

ABSTRACT

Radial MILO: A 4D Image Registration Algorithm Based on Filtering Block Match

Data via `1-minimization

by

Arturo Vargas

Minimal `1 Perturbation to Block Match Data (MILO) is a spatially accurate

image registration algorithm developed for thoracic CT inhale/exhale images. The

MILO algorithm consists of three components: (1) creating an initial estimate for

voxel displacement via a Mutual Minimizing Block Matching Algorithm (MMBM),

(2) a filtering step based on `1-minimization and a uniform B-spline parameterization,

and (3) recovering a full displacement based on the filtered estimates. This thesis

presents a variation of MILO for 4DCT images. In practice, the use of uniform B-

splines has led to rank deficient linear systems due to the spline’s inability to conform

to non-structured MMBM estimates. In order to adaptively conform to the data an

octree is paired with radial functions. The `1-minimization problem had previously

been addressed by employing QR factorization, which required substantial storage.

As an alternative a block coordinate descent algorithm is employed, relieving the

need for QR factorization. Furthermore, by modeling voxel trajectories as quadratic

functions in time, the proposed method is able to register multiple images.

Acknowledgments

I would like to thank the members of my committee, Dr. Edward Castillo, Dr.

Yin Zhang, Dr. Richard Tapia, and Dr. Timothy Warburton; especially to my

advisors Dr. Edward Castillo and Dr. Yin Zhang who first introduced me to image

registration and `1 optimization. Their time and patience is what made this possible.

Dr. Richard Tapia’s speeches always provided inspiration and motivation, and Dr.

Timothy Warburton’s computational science courses provided the tools to implement

Radial MILO effectively. I would also like to thank the CAAM 600 professors Dr.

Sorensen, Dr. William Symes, and Dr. Jan Hewitt for the thesis writing course, the

lessons learned were invaluable.

I thank my family as well as my friends from Fullerton, California, Jonathan

Bernal, Matthew Hendricks, and Eamon Donovan for their support. I thank my

CAAM cohort and CAAM friends who have made these last few years wonderful. To

Veronica Landa, who helped me revise my thesis and stayed up late to hear me talk

about image registration. I dedicate this thesis to my brother and sisters. I hope they

find something that sparks their interest and inspires them to strive for excellence.

Finally, a big thanks to the NSF for providing the funding to carryout this project.

NSF GRFP grant number: DGE-1450681.

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

2 Medical Image Registration 4
2.1 Types of Transformations . 4

2.2 Medical Image Processing on GPGPU’s 5

2.3 Image Registration Benchmark Tests 7

2.4 Minimal `1 Perturbation to Block Match Data (MILO) Algorithm . . 8

2.5 Contributions: Radial MILO . 9

3 Mathematical Concepts for Image Registration Algorithm

Development 11
3.1 Voxel Displacement Modeling . 11

3.1.1 Lagrangian Coordinate Framework 12

3.1.2 Recovering Coefficients . 13

3.2 Block Matching . 13

3.2.1 Block Matching as an Image Registration Algorithm 15

3.2.2 Mutual Minimizing Block Matching Algorithm 16

3.3 B-splines . 16

3.3.1 B-splines in Image Registration 19

3.3.2 B-splines with MMBM data 19

3.4 On `1-minimization . 20

v

3.4.1 Compressive Sensing . 20

3.4.2 De-Noising Basis Pursuit/LASSO 21

3.5 2d̂ Tree Data Structures . 24

3.6 Radial Basis Functions . 27

3.6.1 Local Approximations: Moving Least Squares 27

3.6.2 Image Registration Based on Radial Functions 28

3.7 Conforming Parameterization . 28

4 Methods and Implementation 30
4.1 Segmenting a Thoracic CT Image . 31

4.2 GPGPU Computing Model . 33

4.3 Block Matching on the GPGPU . 34

4.4 The 2d̂ data structure class . 37

4.5 Radial Functions . 39

4.5.1 Overview of Globally Supported Radial Functions 39

4.5.2 A Class of Compactly Supported Functions: Wendland’s

Functions . 40

4.5.3 Discussion . 41

4.6 Filtering MMBM Data via `1-minimization 41

4.6.1 Block Coordinate Descent . 42

4.6.2 Filtering Algorithm via `1-minimization 44

4.6.3 Moving Least Squares . 45

4.7 Radial MILO Algorithm . 46

5 Numerical Experiments 47
5.1 Image Description . 47

5.2 Block Matching Parameters . 48

5.3 Registration Results . 54

5.3.1 Spatial Accuracy: Expiratory Phases 55

vi

5.3.2 Spatial Accuracy: Maximum Inhalation and Exhalation . . . 56

5.4 Review of DIR-LAB Reported Algorithms 59

5.4.1 Searching Based Methods . 59

5.4.2 Optical Flow Based Methods 60

5.4.3 Demons Based Methods . 61

5.4.4 Trajectory Based Methods . 62

5.4.5 Variational Methods . 63

5.5 Visual Results . 64

6 Conclusion 66

Bibliography 68

1

Chapter 1

Introduction

Images play a key role in many different fields. For example, remote sensing employs

collections of images for environmental modeling, weather forecasting, and integrating

geographic information systems [1, 2, 3, 4, 5]. Medical science uses image sequences to

monitor tumor growth and verify treatment [6, 7, 8, 9, 10]. Whether the application

is image mosaicing or feature tracking, an underlying model must be found in order

to relate the images. Finding the underlying model is the focus of image registration.

Image registration can be broadly defined as:

Definition 1 Image Registration : the determination of a spatial transformation

that best relates information depicted within a sequence of images with respect to an

assumed motion and/or intensity model.

Depending on the image and the goal of the registration, different approaches to

image registration can be taken. Zitova and Flusser [11] group the objectives of

image registration into four main categories:

• Multiview Analysis: Given images from different view points, the goal is to

create a larger image, for example a mosaic.

• Multitemporal Analysis: Given images taken at different times, the goal is

to construct an intermediate image or estimate displacement.

• Multimodal Analysis: Given images acquired by different sensors, the goal

2

is to combine the images to create a more detailed image.

• Scene to Model Registration: Given a model image and a related image

(scene) with similar content, the goal is to find how the scene may fit into the

model. For example, in remote sensing, images are registered from arial or

satellite data onto maps or geographic information systems.

During the last few decades, image acquisition devices have undergone rapid develop-

ment creating an influx of diverse types of images, and invoking research in automatic

image registration. Automatic image registration is desirable as it would minimize the

need for human intervention to register images. Various researchers have put great

effort into creating image registration algorithms [11, 12, 13, 14]. Due to differing

image content and goals, there is no universal image registration algorithm. Image

registration algorithms do, however, share a common anatomy [11, 12, 13, 14].

Mathematically, image registration seeks to find the optimum transformation, W,

to relate a reference image, R, and a set of target images at time, T
i

, under a given

metric, J:

W

⇤ = argmin
W

X

i

J (R, T

i

,W) . (1.1)

Image registration algorithms are typically composed of the following:

1. Deformation Model: Class of voxel-to-voxel maps

2. Objective Function: A function that serves to measure how well a model is

able to relate images under a given metric.

3. Optimization Scheme: An approach to find the "best" member of the class

In this thesis I consider image registration for Thoracic Four Dimensional Com-

puted Tomography images (4DCT). Thoracic 4DCT captures sequences of 3D im-

3

ages of the thorax during respiration. These images can show how the pulmonary

parenchyma changes with air content. When we breathe our lungs expand and con-

tract in a non-uniform fashion, thus obtaining physiological or quantitative motion

data from these image sets requires image registration [14, 15].

I begin by providing an overview of image registration methods and discuss the use

of the general purpose graphics processing unit (GPGPU) in medical image analysis.

I then discuss the use of benchmark images to judge the spatial accuracy of regis-

trations, and introduce the Minimal `1 Perturbation to Block Match Data (MILO)

algorithm. MILO is a spatially accurate algorithm for multitemporal analysis of three-

dimensional computed tomography (3DCT) images that has provided the inspiration

for this thesis [16]. I then provide a discussion on each of MILO’s components and

their uses in other image registration algorithms. Lastly I address MILO’s weak-

nesses, particularly that it has not been extended to 4D, and present Radial MILO,

a 4DCT image registration algorithm.

4

Chapter 2

Medical Image Registration

2.1 Types of Transformations

The goal of multitemporal registration is to recover an optimal spatial transformation

that describes the displacement of voxels for a reference image, [11]. This means that

the type of motion captured by the sequences of images will influence the type of

modeling needed. In order to capture the intricate deformations of the lungs that

occur during the breath cycle, models that allow for complex deformations must be

used. There are three main modeling approaches for deformable image registration

that appear in the literature:

• Optical Flow Based Deformation: Optical flow is described by Horn and

Schunck as the "distribution of apparent velocities of movement of brightness

patterns in an image" [17]. Optical flow methods calculate the motion between

two image frames for every voxel position. Horn and Schunk’s work on deter-

mining optical flow has led to various registration algorithms [18, 19, 20, 21].

• Free-form Deformation: Free-form deformations parameterize a spatial trans-

formation. They describe the displacement field as a linear combination of basis

functions. Defining � (x) as displacement field,

� (x) =
NX

i=1

↵

i

B

i

(x) . (2.1)

5

Each B

i

denotes a basis function where ↵
i

,x 2 Rd̂ (d̂ denotes dimension) are

coefficients and voxels, respectively, and N is the number of basis functions.

Various registration algorithms have been designed with varying types of basis

functions, such as B-splines, radial basis functions, etc. [11, 16, 18, 22, 23].

• Physics Based Deformations: Physics based deformations have an underly-

ing stiffness model [18, 24, 25]. The strength in incorporating physics is allowing

different tissues in images to have different physical attributes.

Because medical images are being collected at much faster rates, the need to

process images has also increased. More notably the need for faster algorithms has

become apparent as the resolution of the images has increased. To illustrate compu-

tational demands of images, consider the difference between 2D, 3D, and 4D images

composed of data type unsigned short integers (2 bytes). In terms of data size a 512

⇥ 512 image is roughly 0.5 MB, a 3D volume image of 512 ⇥ 512 ⇥ 128 is 67 MB

and a 512 ⇥ 512 ⇥ 128 ⇥ 10 4D image is around 671 MB. Higher resolution images

have more voxels (pixels in 2D) and require larger storage. As data sets get larger the

algorithm complexity increases, and with it computational cost. The growing collec-

tion of larger images has led to an increasing demand for fast and spatially accurate

image processing, data analysis, visualization, and interactivity tools [26].

2.2 Medical Image Processing on GPGPU’s

In 2007, with the release of Nvidia’s Compute Unified Device Architecture (CUDA),

computational scientists were given access to simpler ways to program GPGPU’s. To

computational scientists, GPGPU’s provided a way to perform thousands of com-

putations in parallel [26, 27]. Many image processing algorithms port easily to the

6

GPGPU because they act on individual voxels. For example, when applying a filter

to an image, it is applied to every voxel of the image and requires no communication

with neighboring voxels; a single instruction is assigned to different data.

A drawback back of CUDA is that it is only designed to work with Nvidia

GPGPU’s. As such, several industries came together to create a standardized applica-

tion programming interface (API) called the Open Compute Language (OpenCL) [26,

27, 28]. The purpose of the language is to allow programmers to manage parallelism

and data delivery in massive quantities through parallel processors. The OpenCL

model goes beyond GPGPU’s, allowing the programming model to be mapped to

homogenous or heterogenous, single or multiple-device systems consisting of CPU’s,

GPGPU’s, Field-Programmable Gate Arrays (FPGA), and potentially other future

devices.

The need to quickly register large quantities of images and the rapidly improv-

ing performance of GPGPU’s have brought researchers to develop GPGPU based

algorithms with parallelizable computations. A major benefit of using a GPGPU for

image processing is that images can be stored in specialized texture memory. Texture

memory has the advantage of offering highly efficient access to image data in scenar-

ios where memory access patterns exhibit a great deal of spatial locality and offers

texture interpolation when needed [18, 28].

With the development of techniques and tools for image registration, a method

for accessing spatial accuracy was needed. This necessity introduced the notion of

benchmark images.

7

2.3 Image Registration Benchmark Tests

In 2011, Murphey et. al. [29], published the results of the Evaluation of Methods for

Pulmonary Image REgistrations 2010 (EMPIRE10). This challenge served as a public

platform for the comparison of registration algorithms designed for thoracic CT image

pairs. The EMPIRE10 challenge sought to create a fair playing field to compare algo-

rithms by having a third party provide images for registration and judge the quality of

the registration. Judging is based on an algorithm’s alignment of lung boundaries and

major fissures, correspondence to annotated landmark pairs, and singularities in the

deformation field [29]. However, having a third party perform the evaluation, meant

that it could only be done when there is a judge available. To address this both draw-

back the Deformable Image Registration Lab (DIR-LAB) and Vandemeuebroucke et.

al. [30], offer free online collections of CT images that can be used to test image

registration algorithms at www.dir-lab.com and at www.creatis.insa-lyon.fr/rio/popi-

model, respectively. Expertly located landmark points are annotated throughout the

images and treated as ground truth [15, 16, 30, 31, 32]. This type of benchmark

testing allows for self-testing of a variety of registration algorithms by eliminating the

need of a third party to judge the quality of the registration. Due to its accessibility I

employ the image sets provided by the DIR-LAB (Table 5.1). For future work other

image sets will be employed.

The overall best registration algorithm at the EMPIRE10 challenge, greedy dif-

feomorphic registration (GSYN), was developed by a team from the University of

Pennsylvania’s Image Computing and Science Laboratory [29, 33]. Their algorithm

employes the data processing library, ANTs [34], and consists of (1) an affine regis-

tration step and (2) a diffeomorphic step. The affine registration step provides an

initial global alignment between lungs, and the diffeomorphic step introduces more

8

degrees of freedom to improve precision when mapping the displacement of voxels.

By definition a diffeomorphism is a smooth bijective mapping with a smooth inverse.

Diffeomorphic transformations can be categorized as a physics based model, governed

by the Lagrange Transport Equation [14]. The EMPIRE10 challenge is still active and

researchers can submit their results online at http://empire10.isi.uu.nl/submit.php.

When compared to MILO [16], GSYN performed overall less accurately on DIR-LAB

data.

2.4 Minimal `1 Perturbation to Block Match Data (MILO)

Algorithm

The MILO algorithm is a spatially accurate image registration algorithm developed for

temporal analysis of thoracic CT inhale/exhale images. The algorithm has achieved

high spatial accuracy in CT image pairs and has been shown to out-perform, or

perform as competitively as, the leading registration algorithms based on DIR-LAB

benchmark images [16]. Although MILO delivers satisfactory results, there are draw-

backs. Therefore, the focus of this thesis is to explore a variant of this algorithm for

4D image registration.

MILO is based on three components, (1) a Mutual Minimizing Block Matching

Algorithm (MMBM), (2) an `1 filtering step, and (3) recovering a full parameterization

based on filtered data points. MMBM estimates describe specific voxel displacements

via an exhaustive search and a voxel intensity metric. A limitation of the MMBM

algorithm is the fact that an optimal point match, in terms of the similarity metric,

may not be optimal in terms of spatial accuracy [16], thus filtering is necessary.

MILO uses MMBM data in conjunction with uniform B-spline basis functions to

9

recover an initial displacement field. Under the assumption that there is a small

amount of spatially inaccurate data relative to the number of points, `1-minimization

techniques are used to identify potentially inaccurate data. A full displacement field

is then recovered based on the remaining points [16].

Though the MILO algorithm has performed well, in practice the algorithm has

resulted in some issues:

1. It employs a uniform B-spline mesh which may result in a rank deficient matrix

if MMBM data does not lie within the support of a basis function.

2. The `1-minimization problem is addressed by employing QR factorization, which

requires substantial storage.

3. The modeling approaches limit the registration to pairs of images.

2.5 Contributions: Radial MILO

As a variant of the MILO algorithm, I present Radial MILO. Radial MILO contributes

the following:

1. An alternative to a uniform mesh, a 2d̂ tree data structure is used to spatially

partition the estimates from the MMBM algorithm. A spatial parameteriza-

tion is constructed by employing a linear combination of radial basis functions

centered at the occupied leaves of the tree, thereby conforming to the MMBM

data.

2. To address the `1 minimization problem, Radial MILO employs a block coordi-

nate descent, relieving the explicit need for QR factorization.

10

3. Lastly, voxel displacements are modeled as quadratic trajectories to create a 4D

image registration algorithm.

11

Chapter 3

Mathematical Concepts for Image Registration
Algorithm Development

3.1 Voxel Displacement Modeling

Both the MILO and Radial MILO algorithms can be classified as free-form image

registration algorithms. As such MILO and Radial MILO employ a spatial parame-

terization for a voxel’s displacement and trajectory, respectively. Mathematically, for

a pair of images, a free-form registration algorithm seeks to recover a displacement

field, � (x), for voxels, x, for the following spatial transformation, .

 (x) = x+ �(x),

: R3 ! R3
. (3.1)

By simply parameterizing displacement, Equation (2.1), the spatial mapping,

Equation (3.1), is limited to only offering the new location of the voxel on the target

image. Recalling that the goal of this thesis is to perform 4D image registration,

the most straight-forward approach would be to interpolate the displacement fields

provided by 3D image registration algorithms. An issue with this approach is the fact

that the sequences of images are not incorporated into a global model (i.e. the prob-

lem is completely decoupled). Furthermore, errors in the pairwise image registration

would propagate as the displacement fields are interpolated [15].

However, since 4D images are simply a collection of 3D images, registering across

a 4D image set is the recovery of each voxel’s spatial trajectory as a function of time.

12

As such, this approach lends itself well to a Lagrangian coordinate system. Figure

(3.1) illustrates the difference between modeling displacement versus modeling a voxel

trajectory.
Four-dimensional deformable image registration 309

Figure 1. Displacement versus Lagrangian path. The Lagrangian coordinate of the particle
located at ξ for t = 0 is given by the function x(ξ, t), which represents the trajectory of the particle
originally located at ξ, through " as a function of time. The displacement vector, d, is the vector
difference x(ξ, tfinal) − x(ξ, 0).

Figure 2. 4D Landmark point trajectories. 4D landmark point sets were utilized to test the
adequacy of the trajectory model and spatial accuracy of the DIR algorithms studied. (a) The
4DCT image sets used in this study consisted of the six images spanning the expiratory phases
from maximum inhalation (T00) to maximum exhalation (T50). 75 landmark point sets were
identified on ten cases as shown for the example point. Each 4D landmark point was identified
(yellow arrow) for phases T00 through T50 as shown. (b) A sample 4D trajectory of the landmark
point depicted is plotted. Note that the T30 and T40 points overlay each other.

As stated earlier, image pair registration is based on calculating displacement vectors.
Accordingly, most existing DIR methods assume that voxel trajectories are straight lines:

x(ξ, t) = td(ξ) + ξ . (2)

However, such restricted motion may not be appropriate for modeling thoracic voxel motion
(see figure 2). On the other hand, 4DCT image acquisition inherently is noisy and results in
image artifacts due to respiratory variation. There is also the potential to overfit the trajectories

Figure 3.1 : Displacement, d, versus trajectory of a voxel, x, at the initial position,
⇠, from time 0 to 1 [15].

3.1.1 Lagrangian Coordinate Framework

The Lagrangian coordinate system models the trajectory of individual voxels as a

function of time. For example, the method in [35] employs a polynomial model in

terms of time, t,

⌥
�
x, t; q (x)

�
=

2

6666664

q1 (x) tN + q2 (x) tN�1 + ...+ q

N

(x) t

q

N+1 (x) tN + q2 (x) tN�1 + ...+ q2N (x) t

q2N+1 (x) tN + q2N+2 (x) tN�1 + ...+ q3N (x) t

3

7777775
+ x. (3.2)

The spatial mapping, ⌥, defines the trajectory path for the voxels, x, in the reference

image. The terms, q
k

(x) and t represent coefficients and time, respectively. Similar

to displacement, each coefficient, q
k

(x), can be parameterized,

13

q

k

(x) =
NX

i=1

↵

i

B

k

i

(x) . (3.3)

In a study done by Castillo et. al. [35], it is demonstrated that there is no signifi-

cant difference in employing a quadratic, cubic, quartic, or a quintic function when

registering images throughout the expiratory phase. As would be expected, they also

show a linear model does significantly worse in comparison for 4D modeling. Since

the DIR-LAB provides propagated landmarks for the expiratory phase for assessing

accuracy, Radial MILO is used to register only over that phase, and is therefore paired

with a quadratic function.

3.1.2 Recovering Coefficients

By modeling displacements as a linear combination of basis functions, free-form image

registration reduces to finding a best set of coefficients for a subset of voxels in the

reference image. This approach lends itself to two different methods for recovering

coefficients. One can either pose an optimization problem with an assumed metric and

optimize over the set of coefficients, or find optimal corresponding voxels throughout

the images and interpolate. A novelty of the original MILO algorithm is the use of

constrained optimization to find corresponding voxels from the reference and target

images. The MILO algorithm poses a constrained optimization problem that seeks

estimates to minimize the block match similarity metric, subject to an acceptable

least squares residual based on a B-Spline parameterization [16].

3.2 Block Matching

The block matching algorithm has origins in video compression [36, 37, 38] and has

demonstrated utility in medical image registration [16, 39, 40]. Block matching seeks

14

to find corresponding voxel locations in pairs of related images. The algorithm parti-

tions a reference image into blocks (reference blocks) of n⇥m⇥z voxels, chosen based

on distinctive features of the reference image. Each block is then assigned to a search

window in the target image. In order to compare candidate blocks it is necessary that

the search window be at least the same size as the reference block, thus the search

window consists of (n+2⇥ p0)⇥ (m+2⇥ p0)⇥ (z+2⇥ p0) voxels, where p0 denotes

the maximum allowed displacement (search window radius).

There are a few variations on the block matching algorithm [38], but the most

intuitive and accurate is the Full Search Algorithm (FSA). FSA compares the ref-

erence block with each possible candidate block of the same size reference block in

the search window, potentially (2 ⇥p0 + 1)3 candidates, according to a given metric.

The choice of metric is dependent on the image content and potential voxel intensity

changes between images. Clearly, this is a computationally intensive process; how-

ever, the block matching algorithm is well suited for parallel computing. Thus, using

the GPGPU, the block matching algorithm can be executed in a reasonable amount

of time [38, 16].

Adopting the notation used in [16], block matching can be expressed as the fol-

lowing discrete optimization problem:

arg min
d2Bp0

F

�
R (x) , T (x+ d)

�
(3.4)

where B

p0 denotes {d 2 Zd̂ : kdk1  p0} as a search window, F is the employed met-

ric, R and T are the reference and target images, respectively, and x is a voxel (center

of the reference block). An illustration denoting the mechanics of block matching is

found in Figure 3.2.

15

151

Review of Block Matching Based Motion Estimation
Algorithms for Video Compression

Eric Chan, student member, IEEE and Sethuraman Panchanathan, member, ZEEE
Department of Electrical Engineering

University of Ottawa, Ontario, CANADA

A h s l r ~ c t - Block matching motion estimation is a key
component in video compression. Typical applications include
HDTV, multimedia communications, video conferencing, etc. In
this paper, we present a review of block matching based
motion estimation algorithms. These algorithms are classified
into three categories, namely fast algorithms, layered structure
algorithms and inter-block motion field prediction algorithms.
They are compared with respect to estimation accuracy and
computational complexity. In addition, various matching
criterion are also reviewed.

1. INTRODUCTION

Video compression is becoming increasing important with
the advent of the compression standards (JPEG, MPEG, H.261,
etc.) and broadband networks (ISDN, ATM, etc.). Typical
applications are in the areas of HDTV, multimedia
communications, video conferencing, etc. Two kinds of
redundancies exist in a video sequence, namely, temporal and
spatial. The temporal redundancies are usually removed by
using motion estimation/compensation techniques. This is then
followed by the removal of spatial redundancies by employing
techniques such as Discrete Cosine transform (DCT), Vector
Quantization, Wavelets, etc.

Motion estimation/compensation results in a considerable
improvement in compression performance compared to a
simple replenishment interframe coding, i.e. coding only the
differences between two successive frames. One approach for
motion estimation is to estimate the cross-correlation functions
via the frequency domain [l] . In other words, the frequency
domain algorithms are based on the transform coefficient of the
image data. An alternative approach is the spatial domain
techniques. Two mainstream techniques for motion estimation
have been developed, namely, pel-recursive algorithms and
block matching algorithms. In the pel-recursive algorithms,
motion vectors are estimated for individual pixels. These
algorithms do not require the transmission of motion
information but recursively use the relative luminance change
to find the motion vectors. However, these involve extensive
computations. In addition, failure of correct estimation on
edges and iincovered background is a major drawback of pel-
recursive algorithms (21. In order to reduce the computational
burden and improve the prediction performance, block
matching algorithms have been proposed where all pixels
within a block are assumed to have the same motion activity.
The proposed MPEG standard for video compression includes
block-based motion compensation techniques for the
reduction of the temporal redundancies in a video sequence
131.

In this paper, we present a review of the various block
matching based motion estimation algorithms. These
algorithms are classified into three categories, namely, fast
algorithms, layered structure algorithms and inter-block motion
field prediction algorithms. In addition, various matching

criterion such as mean square error (MSE), mean absolute error
(MAE) and pixel difference classification (PDC) are outlined.

This paper is organized as follows: In section 2, we review
the block matching motion estimation process. Block
matching based algorithms are studied in section 3. The
simulation results are presented in section 4. The conclusions
are given in section 5 followed by the references.

2. BLOCK MATCHING PROCESS

In the block matching process, the current frame (t) of a
video sequence is divided into blocks of size n x n. For each
block (reference block) in the current frame (t), the previous
frame (t-1) is searched within a neighborhood (search area) in
order to obtain the closest match block with respect to a
prespecified error criterion. This process is illustrated in Figure
1. The search area consists of (n+2p) x (n+2p) pixels, where p
is the maximum allowed displacement. We note that the total
number of possible candidate blocks is (2 ~ 1) ~ . The closest
match block is used as a prediction estimate for the reference
block. The relative displacement between the reference block
and the closest match block constitutes the motion vector.
The motion vectors together with the prediction error image
(i.e. the difference between the previous frame (1-1) after
motion compensation and the current frame (1)) are then coded
and transmitted to the receiver.

I n+20 lPrevious Frame (t-1)

Motion

Reference Block

Figure 1 : Block Matching Motion Estimation Process

3. BLOCK MATCHING ALGORITHMS

The most intuitive approach for block matching is to use the
full search algorithm (FSA). For each reference block, all
possible (2 ~ + 1) ~ candidate blocks are searched to obtain the
optimum best match block using a criterion such as MSE or
MAE which are given as follows:

n n

M S E (u , v) = c (S (i + u, j + v) - R(i , j)) ’

c l S (i + U , j + v) - R(i , j)l

- - - (1)
i=l j = l

n n

MAE(U, v) = - - - (2)
i=l j=1

- p 5 u.v I p
CCECE/CCGEI ‘93 0-7803-1443-3/93 $3.00 0 1993 IEEE 9 . 2

Figure 3.2 : Illustration of Block Matching process, [36]

3.2.1 Block Matching as an Image Registration Algorithm

Since the objective of pairwise image registration is to find voxel displacements, it

is quite natural to employ block matching for image registration. Various image

registration algorithms, including MILO, are built on the block matching algorithm

[41, 40, 42]. An example is Castillo, et. al.’s three step algorithm based on com-

pressible flow, LCF [35]. The algorithm first formulates a non-linear least squares

problem based on a compressible flow model. The objective function is then mini-

mized using a block matching scheme. Next, the points are filtered via a least median

of squares approach. By fitting to the median, up to 50% of outliers can be removed

[43]. Finally, moving least squares is used on the filtered data points to recover the

full displacement field. See Table (5.3.2) for a comparison against Radial MILO.

However, because block matching finds displacements using a voxel intensity met-

ric, the minimizer for the metric may not be spatially accurate with respect to the

physical transformation. In addition, erroneous points may be introduced by the

choice of the reference block size or search window size. Choosing an appropriate

reference block is crucial to obtaining meaningful data. For example, choosing a ref-

erence block with uniform pixel intensity and assigning a search window with uniform

16

pixel intensity will result in useless data as there would be several optimum displace-

ments. The choice of the metric is also important for success; if changes in intensity

were to occur between images, the metric should account for that. The fact that

erroneous estimates can enter block match data calls for the incorporation of filtering

techniques.

3.2.2 Mutual Minimizing Block Matching Algorithm

As a first round of filtering, MILO uses a variation of the block matching algorithm,

referred to as Mutual Minimizing Block Matching (MMBM). The MMBM algorithm

is simply a two-phase FSA algorithm that provides a filter for potential erroneous

points. The standard block matching algorithm finds an associated displacement

vector for every voxel, while the MMBM algorithm only keeps the solution of the

block match if it gets mapped back to the reference image after switching the role

of the reference and target images. However, this approach can lead to spatially

scattered estimates; moreover there is still no guarantee that the resulting points are

spatially accurate, motivating the need for an additional round of filtering. For ex-

ample, consider Figure 3.3, which demonstrates the displacement estimates provided

by the MMBM algorithm. Visually, one can tell that some of the arrows are spatially

inaccurate.

3.3 B-splines

As discussed, a common approach to free-from registration is to create a parameteri-

zation of the displacement field [11, 16, 22]. A curve generated by B-splines is simply a

collection of compactly supported piecewise polynomials that are joined along knots.

17

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 3.3 : Reference image, showing
spatially inaccurate displacements.

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 3.4 : Target image

Definition 2 In one dimension a knot vector is a non-decreasing set of coordinates,

k

x

= {⇠0, ⇠1, ⇠2, ..., ⇠n+p

�+1}. Where n is the number of basis functions used to con-

struct the B-spline curve, and p

� is the polynomial order.

Each piecewise polynomial is referred to as a spline basis function. The beauty of

splines is that although they are composed of piecewise polynomials, a linear combina-

tion of degree p

� basis function will result in a global Cp

��1 function, thus making it a

perfect candidate for inherently smooth transformations [16, 44]. Moreover, the com-

pact support leads to computationally efficient algorithms. B-spline basis functions

are defined recursively, starting with a constant B-spline.

Definition 3 Constant B-spline

S

j,0(x) =

8
><

>:

1 :
x 2 [⇠

j

, ⇠

j+1)

0 :
x /2 [⇠

j

, ⇠

j+1)

B-spline basis functions of order p� are defined by the following recurrence relation:

Definition 4 B-spline basis function of order p

�

S

j,p

�(x) =

x� ⇠

j

⇠

j+p

� � ⇠
p

�

!
S

j,p

��1 (x) +

⇠

j+p

�+1 � x

⇠

j+p

�+1 � ⇠j+1

!
S

j+1,p��1 (x) .

18

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B−Spline Basis Functions
knots

Student Version of MATLAB

Figure 3.5 : Example of 1D B-spline
basis functions

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

2D−Spline

Student Version of MATLAB

Figure 3.6 : Example of 2D B-spline
basis functions

A notable feature of splines is that as the order of the polynomial increases so does

the region of compact support. Moreover, given a set of basis functions, a curve can

be written as a linear combination of splines, for example:

f (x) =
NX

i=1

a

i

S

i,p

� (x) . (3.5)

For higher dimensions, surfaces can be generated by taking tensor products of one-

dimensional splines. As an example, consider the 2D B-spline:

f (x, y) =
NX

j=1

NX

i=1

a

i,j

S

i,p

� (x)S
j,p

� (y) . (3.6)

19

3.3.1 B-splines in Image Registration

Two benefits of using splines is that they can describe non-rigid inherently smooth

transformations [45, 46], and that they are defined over knots, which can be made

nonuniform by altering the spacing of the mesh [46, 47, 48]. Although B-splines

provide great flexibility, the associated image registration optimization problem is

non-linear and non-convex. The non-convexity implies that the optimization problem

can have local minima. Finding a global minimizer then becomes a more difficult

problem since gradient based methods, such as Gauss-Newton and BFGS, may get

stuck in local minima if a "good" initial guess is not provided [49].

Another issue associated with using gradient based methods is that the objective

function is typically required to be twice differentiable [49]. Since an image is a

discretely sampled signal, image data must be interpolated and smoothed; however,

over-smoothing could potentially destroy fine image structure [50].

Alternatively, if one were to use splines as basis functions for interpolation they

would need to find corresponding voxels in the reference and target images. Since

many image registration algorithms are based on B-splines, several techniques have

been developed for addressing the choice of estimates [14, 16, 51]. The most intuitive

way of choosing voxel locations is by manually selecting landmark points in the ref-

erence image and target image. From a practical point of view it may be too labor

intensive to identify enough landmark points and track them [14], thus automatic

feature selection is desirable.

3.3.2 B-splines with MMBM data

In the case of the MILO algorithm, block matching provides a simplistic approach

for recovering the displacement vector, d, of a single voxel, x, as the solution to

20

the following problem (written here using a sum of squared difference metric, other

metrics may be employed),

min
d2Bp0

X

xj2⌦i(xi)

⇥
R(x

j

)� T (x
j

+ d)
⇤2
. (3.7)

The following is the nonlinear least squares objective function associated with spline

basis functions, where ↵ is the set of coefficients from Equation (2.1):

min
↵

X

xj2X

h
R(x

j

))� T (x
j

+ �

�
x

j

;↵
�i2

. (3.8)

The difference between solving (3.7) versus the nonlinear least squares problem, (3.8),

is that the solution of (3.7) will only provide a displacement for a single voxel; solv-

ing equation (3.8) will provide a full displacement field. Recalling that the MMBM

algorithm does not guarantee that the filtered points are spatially accurate, as demon-

strated in Figure (3.3). The original MILO algorithm proposes automatically deter-

mining spatially inaccurate points by employing `1-minimization [16].

3.4 On `1-minimization

Under the assumption that there are few inaccurate estimates relative to the total

number of estimates, an `1 optimization problem can be posed with the goal of de-

tecting the spatially inaccurate estimates in the data set. Recovering sparse solutions

has been useful in compressive sensing and machine learning.

3.4.1 Compressive Sensing

In compressive sensing, a signal is said to be K-sparse if it is a linear combination

of only K basis vectors [52]. Rather than computing every coefficient and keeping

the K largest in magnitude, under certain conditions, compressive sensing offers a

21

way to reconstruct sparse signals (or signals deemed sparse after some transforma-

tion) by solving an `1-minimization problem [52, 53, 54]. Compressive sensing uses a

measurement matrix, ⇥, that acts on a signal, v 2 RN , to recover measurements, y,

⇥v = y. (3.9)

The measurement matrix ⇥ 2 RM̂⇥N such that M̂ denotes the number of measure-

ments and M̂ < N. Under the assumption that the desired v is the sparsest vector

that satisfies Equation (3.9) the so-called zero-norm can be used to pose the following

optimization problem:

min
v2Rn
kvk0 s.t. ⇥v = y. (3.10)

Formulation (3.10) is computationally intractable since the problem breaks down to

selecting a minimum number of non-zero values that satisfy the linear constraint.

The sparsity promoting `1 norm is a common relaxation for Equation (3.10). The

following formulation is referred to as Basis Pursuit:

min
v2Rn
kvk1 s.t. ⇥v = y. (3.11)

Compressive sensing shows that under certain situations, solving equation (3.11) is

equivalent to solving Equation (3.10) [52, 53, 54]. Unfortunately for the MILO algo-

rithm, there is currently no theory guaranteeing recoverability on spatially inaccurate

points.

3.4.2 De-Noising Basis Pursuit/LASSO

In order to accommodate noisy data, equality constrained optimization problems are

relaxed by incorporating the constraint into the objective function [52, 53, 54]. For

example Equation (3.11) is relaxed to:

min
v2Rn
kvk1 +

1

�

k⇥v � yk22. (3.12)

22

Outside of compressive sensing, formulation (3.12) is known as the least absolute

shrinkage and selector operator (LASSO). The statistical learning community intro-

duced the LASSO formulation to address two weaknesses of the ordinary least squares

(OLS) model. The first weakness is OLS estimates often have low bias but large vari-

ance. The second issue is interpretation of the data; in situations where there are

numerous coefficients it is common to want to find a subset that has the most influence

[55].

Unlike the LASSO and Basis Pursuit formulation, the MILO algorithm formulates

a linear system based on more estimates than basis functions, allowing the parame-

terization to "fit" to the data. MILO is able to detect spatially inaccurate estimates

by filtering MMBM estimates via `1 minimization. MILO’s `1 formulation employs

an overdetermined linear system, A↵

j

= d

j

, where the k

th linear equation of A is

given by evaluating a voxel, x
k

, at the parameterization and setting it equal to its

displacement, dk
j

,

A

k,

: =
NX

i

↵

j

i

B

i

(x
k

) = d

k

j

. (3.13)

The variable ↵

j denotes the set of coefficients for a spatial component, j. By in-

troducing the variable, p

j

, and employing the `1 norm to formulate the following

optimization problem for each spatial dimension, j:

min
pj ,↵j

kp
j

k1 s.t. A↵
j

� d

j

� p

j

= 0 j 2 {1, 2, 3}, (3.14)

the MILO algorithm can use the parameterization to fit to the majority. Measure-

ments with large magnitude elements of p
j

are deemed spatially inaccurate (outliers).

As currently written, formulation (3.14) is not in the same form as the LASSO/De-

noising Basis Pursuit problem (3.12), since A 2 RM⇥N where M > N and noise in the

23

data must be accounted for. For simplicity the spatial indices j, are dropped keeping

in mind that there is an optimization problem for each spatial component. In order

to reformulate, a QR decomposition is used:

Proposition 1 Consider the QR decomposition of the matrix A = QR, Q = [Q1, Q2] 2

RM⇥M , R 2 RM⇥N . The following optimization problyem,

min
p,↵

kpk1 s.t. A↵� d� p = 0

is equivalent to the following:

min
p

kpk1 s.t. Q

T

2 (d+ p) = 0 (3.15)

Proof 1 By multiplying the constraint by Q

T

2 2 R(M�N)⇥M one can derive an under-

determined linear system with one decision variable, p.

After applying the proposition, relaxing the constraint leads to:

min
p

kpk1 +
1

�

kQT

2 (d+ p)k22, (3.16)

which will be referred to as the `1 filtering problem, a similar formulation to Equation

(3.12). Spatially inaccurate data is identified by the non-zero elements in p for a

suitable �. By removing the outliers, a full displacement field can be computed using

the trusted estimates. An issue with reformulating the `1 filtering problem is that

it comes with an associated cost in storage. Given A 2 RM⇥N , where M > N, the

associated QR factorization leads to a matrix, Q 2 RM⇥M , Q=[Q1, Q2], such that the

matrix of interest is Q2 2 RM⇥(M�N). To demonstrate how this approach requires

more storage consider A 2 R100⇥2; the matrix of interest Q2 2 R100⇥98, requires more

storage than A, creating a limiting factor on the number of estimates that MILO can

use. More details on the choice of � will be discussed in Chapter 4.

24

3.5 2d̂ Tree Data Structures

Although B-splines work well with the MILO algorithm, solely defining a B-spline

mesh over an image can lead to rank deficient matrices in formulation (3.14) if esti-

mates are not within the compact support of splines (Figure 3.7). In order to avoid

rank deficient linear systems, MILO extrapolates additional estimates (Figure 3.8).

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 3.7 : B-Spline Mesh (white
and yellow), MMBM estimates
(white)

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 3.8 : MMBM estimates
(white), extrapolated data (green)

As a variation to the original algorithm, Radial MILO moves away from using basis

functions that require a mesh and instead employ a mesh-less parameterization. A 2d̂

tree is used to partition the image according to the spatial distribution of displacement

estimates. Radial functions are then defined over the occupied leaves of the 2d̂ tree.

As an example of a 2d tree partitioning an image, consider Figure (3.9).

Like all trees a 2d̂ tree data structure has a root node, but specific to the 2d̂ tree,

each node will have either zero or 2d̂ children for a fixed d̂. For d̂ = 1, 2, 3, 2d̂ trees are

referred to as a binary tree, quadtree, and octree, respectively. 2d̂ trees are typically

used to spatially partition points in Rd̂. The purpose of each node is to represent a

bounding box in Rd̂. At the root node, the bounding box encompasses all the points

25

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 3.9 : A 2d̂ conforming to MMBM estimates

of the data set. In order to create a 2d̂ tree it is necessary to define a capacity value

for the maximum number of points allowed in each bounding box. If the number

of points in a given node is greater than the capacity value, the node splits into 2d̂

children and redistributes the points among the children [56, 57, 58]. Figure 3.10

provides an illustrative example of a quadtree partioning data.

26

2 Related Work

2.1 Quadtrees

A quadtree is a data structure used to spatially index points in R2. The tree, like all quadtrees has a
root, but specific to quadtrees is that each subsequent level can have a maximum of four children for
every parent. Thus a quadtree with k levels including the root would have 4(k�1) nodes on the kth
level and (4k) � 1 nodes in total. The purpose of each node is to represent a bounding box in the
plane for a subset of the data points. At the root, the bounding box contains all of the points of the
dataset. For quadtrees one also defines a threshold value for the maximum number of points allowed
in each bounding box (segment). If the number of points in a given segment of the data is greater
than the threshold value, the rectangular parent segment is split into four geometrically similar child
segments.

For the purposes of geographical data, these are the Northwest, Northeast, Southeast, and Southwest
quadrants of the parent’s bounding box. When the number of data points in any of these segments
exceeds the threshold value, then all segments exceeding the threshold are again split into four
quadrants. If a segment has a number of data points less than or equal to the threshold, that segment
no longer splits and becomes a leaf of the quadtree. In this way, datasets with relatively uniform data
distributions may be indexed in a tree of height no greater than O(log4 (datasetsize/threshold)).
Another benefit is that all segments may directly know the data points that they contain, yielding
O(n) access time for all the data in any segment. Consequently we feel that this is an effective way
for the segmentation of data in the plane. (See Figure 2).

Figure 2: A sample quadtree with a threshold of kmax = 3. The 19 points in R2 in the top-left bounding box
are split into four children nodes having 7, 4, 5, and 3 points, respectively. Each non-terminal child is split into
four child nodes until each node contains 3 or fewer points.

2.2 Grid DEM Construction Using Quadtrees

Our work is motivated by the use of quadtrees for the segmentation of LIDAR data for a given geo-
graphic region. LIDAR data is a 4-tuple consisting of an x�coordinate (East-West), a y�coordinate
(North-South), a z�coordinate (elevation), and an intensity coordinate (strength of the returning
signal). For the purposes of our experiment, we ignore the intensity. Our quadtree implementations
then take the approach described in [2] in which we index data points in R3 based on their x�
and y�coordinates. This allows us to index points in 3-space without resorting to using an octree.
Once the data is segmented, an interpolation algorithm may then be used on the data to interpolate

3

Figure 3.10 : An example of a quadtree with a box capacity of 3. Left image is the
spatial partitioning. Right image is the tree data structure. Image credit: [57] .

As an example of an application of a 2d̂ tree, consider their use in approximating

images. Image estimates can be an attractive alternative to using high resolution

images. For example, applying a filter on a 512 ⇥ 512 ⇥ 512 image results in more

than 108 voxels having to be evaluated. By employing a 2d̂ tree one can reduce data

processing by creating an estimated image based on voxel intensity. The underlying

idea is to partition the image based on the varying voxel intensity. Regions that have

close to zero variability could be represented by a single large box. Regions with large

variability would require further partitioning [59, 60].

Haber, et al.[60] provide an example of a registration algorithm that uses a 2d̂

tree structure to reduce the dimensions of an image. The registration is then carried

out using free-form registration methods. 2d̂ trees have also been used for adaptive

discretization of partial differential equations and adaptive based image registration

algorithms [61, 62]. Radial MILO uses 2d̂ tree data structures to determine the centers

27

of radial functions instead of using them to create an estimation of the image.

3.6 Radial Basis Functions

As an improvement on MILO, Radial MILO uses radial functions instead of B-splines.

Formally, a radial function can be defined as [63]:

Definition 5 A function ⇢
c

: Rd̂ ! R is said to be radial if there exists a function, q̂:

[0,1) ! R, such that ⇢
c

(x) = q̂

�
kx� ck

�
for all x 2 Rd̂ .

Examples of globally supported radial basis functions include: thin-plate splines,

Guassians, and multi-quadratics. Radial functions have the advantage of being simple

and easy to implement for interpolation in Rd̂ when compared to B-splines. Unlike B-

splines, radial functions do not require taking tensor products in order to interpolate

to higher dimensions. Furthermore radial functions offer more flexibility when dealing

with unstructured data since they can be centered in an unstructured manner.

3.6.1 Local Approximations: Moving Least Squares

In some cases there may be interest in approximating a function at a single point

when only neighboring data is available. Moving least squares (MLS) is a type of

approximation that is based on employing neighboring data to create this approx-

imation. The idea behind MLS approximation is to solve a weighted least squares

problem with neighboring data assigning weights based on distance to the approxima-

tion of interest. MLS has been used in image registration and in surface reconstruction

[16, 64, 65]. The strength of MLS is in its ability to handle unstructured noisy data.

Unlike interpolation, MLS is essentially a "fit" onto the given data. Formally, MLS

can be defined as, [58]:

28

Definition 6 Moving Least Squares Approximate: Given certain data sites: X =

{x̂1, ..., x̂N

} ✓ ⌦ ✓ Rd̂ and their function values Y = {ŷ1, ..., ŷN}. For x 2 ⌦, the

value, s
y,X

(x), of the moving least squares approximate is given by s

y,X

(x)= g

⇤ (x)

where g

⇤ is the solution of:

min
g

{
NX

i=1

[y
i

� g (x
i

)]2w (x, x
i

) : g 2 P
m

(Rd̂)}.

The function, w (x, x
i

), is typically a radial function, such as a Gaussian, [16, 64, 65].

In the context of the MILO and Radial MILO algorithm, MLS is employed to compute

a full displacement field once spatially inaccurate data has been removed.

3.6.2 Image Registration Based on Radial Functions

Radial functions can also play pivotal role in image registration [11, 18, 23]. For

example, consider Shushanria et. al.’s [23] free-form registration algorithm. The

algorithm employs manually selected landmarks and uses a radial function based

parameterization to recover a full displacement field. Landmarks are grouped into

clusters using the k-means algorithm. The support radius is chosen based on the

distances between the landmarks and chosen in such a way that neighboring functions

overlap. The main drawback of this approach is its need of manual intervention for

determining landmarks.

3.7 Conforming Parameterization

The novelty of the Radial MILO algorithm is the use of a 2d̂ tree to conform to

an unstructured distribution of displacement estimates. In order to create a spatial

parameterization of the voxel trajectories, radial functions are used as basis functions.

The centers of the radial functions are taken to be the centers of the occupied boxes

29

provided by the 2d̂ tree. Since the choice of functions and parameters will influence

the transformation accuracy, [23, 64, 66], the choice of radial functions for Radial

MILO was accomplished by surveying various candidate functions as discussed in the

following chapter.

30

Chapter 4

Methods and Implementation

As in the MILO algorithm, Radial MILO is composed of three steps. The first

step is to apply the MMBM algorithm to a set of reference voxels to estimate a

displacement for each target image. The second step is to filter out potential outliers

in the MMBM data. The last step is to recover the displacement field using MLS.

This chapter provides an explanation of each step and implementation details, such

as: using image segmentation to define a region of interest within the reference image,

using a GPGPU to combat the computational burden of the MMBM algorithm, an

object oriented approach to construct a 2d̂ tree, employing block coordinate descent

to potentially filter out spatially inaccurate data, and recovering the full displacement

field using MLS. Figure (4.1) provides a walkthrough of the different components in

employing the Radial MILO algorithm, and Figure (4.2) illustrates a set of voxels

used in the MMBM algorithm.

31

Segment Image

MMBM Algorithm

Parameterization via 2d

Tree and Radial Basis Function

Filter via �1 Minimization

Recover Displacement Field

Figure 4.1 : Image Registration em-
ploying Radial MILO

0 50 100 150 200 2500
100

2000

10

20

30

40

50

60

70

80

90

100

Human Lung Reference Voxels

Student Version of MATLAB

Figure 4.2 : After segmentation, refer-
ence voxels are sampled from the ref-
erence image

4.1 Segmenting a Thoracic CT Image

As with image registration, image segmentation is an active area of research. Medical

image segmentation aims to extract object boundary features, allowing for analysis of

biological organs [67, 68, 69]. The need to segment large amounts of medical images

makes automatic image segmentation desirable [70]. In this thesis, Radial MILO is

used to register ten sets of 4DCT lung images. Image segmentation is used to extract

the lungs, allowing for uniform sampling of reference voxels.

In order to segment the benchmark images, a thresholding approach is used.

Threshold image segmentation partitions an image based on voxel intensity. The

process is manually conducted via MATLAB’s image processing toolbox. First a

mask volume is generated by identifying voxels between intensity values (1, 800).

This process is dependent on the image and requires tuning of parameters to retrieve

satisfactory results. Empty regions in the lungs are then filled by MATLAB’s fill com-

mand. Any lingering border information is removed via MATLAB’s imclearborder

32

command. The function imclearborder suppresses structures that are lighter than

their surroundings and are connected to the image border. Figures 4.3 - 4.6 provide an

example of applying the MATLAB commands to a CT image. Further details about

MATLAB’s image processing toolbox can be found in MATALB’s documentation.

Figure 4.3 : Unsegmented image Figure 4.4 : Threshold mask

Figure 4.5 : Image after fill command
Figure 4.6 : Image after clearboarder com-
mand

33

4.2 GPGPU Computing Model

As demonstrated in [35], the employment of the GPGPU, in place of a CPU, can sub-

stantially reduce compute time. Application programming interfaces (API), OpenCL,

and CUDA can all be used to program GPGPU’s; both OpenCL and CUDA employ

the same memory hierarchy model. Other programming models such as OpenACC

employ compiler directives [28] and OCCA, a portable programming language, relies

on OpenCL and CUDA to execute kernel code [71].

OpenCL allows the user to program a variety of devices but comes at the extra

cost of having the user create a command queue, and establish a relationship between

the host (the hardware that will call the kernel) and the device (the hardware that

will execute the kernel). A wrapper can easily facilitate writing multiple projects

in OpenCL; further discussion on OpenCL can be found in [28]. Nvidia’s CUDA

hides the host-device relationship and provides an easier environment in which to

program GPGPU’s, at the cost of limiting programming to NVidia’s devices. Due to

its portability, OpenCL is employed as the GPGPU API for this work.

Understanding the memory hierarchy and the threading model is fundamental for

developing high performance GPGPU software. Computation on the GPGPU is per-

formed on a predefined N0, N0⇥M0, or N0⇥M0⇥P0 dimensional grid of computing

units, where M0, N0, P0 2 N. Having options in grid dimensions provides different

ways to index the compute units. Each unit of the grid is referred to as a work-item

(threads in CUDA). Each work-item is provided with a small amount of private mem-

ory. Work-items are grouped together to form work-groups (blocks in CUDA), and

each work-group is paired with additional memory, defined as local memory (shared

memory in CUDA). Local memory can be accessed by any of the work-group’s work-

items.

34

Two branches of memory that are accessible to any type of computational unit are

constant memory and global memory. Constant memory is designed for data whose

values stay constant throughout the kernel, and global memory is designed to be

visible to all compute units on the device. Data stored as a general buffer and trans-

ferred between the host and device must first reside in global or constant memory.

A third type of memory is image memory (texture memory in CUDA), in which ac-

cessing image data is done via an API call that enables hardware optimizations when

accessing spatially local data. Texture memory is a part of global memory. Figure

(4.7) illustrates the GPGPU memory model. Further discussion on the GPGPU’s

memory hierarchy can be found in [28, 72].

Figure 4.7 : OpenCL memory hierarchy [28]

4.3 Block Matching on the GPGPU

For each reference block, the block matching algorithm takes a candidate target block

from a search window and evaluates the similarity according to a provided metric.

Given a reference n⇥m⇥ z block with a (m+ 2⇥ p0)⇥ (n+ 2⇥ p0)⇥ (z + 2⇥ p0)

35

search window, (2⇥ p0 + 1)3 metrics must be computed, where p0 denotes the max-

imum displacement in a spatial component. Thus for M voxels, the block match-

ing algorithm requires M⇥ (2⇥ p0 + 1)3 metric evaluations, whereas employing the

MMBM algorithm requires twice as many. The fact that the block match algorithm

requires the same set of instructions for different data makes it a perfect candidate

for implementation on the GPGPU. Following the implementations in [38, 42, 73],

the fine grain parallelization occurs when computing the block match metric. The

general outline of the block matching procedure is as follows:

Algorithm 1 Block Matching on the GPGPU
1: procedure Block Matching

Set: Reference Block Size, Search Window Radius, Work-group Size, Number of

Groups

1. Assign a reference block to each work-group

2. Load reference block to shared memory

3. Each thread in work-group computes a metric for a potential displacement.

4. Each work-group applies a reduction to recover the global minimum

At the end of step three of the block match algorithm, the metric values for each

candidate target block are distributed throughout the memory of various work-items.

In order to recover the optimal displacement, a reduction step is necessary. As an

example of a reduction operator, consider the task of adding values in different work-

items. In order to compute the sum, work-items must be able to transfer their values

to other threads. This task is accomplished by making use of local memory. Threads

store their values in local memory and iteratively employ half of the work-items to

add values from local memory. In the case of block matching, rather than adding

36

values, work-items simply compare values and seek the optimal displacement for the

reference block. Figure (4.8) illustrates the reduction operator.

Figure 4.8 : Example of reduction operator: Adding values in distributed work-items
(threads) [74].

The block matching algorithms contains the following parameters: the size of

the reference block, search window radius, and the choice of metric. Each

parameter will contribute to the computational workload of the algorithm; however,

the size of the search window will play the greatest role in computational expense.

As such, the task of choosing a reference block and search window is not trivial. In

the benchmark images (Table 5.1) displacements can range from an average of 6 mm

to 15.16 mm. Having a priori information provides bounds to which we can set our

window. During a blind registration, in which one has no prior knowledge of the

magnitudes of displacements, selecting an appropriately sized search window is more

challenging.

Choosing the appropriate block matching metric is dependent on image content

[75]. Adopting the same MMBM algorithm that MILO uses, Radial MILO employes

the Zero Mean Normalized Cross-Correlation (ZMNCC) metric [16]. This allows for

the consideration of substantial changes in voxel intensity between images pairs [31].

The term in the denominator of the metric, F̂ , normalizes such that F̂ 2 [-1, 1],

37

F̂ (R, T) =

nP
z=1

mP
v=1

zP
u=1

�
R (û, v̂, ẑ)� R̄

� �
T (û, v̂, ẑ)� T̄

�

nP

ẑ=1

mP
v̂=1

zP
û=1

�
R (û, v̂, ẑ)� R̄

�2 mP
v̂=1

nP
ẑ=1

zP
û=1

�
T (û, v̂, ẑ)� T̄

�2
! 1

2

Employing the ZMNCC metric is used to pose the following optimization problem for

each voxel displacement:

arg min
d2Bp

1� |F̂ (R (x
i

) , T (x
i

+ d))|. (4.1)

A perfect direct relation between the reference and target block, F̂ = 1, is expected

when the reference block and the candidate target block are positively correlated. A

perfect decreasing relation, F̂ = �1, is expected when the reference block and candi-

date target block are negatively correlated. By posing such an optimization problem,

Equation (4.1), the block matching algorithm seeks to find the target reference block

with the highest absolute correlation [76]. The choice of block matching parameters

are discussed in the results chapter.

4.4 The 2d̂ data structure class

Radial MILO employs the 2d̂ tree data structure in order to adaptively conform to the

MMBM estimates. Employing an object oriented programing paradigm, the 2d̂ tree

data structure can easily be encapsulated as an object with a root node as a member

variable. The root node corresponds to the parent of all future nodes. A node can be

modeled as a struct and can encapsulate all necessary information about the box it

represents. Features such as searching and determining centers of leaf nodes can be

implemented as methods. As an example of the contents of a node see Figure (4.9).

Algorithm 2 demonstrates how to build a 2d̂ tree data structure starting from a

root node with arbitrary point capacity.

38

1 typede f s t r u c t node_t{

3 f l o a t xmin , xmax , ymin , ymax , zmin , zmax ;

l i s t <voxel> voxe l s ; // l i s t o f voxe l s in the node

5 l i s t <voxelNode⇤> ch i l d r en ; // l i s t o f po i n t e r s to the ch i l d r en

7 }node_s ;

Figure 4.9 : Example of octree node and member variables. A C++ list is used to
encapsulate the voxel displacements and children nodes

Algorithm 2 Build 2d̂ tree
1: procedure Build 2d̂ tree

1. Insert voxel to root node

2. If root has no children nodes and list of voxels is not filled to capacity,

insert voxel into list of voxels and return

3. If node contains children find the child node that encapsulates the point,

if list of voxels is not full, insert voxels and return

4. If child node is full, split node and redistribute voxels

into the children nodes

5. Go to step 3

39

4.5 Radial Functions

Radial MILO uses radial functions instead of splines to create a parameterization.

This meshless approach removes the constraint of needing to have data distributed

over a uniform mesh. The combination of radial functions and a 2d̂ tree allow for a

parameterization that conforms to displacement estimates provided by the MMBM

algorithm. Recalling that radial functions are a class of functions, there are three

main properties that should be considered when selecting a radial function [23]:

• Locality: How each basis function influences the whole transformation.

• Solvability: As with the associated B-spline matrix, the matrix associated with

the radial functions must also be full rank to ensure unique solutions.

• Computational Efficiency: Forming an associated linear system for volumetric

images becomes computationally demanding for large numbers of voxels. Radial

functions with compact support provide an advantage in the sense that only

points within the radius of compact support need to be evaluated. Functions

with global support lead to fully dense matrices.

4.5.1 Overview of Globally Supported Radial Functions

A variety of radial functions with global support have been proposed for image reg-

istration (Table 4.1) [23].

Global support leads to each data point influencing parameterizations based on

these radial functions. Overall each of these functions require evaluations of tran-

scendental functions (the logarithm, the square root function at µ = 0.5 for the

multiquadratics, and the exponential function), and due to their global support, pa-

rameterizations based on these functions lead to dense linear algebra.

40

Examples of Radial Functions

Thin plate splines R

TPS

(r) =

8
><

>:

r

4�d ln r : 4� d 2 2N

r

4�d : else

Multiquadratics R

M

(r) =
�
r

2 + c

2
�
µ

, µ 2 R+

Inverse Multiquadratics R

IM

(r) =
�
r

2 + c

2
��µ

, µ 2 R+

Gaussians R

G

(r) = e

� r2

2�2
, � 2 R

Table 4.1 : Examples of radial functions with global support; r denotes the euclidean
distance from the center of the radial function to the point being evaluated [23].

4.5.2 A Class of Compactly Supported Functions: Wendland’s Functions

Although there are a variety of compactly supported radial functions, a popular class

of functions for elastic image registration are the !-functions of Wendland [23, 63, 77],

!

d̂,k̂

(r) = I

k̂ (1� r)`+ . (4.2)

The Wendland functions are defined by the dimension of the approximating space, d̂,

and the desired order, k̂. The term (1� r)+ is the truncated function defined as:

'

`

(r) = (1� r)`+ =

8
><

>:

(1� r)` :
r 2 [0, 1]

0 : else.
(4.3)

By providing a radius of compact support of one; varying support can be created

by normalizing the input data. ` is defined as ` = b d̂2c + k̂ + 1, and higher order

polynomials are constructed by applying the integral operator,

I' =

Z 1

r

t'(t)dt. (4.4)

41

The following are examples of Wendland functions for d̂ = 3 and k̂ = 0, 1, 2:

!3,0 (r) = (1� r)2+

!3,1 (r) = (1� r)4+ (4r + 1)

!3,2 (r) = (1� r)6+
�
35r2 + 18r + 3

�
.

4.5.3 Discussion

Using radial functions eliminates the need to have data distributed throughout a uni-

form mesh. Parameterizations based on radial functions with global support employ

each data point at the cost of dense linear algebra and much more computation when

compared to compactly supported functions. Aside from having to choose a sup-

port radius, the Wendland functions are among the most appealing since their region

of compact support allows for a paring with a 2d̂ data structure and swift evalua-

tions. Radial MILO uses Wendland functions because of their compact support and

computational efficiency.

4.6 Filtering MMBM Data via `1-minimization

Recalling the initial `1 problem,

min
p,↵

kpk1 s.t. A↵� d� p = 0.

The MILO algorithm addressed solving the `1 filtering problem by transforming the

problem into the LASSO/Basis Pursuit De-Noising model (3.12) and employing exist-

ing numerical software, Your ALgorithms for L1 (YALL1) [78]. YALL1 is a MATLAB

package designed for solving a variety of `1 minimization problems subject to an un-

derdetermined linear system.

42

As an improvement to the traditional approach, Radial MILO uses an alterna-

tive optimization scheme, Block Coordinate Descent, that takes advantage of the `1

filtering formulation. Unlike the MILO algorithm, Radial MILO employs a parame-

terization modeling the trajectory of voxels as quadratic functions in time. For each

voxel, x
k

, at time, t
z

, a linear equation can be made using the displacement, dk
j

(t
z

),

for each spatial dimension j, at time t

z

,

A

k,

: =
� NX

i

↵

j

i

B

i

(x
k

)
�
t

2
z

+
� NX

i

�

j

i

B

i

(x
k

)
�
t

z

= d

k

j

(t
z

), (4.5)

define the associated linear system, A�
j

= d

k

j

(t
z

).

4.6.1 Block Coordinate Descent

Block coordinate descent solves a relaxed version of problem (3.14) (written here

with the Radial MILO parameterization, spatial subscripts dropped for compactness)

without the need of large matrix factorization,

min
p,�

kpk1 +
1

�

kA� � d� pk2. (4.6)

Block coordinate descent is a popular method for minimizing a real-valued function

of several variables, and a discussion on theoretical properties can be found in [79].

Variables are partitioned into blocks and at each iteration the function is minimized

with respect to one of the blocks. In the case of the `1 filtering problem (4.6) the

blocks are designated as p and �. Other blocks may be chosen, but this is the most

natural way to partition the unknown variables. Minimizing with respect to � is

simply done via a least squares solve,

� (AT

A)�1
A

T (d+ p). (4.7)

43

Since kpk1 is not differentiable at zero, a minimizer can be computed via subdifferen-

tial calculus [80]. Explicitly, the solution is given by p

+
i

= S

�

�
(A� � d)

i

�
. Where S

�

is defined as:

S

�

(a) =

8
>>>>><

>>>>>:

a� � :
a > �

0 : |a|  �

a+ �

:
a < ��.

(4.8)

Alternating between iterates results in our algorithm:

Algorithm 3 Block Coordinate Descent
1: procedure Block Coordinate Descent

while Not Coverged

� (AT

A)�1
A

T (d+ p)

p

i

 S

�

�
(A� � d)

i

�

44

4.6.2 Filtering Algorithm via `1-minimization

By employing the parameterization, Equation (4.5), and the `1 filtering model (4.6),

spatially inaccurate data is identified by the by the non-zero elements in p for a

suitable �. A weakness of employing the `1 filtering model is that it is difficult to

determine what the weight parameter, �, should be to detect the target number of

spatially inaccurate data. Another issue is being determining the amount of outliers

in block match estimates. Determining a target number of spatially inaccurate data

remains a heuristic. Numerical experiments demonstrate that for the benchmark im-

ages assuming 20% spatially inaccurate data provided the best results. By employing

block coordinate descent (Algorithm 3), I present an iterative approach (Algorithm

4) to finding the target sparsity.

Algorithm 4 Filtering via `1 Minimization
1: procedure Filtering via `1

1. Compute Cholesky decomposition: R

T

R = A

T

A

2. Set desired sparsity threshold

3. Set �, p 0̂

4. For � = �

max

:
d�

:
�

min

4.1. while Not Converged:

4.1.1 x R

�1
R

�T

A

T (d+ p)

4.1.2 p

i

 S

�

�
(A� � d)

i

�

4.2 If p has desired sparsity, then return

45

4.6.3 Moving Least Squares

Once outliers have been identified and removed, the full displacement field can then

be computed by either interpolating the estimates or by local approximations. As

demonstrated in [16], the parameterization only acts as a "fit." Thus by recovering a

full displacement from the filtered data higher spatial accuracy can be achieved. Like

the original MILO algorithm, Radial MILO employs moving MLS to interpolate the

displacement field. For each spatial component, the displacement is computed from

the reference image to the target image by employing moving least squares to recover

the coefficients for an affine function:

f (x) =

2

6666664

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

3

7777775

2

6666664

x1

x2

x3

3

7777775
+

2

6666664

d1

d2

d3

3

7777775
(4.9)

In order to determine the full trajectory of a single voxel a similar approach can

be made by recovering the coefficients of the following quadratic,

x

j

(t; x0) = a

(j)
t

t

2 + b

(j)
t

t+ x

(j)
0 . (4.10)

Formulation 4.10 describes the trajectory of a single voxel, x, at its starting location,

x0, in the spatial component, j. Radial MILO’s MLS employs the nearest 15 estimates

to compute local displacements, numerical results have demonstrated that this yielded

the strongest results. A truncated Gaussian is used as a weight function, and the

radius of compact support is determined by the furthest point used in the estimation.

46

4.7 Radial MILO Algorithm

Building on the previous sections, the full Radial MILO algorithm is provided below:

Algorithm 5 Radial MILO
1: procedure Radial MILO

1. For each target image compute MMBM estimates

2. Insert MMBM estimates into an 2d̂ tree, the centers of the non-empty

leaves will serve as the centers of the radial functions

3. Construct a parameterization by employing radial functions

4. Solve the `1 filtering problem (4.6) for a desired sparsity via algorithm 4

5. Recover the full displacement field using Moving Least Squares

47

Chapter 5

Numerical Experiments

Spatial accuracy was assessed using ten sets of 4DCT images from the DIR-LAB

dataset. The images were acquired as part of the radiotherapy treatment of thoracic

malignancies at the University of Texas M.D. Anderson Cancer Center in Houston,

TX. The images are publicly available online from the DIR-Lab website at www.dir-

lab.com [32]. The DIR-Lab provides 75 landmarks propagated through five images

capturing the expiratory phase, and 300 landmarks propagated between "extreme

phases," maximum inhalation and maximum exhalation. Radial MILO was used to

register across the five expiratory phase images. Spatial accuracy was determined by

comparing the MILO solution to the set of landmarks.

The numerical experiments in this thesis were conducted using a Macbook Pro

with a 2.5GHz Intel Core i7 processor, 16 GB of memory, and a Nvidia GeForce GT

750M GPGPU. The compute grid was set to have 512 work-groups, and each work-

group was assigned 256 work-items. These parameters were chosen in order to take

advantage of the employed GPGPU architecture [27, 28].

5.1 Image Description

Table 5.1 corresponds to the 4DCT image sets provided by the DIR-Lab. Image

dimensions are measured in number of voxels, and voxels are measured in millimeters.

The "Num Features" column reports the quantity of landmarks propagated through

48

maximum inhalation and exhalation. The mean (and standard deviation) of image

landmarks are shown in the "Displacement" column. The "Repeats" column is shown

as the Nm/Nobs, where Nobs is the number of observers and Nm is the number of

landmark measurements the observer reported. The "Observer Error" column shows

the average observer error (standard derivation) with the respect to the primary

observer.

Label Dimension Voxels (mm) Num of Features Displacement (mm) Repeats Observer Error (mm)

4DCT1 256⇥ 256⇥ 94 0.97⇥ 0.97⇥ 2.5 1280 4.01 (2.91) 200/3 0.85 (1.24)

4DCT2 256⇥ 256⇥ 112 1.16⇥ 1.16⇥ 2.5 1487 4.65 (4.09) 200/3 0.70 (0.99)

4DCT3 256⇥ 256⇥ 104 1.15⇥ 1.15⇥ 2.5 1561 6.73 (4.21) 200/3 0.77 (1.01)

4DCT4 256⇥ 256⇥ 99 1.13⇥ 1.13⇥ 2.5 1166 9.42 (4.81) 200/3 1.13 (1.27)

4DCT5 256⇥ 256⇥ 106 1.10⇥ 1.10⇥ 2.5 1268 7.10 (5.14) 200/3 0.92 (1.16)

4DCT6 512⇥ 512⇥ 128 0.97⇥ 0.97⇥ 2.5 419 11.10 (6.98) 150/3 0.97 (1.38)

4DCT7 512⇥ 512⇥ 136 0.97⇥ 0.97⇥ 2.5 398 11.59 (7.87) 150/3 0.81 (1.32)

4DCT8 512⇥ 512⇥ 128 0.97⇥ 0.97⇥ 2.5 476 15.16 (9.11) 150/3 1.03 (2.19)

4DCT9 512⇥ 512⇥ 128 0.97⇥ 0.97⇥ 2.5 342 7.82 (3.99) 150/3 0.75 (1.09)

4DCT10 512⇥ 512⇥ 120 0.97⇥ 0.97⇥ 2.5 435 7.63 (6.54) 150/3 0.86 (1.45)

Table 5.1 : 4DCT image properties

5.2 Block Matching Parameters

In order to gain insight on the overall effect of choosing an initial number of ref-

erence voxels, search window radius, and number of basis functions, I ran

numerical experiments across all image sets, and provide the results for image sets

1 and 6. These numerical experiments demonstrated that initiating the MMBM al-

gorithm with 65,024 voxels provided strong results, and initiating with more voxels

did not significantly improve the results. Similar experiments were carried out for

49

the rest the images and it was demonstrated that reference block sizes of 7 ⇥ 7 ⇥

3 and 11 ⇥ 11 ⇥ 3 provided strong results for image sets 1-5 and image sets 6-10,

respectively. There is a small variance between the number of basis functions used

in the registration since the number of basis functions is determined by the octree’s

ability to spatially partition data.

Radial functions were assigned a compact support radius of 50 and 75 voxels,

and search window radii were set to 10 and 15 voxels, for image sets 1 and 6, re-

spectively. The `1 filtering algorithm was set to assume 20% of MMBM data was

spatially inaccurate. The parameters held fixed were chosen based on additional

numerical experiments.

50

Reference Block M M* Num. Basis Fun Avg. (std) Error

5 ⇥ 5 ⇥ 3 33280 13241 205 0.85 (0.97)

5 ⇥ 5 ⇥ 3 33280 13241 500 0.82 (0.99)

5 ⇥ 5 ⇥ 3 33280 13241 1001 0.83 (1.02)

5 ⇥ 5 ⇥ 3 65024 26124 200 0.81 (0.96)

5 ⇥ 5 ⇥ 3 65024 26124 501 0.76 (0.95)

5 ⇥ 5 ⇥ 3 65024 26124 1002 0.81 (0.92)

7 ⇥ 7 ⇥ 3 32512 17321 201 0.82 (1.05)

7 ⇥ 7 ⇥ 3 32512 17321 505 0.76 (0.93)

7 ⇥ 7 ⇥ 3 32512 17321 1001 0.82 (1.00)

7 ⇥ 7 ⇥ 3 65024 35213 203 0.76 (0.80)

7 ⇥ 7 ⇥ 3 65024 35213 503 0.75 (0.80)

7 ⇥ 7 ⇥ 3 65024 35213 1002 0.81 (0.88)

7 ⇥ 7 ⇥ 3 153600 54310 501 0.75 (0.93)

9 ⇥ 9 ⇥ 5 32512 21932 200 0.78 (0.99)

9 ⇥ 9 ⇥ 5 32512 21932 503 0.75 (0.97)

9 ⇥ 9 ⇥ 5 32512 21932 1000 0.80 (0.97)

9 ⇥ 9 ⇥ 5 65024 43925 201 0.72 (0.97)

9 ⇥ 9 ⇥ 5 65024 43925 501 0.78 (0.97)

9 ⇥ 9 ⇥ 5 65024 43925 1003 0.72 (0.89)

9 ⇥ 9 ⇥ 5 97536 65431 202 0.76 (0.99)

9 ⇥ 9 ⇥ 5 97536 65431 501 0.77 (0.95)

9 ⇥ 9 ⇥ 5 97536 65431 1002 0.73 (0.90)

Table 5.2 : Comparison of varying reference block sizes, and number of basis functions,
for image set 1. M is the initial number of voxels, and M* denotes estimates returned
by the MMBM algorithm, Num. Basis Fun are the number of basis functions used.

51

Reference Block M M* Num. Basis Fun Avg. (std) Error

5 ⇥ 5 ⇥ 3 32512 5351 200 2.8 (2.20)

5 ⇥ 5 ⇥ 3 32512 5351 500 3.03 (2.67)

5 ⇥ 5 ⇥ 3 32512 5351 1002 3.25 (2.92)

5 ⇥ 5 ⇥ 3 65024 11421 202 3.07 (2.85)

5 ⇥ 5 ⇥ 3 65024 11421 504 2.84 (2.45)

5 ⇥ 5 ⇥ 3 65024 11421 1003 2.7 (2.53)

9 ⇥ 9 ⇥ 5 32512 11321 204 1.21 (1.36)

9 ⇥ 9 ⇥ 5 32512 11321 504 1.13 (1.15)

9 ⇥ 9 ⇥ 5 32512 11321 1003 1.15 (1.34)

9 ⇥ 9 ⇥ 5 65024 21951 203 1.18 (1.49)

9 ⇥ 9 ⇥ 5 65024 21951 503 1.06 (1.20)

9 ⇥ 9 ⇥ 5 65024 21951 1002 1.05 (1.34)

9 ⇥ 9 ⇥ 5 97536 33003 202 1.17 (1.43)

9 ⇥ 9 ⇥ 5 97536 33003 503 1.07 (1.14)

9 ⇥ 9 ⇥ 5 97536 33003 1002 1.06 (1.13)

11 ⇥ 11 ⇥ 3 32512 12314 202 1.07 (1.21)

11 ⇥ 11 ⇥ 3 32512 12314 500 1.05 (1.17)

11 ⇥ 11 ⇥ 3 32512 12314 1001 1.08 (1.18)

11 ⇥ 11 ⇥ 3 65024 24205 200 1.03 (0.95)

11 ⇥ 11 ⇥ 3 65024 24205 502 1.00 (1.04)

11 ⇥ 11 ⇥ 3 65024 24205 1000 1.01 (0.95)

11 ⇥ 11 ⇥ 3 97536 36254 201 1.03 (1.12)

11 ⇥ 11 ⇥ 3 97536 36254 500 1.01 (1.03)

11 ⇥ 11 ⇥ 3 97536 36254 1003 1.05 (1.01)

Table 5.3 : Comparison of varying reference block sizes, and number of basis functions,
for image set 6. M is the initial number of voxels, and M* denotes estimates returned
by the MMBM algorithm, Num. Basis Fun are the number of basis functions used.

52

To gain insight on compute time of the MMBM algorithm, two plots measuring

compute time versus varying search window radius are presented. The first set of

experiments employs a reference block size of 7 ⇥ 7 ⇥ 3 voxels and the second set

employs a reference block of 11⇥11⇥3 voxels. Both experiments are set with 79,360

initial reference voxels.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Se
co

nd
s

Search Window Radius

Compute Time Versus Search Window

Student Version of MATLAB

Figure 5.1 : MMBM algorithm timing
results: 79,360 block matches, 7⇥7⇥3
reference block.

5 10 15 20 25 30
0

5

10

15

20

25

30

35

M
in

ut
es

Search Window Radius

Compute Time Versus Search Window

Student Version of MATLAB

Figure 5.2 : MMBM algorithm tim-
ing results: 79,360 block matches, 11⇥
11⇥ 3 reference block.

53

Window Radius Compute Time

5 6 sec

10 42 sec

15 99 sec (1.65 min)

20 239 sec (3.98 min)

25 288 sec (4.8 min)

30 756 sec (12.6 min)

Window Radius Compute Time

5 16 sec

10 113 sec

15 245 sec (4.08 min)

20 609 sec (10.15 min)

25 1251 sec (20.85 min)

30 1887 sec (31.45 min)

Table 5.4 : Compute time for varying window radius for a fixed reference block size:
7⇥ 7⇥ 3 (left), 11⇥ 11⇥ 3 (right). Values are rounded up to nearest second.

54

5.3 Registration Results

Radial MILO was used to register five target images over the course of the expiratory

phase and followed the implementation described in Chapter 4. Each registration

was initiated with 79,360 reference voxels. Images sets 1-5 employed roughly 500

quintic Wendland functions with a support radius of 50 voxels and roughly 1000

basis functions with support radius of 75 voxels for cases 6-10. A small variance on

the number of basis functions is made on account of the octree’s spatial partitioning.

The selection of the parameters were determined by numerous numerical experiments.

Although the computational workload of the MMBM algorithm is cumbersome,

employing a GPGPU can provide a reasonable compute time [16, 35]. Currently the `1

filtering algorithm is implemented serially via MATLAB. The rest of the algorithm is

implemented in C++. Computing the full displacement field via MLS was completed

with the aid of the Armadillo Linear Algebra Library [81]. Table 5.5 breaks down

the different components of the Radial MILO algorithm for the registration of five

images. The MLS column provides the duration of computing the whole displacement

field from exhale to inhale.

55

Case Window Radius MMBM `1 Solve MLS (exhale/inhale - Displacement Field) Total Compute Time

1 10 210 (sec) (3.5 min) 296 (s) 70 (s) 576 (sec) (9.6 min)

2 10 210 (sec) (3.5 min) 226 (s) 90(s) 526 (sec) (8.76 min)

3 10 210 (sec) (3.5 min) 286 (s) 78 (s) 574 (sec) (9.56 min)

4 15 495 (sec) (8.25 min) 253 (s) 72 (s) 820 (sec) (13.67 min)

5 15 495 (sec) (8.25 min) 274 (s) 76 (s) 845 (sec) (14.08 min)

6 15 1225 (sec) (20.4 min) 652 (s) 130 (s) 2007 (sec) (33.45 min)

7 20 3045 (sec) (50.75 min) 501 (s) 140 (s) 3686 (sec) (61.43 min)

8 20 3045 (sec) (50.75 min) 401 (s) 125 (s) 3571 (sec) (59.5 min)

9 15 1225 (sec) (20.4 min) 510 (s) 127 (s) 1862 (sec) (31.03 min)

10 15 1225 (sec) (20.4 min) 535 (s) 115 (s) 1875 (sec) (31.25 min)

Table 5.5 : Compute time of the Radial MILO components, rounded to the nearest
second

5.3.1 Spatial Accuracy: Expiratory Phases

Table 5.6 presents the average error and standard deviation of the Radial MILO

algorithm against the 75 propagated landmarks in the expiratory phase.

56

Case Avg. Error (Std.): T10 Avg. Error (Std.): T20 Avg. Error (Std.): T30 Avg. Error (Std.): T40 Avg. Error (Std.): T50

1 0.25 (0.78) 0.62 (0.94) 0.72 (0.80) 0.76 (0.94) 0.77 (0.94)

2 0.54 (0.93) 0.63 (0.93) 0.68 (0.77) 0.60 (0.77) 0.68 (0.89)

3 0.76 (1.02) 0.88 (1.00) 0.87 (1.05) 0.87 (0.99) 0.83 (0.82)

4 0.82 (1.01) 1.05 (1.01) 1.12 (1.09) 1.12 (1.20) 1.18 (1.12)

5 1.00 (1.24) 1.07 (1.23) 1.04 (1.21) 1.03 (1.12) 1.25 (1.55)

6 0.76 (1.14) 1.31 (1.17) 1.21 (1.54) 1.13 (1.22) 0.97 (1.15)

7 0.74 (0.96) 1.20 (1.30) 1.22 (1.23) 0.95 (1.45) 1.06 (1.22)

8 0.96 (1.53) 1.13 (1.25) 1.14 (1.35) 1.12 (1.22) 1.15 (1.16)

9 0.87 (1.10) 0.74 (0.94) 0.99 (0.94) 1.22 (1.21) 1.12 (1.09)

10 0.88 (1.32) 1.20 (1.42) 1.24 (1.51) 0.97 (1.01) 0.82 (1.01)

Table 5.6 : Spatial Accuracy on 75 landmarks, all results are given in mm

5.3.2 Spatial Accuracy: Maximum Inhalation and Exhalation

In addition to providing image registration benchmark images, the DIR-Lab includes a

comparison of spatial accuracies of registration algorithms, registering from maximum

inhalation to maximum exhalation across at least 300 landmarks. Their comparison

includes LFC, which is a similar image registration algorithm to Radial MILO [35].

Since no published comparison between LFC and the traditional MILO algorithm is

available, the traditional MILO algorithm was implemented and used to register from

maximum inhalation to maximum exhalation. Numerical results demonstrate that

Radial MILO is able to achieve competitive results when compared to other block

matching based algorithms.

57

Algorithm Case 1 Case 2 Case 3 Case 4 Case 5

Radial MILO** (No `1) 1.10 (1.34) 0.90 (1.00) 0.98 (1.10) 2.19 (3.63) 2.40 (3.12)

Radial MILO** 0.75 (0.91) 0.73 (0.92) 0.86 (1.10) 1.29 (1.15) 1.23 (1.40)

MILO**[16] 0.75 (0.94) 0.75 (1.00) 0.966 (1.14) 1.31 (1.21) 1.42 (1.77)

LFC[35] 0.85 (1.00) 0.74 (0.99) 0.93 (1.07) 1.33 (1.51) 1.14 (1.25)

MLS[32] 1.58 (1.30) 1.47 (1.12) 2.27 (1.40) 2.50 (1.68) 2.55 (1.92)

CCLG[82] 1.02 (1.03) 1.29 (1.22) 2.50 (1.91)

COF[82] 1.17 (1.07) 1.37 (1.27) 2.57 (1.85)

LCI[82] 1.21 (1.21) 1.44 (1.69) 3.01 (2.85)

LII [82] 1.40 (1.27) 1.49 (1.35) 3.59 (2.83)

PF [83] 1.11 (1.09) 1.04 (1.15) 1.36 (1.20) 2.51 (2.49) 1.84 (1.74)

EPF [83] 1.10 (1.09) 1.00 (1.15) 1.32 (1.21) 2.42 (2.48) 1.82 (1.87)

AF [83] 1.15 (1.11) 1.05 (1.19) 1.39 (1.22) 2.34 (2.19) 1.81 (1.83)

DF [83] 1.19 (1.13) 1.16 (1.23) 1.48 (1.21) 2.59 (2.48) 1.91 (1.77)

ADF [83] 1.11 (1.09) 1.02 (1.14) 1.35 (1.20) 2.27 (2.09) 1.80 (1.80)

IC [83] 1.24 (1.30) 1.28 (1.62) 1.42 (1.22) 3.27 (4.09) 1.67 (1.57)

CPP [15] 1.07 (1.10) 0.99 (1.12) 1.23 (1.32) 1.51 (1.58) 1.95 (2.02)

4DLTM [15] 0.97 (1.02) 0.86 (1.08) 1.01 (1.17) 1.40 (1.57) 1.67 (1.79)

ALK [84] 0.89 (1.00) 0.83 (1.02) 1.08 (1.15) 1.45 (1.53) 1.55 (1.73)

cTVL1** [85] 0.78 (0.92) 0.78 (0.92) 0.93 (1.09) 1.24 (1.30) 1.22 (1.43)

cEPE**[86] 0.80 (0.92) 0.77 (0.92) 0.92 (1.10) 1.22 (1.24) 1.21 (1.47)

KDR** [87] 1.03 (0.48) 1.00 (0.46) 1.14 (0.61) 1.37 (0.97) 1.38 (1.19)

NLR** [88] 0.77 (0.90) 0.78 (0.90) 0.93 (1.06) 1.27 (1.26) 1.11 (1.46)

LMP**[89] 0.74 (0.90) 0.78 (0.90) 0.91 (1.05) 1.24 (1.25) 1.17 (1.48)

SGM3D** [90] 0.76 (0.92) 0.72 (0.87) 0.94 (1.07) 1.24 (1.26) 1.15 (1.42)

NGFa** [91] 0.78 (0.89) 0.79 (0.90) 0.93 (1.05) 1.27 (1.27) 1.07 (1.46)

NGFb**[91] 0.76 (0.89) 0.80 (0.88) 0.96 (1.07) 1.33 (1.29) 1.18 (1.45)

Table 5.7 : Comparison chart 1 for inhale/exhale registration, values denote average
error (standard deviation error) all values are given in millimeters. ** Denotes analysis
over 300 point-pair sets.

58

Algorithm Case 6 Case 7 Case 8 Case 9 Case 10

Radial MILO** (No `1) 1.08 (1.40) 1.40 (1.27) 2.23 (3.56) 1.04 (1.09) 1.13 (2.17)

Radial MILO** 0.92 (1.02) 1.02 (1.21) 1.21 (1.72) 0.94 (1.12) 0.95 (1.42)

MILO**[16] 1.00 (1.20) 1.10 (1.21) 1.32 (1.52) 1.00 (1.05) 1.04 (1.2)

LFC[35] 1.04 (1.05) 1.03 (1.01) 1.11 (1.18) 1.04 (1.00) 1.05 (1.10)

CPP [15] 1.94 (1.72) 1.79 (1.46) 1.96 (2.33) 1.33 (1.17) 1.84 (1.90)

4DLTM [15] 1.58 (1.65) 1.46 (1.29) 1.77 (2.12) 1.19 (1.12) 1.59 (1.87)

ALK [84] 1.52 (1.28) 1.29 (1.22) 1.75 (2.40) 1.22 (1.07) 1.47 (1.68)

cTVL1** [85] 0.94 (0.99) 1.01 (0.96) 1.11 (1.28) 0.98 (1.00) 0.94 (1.03)

cEPE** [86] 0.90 (1.00) 0.98 (1.01) 1.16 (1.45) 1.00 (0.97) 0.99 (1.28)

NLR** [88] 0.91 (1.00) 0.86 (0.98) 1.03 (1.19) 0.97 (0.94) 0.87 (0.87)

LMP** [89] 0.90 (1.00) 0.87 (0.97) 1.04 (1.18) 0.98 (0.96) 0.89 (0.99)

SGMD3D** [90] 0.90 (0.98) 0.89 (0.95) 1.13 (1.40) 0.91 (0.93) 0.83 (0.92)

NGFa** [91] 0.90 (0.99) 0.85 (0.98) 1.03 (1.23) 0.94 (0.93) 0.83 (0.97)

NGFb** [91] 1.03 (1.04) 0.92 (0.93) 1.13 (1.15) 1.00 (0.96) 0.91 (0.99)

Table 5.8 : Comparison chart 2 for inhale/exhale registration, values denote average
error (standard deviation error) all values are given in millimeters. ** Denotes analysis
over 300 point-pair sets.

59

5.4 Review of DIR-LAB Reported Algorithms

Tables 5.7 and 5.8 present a comparison of over twenty different registration algo-

rithms used to register the 4DCT images in Table 5.1. As such this thesis provides a

brief description of each and categorizes them by their common techniques. Further

details can be found in the articles referenced in Tables 5.7 and 5.8.

5.4.1 Searching Based Methods

Searching Based Methods aim to find a displacement vector for a single voxel via an

exhaustive search of the target image. The Least Median of Squares (LFC) algorithm

proposed in [35] is an example of such a method. LFC can be thought of as prelude

to the traditional MILO algorithm encompassing the general three steps, see Chapter

4. The LFC algorithm was designed for pairs of images with the assumption that

the motion of a single voxel can be described through a compressible flow model. An

exhaustive search via a block matching algorithm is conducted in order to find an

initial set of estimates to fit the model. As demonstrated in this thesis, the block

matching algorithm does not guarantee spatially accurate displacements, therefore

LFC employs an additional filtering technique. Once the estimates have been filtered

the complete displacement field is recovered via MLS [35]. Although LFC employs a

physics based block matching metric, Radial MILO provides estimates that are more

spatially accurate with respect to the landmarks provided by the DIR-LAB. This

could be due to inaccuracies with the LFC filtering technique.

Semi-Global Stereo Matching (SGM3D) is another example of a searching method,

in which the optimal displacement for a single voxel is found by searching neighbor-

hoods along potential lines emanating from the voxel [90]. Though conceptually

simple, the approach is one of the top algorithms in the DIR-LAB dataset and its

60

structure is well suited for GPGPU programming. The SGM3D algorithm outper-

forms the Radial MILO algorithm, potentially because the search algorithm is more

robust than block matching. A potential direction for improving Radial MILO would

be to substitute the searching algorithm used by SGM3D.

5.4.2 Optical Flow Based Methods

Recalling Chapter 2, Optical Flow Methods calculate the motion between two image

frames for every voxel position [18, 19, 20, 21]. The following algorithms from the

comparison chart can be classified as optical flow methods: Combined Compressible

Local Global (CCLG), Local Compressible Local (LCI), Compressible Optical Flow

(COF), Local Incompressible flow (LII) [82], Advanced Lukas-Kanade Optical Flow

(ALK) [84], and combined Gradient End Point Error (cEPE) [86]. Under the as-

sumption that voxel intensity stays constant throughout time, I(x(t), t) = const, the

classic optical flow equation is derived to be,

dI

dt

= I

t

+rI · v = 0, (5.1)

where v denotes the velocity field optical flow algorithms aim to recover. Under the

assumption of non-constant voxel intensity over time, the equation is derived to be,

I

t

+rI
t

· v + I div (v) = 0. (5.2)

Various articles discuss these derivations, [17, 82, 84, 86]. The problem is underde-

termined as is, since there is only one equation and velocity has three components.

Each of the previously mentioned methods apply regularization techniques in order to

ensure the problem is well posed. Algorithms CCLG and LCI assume a non-constant

voxel intensity while the remaining algorithms assume a constant velocity. As can

be observed in the listed results, assuming that voxel intensity does not change over

61

frames does not necessarily lead to poor results, e.g. ALK and cEPE. In compar-

ison to Radial MILO, ALK and cEPE can overall provide more spatially accurate

results. Although the methods are all based on optical flow, they each employ dif-

ferent regularization strategies thus hinting that the regularization is critical to their

performance.

5.4.3 Demons Based Methods

This subsection discusses the variants of the Demons image registration algorithms:

Evolved Passive Force (EPF), Active Force (AF), Double Force (DF), Adjusted Dou-

ble Force (ADF) and Inverse Consistent (IC) as evaluated by Gu et. al. [83], as well

as the Knowledge Driven Registration algorithm (KDR) proposed by Muezing et. al.

[87]. The original Demons algorithm applies the displacement vector,

dr(n+1) =
(I(n)

R

� I

(0)
T

)rI(0)
T

(I(n)
R

� I

(0)
T

)2 + (rI(0)
T

)2
, (5.3)

onto every voxel of the reference image. In the described formulation, I

(0)
T

is the

unmodified target image, and I

(n)
R

is the reference image at the n

th iteration. The dis-

placement vector is applied and updated until convergence. The original formulation

is commonly known as Passive Force (PF) on account of its derivation [83, 92, 93].

The variants of the Demons modify the displacement vector but the general idea is

the same, [83, 87]. The fact that this algorithm acts on individual voxels makes it

well suited for implementation on the GPGPU.

Building on the framework of the Demons algorithm, Muezing et. al. draws

from statistical learning community to introduce a variation of the original Demons

algorithm, KDR. Recalling that an image is a discretly sampled signal, it is necessary

to smooth the image in order to compute derivative information. By varying the

62

smoothing kernel and comparing the quality of the registration, the algorithm can be

"trained" to determined an appropriate smoothing kernel.

The original Demons algorithm and its variants (EPF, AF, DF, ADF, IC, and

KDR) have not been reported to achieve the same spatial accuracy as Radial MILO.

The assumption of the Demons algorithm is that the displacement vector is reasonably

small or local [83], which is easily violated in image set 8 of the test cases in Table

5.1.

5.4.4 Trajectory Based Methods

Trajectory Based Methods aim to recover the potential trajectory that a voxel may

have taken across various images. Castillo et. al. present the 4D Local Trajectory

Modeling (4DLTM) algorithm. Which parameterizes voxel trajectories and uses com-

pressible flow to describe the path that a voxel may have taken. As such, the problem

reduces to finding a set of of coefficients for the trajectory model [15]. The 4DLTM

algorithm is compared against the Component Phase to Phase (CPP) approach which

connects displacements of voxels in 4D images through linear paths.

The advantage of the 4DLTM algorithm over the CPP algorithm is the employ-

ment of a global model that describes the path throughout the images, since connect-

ing piecewise would propagate errors. The drawback of the approach is that it leads

to a non-convex formulation yielding the possibility of getting stuck in local minima

when a gradient based scheme is used. Moreover the proposed algorithms do not

achieve a comparable spatial accuracy to Radial MILO.

63

5.4.5 Variational Methods

The remaining algorithms can be classified as Variational Methods. Variational meth-

ods employ calculus of inequalities to minimize a functional. It should be noted that

some of the methods described in the optical flow classification can also be grouped

as variational methods. Thus the purpose of this section is to describe methods that

do not fall into the optical flow category.

Examples of variational methods presented in the DIR-LAB comparison include

methods that aim to align images based on notable structures. For example Ruhaak

et. al. [88]’s algorithm, NLR, simply aligns based on structure, while Polzin et.

al’s algorithm, LMP [89] demonstrates that methods can be improved by paring the

algorithms with automatic landmark detection. Konig et. at. [91] demonstrates

that variational methods that aim to align based on structure can be ported onto

GPGPU’s through his algorithm, LMP. This alignment approach has resulted in the

most spatially accurate registration algorithms on the charts, and an overall higher

spatial accuracy than Radial MILO.

A variational method that is notably different from previously mentioned methods

is Hermann et. al.’s [85] registration algorithm based on Total Variation and the L1

norm, cTV-L1. An introduction to TV -L1 based optical flow can be found in [94].

The aim of the formulation is to minimize the total variation of the velocity field

subject to a relatively sparse residual. The algorithm acts on independent voxels and

is well suited for the GPGPU. The drawback of the proposed method is the need for

smoothing the velocity field in order to compute the gradient, which may be a source

for error. Overall cTV-L1 is a competitive image registration algorithm, however

Radial MILO generally achieves a higher spatial accuracy.

64

5.5 Visual Results

Since no image processing thesis would be complete without images, I provide 2D

visualizations of the Radial MILO algorithm. Figure 5.3 demonstrates a quadtree

adaptively partitioning the image into boxes. The centers of the occupied boxes

then become the centers of the radial basis functions. Figure 5.4 denotes the target

image for the reference image. Figure 5.5 overlays a sampled displacement field with

unfiltered estimates (red) and filtered estimates (yellow). Figure 5.6 demonstrates a

denser displacement field from the reference image T00 to T50 of case 1.

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 5.3 : Quadtree conforming to
the data

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 5.4 : Case 1: Target Image

65

50 100 150 200 250

10

20

30

40

50

60

70

80

90

No L1
L1

Student Version of MATLAB

Figure 5.5 : Comparison of filtering es-
timates through `1 vs not filtering

50 100 150 200 250

10

20

30

40

50

60

70

80

90

Student Version of MATLAB

Figure 5.6 : A dense displacement field
for case 1, mapping voxels from image
T00 to T50

66

Chapter 6

Conclusion

This thesis presents Radial MILO, a 4D image registration algorithm inspired by

the MILO algorithm. Building on the MILO framework, Radial MILO is also com-

posed of three components: (1) an initial set of estimates are computed using an

MMBM algorithm, (2) `1 optimization techniques are used in conjunction with a

spatial parameterization to detect potentially spatially inaccurate data, (3) once er-

roneous estimates are removed, a full displacement field is computed through local

approximations.

In MILO, uniform B-splines are used to create a parameterization; a requirement

of splines is that data must be within the compact support of each function. Such a

requirement is not guaranteed with MMBM data and has often lead to rank deficient

linear systems in practice. Additionally the `1 optimization problem was traditionally

solved by employing QR factorization.

As an improvement to the MILO algorithm, Radial MILO employs an adap-

tive parameterization based on radial basis functions and a 2d̂ data structure. It

also uses a block coordinate descent algorithm, relieving the need for the additional

storage associated with QR factorization. By modeling voxel displacements as a

quadratic function in time, the parameterization is also able to incorporate multiple

images. In order to validate the accuracy of the algorithm, results are compared

to landmarks in Thoracic 4DCT images provided by the DIR Lab (http://www.dir-

lab.com/ReferenceData.html). Although Radial MILO does contain various param-

67

eters, numerical results demonstrate that it can out-perform, or perform as competi-

tively as, existing algorithms based on block matching (LFC, MILO).

The components of Radial MILO were implemented in C++, with the exception

of the `1 optimization problem (4.6), which was solved using MATLAB. Aside from

the block matching, most of the computational time is spent solving the `1 filtering

problem. Thus a future research direction could be investigating a parallelizable

algorithm to solve the `1 filtering problem. The compute time of the block matching

algorithm can also be greatly reduced by employing a higher-end GPGPU.

Using a 2d̂ tree data structure is an attempt to create a parameterization based

on the locations of the MMBM data. As an alternative, an area of interest could be

trying to conform a mesh to the segmented image. Another possible direction could be

to explore interpolation as opposed to moving least squares. Although moving least

squares does serve as a good approximate to interpolation, an interesting direction

might be to investigate if exact interpolation yields better results.

68

Bibliography

[1] R. A. Schowengerdt, Remote Sensing, Third Edition: Models and Methods for

Image Processing. Orlando, FL, USA: Academic Press, Inc., 2006.

[2] S. Dawn, V. Saxena, and B. Sharma, “Remote sensing image registration tech-

niques: A survey,” in Proceedings of the 4th International Conference on Image

and Signal Processing, ICISP’10, (Berlin, Heidelberg), pp. 103–112, Springer-

Verlag, 2010.

[3] M. Zuliani, Computational Methods for Automatic Image Registration. PhD

thesis, Dec 2006.

[4] L. Zheng and R. S. Blum, Multi-sensor image fusion and its applications. Signal

processing and communications, Boca Raton, FL: Taylor & Francis, 2005.

[5] S. Dawn, V. Saxena, and B. Sharma, “Remote sensing image registration tech-

niques: A survey,” in Image and Signal Processing (A. Elmoataz, O. Lezoray,

F. Nouboud, D. Mammass, and J. Meunier, eds.), vol. 6134 of Lecture Notes in

Computer Science, pp. 103–112, Springer Berlin Heidelberg, 2010.

[6] I. N. Bankman, ed., Handbook of Medical Imaging. Orlando, FL, USA: Academic

Press, Inc., 2000.

[7] T. S. Yoo and M. J. Ackerman, “Open source software for medical image pro-

cessing and visualization,” Commun. ACM, vol. 48, pp. 55–59, Feb. 2005.

69

[8] J. Weese, “Geometric and physical modelling in medical image processing: Meth-

ods, applications and examples,” in Proceedings of the 2006 ACM Symposium on

Solid and Physical Modeling, SPM ’06, (New York, NY, USA), pp. 73–73, ACM,

2006.

[9] M. Schellmann, J. Vörding, S. Gorlatch, and D. Meiländer, “Cost-effective med-

ical image reconstruction: From clusters to graphics processing units,” in Pro-

ceedings of the 5th Conference on Computing Frontiers, CF ’08, (New York, NY,

USA), pp. 283–292, ACM, 2008.

[10] H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, and S. Valette, “A web in-

terface for 3d visualization and interactive segmentation of medical images,” in

Proceedings of the 17th International Conference on 3D Web Technology, Web3D

’12, (New York, NY, USA), pp. 51–58, ACM, 2012.

[11] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and

Vision Computing, vol. 21, no. 11, pp. 977 – 1000, 2003.

[12] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.,

vol. 24, pp. 325–376, Dec. 1992.

[13] V. Mani and D. rivazhagan, “Survey of medical image registration,” Journal of

Biomedical Engineering and Technology, vol. 1, no. 2, pp. 8–25, 2013.

[14] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registra-

tion: A survey,” Medical Imaging, IEEE Transactions on, vol. 32, pp. 1153–1190,

July 2013.

[15] E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, “Four-

dimensional deformable image registration using trajectory modeling,” Physics

70

in Medicine and Biology, vol. 55, no. 1, p. 305, 2010.

[16] D. F. Edward Castillo, Richard Castillo and T. Guerrero, “Computing Global

Minimizers to a Constrained B-Spline Image Registration Problem from Optimal

`1 Pertubations to Block Match Data,” Medical physics, vol. 41, no. 4, p. 041904,

2014.

[17] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelli-

gence, vol. 17, pp. 185–203, 1981.

[18] O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, and R. Westermann, “A

survey of medical image registration on graphics hardware,” Comput. Methods

Prog. Biomed., vol. 104, pp. e45–e57, Dec. 2011.

[19] E. Castillo, Optical Flow Methods for the Registration of Compressible Flow Im-

ages and Images Containing Large Voxel Displacements or Artifacts. PhD thesis,

William Marsh Rice University, 2008.

[20] T. Pock, M. Urschler, C. Zach, R. Beichel, and H. Bischof, “A duality based

algorithm for tv-l1 optical-flow image registration,” in Proceedings of the 10th

International Conference on Medical Image Computing and Computer-assisted

Intervention, MICCAI’07, (Berlin, Heidelberg), pp. 511–518, Springer-Verlag,

2007.

[21] M. Lefébure and L. D. Cohen, “Image registration, optical flow and local rigidity,”

J. Math. Imaging Vis., vol. 14, pp. 131–147, Mar. 2001.

[22] R. Szeliski and J. Coughlan, “Spline-based image registration,” Int. J. Comput.

Vision, vol. 22, pp. 199–218, Mar. 1997.

71

[23] X. Yang, Z. Xue, X. Liu, and D. Xiong, “Topology preservation evaluation of

compact-support radial basis functions for image registration,” Pattern Recogni-

tion Letters, vol. 32, no. 8, pp. 1162 – 1177, 2011.

[24] T. Schiwietz, J. Georgii, and R. Westermann, “Interactive model-based image

registration,” in Proceedings of Vision, Modeling and Visualization 2007, pp. 213–

221, 2007.

[25] K. Ø. Noe, K. Tanderup, J. C. Lindegaard, C. Grau, and T. S. Sørensen, “GPU

accelerated viscous-fluid deformable registration for radiotherapy.,” Studies in

health technology and informatics, vol. 132, pp. 327–332, 2008.

[26] A. Eklund, P. Dufort, D. Forsberg, and S. LaConte, “Medical image processing on

the GPU - past, present and future,” Medical Image Analysis, vol. 17, pp. 1073–

1094, 2013.

[27] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1st ed., 2010.

[28] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous Com-

puting with OpenCL. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1st ed., 2011.

[29] K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao,

K. Du, G. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Commowick,

G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova, J. Sporring,

M. de Bruijne, X. Han, M. Heinrich, J. Schnabel, M. Jenkinson, C. Lorenz,

72

M. Modat, J. McClelland, S. Ourselin, S. Muenzing, M. Viergever, D. De Ni-

gris, D. Collins, T. Arbel, M. Peroni, R. Li, G. Sharp, A. Schmidt-Richberg,

J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison, B. Avants,

J. Gee, M. Staring, S. Klein, B. Stoel, M. Urschler, M. Werlberger, J. Vande-

meulebroucke, S. Rit, D. Sarrut, and J. P. W. Pluim, “Evaluation of registration

methods on thoracic ct: The empire10 challenge,” Medical Imaging, IEEE Trans-

actions on, vol. 30, pp. 1901–1920, Nov 2011.

[30] J. Vandemeulebroucke, D. Sarrut, and P. Clarysse, “The popi-model, a point-

validated pixel-based breathing thorax model,” Proceedings of the 15th Interna-

tional Conference on the Use of Computers in Radiation Therapy (ICCR ’07),

2007.

[31] R. Castillo, E. Castillo, D. Fuentes, M. Ahmad, M. L. Abbie Wood, and T. Guer-

rero, “A reference dataset for deformable image registration spatial accuracy

evaluation using the copdgene study archive,” Physics in Medicine and Biology,

vol. 58, pp. 2861–2877, 2013.

[32] R. Castillo, E. Castillo, R. Guerra, T. M. Valen E. Johnson, A. K. Garg, and

T. Guerrero, “A framework for evaluation of deformable image registration spatial

accuracy using large landmark point sets,” Physics in Medicine and Biology,

vol. 54, p. 1849, 2009.

[33] G. Song, N. J. Tustison, B. B. Avants, and J. C. Gee, “Lung ct image registration

using diffeomorphic transformation models,” in Medical Image Analysis for the

Clinic: A Grand Challenge, pp. 23–32, 2010.

[34] B. B. Avants, N. Tustison, and G. Song, “Advanced normalization tools (ants),”

73

2009.

[35] E. Castillo, R. Castillo, B. White, J. Rojo, and T. Guerrero, “Least median of

squares filtering of locally optimal point matches for compressible flow image

registration,” Physics in Medicine and Biology, vol. 57, no. 15, p. 4827, 2012.

[36] S. Chan, E. Panchanathan, “Review of block matching based motion estimation

algorithms for video compression,” Electrical and Computer Engineering, 1993.

Canadian Conference, vol. 1, pp. 151–154, 1993.

[37] D. Thomas, “A study on block matching algorithms and gradient based method

for motion estimation in video compression,” in Advances in Digital Im-

age Processing and Information Technology (D. Nagamalai, E. Renault, and

M. Dhanuskodi, eds.), vol. 205 of Communications in Computer and Information

Science, pp. 136–145, Springer Berlin Heidelberg, 2011.

[38] E. Monteiro, M. Maule, F. Sampaio, C. Diniz, B. Zatt, and S. Bampi, “Real-time

block matching motion estimation onto gpgpu,” in Image Processing (ICIP),

2012 19th IEEE International Conference on, pp. 1693–1696, Sept 2012.

[39] V. Garcia, O. Commowick, and G. Malandain, “A Robust and Efficient Block

Matching Framework for Non Linear Registration of Thoracic CT Images,” in

Grand Challenges in Medical Image Analysis (MICCAI workshop), (Beijing,

China, China), pp. 1–10, 2010.

[40] S. Ourselin, A. Roche, S. Prima, and N. Ayache, “Block matching a general frame-

work to improve robustness of rigid registration of medical images,” in Medical

Image Computing and Computer Assisted Intervention MICCAI 2000 (S. Delp,

74

A. DiGoia, and B. Jaramaz, eds.), vol. 1935 of Lecture Notes in Computer Sci-

ence, pp. 557–566, Springer Berlin Heidelberg, 2000.

[41] A. Rodriguez, C. Fernandez-Lozano, J. Dorado, and J. Rabuñal, “Two-

dimensional gel electrophoresis image registration using block-matching tech-

niques and deformation models.,” Analytical Biochemistry, vol. 454, no. 1, pp. 53–

59, 2014.

[42] Y. Liu, A. Kot, F. Drakopoulos, C. Yao, A. Fedorov, A. Enquobahrie, O. Clatz,

and N. P. Chrisochoides, “An itk implementation of a physics-based non-rigid

registration method for brain deformation in image-guided neurosurgery,” Fron-

tiers in Neuroinformatics, vol. 8, no. 33, 2014.

[43] J. R. Edward Castillo Richard Castillo, Benjamin White, “Least median of

squares filtering of locally optimal point matches for compressible flow image

registration,” Physics In Medicine and Biology, vol. 57, pp. 4827–4833, Aug

2012.

[44] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal

Processing Magazine, vol. 16, pp. 22–38, November 1999.

[45] M. Embree, Lecture Notes: Numerical Analysis 1. 2010.

[46] J. A. Cottrell, T. J. Hugues, and Y. Bazileves, Isogeometric Analysis Toward

Unification of CAD and FEA. 2010.

[47] T. J. Jacobson, “Optimized knot placement for b-splines in deformable image

registration,” Medical physics, vol. 38, p. 3, August 2011.

75

[48] R. Arcangéli, M. Cruz Lopez de Silanes, and J. J. Torrens, Multidimensional

Minimizing Splines: Theory and Applications. Dordrecht: Springer, 2004.

[49] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer,

2nd ed., 2006.

[50] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/kanade meets horn/schunck:

Combining local and global optic flow methods,” International Journal of Com-

puter Vision, vol. 61, pp. 211–231, 2005.

[51] Z. Xie and G. Farin, “Image registration using hierarchical b-splines,” Visual-

ization and Computer Graphics, IEEE Transactions on, vol. 10, pp. 85–94, Jan

2004.

[52] R. G. Baraniuk, “Compressive sensing,” Lecture Notes in IEEE Signal Processing

Magazine, vol. 24, pp. 118–120, Jul. 2007.

[53] W. M. Candes E., “An introduction to compressive sampling,” IEEE Signal Pro-

cessing Magazine, vol. 346, no. 9-10, pp. 589 – 592, 2008.

[54] Y. Zhang, “On theory of compressive sensing via `1-minimization: Simple deriva-

tions and extensions,” 2008.

[55] R. Tibshirari, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistics Society, vol. 58, pp. 267–288, 1996.

[56] A. Drozdek, Data Structures and Algorithms in C++. Pacific Grove, CA, USA:

Brooks/Cole Publishing Co., 2nd ed., 2000.

[57] M. Kelly and A. Breslow, “Quadtree construction on the gpu: a hybrid cpu-gpu

approach,” tech. rep., Swathmore College.

76

[58] H. Wendland, Scattered Data Approximation. Cambridge University Press, 2004.

Cambridge Books Online.

[59] G. Rambally and R. Rambally, “Octrees and their applications in image process-

ing,” in Southeastcon ’90. Proceedings., IEEE, pp. 1116–1120 vol.3, Apr 1990.

[60] E. Haber, S. Heldmann, and J. Modersitzki, “An octree method for parametric

image registration.,” SIAM J. Scientific Computing, vol. 29, no. 5, pp. 2008–2023,

2007.

[61] R. S. Sampath, A Parallel Geometric Multigrid Method For Finite Elements on

Octree Meshes Applied to Elastic Image Registration. PhD thesis, William Marsh

Rice University, Septermber 2008.

[62] E. Haber, S. Heldmann, and J. Modersitzki, “Adaptive mesh refinement for non-

parametric image registration,” SIAM Journal on Scientific Computing, vol. 30,

no. 6, pp. 3012–3027, 2008.

[63] M. D. Buhmann and M. D. Buhmann, Radial Basis Functions. New York, NY,

USA: Cambridge University Press, 2003.

[64] R. Caverotto and A. D. Rossi, “Landmark-based registration using a local radial

basis function transformation,” Journal of Numerical Analysis, Industrial and

Applied Mathematics, vol. 5, no. 3-4, pp. 141–152, 2010.

[65] B. Merry, J. Gain, and P. Marais, “Moving least-squares reconstruction of large

models with gpus,” Visualization and Computer Graphics, IEEE Transactions

on, vol. 20, pp. 249–261, Feb 2014.

77

[66] A. Masood, A. Siddiqui, and M. Saleem, “A radial basis function for registration

of local features in images,” in Advances in Image and Video Technology (D. Mery

and L. Rueda, eds.), vol. 4872 of Lecture Notes in Computer Science, pp. 651–

663, Springer Berlin Heidelberg, 2007.

[67] L. He, Z. Peng, B. Everding, X. Wang, C. Y. Han, K. L. Weiss, and W. G. Wee,

“Review: A comparative study of deformable contour methods on medical image

segmentation,” Image Vision Comput., vol. 26, pp. 141–163, Feb. 2008.

[68] B. N. Li, C. K. Chui, S. Chang, and S. H. Ong, “Integrating spatial fuzzy cluster-

ing with level set methods for automated medical image segmentation,” Comput.

Biol. Med., vol. 41, pp. 1–10, Jan. 2011.

[69] M. Rastgarpour, J. Shanbehzadeh, and H. Soltanian-Zadeh, “A hybrid method

based on fuzzy clustering and local region-based level set for segmentation of

inhomogeneous medical images,” J. Med. Syst., vol. 38, pp. 1–15, Aug. 2014.

[70] N. Sharma and L. M. Aggarwal, “Automated medical image segmentation tech-

niques.,” Journal of medical physics / Association of Medical Physicists of India,

vol. 35, pp. 3–14, Jan. 2010.

[71] D. S. Medina, A. St.-Cyr, and T. Warburton, “OCCA: A unified approach to

multi-threading languages,” CoRR, vol. abs/1403.0968, 2014.

[72] J. Tompson and K. Schlachter, “An introduction to the open cl programming

model,” 2012.

[73] F. Massanes, M. Cadennes, and J. G. Brankov, “Compute-unified device ar-

chitecture implementation of a block-matching algorithm for multiple graphical

78

processing unit cards,” Journal of Electronic Imaging, vol. 20, no. 3, pp. 033004–

033004–10, 2011.

[74] “Reduction kernel description.” https://www.cs.uaf.edu/2012/fall/cs441/

lecture/11_29_reduction.html. Accessed: 2015-01-27.

[75] N. Roma, J. Santos-Victor, and J. Tomé, “A comparative analysis of cross-

correlation matching algorithms using a pyramidal resolution approach,” 2002.

[76] G. Casella and R. Berger, Statistical inference. Duxbury Press Belmont, Calif,

1990.

[77] M. Fornefett, K. Rohr, and H. Stiehl, “Radial basis functions with compact

support for elastic registration of medical images,” Image and Vision Computing,

vol. 19, no. 12, pp. 87 – 96, 2001.

[78] J. Yang and Y. Zhang, “Alternating direction algorithms for l1-problems in com-

pressive sensing,” SIAM Journal on Scientific Computing, vol. 33, pp. 250–278,

Jan. 2011.

[79] P. Tseng, “Convergence of a block coordinate descent method for nondifferen-

tiable minimization,” J. Optim. Theory Appl., vol. 109, pp. 475–494, June 2001.

[80] B. Stephen, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-

mization and statistical learning via the alternating direction method of multi-

pliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–122, Jan. 2011.

[81] C. Sanderson, “Armadillo: An open source c++ linear algebra library for fast pro-

totyping and computationally intensive experiments,” tech. rep., NICTA, Aus-

tralia, October 2010.

79

[82] E. Castillo, R. Castillo, Y. Zhang, and T. Guerrero, “Compressible image reg-

istration for thoracic computed tomography images,” Journal of Medical and

Biological Engineering, vol. 29, pp. 222–233, 2009.

[83] X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A. Majum-

dar, T. Guerrero, and S. B. Jiang, “Implementation and evaluation of various

demons deformable image registration algorithms on a gpu,” Physics in Medicine

and Biology, vol. 55, no. 1, p. 207, 2010.

[84] C. Hoog Antink, T. Singh, P. Singla, and M. Podgorsak, “Evaluation of advanced

lukas?kanade optical flow on thoracic 4d-ct,” Journal of Clinical Monitoring and

Computing, vol. 27, no. 4, pp. 433–441, 2013.

[85] S. Hermann and R. Werner, “Tv-l1-based 3d medical image registration with the

census cost function,” in Image and Video Technology (R. Klette, M. Rivera, and

S. Satoh, eds.), vol. 8333 of Lecture Notes in Computer Science, pp. 149–161,

Springer Berlin Heidelberg, 2014.

[86] S. Hermann and R. Werner, “High accuracy optical flow for 3d medical im-

age registration using the census cost function,” in Image and Video Technology

(R. Klette, M. Rivera, and S. Satoh, eds.), vol. 8333 of Lecture Notes in Computer

Science, pp. 23–35, Springer Berlin Heidelberg, 2014.

[87] S. E. Muezing, B. Van Ginneken, and J. P. Pluim, “Knowledge driven regular-

ization of the deformable field for pde based non-ridgid registration algorithms,”

Medical Image Analysis for the Clinic - A Grand Challenge, 2010.

[88] J. Ruhaak, S. Heldmann, T. Kipshagen, and B. Fischer, “Highly accurate fast

lung ct registration,” 2013.

80

[89] B. Fischer and J. Modersitzki, “Combining landmark and intensity driven regis-

trations,” PAMM, vol. 3, no. 1, pp. 32–35, 2003.

[90] S. Hermann, “Evaluation of scan-line optimization for 3d medical image reg-

istration,” in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

Conference on, pp. 3073–3080, June 2014.

[91] L. Konig and J. Ruhaak, “A fast and accurate parallel algorithm for non-

linear image registration using normalized gradient fields,” in Biomedical Imaging

(ISBI), 2014 IEEE 11th International Symposium on, pp. 580–583, April 2014.

[92] J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s

demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243 – 260, 1998.

[93] J.-P. Thirion, “Fast Non-Rigid Matching of 3D Medical Images,” Research Report

RR-2547, 1995.

[94] J. Sánchez Pérez, E. Meinhardt-Llopis, and G. Facciolo, “TV-L1 Optical Flow

Estimation,” Image Processing On Line, vol. 3, pp. 137–150, 2013.

