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Abstract 

Numerical lllPtho<ls for ;ulvPdiou-<liffosion elp1ations are discussed based 
on approximating advPctiou 11siug a high-resolution upwind finite difference 
method, and incorporatiug diffosiou 11siug a lllixecl finite element method. In 
this approach, a.1lvectiou is approxilll,1.tPd explicitly and diffusion implicitly. We 
first describe the basic pnH'Pdme whPrP ea.ch adwction time-step is followed by 
a diffusion step. BecausP thP explicit uatnrP of the advective scheme requires 
a CFL time-step co1tstra.iut, tlie basic procedure may be expensive, especially 
if the CFL constraint is severe. Two alternative time-stepping approaches are 
presented for improving cornpntatioual efficiency while preserving accuracy. In 
the first approach, several a1lvPCtive time-steps are computed before taking 
a diffusion step. In the secou<l a.pproa.ch, the a.dvective time-steps are also 
allowed to va.ry spa.tia.lly. N m11erical results for these three procedures for a 
model problem a.risiug in flow t hrongh porous !lleclia. are given. 

Keywords: Aclvectiou, diffosiou, npwincling, mixed finite elements 

1 Introduction 

Explicit, upwind finite differPuce sclwmes based on slope-limiting [28] or flux-limiting 
[6] have become very popular ow•r tlw 1'1st few years for solving linear and nonlinear 
advection equations. These sclwuws ,in ... so-ca.llecl "high-resolution" [21] extensions of 
earlier methods developed by Cud 11uuv [ l 7], Lax and Friedrichs [20], and others and 
combine numerical stability with s~coud-order accuracy away from discontinuities 
in the solution. These scliemes lww the ad vantages that they are explicit in time 
and thus easy to implement, approximate shocks or sharp fronts accurately and with 
no oscillations, a.nd a.re globa.lly mass conservative. Because they were developed 
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for advection equatious, Uwy ,ire also usdul iu designing methods for advection­

dominated diffusion equ,1tiolls. wlwre the diffusive flux is "small" relative to the 
a<lvective Hux. For tlwst" eq1wtio11s, 01wrat.or-splitting can Le used, where advection 
is first approximated 11sillg ;i11y of tlw c1.hove-11wntioned finite difference schemes, then 
diffusion is incorpontted 11si11g finite el('lnents ur finite differences, see, for example 

[U, 10]. 
The original developmeut of slope- and Hux-limiting methods was in one space di­

mension. Over the past several years. m11ltidimensional extensions of these algorithms 
have Leeu developed; set->, for exarnplt', [:i, b, ;HJ, 2~]. Based on the work in [5, 11, 10], 
we have developed a.lgoritluns iu two awl three dinwnsions combining a slope-limiting 

approach for advectiou with a mixt>d fiuite element method for diffusion, the so-called 
"Godunov-!vlixed !vlt>thod" or Cl\EvI. This scheme has been implemented and applied 
to contaminant trauspurt prul)lems [7], aud has been used to study the effects of 
nonlinear adsorption [Hi, U. lt,;, H, l!'i, H]. The scheme has also been applied to the 
saturation equation which arist's iu uwd!,ling two-phase flow using the fractional flow 
formulation [14]. 

The GMl1vI fa.lls iuto a gerwral class of methods we refer to as "Upwind-Mixed 
Methods" (1Hv11VI) wlwre tlw ,1dvt·diw ttux is approximated using some type of up­
winding tech11iq11e, awl difb1sion is iucorpora.ted using a mixed finite element method. 

In this paper, we will 011tli1w the U!VEd awl describe in some detail our implemen­
tation of the GMi\11. Tho11gh Wt' will rt>strict a.tteution to rectangular regions in IR2, 
the scheme has beeu extewled tu If{; awl cau L>e extended to more general geometries 
using smooth mappi11gs ,ts dt 0 snilwd i11 [:3]. \Vt> comment on these extensions toward 
the end of the papt>r. 

In the UMM, the diffusiou stt>p iuvolvt>s solving a global system of equations, 
since diffusion is incorporntt~d implicitly. ?vloreover, the advection step requires a 
CFL time-step constraint for stability. Tims, in a straightforward implementation 

of the UMM, where 011e advectiou stt>p is followed by one diffusion step, a global 
system of equations must lw solvt>d t>Vt>ry CFL time-step. In this paper, we examine 
two approaches for reducing tlw cost of this type of procedure while maintaining 
accuracy by allowing for variable time-steps. In the first approach, we simply use 
different time steps for advectiou awl diffusion, with the advective time-step smaller 
than the diffusive timt>-step. This approach was described and analyzed in [11], but 
no numerical results wert> giveu. 111 the second approach, we use variable time-steps 
within the advectio11 prncedme itself, Liy dividiug the domain into "zones", and using 
different CFL time-steps withi11 t>c1d1 zone. Diffusion is again incorporated implicitly, 
but the diffusive time-step does 11ot vary spatially. The use of spatially variable time­
steps for solving one-dimensio11al conservation laws was described in [22]; the methods 
used here are similar but are multidimensional and spatially higher-order accurate. 

Let n represent a. spati,1.l donwin iu Ik2
, and let T > 0. We consider the transport 

equation [4]: 

(¢c) 1 + V · (uc - DVc) = qc, on n x (O,T]. (1) 

Here c rs the concentration of some component flowing through the medium, </> is 
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the porosity of the mf'dinm. u = (u.. u) is tlw \'docity of the fluid, D = D(u) is the 

hydrodynamic diffusiou/dispersiot1 teusor. <J is the flow rate at sources/sinks, and c 
is the concentration at somces/siuks. which is specified if <J > 0 and c = c if q < 0. 
D generally has the form 

(\ [ l/.2 
D(u) = o,,J + _i.1111 

II() 

1/.1! l ~ [ v 2 
-UV l 

2 + 2 · u iul -u.v u 
(2) 

where am is the molecular diffnsivi ty_ ii ud 111 and n 1 are longitudinal and transverse 
mixing lengths, respectively. Iuiti,dly, c sc1tisfies 

c( r, .'J, ()) = c()(.r, .'J), on n. (3) 

On the boundary Sr = iJO X ( (), T], we ilSSl une an = f 1 U f-2, Where f 1 is an inflow 

boundary with 

(uc - Dvc). I/= U/'1. ,,, on r 1 X (0, T], (4) 

and f 2 is an outfiow-noflow L>o11u<li1ry, with 

Dvc. I/= 0, Oll f 2 X (0, T]. (5) 

Here T/ is the outward normal to iJn c1rnl c 1 is a specified function. 

The velocity u in (:3) is c1ss1111wd to satisfy Darcy's Law 

U=-f{vh, 0110, (6) 

and the incompressibility condition 

v · u = q. (7) 

In (6), J( is the hydraulic conductivity of the medium, and h is the hydraulic head. 
In this paper, we will a.ssume u is giveu; however, in most cases, u is approximated 

using finite elements or finitf' difforeuces and this a.pproximation is used in (1). While 
we have assumed here single-phase flow, tlw trnnsport schemes described below can 

also be used in multiphase flow, if we use the flow and transport model discussed in 
[23]. Assuming simple phase f'qllilibri11m, this model leads to transport equations of 
the same form as ( l). 

In applications where q models point sources/sinks, such as when injection and 
production wells are present, the velocity u can vary greatly in magnitude. In partic­
ular u is large near the wells and drops slwrply as the distance from the well increases. 
This is obvious from (7) siuce in this case, <J is represented by a sum of Dirac delta 

functions centered a.t the well locations. The ( :FL constrnint necessary to guarantee 
stability of the advective finite clifft>rf'nce sclwme is 

{ 
i11\.6d.4 \ui~t.4} < 

rnax / . , ,.1../ _ l, q> 1·1· 9, l)I 

(8) 



where L\tA is the adwctiw~ tillw-stt-·ti, iltHl h' and /,!I are mesh-spacings in the x 

and y directious, n ... specti\'( ... [_v. \\'lwu u varies spatially, (8) can impose an unnec­
essarily severe restrict iou 011 tlw tiuw-skp iu large parts of the domain. Thus, the 
second variable time-steppiug ,t ppnJ<1d1 \\'e will discuss, where L\tA varies spatially, is 
particularly useful for this cilse. 

The paper is outli1wd as follows. Iu the 1wxt section, we give notation and de­
scribe three time-steppiug 11ietl10ds. In Section :3, numerical results are given, with 
particular emphasis 011 cases wlwre point sources/sinks are present. Extensions to 
three dimensions awl ge1wral geonwtry are discussed in Section 4. 

2 Description of Methods 

Assume n = [0, L,,.] X [0. L,J il!td pc1rtition n into rectangles Bij = [xi-1/2, Xi+i/21 X 

[Yj-1/2, !/j+l/'2], l = l, · · ·, N,, .} = L, · · · , "Vy, Lt"t ht" = :i:;+1/2 - :i:i-1/2, h1j = Yi+I/2 -
!/j-i/2, and h = min;,,1(/1";', /1;). Let (.r;, y1 ) denote the midpoint of Bij· 

Let L\tA > 0 deuute tlw ;idV(--'(·tiv( ... time-step, aml L\tD > 0 denote the diffusive 
time-step. Lett"= 11:.;:,.fD, 11 = 0, l, .... For ,1ny,. = r(:i:,y,t), let rfj = r(xi,Yj,tn), 

iJ1r" = (r" - ,-"- 1 
)/ !::ltD, 

and 

,-n-/J = (l - O)r" + 0,-n-l, 0 :s; 0 :s; l. (9) 

Let z be given by 

z = -v'c, (10) 

and denote the diffusiw tiux by 

z = Dz. (11) 

Then, multiplying (l ), ( 10), am! ( 11) by test fnnctions, integrating, and integrating 
(10) by parts we find 

((¢c) 1 + 9 · (w· + z), w) = (q(\ w), w E U(n), (12) 

(z, v) = (c, 9 · v), v E H 0 (n; div), (13) 

and 

(z, v) = (Dz, v), v E H(!1; div), (14) 

where 

H ( n; di V) = { V = ( V1 ( .i:, !/) 1 v:.!( :i:' y)) : Vil V2' 9 . V E L 2( n)}) 
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and 
H()(n; di\·)= H(O: div) n {v: V. I/= O}. 

vVe employ this versioll oft lw rnixt0 d finitt-> t-'\t-'meut nwthod over the standard mixed 
method approach dPscrilwd iu [ 10] lw< ,11tse it allows for ,m easier implementation 

when D is a. matrix [4 
Let W" c L 2(H), V1, C H(O: div), it.11d V): C H 0 (n; div) denote the lowest-order 

Raviart-Thomas approxiurnting spc1ct-'s [14] ddiued on the partition of grid blocks 
{ B;1 }. Here lV1i cousists of scc1lc1r fouctious w which are piecewise constant, while 
Vh consists of vector fuuctiuus v = (u 1 , u2 ), where v1 is a continuous, piecewise 
linear function in :r and piecewist" cons taut in y, and v2 is piecewise constant in x 

and continuous, piecewise li1wc1r iu y. A basis function corresponding to the first 
component of v is 

'1Pi+1/2,j(:r, y) = { 
:,:t+l/'2-J't-1/'l., 

,·,+:.u--·· 
.,·,+:·,r, -.,·,+ i; 2 

(). 

,r,-1;2 :S .r :S :ci+1;2, !h-1/2 :S Y :S Y1+1/2, 

r,+1/2 :S .r :S .i:;+41., !/j-1/2 :SY :S Yj+1/2, 

utlwnvist-' , 

(15) 

for 1 :S i :S Nx - 1, with tlw appropric1J<0 modificatious for ·i = 0 and i = Nx. Thus, 
for any v = (v1, v2 ) E V1i, u1 <·c1.11 lw \nitteu ,1s 

.V, 1\',1 

ui(:r,y) = LL 1•i(:r 1+1;2,Y.1)1/Ji+1/2,j(:r,y); (16) 
i=ll .1=1 

that is, v1 is determined by its \·,d1ws at the points (:ri+i;2,y1). Similarly, v2 is 
determined at (;ri, !Ji+1;2), 

In the UMr--1 described below, \V(" ,1.pproximate c" by C" E W1i, z" by Z" E vh, 
z" by Z" EVY., and uc" by F" = (f",q") EV,,. 

We now outline the UMM aloug with several time-stepping schemes.n 
Time-stepping scheme I: D,,f.4 = !:::..tIJ. \Ve first consider the basic case where ad­

vection and diffusion art-' approximatt-'d with the same time step. Let C 0 E Wh be 
defined by 

( 
(I ( ,l) ) ( , I I II ) LV cp . , II' = 0'> c , W , -W E v "' (17) 

and for n = 1,2, ... , 

(18) 

(zn-(/, v) = (C' 11
-

1\ 'y · v), VE V~, (19) 

(20) 

We will consider two choices of(), () = 0 and () = 1/2. The first choice of 0 gives a 
scheme which is first order iu tiuw, while () = 1/2 gives a scheme which is second 
order in time [10]. 
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We note that settiug w = l 01t B,.1 ctlld O t>lsewhen ... , the divergence theorem and 
Fn-l E V,. implies 

( y' F"-1 . ) - / //[/'"-! /'"-1 ] /',.[ n-1 n-1 ] 
. 'II' - 1.1 . 1+l/l.,1 - . ,-1/'1.,j + l; !Ji,1+1/2 - !Ji,7-1/2. (21) 

In (18)-(:20), C", Z", a11d Z" ,1rP c<1lrnli1ted implicitly, by solving a linear algebraic 
sy::,tem of equatious, whil( ... F"- 1 is c<1kubted (~xplicitly from the solution en-I_ More 

will be ::,aid a.bout F latPr. Th( ... systt>w arising from (18)-(20) can be reduced to 

a symmetric, positive dt>huite li1w,1r <1lgt>l>raic system in C" only. Using the tensor 
product trapezoidal rulP to iippruxirncttP t.lw iutegral on the left side of (19) and the 
two integral::, in (:20) gives a huit< ... diffnt->uce mdhod in C", with a nine point stencil 
in two dimensions and a ui11etee11 poiut steucil in three dimensions [2]. If D is a scalar 
quantity, then the stP1l<'il c,111 lw rt·d11< < ... d to five points in two-dimensions and seven 
points in three dinwusious. For <·:-u1111pl<;, ,1ssumiug 0·1 = cr1 = 0, </> constant, 0 = 0, 
and h'f = h1j = h, (11:-\)-(:!0) can lw n;duced to the fiuite difference ::,cheme 

C". - en-I 1·11-l t'{(-1 n-1 n-1 
q> · ,.7 17 + , i+l/'2.} - · i-l/'1.,1 + !Ji,j+I/'2 - !Ji,j-1/2 

6.t D Ji h 

-~ [c." 1 + (" 1 
- .[("

1 + C" + C" ] = C'-'-. Ji.2 . 1+1..1 1-l.,1 . '·./ 1,,1+1 l,J-1 q '} (22) 

f . •) ~r l . ·) \. l 1 C-'n. -n ·t· O d C-n en "f or z = .:., ... , JV.,. - , J = _, ... ,: Y - , w wre 'i.i = cij 1 <J > an ij - ij 1 

q < 0. This formula can lw t·xk11d< ... d to hold for all l :s; i :s; Nx and 1 :s; j :s; Ny by 

reflecting C across the bo1111da.ry; i.e., st->ttiug C:0 ,1 = G\,J, etc. 

Consider the aclvective finx anoss tlw i + 1/2,j edge of Bij· The edge i,j + 1/2 is 

analogous. The term f/~~i,.,.1 ,q>proxim;1tt>s tlw advective flux through the i + 1/2,j 
edge over the time iuterval [t"- 1, t"]; t lw t is, 

j·n-1 
i+I/2,j ~ 

l ;,·I" 1·!/1+1/2 
• 11 ,, 

1 
(uc)(:ri+1;2, y, t)dydt. 

~f.-1/i.1 . t - . !11-1/1 
(23) 

When the i + 1/2,j edgt> of B;1 is 011 f 1, we set 

l ;,·/" /'//J+J/2 f:~~i2 · = 11 (uci)(:1:;+1/2, y, t)dydt. 
,J 6.t.-1 h, . ,,,-J . !11-l/'l 

(24) 

Hence, (24) along with the foct that tlw clitfosive flux zn-0 has zero normal com­
ponent along the boundary, implit ... s tltat the hounda.ry conditions (4) and (5) are 
approximately satisfied. 

At interior edges and 011 r 2 , tllt'n' art> nrnuy ways that f[~~i 2 ,j can be constructed. 
We ba::,e our ::,cheme 011 the higlier-ord<~r Goduuov approach to calculating f given in 

[5, 10]. This approach cousists of tlw fullowiug steps: 

[Al] A piecewise bilinear fonctioll ('"- 1 is constructed from cn-l by calculating x, 
y, and :r:y slopt>s 011 each grid block arnl applying slope-limiting. 
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[A2] Left and right states at tlw i11t<Jrfon° (:r 1+1; 2 , i/j) are calculated using cn- 1 and 

the diffusive flnx Z. 

[A3] f is evaluated 11siug 11pwiwli11g li,1s<0 d 011 the sign of the velocity u. 

The step [Al] gives C11
-

1 wit Ii 

c;n-1(:r, y) = <';;-1 + (.r - .r;)b,C:f_;-1 + (y - yy}8yc;;-1 

+(.r - .r1)(.11 - Yi)8,,,yC);f1, (:c,y) E B;1. (25) 

The x, y, aud :ry slorws i11 (2:i) ,1n· c,drnlate<l by applying a post-processing scheme 

to cn- 1 . The slopes il.r<" limited so tlwt 110 uew t>Xtrerna are introduced into the 
solution. A multidime11sio1wl limitiug sdwme described in [5] is used. The slopes are 
calculated eleme11t-by-t>lt>11w11t c111d are not costly to compute. 

Step [A2] i:-; hasecl Oil (:t{) c111d tlw tllidpoillt rnle of integration: 

l ;,·t" /'!!1+1/2 
~ !I ,,_, . (1tc)(:r;+1;2, y, t)dydt 

f ,\ /, j . f ' !1.1 -1 /1 

(. ·)( :. fn-1/'2) + ""'( Af2 + i 2) /I( ./ 1+1/2, Y.1, . V u A fl • (26) 

In this step, a.pproximatious to C:1

;///, from the left and right of the interface are 
computed. We denote tlws<~ c1.pproximatiuus as CL and CR, respectively. By Taylor 
series and ( 1) 

n-1/2 ~ .11-l + ~f,4 (. )n-1 + hf (. )n-1 
ci+l/2,.i c i.1 l < t iJ 2 c,, ij 

I, .I 

c"- 1 + -' (c .)"- 1 
lj 2 ,/ /j 

!::::.t,4 -+ .> 
1
,,_ 1 [,1c - <fJ,c - uc,, - u,,c - (vc)y - 'v · z], (27) 

-<P,:J 

where everything in Lracket.s ou the right side of (27) is evaluated at (x;,y1,tn-l). 
Emulating (27), we set 

CL = cn.-1 + -' 1 - ,+1/2,.1 . b cn-1 + _A_(,. cn.-1 - (u C + A, C)~--1) p ( u"-
1. !°:lt4) !::::.t -

lJ 2 ' .1· 'Ii - J ·1· 1,J 2 ,-i..'.1-1 1iJ l] X '{Jt lJ 
1, (/),j 'P,y 

_ f::::.fA (/J"-:-1 _ ,-Jn-1 ) _ {) !::::,.f.4 (\7. zn-3/2) .. 
')/ 11 ,1,n-1 1,.1+1/'2 ' 1,.1-1/2 /411-1 •1 · 
- l] 'Pq 'l',,1 

(28) 

In (28), (3 ~ vc, and to ci1lc11lc1t<J d"-+1
11 .11 st->t 

1,.J -

hi/ 
cn-1 + -1.t, cn-1 

l} 2 y •J ' 
(29) 

and 

I? 
( ,11-l _ '}+1 8 c:n-:-1 
. 1,.1+1 2 y 1,1+1. (30) 
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Then 

{ (' 
f'-1 11-1 ·B, 

I i . .1+1/2 = l'l,1+1/2 ( 'r, 
'f' n-1 0 
I ul,,i+l/2 > ' 
ut.lwnvise. 

(31) 

When l:J = 1/'2, (1~) forni,illy r<0 pn·:-w11ts ii 0(/,. 2 + ~t~) approximation to c;;1¼~j; 
when l:J = 0, the enur is 0(6f.-1. + l1 2

). These buuuds correspond to the overall 
accuracy of the scheuw (17)-(10) [10]. 

The right state Cn is (',ilrnlc1.tnl- siwilci.rly, usiug a Taylor series expansion of 
c(:ri+l/2, !/j, tn-l/'2) about tlw puiut (.r1+1, .'f.1, t"- 1 

). Finally, 

f·n-1 11-1/2 { CL, 
· ,+1/2.1 = //.i+l/2.J C'n, 

"f' n-l/'2 Q 
I lli+l/'2,J > , 
otherwise. 

(32) 

The scheme dt>scri l wd by ( 17 )-( :11) is rn11st0 rvati ve iu the following sense. Setting 
w = 1 in (18), applyiug (:24). 1111iltiplyiug by ~tD, summing on n, and applying (17), 
we find for any N, 

The true solution satisfit>s 

V 

/ ~~
0

c
0 dnly + ;·t· / qZ·d:rdydt 

.fu t1 ./11 

- (v J' ( UC1 · I/ )<fs<ff - f tN f (UC· T/ )dsdt. 
.!u .Ir 1 lu lr2 

(34) 

We now discuss two approadws when~ 6t A awl 6.tD differ. These schemes are 
inherently first-order in tinw ln1t u10n· (·omp11ta.tio11a.lly efficient than the scheme 
described above. Thus, we takt> l:J = () from uuw 011. 

Time-stepping scheme II: !{ ~t A = !:::.t D· Assume I{ 2: l is an integer and cn-l E 
W,. has been computt>d. Lt>t 1n-1.1c = t"- 1 + k:~t.4, k: = 0, ... , I(_ Define cn-i,k E W,. 
as follows. Set cn-l,U = C"- 1 . Tlien. repeat for k: = 1, ... K: 

[Bl] (,. c·,, 1 k I 1 [ [ · fl ,·n-1 k-1 l 11-l k-1 · h ~1ven ,- · - , ca c11 ,1te ,1( \'(,ct1ve 11xt>s. i+i;°2,
1 

anc 9i,j+i;2 usmg t e steps 

[Al]-[A:3] above applit0 d to ( ,,,_1,1.-i _ Frnm these values, one can construct 
yn-1,k-l = (fn-1,k-l, _(j11-1./.-I) E V,,. 

[B2] Set 

s 



To determine C", we use (l~)-(20), with 

l I, 
F11-l = ---; L F11-l,k-1 _ 

/\ l,=l 

(36) 

Time-steppiug sclierne III: spc1t ially \'ilriable .6.t.4. In this section we describe a 
scheme where .6.t.4 is allowed tu vc1ry spc1ti,tlly. As an f'Xample, consider dividing n 
into two zones 0 1 a.ud 0 2 st0 p,m11<·d lJy au interface rT, where each zone consists of 
four grid blocks (see Fig11n· l ). 111 ge1wrc1l, Wf' assume that the boundary between !11 

and fh is aligned with grid ])lock L)o11udc1ries iu the partition {B;1}. Let .6.tm denote 
the advective time step (satisfyiug ,, ( 'FL cuustraint) in zone m, m = 1 or 2. Assume 
further that 6.t'2 = L.6.t 1 , for so11w positivt-· iutf'ger L, and 6.tD = I{ 6.t 2 for some 
positive integer K. 

Given C"- 1 E Hf," the advectiou st.ep proceeds by first advecting the solution 
within !11 for L steps up to tinw f 11

-
1 + .6.t'2 = f"- 1

•
1

. This procedure is defined 
for grid-blocks intf'rior to 0 1 following steps [Bl]-[B2] and [Al]-[A3] above. At grid 
blocks which border 0 2 , tlw advt0 ctive flux aloug tlw boundary O" is calculated as 
above, where the right state is tJ\'c1l1wtt>d nsiug the current solution in !12 , namely 
e11

-
1 • At time t"- 1

•
1

, Wt" 1wrfonn lllll' c1dvectio11 step inn:.!· Again, this is well-defined 
for interior grid blocks 11si11g [Bl]-[B2] aud [Al]-[A3] a.Love. For those grid blocks in 
!12 which bordt,r 0 1 , the finx 011 rT is rn11strncted by enforcing continuity of flux across 
the boundary. More prt>cisely, lt0 t f,+ 1; 2 • .1.n deuote the advective flux across O" as seen 

from !12 • Note that we have already cak11lc1tt>d fiuxes f:~~~·~,1, l = 0, ... , L - 1 across 
O" in upclatiug the sol11tio11 in 0 1 . Tims, we st>t 

l L-1 

f. ~ ,·n-1 I 
• 1+1;2.1.Ft = L ~. i+1/2,;, 

l=U 

(37) 

or, equivalently, 

(38) 

Once the solution is updated iu 0 2 , we have taken one full advection step over the 
entire domain n. For I< > l, Wf' repeat the procedure above I{ times until we reach 
time tn, where diffusion is incorporn.tetl. Finally we obtain a new solution en E Wh 
and the whole process is rt>peate(l. Since the fluxes a.cross O" match-up, this scheme 
is also conservativf' iu the se11s<0 of (:1:1). 

Although we have ouly descrilwd this procf'dure using two zones, it is conceptually 
easy to generalize t~ more zones. 

3 Numerical examples 

In this section we present 111111wricc1l rt>snlts for the schemes described above. We 
consider (1)-(5) with n = [O,L] x [O,L], L = 25 feet, <J = <I(8(0,0)- 8(L,L)) and 



(j 

f h f h 

Figure 1: Divisiuu of O iuto two z01ws with different time steps 

ij = l gallon/min, c = l at the iujediou Wt-'11, ~1y = l, J( = .000656 feet/sec, an= r 2, 

and c0 = 0. 
In all the nms below, {} = 0, c1.11d iu c1ll contour plots of solutions, the contour 

levels are, from left to right .. % .. M·L .7l., .(iO, .48, .:Hi, .24, and .12. 

As a base case we takt-' n 111 = 0. n1 = .:{ feet, and n 1 = .03 feet, and 6.tA = 6.tv = 
6.tcFL, where 6.tcFL is tht-> global ( 'FL time step, defined by 

A { I II ( ./'' ii) I IV ( :i:' !I) I } 
:..:ifc:FL JllclX / , / = l. 

(:r,y)En I,. Ly 

We first solve for u using a. block-ct->utenJd fiuite difference approach, as described 
in [25]. The computa.tiuual grid cuusists uf 40x40 uuiform grid blocks. In this case, 
6.tcFL = .002 days. A coutom plot of tlw 1111merical solution using time-stepping 
scheme I at t = l.2 days is giwu iu Figme 2. In Figure 3, a contour plot of the 
solution computed 011 ,111 ~OxMO 1t11iforn1 grid is giveu. Here 6.tcFL = .0005 days. Note 
that the solutions are very simibr, 1 bus tlw -!Ux40 solution is essentially converged. 

Next we conside,r timt-"-stt-'ppiug sdwme II u11tli11ed a.Love, with 6.tv = I< 6.tA. In 
Figure 4, a numerical solution ,1! t = l.l. computed on a 40x40 grid, with 6.tv = .2 
days and 6.tA = .002 days, is giwu. ( :ompariug Figures 2 and 4, the solutions are 
very similar, even though tlw physical diffusion in this problem is fairly significant. 
This figure demonstrates the acc1uacy of time-stepping scheme II, with I< = 100. 

In order to study time-stt->ppiug sdwme III, with 6.tA spatially varying, we first 
take am = 0:1 = n 1 = O; i.e., we rn11sider advert.ion only. In Figure 5, the numerical 

10 



Figure 2: Bast" case: ( '(.r, _1;, t) at t = 1.2 days, 40x40 grid 

Figure :3: Bast-' u1se: C(:c:, y, t) at t = 1.2 days, 80x80 grid 

11 



25,------------------...... -----. 

00~---------..................................... ____ ___. 
6.2 12 19 25 

Figun ... 4: t::.tD = 100~1.1: C(.r,y,t) c1.t f = 1.2 days, 40x40 grid 

solution 011 a. 40x40 grid a.t I = 1.:2 days with t::.tA = 6tcFL is given. We now choose 
two time steps, 6t1 = t::.tcFL ( =.00:2 dc1ys) and 6t'2 = .05 days, and divide n into 
two zones, Sh and n .. , where 0 1 cot1sists of tl10se cells where the cell CFL time-step 
is smaller than 6t'2, a.lHl n .. c011tc1i11s tlw remaiuiug cells. The cell CFL time-step is 
defined by 

;\f • I I I .7 J 

{ 
/1' I ·' h!I h y } 

U ·i,j = 111111 , , , • 
111 ,+1/2,11 1

11 1-1/'2,.il 1°,,.i+I/'21 lvi,j-1/21 

In n1, we set 6tA = 6t1, alHl iu 0,, we set 6tA. = 6t'2. The regions n1 and n2 
are shown in Figure (i. In this case, approximately 80% of the computational cells 
were located in n ... The uunieric,d sulntiou for this case at t = 1.2 days is given in 
Figure 7. Note that this solutiou is very similar to the solution in Figure 5, with 
even slightly less munerical dilf11sio11. T!tis efft>ct is due to the fact that the size of 
the numerica.l diffusion depeuds 011 how close 6tA is to 6t;,j- The closer these two 
quantities a.re, the l.=,ss 111mwrical diff11siu11 i11here11t in the scheme. Thus, by allowing 
the time-step to be larger i11 pa.rts of the dunwiu, we have actually produced a more 
accurate answer. 

In Figures 8 and 9, we repeat these calculations on an 80x80 grid. In the second 

case, !.:::.t 1 = !:::.tcFL = .0005 days, a.ud 6.t .. = .0~5 days. Again, approximately 80% of 
the comµutationa.l cells were located iu n ... 

As a final example, we repe,1t t!te 40x-Hl ca.lcula.tion in Figure 7, adding diffusion. 



Figure G: No diffusio11, ~t .. 1 = ~t< n,: C(;i:, y, t) a.t t = 1.2 days, 40x40 grid 

25---------------,.-------

l9 

l2 

6.2 

00 6.2 12 l9 25 

Figme G: Rt>gio11s 0 1 c111d 0 2 for spa.tia.lly varying 6-tA case 



Figure 7: No diffusion, 0:.t .. 1 sp,itic1lly \"dl.')'i11g: C(:r, y, t) at t = 1.2 days, 40x40 grid 

25...--------------------

19 

12 

6.2 

6.2 12 19 25 

Figure 8: No diffosiou, 0:.t_.\ = ~fcFL: C(;r,y,t) a.t t = 1.2 days, 80x80 grid 
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6.2 12 19 25 
Figure 9: No diff11sio11, ~t .. 1 sp<1ti;illy \'c11yi11g: C(:c, y, t) at t = 1.2 days, 80x80 grid 

In this case, 01 = .:{ fret. (l 1 = .(n ft·d. aud ~t D = .05 days. The solution is given 

in Figure 10. Nott> tlwt tl1is sol11tio11 is \'i1t1wlly identical to the solutions given in 

Figures 2 and 4. 

In all of tht-> t->xa.mplt>s dt>sni I wd lit'tt-'. t lie sdwnw conserved mass exactly, in the 
sense that for any time t'Y. 

(39) 

4 Remarks on Extensions 

The UMM extewls t'd.sily to L>rick t'leuw11ts i11 three space dimensions. In this case, 
to construct tht> a.dwct.i\·e f-l11x 11·(0 first < cmstrnct a. piecewise trilinear function in 
each grid block by calc11latillg r. y, .::, .ry, .i:.::, aud yz slopes, and applying slope­
limiting. The a.11alogo11s forn111lc1.s tu (2~)-(:H) for calculating the left and right states 
used to calculate the advt->ctivt> fi11xt's aw again derived by Taylor expansion. In 
three dimensions, to calculcttt-> ii left stc1 tt> to be ust>d in constructing the x-flux at 

the point (:z:i+I/i, Y;, ::k), WP expa.lld c at the point (:ri+i/2, y1, Zk, tn-t/2) about the 

point (xi, !/j, Zk, f"- 1 
). A fornrnla similar to (28) is obtaiued with an additional flux 

difference in the z-directiou. sirnil<1r to tl1t> ;, term in (28). 

1 :i 



Figure 10: .6.tA spatially vc1ryi11g, ..:::.1 u = .O:i dc1ys: C:(:i:, y, t) a.t t = 1.2 days, 40x40 
grid 
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The methods described lwre hit\'(" ,ill c1ss11rned a rectaugular discretization. We can 
incorporate more geueral /.!;t'otm·try iuto 1 lw nwthud by usiug the techniques discussed 
in [:3]. Tlwst· tt·d111iq1ws c1ss1111w t hilt 1 lw physical domain can be globally mapped to 
a rectaug11litr co1np111i1tio11i1l dou1c1i11 11si11g a C2 rrnq>. This does not impose a terribly 

severe rest.rictiuu 011 tlw pl1ysic,il do111<1iu. There has beeu much effort in recent 

years in ge11era.ti11g such 111<1ps fur n-Ty rn111plica.tecl clomaius, see, for instance [27]. 
The vector quautities used iu the nwtltud. w111iely, the diffusive and advective fluxes, 
and the velocity, are w;ipped 11siug the Piulc1 trausformation [2G, 3], which preserves 
normal fluxes. The bottom liue is Wt' ewl 11p solving a transformed equation of the 
same form as ( l) 011 " rt·ct c111.e,1t!M do111;i.i11, c111d ma.pping the solution back to the 
physical domain. 

The Ul'vllVI cau c1lso lw t',-:lt·11dt·d to tri,1.ug11lar and tetrahedral elements. There 
ha:; been m11cl1 work ill n·n·ttl _\'<•;irs iu t·xtt~udiug the flux-limiting and slope-limiting 
methods to triaugular t0 lt·111t·11ts (st·e. for t·xample, [l!)]). The:;e methods can be com­
bined ·with efficient u1ixed 11wtltuds fm 1ri,wglll,tr element:; as di:;cussed in [l]. 
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