchronodesceuch as Jacobi iteration.
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Structuring an SPMD program so that processes send dathemdeceive data might lead
to a deadlock. The reason is that the send primitid& (Send) is blocking and, in general,
needs a matching receivBRl _Recv) to transfer data and unblock. For example, when
MPI uses rendezvous protocol, if each process executes akbpdocesses block waiting
for matching receives, which are never executed, leadirrgdeadlock. There are several
ways to avoid the deadlock for such codes; we briefly mentonesof them here, while
a detailed explanation can be found elsewhere [61]. Fir®Pl uses the eager protocol
(see Section 2.4.1MPI _Send is usually non-blocking; however, this is not guaranteed by
the MPI standard. Second, programmers can order sends eida® so that some pro-
cesses execute sends, while others execute receives. ifhisimot be possible or easy for
some codes. Third, programmers can use the combined semdcanktMPl _Sendr ecv
primitive; however, this does not allow codes in which eaobcpss image consecutively
performs several sends followed by corresponding recelesrth, programmers can use
buffered send$PIl Bsend. They must register a buffer before usingl Bsend and
determine the adequate buffer size. Finally, programmansuse non-blocking receive
MPI _I r ecv or non-blocking sendPI _I| send, which “register” a receive or send buffer
with MPI temporarily, for one receive/send operatib®l \Wai t must be used to complete
non-blocking operations.

The producer-consumer communication patterns are typicahny applications such
as Sweep3D, the NAS benchmarks, Jacobi iteration, and iergerany application that
performs shadow region exchange. We argued in Chapter it thatmpler to use barriers
for synchronization, while the SSR optimization can replaarriers with more efficient

point-to-point synchronization. However, it is not naluause barriers for synchroniza

tion in all casesg.g, using point-to-point synchronization allows a more natprogram-
ming style of wavefront computations such as Sweep3D. ASR is not applicable in all
cases, and SSR does not perform buffer management, whiopastant for hiding latency
in producer-consumer communication.

Since producer-consumer communication is difficult to paog in CAF and hard to
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doig =1, 8 I octants
do no = 1, nmo I angle pipelining | oop
do kk =1, kb I k-plane pipelining | oop
receive fromeast/west into Phiib I recv block I-inflows
receive fromnorth/south into Phijb ! recv block J-inflows

I conputation that uses and updates Phiib and Phijb

send Phiib to east/west I send bl ock |-outfl ows
send Phijb to north/south I send bl ock J-outfl ows
enddo
enddo
enddo

Figure 8.4 : Sweep3D kernel pseudocode.

optimize by compiler, we explore extending CAF with a lang@aonstruct —multi-
version variables— that simplifies development of high performance prodwmersumer
codes. Multi-version variables offer the simplicity of M&Vo-sided programming style
and deliver performance of hand-coded multi-buffer solutiProgrammers specify how
many versions (buffers) an MVV should have both for correst(to avoid deadlock and to
make progress) and performance. Tlwerm t primitive is equivalent to send and is used
to enqueue a new version to an MVV. Thet ri eve primitive is equivalent to receive
and is used to dequeue the next versions from an MVV. Nexteaax our evaluation study

of Sweep3D wavefront application, which further motivates need for MVVs.

8.2 Sweep3D case study

The benchmark code Sweep3D [4] represents the heart of sAoealerated Strategic
Computing Initiative application; see Section 3.4.2 fosctgtion. Sweep3D exploits two-
dimensional wavefront parallelism on a 2D logical grid adgessors, shown in Figure 3.2.

Figure 8.4 shows pseudocode representing a high-levelofighe Sweep3D kernel.
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if (receiving froml _pred) then
!' notify | pred that the local Phiib buffer is ready to accept new data
call notify(l_pred)
! wait for the new data to arrive fromthe | _pred
call wait(I_pred)
endi f
I similar for the J-dinension

! conputation that uses and updates Phiib and Phijb

if (sending to | succ) then
! wait for |_succ notification that its Phiib is ready to accept new data
call wait(I_succ)
I transfer the data to the | _succ using contiguous non-bl ocki ng PUT
start the region of non-bl ocking PUTs

! notify the I_succ that the new data has been sent
call notify(l_succ)
stop and conpl ete the region of non-bl ocking PUTs
endi f
I simlar for the J-dinmension

Figure 8.5 : Sweep3D-1B kernel pseudocode.

8.2.1 Programmability

To investigate the impact of different CAF coding styles, wilemented several CAF
versions of the Sweep3D and compared their performancetiatiof the MPI version —
Sweep3D-MPI. The difference among the versions is in thensomcation and synchro-
nization implementation, while the local computation isigar. Here, we consider only
two CAF versions that we developed: Sweep3D-1B, which usesommunication buffer
per dimension, and Sweep3D-3B, which uses three commuondauffers per dimension.
The complete details of the study can be found elsewhere [32]

Sweep3D-1B was developed from the original MPI code by dexjats Phi i b and
Phi | b arrays as co-arrays and using non-blocking PUT to commtentb@m in-place.
For the I-direction communication, the code is presentedrigure 8.5;1 _pred and
| _succ denote the predecessors and successors in the sweep feditherision. For
the J-direction communication, the code is similar excbpt the process image commu-

nicates thé>hi j b array with its J-predecessor and with its J-successor.
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! start the ‘‘available buffer notification pipeline’’ (only one recv buffer)
call notify(l _pred)

if (receiving froml _pred) then
' wait for the data fromthe | _pred
call wait(I_pred)

endi f

I simlar for the J-dinmension

! conputation that uses and updates Phiib and Phijb

if (sending to | succ) then
finalize the previous non-blocking PUT to the | _succ
I now one of the buffers is free; nake it the next receive buffer
endi f
if (receiving froml _pred) then
! notify the | pred that there is a buffer available to receive new data
call notify(l_pred) ! this matches wait(l_succ) fromthe previous iteration
endi f
if (sending to |_succ) then
' wait for |_succ notification that it has a buffer ready to accept new data
call wait(I_succ)
start the regi on of non-blocking conmunication with index phiib.ow k. dx
! transmt the new data to the |_succ using non-blocking contiguous PUT
Phiib(:,:,:,phiibwk.idx)[I_succ] = Phiib(:,:,:,phiibwwk.idx)
! notify the I _succ that nore data is avail abl e
call notify(l_succ)
stop the regi on of non-blocking conmunication with index phiib_w k. dx
advance phiibwk.idx for the next stage
endi f
I simlar for the J-dinmension

I wind dowmn the ‘‘available buffer notification pipeline’’ (only one recv buffer)
call wait(I_succ)

Figure 8.6 : Sweep3D-3B kernel pseudocode.

The Sweep3D-1B communication is very similar to that of thielMersion when MPI
uses the rendezvous protocol. The data movement statemassignment téhi i b —
communicates the same data as the send/receive pair of theek$ion. Thenot i fy and
wai t provide synchronization analogous to that induced by an 8&¢Rt/receive pair. For
Sweep3D-1B, there is no data copy fréthi i b or Phi | b into an auxiliary communica-
tion buffer; the data is delivered directly in-place. In tast, the MPI version might use
additional memory registration/unregistration or extedadcopies to/from a communica-
tion buffer to move the data, Phi i b andPhi j b are not allocated in registered memory

and the interconnect hardware requires communicatedaegaitle in registered memory.
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Sweep3D-3B aims to overlap PUTs with computation on theessgmr to hide commu-
nication latency. It uses additional storage, namelyglimstances oPhi i b andPhi j b
to overlap communication with computation. In the wavefrsteady state, one instance
of Phi i b can be used to receive the data from the I-predecessor; sathe time another
instance can be used to perform the local computation, vitinél¢hird instance can be used
to hold data being communicated to the I-successor (thuéerbscheme). For shared-
memory architectures without hardware support for asyomobus data transfers such as
SGI Altix 3000, in which all data transfers are performedhnlibad/store, a two-buffer
scheme, in which one buffer is used for local computationthedther is used for a PUT
performed by a predecessor, is likely to yield the best perémce. To manage the in-
stances as a circular-buffer (to avoid unnecessary copvesadded an extra high order di-
mension taPhi i b. Similarly, we use three instancesHii j b to enable communication
and computation overlap for the wavefront parallelism ia #xdirection. The simplified
pseudocode for the three-buffer scheme is given in Figie 8.

Note that more than three buffers can be used. Our implements general and
supports an arbitrary number of buffers holding incomintadeom the predecessor and
outgoing data to the successor. However, we did not encoantase that using more
additional buffers improved performance. On platforms sligport non-blocking PUT and
not i fy, the code uses non-blocking communication directives (g4&¢ Section 4.1.8) to

overlap communication with local computation, otherwisé/dolocking PUT is used.

8.2.2 Performance

We evaluated the performance of our CAF and MPI variants o#ep8D on four plat-
forms described in Section 3.3: an Alpha+Quadrics (ElahBter, an Itanium2+Quadrics
(Elan4) cluster, an Itanium2+Myrinet2000 cluster, and &1 Altix 3000.

For the Sweep3D benchmark, we compare the parallel effigciehthe MPI and CAF
versions; the parallel efficiency metric is explained int®er3.4. We use efficiency rather

than speedup or execution time as our comparison metriczbedtenables us to accurately
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Figure 8.7 : Sweep3D of size 50x50x50 on an Alpha cluster wifuadrics Elan3 inter-
connect.

gauge the relative performance of multiple benchmark impletations across thentire
range of processor counts. Sweep3D-MPI shows the efficiehtye standard MPI ver-
sion; Sweep3D-1B and Sweep3D-3B stand for the efficiench@bine- and multi-buffer
CAF versions. We present results for sizes 50x50x50, 150150, and 300x300x300,
with per job memory requirements of 16MB, 434MB, and 3463 pectively.

The results for the Alpha cluster with a Quadrics Elan3 tanect are shown in Fig-
ures 8.7, 8.8, and 8.9. The results for the Itanium?2 clusienected with Quadrics Elan4
are presented in Figures 8.10, 8.11, and 8.12. Figures 81131, and 8.15 displays the
results for the Itanium2 cluster with a Myrinet 2000 internect. Finally, the results for
the SGI Altix 3000 machine are given in Figures 8.16, 8.1d, &A48.

Our results show that for Sweep3D we usually achieve sdajabomparable to or
better than that of the MPI version on the cluster architestand outperform MPI by up
to 10% on the SGI Altix 3000 with hardware shared memory.

On the Alpha cluster, the Sweep3D-3B version slightly orftpens the MPI version
for the 50x50x50 problem size, while MPI outperforms Swd23B for the 150x150x150
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interconnect.

problem size, and they perform comparably for the 300x300xg8roblem size The

1We do not have access to the experimental platform to measurehe speedup is superlinear for the
300x300x300 problem size. However, a plausible explanasithat parallel versions have larger cumulative

cache size than the one-processor sequential Sweep3Drversi
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Figure 8.10 : Sweep3D of size 50x50x50 on an Itanium2 clustér a Quadrics Elan4
interconnect.

Sweep3D-3B version enables better asynchrony toleraiycgsing multiple communica-
tion buffers, it reduces the wait time of the producer preaesgge for a buffer to become
available to transfer data, using a PUT, to the consumetegsornage. On this platform,
the ARMCI implementation ofiot i f y uses a memory fence and, thus, is blocking. While
we can overlap the PUT to the successor with the PUT from tedgmessor (both per-
formed as independent RDMA by the NIC, as described in Se&id), we cannot overlap
the PUT with computation on the producer process image. psard, the one-buffer ver-
sion Sweep3D-1B performs worse than the multiple-buffee&wBD-3B version and the
MPI version because the synchronization and communicédai@mcy induced by buffer
reuse anti-dependency is on the critical path.

On the Itanium2 cluster with a Quadrics Elan4 interconrdétl and Sweep3D-3B out-
perform Sweep3D-1B for the 50x50x50 problem size becausapiplication is commu-
nication bound and Sweep3D-1B exposes the latency of tHerlngfuse anti-dependence
synchronization. Since the messages for the 50x50x50 gmrobize are small, MPI uses
the eager protocol, performing library-level bufferingat removes the anti-dependence

synchronization from the critical path and overlaps it witle computation. Similarly,
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interconnect.

Sweep3D-3B hides the synchronization latency by usingiptalcommunication buffers.

For this problem size, the performance of MPI and Sweep3Ds3Bughly similar. For a

larger 150x150x150 problem size, MPI and Sweep3D-3B al$pestorm Sweep3D-1B.
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Figure 8.13 : Sweep3D of size 50x50x50 on an Itanium2 clustdr a Myrinet 2000
interconnect.

However, Sweep3D-3B shows noticeably better performamae that of MPI, which uses
the eager protocol. We were not able to determine exactlyt wdnzses this, but a plausi-
ble explanation is that MPI performs extra memory copiedeMinsing the eager protocol,
polluting the cache and leading to the performance degmadé&tor a large 300x300x300
problem sizé, the communication message size is large; thus, MPI svétahiéhe ren-
dezvous protocol and shows the performance equivalenatoflfsweep3D-1B. Sweep3D-
3B still uses extra communication buffers similar to the dRlager protocol and enjoys
10% higher performance due to removing the synchronizdten the critical path.

On the Itanium2 cluster with a Myrinet 2000 interconnecte MPI version outper-
forms Sweep3D-1B for the 50x50x50 problem size and showspeoable performance
for the 150x150x150 and 300x300x300 problem sizes. The fS3@&B version performs
comparably to the MPI version for the 50x50x50 problem sizeé autperforms it for the

150x150x150 and 300x300x300 problem sizes. For Sweep3iprpwnce is primarily

2The speedup of Sweep3D-3B is superlinear because the edfjcie computed relative to a “synthetic”
serial execution time of Sweep3D, which was computed asithe ¢of the MPI version on 6 processors

multiplied by 6 since the cluster configuration did not allogito run the sequential Sweep3D on one node.
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Figure 8.15 : Sweep3D of size 300x300x300 on an Itanium2Zeiwgith a Myrinet 2000
interconnect.

determined by how quickly the next value Biii i b andPhi j b can be delivered to the
remote memory (to the consumer). Using several communicatiffers or the eager pro-

tocol reduces this latency by removing it from the criticatlp The speedups are superlin-
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Figure 8.16 : Sweep3D of size 50x50x50 on an SGI Altix 3000.

ear for the 50x50x50 and 150x150x150 problem sizes bechaseitnber of L3 data cache
misses in sequential Sweep3D version is significantly higjieen that in parallel versions

for this architecture. Using HPCToolkit [100, 79], we detaned that, for the 50x50x50

problem size, the total (per job) number of L3 data cache esi$s 5.1 times larger for

sequential version compared to that of the 6-processor MRian; for the 150x150x150

problem size, this number is 2.81 times larger. We attrithiedifference to larger com-

bined L3 cache size in parallel execution. For the 300x30043&0blem size, it was not

possible to measure the execution time of the serial vel®oause of memory constraints;
instead, we use “synthetic” serial execution time compatethe time of 6-processor MPI
version multiplied by 6.

An SGI Altix 3000 does not have non-blocking communicatidwts, the Sweep3D-3B
version uses only two buffers. The MPI version shows beteiopmance than Sweep3D-
1B for the 50x50x50 problem size due to using the eager pobtowd removing synchro-
nization from the critical path. It looses to Sweep3D-3Bawese of extra memory copying
while Sweep3D-3B communicates data in-place. The SweefBBnd MPI versions per-

form comparably for the 150x150x150 problem size. For th@x300x300 problem size,
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Figure 8.18 : Sweep3D of size 300x300x300 on an SGI Altix 3000

MPI uses the rendezvous protocol and performs extra menupyirng, demonstrating
inferior performance comparing to the CAF versions. As eipe, Sweep3D-3B shows
the best performance for all problem sizes by communicatatg in-place without extra

memory copies and removing the anti-dependence synclatomzoff the critical path.
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8.3 Language support for multi-version variables

To simplify development of high performance scientific codath producer-consumer
communication, we explore extending CAF with a new languamestruct callednulti-
version variablegMVVs). An MVV is declared similarly to a regular CAF variablsing
thenul ti ver si on attribute. As the name implies, an MVV can store severaleslu
however, the program can read or write only one value —¢tlreent version— at a time.
Values are managed with the semantics of a queue. Concgpaath MVV has a queue
that records the ordering of values in the MVV. A value is exupd in the order in which
it was committed to the MVV. Values are consumed (retrievedhe order in which they
were committed, which is ensured by the queue.

When a producer image commits the first value into an MVWwvv located on con-
sumer image®, we say thap establishes aonnection The connection state has several
receivebuffers to store unconsumed versions committeg bigto the MVV nmvv located
on g. The ordering of committed values is ensuredryv’s queue since several pro-
ducers can concurrently commit new values (each commiustsbwn set of buffers), so
the ordering is global rather than per producer. An MVV ins&on a process image is
guaranteed to store at leaStunconsumed (pending) versiopsr connectionper each
producer image that commits to the MVV). This means tHatonsecutive commits from
the same producer are guaranteed to succeed without bipttierproducer. The value of
N is specified by the programmer. The default value\ofs 1, meaning that there can
be one unconsumed buffered vajper connectionor one commit per producer will suc-
ceed without blocking. This suits well for most scientifigpéipations that benefit from
using MVVs. There is also a way to specify the number of versiior a particular MVV
connection.

Producers commit values using tbermm t primitive and consumers retrieve values

using ther et ri eve primitive. When a producer commits a new value and there is an

3p andq can be the same process image.
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empty buffer, the value is written into this buffer and th@gucer continues execution.
If there is no free buffer, the producer blocks until a buffecomes available. When
the consumer retrieves the next available version, theuronass instance of the MVV is
updated with the next value in the queue and the buffer oeculpy the previous version
is freed and made available for the corresponding produictirere is no available value,
the consumer blocks until a value is committed. The conswarerlso test whether a new
version is available without blocking. Note that producansl consumers can be different
images or threads running within an image.

MVVs add limited support for buffered two-sided communigatin CAF. The num-
ber of buffers is specified by the programmer; however, timetime layer manages the
buffer automatically. As for MPI, the right number of buffer necessary for algorith-
mic correctness — to avoid the deadlock and to make progsessection 8.1) — and
for performance. Theonmm t andr et ri eve primitives combine data movement with
synchronization. MVVs’ two-sided nature makes them a corem abstraction to ex-
press producer-consumer communication in scientific cod@sn-time management of
additional buffers enables MVVs to achieve the same levg@esformance as that of the
hand-optimized multi-buffer scheme (see Section 8.2.Bjlethe programmer is insulated

from the details of buffer management, communication, gndfsronization.

8.3.1 Declaration

An MVV variable is declared as a regular CAF variable that oidion uses the
mul ti ver si on attribute. An MVV can be of an intrinsic Fortran 95 type or a&mus
defined type (UDT). If an MVV is of UDTT, type T or any of its nested UDTs cannot
have allocatable, pointer, or multi-version componemsther words, typd must have
statically known size. An MVV can be a scalar, an explicitgharray, an allocatable,
or a component of a UDTWQ An MVV can be declared in a module. An MVV can be a
subroutine argument and requires an explicit interface.

There are local and co-array (with brackgls) MVVs. The local form simplifies the
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1) type(T), save, multiversion :: a0, al(10), caO[*], ca2(10,10)[*]

2) type(T), allocatable, multiversion :: b0, b2(:,:), cbO[:], cbl(:)[:]
3) type(T), multiversion :: cO, cl1(:), cl11(N), ccO[*], ccl(:)[*], cc2(N, M[*]
4) type Q

type(T), nultiversion :: vO

type(T), nmultiversion :: v1(100)

type(T), allocatable, multiversion :: yO

type(T), allocatable, multiversion :: y2(:,:)

end type Q

5) type (Q, save :: g0, q2(10,10), cqO[*], cqg2(10,10)[*]
6) type (Q, allocatable :: r0, r2(:,:), crO[:], cr2(:,:)[:]

Figure 8.19 : MVV declarations.

development of producer-consumer multithreaded codes \sbeeral threads of execu-
tion are enabled within one process image with distributedtithreading presented in
Chapter 9. Co-array MVVs are used for inter-image prodecgisumer communication;
however, co-array PUT/GET access is prohibited; insteadm t andr et ri eve must
be used. Figure 8.19 shows examples of MVV declarations of WDthe declarations of
MVVs of intrinsic types are similar.

Example (1) declares SAVE scalar and explicit shape arrdycararray MVVs; (2) de-
clares allocatable array and co-array MVVs; declaration(8) are used for subroutine pa-
rameters; (4) declares tyggwith multi-versioned components; (5) declares SAVE scalar
explicit shape array, and co-array variables with multisien components; (6) declares
allocatable scalar, array, and co-array variables withimralsion components.

An MVV cannot be COMMON or sequence-associated becauseethardics of se-
guence association are too complex and the feature woulddwbadditional benefits. An
MVV cannot have the TARGET or POINTER attributes to avoisiing that would com-
plicate the semantics of MVVs. Similar to co-array submetparameters, MVVs can be
passed in three different ways: using Fortran 77 conventismg Fortran 95 interface
to pass an MVV as an MVV-object, or to pass only the currensioer. If a parameter
MVV is passed as an MVV-object, it inherits the multi-versioroperty in the subroutine;

otherwise, the parameter becomes a regular Fortran 9%laria
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8.3.2 Operations with MVVs
Variable accesses.

Writes to an MVVnvv update the current version. Reads fromv return the current
version value. If an MVV is a co-array or a co-array componéris illegal to remotely
access it using the bracket notation. Instead of co-array/8BT specified via brackets
([ 1), programmers must usonmi t andr et ri eve to control versions. The restriction
is a compile-time check. It avoids unpleasant side effettsa new version is retrieved,
gives compiler and runtime more opportunities for optirtima and does not reduce the

expressiveness.

Allocation and deallocation.

Alocal or UDT component MVV with thal | ocat abl e attribute can be allocated using
theal | ocat e statement, which is similar to allocation of Fortran 95 editable variables.
Fortran 95deal | ocat e is used to deallocate the MVV. Note that allocation and deall
cation are local operations and do not involve synchromnawith other images.

A co-array MVV is allocated in the same way as co-arrays: ahkocat e call is
collective among all images of the program and each image spexify the same shape
for the MVV. Deallocation is done via the global collectisteal | ocat e call. Note that

bothal | ocat e anddeal | ocat e have an implicit global barrier.

Committing values.
A new value can be committed into an MM/v by using theconm t operator
comm t(mvv, val, [live=true])

The mvv argument denotes an instance of an MVV that can be laxgl, nvv or
a%mvv, or remote specified via the bracket syntexg, nvv[ p] ora[ p] %wv. The re-

moteconmm t commits valuezal into the instance of an MVV located on the target image
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p. An MVV can be a scalar, array, or a UDT componeng, mvv[ p] ,mvv(:,:)[p],

a[ p] %rvv(:),a(i, k)[p] %rvv(:, :). The default co-shape of a co-array MVV is
that of a co-arra@[ *] . Co-space objects described in Chapter 5 can be used toenapos
topology on a co-array MVV.

The value being committed is taken from thal argument, whose element type must
be the same as that avv. If val is a constant, the committed value is equal/&d
expanded to the size avv. If val is avariable, it can be a co-array, co-array component,
Fortran 95 variable, local MVV, or local instance of a coagriMVV (note that a value
cannot be read from an MVV instance located in a remote psoiceage). Ifval is an
MVYV, the current value of the MVWal is committed.val can also be an expression,
e.g, aresult of a computation or an array element/section ofialvie.

Thel i ve parameter twonmi t is an optional argument that, .iff al se. , indicates
that the value oval is not live in the process image performing themm t after the
commit call. Thd i ve parameter helps to avoid an unnecessary data copy whene valu
is committed from an MVV, as explained in Section 8.6.

The order of versions committed into an MViwv is maintained on the consumer
usingnvv’s queue. If there is only one producer committing values, \talues will be
consumed in the same order in which they were committed virsé¢ producers interleave
commi t stonmvv, two cases are possible. First, if producers do not syncedretween
themselves, the order of valuesiav’s queue is determined by the hardware and run-time
layer timing. If producers synchronize, the order of consmitll be that enforced by their

synchronization. We discuss these issues in more detadatich 8.5.

Retrieving values.

A new version can be updated using thet r i eve operator
retrieve(nvv, [var], [image], [ready])

The statement updatesv with the next version in the queue. The previous version
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value is lost. If there is no available next version, thed r i eve operator blocks until a
new value is committed. The MV¥vv must be a local instance; we also discuss extending
the MVV concept with remote retrieves in Section 8.8. Thda#l parametevar can
be supplied to copy the updated value farrv intovar ; var must a local variable. This
may save a line of code for the programmers who would have rfonpe the assignment
explicitly. It also allows non-conformant assignmentse(below) and provides additional
information to the compiler and run-time layer. The optiloparameten nage serves
two purposes. First, it is information for the run-time laye expect a version from the
producer image. Second, it is useful for debugging to explicitly indicakat the next
retrieved version must be committed from the producer imagege. When the optional
LOG CAL parameter eady is specifiedr et ri eve setsitto. t rue. if thereis a value
available for retrieval, otherwise it is settd al se. ;ther et ri eve does not block and
does not retrieve a value.

To maintain simple and intuitive semanticsadnm t andr etri eve, we purpose-
fully limit versions that they accept to onfull-sizeversions, whose size is the same as that
of the MVV. Partial versions might be useful for some apglmas, but they complicate the
semantics and robustness of the concept. However, we deequte theshapeof commit-
ted and retrieved versions to coincide with the shape of thié+version variable; only the
size must be that of the MVV. The rationale is that some sifiembdes such as NAS BT
would benefit from non-conformant remote co-array assigrisje.g,a( 1: N, 1: M [ p]
= b(1: M 1: N).In CAF, programmers would use Fortran BESHAPE intrinsic or an
auxiliary buffer to perform such an assignment.

Note that we do not provideraet r i eve primitive that retrieves a remote version from
another image. While it is possible to extend the concept aitich remote retrievals, we
have not seen a compelling case where it might be useful. fealuper-consumer codes
in a distributed environment, it is important to get datah® tonsumer as fast as possible.
PUT orconmi t are better suited for this purpose because the producemdétd the

data transfer as soon as the value is produced and potgmailap the communication
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latency with local computation. GET or rematet r i eve do not hide the data transfer
latency unless optimized by a compilerg, split-phase GET. Such optimization, however,

is difficult and unlikely to be effective in the general case.

Buffer tuning.

The default number of buffers to store unconsumed (pend@gjons per connection (per
each producer committing into the MVV) is defined during tloenpiler installation or
program startup. Most scientific codes require bufferirmgoidy one unconsumed version
per connectiorfor both correctness and high performance. However, @iffeproducer-
consumer communication patterns might require differamhiper of buffers; moreover
different images might require different number of bufféss the same co-array multi-
version variable. We provide the ability to fine-tune the @mof MVV versions by using
pur ge andnv_set _numver si ons functions.

pur ge( mvv) explicitly deallocates all unused send and unconsumeavesbaffers.
Note that for most scientific codes that can benefit from usivy/s, this should not be
necessary. For example, in nearest-neighbor codes, eageicommunicates only with a
small, fixed subset of neighbor images; therefore, the sbt\6¥ buffers does not grow
too large and stabilizes during execution.

mv_set _numver si ons(nvv, K, [ i mage] ) instructs the run-time to use at least
K buffers per connection for an MVWvv (a local instance). If the optional parame-
teri mage is present, theiK is the number of receive buffers arnvv’s process image
(consumer) to store unconsumed versions committed fronptbeducer image nmage.
mv_set _.numver si ons(nvv, K, [ i mage] ) is not a collective call. In fact, the num-
ber of versionXK that a co-array MVV can hold does not need to be the same o ever

image; it is a local property.
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8.4 Examples of multi-version variable usage

In general, MVVs are a good abstraction for a large class afest-neighbor scientific
codes where each image streams a sequence of values to adixadhgighbor images.
This class of scientific applications includes wavefrag( Sweep3d), line-sweeg.@,
NAS BT and SP), and loosely-couplee.q, Jacobi iteration) codes. MVVs can also be
used for intra-node producer-consumer codes if severaatls of execution are allowed
inside one image (see Chapter 9).

MVVs might not be the best abstraction for irregular codesy,( RandomAccess,
Spark98) where each image might communicate with all othixges in the program,
which might result in excessive MVV buffering and degradegfgrmance. MVVSs in-
sulate programmers from managing the timing of the anteddpnce synchronization
due to buffer reuse. However, if no such synchronizationeisessary due to an appli-
cation algorithm €.g, if the application can use fixed known number of communacati
buffers between each synchronization stage), this synctaton might introduce extra
overhead. We believe that programmability benefits pravtieMVVs in many cases out-
weigh slight performance loss due to the buffer reuse symehation. Also, MVVs might
not deliver the best performance if there is not enough looaiputation to overlap the
anti-dependence synchronization with.

We now show several real application kernels that can beneafit using MVVs.

8.4.1 Sweep3D

The Sweep3D-3B and even Sweep3D-1B kernels shown in Figuéeand 8.5, respec-
tively, become much simpler when using multi-versiémi i b andPhi j b variables as
shown on Figure 8.20. When using MVVs, the kernel is simplé iatuitive and looks
very much like that of the MPI version. At the same time, it chliver comparable or

better performance as shown in Section 8.7.
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if (receiving froml _pred) then
retrieve(Phiib)

endi f

I simlar for the J-di nension

I conputation that uses and updates Phiib and Phijb
if (sending to | _succ) then
conmit (Phiib[l _succ], Phiib)

endi f
I simlar for the J-di nension

Figure 8.20 : Sweep3D kernel pseudocode with multi-verbigfers.

8.4.2 NAS SP and BT forward [xyz]-sweeps

Figure 8.21 shows how the forward sweep along spatial dimensin NAS SP can be
expressed via MVVs; again, the code is very similar to thatwai-sided MPI. Sweeps
in y- and z-dimensions have similar communication. NAS Biward sweeps also have

similar communication structure.

do stage = 1, ncells

I receive the next xf_buff fromthe x-predecessor in the sweep

if (stage .ne. 1) then ! first stage
retrieve(xf_buff)
endi f

I conputation that uses val ues of xf_buff out-of-buffer

I pack xf_buff to send to the x-successor in the sweep
I send xf _buff to the x-successor

if (stage .ne. ncells) then! |ast stage
comm t (xf buff[x_succ], xf_buff)
endi f
done

Figure 8.21 : NAS SP pseudocode for forward sweep along x mbina expressed via
MVVs.
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do stage = 1, ncells

I receive the next xf_recv_buff(stage) fromthe x-predecessor

if (stage .ne. 1) then ! first stage
cal |l wait(x_pred)
endi f

I conputation that uses val ues of xf_recv_buff(stage) out-of-buffer

I pack xf_send_buff(stage) to send to the x-successor in the sweep
I conplete previous non-bl ocki ng PUT region
if (stage .ne. 1) then
conpl ete non-bl ocki ng PUT region with index stage-1
endi f
I transfer xf_send_buff(stage) to the x-successor
if (stage .ne. ncells) then! [|ast stage
start non-bl ocki ng PUT region with index stage
xf _recv_buff (..., stage+l)[xsucc] = xf_send buff(...,stage)
stop non-bl ocking PUT region with index stage
I notify the x-successor that the buffer has been updated
call notify(x_succ)
endi f

done

Figure 8.22 : NAS SP pseudocode for forward sweep along xmbmoa in CAF that uses
a buffer per stage.

If the kernel is coded using PUT/GET, the user has to alsatipsent-to-point syn-
chronization statements, manage several communicatitberbuand non-blocking PUT
directives to obtain high performance. For instance, itasgible to use a separate com-
munication buffer per stage to avoid the synchronizatioa tubuffer anti-dependence,
as shown in Figure 8.22. This is relatively simple kernel togoam; however, excessive
buffering may increase cache pressure when buffers are.lafdternatively, the three-
buffer scheme can be used similar to how it is done for the $8@eernel in Figure 8.6,
but to achieve high performance, the programmers would teagede complex synchro-
nization (more complex than shown in Figure 8.22). With MV synchronization and

buffering are hidden from the programmer inside¢logni t andr et ri eve primitives.
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8.4.3 NAS SP and BT backward [xyz]-substitutions

Figure 8.23 presents pseudocode for the x-dimension badksudbstitution stage in NAS
BT. Substitutions for y- and z-dimensions are similar. Agwihe forward sweeps, using
MVVs simplifies coding of the backward substitution stageSlAS BT and ST, while also
delivering high performance. In addition, this example@alsmonstrates how MVVs can

reduce programmers’ effort for writing packing/unpackaugle.

do stage = ncells, 1, -1

if (stage .ne. ncells) then! first stage
retrieve(xb_buff, backsub.i nfo(0: JMAX-1, 0: KMAX- 1, 1: BLOCKSI ZE, cel | ))
endi f

! intense conputation

if (stage .ne. 1) then ! |ast stage
conmi t (xb_buf f[ x_pred], rhs(1l: BLOCKSI ZE, 0, 0: IMAX- 1, 0: KMAX- 1, cel I'))
endi f

done

Figure 8.23 : NAS BT pseudocode for backward substitutiondmension.

Using an MVV enables to "reshape” communicated data witheoaiting programmers
use an auxiliary communication buffer and write the packingacking code in the case
when communication could be expressed as an assignmenwofdw-conformant co-
array sections. For example, the following code would be tarahway to express in-
place communication in NAS BT, but it is illegal in CAF becaube shapes afhs and

backsub_i nf o references are non-conformant

backsub_i nfo(0: JMAX-1, 0: KMAX- 1, 1: BLOCK Sl ZE, renote_cel | ) [ x_pred] =
rhs(1: BLOCK SI ZE, 0, 0: JMAX- 1, 0: KMAX-1, cel )}

The intent of the assignment is to transfer elements as shofigure 8.24. The code
would perform fine-grain element accesses and must be @atthiby the compiler. It is
also possible to use Fortran B&SHAPE intrinsic.

The sizes of the hs andbacksub_i nf o sections are the same. The CAF version

uses a contiguous 1D bufferend_buf to pack data fronr hs at the source, transfer
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doj =0, JVMAX-1
do k = 0, KMAX-1
do b = 1, BLOCKSIZE
backsub.info(j,k,b,renotecell)[x_pred] = rhs(b,0,j,k,cell)
enddo
enddo
enddo

Figure 8.24 : Data transfer in x-dimension backward sultsbih of the NAS BT bench-
mark.

send_buf into a 1D contiguous co-array buffeecv _buf , and unpack ecv _buf into
backsub_i nf o on the destination. It requires declaring the auxiliary ocmmication
buffers and writing packing/unpacking code. Using MVVsieeés programmers from
both.

The MVV xb_buf f for the x-dimension is declared as a 1D allocatable array
doubl e precision,allocatable, multiversion::xb_buff(:)

The packing/unpacking is done by the run-time layer inside ¢comm t and
retrieve primitives. MVV packing/unpacking code enumerates alhedats of a sec-
tion as a DO-loop nest that accesses the elements in colusyor-order, which is a typical
case. If an alternative element enumeration is desiredprilgrammer can use DO loops
and pack/unpack variables into/from the current versicanoMVV.

In addition, all data transfers done by the MVV run-time lagee contiguous. Exper-
iments show [47, 48, 33] that source-level packing/unpagks necessary to achieve the
best communication efficiency for strided transfers on samerconnect. Thus, MVVs
naturally take care of user-level packing/unpacking thragpmmers would have to do
manually to compensate for inefficient support for stridedhmunication in most inter-
connects and one-sided communication libraries.

Finally, with MVVs, the programmers udecal array subscripts, which is easier than
trackingremoteco-array subscripts of a PUT/GET. In the example above, thgram-

mer needs to know the indices of the remote co-array settarksub_i nf o, e.g,
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renmot e cel | , which is not equal to the local cell numbeel | . In some cases,
maintaining the information about remote co-array shapeally was a major inconve-
nience that we noticed during our evaluation studies. WhenguMVVs, conm t and

retrieve use the local value afel | .

8.5 Relation of MVVs, GETs/PUTs, and synchronization

The semantics of theonmi t andr et r i eve primitives are not those of PUT/GET. There
can be several unconsumed buffered versions in an MVV tleatiavisible” to the pro-
grammers. The next value in the sequence will become visiblg when the consumer
executes et ri eve; in this respect, it is not intuitive to associate PUT wathmm t
and GET withretri eve. Synchronization statements provide certain guarantaes f
GET/PUT completion and ordering. However, buffered versim an MVV are retrieved
explicitly by the consumer image and may even be retrievest aéveral synchronization
events between the producer and consumer. This makes issigp@to provide program-
ming model guarantees for the ordering between observegegults otonmi t s (avail-
able viar et ri eves), and PUT/GET and synchronization.

On the other handzomm t has more intuitive relation to PUTs/GETs and synchro-
nization; note thatonm t does not make the value visible, onlgt ri eve can do it.
Sinceconmmi t implies synchronization (similar to unidirectional peiotpoint notifica-
tion) with theconmi t 's target image, PUTS/GETSs that were issued before must iedenp
according to the memory consistency model described ind@e8t1.6. The default case is
to complete only prior PUTS/GETSs issued to the target pioeage before the committed
version is made available for retrieval on the target im#ge;is equivalent to the semantics
of the weakenot i f y. The optional parametemde=st ri ct can be passed tomm t
to completeall prior PUTS/GETSs. Intuitively, if the programmer uses MV\stnplement
synchronization between two images, the semanticoafri t andr et ri eve are those
of not i fy andwai t : the effects of PUT/GET communication prior¢comm t must be

visible top when the value is retrieved.
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What is more important for MVVs is the ordering of committesrsions. In the case
of a single producer, the version ordering is that of a stredfimmage p executes two
commi t s, the value of the firstommi t is always retrieved before the value of the second.
The case of multiple producers is more subtle. If two imggesdqg commit values into
an instance of an MVV located on image two cases are possible. First, if there was
no synchronization betwegmandq’s conmi t s, the order of versions is undefined and
determined by the timing in the hardware and run-time laygplementation. Second,
if there was a synchronization evemtg, a barrier or a notify/wait pair that ordered the
execution oftcomm t s, the value of the firstommi t is guaranteed to be retrieved before
the value of the second. These semantics are intuitive \egpact to the meaning of

synchronization.

8.6 Implementation

We describe a prototype implementation of MVVs based onv&dtessages (AM) [122].
If AMs are not available on the target platform, the run-tilager implementation of
conmi t andr et ri eve primitives can poll the network emulating AMs. The implemen
tation is conceptually similar to that of the multi-buffesh@me described in Section 8.1;

however, it does not use CAF’s notify/wait primitives.

8.6.1 Animplementation based on Active Messages

Initially, an MVV has buffer only for one version — the curteversion that can be ac-
cessed locally via read and write. When producer imag®mmits the first value to an
instance of an MVV located on imagg it sends an AM to establish a connection. The
AM allocatesN receive buffers on, whereN is the default number of buffers per connec-
tion. These buffers are used to accept values committed froso that’vV commits from

p will succeed without blocking. The reply AM makes the buffer addresses available
onp. They can be used later to communicate versions fpota g, e.g, using RDMA,

without the need to contact. The connection can also be established byri eve if
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the optional parameternage is specified and the consumer image executssr i eve
before the first commit from imagerage. Note that the connection is established without
programmer’s involvement.

For an MVV nvv, assuming that the connection has been established,aimi t
implementation must transfer and enqueue the committegtvatonvv. Eachmvv has a
gueue that records the global order of commits from seveoalyzers. The producer knows
locally whether there is an available receive buffer on thiescmer since the fact that a
version committed by the producer has been consumed, tiespfothe corresponding
receive buffers becomes free, is communicated to the psydodhe implementation of
retrieve (see below). If there is no available receive buffer, thedpoer is blocked
and waits for a buffer to become available. When there is arlable receive buffer, the
producer can transfer the value and enqueue it in two wayghadne should be used
depends on the version size, communication substrate hemdM implementation.

In the case of large data size, the value is transferred vtodceive buffere.g, using
RDMA PUT. Next, the producer sends a synchronization AM #rajueues the version
on the consumer. In the case of small data size, the value edrabsferred with the
synchronization AM. This AM enqueues the next MVV versiom anust copy the value
from the AM ephemeral payload memory into the MVV receiveféyffrom where it
will be retrieved later. An implementation uses an auxyliaend buffer(s) to make data
movements non-blocking to overlap it with computation o&pinoducer.

Ther et ri eve implementation is straightforward. If there is no avai&lérsion in
the queue to retrieve.et r i eve blocks and waits for a version to become available. Oth-
erwiser et ri eve makes the next enqueued value the current version, avaflatdccess
in the program; the previous version is lost. Next, the naretlayer sends a synchroniza-
tion AM to the producer containing the address of the freeixecbuffer indicating that the
buffer is ready to accept a new version; for efficient implatagon, this message should

be non-blocking.

4retri eve can also poll the network.
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The data copy on the consumer is not necessary if the MVVieatrversion is repre-
sented via F90 pointer. Instead of copying the data, theamphtation adjusts the address
of the F90 array descriptor to point to the buffer contairtimgnext version data. Similarly,
if the producer commits a value to an MM v1 from another MVVmvv2 andnvv2’s
current version will be dead after the commmiyv2’s current version F90 pointer is ad-
justed to point to a free send buffer wiv2; the former current version buffer ofvv2
becomes a send buffer. Liveness analysis@nm t’s optional argument i ve set to
. fal se. can determine when the committed value is not live.

We now describe several possible extensions to our pragatgplementation. The re-
guirement for MVVs to make progress is to have at Ieaseceive buffers per connection.
If there is not enough memory for buffering, this is a critizan-time error. However, the
run-time layer can implement a smarter buffering schenteerahan aborting the program.
For example, if there is an open connection with some pradiine has not been active
recently and none of the buffers is used, the connection eartdsed freeing some mem-
ory. Similarly, some unoccupied buffers from open conmeican be deallocated freeing
the memory. If there are no buffers to deallocate and moreangim needed, the program
should be aborted with the resource limit reached messagfe.thiat scientific applications
that can benefit from MVVs should not experience excessitfelting.

Another type of adaptation policy is actually to increase tlumber of buffers per
connection. Having more buffers enables to send the btréersynchronization AM ear-
lier and remove it from the critical path. Thus,abnmm t does not have a free receive
buffer, e.g, because there is not enough computation on the produceettap the anti-
dependence synchronization latency with, the run-timerlagay allocate an additional
receive buffer(s) in the hope to hide this latency. The eltrifering should be done care-
fully not to cause a memory shortage. A good heuristic wo@ddlimit the maximum
memory usage per connection. This would enable many ver$orrsmall size MVVs —
exactly what is necessary to hide the buffer reuse syncration latency without excessive

memory usage.
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8.6.2 Prototype implementation incaf c

We designed and implemented a prototype compiler and me-fiupport for MVVs in
caf c. The runtime uses Pthreads [82] and ARMCI with AM=af c translator was ex-
tended to accept a subset of the MVV specification. This suhcledes allocatable MVVs,
al l ocate,comm t, andr et ri eve primitives, which enabled us to compile and eval-
uate the performance of several parallel codes such as Semml the NAS SP and BT
benchmarks expressed via MVVs. The support forrthet i ver si on attribute was not
implemented in the Open64/SL front-end; instead an MVV entified by thenv_ iden-
tifier prefix. The prototype represents an MVV using a F90 faiand an opaque handle
to store the run-time state; this is similar to co-array espntation. The implementation
allows a fixed number of unconsumed versions per connedfi@have yet to find real sci-
entific codes for which smarter buffer management wouldyenefits and can justify the
development effort. The implementation uses F90 pointgrsathent to reduce memory
copies. It also uses non-blocking AMs or PUTSs for top efficiewherever possible. When
a version is committed from a large MVYV, the prototype useg@diitional send buffer(s)
to enable non-blocking RDMA PUT. If thei ve argumenttaconmm t is. f al se., F90

pointer adjustment is also used on the producer to avoid exémory copies.

8.7 Experimental evaluation

We used MVVs to implement kernels of three benchmarks: S@@emd the dimensional
forward and backward sweeps in the NAS BT and SP benchmpr§sz(| _sol ve sub-
routines). Using MVVs resulted in much cleaner code congpéoethe best hand-coded
variants in CAF becauseonmi t andr etri eve encapsulate the buffering, point-to-
point synchronization, and non-blocking communicatiomjck the programmer would
otherwise have to code explicitly. The performance of tmedltodes was measured on an
Itanium2 cluster with a Myrinet 2000 interconnect (RTC)sddbed in Section 3.3. Itis
the only platform where botbaf ¢ and ARMCI with AM support are available.
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8.7.1 Sweep3D

We expected the performance of MVV versions to be compatalitet of the hand-coded
multi-buffer one and, therefore, better than that of the Métkion for the cases when the
multi-buffer version outperforms MPI. Compared to the haptimized multi-buffer, an
implementation of the MVV abstraction adds extra overhe@tle sources of overhead
include extra messages to communicate the control infeomaligher memory require-
ments for buffering, and extra memory copies. In hand-og#ch programs, such over-
heads might be avoided because of specific application-lefgemation. For example,
hand-coded Sweep3D-3B uses three buffers per commumnicatis (1/J). When the sweep
changes the direction, it changes communication parteeegyping predecessors and suc-
cessors. Because of the ordering guaranteed by the watgfrerprogrammer knows that
it is algorithmically safe to reuse the same set of buffensesithe former communication
partner must have consumed the prior version and its budferéree and ready to accept
new data. However, the MVV run-time does not have such kndgdend uses five buffers
per communication axis: the current version buffer and agfesend and receive buffers
per communication direction. It is possible to reduce thismber to four by using only
one send buffer for both directions because the decisiontheh¢o reuse a send buffer is
purely local and does not involve synchronization with otimeages (as opposed to the
reuse of receive buffers). Note that Sweep3D and NAS BT anddgfmunicate several
times in the same direction (using the same receive butfar¥, the increased cache foot-
print is amortized and might affect the application only witee communication direction
changes.

Figures 8.13, 8.14 and 8.15 (see Section 8.2.2) present dradlgd efficiency of
Sweep3D of the 50x50x50, 150x150x150 and 300x300x300 @nokizes. Sweep3D-3B
represents the performance of the multi-buffer versionwé&p3D, the fastest available
hand-optimized parallelization. The MVV-based versionws roughly identical perfor-
mance to that of the Sweep3D-3B version for the 150x150x16030x300x300 prob-
lem sizes. It slightly (less than 0.5%) outperforms SweeBDfor the small 50x50x50
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problem size because it uses non-blocking AM-based syntation messages, while the
current version of the ARMCI library does not provide trulymblockingnot i f y used in
Sweep3D-3B. ARMCI’s notify executes a fence before senthieghon-blocking notifica-
tion PUT. Because theot i f y follows the non-blocking PUT immediately in Sweep3D-
3B, the PUT essentially becomes blocking, leading to a slgifformance degradation
for the small problem size. The effect becomes marginalferlarger 150x150x150 and
300x300x300 problem sizes because the communication t@ui@tion ratio decreases.
Note that both MVV-based and Sweep3D-3B versions show coabpgor better perfor-
mance than that of the MPI version (see discussion in Se8tibR).

The MVV-based version uses F90 pointer adjustment on baitiymers and consumers
to avoid extra memory copies and specifies the optionalge argumentta etri eve.
We also evaluated three other MVV-based versions to meaquugential performance loss
due to extra memory copies. The first version performed aatgig only on the producer
from the current version buffer into the send buffer. Theoselcversion performed a data
copy from the receive buffer into the current version butiarthe consumer. The third
copied data on both producer and consumer. All MVV-basediors performed roughly
identical, and performance fluctuations were statistiaaignificant in our experiments;
however, extra memory copies may degrade the performarsmnad codes.

In addition, we evaluated the effect when a consumer, r#ltlagra producer, establishes
the connection. This may happen when the consumer executes ra eve with the
i mage argument before the producer performs the firstmi t , and has the effect of
removing the connection establishment latency from theatipath. For regular codes, the
gain is amortized over many communications between the gaoticer and consumer,

thus, knowing the origin of communication has negligibleet.

8.7.2 NASBT and SP

Figures 8.25, 8.26, and 8.27 present parallel efficiencyekmcutions of NAS BT of A

(643%), B (102?), and C (62%) classes, respectively. The results were obtained on an Ita



235

4
©

o
3

o
o

o o °
w » (3]
T T
I I

Efficiency: Speedup/(Number of processors)
8
T
L

l{ —a— BT-MPI i
- © - BT-CAF
—— BT-CAF-MV

o
[

Il Il Il Il Il
16 25 36 49 64 81
Number of Processors

o

IN
©

Figure 8.25 : NAS BT class A on an Itanium2 cluster with a Mgti@000 interconnect.
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Figure 8.26 : NAS BT class B on an Itanium2 cluster with a MgtiB000 interconnect.

nium2 cluster with a Myrinet 2000 interconnect (RTC). BT-Mftands for the efficiency
of the standard MPI version (see Section 3.4). BT-CAF is ffieiency of the best hand-
coded CAF version, which uses a different buffer for eacbeste the forward sweeps and

backward substitutions, thus, avoiding the anti-depeceleynchronization due to buffer
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Figure 8.27 : NAS BT class C on an Itanium2 cluster with a MgtiR000 interconnect.

reuse altogether. BT-CAF-MV is the efficiency of the versibat uses MVVs to imple-
ment the forward sweeps and backward substitutions. BT-@AfFuses two MVVs per

dimension: one to communicate LHS border regions in the dodvsweep, the other to
communicate RHS borders in forward and backward sweeps.

For all problem sizes, the performance of BT-CAF-MV is rolygequal to that of
BT-CAF because (1) the latency of the anti-dependence sgnidation in the BT-CAF-
MV version is overlapped with computation and does not c¢buate to the critical path,
and (2) even though AM-based non-blocking synchronizatidche BT-CAF-MV is more
efficient than that of the@ot i f y implementation, the effect is minor due to significant
local computation. The performance of the MPI version is eahmat better than that of
both CAF versions

Figures 8.28, 8.29, and 8.30 show parallel efficiency forcaiens of NAS SP of A

SFor earlier RTC configuration, the performance of BT-CAF &TdMP| was almost the same. BT-CAF
version, and as a consequence, BT-CAF-MV, showed worsenpeaihce after a recent series of RTC software
updates. For the purposes of this discussion, comparingetiermance of the CAF versions to that of MPI

is not that important.
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Figure 8.28 : NAS SP class A on an Itanium2 cluster with a Mstr2000 interconnect.
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Figure 8.29 : NAS SP class B on an Itanium2 cluster with a Matr2000 interconnect.

(64%), B (102?), and C (62%) classes, respectively. SP-MPI, SP-CAF, and SP-CAF-MV
correspond to parallel efficiency of the standard MPI, bastlkhoptimized CAF, and MVV-
based versions. The structure of the forward sweeps andvaadlsubstitutions is similar

to that of the NAS BT versions. SP-CAF-MV uses one MVV per dasien that replaces
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Figure 8.30 : NAS SP class C on an Itanium2 cluster with a Matr#000 interconnect.

the buffer co-array used for communication in forward andkiard [ xyz] _sol ve
sweeps. Theonmm t andr et ri eve primitives remove the point-to-point synchroniza-
tion and non-blocking communication directives from theeas well as allow using the
local subscripts (cell indices) to specify parameters oficunication (see Section 8.4.3),
making the code simpler and more intuitive.

The performance of the SP-CAF-MV version is somewhat béitien that of the best
hand-coded SP-CAF version for classes A and B because SPMBA$-synchronization
messages are non-blocking. For the large, class C, probEmc®mputation dominates
this slight difference, so SP-CAF and SP-CAF-MV have royginilar performance.

8.8 Discussion

There are many options for simplifying producer-consungnmunication in CAF. One
can simply use MPI, which is designed for general two-sidethmunication. MPI
might introduce extra memory overhead (copies, registnatinregistration) and, if it

uses the rendezvous protocol, expose communication iateasulting in suboptimal
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performance. MVVs essentially encapsulate the multidsufommunication scheme
and can deliver higher performance than MPI. With MVVs, thedoicer always knows

the destination receive buffer on the consumer and using geéidter adjustment can
avoid extra memory copies, transferring data in-placeeriktively, the abstraction of a
stream/link/channel/pipe is also a good candidate forygredconsumer communication;
however, it requires an explicit connection and is likeledibit extra memory copies be-
cause the destination memory of communication is not knantih thhe value is read from

the stream.

MVVs bear resemblance to the Clocked Final (CF) model [1D6{,programmers are
more involved in the process of controlling versions whevettgping codes using MVVs.
First, the number of MVV versions per connection is expljcitefined by the program-
mer who specifies the minimum number of versions necessatidapplication to make
progress or for obtaining the best performance. Secoodm t andr et ri eve explic-
itly define and control versions. While the CF model guarasieterminacy and deadlock
freedom and is a more convenient abstraction for scientidieations, there is not yet a
parallel implementation of CF; thus, it is not yet clear wiegtCF can deliver high perfor-
mance. In contrast, MVVs are capable of delivering high grenance today for a large
class of scientific applications with producer-consumengcnication, while offering a
much simpler programming style compared to CAF without them

There are several reasons that influenced our decision te Ma¥/s a language-level
rather than library-based abstraction. First,tiié t i ver si on attribute fits well into the
existing type system. The compiler can check the correstoéd1VV parameter pass-
ing to thecomm t andretri eve primitives. The compiler can also use an opaque
handle to represent the run-time state of an MVV freeing tfeg@ammer from declar-
ing and passing around a special object. Second, the cangaileensure that accesses
to remote MVVs using the bracket notation are prohibitedvioica unexpected side ef-
fects when versions are retrieved. Thicadhmm t andr et ri eve primitives can be used

for MVVs of any user-defined type; a library-based implena¢éion does not permit such
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overloading in Fortran 95. Fourth, the compiler and runetioan establish connections
on demand, without programmer’s involvement, and use Fa@goadjustment to avoid
unnecessary memory copies because the compiler and rucaimy®| how MVV memory
is allocated/deallocated. Achieving the same in a libizaged implementation would re-
quire programmers allocate/deallocate memory speciatlysummarize, MVVs are more
convenient and expose more information to the compiler anetime as a language-level
abstraction.

Expressing high performance producer-consumer commiimnicé PGAS languages
is difficult. MVVs are a language-level abstraction for CAlatboth improves programma-
bility and provides more information to the compiler and-tume, which can tailor it to a
particular architecture to deliver the best performanag. r@search showed that MVVs are
applicable to a large set of scientific codes that includeefrant and line-sweep applica-
tions; they can also be used in loosely-synchronous apilica MVVs significantly sim-
plify development of wavefront applications, such as Sv@&epand deliver performance
comparable to that of the fastest CAF hand-optimized vaessamd comparable to or bet-
ter than that of MPI-based counterparts, especially if Mgdsurendezvous protocol for
send/receive communication, on a range of parallel arctuites. We counted extra lines
of code (LOC) necessary to implement CAF versions of Sweep@Dpared to the MPI
version. For Sweep3D-1B, this number is 12. For Sweep3D#3B,number is 70. The
MVV-based version has the same communication style as tHes&tBion and does not in-
troduce extra lines. Itis, however, questionable whetl@Clis a good metric to estimate
programmability gains. The total Sweep3D LOC is 2182; thember of LOC for buffer
management, communication, and synchronization is sroalpared to the computational
LOC. Nevertheless, our feeling is that implementing eitd& or MVV-based version is
much simple than implementing the Sweep3D-3B version; ez is not the number of
lines that matters, but the complexity of reasoning abouatroanication/synchronization
— where to insert these lines and how difficult it is to debug pnhogram. Programming

Sweep3D-3B is much harder than any other Sweep3D versiaubedhe programmer is
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responsible for orchestrating the anti-dependence sgn&tation pipeline (start-up, steady
state, and wind-down code), managing buffers in a circalginibn, and using non-blocking
PUT directives; this also requires relating events fronfed#nt loop iterations. Both MPI
and MVV-based versions hide this complexity inside the tiome layer. A good analogy
here is that programmers should not software pipeline & &mp critical for performance
by hand even though it would increase the code size by onlydifes. Also, MVVs
greatly simplify coding of line-sweep applications, suchthe NAS BT and SP bench-
marks, and deliver performance comparable to that of the Haesd-optimized MPI and
CAF counterparts. Based on our research, we believe that /& a promising exten-
sion to CAF.

As scientific community gains more experience using MVVsyauld also be inter-
esting to consider whether MVVs can benefit from extensiach @s GET-style remote
retrieve,commits and retrieves for partial versions, and an adaptiNfer management

strategy.
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Chapter 9

Toward Distributed Multithreading in Co-array Fortran

The success of a new programming language is imposed by iggitdus availability,
acceptable programmability, and its ability to deliverthigerformance on a wide range
of computation platforms. The growing popularity of hybgdllister architectures with
multi-core multiprocessor nodes creates a demand for CAR explicit language-level
multithreading that enables one to co-locate computatidh data and to exploit hard-
ware threads. This chapter preseardsfunctiongCFs) andcco-subroutine¢CSs), language

constructs to support distributed multithreading (DMTYOAF.

9.1 Motivation

Currently, CAF is an SPMD programming language with only tdmead of computation

per process image, as shown in Figure 9.1. Under this limitaeven the simple task of
efficiently finding the maximum value of a co-array sectioattis located in a remote im-
age memory and can be concurrently accessed by severakpriocages is problematic.
The local image must obtain exclusive access to the remeggraey section, fetch it over
the network, and find the maximum (or worse, use remote elemise accesses to find
the maximum if the communication is not vectorized) and llfygneelease exclusive access.
This code would have very low performance. Alternativelgpanputation can be shipped
to be co-located with the data that it accesses. On behalfexfueesting image, the remote
processor can acquire exclusive access to the co-arraprsémtally, efficiently find the

maximum among its local values, release exclusive accasseamd the result to the re-
guesting processor. However, with only one thread of coatprt per image, the logic of

the program would be much more complicated than it might bgeéeFform a computation,
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Image 1 Image 2 Image N

Figure 9.1 : Execution model of classical SPMD CAF.

the remote thread would have to interrupt its own computadind poll for remote requests.
Moreover, the question of how often to poll is a difficult pledn in itself.

The code to find a remote maximum can be significantly simplifieseveral threads
are available for every image and the language permits ospawna remotecomputa-
tion (or activity or thread the three are used interchangeably hereafter). Compnogati
spawned remotely have affinity to the remote memory and erai® to cope with the in-
terconnect latencies for accessing remote data inherehister and NUMA architectures.
The current image can spawn a remote activity without chranthie logic of the “main”
remote thread that would be solely responsible for compmurtatnd not for servicing re-
mote requests. While compilers could identify some piede®de that could be shipped
closer to data they access, it is unlikely that the compilesld be able to detect all such
computations.

Examples of such data structures are linked lists, treaphgt queues, etc.; their parts
are located in remote memory. Such data structures are cammsed in parallel search
applications and often require complerulti-stepaccesses due to pointer dereferencing.
Such accesses can be compiled into efficient code for padatafstructures located in a
node’s local memory. However, if a multi-step access isgretéd to a part of data structure
located in another node’s memory, the number of networlsttetions required is typically
proportional to the number of dereferencing steps; thigrsiqularly inefficient on cluster
architectures. Instead of accessing remote data throudfipraudevels of indirection over

the network, it would be better to declare the code corredipgnto a remote access as
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Image 1 Image 2 Image N

Figure 9.2 : Execution model of CAF with distributed multeading.

a subroutine and execute it in the remote image address.spaessence, this converts
remote data accesses into local accesses since code willentmegal to the data structure.

This is another example demonstrating a broader conceporopuatation shipping.
While a compiler could detect some remote accesses andwvidser intervention “ship”
them to the remote processor, it would not be able to detettoptimize all such ac-
cesses. Extending CAF with language-lelkicking and non-blockingco-function and
co-subroutine remote calls, analogous to classical remote procedurs, @aihances the
expressiveness of the language, makes it easier to usen@ sodes, and improves per-
formance of codes that heavily manipulate data structoestéd in a remote memory, as
we show in this chapter.

If a computation can be spawned remotely, there is littheadilty in supporting spawn-
ing a computation locally as well. Adding the ability to spaanother computation or
activity locally makes CAF a multithreaded language, assshn Figure 9.2. In fact,
not only does local multithreading remove a semantic insb@scy, but also it provides
an efficient mechanism for fully exploiting multi-core mpltocessor nodes. If several
computations within a process image are independent, teype executed concurrently,
utilizing all available processing power of the node, withthe need to create an image
per CPU core.

The language-level distributed multithreading concelptuzhanges CAF’s execution
model. Under this model, co-arrays should be considereccas\e@nient shortcut to “pas-

sively” access remote data. Each image would represkauadity domainand physically
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own a portion of partitioned global address space. Eachemaight have several threads
executing concurrently. From the language point of viewyreéhs no distinction between
computations initiated by local or remote threads. Anydlrean spawn or initiate another
thread in the local image or in a different remote image. fise general execution model
enhances CAF’'s expressiveness and simplifies programnhicgytain application classes
such as parallel search problems.

Distributed multithreading requires mechanisms to syoisize threads. CAF's criti-
cal section [86] is an inadequate, inflexible abstractiore Wglieve that usingpcksand
condition variabless a better way to synchronize threads within a process im&ge
inter-image synchronization, DMT can use tagged barrtagged point-to-point synchro-
nization, or eventcounts [99]

Below are a few detailed examples that further motivate daifyg the distributed mul-

tithreaded execution model of CAF.

9.1.1 Accesses to remote data structures

Without the distributed multithreading support, it is notsgible to implement, say, a local
linked list in CAF that can be efficiently accessed by remotages on a cluster. Remote
insertion or deletion of an element at a certain positionureg the ability to search the
list efficiently. The remote search might require many nekntcansactions, one for each
remote list element. On the other hand, each of these opesatan be coded as a subrou-
tine that is spawned inside the image that owns the remdteditist. With this approach,
remote insertion, deletion, or search requires only twavogk messages: to initiate a re-
guest and to return the result. This is a significant impraseinover the classical solution
in CAF. Similar arguments apply to other commonly used datactires that must be

accessed efficiently by remote images.

1Eventcounts are explored by Cristian Coarfa in his compatfiesis [29].
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9.1.2 One-sided master-slave programming style

To efficiently utilize all processors, many parallel seaatdorithms require a fair division
of work among processors; this usually amounts to a fairsthwi of an enormous search
space. A typical example is the traveling salesman problE&P] [104]. In a branch-
and-bound TSP implementation, a tree-like search spaagyes &nd the best known cycle
length should be used to prune the search space even if tteh se@one on a massively
parallel machine. Pruning creates the necessity for lod@hbeng the processors since
some of them might run out of work faster then the others. Tieblpm can be solved
using a master-slave paradigm. The master manages thibutisin of the search space
and the value of the best path length; the clients update aed/ghe master for the best
length and ask for more work. This scheme requires a dedigatecess to maintain the
state and to service requests, which can become a bottlenquirallel architectures with
very large number of processors such as Blue Gene/L [56].

DMT CAF enables an efficient and natural implementation autha dedicated mas-
ter process. When a processor runs out of work, it grabs @opast unexplored search
space from a different processor. In a simple case, a regppsif search space statesd,
“available for search”/"already explored”/"being expal’) is stored on a single processor,
called therepository processoR. Other processors spawn remote activitiegaio obtain
parts of the search space. This could be viewed as a one-andéap to the classical two-
sided master-slave approach. The programmer does notmsadi¢ture the computation
of the repository processor to periodically poll for andvess remote requests; the run-
time system takes care of that. The repository processoalsarperform useful work by
exploring a part of the search space. If the centralizedsiegy becomes a bottleneck, the
state can be distributed across several process imageslyCtistributed multithreading
would enable a much simpler implementation of a distribuégabsitory solution compared
to that in classical CAF.

Many applications in bioinformatics.g, parallel large scale phylogeny reconstruc-

tion [49, 34], and other areas that heavily rely on efficiesrtgtlel search can benefit from
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distributed multithreading. These applications can bggmmmed in three ways:

1. using a client-server model with one or more process{edjcatedo servicing re-

mote requests,

2. employing one or more extra threads per process imagepticitly service remote

requests, or
3. spawning remote threads on demand to access remote state.

In the first scheme, one or more processes do not performlusefls and CPU re-
sources might be wasted if they run on dedicated CPUs. Tmsheppen if a cluster
job scheduling software does not allow an asymmetric nurobprocesses per node (as
was the case for our experimental platform) or if it is notiad to start the master as an
extra process on one of the client nodes. Both the first anohseschemes require the
programmer to implement a two-sided communication prdtbgencoding requests and
marshaling their parameters and return values. In addifi@programmer must explicitly
create and terminate threads or maintain a pool of threalds &ble to service more than
one request at a time. The third approach relieves the progaa from implementing such
a protocol. Instead, the logic is implemented via co-funmtdico-subroutines (CFs/CSs).
Remote computations are created implicitly on demand armdigitly terminated by the
run-time when finished. The compiler and run-time marshaltirameters and return val-
ues without programmer’s involvement. Thus, the third apph provides the most flexible

and natural programming style.

9.1.3 Remote asynchronous updates

Some algorithms have shared state that is accessed frgghgmhany processors. On a
distributed memory platform, it is usually beneficial tovatize this state replicating it in
every memory for faster access. However, if a process medliie state, it must propa-

gate the change to other processors. Fortunately, mangitaigs, such as parallel search,
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have some tolerance to using stale state. The updates nebd apnchronized through-
out the system, but rather asynchronously propagated & ptiocessors, increasing the
asynchrony tolerance of a distributed algorithm.

A typical representative of such asynchronous updategigritpagation of the best cy-
cle length in a parallel branch-and-bound TSP, which is asdtie search pruning criteria.
Updating the best cycle length by spawning asynchronoustesactivities is efficient and
natural for the following reasons.

The event of finding a shorter cycle by a processor is comlay/nchronous with
respect to other processors. If barriers were used to padpdlge best cycle length, the
application would advance in lock step; this is an oversymicized solution that is not
asynchrony tolerant, and any delay on one processor wilecaulelay on the other proces-
sors. A non-blocking broadcast cannot be used becausestragrotect the best length
from concurrent updates by several simultaneous broagidést co-array is used to store
the shortest length on every image, GETs and PUTs on thisrag-must be protected by
synchronizatione.g, a distributed lock. If the image that found a shorter cysléoi up-
date its length on every other image, it has to acquire thelalised lock, read the remote
co-array value, test whether the new value is still smablecduse meanwhile another pro-
cessor might have found even a shorter cycle and update@stéeimgth), and if so update
co-array value in remote memory, and release the lock.

A better solution is to spawn asynchronous remote acts/gie every image to update
the shortest cycle length. Such an activity spawned on impaagguires a lock,, local
to p, updates the best length, if necessary, and reldas&sis approach is more efficient
because synchronization necessary to protect the beshlisrigcal to each process image.
The program code is also cleaner because remote operatmiggacally grouped into a

user-defined multi-step operation, which is spawned andwuggd remotely.
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9.1.4 Other applications

DMT enables chains of activity invocations, where an attivi, spawns an activityi,
that, in turn, spawns an activity; and so on. Using chains, global propagation of the
shortest tour length might use a logarithmic depth tregetiired distribution pattern. High-
Performance Linpack Benchmark [93] uses a source-levebharking broadcast, a good
candidate to implement using DMT activity chains. Activigains can also be used to
implementcounting networkg10] and diffracting trees[110] on a distributed memory

machine.

9.2 DMT design principles

The goal of DMT is to enable co-location of computation withtal to reduce exposed
interconnect latency and to exploit hardware paralleligthiw a cluster node. We believe
that DMT design must provide a uniform mechanism to suponiate and local activities.
In this section, we overview run-time support necessanDIT and our major design

decisions.

9.2.1 Concurrent activities within a node

With the increasing number of available CPUs in multi-condtiprocessor cluster nodes,
it is essential that the CAF parallel programming model eighis parallelism. There
are several ways to do it. First, programmers could use b&k @nd OpenMP.
CAF provides locality control, while using OpenMP within &AE process image on a
multiprocessor/multi-core node would enable one to expbaip-level or task parallelism
(via SPMD regions); however, OpenMP is not well suited faursive divide-and-conquer
or nested parallelism. Second, several CAF images can rtmmone node. Neither
of these is flexible enough if an application benefits fronfedént forms of parallelism
expressed via several concurrent activities within one @A&ge. Several concurrent ac-

tivities naturally require some sort of thread support fribra run-time layer; we assume
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that each run-time thread executes only one activity at a.tifime questions to answer are
whether run-time threads should be cooperative and how rmoamgurrent threads should
be allowed.

Cooperative threads have run-until-block semantics. Tefyon the threads to ex-
plicitly relinquish control once they are at a stopping poiTherefore, the number of
concurrently running cooperative threads cannot exceeduimber of node’s processing
elements. For some applications, cooperative multithrgpoffers some advantages be-
cause context switches for cooperative activities happ&rel-defined points; moreover,
when there is only one run-time thread executing coopexaotivities within a process,
these activities do not need to be synchronized. Howevactivities execute long compu-
tations, other activities cannot run and the system becamegesponsive. In particular,
this precludes servicing (responding to) requests froneroittnages. Codes that require
responsiveness have to be structured to break a long cotigpuitsio smaller pieces and
yield control in between to attend to other activities. Tisis rather strong demand that
would make the execution model less appealing to scientifignammers. In addition, the
requirement of cooperative multithreading will restricetcompiler’s ability to automati-
cally break long computations. We believe that the progrargmmodel should not require
activities to be cooperative. DMT activities are preemfgabe., an activity can be pre-
empted by another activity at an arbitrary point. An impletagion, on the other hand, can
provide an option to execute a program with the guaranteesayerative multithreading;
which might be especially useful for programs with only one-time thread executing
cooperative activities within a process.

If an operating system (OS) provides support for preempttbeadse.g, Pthreads,
a DMT can be implemented efficiently by exploiting these #ai®to execute activities.
However, operating systems for the largest scalable sgstBlue Gene/L [56] and Cray
XT3 [38], currently do not provide support for OS multithd&ag. With only one thread of
execution, it is unlikely that one can implement DMT to delwigh performance. Instead

of relying on the operating system to context switch thre#tals compiler would have to
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insert explicityi el d instructions in the code that relinquish control to thewatisched-
uler, which multiplexes activities. How to plage el d instructions to also deliver high
performance is outside the scope of this work. Fortunatiere is a strong indication that
thread support will be available on these architectureserfuture as they move to multi-
core processors with larger number of cores. The HPCS progmag languages X10 [69],
Chapel [39], and Fortress [7] will require OS threads to &ffidy support concurrent activ-
ities. ZeptoOS [92], an open-source Linux operating systesigned to work on petascale
machines such as Blue Gene/L and Cray XT3, is a good candidlaeable OS thread
support on these two architectures. Interestingly, thea@$ development team recently
announced plans to support function-call shipping for k88ed petascale machines [92]
(8/2/06). In the following discussion, we focus on the casemthe OS provides support
for threads.

Another important issue is how many concurrent computatican/should be active
simultaneously. We believe that the programming model khoanceptually allow an
unbounded number of concurrent activities so as not toaiesthe programming style
by the inability of the system to make progress when too mantiyites are blocked.
An implementation can execute each activity in a separatéh@ad. Unfortunately, the
performance degrades when there are too many concurremtyng threads. However,
most applications do not need many concurrent activitiepragmatic approximation to
the conceptual model is to maintaipaol of threadshat execute queued pending activities
one after another. The minimum size of the pool has to be Spe¢o the run-time by the
programmer because it depends on the algorithmic propestithe application and there
are no known techniques to determine it automatically ingleeral case. The number
of concurrent activities also affects performance. Tooynm@mncurrent activities leads to
performance degradation because of context switches ahe cantention. Too few might
lead to poor responsiveness. Since the performance aspgeallel programming model
is very important, an implementation is encouraged to gl®vknobs”,e.g, thread pool

size, to tune the performance of an application.
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We believe that any implementation should provide at leastrhechanisms to spawn
asynchronous activities. The first should enable an unbedindmber of concurrent activ-
ities, but might not deliver the best performance. The séahould enable only a certain
number of concurrent activities,g, limited by the thread pool size. The implementation

should also expose facilities to control the parameterb®thread pool.

9.2.2 Remotely initiated activities

Any distinction between activities initiated locally omnetely should be minimized. Local
activities are created by activities running within a psgenage and can be added for im-
mediate scheduling. Remote activities initiated on precemgep are added for schedul-
ing only afterp has serviced its interconnect interface incoming quewsAn attend to the
network in two ways, using an interrupt-based or pollingdzhapproach. Which approach
is used determines the responsiveness or how quickly a eynottiated activity can be
added for execution. We discuss each of these approache®in t

The interrupt-based approach is used by the ARMCI commtiaitébrary. ARMCI
uses a dedicated thread, called the server thread, to sénaaetwork. Conceptually, the
server thread sleeps waiting for a network request to ariVeen a request arrives, the
thread is unblocked and processes the request. This meaohprnovides good responsive-
ness because remotely initiated activities can be addestferduling with little delay. If
a node has an unused CPU, the server thread can opportaihygtiall the network rather
than sleep waiting for a requéstn this case, polling decreases the response time, which
benefits single threaded programs; however, server thihadgis likely to consume extra
CPU cycles in a DMT multithreaded program, limiting its dpgbility. Because handling
of remote requests is asynchronous, hence the name intéaspd approach, with respect
to image’s running activities, the server thread can causesirable interference, for ex-

ample, by evicting a portion of running activities’ cachesda a data copy.

2This isnotthe polling-based approach because the server threadiisgpible network interface, not an

application thread.
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The polling-based approach uses the application’s ths¢dd(attend to the network
at well-defined points. There is no server thread; insteaohote requests are serviced
when application code calls either run-time layer funci@mplicit polling) or an explicit
function,e.g, pol | . The advantage of this approach is that remote requests@ressed
at well-known points in the program, thus, localizing theenference caused by processing
remote requests to these places. The disadvantage of fvisaah is that the node may
not be responsive to the network requests, for instancen e application thread(s) is
performing a long local computation. For codes that neepaesiveness, programmers
would have to insert explicit polling instructions in longraputations.

If the execution model is restricted to the polling-baseorapch, the compiler has very
limited capabilities to insert polling instructions autatically. Compiler-inserted polling
instructions are not “controlled” by the programmer. Thaydthe effect of asynchronous
request processing, analogous to the interrupt-base@aqpr This violates the assump-
tions of the polling-based approach and nullifies its adsg@t Moreover, if the architecture
does not have thread support, polling (explicit, implieind/or compiler-generated) is the
only option to make progress.

The polling-based approach would pose an extra burden oscthatific programmer
to insert explicit polling instructions. It also severebgstricts the ability of a compiler to
automatically insert polling instructions, which is vit@r supporting multithreading on
architectures without OS thread support. The interrugebapproach provides better pro-
grammability and does not restrict the compiler to autooadlyy insert polling instructions,
but might lead to degraded performance due to asynchroradascdpying or activity in-
terference. In summary, none of the approaches provideg&/arsally good solution. We
believe that the programming model should not sacrifice rarmmgnability and shouldot
guarantee that remote requests are processed at certe@s ptathe code. Under this as-
sumption, the compiler is also free to insert polling instrons. An implementation may
provide support for both interrupt-based and polling-bleeggproaches as well as the ability

to explicitly disable/enable processing of remote recgiest
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9.2.3 Host environment of activities and parameter passing

DMT must provide the ability to co-locate computation withta. In CAF, data resides in
a particular process image, specified explicitly by the progner. The host environment
of an activity must naturally be the target process impg&here the activity executes.
Each activity should be able to access co-arrays on any iraageell as global (SAVE,
COMMON, MODULE) and heap variables pt

Programmers should be able to pass values to newly credigdi@s and receive re-
sults back. Locally created activities can access thesesalirectly since they are sharing
the same process memory. A pragmatic approach to passiagetars to a remote ac-
tivity is to make a “snapshot”, or closure of values, at sp@oemt and make these values
available to the activity. Similarly, when activities retuvalues to the origin image, they

must carry the values back and place them in the result tasatthe origin image.

9.2.4 Synchronization

Concurrent activities must be able to synchronize. We belieat synchronization prim-
itives must be built on widely-accepted concepts and musimimduce significant over-
head. DMT provides different mechanisms for intra-image ier-image synchroniza-
tion. Locks and condition variables [82] are good candisl&e synchronization of local
activities. They are familiar to programmers and, in theealg of contention, do not in-
cur much overhead. We assume standard (release consjssencgntics for locks where
a lock executes a local memory fence operation that propagasults of writes into the
node’s memory making them visible to other threads activhemode.

Process images are synchronized by CAF’s barrier and teaamgynization primitives
called byone of the activities running within each image. Inter-imagedyronization
primitives should be extended to use an additidaglparameter, whose interpretation is
user-defined. Tags enable several synchronization canpexiprocess image, executed by
different activities. In some sense, tags enable synchation of particular remote activ-

ities, and each image can patrticipate in several such sgn&ation events. The number
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of tags is defined by a particular implementation. It is pragmto assume that a tag is
represented by a 64-bit integer, so the number of availagie $hould not be a problem.
Locks and tagged inter-image synchronization can be cosaio synchronize groups of
activities from different images. An alternative approaekplored by Cristian Coarfa [29],

is to use eventcounts [99] for both inter-image and intragesynchronization.

9.2.5 Extensions to the memory consistency model

DMT introduces a few additional rules for CAF’'s memory catsncy model defined in
Section 3.1.6.

Locks and condition variables assume the standard releasgistency. Accesses
to variables declared with theol at i | e attribute have the same semantics as in For-
tran 95 [5]. These two conditions allow the compiler to paricstandard sequential op-
timization in between synchronization points to deliveghiscalar performance. DMT
should provide docal memory fence operation that propagates results of writestire
node’s memory making them visible to other threads activéthemode, to be able to write
language-level primitives for intra-image synchroniaati The DMT lock release opera-
tion has an implicit local memory fence to make the writeshaf thread leaving a critical

section visible to other node’s threads.

An open question.

It is not entirely clear what the memory consistency modelthbe for remotely-spawned
activities, especially for chains of remotely-spawnedvéets. There is not enough expe-
rience with using distributed multithreading in scientifiedes to define the exact model
yet. We describe two candidates.

The first is more intuitive for the programmer, but may causgqgrmance degrada-
tion. A spawned activityd “knows” the execution history of the origin activity, which
includes local co-array reads/writes, co-array PUTs/GE¥ischronization calls, and com-

pleted activities performed b§ prior to spawningA. Intuitively, A should observe the
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a=1 cosubroutine foo cosubroutine bar

a[2] = 2 x2 = a[ 1] x3 = a[1]

a[3] =3 y2 = a y3 = a[ 2]

call foo()[2] z2 = a[ 3] z3 = a

x1 =b call bar()][3] b[1] = 10
return return

(a) code onimage 1 (b) f oo onimage 2 (b) bar onimage 3

Figure 9.3 : Activity chain (note thgt] denote remote co-array references).

results of these operations when it starts. Likewise, wheaturns,O should observe the
results ofA’s execution up tod’s return point. Pseudocode in Figure 9.3 shows a scenario
for a chain of activities initiated using blocking spawn. dgel spawns an activity oo
on image2. In turn,f 00 spawns an activithar on image3. a andb are co-arraysx1,
x2,%x3,y1,y2,z2, andz3 are local variables. The value g2 should bel; the value
of y2 should be2; but what should be the value p2? If f 00 spawns an activitpar on
image3, andbar reads the value A, this value should b&. Thus,x3 should bel, y3
should be2, z3 should be3. Implementation techniques that ensure #fais equal3, but
z2 is equal to something else, and offer performance gain dileelynto exist. Due to this
observation, the value @2 must be2. Finally, the value ok1 on imagel should bel0
afterf oo returns.

One feasible implementation strategy is to execute a mefeaope right before spawn-
ing (cal I in Figure 9.3) a new activity and right before a spawned dgtiketurns
(return in Figure 9.3). The memory fence in a multithreaded envirentirtcompletes
outstanding memory operations issued by the activity ratren by all activities running
within the image. The overhead of memory fence operatiomgghtrbe high for fine-grain
activities. While a CAF compiler could possibly uncover oppnities to eliminate or
weaken fences in some cases, an implementation may alsorsinoms to indicate that a
memory fence is not necessary.

Our second memory consistency model is less intuitive fepttogrammer, but allows
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cosubroutine foo(a, n) cofunction bar (i)
integer, intent(IN) :: n integer, intent(IN) :: i
integer :: a(n)[=*] doubl e precision bar

end cosubroutine foo end cofunction bar

(a) co-subroutiné oo (b) co-functionbar

Figure 9.4 : Examples of CS and CF declarations.

an efficient implementation that can potentially hide alhetounication latency. Under this
model, an activity spawned in imagecan observe only results of PUTs issued by the
spawner t@ prior to spawning the activity (similar to the semantics lué tveak notify).

This guarantees only that the valueydf is 2; x2 andx 3 need not bd.

9.3 Language support for DMT in CAF

This section defines a small set of language extensions tdiattibuted multithreading to
CAF.

9.3.1 Language constructs

e Thecosubrouti ne (CS) andcof uncti on (CF) keywords are used to declare
a subroutine or a function that can be spawned. Figure 9wshgo declaration
examples. The nt ent attribute [5] specifies the intended usage of a CS/CF (CS
for short) dummy argument. nt ent (I N) indicates that CS must not change the
value of the argumenti nt ent (OUT) means that CS must not use the argument
before it is definedi nt ent (1 NOUT) argument may be used to communicate in-
formation to CS and return information. If the intent atti® is not specified, it is
i ntent (1 NOUT) .

e Thecal | , spawn andshi p keywords are used to spawn CS/CF remotely or lo-
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cally. cal | is used for blocking spawning; it is a “syntactic sugar” $grawn that

is used for non-blocking spawningpawn returns an explicit handle used to await
the completion of the activity lateshi p is used for non-blocking spawn without a
return value (note that CFs cannotdlei p-ed because they always return a value).
By analogy to local and remote co-array accessak] , spawn, shi p, or CF invo-
cationwithout[ ] (brackets) indicate than an activity is initiated locallg,shown in
Figure 9.6.cal | , spawn, shi p, or CF invocatiorwith [ ] (brackets) indicate than
an activity is initiated remotely in the process image sjpettiin the[ ] , as shown in

Figure 9.7.

e Ther epl y keyword-statement is used by the CS/CF to return valuestsghwner
and to enable the spawner to continue execution, if the spaisrblocked waiting
for the spawnee’s reply. Note thaepl y is not equivalent to et ur n; the spawnee
might proceed execution afteepl y until it returns (executing aet ur n). Fig-

ure 9.5 shows an example 0épl y usage.

cosubroutine foo(int a)
integer, intent(INOUT) :: a
a=a+1
I return the value of a to the spawner inage

reply
I perform sone additional work
call bar(a)

end cosubroutine foo

Figure 9.5 : Using a epl y to returnl NOUT andOUT parameters to the spawner.

e Theawai t repl y(handl e) construct is used to await the completion of the
activity initiated via a non-blockingpawn that returned handleandl e. Fig-

ures 9.6 (3) and 9.7 (3) show the usagawai t reply.

e The sync keyword-statement completes co-subroutines that werersggh with

shi p, as shown in Figures 9.6 (4) and 9.7 (4).
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Theget _i d() intrinsic returns the activity ID, a unique number withiretprocess

image index for each activity, constant for the lifetime o activity.

Theget _spawner _i mage( ) intrinsic returns the process image index from which

the activity was initiated.

Theget _spawner _i d() intrinsic returns the ID of the activity that spawned the

current activity.

Typet ype( CAFMut ex) declares a mutex object for intra-image synchronization
(see Section 9.2.4¢af _| ock( nut ex) andcaf _unl ock( nut ex) acquire and

releasarut ex.

Typet ype( CAFCond) declares a condition variable for intra-image synchroniza
tion (see Section 9.2.4)af .cond_wai t (cond) puts the activity to sleep on a
condition variableceond. caf _cond_si gnal (cond) wakes up an activity sleep-
ing on the condition variableond; caf .cond_br oadcast ( cond) wakes up all

such activities.

Thel ocal _-menory _f ence() intrinsic flushes all writes of the current activity to
memory. It can be used to write codes with data races thatreegimonger ordering

guarantees.g, for custom intra-image synchronization.

Theyi el d keyword-statement instructs the run-time to yield the akea of the

current activity.

The pol | keyword-statement instructs the run-time to process relyanitiated

activities.
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1| call foo(...)

f 00 executes in the context of the local image

and the spawner is blocked uritibo replies

2| a=mbar(...)*i +5

bar executes in the context of the local im-
age; the spawner is blocked urttihr replies at

which point the statement is computed

handl e = spawn foo(...)

f 00 executes in the context of the local image;

3 the spawner continues execution and must block
call await_reply(handle) in awai t _r epl y until f oo replies
f 00 executes in the context of the local image;
ship foof...) the spawner continues execution right away and
: sync never waits for epl y; sync blocks until such
spawns complete (by explicit reply or return)
bar 1, bar 2, andbar 3 executeconcurrently
a = barl(...)xi + in the context of the local image; the spawner is
5 bar2(...) +
bara(...) +7 blocked until all three reply at which point the

statement is computed

Figure 9.6 : Locally initiated activities (no] after CF/CS; the spawnee image is the same

as the spawner image).

9.3.2 DMT semantics

Declaration

The cosubr out i ne andcof unct i on keywords are necessary for the declaration of

a CS/CF to enable separate compilation. They indicate tongiter that the program

unit requires special calling convention and parametedlvagn Figure 9.4 shows two

declaration examples.
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1| call foo(...)[p]

f 00 executes in the context of the spawnee’s

agep; the spawner is blocked titloo replies

m-

2| a=bar(...)[p]*i+7

bar executes in the context of the spawnee’s
agep; the spawner is blocked untilar replies

at which point the statement is computed

m-

e’s
nd

sync

handl e = spawn foo(..)[p] f oo executes in the context of the spawne

3 imagep; the spawner continues execution 3
call await_reply(handle) blocks inawai t _r epl y until f oo replies

f oo executes in the context of the spawne

ship foo(...)[p] imagep; the spawner continues execution rig

4 away and never waits farepl y; sync blocks

until such spawns complete (by explicit reply

return)

e’s
ht

a = barl(...)*i +
5 bar2(...)[p] +
bar3(...)[q] + 7

bar 1, bar 2, andbar 3 executeconcurrently
in the context of their images: locad,andq re-
spectively; the spawner is blocked until all thr

reply at which point the RHS expression is co

m_

puted

Figure 9.7 : Remotely initiated activities (the spawneegms specified ifi | ).

Execution and execution context

A CS/CF spawned on imageis said to be executed in the context of imggeThere is

little difference between locally and remotely-spawned C& CS behaves as if it were a

thread running in imagp.

A CS can access co-array data and private data of inpageg, COVMON, SAVE,

MODULE, and heap variables. The co-array local part for a CS is tkdluat resides in the



262

cof uncti on bar () cosubrouti ne bar_sub(bar_res)
i nt eger bar integer, intent(QUT) :: bar_res
bar = ... bar res = ...
end cofunction bar end cosubroutine bar_sub
(a) co-function (b) equivalent co-subroutine

Figure 9.8 : Conversion of a co-function into the equivatmsubroutine.

spawnee imagp memory. A CS can access co-arrays on other images. CSs dai-par
pate in intra- and inter-image synchronization. CSs catatk private variables as well as
co-arrays; however, remotely-spawned CSs cannot all@esthocate parameters or return
pointers. CAF intrinsic functions are computed relativeniagep. A CS can call sub-
routines/functions and can also spawn CSs. CSs can perfortraaly long computations

and block in synchronizatidror 1/0.

CSI/CF co-space

A co-array declaration or allocation defines a co-shape tesedmpute the target process
image index of a remote co-array access. On the contrary,de€l&ration does not define
any co-shape. Instead, a CS/CF has an implicit 1D co-shape which corresponds

to process image indices in the range numi mages()]. The target process image
index of acal | , spawn, shi p, or co-function invocation can be specified as an integer
numberi, : € [1, numi mages() ], or using the interface functions GAF_WORLD, group,

Cartesian, or graph co-spaces (see Chapter 5).

Blocking spawning and semantics otal |

A cal | used to initiate a blocking CS is just “syntactic sugar” foran-blockings pawn

completed right after it was initiated as shown in Figure 9.9

3Note that a deadlock is possibkeg, the spawnee tries to acquire a lock held by the spawner and th
spawner is blocked ical | waiting for the spawnee toepl y. DMT does not prevent deadlocks; it is

programmers’ responsibility.
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t mpHandl e = spawn foo(...)[p]

call foo(...)[p] call await_reply(tnpHandl e)

(a) blocking spawn (b) equivalent non-blocking spawn

Figure 9.9 : Blocking and equivalent non-blocking CS spawn.

Figures 9.6 (1,2) and 9.7 (1,2) present the blocking stylpafvning local and remote
activities. If no brackets are present, a CS/CF is spawn#ttitocal image; if brackets are
present, a CS/CF is spawned in the image defined by the eigraesshe brackets. Even
though the statement in Figure 9.6 (1) looks like a regulatr&o 95 subroutine call, its
semantics are different as follows from the discussionwef@o-functions, Figures 9.6 (2)
and 9.7 (2), are always blocking because their return vaoesecessary to execute the
statement. A co-functiobar is converted into an equivalent co-subroutivee _sub by
passing the return value as an extra argunbamt_r es and rewriting all assignments to
bar as assignments tmar r es; Figure 9.8 shows an example of such a conversion. After
bar _sub replies, the value returned in thar _r es variable is used in computation in the
place of the corresponding function call.

Using these two transformation, all blocking CF and CS sgza®an be converted into

the form shown in Figures 9.6 (3) and 9.7 (3), which is the foctiour further discussion.

Semantics of non-blockings pawn

The spawn construct creates a spawnee activity that runs concuyrenmith the
spawner. The spawner does not block. The spawner repredentspawnee via a
spawn handlege.g, t ype( DMIActi vi ty) : : handl e. When the spawner executes a
awai t repl y(handl e), it blocks and waits for a reply from the spawnee; after the re
ply is received, the spawner continues execution. Them@tNOUT andOUT parameters
become available to the spawner at the poirdwdi t _r epl y.

Statements with several co-function caksg, in Figures 9.6 (5) and 9.7 (5), are of

particular interest. All three CFs can be executed conotlyggerhaps in different process



264

images. The order of evaluation is not defined and full cdmver side effects is left to
the programmer. To clarify the semantics, let us consideistatement in Figure 9.7 (5).

It is transformed into the following equivalent piece of epdssuming CFsur;, i € [1, 3],
were converted into C3&r;_sub. The CSs execute concurrently and all three intermediate

temporaries are available after the las@ai t repl y.

hl = spawn barl _sub(..., tnpl)
h2 = spawn bar2_sub(..., tnp2)[p]
h3 = spawn bar3_sub(..., tnp3)[q]

call await_reply(hl)

call await_reply(h2)

call await_reply(h3)

a =tnpl+xi + tnmp2 + tnp3 + 7

Fortran 95 allows but does not mandate short-circuit evi@mnaf boolean expres-
sions [5]. Similarly, DMT allows but does not mandate shortuit evaluation of boolean

expressions containing CF invocations; the choice is ¢eft particular implementation.

Semantics ofr epl y

Ther epl y keyword-statement is a “remote return” that unblocks trensger and returns
the values ol NOUT andOUT parameters to the spawner. If the spawner if blocked in a
awai t r epl y statementy epl y allows it to continue execution. Only ormeepl y is
allowed; execution of more than onepl y in the same invocation of CS/CF is a critical
run-time error. If a CS/CF returns and nepl y has been explicitly issued, the run-time
layer deliver an implicit epl y to the spawner. At the spawner side, all state associated
with the activity is deleted when the matchiagvai t r epl y executes. The spawnee
activity can; however, continue execution until it returns

Only CSs/CFs can executeepl y. Callingr epl y in a regular Fortran 95 subrou-

tine/function results in a compile-time error.

Termination of concurrent activities

An activity terminates upon execution of an explic#gt ur n or when it reaches the last

statement. If it has not executed apl y, the run-time sends an impliaitepl y to the
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spawner. All state associated with a terminated activitgrenspawnee’s image is deal-
located. Fortrarst op [5] statement aborts the entire program and terminatesrtieeps

image; as a result, all activities within the image are teated.

Parameter passing

Parameter passing conventions for locally- and remotefyweed activities are slightly
different, but we believe that this is necessary to reduegtmad of spawning for local
activities. Locally-spawned activities run in the sameradd space as the spawner. In this
case, parameters are passed using the same rules as fanFstsubroutine parameter
passing; there are no restrictions. However, remote #esuwtannot access (non-co-array)
arguments directly. Whesipawn executes, the spawner marshaléand! NOUT non-co-
array parameters by packing them into a buffer and transtgthem to the target process
image, where the run-time layer makes them available fosffavnee. Upon execution
of arepl y, the spawnee marshdltNOUT and OUT non-co-array parameters and trans-
fers them to the spawner’s image, where the run-time laypacks them into the proper
variables. The lifetime of a remotely-spawned activity'gianents is the duration of the
activity. To marshal parameters, it is necessary to know 8iees; therefore, there are
additional restrictions on the types of arguments passeehtotely-spawned activities.
Non-co-array arguments of a remote CS are allowed to be kwzdérs, arrays, and
Fortran 95 pointers of primitive and user-defined types dbagesubroutine/CS/CF point-
ers. Parameters of user-defined types with an allocatabp®iater fields (either in the
parameter type itself or one of its field types) are passedshgllow” copy. Otherwise,
they would require transmitting of all data reachable bygammeter pointer components
to the remote process image. This would degrade performamease the number of side
effects, and complicate the implementation. Most impdlyait would defeat the purpose
of shipping computation closer to data if the computatiorstrag all data linked with it
to the remote memory. Because parameter packing/unpaakiigommunication incurs

overhead, it is recommended that programmers do not pagsdatual arguments to CSs.
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However, this is purely the programmer’s decision. One @¢@ven implement commu-
nication, packing/unpacking of strided communicationnotunication aggregation, etc.
using CSs that transfer data as parameters.

Marshaling requires knowing parameter sizes and shapessizé and shape of scalar
arguments are always known. In Fortran 95, the shape of paegmeters is defined by
their declarations with dimensions declared in terms otdjpation expressions [5¢.qg,

i nt eger a(N+1), whereNis also a parameter to the subroutine or a global varfable
In CAF, global variables referenced in specification exgiss are private to each image
and may have different values on different images. One mays® global variables in
specification expressions of a CS/CF; this is a compile-tiveck. If a value of a global
variable needs to be used, it can always be passed as anrgxtnaeat to CS/CF. With this
restriction, all array and co-array shapes are properledsioned when evaluated on the
spawner or spawnee. If a parameter is passed by Fortran®&paohe caller passes a dope-
vector that specifies the shape information necessary foshrabng. If Fortran 95 pointer
points to a strided memory section, it is likely that an inmpéntation would compact
the section, transmit the contiguous message over the netand adjust the Fortran 95
pointer on the spawnee to point to the contiguous memoryosecbrresponding to the
parameter data. DMT cannot support marshaling of parasetiéh unknown sizes.g,
array arguments with an implicit bound.

Co-array arguments are passed differently than Fortrara@i&bles. A co-array exists
in the spawnee’s image, so no co-array data is transfemstedd, the co-array parameter
becomes local to the spawnee’s image, as if the argumentagseg in the context of the

remote image (see Section 9.4).

Semantics ofshi p

Ther epl y construct incurs extra overhead if the corresponding spawemote; thus,

if the reply is not semantically necessary, it should be @i One example is a CS that

“Here, we also assume that variables of a host subroutineked!” to the spawnee.
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updates a remote counter and returns nothing to the spawmather example is a CS
that we developed for a fine-grain implementation of the Raméiccess HPC Challenge
benchmark [1]. It performs remote XOR updates of random migogations; we present
pseudocode and description in Section 3.4.3. Sending@ y message for each XOR
update would effectively reduce the interconnect bandwadtilable for sending updates
by half. Theshi p operator shown in Figures 9.6 (4) and 9.7 (4) is designed ddes
that spawn many non-blocking remote computations, for wimdividual replies are not
necessary. A shipped co-subroutine is not allowed to retwadue. Thus, it can have only
| Nparameters (a compile time check).
The spawner of a co-subroutii@o does not block and does not have any language-

level state €.g, handl e) to check whetheir oo has completed. Ahi p-ed CS may com-
plete by either returning or executing @pl y statement. Theync keyword-statement

waits for the completion of activities spawned gihi p.

Semantics ofsync

shi p-ed activities belong to ahip-epoch or epoch for short. An epoch is defined by
execution of successivgyncs. Eachshi p-ed activity belongs to only one epoch. Each
epoch belongs to ship-context By analogy to Cilk [63], a subroutine/CS/CF invocation
implicitly creates a ship-context; the subroutine retunplicitly completes ¢ync) all
incomplete activities hi p-ed from the context and destroys the ship-context. We adopt
these semantics to provide Cilk-like activity invocatidos local, and remote, activities.
This benefits programmability of codes with recursive galiain, and the programmer
does not have to think about explicit completions of shiptegts. A unique program-level
ship-context is live for the duration of the prograsy.nc completes alshi p-ed activities
within the current epoch and starts a new epoch. nbisa collective call.

Enforcing an implicisync at the end of a (co-)subroutine restricts how a ship-epoch is
defined. Some codes do not need to know at all whethep-ed activities have completed

because they can obtain this information from the algorithpnoperties of the applica-
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tion. For instance, one would needgbi p a chain of activities to implement counting
networks [10]. However, the result does not need to be retlta the original spawner
through the “reversed” multi-hop chain; it can be sent diyeto the original spawne®

if O’s index is passed along the chain. If the subroutine/caesutmer et ur n enforces
the completion of thesehi p-ed activities, it exposes the synchronization latency. We
suggest to usemosync directive at the start of a (co-)subroutine to not createvastep-
context. Activitiesshi p-ed from such a subroutine belong to the current ship-epodh a
ship-context.

To give finer control over the management ®hi p-ed activities, it might be
useful to have a directionadync(p), which completes allshi ps destined top.
Another useful extension might be to support explicit skmchs,e.g, usinge =
start _shi p_.epoch() andend_shi p_epoch(e). sync(e) completes alshi ps

from the epoch with the 2.

9.4 DMT implementation and experience

We designed and implemented prototype sugpiort DMT and evaluated function ship-
ping for several codes such as TSP and RandomAccess. The Dbtdtype also

supports the run-time aggregation of compiler-recognizeelgrain activities (see Sec-
tion 9.5.2). Currently non-supported features includefuetions (instead, a program-
mer can use an equivalent co-subroutine with the e®t& argument), co-subroutine
parameters of user-defined types, subroutine pointers anaimeters passed by For-
tran 95 pointer, support for implicit ship-contexts (th&enly one program-level ship-

context), and easy-to-implement features suapeds.i d() 6, get _spawner _i mage(),

SThere is no front-end support feral | , spawn, andshi p. We specify them via a function cak,g,
handl e=spawns(f oo(args), target), wheref 0o is actually a co-subroutine, represented as a co-

function whose return value is ignored.
5For example, for Pthreads, it is possible to attach a comtetkie thread running the activity and retrieve

the context later.
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get spawner .i d(),yi el d, andpol | that we did not need for our experiments. The
implementation uses ARMCI with Global Process Calls (seeti@e 3.2.1), which are
referred to as Active Messages (AM), to execute computatiaemote process and the
Linux Pthreads [82] library to support intra-image multehding. Currentlycaf ¢ with
DMT is available only for an Itanium2 cluster with a Myrined@0 interconnect. This is
the only platform where botbaf ¢ and ARMCI with AM support are available today. We

now briefly discuss the major implementation decisions amdcesperience with DMT.

9.4.1 Implementation overview

DMT uses Pthreads threads to execute activities. We refdrege threads as run-time
threads. Run-time threads are synchronized via Pthreatexesiand condition variables.
Mutexes and and condition variables are implemented usiagorresponding Pthreads
primitives.

The caf ¢ compiler supports marshaling ofN, | NOUT, andOUT scalar, array, and
co-array parameters. For each original co-subroutinéc creates a stub functiosy and
a subroutine,. The spawner callS; at the spawn site to marshal arguments and to invoke
an AM that sends the activity for execution in the target isfaghe AM invokesS,, which
executes in the context of the spawnee image and perfornsathe computation as the
original co-subroutine.

Eachshi p-ed activity has a context on the spawnee. All other actigitiave contexts
on both the spawner and spawnee. A context is a data struefuresenting the run-time
state of the activity. The spawner context is created whemthtivity is spawned; the exe-
cution of the AM handler on the spawnee creates the spawmeextoThe spawner context
has information about the activity ID, spawn type, spawmeage index, arguments;’s
address, reply state, activity ship-parameters (shigesvand ship-epoch), and other im-

plementation specific details. The spawnee context hasnraiion about the activity 1D,

"We focused mainly on remote function shipping and did notnojge parameter passing for locally-

spawned activities; passing parameters locally does gainremarshaling.
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spawn type, spawner image index, spawner’s context addaegsments,;S,’s address,
reply and termination states, activity ship-parametens, @her implementation-specific
details.

FunctionS; has the argument list of the original co-subroutine extdnaigh two pa-
rameters: the spawnee image numbpand the type of spawn. It performs the following
steps.S; computes the sizes (rounded up according to the argumdiggsireents) ofl N,
QUT, andl NOUT non-co-array arguments to know the size of the argumenebuf in-
structs the run-time to create a spawner context and toaa#idbe argument bufferS;
instructs the run-time layer to pack the arguments into thfeebone after another since
Fortran 95 passes scalar and array arguments by-addrefseanglzes, intents, and types
are known. The run-time layer uses padding to start eachmaguwith an offset that is
multiple of the argument’s natural alignment; so the siz¢hef argument buffer may be
slightly larger than the total size of all arguments.

Co-array arguments require different handlingf ¢ converts each co-array parameter
into two: the co-array handl# and the address of the local part The spawner usesto
compute the local co-array address that is valid in the targeage address space. This is
possible since every image has the co-array start addrEssegery other imageH is a
pointer to the co-array run-time descriptor data structesaling in the spawner’s memory.
To locate the co-array descriptor in the spawnee’s menuaf/c uses a co-array IDd
that is a unique number for each co-array in the program. éfbes, a parameter co-array
is represented in the argument buffer via two fields: itslipaat remote address amnd.

Finally, S; instructs the run-time layer to initiate a non-blocking ANat transfers the
information necessary to start the activity in the targeicpss image. This information
includes the relevant part of the spawner context: the iacti, spawn type, spawner’s
context address$,’s address, ship-parameters, and arguments. The infamabout
arguments includes the valuesldfi andl NOUT arguments as well as argument offsets in
the argument buffer and their sizes necessary to unmatshargjuments. The spawner’s

context address is used to located the activity spawneegboh the spawner when the
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activity replies (alternatively, one could attach stata thread).S; returns the address of
the spawner context as the spawn handle used to completetivigydater.

SubroutineS; has the argument list of the original co-subroutine extdndgh the
spawnee context handle parameieh. S, executes the same code as the original co-
subroutine. The run-time layer usesh to associate the spawnee context with the activity.
Throughsch, the run-time layer can find the spawnee contexd, to perform ar epl y
operation. The AM handler creates the activity spawneeestntt copies the information
from the AM payload, which does not exist after the AM handéturns, into the spawnee
context. In addition, it creates a vectorof pointers to represent the addressesg$
arguments; the pointers are in the same order as the argsioiefif. The AM handler
computes the elements ofby calculating the addresses IoRN, | NOUT, and QUT argu-
ments, which reside in the spawnee context argument bitfldso determines the address
of the co-array descriptor for each co-array argument ugiegco-array ID. Finally, the
AM handler enqueues the activity for execution and returns.

An activity (spawnee context) waits in the activity readyega( until it is dequeued
and executed by one of the run-time layer threads. The thegadutes the activity by
calling S;. The arguments of, are the addresses from Fortran 95 passes scalar and

array arguments by-reference. The activity terminateswmiheeturns.

9.4.2 Spawn types

DMT enables the programmer to specify how to execute a cooestibe to deliver best
performance. There are three spawn modes: the AM-style rfiddemode), the thread
pool mode (Pool-mode), and the thread mode (Thread-mode).

Thecal | _am spawn_am andshi p_amconstructs spawn an activity in AM-mode.
AM-mode means that it is possible to execute the activity iy rin-time thread, even a
thread that is already executing a different non-AM-modivag. Typically, a run-time
thread executes only one activityhowever, an AM-mode activity can “preempt’a and

run to completion. When a run-time thread has two user coatjouis b must be restricted.



272

An AM-mode activity should execute fast and should not blieekun-time thread by sleep-
ing on a condition variable, participating in an inter-ilmagynchronization, or waiting for
a spawned activity. If it acquires locks, it must not acqtire same lock(s) that have been
acquired and are still held by the preempted user computdiet the thread was running,
not to cause a deadlock. An AM-mode activity is atomic withpect to other activities;
if a run-time thread executing an AM-mode activity is preeead it does not execute an-
other activity until it finishes the current one. AM-modeieaities are useful to control the
number of concurrent run-time threads as discussed belmwe ®f our implementations
of the RandomAccess benchmark use this mode to perform eampolates efficiently (see
Section 9.6.3).

The cal I, spawn, and shi p constructs spawn an activity in Pool-mode. The
DMT runtime maintains a pool of threads to execute Pool-madgvities. The
programmer can control the size of the pool either by setdngenvironment vari-
ableDMI_THREAD_POOL _SI ZE or by callingdnt _set _pool _si ze( numt hr eads) .
Each process image can have different number of threads podl. Pool-mode is less re-
strictive than AM-mode; an activity is free to perform arhbrily long computations, block,
and participate in intra- and inter-image synchronizatidhe run-time thread running a
Pool-mode activity is taken from the thread pool for thetiifee of the activity and can-
not be preempted to execute another activity, except an AMeractivity. The number
of concurrentPool-mode activities cannot exceed the pool size. There Ineagueued
pending activities waiting to be executed. It is the prograeris responsibility to setup
an adequate thread pool size to accommodate the concumeedls of the application.
Too small of a thread pool may lead to a resource deadlockaltieetlack of a run-time
thread to execute a pending activityessential for the system to make progresg, if
other activities, holding the pool threads, are blockedingifor a’s actions. Too large
thread pool may lead to performance degradation due toitgatnerference and context
switching overhead. Unbounded number of threads can béelthy either dynamically

callingdnt _set _pool _si ze( humt hr eads) or using Thread-mode spawns.
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Thecal | .t hr ead, spawn_t hr ead, andshi p_t hr ead constructs spawn an ac-
tivity in Thread-mode. DMT creates a new run-time threadxeceite the activity. This
thread is active for the lifetime of the activity. Creatingew run-time thread is expensive;
so Thread-mode is most useful for long-lasting activiti®aread-mode bypasses the re-
source deadlock possible with Pool-mode activities bexthesnumber of run-time threads
is practically unlimited.

The programmer can use AM-mode, Pool-mode, and Thread-rfurdéionality to
specify the best way to execute activities. While the coergihay be able to determine
the best mode in some casegy, to convert a locatal | into a Fortrancal | (see Sec-

tion 9.5.3), it cannot do so in all cases.

9.4.3 shi p andsync support

shi p andsync are used for activities that do not return any state to thevspa For
example, our fine-grain implementation of the RandomAcbesshmark, which performs
many remote fine-grain XOR updates of random memory locstioenefits from this. The
spawner does not need to know that a particular update hapletad; it only needs to
know when all updates have completed. In fact, if an expacitnowledgment (reply)
were sent to the spawner for each update, this would significaeduce the effective
interconnect bandwidtlsync is used to complete all activities of the ship-epoch at once.
The implementation challenge is to suppsytnc semantics without sending individual
replies and to maintain as little state as possible to tratérially out-of-order completion

of shi p-ed activities. We present our solution.

Eachshi p-ed activity is identified by two ship-parameters: shiptesif C and ship-
epochE:. They are assigned by tspawnemwhen the activity ishi p-ed and “inherited”
on the spawnee. The spawner assigns each epo€hawf epoch-ID from a monotoni-
cally increasing sequencsync closes the active ship-epoch ©fand starts a new one.

Note that another activity can initiaghi p-ed activities in the new epoch whighi p-ed

8As of this writing, our prototype implementation of DMT supps only one program-level ship-context.
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activities of a previous epoch have not yet completed. Tha/spr maintains a set of coun-
ters [ic g,y p, Wherep € [1,num_images()|; Ic.5.), iS €qual to the number of activities
initiated top in ship-contextC' and ship-epoclvc — (C, E¢).

Thefirstactivity of (C, E¢) shi p-ed byq to p, creates the epodh context orp that
has a counteF|c ..y , equal to the number of complefetfinished)(C, E¢) activities on
p that wereshi p-ed bygq to p.

When q’s activity a executessync, it closes E- and waits for completion of all
Lic.eoyp (C, Ec) activities,p € [1,num_images()]. a sends arepoch-completedM,
carrying the value ofl,c ., ,, to each image, if I(c g, > 0, and waits for the
activities-completed\M replies. Whenp receives the epoch-completed AM fragnand
FieBey.g = Lic,Bo)pr 1t SENS the activities-completed AM replydo a is blocked until it

receives all activities-completed AM replies.

9.4.4 Support of dynamically linked libraries

For an SPMD program, the static addresses of all subroutinésunctions are the same
on all process images. However, dynamically linked lilaqpresent a minor engineering
difficulty since they can be loaded into different addresgyes on different images. |If

a dynamically linked library subrouting needs to be invoked in a remote process, an
implementation can us€’s handle to findS’s address in the remote process. The current

DMT implementation does not support dynamically linkeddites.

9.4.5 Polling

Run-time layer polling should be avoided when executing #ithteaded application to
not waste CPU resources that can be used to perform usefylutation. During our
experimentation, we encountered two cases when run-tipee f#lling degraded perfor-

mance.

9An activity is completed if it either replied or terminated.
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We disabled the ARMCI server thread polling because it wasaming a noticeable
fraction of CPU resources, slowing down useful computatiém our experiments, the
server thread executes a blockiggyir ecei ve Myrinet call and becomes active for a
brief period of time only when a network request arrives.

The MPICH barrier implementation for Myrinet, whicdaf ¢ runtime uses to imple-
mentsync_al | , polls the network. While this is not a problem for singleetaded SPMD
programs, it degrades performance of multithreaded cdaesise MPICH barriers. Alter-

native implementations of the barrier primitive are neaeg$for multithreaded codes.

9.4.6 Number of concurrent threads

The number of threads concurrently sharing a CPU affectapipécation’s performance.
For most scientific codes, one thread per physical CPU wawlogbly deliver the best per-
formance. However, one thread per process image limitsetsygonsiveness of DMT be-
cause remote activities are executed only when the netwa#rviced. This can delay the
propagation of asynchronous evergg, the best cycle length in TSP, or cause a resource
deadlock if the application requires two or more concurteréads to make progress. This
might require a compiler to insepol | instructions automatically or would make pro-
grammers restructure code to insert explpdl | statements. The optimal number of
concurrent run-time threads to achieve the best perforenantb reasonable programming
effort is application-specific; moreover, it can differ fdifferent run-time phases of the
application. Three spawn modedyt _set _pool _si ze( numt hr eads), andpol |
allow the programmer to tune the application. For example fastest implementation of
the RandomAccess benchmark (see Section 9.6.3), assumumggion a single processor
node, uses AM-modshi p_.amto apply remote XOR updates and sets the thread pool
size to zero. This enables it to have exactly one run-timegithiper CPU. This thread ex-
ecutes both code generating XOR updates and remskhalyp-ed activities to apply XOR
updates, maintaining a balance between update generattapplication. We discuss

several RandomAccess implementations in detail in Se&i6r3.
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9.4.7 Activity interference

In a multithreaded application, threads compete for cadti/ which can result in
cache/TLB contention and thrashing. If an activitgerforming computation is preempted
by another activity that accesses a large array, executiomrofght evict a large portion of
cache, degrading's performance. In the current implementation of DMT, ithe respon-
sibility of the programmer to reduce/avoid such problems: éxample, the programmer
can synchronize activitieg,g, via a condition variable, to control when interfering &cti
ties are executed rather than rely on DMT.

Alternatively, a DMT implementation can support coopemactivities. The program-
mer controls exactly when activities relinquish controlcache-sensitive computations are
not unexpectedly preempted.

Ideally, the underlying thread library should provide tlagability to suspend threads,
e.g, by changing their priorities. It would then be possible tdeead DMT with
suspend_activities.onpe() andresune_activitiesonpe(). The first
statement reserves a processing elememwt, a CPU core, for the current activity and
allows it to run uninterrupted by other activities until ethactivities are resumed by the
second statement. None of the currently available thréadries supports this functional-
ity.

Our DMT implementation revealed that the way activitiessueeduled affects perfor-
mance. Our prototype implementation favors the activijgmvned remotely in AM-mode
over local computation. If too many remote activities aréivg on nodep, p stops accept-
ing new requests because there are no available networkrguff memory. Meanwhile,
other nodes keep retransmitting requests targetguwasting CPU cycles that could have
been productively spent. In the current implementation MTDwhen an activity executes
spawn, it first processes AM-mode pending activities itetiaby other process images.
This frees the resources faster and limits the generatterofanew activities in the system.
Clearly, scenarios exist for which this simple heuristicweonot deliver the best perfor-

mance because of load imbalance. For top performance,dgegmnmer is still responsible
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for load-balancing the application properly, especiatiiyriot swamping a node with a lot

of activities.

9.5 Compiler and run-time optimizations for function shipping

DMT enables explicit support for computation shipping andltithreading. However,
the compiler and run-time layer can detect some optiminatigportunities without user

intervention. We outline a few promising directions.

9.5.1 Compiler recognition and aggregation of remote opet#gons

The compiler can detect snippets of code heavily accessimgpte data. If profitable, it
can convert them into remotely-spawned co-subroutinesjrgp programmers the effort
to write such co-subroutines. In particular, the compiken detect regions of code with
a lot of fine-grain remote updates or compiler-recognizabdheote operation®.g, XOR
updatesa(i ) [ p] =XOR(a(i)[ p], v) in RandomAccessyithoutintervening synchro-
nization. Since each remote fine-grain operation causessriemessage, it is profitable
to aggregate several of them into one coarser-grain netmedsage that is expanded into
several operations on the target image. A synchronizatvemtecompletes all buffered
remote operations.

The following piece of code is another example:

doi =1, N

a(i)[pl = a(i)[p] +1

end do

The operations are fine-grain remote activities that carglpeegated (similar to com-
munication vectorization) into a coarser-grain remotavdagt The code can also be
expressed in the vector form( 1: N) [ p] =a(1: N)[ p] +1 and converted into a co-

subroutine, if profitable.
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9.5.2 Remote fine-grain operations/accesses aggregation

For irregular codes, vectorization and compile time aggtieg might not be possible.
However, the compiler can detect regions of code with a lahsf/nchronized fine-grain re-
mote operations/accessesy, XOR updates in RandomAccess (see Section 9.6.3). These
operations can baggregatedo increase the granularity of network messages. The com-
piler can instruct the run-time layer to aggregate thesetgsdoperations to buffer them
and deliver when the buffer gets full or a synchronizatioerghappens.

It is also possible to perform aggregation of fine-grain resvaperations by the com-
piler, rather than by the run-time layer. The compiler, kimaythat the next segment of the
code performs many fine-grain operations, can requestrisdftam run-time layer and gen-
erate aggregation code in the translated program, avoaliogction call to the run-time
layer.

It is important to bundle the requests of similar type togeteffectively compressing
the remote request operation code such as +, -, /, *, XOR, Rien decoding an ag-
gregated message, the run-time executes operations irpatabapplies them using the
operation code and arguments.

Our DMT prototype implements run-time aggregation of fimakg compiler-
recognized remote operations: +,-,/,*,XOR, and PUT, whighused to experiment with
fine-grain RandomAccess (see Section 9.6.3). Compilerstifigr automatic recognition
of fine-grain operations was not implemented; instead ootopype implementation pro-
vides a special function that we used to indicate fine-grpgrations to the runtime-layer:
cal |l caf _op.i 8(opcode, | ocation, val ue, dest) ,whereopcode is the code
op of a fine-grain operatior[ dest ] =x[ dest] op val ue, locationis a co-array ele-

ment ofi nt eger ( 8) type,val ue is the second operand, addst is the target image.

9.5.3 Optimization of spawn

With the help of interprocedural analysis, the compiler magplace local

cal | /spawn/shi p or CF invocation with a regular Fortran 95/CAfal | or function
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invocation, avoiding the overhead of spawning the activiBor instance, ilspawn is
blocking and the spawnee does not have an explegitl y in its body ¢ epl y in this case
coincides with the et ur n), it is safe to replace pawn with Fortran 95cal | because
the spawner is blocked until the spawnee returns and thergmdoes not exist beyond

thecal | point.

9.6 Experimental evaluation

We evaluate DMT using three codes: a micro-benchmark thaipates the maximum
value of a co-array section to show potential performandesgay shipping computation
closer to data; a branch-and-bound implementation of a B&@rsto evaluate the benefits
for parallel search applications; and several versions®RandomAccess benchmark to
stress the implementation and reveal limitations. All hessare obtained on an Itanium?2

cluster with a Myrinet 2000 interconnect (RTC) describe®attion 3.3.

9.6.1 Maximum of a remote co-array section

Figure 9.10 (log-log-scale) presents the results for tboskes that find a maximum value
of a co-array section. Each cunl@cal, GET, andCF, presents the normalized time to
find the maximum value of a contiguous co-array sectionVotlouble precision num-
bers as a function oV. The curves are normalized to thexal time, solocal is a con-
stant line 1.0. Theocal line corresponds to the time to compute the maximum locally:
res=nymaxval (a, n). TheGETIline shows the time to compute the maximum of a re-
mote co-array section done by fetching the section and penfig the computation locally:
res=nymaxval ((a(2l:n)[p])).Itusesatemporary buffer to store the off-processor
data used in local computation. TK#- line presents the time to compute the maximum

using a co-function to ship theymaxval computation to data, rather than the data to
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Figure 9.10 : Normalized (to local) time to find a maximum abf a co-array section.

computationr es=cnynmaxval (a, n) [ p] . The co-function is shown below.
cof unction cnymaxval (a, n)
integer, intent(IN) :: n
doubl e precision :: a(n)[*]
doubl e precision :: cnynmaxval, nynaxval

cnymaxval = nymaxval (a, n)
end cofunction crmymaxval

The versions to compare a@ET andCF; local is shown for completeness. For this
reason, Figure 9.11 displays the same data normalized tortbeof theCF version. Note
that both local and remote computations are not interrupyedther computations. All
versions usa@rymaxval to compute the maximum instead of Fortranr@bxval intrin-
sic because implementation of thexval intrinsic by the Intel Fortran compiler v9.0

delivered very poor performance.
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Figure 9.11 : Normalized (to CF) time to find a maximum valua ab-array section.

CF shows slightly lower, but comparable @ET performance for the array section
size of up to 64 double precision numbers. The reason is tRAI®@I GET is somewhat
cheaper than heavier-weight ARMCI AM, and DMT adds more begad because of pa-
rameter marshaling and extra bookkeeping. For array sectayger than 64CF clearly
outperformsGET by shipping computation to image For array sections of 256K double
precision values, the performanceQ¥ is within 25% of that olocal and becomes almost
identical for larger sections because computation dormgwabmmunication itCF. The
GETversion is 46% slower for 1024 section size and the perfoomaap gets much wider
for larger section sizes becauS&T fetches a large amount of data over the network.

These results demonstrate the potential for function sihgppn the example of a con-

tiguous co-array section. It is expected that for more cemplata structures, such as
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linked lists, trees, queues, etc., function shipping wguddid higher performance benefits

when accessing remote portions of such data structureglnygrcommunication latency.

9.6.2 Traveling Salesman Problem

An important motivation for DMT is to simplify the developmieof parallel search applica-
tions without sacrificing performance. Many such applmadi are programmed using the
master-slave paradigm. More efficient implementatiang,(using threads and polling)
are possible, but they are harder to develop. To test whdtlcan be done easier with
DMT without performance loss, we implemented a version o&ealkel TSP solver that
uses a branch-and-bound algorithm [104]. The algorithnsftheé exact shortest cycle by
performing the exhaustive search. To make it parallel, #zch tree is cut at some level
creating subproblems identified by a unique path prefix. Ength of the shortest cycle
found so far is used as the pruning criteria. Each image bamiitate copy of the shortest
length that is eventually updated with the global best valwe implemented MPI and
CAF versions of TSP; both use the same code to solve subpnsbtally, but differ in
how the subproblems are obtained and how the best length i&iypdated.

The MPI version uses a master-slave scheme. The mastep@sbsle for generating
subproblem prefixes, maintaining the global best lengtl, servicing requests from the
clients. The clients obtain the best length and a subprobi@mthe master, solve the sub-
problem locally, and, if necessary, update the best length® master. The master process
does not perform “useful” computation (solve subprobleris)better utilize all available
CPUs, it is necessary for the master process to share a pooaeish a client process. If a
parallel machine’s job scheduling subsystem does not alvasymmetric number of pro-
cesses per node, as is the case for our RTC cluster, suchgisproblematic. However,
the application can be rewritten to run the master threashéad the process images.

The CAF version does not reserve a process to be the masteampleéments a
centralized repository solution, which can be thought ofaasne-sided master-slave

scheme. One image is the repository image. It maintainsdheck space state and en-
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cosubrouti ne get Subpr obl enfr onReposi tory(prefix)
integer, intent(out) :: prefix(1l:n_cities)

I lock the search tree data structure
call caf | ock(treeLock)
I execute | ocal code to generate prefix
cal | get Subprobl e prefi x)
I unl ock the search tree data structure
cal |l caf _unl ock(treeLock)

end cosubrouti ne

Figure 9.12 : Co-subroutine to obtain a new subproblem paztinp

sures its consistency. All images contact the repositoocgss image eposi t ory
when they run out of work and obtain new subproblem prefixes spawning a CS

get Subpr obl enfr onReposi tory.
cal |l get Subprobl enFronReposi tory(prefix)[repository]

Figure 9.12 shows thget Subpr obl enfr onReposi t ory co-subroutine. The
repository image application thread is doing useful work etving subproblems. Reposi-
tory image DMT helper threads, which are hidden from the mogner, execute activities
that request new subproblems. These activities use a loakditually exclusive access
to the search space data structures. When an image findstarstyale, it propagates
its length to all other images by spawning the @&lat eBest Lengt h, shown in Fig-
ure 9.13, per image usirghi p as shown in Figure 9.12

Our MPI and CAF versions execute the same code to generatesub@roblem. How-
ever, in CAF, this logic is declared as a co-subroutine tiatrns the prefix to the spawning
image. A second difference is how the shortest cycle lengipggates to other images. In

the MPI version, the best length is sent to the master firsty tther images get the updated

10We could also introduce aul t i shi p construct that would ship the same computation to several im

ages; this is analogous to broadcast, but executes code thém just communicates data.
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cosubrouti ne updat eBest Lengt h(| engt h)
integer, intent(in) :: length

I lock the best length

call caf | ock(bestLengt hLock)

I update the best |ength

if (length < bestLength) then

bestLength = | ength

end if

I unl ock the best |ength

cal | caf _unl ock(best Lengt hLock)
end cosubrouti ne

Figure 9.13 : Co-subroutine to update the best length.

I update best length on all inages
if (nmyLength < newlLength) then
doi =1, num.inages()
shi p updat eBest Lengt h( newLengt h)
end do
end if

Figure 9.14 : Code to update the best length.

value when they request a new subproblem. In DMT, when anerfiags a shorter cycle,

it spawns asynchronous activities to update the best lemg#il other images and contin-
ues execution without waiting for these activities to coetel The updates are propagated
directly to other images bypassing the repository imagehus, the CAF version has the
advantage that the pruning criteria is propagated fasteugjhout the system.

The parallel efficiency of two TSP instances is presentediguriés 9.15 and 9.16.
Both instances find the shortest cycle for 18-city cliquesrgHocations of the cities were
randomly generated. THESP-MPI-1peand TSP-MPI-2pecurves show the performance
of the MPI version runs with one and two processes per duagssor node, respectively.

TSP-CAF-1pandTSP-CAF-2patand for the performance of the DMT CAF version with

it is also possible to propagate the update in a tree-likeidasusingO(log(num_images())) steps.
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Figure 9.15 : Traveling salesman problem for 18 cities (sé&gd

one and two subproblem solving threads, called solversnpde. ForTSP-CAF-2pge
the second solver is an activity spawnadhi p_t hr ead) locally that executes the same
code as the first solver. The second solver was necessaryize both CPUs of a dual-
processor node because the available ARMCI implementdtes not allow running two
process images per node with a Myrinet 2000 adapter. Thempesthce of versions with
two solving threads per node is almost two times faster thandf the single-process-per-
node versions for both MPIl and CAF.

The performance of SP-CAF-1peés double than that of SP-MPI-1pdor two nodes
becausel SP-MPI-1pededicates one node to be the mast&SP-MPI-2peversion has
four processes on two nodes: one master and three workeits, gerformance is only
25% lower than that of SP-CAF-2pewhich uses all four CPUs. As the number of nodes

increases, the performance of the MPI versions approabhesftthe CAF version because
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Figure 9.16 : Traveling salesman problem for 18 cities (s@gd

the fraction of wasted CPU resources decreases. It is hagdantitatively measure the
contribution of faster shortest cycle length propagationG@AF versions. However, we
did notice that the fraction of wasted CPU time due to thereskmaster process is not

exactly+-, whereN is the number of MPI processes, but slightly higher.

9.6.3 RandomAccess

The RandomAccess benchmark!flpresents a challenge for every existing architecture
and programming model. It updates random locations in a halgle (see Section 3.4.3).
The table is equally distributed among the nodes of a paraliehine. Each node generates

a set of updates to random locations in the table. Each updatees performing an XOR

2We used the Table Toy Benchmark (08/01/97 version).
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to adjust the value of a random location in the table. Ernotga to 1% of the table entries
due to data races are allowed.

Rather than performing individual updates, the MPI versieas a bucketing strategy
to bundle several updates that must be delivered to the sasti@ation process. The code
uses a set of buckets, one bucket for each MPI process. Wharkaths full, the process
participates in atvPl _Al | t oAl | exchange, receiving updates from all other processes to
apply to the local portion of the table. This process cor@swntil all updates by all nodes
are done.

We implemented several versions of RandomAccess usingicl@®F and DMT CAF
to stress our DMT implementation and to get a deeper undhelistgof performance issues.
We compared the performance of our versions with that of tiRé BMucketed version [1],
the reference standard for the RandomAccess benchmarkveddlons are either fine-
grain or bucketed-based; we did not implement more soghistil algorithms that perform
aggregation and routing of updates.

Figure 9.17 shows the weak scaling in billioro{) of updates per second per dual-
processor node of different CAF and MPI versions on the RTGtel. The main table size

is 512MB per node, the bucket size is 4KB per destination.

MPI bucketed versions

RA-MPI-1peandRA-MPI-2peare the MPI bucketed versions with one and two processes
per node, respectively. They are used as the baselinesdaothparison.RA-MPI-2pe
shows two times better performance o®%k-MPI-1pefor one node because it uses both
CPUs of a dual-processor nodeA-MPI-2peuses the table size of 256MB per process, to-
taling 512MB per nodeRA-MPI-2pescales worse thaRA-MPI-1peand does not achieve
twice as high performance. The reason that neither MP| @erstales well is the use of
MPI _Al' | t oAl | to exchange cached updates. While the RandomAccess randuoiven
generator is reasonably uniform, it does not fill limitedesbuckets equally. This results

in slightly larger than necessary data transfers bech$eAl | t oAl | exchanges full
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Figure 9.17 : RandomAccess with 512MB per node table and 4kd&ét size.

size buckets and some of them might not be filled entirelytifeuyMPI _Al | t 0Al | , be-

ing a collective call, enforces lock-step parallel exclesdhis precludes some processes
waiting inMPI _Al | t oAl | for others to generate more updates for the next round. Con-
sequently, running on twice the number of CPB#-MPI-2pescales worse thaRA-MPI-

lpedoes.

Fine-grain CAF versions

CAF’s one-sided model enables us to express a fine-graimownefsee Section 3.4.3), in
which each generated update is not cached locally but appgbet away.e.g,
table(loc)[p] = XOR(table(loc)[p], V)



289

caf ¢ without DMT support compiles this code to a GET, XOR, and PtEBulting
in two exposed interconnect latencies per update. As eggethie performance is poor,
and we do not show it in Figure 9.1¢af ¢ with DMT support can compile this code to
ship shi p_am) the XOR operation to the remote image. However, the peidoca is still
poor, though slightly better than that of the version in sieal CAF, because the run-time
overhead for performing fine-grain remote operations i$ higor this reason, we do not

show the performance of this version in Figure 9.17.

Run-time aggregation in DMT CAF

caf ¢ with DMT could recognize the remote XOR operation and ingtthe run-time to
aggregate it. Compiler support for the recognition of supbrations is not yet imple-
mented; however, we manually replaced the remote XOR updi#itea special run-time
function to evaluate the performance of run-time aggregatiThe run-time aggregates
such operations into buffers, one per destination, to asgehe granularity of the remote
activity and to avoid sending many small network messages. dggregation is analogous
to how the MPI bucketed version caches XOR updates, but is datomatically by run-
time layer without the need to modify the source code. Theexggion process stores the
operation code (XOR) and arguments of each operation (tsead in the remote memory
and its XOR-value). It also compresses the operation codeibglling operations with the
same code issued consecutively and storing the operatamandy once per bundig(see
Section 9.5.2).

RA-CAF-runtimeaggr shows the performance of the fine-grain run-time-layer-
aggregated version in Figure 9.17. It is roughly two timessg&dhan that oRA-MPI-1pe
version. However, it yields several orders of magnituddgoarance improvement com-
pared to the non-aggregated fine-grain versions. Theralanetime aggregation may still
be a valid technique for complex irregular codes where appbn-level aggregation is al-

gorithmically hard. The performance degradation is calmsethe overhead of a function

13This scheme is analogous to run-length encoding [124].
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cosubrouti ne xorBucket (tabl e, nunlpdat es, |ocations, val ues)

I the main table, tableSize is the size of the local part
integer(8) :: table(0:tableSize-1)][*]

I nunber of updates to apply

integer, intent(in) :: nunlpdates

|

|

|

|

locations in the table to update

nteger, intent(in) :: |ocations(numpdates)

values to XOR to the updated table | ocations

nteger(8), intent(in) :: values(numJpdates)
do i =1, numJpdates

tabl e(l ocations(i)) = XOR(tabl e(locations(i)),values(i))
end do

end cosubrouti ne
Figure 9.18 . Co-subroutine to apply XOR updates.

call, one for each update, to perform the run-time-layereggation. The execution of re-
mote operations does not incur a function call per updatste&d, an aggregated packet
is decoded on the destination and each XOR update is appliaddop using the oper-
ation code and arguments. To avoid the aggregation funcadis, caf ¢ could ask the
run-time layer to provide buffers and then generate codetfopm the aggregation in the
source code. However, we do not believe this strategy to fhieisatly general to justify a

non-trivial implementation icaf c.

CAF version with blocking spawn

The other RA-CAF versions use buckets to cache remote XORtapgimilar to that of the
MPI bucketed version. When a bucket to a particular destinas full, the activity shown

in Figure 9.18 is spawned to apply cached XOR updates in theteeimage. The entire
bucket is passed as an argument to the co-subroutine panfpremote updates. An activ-
ity is initiated only when a bucket is completely full (ex¢épe very last bundle), which dif-
ferentiates these versions from MPI, where partial buckeght be transferred. RA-CAF

versions do not use collective communication and may aehmuch better asynchrony
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tolerance than MPI versions usif@l _Al | t oAl | . Local updates are applied as soon
as they are generated. Each CAF version has thread(s) gagerpdates and thread(s)
applying updates. Properly tuning the number of threadsydd& good performance.
RA-CAF-calluses one thread per image to generate updates and bloclang $p
apply remote updates using@r Bucket . Its performance is inferior to the other bucketed
RA-CAF versions because the blocking spawn exposes nottbhelyetwork latency to
spawn the activity but also the latency to execute the agtini the target image. The
latter latency includes not only the time to apply XOR updatait also the time waiting
to be scheduled: activities from all other nodes competexecution scheduling within
the target image. While waiting for the blocking spawn to pdete, the local application
thread does not perform useful computation such as gengrativ XOR updates, initiating
other remote activities, or applying updates received fother images. Because of this

wasted timeRA-CAF-callperforms poorly.

CAF version with non-blocking spawn

RA-CAF-spawnhides the exposed latency by using non-blocking AM-modensga
(spawn_an) to apply remote updates. When a buckgfor imagep becomes full for
the first time, a non-blocking activity is spawned to applyupdates inp. Meanwhile,
the current image continues to generate updates. It car bplbgcause spawn copiés
values (table locations and XOR values) into a run-timeddygfer. RA-CAF-spawns
coded using one spawn handle per destination, which enabéis flight spawn per target
image. Whenrb, becomes full again, the image waits for the completion ofgrexious
non-blocking spawn destined po(to reuse the spawn handle variables), which is likely to
be completed by this time. Thus, tRA-CAF-spawiversion hides the latency sfpawn

by overlapping it with computation and enjoys much bettefggenance thamRA-CAF-call

In fact, the performance is almost twice as good as that dRthéVPI-2peversion because
non-blocking spawns enable better asynchrony tolerancaehk inage generates updates

more independently from what the other images are doing.
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The DMT runtime is configured to have two run-time threadsajgplication thread and
a pool thread, providing exactly one thread per CPU. Whané&eeapplication thread ex-
ecutess pawn_amand there are pending activities from the other images|pshthe pool
thread to process these activities; this maintains thenbaldetween the speeds of gen-
eration and application of XOR updates. The performanc@é@benchmark is primarily
bound by the TLB performance because each update is likelguse a TLB miss. Having
two threads applying XOR updates enables to utilize both TihBs of the node.

While delivering good performanc&A-CAF-spawrversion is harder to implement

thanRA-CAF-callbecause the programmer must explicitly manage the spawdidsan

CAF versions with shi p

RA-CAF-ship-1ss similar toRA-CAF-call but uses AM-mode shishi p_am to apply
remote updates. The programmer gets both high performdrtbe BA-CAF-spawrver-
sion and simplicity of thd&RA-CAF-callversion. The performance &A-CAF-ship-13s
slightly higher than that oRA-CAF-spawrbecause (1¥hi p is a non-blocking spawn
without reply and (2) more than one activity can be spawnedhentarget image from
the same origin image; in comparisdRA-CAF-spawrcan spawn only one activity be-
cause it reuses handle variables. At the same fAeCAF-ship-1$s as simple to code as
RA-CAF-callbecause the programmer does not manage exppetwn handles.

While the performance oRA-CAF-spawrand RA-CAF-ship-1sexceeds that oRA-
MPI-2pefor runs on four and more nodes, it is lower for one- and twdenouns. The
reason is that both CAF versions have only one applicati@athper node generating XOR
updates, whild&RA-MPI-2pehas two such threads. For small number of nodes, the amount
of work done by application threads is greater than that doneool threads applying
XOR updates. In fact, the pool thread does not perform anykvarexecutions on one
node since the application thread applies local updatedhard are no remote updates.
Thus, the pool thread is underutilized resulting in loweera performance.

Since the current ARMCI implementation does not allow twoFJ#ocess images per
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cluster node for a Myrinet 2000 interconnect, we createdRAeCAF-ship-2version to
evaluate the effect of having two application threaB&-CAF-ship-2s$s a version based
on RA-CAF-ship-1sbut it runs two application threads, called solvers, gatieg (and
applying) XOR updates. Each solver executes half the to@RXipdates per image and
uses its own set of buckets. The second solver is spawnelliyloseng shi p_t hr ead.
We set the thread pool size to be zero to have exactly onementhread per CPU. The
solver threads spawn activities in AM-modsehi p_an) and execute them.

The performance oRA-CAF-ship-2ss virtually the same as that of tHeA-MPI-2pe
version on two nodes and exceeds it for runs on larger numbeodes. RA-CAF-ship-
2sshows a bit better performance than thaR#-CAF-spawrandRA-CAF-ship-1st the
expense of slightly more complicated code to have the seapptication thread, which
would not be necessary with the two-image-per-node corgtg.

To estimate the effect of “wrong” number of threads per image evaluated th®A-
CAF-ship-2s+2thversion based oRA-CAF-ship-2sRA-CAF-ship-2s+2tinuns four run-
time threads per node: two solver threads and two pool tere@lde performance dRA-
CAF-ship-2s+2ths much worse thaRA-CAF-ship-2&ecause the application threads that
generate XOR updates compete for CPUs with the pool thréed©hly execute remote
activities; our understanding is that this resultdimsty, and overall lower, update genera-
tion speed.

Note thatRA-MPI-2peuses 256MB tables per process (512MB per node), while all
other versions use 512MB tables per process. However, ithisad give much advantage
to RA-MPI-2pebecause the TLB performance for random updates of 512MB 86 B
tables is roughly the same.

The presented RA-CAF versions were used to evaluate the Dibtype implemen-
tation. DMT enabled a simpler implementation of the Randaress benchmark and
demonstrated better performance than MPI for up to 128-GIPd.rHowever, the bucket-
based approach might not scale well on very large scalestkjstuch as IBM Blue Gene/L

with 128K processors and small memory nodes, because thetsize would decrease as
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the number of processors increases. This would result ih@f Emall network messages
carrying remote updates. A different, software-routirgpaithm is necessary to deliver the

best RandomAccess performance on large systems.

9.7 Discussion

We argued for the need of function shipping and multithregdin the CAF parallel pro-
gramming model and described potential applications dfidiged multithreading in sci-
entific codes. We evaluated DMT design principles and pteseaaDMT specification for
CAF. Our prototype implementation of DMT imaf ¢ enabled us to evaluate the benefits
of function shipping for programmability and performance.

DMT improves programmability of applications that benefirh asynchronous activ-
ities. DMT makes one-sided access to remote parts of congaex structures practical
without the need to implement a two-sided master-slaversehthis directly benefits pro-
grammability and may benefit performance of parallel seamplications. Our branch-
and-bound TSP implementation in DMT CAF is simpler than ateraslave message-
passing implementation in MPI. The simplicity comes front having to implement a
two-sided protocol when using DMT; instead, the programaoagr use co-functions to ex-
ecute asynchronous remote activities. This is more ingithan message passing and very
much resembles using regular function calls. DMT-based d&Ronstrates better perfor-
mance because the MPI implementation dedicates a prodeds®the master, which does
not perform useful computation.

Our micro-benchmark to compute the maximum value of a cayasection enabled us
to quantify the performance gain due to co-locating compartawith data. As expected,
the benefit increases as the size of a remote co-array segetistarger. For large sections,
it is up to 40 times faster to ship computation and get thelrésick than fetch data and
obtain the result locally. We expect this benefit to be evegmér for more complex data
structures such as remote linked lists, queues, etc.

Performance and scalability of DMT-based RandomAccesseasis that of the MPI
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bucketed version due to better asynchrony tolerance. MRiareusedvPl _Al | ToAl |
reduction, which delays processes to wait for the slowesylting in poor scalability and
low performance. DMT-based version uses asynchronoustesaubivities and does not
synchronize with other processes. However, it is importardonfigure DMT to use the
right number of run-time threads and to load-balance thégijn to obtain best perfor-
mance. Currently, DMT leaves these tasks to the programmogrever, it provides three
types of spawns and the ability to control the number of raretthreads.

It would be interesting to consider whether it is possiblese DMT to perform auto-
matic load-balancing on distributed memory machines fargd class of applications. An-
other promising research direction is to improve OS thregubert to enable applications,
rather than the OS, to schedule threads; this will providéebeontrol over scheduling
of concurrent activities and user-defined scheduling Esicn DMT and other emerging
multithreaded languages. Finally, it would be interestiognvestigate in detail possi-
ble compiler optimizations for function shipping and localiltithreading; for example,
selecting the most appropriate spawn type, aggregatinegfae remote activities, and
scheduling activities to reduce interfereneegy( scheduling concurrently CPU-bound and

memory-bound activities within a multi-core multiprocesaode).
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Chapter 10

Conclusions and Future Directions

The quest to find a parallel programming model that is ubayst expressive, easy to use,
and capable of delivering high performance is a difficult.ofilee Message Passing Inter-
face (MPI) remains thée factoparallel programming model today despite a huge effort
to find alternatives that are easier to use. In this dissentaive principally explored the
design and implementation of Co-array Fortran (CAF) as eesgmtative of the emerging
Partitioned Global Address Space (PGAS) languages, whschirclude Unified Parallel

C (UPC) and Titanium.

10.1 Contributions

The primary contributions of this dissertation include:

e design and implementation off c, the first multi-platform CAF compiler for dis-

tributed and shared-memory machines (joint work with @GrsCoarfa),

e performance studies to evaluate the CAF and UPC programmattgls (joint work

with Cristian Coarfa),

e design, implementation, and evaluation of new languageifes for CAF, including

communication topologies, multi-version variables, arsdridbuted multithreading,

e a novel technique to analyze explicitly-parallel SPMD peogs that facilitates opti-

mization, and

e a synchronization strength reduction transformation fotomatically replacing

barrier-based synchronization with more efficient pog¥pbint synchronization.
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Our joint studies show that CAF programs can achieve the sewetof performance
and scalability as equivalent MPI codes; however, devetgraf high performance codes
in CAF is as difficult as when using MPI.

In this dissertation, | show that extending CAF with langerdgyvel communication
topologies, multi-version variables, and distributed tittuleading will increase program-

mers’ productivity by simplifying the development of higkerformance codes.

10.1.1 Design, implementation, and performance evaluatioof caf c

We designed and implementedf c, the first multi-platform CAF compiler for distributed
and shared-memory architecturesaf c is a widely portable source-to-source translator.
By performing source-to-source translatie@af c can leverage the best Fortran 95 com-
piler available on the target architecture to compile tiaesl programs, and the ARMCI
and GASNet communication libraries to support systems aitdinge of interconnect fab-
rics, including Myrinet, Quadrics, and shared memory.

We ported many parallel benchmarks into CAF and performédnsive evaluation
studies [30, 47, 48, 31, 32, 33] to investigate the qualitthef CAF programming model
and its ability to deliver high performance. An importansu# of our studies is that CAF
codes compiled witltaf ¢ can match the performance and scalability of their MPI coun-
terparts. We identified three classes of performance inmpexlis that initially precluded
CAF codes from achieving the same level of performance aaldsitity as that of their
MPI counterparts. They include scalar performance of asted@d program, communica-

tion efficiency, and synchronization.

Scalar performance. We found that source-to-source translation of co-arralsduces
apparent aliasing in the translated program duedabc’s representation of co-arrays via
implicit shape arrays. This hinders the platform’s Fort@&ncompiler to efficiently op-
timize code accessing local co-array data. We develops@edure splitting transfor-

mationthat converts each procedueeferencingCOVMMON and SAVE co-array local data
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into two subroutines; ands;. s; resembless, but instead of performing computation,

it calls s, and passes the co-arrays as argumegiperforms the original computation

in which eachCOVMON and SAVE co-array reference is converted into a reference to the
corresponding co-array parameter. daf ¢, co-array arguments are represented via ex-
plicit shape subroutine dummy arguments, which do not ahid&ortran 95. As a result,
the lack of aliasing amon@OVMON and SAVE co-arrays, their bounds and contiguity are
conveyed to the Fortran 95 compiler. The procedure sgiitfiansformation implemented

in caf ¢ enables a translated program to achieve the same levellaf ggaformance as

an equivalent Fortran 95 program that uee»/MON and SAVE variables.

Communication efficiency. Our experiments showed that it is imperative to vectorize
and/or aggregate communication on distributed memory masto deliver performance
and scalability; without coarse-grain communication, leeformance is abysmal on clus-
ter architectures. For strided data transfers, it is algpomant to pack the data at the
source and unpack it on the destination to achieve the beshcmication efficiency. For-
tunately, CAF enables source-level communication vezation, aggregation, and pack-
ing/unpacking. With CAF, one can get high performanaday rather than wait for a
mature implementation of a vectorizing CAF compiler. Hoemsvautomatic compiler
transformations such as communication vectorization aygtegation, studied by Cris-
tian Coarfa [29], will be important to broaden the class offg#xograms that can achieve
high performance and to improve the performance portgfitCAF programs across a

range of architectures.

Synchronization. The burden that PGAS languages impose on programmers igéte n
to synchronize shared one-sided data access. We obseatedsihg barriers for synchro-
nization was much simpler than using point-to-point synalzation, which is painstaking
and error-prone. However, point-to-point synchronizatioay provide much better scal-
ability; we observed up to a 51% performance improvementiferNAS CG benchmark

(14000 size) for a 64-processor execution.
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We observed that using extra communication buffers can verfrom the critical path
anti-dependence synchronization due to buffer reuse.ylé¢lged up to a 12% performance
improvement for the ASCI Sweep3D benchmark (150x150x15€) as compared to the
standard MPI version. However, coding such multi-buffdusons is difficult due to the

need for explicit buffer management and complex pointdoypsynchronization.

CAF and UPC. We also compared CAF with UPC and found that it is easier tcmat
MPI’'s performance with CAF for regular scientific codes. Wheilaute this to the more
explicit nature of communication in CAF and language-leegdport for multi-dimensional

arrays.

10.1.2 Enhanced language, compiler, and runtime technolggor CAF

Co-spaces: communication topologies for CAF. We found that CAF's multi-
dimensional co-shape is not convenient and expressivegértouoe useful for organizing
parallel computation. It does not provide support for pescgroups, group communica-
tion topologies, nor expression of communication partmelative to the process image.
Instead, programmers often use Fortran 95 arrays and ira€eigfemetic to represent com-
munication partners. Such ad hoc methods of structuringllphcomputation render CAF
impenetrable to compiler analysis.

We explored replacing CAF’s multi-dimensional co-shapéhl more expressive com-
munication topologies, called co-spaces, such as groupesian, and graph. They sim-
plify programming by providing convenient abstractions doganizing parallel computa-
tions. Group co-space enables support for process groupglaas remapping process
image indices. Cartesian or graph co-spaces are used teén@pGartesian or graph com-
munication topology on a group; they provide functionatitysystematically specify the
targets of communication and point-to-point synchronarat These abstractions, in turn,
expose the structure of communication to the compilerifatng compiler analysis and

optimization.
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Communication analysis. We devised a novel technology for analyziegplicitly-
parallel CAF programs suitable for a large class of scientific appbcs with structured
communication. When parallel computation is expresse@\dambination of a co-space,
textual co-space barriers, and co-space single-valuegesipns, the CAF compiler can
infer communication patterns from explicitly-paralleld=® As of this writing, commu-
nication analysis is limited to a procedure scope with $tmgxl control flow. Our work
focuses on two patterns that are common for nearest-naigidbentific codes. The first
pattern is a group-executable PUT/GET in which the targeigienis expressed via a co-
space interface neighbor function with co-space singleecharguments. The second is a
non-group-executable PUT/GET with the target image esaesia a co-space interface
neighbor function with co-space single-valued argumeKisowing the communication
pattern for each process image of the co-space enablesi@éon of the origin image(s)
of communication locally. This is a fundamental enablinglgsis for powerful communi-

cation and synchronization optimizations such as syneékation strength reduction.

Synchronization strength reduction. We developed a procedure-scope synchronization
strength reduction (SSR) optimization that replaces txta-space barriers with asymp-
totically more efficient point-to-point synchronizatiorhere legal and profitable. This
transformation is both difficult and error-prone for apption developers to exploit man-
ually at the source code level. SSR optimizes the commuarcagatterns inferred by our
analysis of communication partners. As of this writing, piecates on a procedure scope
with a single co-space and textual co-space barriers fatsgnization. To extend SSR’s
applicability to real codes, we use compiler hints to congaém for the lack of interpro-
cedural analysis. Understanding communication structnables the CAF compiler to
convert barrier-based synchronization into more efficfern. We investigated the con-
version of textual co-space barriers into point-to-poyrichronization. SSR-optimized
programs are more asynchrony tolerant and show bettesigdgland higher performance

than their barrier-based counterparts.
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We implemented prototype support for SSRciaf c. SSR-optimized Jacobi itera-
tion, NAS MG, and NAS CG benchmarks show performance conipaurta that of our
fastest hand-optimized versions that use point-to-pgimtisronization. Compared to their
barrier-based counterparts, they demonstrate noticgafermance improvements. For
64-processor executions on an Itanium2 cluster with a Myr2®00 interconnect, we ob-
served run-time improvements of 16% for a 2D Jacobi iteratiol 0242 size, 18% for NAS
MG classes A and B, and 51% for NAS CG class A. In our prior gsidive observed sim-
ilar benefits from using point-to-point synchronizatiostgad of barriers on other parallel

platforms and for other benchmarks as well.

Multi-version variables. Many scientific codes such as wavefront, line-sweep, and
loosely-coupled parallel applications exhibit the pragluconsumer communication pat-
tern, in which the producer(s) sends a stream of values teahsumer(s). Expressing
high performance producer-consumer communication in P@A§uages is difficult. The
programmer has to explicitly manage several communicdtidfers, orchestrate complex
point-to-point synchronization (to hide the latency ofiadgpendence synchronization due
to buffer reuse), and use non-blocking communication.

We explored extending CAF with multi-version variables (M}, a language-level ab-
straction we devised to simplify the development of highH@@anance codes with producer-
consumer communication. An MVV can store more than one v&undy one value can be
accessed at a time; others are queued by the runtime. A odosmits new values into
an MVV and a consumer retrieves them. MVVs offer limited soipifor two-sided com-
munication in CAF, which is a natural choice when develogngducer-consumer codes.
MVVs simplify program development by insulating the pragraer from the details of
buffer management, complex point-to-point synchronagtand non-blocking communi-
cation.

MVVs are the right abstraction for codes in which each pre@esnmunicates streams

of values to a small subset of processors. MVVs might not leebiést abstraction for
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codes in which each process communicates data to a lot oégses, which might cause
excessive MVV buffering. While MVVs insulate the programmrem managing the anti-
dependence synchronization, sometimes no such synchtmmas necessary because it
is enforced elsewhere in the application. However, we beltbat programmability ben-
efits of the MVV abstraction outweigh slight performancesks due to unnecessary anti-
dependence synchronization in this case.

We extended CAF with prototype support for MVVs. MVVs siga#ntly simplify
development of wavefront applications such as Sweep3D MMWd-based codes deliver
performance comparable to that of the fastest CAF multidoufand-optimized versions,
up to 39% better than that of CAF one-buffer versions, andpaoable to or better (up to
12%) than that of their MPI counterparts on a range of pdrailtditectures. MVVs greatly
simplify coding of line-sweep applications, such as the N&ISand SP benchmarks, and

deliver performance comparable to that of the best hanuhod MP1 and CAF versions.

Distributed multithreading.  Distributed memory is necessary for the scalability of mas-
sively parallel systems [80]. Systems in which memory idamated with processors con-
tinue to dominate the architecture landscape. The noddseeétdistributed memory ar-
chitectures are also becoming paraléetj, multi-core multiprocessors. Distributed multi-
threading (DMT) is based on the concepts of function shigpind multithreading, which
provide two benefits. First, DMT enables co-locating comfiah with data. Second, it
enables exploiting hardware threads available within aenddMT usesco-subroutines
andco-functiongo co-locate computation with data and to enable local antte asyn-
chronous activities. Using DMT to co-locate computatiotivdata is an effective way of
avoiding exposed latency, especially when performing derpperations on remote data
structures. In addition, concurrent activities runninghivi a node would enable utilizing
available hardware parallelism.

We presented design principles behind multithreading iSBND language and pro-
vided the DMT specification for CAF, featuring blocking anoihAblocking activities that
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can be spawned remotely or locally. We extendad ¢ with prototype support for DMT.
We developed a micro-benchmark to compute the maximum \@fl@eco-array section
to quantify the performance gain due to co-locating contpartawith data. In our experi-
ments on an Itanium2 cluster with a Myrinet 2000 intercomn&e observed that, for large
sections, it is up to 40 times faster to ship computation agtdtge result back than fetch
data and obtain the result locally; for accesses to more an@mote data structures, this
benefit is likely to be much higher. We developed several giregn and bucketed versions
of the RandomAccess benchmark to gain a better undersafaiMT design. Our ex-
perimentation revealed that it is necessary to use a pooSah@ads to execute activities,
rather than to spawn each activity in a separate OS threatblitecer best performance; it
is also necessary to allow programmers to control the thpeadlto tune the runtime for
the application’s concurrency needs. Better asynchrdeyance allowed the performance
of a DMT-based implementation of bucketed RandomAccessdees that of the standard
MPI version, which usebPI _Al | t 0Al | to exchange remote updates.

We found that DMT improves programmability of applicatighat benefit from asyn-
chronous activities. We experimented with a branch-anghbaraveling salesman problem
(TSP), which we selected as representative of paralletbegpplications. We found that
the DMT-based CAF version is simpler than a master-slavesagespassing implemen-
tation in MPI. The simplicity comes from not having to implent a two-sided protocol
when using DMT; instead, the programmer can use co-fungtio®xecute asynchronous
remote activities. DMT-based TSP demonstrates betteopednce, because, in our ex-
periments, the MPI implementation dedicates a processoe the master, and this mater

processor does not perform useful computation.

10.2 Future Directions

New technology and infrastructure developed in this dissien will enable us to investi-

gate a set of interesting ideas in the future. We outline gdiewnising research directions.
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Extending CAF analysis and communication/synchronizatia optimization. To de-
velop scalable, high performance explicitly-parallelgnams, programmers must use ef-
ficient communication and orchestrate complex point-toHpsynchronization, which is
difficult. Barriers are the simplest synchronization meathi to use in PGAS languages.
Thus, the role of the compiler is to enable application devets to use barriers for syn-
chronization, while optimizing communication and synchreation into a more efficient
form delivering performance and scalability. SSR is an garof such an optimization.

As of this writing, our novel CAF analysis and SSR are limiteda procedure scope
with single co-space and structured control flow. It is polssto extend the analysis to
handle arbitrary control flow (see discussion in Sectior).7Fhere is also a good indi-
cation that interprocedural analysis can be developeditarelte the necessity of hints
for SSR. Such analysis would include: (1) detecting wheghprocedure may access lo-
cal or remote co-arrays or perform synchronization in angéeation; (2) propagation of
single values across procedure calls; (3) propagation ®fnchronized PUT/GET across
procedure boundaries. It is still an open question whethemalysis can be developed to
analyze scopes where communication/synchronizationne flar multiple co-spaces.

In addition to SSR, our CAF analysis technology enables afggtomising communi-
cation and synchronization optimizations. SSR does natgdghe communication prim-
itive. Doing so will enable conversion of one-sided PUT/G&Immunication into two-
sided send and receive. Such two-sided communication chaffe¥ed, and would enable
us to automatically generate more asynchrony tolerant,smaee buffering can move anti-
dependence synchronization off the critical path, and ipadknpacking of strided com-
munication. Conversion of GET into PUT will enable us to iaélinterconnect RDMA
capabilities, when accessing remote data via PUTSs, foitaotbres with RDMA support
for PUTSs, but not for GETs. The push (PUTSs) strategy would aisable us to hide ex-
posed latency inherent to the pull (GETS) strategy as wed &ile producer-consumer loop
nests to entirely hide communication latency.

Finally, our SSR algorithm is not based on array section depece analysis. Devel-
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oping such an analysis, which must also include remote @yaections, might improve
the precision of our CAF analysis and SSR; however, we havgeticseen opportunities

that would benefit from such analysis in the limited set ofede have studied.

Enhancing multi-version variables and beyond. Producer-consumer communication
is typical in many scientific codes; however, it is difficult develop scalable, high per-
formance producer-consumer applications in PGAS languag#fe offer MVVs as a
pragmatic and convenient way to simplify development ofhkpgrformance producer-
consumer codes in CAF.

It would be interesting to consider whether multi-versi@riables can benefit from
extensions such as GET-style remogd r i eve, theconmi t andr et ri eve primitives
of partial MVV versions, and an adaptive buffer managemeategy.

It is worth investigating the stream abstraction as anmdtigre to MVVs, especially for
codes that stream values of unequal size. While streamswaoeessgeneral abstraction than
MVVs, they would require the programmer to establish explionnections. For streams,
it would also be harder to optimize unnecessary memory sppikich MVVVs achieve via
adjusting an F90 pointer.

The clocked final model (CF) [106] is another more generairaditive to MVVs that
does not require the programmer to specify the number otlsitind explicitly manage
conmi ts andretrieves. It would be interesting to investigate whether it is pblesi
to develop sophisticated compiler and runtime technologyptimize CF-based scientific
codes to deliver as high performance as that of using MVVs mange of parallel archi-

tectures.

Improving thread support in programming languages. Co-locating computation with
data and utilizing intra-node parallelism is essentialuityfutilize hardware capabilities
of modern parallel architectures. While experimentingwdistributed multithreading, we
discovered that operating systems do not provide adequpp®d for precisely controlling

multithreading for high performance codes. A promisingeegsh direction is to work
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with OS developers to develop an efficient, flexible, and gdud threading system that
enables applications, rather than the OS, to scheduledfire@his would enable us to
extend a multithreaded programming model with user-defsededuling policies that best
accommodate the concurrency needs of the application, bh@sveompiler analysis and
optimization to appropriately mix & schedule concurreningutations. Better run-time
support would also be necessary to enable massive (milbbrisreads) multithreading
within a node.

Finally, it is worth investigating whether a programmingahebcan provide convenient
abstractions for efficient work-sharing that can be optedifor automatic load-balancing

in the presence of distributed memory.
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