
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sparse Signal Reconstruction via Iterative Support Detection∗

Yilun Wang† and Wotao Yin‡

Abstract. We present a novel sparse signal reconstruction method, iterative support detection (ISD), aiming to
achieve fast reconstruction and a reduced requirement on the number of measurements compared to
the classical �1 minimization approach. ISD addresses failed reconstructions of �1 minimization due
to insufficient measurements. It estimates a support set I from a current reconstruction and obtains
a new reconstruction by solving the minimization problem min{∑i/∈I |xi| : Ax = b}, and it iterates
these two steps for a small number of times. ISD differs from the orthogonal matching pursuit
method, as well as its variants, because (i) the index set I in ISD is not necessarily nested or in-
creasing, and (ii) the minimization problem above updates all the components of x at the same time.
We generalize the null space property to the truncated null space property and present our analysis of
ISD based on the latter. We introduce an efficient implementation of ISD, called threshold-ISD, for
recovering signals with fast decaying distributions of nonzeros from compressive sensing measure-
ments. Numerical experiments show that threshold-ISD has significant advantages over the classical
�1 minimization approach, as well as two state-of-the-art algorithms: the iterative reweighted �1 min-
imization algorithm (IRL1) and the iterative reweighted least-squares algorithm (IRLS). MATLAB
code is available for download from http://www.caam.rice.edu/∼optimization/L1/ISD/.
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1. Introduction and contributions. Brought to the research forefront by Donoho [13] and
Candès, Romberg, and Tao [4], compressive sensing (CS) reconstructs a sparse unknown signal
from a small set of linear projections. Let x̄ ∈ R

n denote a k-sparse1 unknown signal, and let
b := Ax̄ ∈ R

m represent a set of m linear projections of x̄. The optimization problem

(1) (P�0) min
x
‖x‖0 subject to (s.t.) Ax = b,

where ‖x‖0 is defined as the number of nonzero components of x, can exactly reconstruct x̄
from O(k) random projections. (Throughout this paper, x̄ is used to denote the true signal to
be reconstructed.) However, because ‖x‖0 is nonconvex and combinatorial, (P�0) is impractical
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for real applications. A practical alternative is the basis pursuit (BP) problem

(BP) min
x
‖x‖1 s.t. Ax = b,(2)

or min
x
‖x‖1 + 1

2ρ
‖Ax− b‖22,(3)

where (2) is used when b contains little or no noise and, otherwise, (3) is used with a proper
parameter ρ > 0. The BP problems have been known to yield sparse solutions under cer-
tain conditions (see [14, 11, 17] for explanations). They can be solved by recent algorithms
found in [3, 23, 20, 16, 15, 27, 30, 29]. It is shown in [6, 25] that, when A is a Gaussian
random or partial Fourier ensemble, BP with high probability returns a solution equal to x̄
from m = O(k log(n/k)) and O(k log(n)4) linear measurements, respectively, which are much
smaller than n. Compared to (P�0), BP is much easier to solve but requires significantly more
measurements.

We propose an iterative support detection (ISD) method that runs as fast as the best
BP algorithms but requires significantly fewer measurements. ISD alternatively calls its two
components: support detection and signal reconstruction. From an incorrect reconstruction,
support detection identifies an index set I containing some elements of supp(x̄) = {i : xi �= 0},
and signal reconstruction solves

(4) (Truncated BP) min
x
‖xT ‖1 s.t. Ax = b,

where T = IC and ‖xT ‖1 =
∑

i/∈I |xi| (or solves a least-squares penalty version corresponding
to (3)). Assuming a sparse original signal x̄, if I = supp(x̄), then the solution of (4) is, of
course, equal to x̄. But this also happens if I contains enough, not necessarily all, entries of
supp(x̄). When I does not have enough of supp(x̄) for an exact reconstruction, those entries
of supp(x̄) in I will help (4) return a better solution, which has a reduced error compared
to the solution of (2). From this better solution, support detection will be able to identify
more entries in supp(x̄) and thus yield a better I. In this way, the two components of ISD
work together to gradually recover supp(x̄) and improve the reconstruction. Given sufficient
measurements, ISD can finally recover x̄. Furthermore, exact reconstruction can happen even
if I includes a small number of the spurious indices outside of supp(x̄). A simple demo in
section 2 illustrates the above for a sparse Gaussian signal.

ISD requires the reliable support detection from inexact reconstructions, which must take
advantage of the features and prior information about the true signal x̄. In this paper, we focus
on the sparse or compressible signals with components having a fast decaying distribution of
nonzeros. For these signals, we perform support detection by thresholding the solution of (4),
and we call the corresponding ISD algorithm threshold-ISD. We present different thresholding
rules including a simple one given along with the demo in section 2 and a more efficient one
discussed in subsection 4.1. The latter rule was used throughout our numerical experiments
in section 5.

To provide theoretical explanations for ISD, we analyze the model (4) based on a so-called
truncated null space property of A, an extension of the null space property originally studied
in [9] and later in [31, 32, 13, 10], which gives the widely used restricted isometry property



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

464 YILUN WANG AND WOTAO YIN

[5] in certain cases. We establish sufficient conditions for (4) to return x̄ exactly. When x̄ is
not exactly sparse, its exact reconstruction is generally impossible. We show an error bound
between the solution of (4) and x̄. Built upon these results for a single instance of (4), the
following result for ISD is obtained: the chance for (4) to return a sparse signal x̄ improves if
in the new detections at each iteration, the true nonzeros are more than the false ones by a
certain factor. These results are independent of specific support detection methods used for
generating I. However, we have yet to obtain a global convergence result for ISD.

While a recovery guarantee has not been obtained, numerical comparisons to state-of-the-
art algorithms show that threshold-ISD runs very fast and requires very few measurements.
Threshold-ISD calls YALL1 [30] with a warm-start and a dynamic stopping rule to efficiently
solve (4). As a result, the threshold-ISD time is comparable to the YALL1 time for solving
the BP model. Threshold-ISD was compared to BP, the iteratively reweighted least squares
algorithm (IRLS) [8], and the iteratively reweighted �1 minimization algorithm (IRL1) [7] on
various types of synthetic and real data. IRLS and IRL1 are known for their state-of-the-art
reconstruction rates, on both noiseless and noisy measurements. Given the same number of
measurements, threshold-ISD and IRLS returned better signals than IRL1, which was even
better than BP. Comparing threshold-ISD and IRLS, the former ran an order of magnitude
faster.

The rest of this paper is organized as follows. In section 2, the algorithmic framework
of ISD is given along with a simple demo. Section 3 presents preliminary theoretical re-
sults. Sections 4 and 5 study the details of threshold-ISD and present our numerical results,
respectively. Section 6 is devoted to conclusions and discussions on future research.

2. Algorithmic framework. We first present the algorithmic framework of ISD.

Input: A and b
1. Set the iteration number s← 0 and initialize the set of detected entries I(s) ← ∅;
2. While the stopping condition is not met, do

(a) T (s) ← (I(s))C := {1, 2, . . . , n} \ I(s);
(b) x(s) ← solve truncated BP (4) for T = T (s);
(c) I(s+1) ← support detection using x(s) as the reference;
(d) s← s+ 1.

Since T (0) = {1, . . . , n}, (4) in step 2(b) reduces to BP (2) in iteration 0.

Like greedy algorithms such as orthogonal matching pursuit (OMP) [26], StOMP [12], and
CoSaMP [24], ISD iteratively maintains a set I of selected indices and updates x. However,
ISD differs from greedy algorithms in how I is grown and x(s) is updated. The index set I in
ISD is not necessarily nested or increasing over the iterations. In terms of index set selection,
ISD is more like CoSaMP, and different from OMP and StOMP. At each iteration, after the
index set I is computed, ISD updates all the components of x, including both the detected
and undetected ones, at the same time. Both of these differences are important since they
allow ISD to reconstruct certain sparse signals that cannot be recovered by the existing greedy
algorithms.

A demo. We generated a sparse signal x̄ of length n = 200 with k = 25 nonzero numbers
independently sampled from the standard Gaussian distribution and assigned to randomly
chosen components of x̄. We let m = 60, created a Gaussian random m × n matrix A, and
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Itr k
Nonzeros

Relative error
Total true Detected Correct False

BP 0 25 12 10 2 5.10e-1

1 25 27 19 8 2.43e-1
2 25 31 24 7 3.59e-2
3 25 25 25 0 7.97e-16

Figure 1. An ISD demo that recovers x̄ with 25 nonzeros from 60 random Gaussian measurements.

set b := Ax̄. We implemented step 2(c) by a threshold rule:

(5) I(s+1) ← {i : |x(s)i | > ε(s)}.
To keep it simple for now, we let

(6) ε(s) := ‖x(s)‖∞/β(s+1)

with β = 5. Note that in subsection 4.1, we will present a more reliable rule for determining
ε(s).

With 200 dimensions, it is normally considered difficult to recover a signal with 25 nonzeros
from merely 60 measurements (a 2.4× measurement-to-nonzero ratio), but ISD returns an
exact reconstruction in merely four iterations. The solutions of the four iterations are depicted
in the four subplots of Figure 1, where the components of x̄ are marked by • and the nonzero
components of x(s) are marked separately by • and �, standing for true and false nonzeros,

I~ I I~ I 

I~ I I~ I 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

466 YILUN WANG AND WOTAO YIN

respectively. The thresholds ε(s) are shown as green lines. To measure the solution qualities,
we give the quadruplet “(total, det, c-det, w-det)” and “Err” in the title of each subplot and
in the table. They are defined as follows:

• (total, det, c-det, w-det):
– total: the number of total nonzero components of the true signal x̄.
– det: the number of detected nonzero components, equal to |I(s+1)| = (c-det) +

(w-det).
– c-det: the number of correctly detected nonzero components, i.e., |I(s+1) ∩ {i :

x̄i �= 0}|.
– w-det: the number of falsely detected nonzero components, i.e., |I(s+1) ∩{i : x̄i =

0}|.
• Err: the relative error ‖x(s) − x̄‖2/‖x̄‖2.

From the upper left subplot, it is clear that x(0), which was the BP solution, contained a large
number of false nonzeros and had a large relative error. However, most of its correct nonzero
components were relatively large in magnitude (as a consequence of x̄ having a relatively
fast decaying distribution of nonzeros), and the thresholding method (5) with the threshold
ε(0) = ‖x(0)‖∞/5 detected 12 nonzeros, among which 10 were true nonzeros and 2 were not.
In spite of the 2 false detections, the detection yielded T (1), which was good enough to let (4)
return a much better solution x(1), depicted in the upper right subplot. This solution further
allowed (5), now having the tighter threshold ε(1) = ‖x(1)‖∞/52, to yield 19 detected true
nonzeros with 8 false detections. Notably, most of true nonzeros with large magnitude had
been correctly detected. The next solution x(2), depicted in the bottom left subplot, became
even better, which well matched the true signal x̄ except for tiny false nonzero components.
Method (5) detected 24 true nonzeros of x̄ from x(2) and 7 false nonzeros, and x(3) had exactly
the same nonzero components as x̄, as well as an error almost as low as the double precision.

ISD is insensitive to a small number of false detections and has an attractive self-correction
capacity. It is important to generate every I from x(s) regardless of what it was previously;
otherwise, false detection would be trapped in I. In addition, the performance of ISD is
invariant to small variations in the thresholding tolerance in (5). On the same set of data, we
also tried to set β = 3 and β = 1.5 in (6) and obtained an exact reconstruction of x̄ in 4 and
6 iterations, respectively.

3. Preliminary theoretical analysis. The preliminary theoretical results in this section
explain under what conditions the truncated BP model (4) can successfully reconstruct x̄,
especially from measurements that are not enough for BP. Most of the results are based on
a property of the sensing matrix A defined in subsection 3.1. Focusing on the minimization
problem (4), subsections 3.2 and 3.3 study exact reconstruction conditions for sparse signals
and reconstruction errors for compressible signals, respectively. Finally, subsection 3.4 gives a
sufficient condition for ISD to improve the chance of perfect reconstruction over its iteration.
Note that this condition is not a recovery guarantee, which is yet to be found.

3.1. The truncated null space property. We start with introducing the truncated null
space property (t-NSP), a generalization of the null space property (NSP). The NSP is used in
slightly different forms and with different names in [31, 32, 13, 9, 10]. We adopt the definition



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ITERATIVE SUPPORT DETECTION 467

in [10]: a matrix A ∈ R
m×n satisfies the NSP of order L for γ > 0 if

(7) ‖ηS‖1 ≤ γ‖ηSC‖1
holds for all index sets S with |S| ≤ L and all η ∈ N (A), which is the null space of A.
In (7) and the rest of this paper, ηS ∈ R

n denotes the subvector of η consisting of ηi for
i ∈ S ⊂ {1, 2, . . . , n}, and SC denotes the complement of S with respect to {1, . . . , n}.

With γ < 1, the NSP says that any nonzero vector η in the null space of A cannot have an
�1-mass concentrated on any set with L or fewer elements. A sufficient exact reconstruction
condition for BP is given in [10] based on the NSP: the true k-sparse signal x̄ is the unique
solution of BP if A has the NSP of order L ≥ k and 0 < γ < 1.

In order to analyze the minimization problem (4) with a truncated �1-norm objective, we
now generalize the NSP to the t-NSP.

Definition 1. A matrix A satisfies the t-NSP of order L for γ > 0 and 0 < t ≤ n if

(8) ‖ηS‖1 ≤ γ‖η(T∩SC )‖1
holds for all sets T ⊂ {1, . . . , n} with |T | = t, all subsets S ⊂ T with |S| ≤ L, and all
η ∈ N (A)—the null space of A.

For simplicity, we use t-NSP(t, L, γ) to denote the t-NSP of order L for γ and t, and we
use γ̄ to replace γ and write t-NSP(t, L, γ̄) if γ̄ is the infimum of all the feasible γ satisfying
(8).

Notice that when t = n, the t-NSP reduces to the NSP. Compared to the NSP, the
inequality (8) in the t-NSP has an extra set limiter T of size t. It is introduced to deal with
‖xT ‖1.

Clearly, for a given A and t, γ̄ is monotonically increasing in L. On the other hand,
fixing L, γ̄ is monotonically decreasing in t. If γ is fixed, then the largest legitimate L is
monotonically increasing in t.

3.2. Sufficient recovery conditions of truncated �1 minimization. We first analyze the
model (4) and explain why it may require significantly fewer measurements than BP. Below
we present a sufficient exact reconstruction condition, in which the requirement ‖x̄‖0 ≤ L for
BP is replaced by ‖x̄T ‖0 ≤ L.

Theorem 3.1. Let x̄ be a given vector, and let T be a given index set satisfying T∩supp(x̄) �=
∅. Assume that a matrix A satisfies t-NSP(t, L, γ̄) for t = |T |. If ‖x̄T ‖0 ≤ L and γ̄ < 1, then
x̄ is the unique minimizer of (4) for b := Ax̄.

Proof. The true signal x̄ uniquely solves (4) if and only if

(9) ‖x̄T + vT ‖1 > ‖x̄T ‖1 ∀v ∈ N (A), v �= 0.

Let S := T ∩ supp(x̄). Since ‖x̄S‖1 = ‖x̄T ‖1, we have

‖x̄T + vT ‖1 = ‖x̄S + vS‖1 + ‖0+ vT∩SC‖1
= (‖x̄S + vS‖1 − ‖x̄S‖1 + ‖vS‖1)︸ ︷︷ ︸

≥0

+‖x̄T ‖1

+(‖vT∩SC‖1 − ‖vS‖1).
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Therefore, having ‖vS‖1 < ‖vT∩SC‖1 is sufficient for (9).
If ‖x̄T ‖0 ≤ L, then |S| ≤ L. According to the definition of t-NSP(|T |, L, γ̄), it holds that

‖vS‖1 ≤ γ̄‖vT∩SC‖1 < ‖vT∩SC‖1.
The assumption T ∩ supp(x̄) �= ∅ in Theorem 3.1 is not essential because otherwise x̄ is

a trivial solution of (4). In addition, if ATC has independent columns, then x̄ is the unique
solution. We note that t-NSP(|T |, L, γ̄) is stricter than what is needed when T is given because
(8) is required to hold for all T with |T | = t.

The following lemma states that the t-NSP is satisfied by Gaussian matrices of appropriate
sizes. Our proof is inspired by the work [33].

Lemma 3.1. Let m < n. Assume that either A ∈ R
m×n is a standard Gaussian matrix

(i.e., one with independent and identically distributed (i.i.d.) standard normal entries) or
there exists a standard Gaussian matrix B ∈ R

n×(n−m) such that AB = 0. Given an index set
T , with probability greater than 1− e−c0(n−m), the matrix A satisfies t-NSP(t, L, γ) for t = |T |
and γ =

√
L

2
√

k(d)−√
L
, where

(10) k(d) := c
m− d

1 + log( n−d
m−d )

,

d = n− |T |, and c0, c > 0 are absolute constants independent of the dimensions m, n, and d.
In ISD, d equals the number of detected entries (including both correct and false detec-

tions). d determines k(d) and in turn the t-NSP parameter γ. Since the sufficient condition
of Theorem 3.1 requires γ̄ < 1 (i.e., there exists a γ < 1), we see that support detection
affects the chance of recovery by (4). Because k(d) plays a pivotal role here, we analyze its
formula (10) at the end of this subsection. Also, we note that the γ given in Lemma 3.1 is
not necessarily tight.

Proof. Let the columns of B span N (A); i.e., B ∈ R
(n−m)×m and AB = 0, and PT refer

to projection to the coordinates T . Then, Λ = {vT : v ∈ N (A)} = {(PTB)w : w ∈ R
n−m} is

a randomly drawn subspace in R
|T | with dimensions up to (n −m). The Kashin–Garnaev–

Gluskin result [22, 18] states that for any p < q, with

probability ≥ 1− e−c0p,

a randomly drawn p-dimensional subspace Vp ∈ R
q satisfies

‖z‖1
‖z‖2 ≥

c1
√
q − p√

1 + log(q/(q − p))
∀z ∈ Vp, z �= 0,

where c0 and c1 are independent of the dimensions. Applying this result with q := |T | = n−d
and p := n−m, we obtain

‖vT ‖1
‖vT ‖2 ≥

c1
√

(n− d)− (n−m)√
1 + log((n− d)/((n − d)− (n−m)))

∀v ∈ N (A), v �= 0,

or
‖vT ‖1
‖vT ‖2 ≥

c1
√
m− d√

1 + log n−d
m−d

∀v ∈ N (A), v �= 0.

• 
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Let k(d) be defined in (10) where c =
c21
4 . For all S ⊂ T with |S| ≤ L we have√

k(d)‖vT ‖2 ≤ 1
2‖vT ‖1 and thus

‖vS‖1 ≤
√
|S|‖vS‖2 ≤

√
L√

k(d)

√
k(d)‖vS‖2 ≤

√
L√
k(d)

√
k(d)‖vT ‖2 ≤

√
L

2
√

k(d)
‖vT ‖1,

or, equivalently,
‖vS‖1 ≤ γ‖vT∩SC‖1,

where γ =
√
L

2
√

k(d)−√
L
. The lemma follows from the definition of the t-NSP.

Theorem 3.1 and Lemma 3.1 lead to the following theorem.
Theorem 3.2. Let x̄ ∈ R

n and T be given such that T ∩ supp(x̄) �= ∅. Let m < n and
A ∈ R

m×n be given as in Lemma 3.1. Then, with probability greater than 1 − e−c0(n−m), the
true signal x̄ is the unique solution of (4) for b := Ax̄ if

(11) ‖x̄T ‖0 < k(d),

where k(d) is defined in (10), d = n − t = n − |T |, and c0, c > 0 are absolute constants
independent of the dimensions m, n, and d.

Furthermore, let dc = |I ∩ supp(t̄)| denote the number of correct detections. Then, (11) is
equivalent to

(12) ‖x̄‖0 < k(d) + dc.

Proof. In Lemma 3.1, let L = ‖x̄T ‖0. If L < k(d), then γ < 1. Then we have that
the first result follows from Theorem 3.1. Inequalities (11) and (12) are equivalent since
‖x̄‖0 = ‖x̄T ‖0 + dc.

Note that when d = 0, condition (11) reduces to the existing result for BP: for the same
vector x̄ and A given in Theorem 3.2 above, with probability greater than 1− e−c0(n−m), x̄ is
the unique solution of (4) for b := Ax̄ if ‖x̄‖0 ≤ cm(1 + log(n/m))−1; namely, the inequality
(11) holds for d = 0.

In light of (12), to compare BP with truncated BP, we shall compare k(0) with k(d) + dc.
Below we argue that if there are enough correct detections (i.e., dc/d is sufficiently large),
then we get k(0) < k(d) + dc, and it is easier for truncated BP to recover x̄ than it is for BP.
To see this, we start with

(13) k(0) = k(d)−
∫ d

0
k′(d)

and study k′(d). Because (4) is equivalent to a linear program which has a solution with no
more than m nonzeros, we naturally assume d < m. Then, we obtain

(14) k′(d) := −c
(

1

1 + log
(
n−d
m−d

) + n−m(
1 + log

(
n−d
m−d

))2
(n − d)

)
< 0.

On the other hand, we have −1 < k′(d) for the following reasons. First, it is well known
that universal stable reconstruction (by any method) requires ‖x̄‖0 < m/2, which we now

• 
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assume. Second, when BP fails (which is the case we are interested in), Theorem 3.2 gives us
k(0) ≤ ‖x̄‖0. Therefore, we have k(0) < m/2 or

(15)
c

1 + log( n
m )

<
1

2
.

Plugging (15) into (14), one can deduce −1 < k′(d) < 0, which together with (13) gives

(16) k(0) = k(d) −
∫ d

0
k′(d) < k(d) + d.

Equation (16) means that if d = dc (i.e., there is no false detection), truncated BP does better
than BP. For practical reasons, we do not always have d = dc, but, on the other hand, one
does not push ‖x̄‖0 to its limit at m/2. Consequently, (15) is very conservative. In fact, it is
safe to assume c

1+log( n
m
) < 1/4, which gives −1/2 < k′(d) < 0 and thus

(17) k(0) = k(d)−
∫ d

0
k′(d) < k(d) +

1

2
d.

Comparing the right-hand sides of (12) and (17), we can see that as long as dc ≥ (1/2)d (i.e.,
at least half of the detections are correct), truncated BP is more likely than BP to recover x̄.
It is easy to extend this analysis to the iterations of ISD as follows. Since k(d) reduces at a rate
slower than 1/2, k(d) + dc will increase as long as dc grows faster in terms of Δdc/Δd > 1/2
between iterations. Finally, we can also observe that the higher the sample ratio m/n is, the
smaller |k′(d)| is. Hence, the sufficient reconstruction condition becomes even easier to satisfy.

3.3. Stability of truncated �1 minimization. Because many practical signals are not
exactly sparse, we study the reconstruction error of (4) applied to general signals, which is
expressed in the best L-term approximation error of x̄:

σL(x̄)1 := inf{‖x̄ − x‖1 : ‖x‖0 ≤ L, x ∈ R
dim(x̄)}.

For a signal x̄ with a fast decaying tail (in terms of the distribution of its entries), this error
is much smaller than ‖x̄‖1. Theorem 3.3 below states that under certain conditions on A, (4)
returns a solution with an �1-error bounded by σL(x̄) up to a constant factor depending only
on |T |. The theorem needs the following lemma, which is an extension of Lemma 4.2 in [10].

Lemma 3.2. Consider problem (4) with a given T , and let z, z′ ∈ F(b). Assume that A
satisfies t-NSP(t, L, γ̄), where t = |T | and γ̄ < 1. Let S ⊂ T be the set of indices corresponding
to the largest L entries in zT . We have

(18) ‖(z − z′)T∩SC‖1 ≤ 1

1− γ̄

(‖z′T ‖1 − ‖zT ‖1 + 2σL(zT )1
)
,

where σL(zT )1 is the best L-term approximation error of zT .
Proof. We have ‖zT∩SC‖1 = σL(zT )1 and

‖(z′ − z)T∩SC‖1 ≤ ‖z′T∩SC‖1 + ‖zT∩SC‖1
= ‖z′T ‖1 − ‖z′S‖1 + σL(zT )1

= ‖zT ‖1 + ‖z′T ‖1 − ‖zT ‖1 − ‖z′S‖1 + σL(zT )1

= ‖zS‖1 − ‖z′S‖1 + ‖z′T ‖1 − ‖zT ‖1 + 2σL(zT )1

≤ ‖(z − z′)S‖1 + ‖z′T ‖1 − ‖zT ‖1 + 2σL(zT )1.
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Equation (18) follows from the above inequality and the definition of t-NSP(t, L, γ̄), which
says

(19) ‖(z′ − z)S‖1 ≤ γ̄(‖(z′ − z)T∩SC‖1).
Lemma 3.2 leads to the following theorem.
Theorem 3.3. Consider problem (4) for a given T . Assume that A satisfies t-NSP(t, L, γ̄),

where t = |T | and γ̄ < 1. Let x∗ be the solution of (4), and let x̄ be the true signal. Then,
‖x∗T ‖1 − ‖x̄T ‖1 ≤ 0, and

(20) ‖x∗ − x̄‖1 ≤ 2CT · σL(x̄T )1,
where

CT =
1 + (1 + max{1, |TC |/L})γ̄

1− γ̄
.

Proof. For notation cleanliness, we introduce

S1 := TC = I, S2 := S ⊂ T, S3 := T ∩ SC ,

which form a partition of {1, . . . , n}.
Case 1. |S1| ≤ L. We can find S′ ⊂ S2 such that |S1 ∪ S′| = L. From t-NSP(t, L, γ̄) for

A, we get

(21) ‖(z − z′)S1‖1 ≤ ‖(z − z′)S1∪S′‖1 ≤ γ̄‖(z − z′)S3‖1.
Case 2. |S1| > L. Let S′′ ⊂ S1 denote the set of indices corresponding to the largest L

entries of (z − z′)S1 . From t-NSP(t, L, γ̄) for A, we have

(22) ‖(z − z′)S1‖1 ≤
|S1|
L
‖(z − z′)S′′‖1 ≤ |S1| · γ̄

L
‖(z − z′)S3‖1.

Combining (21) and (22) gives

‖(z − z′)S1‖1 ≤ max

{
1,
|S1|
L

}
γ̄‖(z − z′)S3‖1.

This, together with (18) and (19), gives

‖z − z′‖1 = ‖(z − z′)S1‖1 + ‖(z − z′)S2‖1 + ‖(z − z′)S3‖1(23)

≤ (1 + (1 + max{1, |S1|/L}) γ̄) ‖(z − z′)S3‖1(24)

≤ CT

(‖z′T ‖1 − ‖zT ‖1 + 2σL(zT )1
)
.(25)

Finally, let z and z′ denote the true signal x̄ and the solution x∗ of (4), respectively. The
optimality of x∗ gives ‖x∗T ‖1 − ‖x̄T ‖1 ≤ 0, from which (20) follows.

Theorem 3.3 states that the reconstruction error of (4) is bounded by the best L-term
approximation error of x̄T up to a multiple depending on γ̄ and |TC |. When t = n, it reduces
to the existing result for BP established in [9]:

(26) ‖x∗ − x̄‖1 ≤ 2
1 + γ

1− γ
· σL′(x̄)1,

• 

• 
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when A satisfies the NSP of order L′ for γ ∈ (0, 1).

To compare truncated BP with BP on their error bounds given in (20) and (26), respec-
tively, we need to study the tail of x̄. We claim that making correct detections alone is not
sufficient to make (20) better than (26). To see this, assume that γ̄ = γ in both bounds.
Support detection makes t = |T | < n and |TC | > 0. As discussed at the end of subsection
3.1 above, we get L′ ≤ L. Then it is unclear whether σL(x̄T )1 is less than σL′(x̄)1 or vice
versa. In addition, CT is bigger than (1 + γ)/(1 − γ). Hence, the error bound in (20) can be
bigger than (26). Only if the tail decays fast enough in the sense that σL(x̄T )1 � σL′(x̄)1 can
(20) reliably give a smaller bound than (26). This comparison also applies to two instances
of truncated BP, one having a bigger T than the other. For support detection to lead to
a reduced reconstruction error, there must be enough correct detections and x̄ must have a
fast decaying distribution of nonzeros. This conclusion matches our numerical results given
in section 5 below.

3.4. Iterative behavior of ISD. The results in the previous two subsections concern signal
reconstruction by (4), not the ISD iterations, and exact reconstruction requires the t-NSP with
a parameter γ̄ < 1. This subsection presents a sufficient condition for the ISD iterations to
yield a decreasing sequence of γ̄.

Theorem 3.4. Suppose that A has the t-NSP(t, L, γ̄) as well as t-NSP(t′, L′, γ̄′) with t′ < t
and L′ < L. If (L− L′) > γ̄(t− t′ − (L− L′)), then γ̄′ < γ̄.

Proof. Let 0 < J ′ < J and 1 < γ <∞. For given T ′, η′, and S′ that satisfy T ′ ⊂ {1, . . . , n},
|T ′| = t′, η′ ∈ N (A), η′ �= 0, S′ ⊂ T ′, |S′| = J ′, γ̄′ = ‖η′S′‖1/‖η′T ′\S′‖1, we have

‖η′T ′\S′‖1 = ‖η′T\S‖1 − ‖η′T\S−(T ′\S′)‖1
≥ γ̄−1‖η′S‖1 − ‖η′T\S−(T\S′)‖1
= γ̄−1‖η′S′‖1 + γ̄−1‖η′S−S′‖1 − ‖η′T\S−(T\S′)‖1

for any T with cardinality t and any S satisfying S ⊇ S′, |S| = J , S ⊂ T , and S−S′ ⊆ T \T ′.
In particular, we choose S such that S − S′ consists of the largest J − J ′ entries of η′T\T ′ in
magnitude.

According to (J − J ′) > γ̄(t− t′ − (J − J ′)), we have

(27) |S − S′| > γ̄|T \ S − (T ′ \ S′)|.

If η′S−S′ �= 0, then this condition means γ̄−1‖η′S−S′‖1 > ‖η′T\S−(T ′\S′)‖1 and, thus, ‖η′T ′\S′‖1 >
γ̄−1‖η′S′‖1. Otherwise, i.e., η′S−S′ = 0, we have γ̄−1‖η′S−S′‖1 = ‖η′T\S−(T ′\S′)‖1 = 0. However,

we can still show ‖η′T ′\S′‖1 > γ̄−1‖η′S′‖1 by showing ‖η′T\S‖1 > γ̄−1‖η′S‖1; i.e., the first

inequality in the equation array above holds strictly. To see this, we first get η′T ′\S′ �= 0 from

γ̄−1‖η′S−S′‖1 = ‖η′T\S−(T ′\S′)‖1 = 0, ‖η′T ′\S′‖1 ≥ γ̄−1‖η′S′‖1, γ̄−1 > 0, and η′ �= 0. Next, we

generate S̄ by first letting it be S, second dropping any one entry in S − S′ (which has a zero
value), and then picking up a nonzero entry in T ′ \ S′. Such S̄ satisfies

‖η′T\S‖1 > ‖η′T\S̄‖1 ≥ γ̄−1‖η ′̄S‖1 > γ̄−1‖η′S‖1.
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Therefore, we have
(27)⇒ ‖η′T ′\S′‖1 > γ̄−1‖η′S′‖1.

Therefore γ̄′ < γ̄.
To understand the result, we assume that BP (ISD iteration 0) fails to reconstruct x̄ so

that we can apply (t, L, γ̄) and (t′, L′, γ̄′) to ISD iterations 0 and 1, respectively. Recall that
the numbers of correct and wrong detections are denoted by dc and dw, respectively. We can
see (L − L′) > γ̄(t − t′ − (L − L′)) being equivalent to dc > γ̄dw, meaning that from x(0)

ISD must make at least γ̄ times as many correct detections as wrong detections in order to
guarantee γ̄′ < γ̄, which indicates a forward step toward exact reconstruction. The result
can also be applied to two consecutive ISD iterations s and s + 1 and give the condition
Δdc > γ̄Δdw, where γ̄ applies to iteration s and Δdc and Δdw are the changes in number of
correct and wrong detections from iteration s to s+ 1, respectively.

In practice, ISD does not know γ̄, dc, or dw, but ISD needs to know when to stop its
iterations. We suggest two alternatives. The first uses the (�m/2� + 1)′th largest component
of x(s). According to [1], this value is proportional to an upper bound of the error. Therefore,
once the value is 0 or small enough, we obtain an (almost) exact reconstruction and can stop
the ISD iteration. In addition, we can also stop the ISD iteration if this value stagnates
or shows a steady increase over the past few iterations. Another stopping rule is based on
comparing I(s−1) and I(s). When ISD fails to further improve the solution (including the case
when the solution is already exact), I(s) and I(s−1) will be (almost) identical.

4. Threshold-ISD for fast decaying signals.

4.1. A support detection scheme based on thresholding. ISD requires reliable support
detection. In this section, we present effective detection strategies for signals with a fast
decaying distribution of nonzero values (hereafter, we call them fast decaying signals), which
include sparse Gaussian signals and certain power-law decaying signals. Our strategies are
based on thresholding

(28) I(s+1) := {i : |x(s)i | > ε(s)}, s = 0, 1, 2, . . . .

We term the resulting algorithm threshold-ISD. Before discussing the choice of ε(k), we note
that the support sets I(s) are not necessarily increasing and nested; i.e., I(s) ⊂ I(s+1) may
not hold for all s. This is important because it is very difficult to completely avoid wrong
detections by setting ε(s) based on available intermediate solutions x(i) for i ≤ s. The true
solution is not known, and a component of x(i), no matter how big, could nevertheless still
be zero in the true solution. Not requiring I(s) to be monotonic leaves the chance for support
detection to remove previous wrong detections, making I(s) less sensitive to ε(s) and thus
making ε(s) easier to choose.

We study different rules for ε(s). We have seen in section 2 the simple rule ε(s) =
‖x(s)‖∞/β(s+1) with β > 0. This rule is quite effective with an appropriate β. However,
the proper range of β is case-dependent. An excessively large β results in too many false
detections and consequently low solution quality, while an excessively small β tends to cause
a large number of iterations. Because the third rule below is more effective, this first rule is
not recommended.

• 
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(a) The nonzeros of the true signal vs. the true/
false nonzeros of the reconstructed signal
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(b) The sorted components of the failed recon-
struction and their first significant jump
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(c) A zoom-in of (b)

Figure 2. Illustration of support detection from a failed reconstruction by looking for the “first significant
jump.” The failed reconstruction was obtained by BP from Gaussian linear measurements of a sparse Gaussian
signal. “Err” is the relative error in the �2-norm.

The second rule is a toll-based rule, namely, setting ε(s) so that I(s) has a given cardinality,
which increases in s. We tried cardinality sequences such as 1, 2, . . . and 2, 4, . . . and obtained
high quality reconstructions from a small number of measurements. However, because I(s)

grows slowly, threshold-ISD takes a large number of iterations. In comparison, the third rule
below offers a much better balance between quality and speed.

The rule of our choice is based on locating the “first significant jump” in the increasingly

sorted sequence |x(s)[i] | (x[i] denotes the ith largest component of x by magnitude), as illustrated

by Figure 2. The rule looks for the smallest i such that

(29)
∣∣∣x(s)[i+1]

∣∣∣− ∣∣∣x(s)[i]

∣∣∣ > τ (s),

0 

0 

00 

0 
0 

,9 
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where τ (s) is selected below. This amounts to sweeping the increasing sequence |x(s+1)
[i] | and

looking for the first jump larger than τ (s). In the example in Figure 2, it is located at [i] = 188.

Then, we set ε(s) = |x(s)[i] |. Typically, this rule allows (28) to detect a large number of true
nonzeros with few false alarms. It is less arbitrary than the first rule while also leading to
faster convergence than the second rule.

The “first significant jump” exists because in x(s), the true nonzeros (the red circles in
Figure 2) are large in size and small in number, while the false ones (the blue diamonds
in Figure 2) are large in number and small in size. Therefore, the magnitudes of the true
nonzeros are spread out, while those of the false ones are clustered. The false ones are the
smearing due to the nonzeros in x̄ that are zeroed out in x(s). To explain this mathematically,
let us decompose x(s), which we assume to have m nonzero entries.2 Slightly abusing the

notation, we let B = {i : x(s)i �= 0} denote both the set of basic indices and the corresponding

square submatrix of A, so we have Bx
(s)
B = b. Let V = BC . From basic algebra, we get

x
(s)
B = x̄B + B−1AV x̄V , where x̄B = [x̄U ;0] for U = B ∩ supp(x̄). Because x̄V tends to have

smaller components than x̄U
3 and B−1 has a diluting effect, the components of B−1AV x̄V

tend to be much smaller than those in x̄U . Therefore, x
(s)
U are typically dominated by x̄U and

thus have relatively large components.

Here we adopt a very simple method to define τ (s) for different kinds of sparse or com-
pressible signals. For the sparse Gaussian signals, we set τ (s) simply as m−1‖x(s)‖∞, which is
used in the example shown in Figure 2 and gives no false detection. For the first 5 iterations
in the experiments reported in section 5, we made the detection slightly more conservative by
increasing τ (s) to 6

s+1τ
(s), s = 0, 1, 2, 3, 4.

Besides sparse Gaussian signals, we also tried the “first significant jump” rule on synthetic
sparse and compressible power-law decaying signals, as well as on the wavelet coefficients of the
Shepp–Logan phantom and the cameraman image in section 5. The sparse and compressible
power-law decaying signals were constructed by first generating a sequence of numbers obeying
the power-decay rule, such as {i−1/λ}ki=1, followed by multiplying each entry by a random sign
and applying a random permutation to the signed sequence. We set τ (s) according to λ. For
example, when λ = 1/3, one can set τ (s) = ‖x(s)‖∞/m/20; when λ = 0.8 or 1, one can set
τ (s) = ‖x(s)‖∞/m/5; when λ = 2 or 4, one can set τ (s) = ‖x(s)‖∞/m/2. For the wavelet
coefficients of the phantom image and cameraman image, one can set τ (s) = ‖x(s)‖∞/m. As
we did for sparse Gaussian signals, for the first 9 iterations in the experiments, we made
the detection slightly more conservative by increasing τ (s) to 8

s+1τ
(s), s = 0, 1, 2, 3, 4, 5, 6, 7.

The above heuristic, which worked very well in our experiments, is certainly not necessarily
optimal; on the other hand, it has been observed that threshold-ISD is not very sensitive to
τ (s).

Finally, we give three comments on support detections. First, jumps based on counting

2Problem (4) can be reduced to a linear program. It is possible that x(s) has either less or more than m
nonzero entries, but for most matrices A used in CS and most signals, x(s) has exactly m nonzero entries with
a nonsingular basis B. This assumption offers technical convenience and is not essential to the argument that
follows.

3Roughly, a fast decaying x̄ can be regarded as consisting of a signal part of large components and a noise
part of smaller and zero components. Stability results say that the signal part is mostly included in x̄U .
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on the change of magnitudes of two neighboring components are far from optimal because the
choice of τ (s) may vary a lot for different kinds of sparse signals as shown above. One can apply
other available effective jump detection methods [28, 21]. Second, any threshold-based support
detection rule requires true signals to have a fast decaying distribution of nonzeros in order
to work reliably. It does not work on signals that decay slowly or have no decay at all (e.g.,
sparse Bernoulli signals). Third, one should be able to find better support detection methods
for real world signals such as those with grouped nonzero components (cf. the model-based
CS [2]) and natural/medical images (cf. edge-enhanced compressive imaging [19]).

4.2. YALL1 and warm-start. The truncated BP model (4) can be solved by most existing
�1 algorithms/solvers with straightforward modifications. We chose YALL1 [30] since it is
among the fastest ones whether the solution is sparse or not. In the numerical tests reported
in section 5, we applied YALL1 to all BP, truncated BP, and weighted �1 problems that arise
in threshold-ISD and the compared algorithms.

For completeness, we give a short overview of YALL1. Based upon applying the alternating
direction method to the Lagrange dual of

min
x

{
n∑

i=1

wi|xi| : Ax = b

}
,

the iteration in YALL1 has the basic form

yl+1 = αAzl − β(Axl − b),(30)

zl+1 = Pw(A
∗yl+1 + xl/μ),(31)

xl+1 = xl + γμ(A∗yl+1 − zl+1),(32)

where μ > 0, γ ∈ (0, (1 +
√
5)/2), α = 1, and β = 1

μ . Pw is an orthogonal projection onto

the box Bw � {z ∈ C
n : |zi| ≤ wi, i = 1, . . . , n}. This is a first-order primal-dual algorithm

in which the primal variables x and dual variables y and z (a dual slack) are updated at
every iteration. In our numerical experiments, we stopped YALL1 iterations once the relative
change ‖xl+1 − xl‖2/‖xl‖2 fell below a certain prescribed stopping tolerance.

YALL1 was called multiple times in threshold-ISD to return x(s), s = 0, 1, . . . . Because
the “first significant jump” rule does not need a highly accurate solution, a loose stopping
tolerance was set in YALL1 for all but the last threshold-ISD iteration. The tolerances used
are given in subsection 5.5 below. To determine whether a threshold-ISD iteration k was the
final iteration, the loose stopping tolerance was put in place to stop YALL1 and upon stopping
of YALL1, I(s+1) was generated and compared to I(s) and I(s−1). If all three I’s were identical
or almost so, any further iteration would likely give the same or a very similar solution. At
this time, we let YALL1 resume from where it stopped and return an accurate final solution
till a tighter tolerance was reached. In other words, threshold-ISD uses coarse solutions for
support detection and returns a fine solution to the user.

To further accelerate threshold-ISD, we warm-started YALL1 whenever possible. Specif-
ically, for each instance of BP, truncated BP, and weighted �1 problems, YALL1 was started
from the solution (x, y, z) of the previous instance if available.
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As a result of applying varying stopping tolerance and warm-start, the total threshold-ISD
time, including the time of solving multiple truncated BP problems, was almost the same on
average as the time of solving a single BP problem.

5. Numerical implementation and experiments. Threshold-ISD was compared to the
BP model (2), the iterative reweighted least-squares algorithm (IRLS) [8], and the iterative
reweighted �1 minimization algorithm (IRL1) [7]. IRLS and IRL1 appear to be state-of-the-art
in terms of the number of measurements required. These comparisons4 show that threshold-
ISD requires as few measurements as IRLS and also runs as fast as BP, which is much faster
than IRLS.

5.1. Reviews of IRL1 and IRLS. Let us first briefly review the algorithms IRL1 [7] and
IRLS [8]. They are both iterative procedures attempting to solve the following �p minimization
problem:

(33) min ‖x‖p s.t. Ax = b,

where p ∈ [0, 1]. At the sth iteration, the IRL1 algorithm computes

(34) x(s) ← min
x

{
n∑

i=1

w
(s)
i |xi| : Ax = b

}
,

where the weights are set as

(35) w
(s)
i := (|x(s−1)

i + η|)p−1,

and η is a regularization parameter. Initially, x(0) is the solution of the BP problem.
IRLS iteratively minimizes a weighted �2 function to generate x(s):

(36) x(s) ← min
x

{∑
i

w̃
(s)
i |xi|2 : Ax = b

}
.

The solution of (36) can be given explicitly as

(37) x(s) = QsA
T(AQsA

T)−1b,

where Qs is the diagonal matrix with entries 1/w̃
(s)
i , the weights are set as

(38) w̃
(s)
i := (|x(s−1)

i |2 + ζ)p/2−1,

and ζ is a regularization parameter. Initially, x(0) is the least-squares solution of Ax = b.
We set p := 0 uniformly in the experiments since it is reported that this value leads to

better reconstructions than p > 0. Note that if x(s−1) in both (35) and (38) is set equal to x and

η = ζ = 0, then following the convention 0/0 = 0, we have
∑

iw
(s)
i |xi|2 =

∑
i w̃

(s)
i |xi|2 = ‖x̄‖0.

This result, though not holding for η, ζ > 0, indicates that the two objective functions are

smooth approximations to ‖x‖0. When η and ζ are large,
∑n

i=1w
(s)
i |xi| and

∑
i w̃

(s)
i |xi|2 are

close to ‖x‖1 and ‖x‖22, respectively, so they tend to have fewer local minima. Therefore,
η and ζ are both initially large and gradually increase as s increases. The setting of these
parameters is given in subsection 5.4.

4More comparisons to other algorithms, including certain greedy algorithms, are given on the second author’s
website.
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5.2. Denoising minimization problems. The measured data is sometimes inaccurate due
to various kinds of imprecisions or contaminations. Assume that b = Ax+ z, where z is i.i.d.
Gaussian with zero mean and standard deviation (noise level) σ. When σ is not big, the
unconstrained BP problem (3) is known to yield a faithful reconstruction for an appropriate ρ
depending on σ. We found that (3) could be solved faster and yield a slightly more accurate
solution than the constrained BP problem (2). Therefore, (3) was used in our tests with noisy
measurements. In our figures, we use “L1/L2” for (3).

For IRL1, reweighting was applied to the above noise-aware problem (3), and each of its
iterations was changed from (34) to

(39) x(s) ← min
x

{
n∑

i=1

w
(s)
i |xi|+

1

2ρ
‖b−Ax‖22

}
,

where weights w
(s)
i were generated as before. Given an index set T , threshold-ISD solved the

following truncated �1 version of (3):

(40) x(s) ← min ‖xT (s)‖1 + 1

2ρ
‖b−Ax‖22.

The same ρ was set for the three problems (3), (39), and (40), which were all solved by YALL1
iterations (30), (31), and (32) with new α := μ

μ+ρ and β := 1
μ+ρ .

For IRLS, however, we did not relax Ax = b in (36) for noisy measurements because the
resulting unconstrained problem is no easier to solve nor does it return solutions with less
error, at least when the error level σ is not excessively large. Therefore, (36) was solved by
IRLS for noisy measurements.

5.3. Transform sparsity. In many situations, it is not the true signal x̄ itself but its
representation under a certain basis, frame, or dictionary that is sparse or compressible. In
such a case, ȳ = Wx̄ is sparse or compressible for a certain linear transform W. Instead of
minimizing ‖x‖1 and ‖xT ‖1, one should minimize ‖Wx‖1 and ‖(Wx)T ‖1. Then, the weight
variables in IRL1 and IRLS should be updated according to the components of (Wx) instead
of those of x. In the case of transform sparsity, the above simple changes were applied to all
algorithms and solvers.

5.4. Experimental settings and test platforms. The test sets are summarized in Table 1.
Our experiment included five different test sets, the first four of which used various synthetic
signals and standard i.i.d. Gaussian sensing matrices A generated by A=randn(m,n) in MAT-
LAB. The first two sets used noise-free measurements, and different amounts of white noise
were added to measurements in the third set. With noise, exact reconstruction was impossi-
ble, so in the third set we did not change m but measured solution errors for different levels
of noise. The fourth set used signals with entries following power-laws among which some
of the signals had their tails truncated and were thus sparse. As zero-decay sparse signals
are just sparse ±1 signals, this set also included sparse Bernoulli signals. The last (fifth) set
used two-dimensional images of different sizes and tested sensing matrices A that were partial
discrete cosine matrices formed by choosing the first row and a random subset of the remain-
ing rows from the full discrete cosine matrices. Since all the operations in threshold-ISD and
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Table 1
Summary of test sets.

# Nonzeros or image name Noise σ Dimension n Sparsity k Measurements m Repetitions

1
Gaussian 0 600 8 16:4:100 100
Gaussian 0 600 40 80:10:220 100
Gaussian 0 600 150 250:10:400 100

2 Gaussian 0 3000 100 200:50:800 100

3
Gaussian 0.0001 2000 100 325 200
Gaussian 0.001 2000 100 325 200
Gaussian 0.01 2000 100 325 200

4 Power-law at varying rates 0 600 40 or 600 Varied 100

5
Shepp–Logan phantom 0 128 × 128 1685 2359:337:6066 10
Shepp–Logan phantom 0.001 128 × 128 1685 2359:337:7414 10

Cameraman 0 256 × 256 65536 6553:2621:32763 10

IRL1 involving A (which are Ax and A�x) were computed by the discrete cosine transform,
A were never explicitly formed or stored in memory in these two algorithms. On the other
hand, IRLS needs explicit matrices A, so it was not tested in the fifth set.5 The fifth set also
included tests with noise added to the measurements. The images were assumed to be sparse
under the two-dimensional Haar wavelets.

Specifically, the sparse Gaussian signals were generated in MATLAB by
xbar =zeros(n,1); p=randperm(n); xbar(p(1:k))=randn(k,1);

and the sparse Bernoulli signals were generated by the same commands except
xbar(p(1:k))=2*(rand(k,1)>0.5)-1;

The power-law decaying signals were generated by
xbar=zeros(n,1); p=randperm(n);

xbar(p(1:n))=sign(randn(n,1)).*((1:n).^(-1/lambda))’;

xbar=xbar/max(abs(xbar));

and, replacing the second line by xbar(p(1:k))=sign(randn(k,1)).*((1:k).^(-1/lambda))’,
we obtained the sparse ones. The variable lambda was set to different values (described in
subsection 4.1), which controls the rate of decay. The larger lambda was, the lower was the
rate of decay.

All test code was written and tested in MATLAB v7.7.0 running in GNU/Linux Release
2.6.9-55.0.2 on a Dell Optiplex GX620 with dual 3.20GHz Intel Pentium D CPUs (only one
CPU was used by MATLAB) and 3 GB of memory.

5.5. Stopping tolerance and smoothing parameters. Performances of all tested code
depended on parameters. For fairness, threshold-ISD, IRL1, IRLS, and BP were stopped
upon

(41)
‖xl+1 − xl‖2
‖xl‖2 ≤ ε,

with different intermediate but the same final stopping tolerances ε.

5IRLS iterations could be modified to use Ax and A�x rather than A in the explicit form, but for the
purpose of this paper, no modification was done.
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Test sets 1, 2, and 4. In all tests, threshold-ISD was set to run no more than 9 iterations
(with the reason given below in test sets 1 and 2), in which the first iteration had ε := 10−1

and the rest except for the last one had ε := 10−2. Smaller ε values did not make solutions or
running times better. ε := 10−6 was set for the final iterations of threshold-ISD. The stopping
rule is based on comparing consecutive support sets I(s) as described in section 4.2.

ε := 10−6 was also set for BP, as well as all iterations of IRL1. Larger intermediate ε
values would make IRL1 return worse solutions. IRL1 had 9 iterations as recommended in [7],
but its smoothing parameter η was initialized to 1 and reduced by half each time, different
from but slightly better than the recommendation.

Recommended in [8] for IRLS and for test sets 1 and 2, IRLS’s smoothing parameter ζ
was initialized to 1 and reduced to ζ/10 whenever (41) was satisfied for ε :=

√
ζ/100 until ζ

reached 10−8 when the final ε = 10−6 became effective. We optimized ε and the stopping value
of ζ for the more challenging test 4. For power-law decaying signals (either sparse or not),
ε := 10−3/2

√
ζ and the stopping ζ was set to 10−9; for sparse Bernoulli signals, ε := 10−1

√
ζ

and the stopping ζ was set to 10−10. Again, ε finally reached 10−6. The above optimization to
IRLS made its frequency of successful reconstruction slightly higher than that of threshold-ISD
in a couple of tests.

Test set 3. Because of measurement noise and thus reconstruction errors, it was not
necessary to impose a tight tolerance for this set of tests. All four algorithms uniformly had
the reduced final ε :=

√
σ/100. Threshold-ISD ran no more than 9 iterations with the same

intermediate ε values as in test sets 1, 2, and 4. IRL1 ran 9 iterations with intermediate
ε :=

√
σ/100 constantly. For all but the last IRLS iteration, ε := max{√σ/100,√ζ/100}.

Test set 5. Threshold-ISD was compared only to BP and IRL1 because matrices A were
too large to form in IRLS. The only parameter change was the final ε := max{10−4, σ/10} for
all three tested algorithms.

5.6. Experimental results.

Test set 1. Sparse signals containing k = 40, 8, 150 nonzeros were used in this set, and
corresponding results were plotted in Figures 3, 4, and 5, respectively.

Figure 3 depicts the performance of the four tested algorithms. Figure 3(a) shows that
threshold-ISD and IRLS achieved almost the same recoverability, which was significantly
higher than that of IRL1 in terms of the number of required measurements. Not surprisingly,
the recoverability of the BP method was the worst. Figure 3(b) shows that threshold-ISD
was much faster than both IRL1 and IRLS, and was even comparable to BP. To sum up,
threshold-ISD was not only the fastest but also required the least number of measurements.

With the small k = 8 (Figure 4), threshold-ISD had no speed advantage over IRLS, but
it was still much faster than IRL1. Qualitywise, threshold-ISD was on par with IRLS and
IRL1 and better than BP. With the larger k = 150, threshold-ISD was much faster than both
IRLS and IRL1, and all three achieved comparable recoverability with 100% starting around
m = 300.

Test set 2. This test set used larger signals (n = 3000). Figure 6 shows that threshold-
ISD, IRLS, and IRL1 achieved recoverability similar to what they did in test set 1. Because
of the relatively large signal size, IRLS and IRL1 were, however, much slower than threshold-
ISD. The fact that threshold-ISD ran as fast as BP suggests that effective support detection
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(a) Recoverability
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(b) CPU time

Figure 3. Test set 1 with k = 40: Comparisons in recoverability and CPU time.
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(b) CPU time

Figure 4. Test set 1 with k = 8: Comparisons in recoverability and CPU time.
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Figure 5. Test set 1 with k = 150: Comparisons in recoverability and CPU time.
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(b) CPU time

Figure 6. Test set 2: Comparisons in recoverability and CPU time.
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(b) Reconstruction errors in �2-norm
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(c) Reconstruction errors in �1-norm

Figure 7. Test set 3 with σ = 0.0001: Comparisons in CPU time and reconstruction errors.
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(b) Reconstruction errors in �2-norm
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(c) Reconstruction errors in �1-norm

Figure 8. Test set 3 with σ = 0.001: Comparisons in CPU time and reconstruction errors.

accelerates subproblem solution (by YALL1) in threshold-ISD. The results also show that
threshold-ISD was scalable to both signal and measurement sizes.

Test set 3. This test set compared solution times and errors of the tested algorithms given
noisy measurements with three noise levels: σ = 0.0001, σ = 0.001, and σ = 0.01. The corre-
sponding results are depicted in Figures 7, 8, and 9, respectively, each including three subplots
for CPU times and �2- and �1-errors. It is clear from these figures that threshold-ISD was
significantly faster than IRLS and IRL1 and slightly faster than BP. Threshold-ISD and IRLS
were on par in solution quality except that at σ = 0.01, threshold-ISD had two fails among the
total 200 trials. IRL1 had many more fails, and BP was the worst. Taking both reconstruction
errors and CPU times into consideration, threshold-ISD appeared to be the best.

Test set 4. This test set included two subsets. The first subset (Figure 10) used sparse
signals with nonzeros decaying in power-laws at rates λ = 1, 2, 4, as well as sparse Bernoulli
signals. The second subset (Figure 11) used two compressible (nonsparse) signals with nonze-
ros decaying in power-laws at rates λ = 1/3, 0.8, as well as their sparse tail-removed versions
obtained by removing all but the largest k = 8, 40 entries, respectively.

In the first subset of tests, threshold-ISD, IRL1, and IRLS had better recoverability than
BP, but the advantage diminished as λ increased (i.e., the rate of decay decreased). In
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(c) Reconstruction errors in �1-norm

Figure 9. Test set 3 with σ = 0.01: Comparisons in CPU time and reconstruction errors.

cases of zero-decay where the signals were sparse Bernoulli, all the tested algorithms had
similar recoverability. These results match the conclusion in our theoretical analysis that
thresholding-based support detection is effective only if the nonzeros of signals have a fast
decaying distribution.

The second subset of tests show how the tail of a compressible signal affects its reconstruc-
tion. By comparing Figures 11(c) with (d), and (e) with (f) (i.e., tail-free vs. tailed signals),
we can observe that it was much easier for any of the tested algorithms to reconstruct a tail-
free sparse signal than a compressible signal. In addition, because the signal corresponding
to λ = 0.8 has a larger tail, the improvement of threshold-ISD, IRL1, and IRLS over BP was
quite small.

Test set 5. Figure 12 depicts the clean 128 × 128 Shepp–Logan phantom and its wavelet
coefficients sorted by magnitude, which have a long tail and a sharp drop near 1600. Threshold-
ISD, IRL1, and BP were tested to reconstruct the phantom from partial discrete cosine mea-
surements both without and with white noise. The results are given in Figures 13 and 14,
respectively. For Figure 13, a reconstruction x̃ was accepted if its 2-norm relative error
‖x̃(:) − x̄(:)‖2/‖x̄(:)‖2 was within 10−3. Threshold-ISD was both faster than IRL1 and more
accurate than IRL1 and BP in both of the tests.
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(a) λ=1: Acceptable reconstruction frequencies
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(b) λ=2: Acceptable reconstruction frequencies
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(c) λ=4: Acceptable reconstruction frequencies
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(d) Bernoulli: Acceptable reconstruction frequen-
cies

Figure 10. Test set 4 with sparse power-law decaying and Bernoulli signals: Comparisons in recoverability.

Figure 15 presents the reconstructed phantoms from noisy measurements corresponding
to m = 3370, in which subplots (b), (d), and (f) highlight the differences between the recon-
structions and the clean phantom. Threshold-ISD gave a much higher signal-to-noise ratio
(SNR).

Figure 16 depicts the clean image “Cameraman” and its sorted wavelet coefficients, which
form a long and slow decaying tail. As expected, threshold-ISD did not return a reconstruction
significantly better than either BP or IRL1, as shown in Figure 17. Even though thresholding
in the wavelet domain is not effective for natural images, we note that the authors of [19],
however, have obtained medical images with much better quality by combining ISD (applied
to total variation) with edge detection techniques that replace thresholding. For this and other
reasons, we believe that ISD with effective support detection is potentially very powerful.

In summary, we compared threshold-ISD with IRLS, IRL1, and BP. Threshold-ISD can
be solved as quickly as BP yet achieves reconstruction quality as good as or better than that
of the much slower IRLS. ISD relies on effective support detection. For threshold-ISD, its
good performance requires fast decaying signals.
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(b) Compressible signals
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(c) λ=1/3: Reconstruction errors in �2-norm
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(d) λ=1/3: Reconstruction errors in �2-norm
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(e) λ=0.8: Reconstruction errors in �2-norm
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(f) λ=0.8: Reconstruction errors in �2-norm

Figure 11. Test set 4 with sparse and compressible power-law decay signals. The sparse signals were
obtained by removing the tails of the compressible signals. Comparisons in reconstruction errors. Fast decaying
tails required for good performances of threshold-ISD, IRL1, and IRLS.

0 

0 

\ ·, 
-._ 

\ 

\ 

~ 
t;_J 

'·,··,,1 ~ ·,, t;_J 
'·, 

'·, '·,L_, 
... l ',, ·,. ·,. 

~ 
t;_J 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ITERATIVE SUPPORT DETECTION 487

True image

128 x 128
20 40 60 80 100 120

20

40

60

80

100

120

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Entries sorted by magnitude

M
ag

ni
tu

de

Wavelets coefficients

(b)

Figure 12. Shepp–Logan phantom and its wavelet coefficients sorted by magnitude.
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(b)

Figure 13. Noiseless measurements: Acceptable reconstruction frequencies and running times.
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Figure 14. Noisy measurements: Reconstruction errors and running times.
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L1/L2: SNR=8.72dB, Err=3.18e−001, CPU time=27.78 s

Sample ratio:21%
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IRL1: SNR=13.02dB, Err=1.94e−001, CPU time=258.51 s
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ISD: SNR=45.04dB, Err=4.86e−003, CPU time=44.15 s
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Figure 15. Noisy measurements: Reconstructed phantoms and highlighted errors corresponding to where
m = 3370.

6. Concluding remarks. This paper introduces the iterative support detection (ISD)
method for CS signal reconstruction. Both theoretical properties and practical performances
are discussed. For signals with a fast decaying distribution of nonzeros, the implementation
of threshold-ISD equipped with the “first significant jump” thresholding rule is both fast and
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Figure 16. Image “Cameraman” and its sorted wavelet coefficients.
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Figure 17. Reconstructing errors where the true signal is the wavelet coefficients of “Cameraman” and the
sensing matrices are partial discrete cosine matrices.

accurate compared to the classical approach BP and the state-of-the-art algorithms IRL1 and
IRLS. Due to the limit of thresholding, threshold-ISD does not perform significantly better
than its peers on other types of signals such as images.

However, support detection is not limited to thresholding. Effective support detection
guarantees the good performance of ISD. Therefore future research includes studying specific
signal classes and developing more effective support detection means, for example, by exploring
signal structures (model-based CS [2]).

Since minimizing �1 is not the only approach for CS signal reconstruction, another line
of future research is to apply iterative support detection to other reconstruction approaches
such as the greedy algorithms, Bayesian algorithms, dictionary-based algorithms, and many
others. We also feel that the usefulness of the above “first significant jump” rule is not limited
to threshold-ISD.
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