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Abstract

Nunerical methods for advection-diffusion equations are discussed based
on approximating advection using a high-resolution upwind finite difference
method, and incorporating diffusion using a wmixed finite element method. In
this approach, advection is approximated explicitly and diffusion implicitly. We
first describe the hasic procedure where eacli advection time-step is followed by
a diffusion step. Because the explicit nature of the advective scheme requires
a CFL time-step coustraint, the basic procedure may be expensive, especially
if the CFL constraint is severe. Two alternative time-stepping approaches are
presented for improving computational efficiency while preserving accuracy. In
the first approach, several advective time-steps are computed before taking
a diffusion step. In the secoud approach, the advective time-steps are also
allowed to vary spatially. Numerical results for these three procedures for a
model problem arising iu flow through porous media are given.

Keywords: Advection, diffusion, upwinding, mixed finite elements

1 Introduction

Explicit, upwind finite differeuce scliemes based on slope-limiting {28] or flux-limiting
[6] have become very popular over tlie last few years for solving linear and nonlinear
advection equations. These scliemnes ave so-called “high-resolution” [21] extensions of
earlier methods developed by Godunov [17], Lax and Friedrichs [20], and others and
combine numerical stability with second-order accuracy away from discontinuities
in the solution. These schemes have the advantages that they are explicit in time
and thus easy to implement, approximate shocks or sharp fronts accurately and with
no oscillations, and are globally mass conservative. Because they were developed
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for advectiou equations, they ave also useful in designing methods for advection-
dominated diffusion equatious. where the diffusive flux is “small” relative to the
advective flux. For these equations, operator-splitting can be used, where advection
is first approximated using any of the above-mentioned finite difference schemes, then
diffusion is incorporated using finite elements or finite differences, see, for example
[9, 10].

The original development of slope- and flux-limiting methods was in one space di-
mension. Over the past several vears. multidimensional extensions of these algorithms
have been developed; see, for exanple, [5, 3, 30, 29]. Based on the work in [5, 11, 10],
we have developed algoritluns in two and three dimensions combining a slope-limiting
approach for advectiou with a mixed finite element method for diffusion, the so-called
“Godunov-Mixed Method” or GMM. This scheme has been implemented and applied
to contamninant transport problemns [7], and has been used to study the effects of
nonlinear adsorption [16, 12, 18, 13, 15, 14]. The sclieme has also been applied to the
saturation equation whicli arises in modeling two-phase flow using the fractional flow
formulation [14].

The GMM falls into a general class of methods we refer to as “Upwind-Mixed
Methods” (UMM) where the advective flux is approximated using some type of up-
winding techuique, and diffusion is incorporated using a mixed finite element method.
In this paper, we will outline the UMM aud describe in some detail our implemen-
tation of the GMM. Though we will restrict attention to rectangular regions in IR?,
the scheme lhas been extended to IR? and can be extended to more general geometries
using smooth mappings as described in [3]. We commnent on these extensions toward
the end of the paper.

In the UMM, the diffusion step involves solving a global system of equations,
since diffusion is incorporated implicitly. Moreover, the advection step requires a
CFL time-step constraint for stability. Thus, in a straightforward implementation
of the UMM, where one advection step is followed by one diffusion step, a global
system of equations must be solved every CFL time-step. In this paper, we examine
two approaches for reducing the cost of this type of procedure while maintaining
accuracy by allowing for variable time-steps. In the first approach, we simply use
different time steps for advection and diffusion, with the advective time-step smaller
than the diffusive time-step. This approach was described and analyzed in [11}, but
no numerical results were given. Iu the second approach, we use variable time-steps
within the advection procedure itself, by dividing the domain into “zones”, and using
different CFL time-steps within each zone. Diffusion is again incorporated implicitly,
but the diffusive time-step does not vary spatially. The use of spatially variable time-
steps for solving one-dimensioual conservation laws was described in [22]; the methods
used here are similar but are nmltidimensional and spatially higher-order accurate.

Let Q represent a spatial domain in R*, and let T > 0. We consider the transport
equation [4]:

(¢c)y+ V- (uc — DVe¢) = ¢¢, on Q2 x (0,T). (1)

Here ¢ is the concentration of some component flowing through the medium, ¢ is



the porosity of the medinm, u = (u.v) is the velocity of the fluid, D = D(u) is the
hydrodynamic diffusion/dispersion tensor, ¢ is the flow rate at sources/sinks, and ¢
is the concentration at sources/siuks. whicl is specified if ¢ > 0 and ¢ = c if ¢ < 0.
D generally has the form

D(u) == (\'/IL[ + _(—\—l { “2 “":‘ } + il [ ’02 _’(‘iv l . (2)

|u| wo v m —uv u

where «,, is the molecular diffusivity and oy and oy are longitudinal and transverse
mixing lengths, respectively. Initially, ¢ satisfies

ooy, 0) = Ceyy),  on € (3)

On the boundary Sy = d2 x (0, 1], we assume 0§ = [} UT,, where Iy is an inflow
boundary with

(uc — DV¢) -y =ucy -y, onl) x(0,T], (4)
and ['; is an outflow-noflow boundary, with
DNVe¢-y=10, onlyx(0,T]. (5)

Here 7 is the outward normal to J€Q and ¢; 1s a specified function.
The velocity u in (3) is assuined to satisfy Darcy’s Law

u=-NV/%L, onf, (6)
and the incompressibility condition
V.ou=gq. (7)

In (6), K is the hydraulic conductivity of the medium, and A is the hydraulic head.
In this paper, we will assume u is given; however, iu most cases, u is approximated
using finite elements or finite differences and this approximation is used in (1). While
we have assumed here single-phase flow, the transport schemes described below can
also be used in multiphase flow, if we use the flow and transport model discussed in
[23]. Assuming simple phase equilibrium, this model leads to transport equations of
the same form as (1).

In applications where ¢ models point sources/sinks, such as when injection and
production wells are present, the velocity u can vary greatly in magnitude. In partic-
ular u is large near the wells and drops sharply as the distance from the well increases.
This is obvious from (7) since in this case, ¢ Is represented by a sum of Dirac delta
functions centered at the well locations. The CFL constraint necessary to guarantee
stability of the advective finite difference scheme is

l'(l,lAfA ‘UIAfA
ad <
max { oh < 1, (8)




where At4 is the advective time-step, and 7" and Y are mesh-spacings in the z
and y directions, respectivelv. When u varies spatially, (8) can lmpose an unnec-
essarily severe restriction on the thine-step in large parts of the domain. Thus, the
second variable time-stepping approach we will discuss, where At varies spatially, is
particularly useful for this case.

The paper is outlined as follows. In the next section, we give notation and de-
scribe three time-stepping methods. I Section 3, numerical results are given, with
particular emplasis on cases where point sources/sinks are present. Extensions to

three dimensions and general geonmetry are discussed in Section 4.

2 Description of Methods

Assume () = [0, L,] x [0.L,]. and partition § into rectangles Bi; = [x,_1/2, Tiz1/2) X
Wiz W12t =1L N g =1, N, Let b = w1y — ticyya, b = Y12 —
Yi-172, and b= min; ;(h5,07). Let (g, y,) denote the midpoint of Bjj.

Let Aty > 0 denote the advective thme-step, and Atp > 0 denote the diffusive
time-step. Let t* = nAfp, n=0,1,.... For any r = r(z,y,t), let 7. = r(z;,y;,t"),

o = (" = ) /At
and
= (L=t T, 0< 0L L (9)
Let z be given by
z = -V, (10)
and denote the diffusive flux by
z = Ds. (11)

Then, multiplying (1), (10), and (11) by test functions, integrating, and integrating
(10) by parts we find

((¢c)e + V- (ue + z),w) = (¢é,w), w € L*(N), (12)
(z,v)=(c,V-v), ve HY(Q;div), (13)
and
(2,%) = (Dz,¥v), ve H(Q;div), (14)
where

H(Q;div) = {v = (v1(¢, ), vola,y)) 101,02,V - v € L}(Q)]},



and

HY(Qudiv) = H(Q div)n{v: vy =0}

We employ this version of the mixed fiuite element method over the standard mixed
method approach described in [L0] because it allows for an easier implementation
when D is a matrix [2].

Let W, C L*(Q), V,, C H(Q:div), and V) € H(Q;div) denote the lowest-order
Raviart-Thomas approximating spaces [24] defined on the partition of grid blocks
{Bi;}. Here W, cousists of scalar functions w which are pilecewise constant, while
V. consists of vector functions v = (01,vy), where v; 1s a continuous, plecewise
linear function in « and pilecewise coustant in y, and vy is plecewise constant in
and continuous, piecewise linear i1 y. A basis function corresponding to the first
component of v is

L=y, . . "y - .
:,,‘“/2_‘,.“_21/,_)1 iz SO S Tigagey Yi-12 S Y S Vit

b e A o) = Ligaje . . . 0 .

Yiva4(0, 1) ',.l+:,'/z_i.l+”_)~ Ciprye S0 S Wigsga, Yior2 S Y S Yigay, (15)
0. otherwise |

for | << N, — 1, with the appropriate modifications for ¢ = 0 and ¢+ = N,. Thus,
for any v = (v, vy) € Vi, v) can be written as

N, Ny

or(eay) = 0D erlwipayas i) iy (e, ); (16)

=0 y=1

that is, v is determined by its values at the points (ziy1/2,¥;). Similarly, v, is
determined at (i, y;41/2)-

In the UMM described below, we approximate ¢* by C* € W), 2" by Z™ € V,,
z" by Z" € Vi, and uc* by F* = (f",¢") € V.

We now outline the UMM along with several time-stepping schemes.n

Time-stepping scheme I: Aty = Atp. We first consider the basic case where ad-
vection and diffusion are approximated with the same time step. Let C° € W, be

defined by

($"CY w) = (6" w), weW, (17)
and forn =1,2,...,
(()t(qs(/v)” + v R (FH—I + Z“—H),“)) _ ((1(7/,”-—6"“)), w € WIU (18)
(Z”_H.V) — ((vn-—ﬁ\v . V), v E Vz’ (19)
(Zu—ﬁ’v) — (DZ“_G,{/), vV € V). (20)

We will consider two choices of 8, § = (0 and § = 1/2. The first choice of 8 gives a
scheme which is first order in time, while 8 = 1/2 gives a scheme which is second
order in time [10].



We note that setting «w = | ou B,; and 0 elsewhere, the divergence theorem and
F*~! € V,, implies

(V-F ) = WL, = ES )+ W9 e = 0520) (21)

In (18)-(20), €', Z". and Z" ave calculated implicitly, by solving a linear algebraic
system of equations, while F"~1 is calculated explicitly from the solution C™*~'. More
will be said about F later. The systewn arising from (18)-(20) can be reduced to
a symmetric, positive definite linear algebraic system in C™ ounly. Using the tensor
product trapezoidal rule to approximate the integral on the left side of (19) and the
two integrals in (20) gives a finite difference method in C™, with a nine point stencil
in two dimensions aud a nineteen point steucil iu three dimensions [2]. If D is a scalar
quantity, then the steucil can he reduced to five points in two-dimensions and seven
points in three dimensions. [For exawple, assuming «; = oy = U, ¢ constant, § = 0,
and kY = LY = h, (18)-(20) can be veduced to the finite difference scheme

110 yyp—1 =1 _ =1 n—1 n—1
5 =05 -/i+1/z._7 -fi—l/'z,,, +9i,j+1/z 9i5-1/2

¢ Atp h h
(Y”L i AN LN A Al ~n
= [t O A+ O+ L) = 4O (22)
for: =2,....N,— 1,5 =2,...,N, -1, \vhew("—-( 1fq>0andC"—C"'

g < 0. This formula can be extended to hold for dll { < t<Nyand 1 <5 <N, by
reflecting C' across the boundary; i.e.. setting Cy; = € ;, etc.

Consider the advective flux across the i+ 1/2, 5 edge of B;;. The edge 4,7 +1/2 is
analogous. The term f+1/z approximates the advective flux through the ¢ +1/2,;
edge over the time interval [t*~1 1], that is,

'/;+1/z

- I
fi.HI/“. ~ m/ﬂ ] (we)(wivrya,y, t)dydt. (23)

Vy—1/2
When the 1 + 1/2, 5 edge of B, is ou [}, we set

"'1+1/'
11(1

f‘n—l o 1 /'lr, /
i+1/2,7 Af,‘/ﬁ; Jin=i Sy 1,

Hence, (24) along with the fact that the diffusive lux Z"~? has zero normal com-
ponent along the boundary, implies that the boundary conditions (4) and (5) are

)( Liv1/2: Y, )(l./dt (24)

approximately satisfied.
At interior edges and on I'y, there are many ways that j1+1/2 ; can be constructed.
We base our schemne on the higher-order Godunov approach to calculating f given in

[5, 10]. This approach cousists of the following steps:

[A1] A piecewise bilinear function ("' is constructed from C™! by calculating z,
¥, and @y slopes ou each grid hlock aud applying slope-limiting.

0



[A2] Left and right states at the interface (a,41/y, ;) arve calculated using C™1 and
the diffusive flux Z.

[A3] f is evaluated using upwinding hased on the sign of the velocity w.
The step [Al] gives (=1 with
Cm—l(:“y) — ("/’;I/_l + (1 _ -"i)(s,r(/"'”‘—l + ( _ yj)(s‘ycv:}—l
o = ai)ly = yi)6e, C57Y, (2,y) € Byj. (25)

The z, y, and xy slopes 1 (25) ave caleulated by applying a post-processing scheme
to C™"!. The slopes are limited so that no new extrema are introduced into the
solution. A multidimensional lmiting scheme described in [5] is used. The slopes are
calculated element-hy-element and are not costly to compute.

Step [A2] is based on (23) aud the midpoint rule of integration:

. | ! “Yy41/2
fivrjeg = W /,,_1 / (ue)(@ipry2,y, t)dydt
Al Yy=1/2
= (we) By ) + O(AL, + 1), (26)

In this step, approximations to ¢; +1/z from the left and right of the interface are
computed. We denote these approximations as ' and Cg, respectively. By Taylor
series and (1)

n—1/2 ~ T 1 Atr\ =1 hf L yn—1
Ci+]/2h-}' ~ + _—( )lJ + ';-2_((’17)1']'
/l‘-"
= (lzf)_l - T'<(‘)Il/_1
At .
5 f,LA‘l [‘/(' — e — UC, — U C — ('UC)y -V- Z] y (27)
@y

where everything in brackets ou the right side of (27) is evaluated at (zi,y;,t"').
Emulating (27), we set

e nr ALY A ]
Co = Cy'+ 5 (1 - —J;Vﬁ) LOET g 5t (4505 = (usC + 4O
AtA n re— At“ n—3/4
—‘)/ 1I¢n 1 ('Hl /-:1/2 j,1 ol l1/2) - {)F(V ’ Z J/Z)ij' (28)
¥
In (28), B = ve¢, and to caleulate 4 +11/), set
v yn—1 lj yn 1
and
hY .
v " + m—1
Cp o= (ol = s ol (30)

u



Then

' n—1
el el Coo ibof7,, >0, (31)
W12 T LAY (s otherwise.

When ¢ = 1/2, (28) formally represents a O(L® + At4) approximation to C?+11//22J;
when ¢ = 0, the error is O(Aty + /%), These bounds correspond to the overall
accuracy of the scheme (17)-(20) [10].

The right state (g is calculated shmilarly, using a Taylor series expansion of
c(Tivr/2,yj, %) about the point (riqr,y;,t""!). Finally,

) t s on=1/2
f"':xl/z P ""I‘l_ll//'»z' e, o Wit1/2s 7 0 (32)
o o U2 (e, otherwise.

The scheme described by (17)-(32) is conservative in the following sense. Setting
= 1in (18), applyiug (24). multiplying by Atp, summing on n, and applying (17),
we find for any N,

/ngCN(l:z:(l!/ = / Ve (/I(ll/-|—Z/ (1('” “dedyAtp
2 AY]

n=1

/ / wey - (m/f—Z/r (F*1 . p)dsAtp.  (33)

n=1

The true solution satisfies
. ."V 3
/¢N(“N(1:1:11y = / oMy -l—/ / qcdadydt
Q JQ uoJQ

SN N
_ /“ 4/1“1“1(:1 cu)dsdt — /u ,/1“2(uc - n)dsdt. (34)

We now discuss two approaches where Aty and Atp differ. These schemes are
inherently first-order in time but more computationally efficient than the scheme
described above. Thus, we take 6 = 0 from now on.

Time-stepping scheme I[I: KAty = Aty Assume K > 1 is an integer and C™~! €
W,. has been computed. Let t*=VF =t~V 4L LAtk =0,... K. Define C*~1* ¢ W,
as follows. Set ¢~ = ("= Then. repeat for k = 1,... K:

1

\5 n=1k=1 1l o d et ive ivas frLk=1 n—1k- :
[B1] Given C , caleulate advective fluxes 17,7 and g; 7 15" using the steps

[A1]-[A3] above applied to ("~'*=1 From these values, one can construct
Fn—l,k—-l — (f”—l,l\'—l’A-(/u—l,l\'——l) c V/z-

[B2] Set

((6C)*"1* w) = ()27 w) — Ata(V - F 11 w), w e Wi, (35)



To determine C™, we use (18)-(20), with

1 N . ‘
— _[_: Z Fu—l,k—-l' (36)
\

h=1

Fu—l

Time-stepping scheme I spatially variable Aty. In this section we describe a
scheme where Aty is allowed to vary spatially. As an example, consider dividing 2
into two zones {2y aud 0, separated by an nterface o, where each zone consists of
four grid blocks (see Figure 1). In geyeral, we assume that the boundary between
and Q; is aligned with grid block houndaries in the partition {B;;}. Let At,, denote

the advective tiie step (satisfying a CFL coustraint) in zone m, m = 1 or 2. Assume
further that Aty = LA#, for some positive integer L, and Atp = KAt, for some
positive integer I\

Given (71 € W, the advection step proceeds by first advecting the solution
within Q; for L steps up to time t*7!' + Aty = ¢*~1'. This procedure is defined
for grid-blocks interior to 0y following steps [B1]-[B2] and [A1]-[A3] above. At grid
blocks which border €, the advective flux along the boundary o is calculated as
above, where the right state is evaluated using the current solution in 3, namely
C™=1. At time "1 we perform one advection step in Q5. Again, this is well-defined
for interior grid blocks using [B1]-[B2] and [A1]-[A3] above. For those grid blocks in
2, which border €y, the Hux on o is constructed by enforcing continuity of flux across
the boundary. More precisely. let fii1/,, r denote the advective flux across o as seen

n~—1,[

from ;. Note that we have already calculated fluxes f [=0,...,L —1 across

. . - l+1/2'],
o in updating the solutiou in ;. Thus, we set
1 L—-1 11
f1'+l/2.’/,]:u' = Z Z f.,j_*_l/yzij (37)
(=0
or, equivalently,
L-1 |
. -1,
Afz.fi+1/2.‘/‘f.‘ = Z Atl.f,;“/z,j- (38)
(=0

Once the solution is updated 1 §2,, we have taken one full advection step over the
entire domain . For K > 1, we repeat the procedure above K times until we reach
time t*, where diffusion is incorporated. Finally we obtain a new solution C™* € W,
and the whole process is repeated. Siuce the fluxes across o match-up, this scheme
1s also conservative i the sense of (33).

Although we have only described this procedure using two zones, it is conceptually
easy to generalize to more zones.

3 Numerical examples

In this section we present munerical results for the schemes described above. We
consider (1)-(5) with © = [0,L] x [0, L], L = 25 feet, ¢ = §(6(0,0) — 6(L, L)) and

9



Ql Q-z

Figure 1: Division of 2 1ito two zones with different time steps

g = 1 gallon/min, ¢ = 1 at the injection well, ¢ = 1, K = .000656 feet/sec, I = I'y,
and ¢ = 0.

In all the runs below, § = 0, and in all contour plots of solutions, the contour
levels are, from left to right, .96, .84, .72, .60, 48, .36, .24, and .12.

As a base case we take o, = 0. a; = .3 feet, and o, = .03 feet, and Aty = Atp =
Atcrr, where Atepp is the global C'FL time step, defined by

Atcpr max {]“(‘r’u)', IU("’ai’/)|} =1.

(+y)eR L hy

We first solve for u using a block-centered finite difference approach, as described
in [25]. The computational grid consists of 40x40 uniform grid blocks. In this case,
Atcrr = .002 days. A coutour plot of the numerical solution using time-stepping
scheme I at ¢t = 1.2 days is given in Figure 2. In Figure 3, a contour plot of the
solution computed on an 80x30 uniform grid is given. Here Atgprp = .0005 days. Note
that the solutions are very similar, thus the 40x40 solution is essentially converged.

Next we consider time-stepping scheme [T outlined above, with Atp = KAty In
Figure 4, a numerical solution at ¢t = 1.2 computed on a 40x40 grid, with Atp = .2
days and Aty = .002 days, 1s given. Comparing Figures 2 and 4, the solutions are
very similar, even thouglh the physical diffusion in this problem is fairly significant.
This figure demonstrates the accuracy of time-stepping scheme II, with K = 100.

In order to study time-steppiug scheme [II, with At, spatially varying, we first
take o, = oy = oy = 0; i.e., we consider advection only. In Figure 5, the numerical

10



0 6.2 12 19 25

Figure 2: Base caser (' y.t) at t = 1.2 days, 40x40 grid

19} <

6.2

0

0 %) 12 19 25

Figure 3: Base case: (/(c,y,1) at t = 1.2 days, 80x80 gnid
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Figure 4: Atp = [00AL,y: C'(a, g, 1) at t = 1.2 days, 40x40 grid

solution ou a 40x40 grid at + = 1.2 days with Aty = Atepp 1s given. We now choose
two time steps, Aty = Atepp (=002 days) and At, = .05 days, and divide § into
two zones, §; and §, where ) consists of those cells where the cell CFL time-step
is smaller than At,, and Q, contaius the remaining cells. The cell CFL time-step is

defined by

X I e L h?
At;; = min : .

|’Hr1'+1/z,,/|’ |"’w‘-1/2,./|’ i'Ui,.7'+1/2|, |'Ui,J—l/'2|

In 1, we set Aty = Aty, aud w ,, we set Aty = At,. The regions 2; and 2,
are shown in Figure 6. In this case, approximately 80% of the computational cells
were located in 2,. The numerical solution for this case at ¢t = 1.2 days is given in
Figure 7. Note thiat this solution is very similar to the solution in Figure 5, with
even slightly less numerical diffusion. This effect is due to the fact that the size of
the numerical diffusion depends on hiow close Aty is to At, ;. The closer these two
quantities are, the less numerical diffusion inherent in the scheme. Thus, by allowing
the time-step to be larger in parts of the domaiu, we have actually produced a more
accurate answer.

In Figures 8 and 9, we repeat these calculations on an 80x80 grid. In the second
case, Aty = Atcrp = 0005 days, and At, = .025 days. Again, approximately 80% of
the computational cells were located in §2,.

As a final example, we repeat the 40x40 calculation in Figure 7, adding diffusion.

12



0 6.2 12 19 25

Figure 5: No diffusion, Aty = N Cla,y,t) at t = 1.2 days, 40x40 grid

25 e
9!
19} 4
0
124
0 . P .
0 6.2 12 19 25

Figure 6: Reglons €1 aud €, for spatially varying At 4 case
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0 |
0 6.2 12 19 25

Figure 7: No diffusion, Aty spatially varying: C'(a,y,t) at t = 1.2 days, 40x40 grid

25 v

19¢ ;
12

6.2¢
0O 6.2 12 19 25

Figure 8: No diffusion, Aty = Ntepr: C(ae,y,t) at ¢ = 1.2 days, 80x80 grid
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Figure 9: No diffusion, At 4 spatially varying: C'(x,y,t) at t = 1.2 days, 80x80 grid

In this case, oy = .3 feet, o, = .03 feet, and Atp = .05 days. The solution is given
in Figure 10. Note that this solution is virtnally identical to the solutions given in
Figures 2 and 4.

In all of the examples described lLeve. the schemne conserved mass exactly, in the
sense that for any time tV,

: N,
CNdady = Z / qC"dedyAtp. (39)
JQ JQ

=1

4 Remarks on Extensions

The UMM extends easily to brick elemnents in three space dimensions. In this case,
to construct the advective Hux we first coustruct a piecewise trilinear function in
each grid block by calenlating . y, =, vy, @z, and yz slopes, and applying slope-
limiting. The analogous formulas to (28)-(31) for calculating the left and right states
used to calculate the advective Huxes are again derived by Taylor expansion. In
three dimensions, to calculate a left state to be used in constructing the z-flux at
the point (@it1/2, 45, 2k), we expand ¢ at the point (w;41/2,9;, 2%, t" /%) about the
point (z:,v;, z&,t"71). A formula shmilar to (28) is obtained with an additional flux
difference in the z-direction. similar to the 3 term in (28).



19} q
124
6.2}

% 6.2 12 19 25

Figure 10: At, spatially varying, Aty = .05 days: C(x,y,t) at t = 1.2 days, 40x40
grid
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The methods described here Lhave all assuined a rectangular discretization. We can
incorporate more general geotetry into the method by using the techniques discussed
in [3]. These techniques assime that the physical domain can be globally mapped to
a rectangular computational domaiu using a C* map. This does not impose a terribly
severe restriction on the physical domain. There has been much effort in recent
years in generating such maps for very complicated domains, see, for instance [27).
The vector quantities used iu the method, namely, the diffusive and advective fluxes,
and the velocity, are mapped using the Piola transformation [26, 3], which preserves
normal fluxes. The bottom line is we end 1up solving a transformed equation of the
same form as (1) on a rectangular domain, and mapping the solution back to the
physical domain.

The UMM can also be extended to triangular and tetrahedral elements. There
has been nmuch work in recent vears in extending the ux-limiting and slope-limiting
methods to triangular elements (see. for example, [19]). These methods can be com-
bined with efficient mixed methods for triangular elements as discussed in [1].
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