


ABSTRACT 

Transcriptional delay in synthetic genetic cascades 

 by 

Yu-Yu Cheng 

Transcription factors (TFs) and their target promoters are central to synthetic 

biology. By arranging these components into complex regulatory networks, synthetic 

biologists have been able to create a wide variety of phenotypes, including bistable 

switches, oscillators, and logic gates. However, transcription factors do not 

instantaneously regulate downstream targets. After the gene encoding a TF is turned on, 

it must first be transcribed, the transcripts must be translated, and sufficient TF must 

accumulate in order to bind operator sites of the target promoter. The time to complete 

this process, here called the “transcriptional delay,” is a critical aspect in the design of 

dynamic regulatory networks, yet it remains poorly characterized. In this work, I 

measured the delay of two TFs in Escherichia coli, which are commonly used in 

synthetic biology: the activator AraC and the repressor LacI. I found that the delay can 

range from a few to tens of minutes, and are affected by the expression rate of the TF. 

The single-cell data also shows that the variability of the delay increases with its mean. 

To validate these time measurements, I constructed a two-step genetic cascade, and 

showed that the timing of the full cascade can be predicted from those of its constituent 

steps. These results demonstrate the timescale of transcriptional regulation in living cells, 

which is important for understanding the dynamics of synthetic transcriptional gene 



circuits. 
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Chapter 1 

Introduction 

1.1. Synthetic genetic circuits 

Two papers published back-to-back in the Nature in January 2000 marked the 

start of the era of synthetic biology. One paper demonstrated the oscillatory behavior of a 

negative-feedback system composed of three transcriptional repressors inhibiting the 

production of one another (Elowitz and Leibler, 2000). The other constructed a memory 

system with two repressors, each repressor controlling the expression of the other 

(Gardner et al., 2000). The idea that synthetic genetic circuits can be engineered like 

electronics drew a lot of attention. The human genome was sequenced and published the 

next year (Consortium, 2001; Venter et al., 2001). The focus was transitioning from 

“reading DNA” to “writing DNA.” More circuits were built since then, such as a pulse 

generator (Basu et al., 2004), an event counter (Friedland et al., 2009), logic gates (Moon 

et al., 2012), analog calculators (Daniel et al., 2013), and an edge detector (Tabor et al., 

2009). The idea to engineer cells for different applications took hold. Some examples are 
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using engineered cells for producing chemicals from raw materials (Nielsen and Keasling, 

2016), killing cancer cells (Din et al., 2016; Xie et al., 2011), and detecting soil 

contamination (Prindle et al., 2012). With the increasing knowledge of circuit 

construction, one day synthetic genetic circuits may be applied in vivo. 

However, before achieving precise organismal engineering, there are many 

problems that need to be solved. First, unlike electronic components, biological parts are 

far more heterogeneous. Currently, there is no general rule to assemble parts. It usually 

takes 35 years to build a functional circuit. Hence, studying the rules of part assembly is 

important. Second, the available parts are limited. With more parts available, we can 

design complex circuits to do sophisticated tasks. Third, the speed of circuit construction 

is slow. Researchers in laboratories often order short DNAs from commercial companies 

to clone the target circuits from existing parts. Cloning techniques can assemble DNA 

together and avoid synthesizing large DNA strands. However, creating a prototype often 

takes weeks or even months. Without clear rules to assemble parts, researchers need to 

experiment using a lot of trial-and-error. Next, I will discuss possible solutions towards 

solving these problems.   

Concerning difficulty in part assembly, controlling the translation rate of proteins 

can be used as an example. The translation rate at the ribosome binding site (RBS) is 

often “context-dependent.” The secondary structure of RNA of the upstream promoter 

and downstream protein coding region will affect the rate of ribosome binding (Espah 

Borujeni et al., 2014). Thermodynamics models have been proposed to calibrate the 

translation rate, but the accuracy is still low (Li, 2015). To solve this problem, a standard 

RBS design has been implemented to accommodate different promoters and proteins 
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(Mutalik et al., 2013). With two RBS in parallel, the interference from upstream sequence 

is minimal. There are also reports on the standardization of promoter (Brewster et al., 

2012) and transcription terminator (Chen et al., 2013b). The expression level of proteins 

is especially important for transcription factors (TFs). TFs regulate the transcription of 

promoters by either recruiting or blocking RNA polymerase. By controlling TF’s 

expression from other TFs, these logic elements can be used to construct functional 

modules. However, the production rate of TF must be accurately controlled in a certain 

range. The goal of my work is to measure the time delay for TFs to regulate the promoter 

in this concentration window. I will address the importance of the signaling time of TFs 

in the next section. 

The second problem is the scarcity of available parts. Parts can be sorted into 

three categories: input, processor, and output. The input elements are sensors for the 

information outside or inside of the cell. The information can be chemical such as sugars 

(Shis et al., 2014), a gas molecule (Prindle et al., 2012), or a basic chemical element 

(Prindle et al., 2012). It can also be physical, such as temperature (Hoynes-O’Connor et 

al., 2015) and light (Levskaya et al., 2005). The processor is composed of molecules 

which are able to execute logic operation, such as TFs or specifically designed RNAs 

(Chappell et al., 2015a). The output layer components are usually proteins to deliver the 

specific functions. To expand the repertoire of these genetic parts, we can develop 

bioinformatics tools to explore the genome of different organisms. For example, through 

DNA sequence comparison, dozens of TFs were mined from E. coli-related bacteria 

(Stanton et al., 2014). We can also generate random sequences and select useful ones. 

265 synthetic transcription terminators have been reported from a large randomly 
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generated library (Chen et al., 2013b). Another way is to design molecules with 

computational models. For example, a synthetic protein has been designed to inhibit the 

infection of influenza virus (Fleishman et al., 2011).  

To accelerate the speed of circuit construction, one possible solution is to improve 

DNA synthesis technology. It is now possible to order 2000 bps of DNA from one 

commercial company (Integrated DNA Technologies, Inc.), the DNA is still shorter than 

the average size of a typical plasmid. Once this limit is overcome, testing circuit designs 

can be much faster, and the tedious labor involved in this process can be avoided. 

Another way is to build DNA libraries. There are now facilities dedicated to the storage 

and sharing of DNA, such as the Registry of Standard Biological Parts and Addgene. 

When the exchange of parts becomes easier, circuit designs can be tested quickly by 

simply incorporating existing tools. 

In summary, efforts are being made toward advancing synthetic genetic circuit 

design. With the feasibility of synthesis of long DNA fragments, standard part assembly 

methods, and powerful bioinformatics tools, we will use engineered cells to cure 

currently incurable diseases and generate valuable materials from microorganisms in the 

future. 

1.2. Delay in synthetic genetic circuits 

Most synthetic genetic circuits use TFs in the circuit design. However, the time 

delay associated with regulation of the promoter by TFs is currently an unknown 

parameter. In this study, I aimed to measure this time delay. The delay is important for 
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genetic circuits with dynamical properties, such as logic gates and oscillators. For 

example, the delay of logic gates must be comparable to avoid faulty outputs (Moon et al., 

2012). Also, it is thought that delay is important for generating robust oscillation for 

negative-feedback circuits (Mather et al., 2009; Stricker et al., 2008). In bistable systems, 

longer delays may make the steady state more stable (Gupta et al., 2013). In addition to 

the time scale of the delay, I also aimed to measure the distribution of the delay among 

isogenic cells. Since it has been shown that gene expression in single cells is 

heterogenous, it is possible that the delay is distributed rather than being a constant. The 

measured distribution could help refine models for genetic circuits. For example, 

distributed delay could affect the propagation of information in gene cascades (Josić et al., 

2011). Finally, I also aimed to study how delay could affect expression of downstream 

genes. It is possible that gene expression and delay are correlated due to the extrinsic 

noise (Elowitz et al., 2002).  

Transcriptional regulation involves many steps, from the transcription and 

translation of the TF gene, protein folding and oligomerization to the final steps of 

promoter searching and binding (Figure 1).  

 

Figure 1. Transcriptional regulation involves many steps. The delay is the summation of 

reaction times of transcription, translation, protein folding, protein oligomerization, and 

TF binding of DNA. 



6 
 

All of the steps are stochastic and are affected by dilution, degradation, and various 

sources of cellular noise (Pedraza and van Oudenaarden, 2005). The timescale of some 

steps has been measured, such as the transcription rate of RNA polymerase (Vogel and 

Jensen, 1994), translation rate of ribosomes (Bremer and Dennis, 1987), and the 

promoter-searching rate of TFs along DNA (Elf et al., 2007). In the next section, I will 

illustrate these reactions and their measured rates. However, the overall timescale and the 

variability of the delay are not clear, which I aimed to measure in this study. To measure 

the delay of transcription regulation, I built an activation circuit and a repression circuit 

to measure delay for both transcriptional activation and repression. A two-step cascade 

was also built to examine how the delay is accumulated in multi-step transcriptional 

regulations.  

Several synthetic genetic cascades have been built (Dunlop et al., 2008; 

Hooshangi et al., 2005; Olson et al., 2014; Pedraza and van  Oudenaarden, 2005; 

Rosenfeld and Alon, 2003). The cascade built by Rosenfeld and Alon showed a 50 

minute delay for transcriptional repression (Rosenfeld and Alon, 2003). The cascade built 

by Hooshangi et al. showed a delay over 100 minutes in a two-step genetic cascade 

(Hooshangi et al., 2005). The cascade built by Dunlop et al. showed a 120 minute delay 

in only transcriptional repression (Dunlop et al., 2008). Olson et al. used an optogenetics 

approach to measure the time delay for the repressor TetR to repress PTet promoter, and 

they showed that the time is 7.0 ± 5.4 minutes (Gardner et al., 2000). The cascade built 

by Pedraza and van Oudenaarden showed that the stochasticity from upstream TFs can be 

propagated to downstream gene expression, but did not provide dynamic information 

(Pedraza and van Oudenaarden, 2005). It seems that there is no consensus about the delay 
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of transcriptional regulation. In this study, I used a microfluidic device to trigger the built 

circuits and observe single cell fluorescence changes, which is more precise than the 

systems used in these mentioned studies. 

Genetic cascades are a common motif in naturally occurring transcriptional 

networks (Rosenfeld and Alon, 2003). For simple organisms, such as E. coli, the typical 

length of a gene cascade is one or two steps. In contrast, higher organisms tend to have 

longer cascades. For example, the genetic cascades in Drosophila can be as long as nine 

steps. It is possible that single cell organisms need fast response times to cope with 

environmental changes, thus limiting the development of long genetic cascades. For 

multicellular organisms, longer cascades can be used to coordinate developmental 

processes. Measurement of the delay will reveal the precise timing of genetic cascades. 

For example, Stavens et al. found that the variation of the delay decreased along the lytic 

pathway of bacteriophage λ and hypothesized that more precise timing could be achieved 

by a longer cascade (Amir et al., 2007). 

1.3. Steps of transcriptional regulation 

The steps of transcriptional regulation are illustrated below. The measured 

reaction rate is emphasized here to give a view about how long the overall reaction will 

take. 

Inducer import 

In this study, I used IPTG and ARA to induce gene expression. IPTG is an analog 

of allolactose, which triggers the transcription of the lac operon. IPTG is not metabolized 
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by beta-galactosidase from the lac operon and can induce gene expression from the Plac 

promoter. IPTG is transported into E. coli cells by the lactose permease from the lac 

operon, and other pathways are also involved (Marbach and Bettenbrock, 2012). At low 

IPTG concentrations, IPTG can enter cells only through lactose permease. Also, when 

IPTG concentration is lower than a certain threshold (~30 μM), gene expression of the 

lac operon appears to be bimodal (Ozbudak et al., 2004). It is suggested that the 

bimodality arises from the positive feedback of gene regulation in the lac operon (Choi et 

al., 2008). 

The metabolism of the sugar ARA is via the araBAD operon. ARA enters cells 

through the transporters AraFGH and AraE from the araBAD operon (Megerle et al., 

2008). Like IPTG, when ARA concentration is lower than a certain threshold (~1.33 mM 

or 0.02%), cells will appear to be bimodal (Siegele and Hu, 1997). The timing of PBAD 

gene expression has been studied under different ARA concentrations (Megerle et al., 

2008). It has been shown that gene expression can be detected as soon as four minutes. 

When the ARA concentration is reduced, the timing of gene expression increases. The 

variability of timing also increases. However, it is difficult to tell whether the increase in 

timing is a result of the uptake of ARA or the slow accumulation of reporter proteins. 

Gene synthesis and degradation 

Gene synthesis begins with the initiation of transcription. When the inducer 

triggers the conformational change of the TF, the TF will either recruit or block the 

binding of RNA polymerase to the promoter and start the transcription. It is estimated 

that there are 1,00010,000 RNA polymerase per cell (Bremer and Dennis, 1987). The 
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speed of transcription is about 4080 nt/sec (Bremer and Dennis, 1987; Proshkin et al., 

2010; Vogel and Jensen, 1994). The ribosome will then recognize the RBS on the mRNA 

and start the translation. It is estimated that there are 10,000100,000 ribosomes per cell 

(Bremer and Dennis, 1987). The speed of translation is about 20 aa/sec (Bilgin et al., 

1992; Bremer and Dennis, 1987; Proshkin et al., 2010), which corresponds to 60 nt/sec. 

For a 1 kb gene in E. coli, the completion of transcription should take 25 seconds at most. 

Translation will take roughly the same time. Thus, gene synthesis can be completed 

within 1 min after the initiation of transcription. 

The concentration of RNAs and proteins will be continuously diluted by cellular 

growth. If cells divide every τ𝑐𝑦𝑐  minutes, the concentration will be halved after τ𝑐𝑦𝑐 

minutes. Assume that the molecules are rather stable, the concentration can be described 

as follows: 

 

dC

dt
= −k ∗ C 

 

where C is the concentration of the molecule and the rate constant k =
ln (2)

τ𝑐𝑦𝑐
. However, 

the RNAs and proteins are not simply diluted; they are also actively degraded by 

enzymes. It is estimated that RNA has half-life times between 38 minutes (Bernstein et 

al., 2002). Proteins are more stable. Even when tagged with a degradation motif, the half-

lifetime of proteins is still roughly the same as the cell doubling time (Andersen et al., 

1998). 
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Protein maturation 

The linear polypeptide chain starts to fold into its three-dimensional structure 

once it has been synthesized. The first step is the formation of secondary structures, such 

as an alpha helix or a beta sheet, which is driven by intramolecular hydrogen bonds. Then, 

the three-dimensional shape of the protein is formed, which is called the tertiary structure. 

Formation of the tertiary structure is driven by hydrophobic interactions between the 

secondary structures and the aqueous environment. Once the tertiary structure is formed, 

formation of disulfide bonds between cysteine residues strengthen the structure. Finally, 

multiple folded proteins could aggregate together to form functional modules, which is 

termed the quaternary structure. In this study, the activator AraC is a dimer (Bustos and 

Schleif, 1993), and the repressor LacI is a tetramer (Swint-Kruse and Matthews, 2009). 

The protein folding timescale is often much shorter than one second (Gromiha et 

al., 2006). Less is known about the timescale of protein aggregation, for which 

concentration is important. For proteins that need further reactions to mature, the time 

will be longer. For example, the chromophore inside fluorescent proteins needs to 

undergo an oxidation reaction to become functional. The measured maturation time of 

fluorescent proteins can range from less than five minutes to an hour, depending on 

organisms, temperature, and the reporter construct (Gordon et al., 2007; Nagai et al., 

2002). The maturation time is especially important for the measurement of response time 

for biological processes. 

Transcription factor dynamics 
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Once a transcription factor is formed, it starts the search for a specific DNA 

sequence. It first binds nonspecifically to a DNA strand and then moves randomly to 

search the target. However, this 1D searching will take a long time to find the target. A 

TF will only scan about 85 bp, then it will jump to other strands to start a new search. 

Theoretically the combination of 1D and 3D diffusions allow TF to search the target 

more efficiently (Li et al., 2009). It was estimated that it will take one TF molecule at 

most six minutes to find an operator site (Elf et al., 2007). If there are more than one TF 

molecules in the cell, the search time can be reduced to one minute, which is the 

diffusion-limited search time. Once the TF binds to the target sequence, it will recruit or 

block the RNA polymerase. 

Based on these measured reaction rates, the time delay for TF to regulate the 

promoter can be as fast as a few minutes, which mostly come from the delays of 

transcription, translation, and DNA search. At lower ligand concentrations, delay could 

increase due to longer ligand uptake time and DNA search time. For synthetic genetic 

circuits, the TF and the target promoter are often built on plasmids. Depending on the 

replication origin, the copy number of plasmids can range from one to hundreds. When 

the number of promoter is more than one, we need to consider the time that most of 

promoters are bound with TF molecules, which will depend on both the production rate 

and degradation rate of TF. Also, different TFs have different binding affinity to the 

promoter. If the binding affinity is low, the TF may need more time to reach an effective 

concentration. In this study, I measured the delay for two commonly used TFs – AraC 

and LacI, and characterized how the delay increases when lower inducer concentration is 

used. 
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1.4. Mathematical modeling and stochastic simulation 

To model synthetic genetic circuits, ordinary differential equations (ODEs) are 

often used to describe the concentration change of molecules inside the cell. The rate of 

concentration change is determined by the production and degradation terms. The 

production terms are usually determined by the synthesis processes, such as transcription 

and translation. The degradation terms are based on the dilution from cellular growth and 

enzymatic degradation (Andersen et al., 1998). Once the equations and parameters are set, 

one can find the steady-state solutions of the system, study how the initial condition 

affects the final state, and determine how the parameters could affect the outcome 

(Strogatz, 1994). ODE models are simple enough to describe the behavior of genetic 

oscillators (Elowitz and Leibler, 2000; Stricker et al., 2008) and the toggle switch 

(Gardner et al., 2000), two of first circuits built. The ODEs can also be computed using 

software such as MATLAB if the model is too complex to solve analytically.  

Sometimes computational modeling can guide circuit design. In the process of 

modeling a robust oscillator (Stricker et al., 2008), it was found that it is only possible to 

describe the oscillatory behavior of a dual-feedback oscillator by incorporating each 

detailed reaction. Hence, a small delay from sub-steps is required to generate the robust 

oscillations (Stricker et al., 2008). This hypothesis was confirmed by building a negative-

feedback only version of the circuit. Modeling also helps the synchronization of single-

cell oscillators (Nathan et al., 2016) and tuning of the period of oscillators (Din et al., 

2016). 
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However, the behavior of circuits at the single-cell level has often been found to 

be heterogeneous. This stochasticity can be attributed to the small copy number of 

reactants such as DNA (intrinsic noise) or the heterogeneous states of the cell (extrinsic 

noise). These two factors have been shown to play equally important roles in gene 

expression (Elowitz et al., 2002). To take the randomness of the system into account, 

chemical master equations or Langevin equations are often used to describe circuits’ 

behavior (van Kampen, 2007). The stochastic model has been used to study the noise 

propagation in genetic cascades (Paulsson, 2004; Pedraza and van Oudenaarden, 2005) 

and the stochastic behavior of Synechococcus elongatus circadian clocks (Chabot et al., 

2007). The stochastic model can be simulated by algorithms such as Gillespie algorithm 

(Gillespie, 1976; Gillesple, 1977) or tau-leaping method (Rathinam et al., 2003).  

The goal of this research is to investigate the importance of delays in modeling 

synthetic genetic circuits. Delays have been shown to nontrivially change the dynamical 

behavior of a negative-feedback circuit (Mather et al., 2009; Stricker et al., 2008). A 

delay differential equation shows that a small delay could lead to oscillation with a much 

longer period (Mather et al., 2009). A general form of delay differential equations with a 

constant delay can be written as follows: 

 

d

dt
x(t) = f(t, x(t), xτ), 

 

where xτ = x(t − τ), τ > 0 is the trajectory of the solution in the previous time interval.  
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If the delay is distributed rather than constant, the equation can be modified as follows: 

 

ẋ(𝑡) = ∫g[x(𝑡), x(𝑡 − 𝑠)]fT(𝑠)d𝑠

t

0

, 

 

where fT(𝑠) is the probability of the distributed delay. In addition to differential equations, 

queuing models from stochastic process study can also be applied. For example, a 

queuing model has been used to explain the correlated gene expression when two genes 

are degraded by a limited number of ClpXP enzymes (Cookson et al., 2011). Recently it 

has also been used to study the signaling time of genetic circuits (Josić et al., 2011). 

Numerical methods can also incorporate either a constant delay or a distributed delay 

(Barrio et al., 2006; Bratsun et al., 2005; Xiaodong, 2007). This study aimed to measure 

the distribution of delay among isogenic cells and determine whether new delay models 

are needed for synthetic genetic circuits. 
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Chapter 2 

Research Methods 

2.1. Genetic circuit construction 

2.1.1.  Synthetic genetic circuits and strains 

In this study, six plasmids and three E. coli stains were used to build seven 

synthetic genetic circuits. The details of the seven synthetic genetic circuits are described 

in the following section. 

Activation circuit 

The TF gene AraC was placed under the PA1lacO-1 promoter (Lutz and Bujard, 

1997) (Figure 2). AraC was tagged with an LAA sequence (Andersen et al., 1998). The 

RBS for AraC is B0034 (http://parts.igem.org/Part:BBa_B0034). The super-folder gene 

YFP (sfYFP (Kremers et al., 2006)) was placed under the PBAD promoter. The RBS for  
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Figure 2. The activation circuit. The activation circuit was constructed by placing the 

AraC gene under control of the Plac promoter and the YFP gene under control of the PBAD 

promoter. The plasmid was transformed into JS006LT cells, which constitutively express 

LacI to repress the Plac promoter. When IPTG and ARA are added, AraC will activate 

YFP. 

yfp is a bicistronic design (BCD) (Mutalik et al., 2013). The activation plasmid has a 

kanamycin resistant gene and a p15A origin. The plasmid was transformed into JS006LT 

cells, which harbor TetR and LacI constitutively expressed from strong promoters. All 

strains used were derived from the JS006 strain (Stricker et al., 2008). The circuit was 

triggered with 2 mM, 0.2 mM, or 0.05 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

separately, plus 2% L-arabinose (ARA).  

Repression circuit 

The TF gene LacI was placed under PBAD promoter (Figure 3). LacI was tagged 

with an LAA sequence. The RBS for LacI is BCD. The super-folder YFP gene was  
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Figure 3. The repression circuit. The repression circuit was constructed by placing the 

gene LacI under control of the PBAD promoter and the YFP gene under control of the 

Plac/ara promoter. The plasmid was transformed into JS006A cells, which constitutively 

expresses AraC to activate PBAD and Plac/ara promoters. When ARA is added, AraC will 

activate both LacI and YFP. Then, LacI will repress YFP. 

placed under control of the Plac/ara promoter (Lutz and Bujard, 1997). YFP was tagged 

with an LAA sequence. The RBS for yfp is BCD. The repression plasmid has a 

kanamycin resistant gene and a p15A origin. The plasmid was transformed into JS006A 

cells, which have AraC constitutively expressed from a strong promoter. The circuit was 

triggered with 2%, 0.1%, 0.05%, and 0.02% ARA separately.  

Two-step genetic cascade 

The circuit is composed of two plasmids: the PTet-AraC plasmid and the 

repression plasmid (Figure 4). To construct the PTet-AraC plasmid, the TF gene TF AraC 

was placed under control of the PTet promoter (Lutz and Bujard, 1997). The RBS for  
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Figure 4. The two-step genetic cascade. The cascade comprises the activation and 

repression steps. The gene AraC was placed under control of the PTet promoter, the LacI 

gene under control of the PBAD promoter, and the YFP gene under control of the Plac/ara 

promoter. The two plasmids were transformed into JS006T cells, which constitutively 

express TetR to repress the PTet promoter. When aTc and ARA are added, AraC will 

activate both LacI and YFP. Then, LacI will repress YFP. 

AraC is BCD. AraC was tagged with an LAA sequence. The PTet-AraC plasmid has an 

ampicillin resistant gene and a pSC101 origin. The two plasmids were co-transformed 

into JS006T cells, which have TetR constitutively expressed from a strong promoter. The 

circuit was triggered with 1 g/ml anhydrotetracycline (aTc) and 2% ARA.  

Modified activation circuit 

The circuit is composed of two plasmids: the PTet-AraC plasmid and the PBAD 

reporter-only plasmid (Figure 5). To construct the PBAD reporter-only plasmid, the sfYFP 

gene was placed under control of the PBAD promoter. RBS for YFP is BCD. The PBAD 

reporter-only plasmid has a kanamycin resistant gene and a p15A origin. The two  
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Figure 5. The modified activation circuit. The modified activation circuit was 

constructed by placing the gene AraC under control of the PTet promoter and the YFP 

gene under control of the PBAD promoter. The two plasmid were transformed into JS006T 

cells, which constitutively express TetR to repress the PTet promoter. When aTc and ARA 

are added, AraC will activate YFP. 

plasmids were co-transformed into JS006T cells. The circuit was triggered with 1 g/ml 

anhydrotetracycline (aTc) and 2% ARA.  

PBAD reporter-only circuit 

The PBAD reporter-only plasmid was transformed into JS006A cells (Figure 6A). 

The circuit was triggered with 2% ARA. The circuit was also used for the 

characterization of PBAD promoter activity under different ARA concentrations. 

Plac reporter-only circuit 

The sfYFP gene was placed under control of the Plac promoter (Figure 6B). YFP 

was tagged with an LAA sequence. The RBS for yfp is BCD. The Plac reporter-only  
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Figure 6. The reporter-only circuits. (A) The PBAD reporter-only circuit was constructed 

by placing the YFP gene under control of the PBAD promoter. The plasmid was 

transformed into JS006A cells, which constitutively express AraC to activate PBAD. When 

ARA is added, AraC will activate YFP. (B) The Plac reporter-only circuit was constructed 

by placing the YFP gene under control of the Plac promoter. The plasmid was transformed 

into JS006LT cells, which constitutively express LacI to repress Plac. When IPTG is 

added, YFP will be expressed. (C) The Plac/ara reporter-only circuit was constructed by 

placing the YFP gene under control of the Plac/ara promoter. The plasmid was transformed 

into JS006A cells, which constitutively express AraC to activate Plac/ara. When ARA is 

added, AraC will activate YFP. 

plasmid has a kanamycin resistant gene and a p15A origin. The plasmid was transformed 

into JS006LT cells. The circuit was used for the characterization of Plac promoter activity 

under different IPTG concentrations. 
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Plac/ara reporter-only circuit 

The sfYFP gene was placed under control of the Plac/ara promoter (Figure 6C). 

YFP was tagged with an LAA sequence. The RBS for yfp is BCD. The Plac/ara reporter-

only plasmid has a kanamycin resistant gene and a p15A origin. The plasmid was 

transformed into JS006A cells. The circuit was used for the characterization of Plac/ara 

promoter activity under different ARA concentrations. 

2.1.2. Cloning and gene knock-in methods 

Two cloning methods to construct the plasmids were used: PCR mutagenesis and 

Sequence and Ligation Independent Cloning (SLIC) (Li and Elledge, 2012). PCR 

mutagenesis allows for short sequence changes in the plasmids, such as the promoter, the 

LAA tag, and the RBS. SLIC was used to combine two DNA fragments and to insert 

genes into plasmids.  

PCR mutagenesis uses two DNA primers to change sequences in the plasmid. The 

primers have two parts: an annealing part and a new part (Figure 7A). The annealing part 

is used to amplify the plasmid from the region of interest. The new part has the modified 

sequence that overlaps with the other primer. The annealing parts and the overlapping 

part should have melting temperature (Tm) around 70°C. The Tm was calculated using the 

NetPrimer website (http://www.premierbiosoft.com). During the PCR, the primers will 

amplify the plasmid with the new part. The PCR product can be directly transformed into 

competent cells for sequence confirmation. The strain of competent cells used in this 

work was DH10BALT, which have RecA knocked out and have AraC, LacI, and TetR 

knocked in. 
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Figure 7. Cloning methods. (A) PCR mutagenesis. To modify plasmids, two primers 

were designed to introduce the changes. The primers contain an annealing part and a new 

part. The annealing part is used to amplify the plasmid and has a sequence homologous to 

the plasmid. The new part is the modified sequence, which overlaps with the other primer. 

The Tm should be approximately 70°C. (B) Sequence and ligation independent cloning. 

To join two linear DNA fragments, T7 DNA polymerase is used to remove nucleotides at 

the 3′ end of the double-stranded DNA. The DNA fragments then will anneal to each 

other through the introduced 20 bp homologous sequence. 

SLIC can be used to join two DNA fragments together (Figure 7B). The two 

fragments are PCR amplified with 20 bp at the ends. This 20 bp homology can be 

introduced by primers. After gel purification, the linear DNA fragments were treated with 

T7 DNA polymerase, which excises the 3’ end of DNA fragments. The reaction is then 

stopped by adding dGTP. Next, the two fragments are mixed together to allow them to 

anneal to each other. The final product is then ready for transformation.  
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The three E. coli strains used in this study, JS006LT, JS006A, and JS006T, were 

derived from the JS006 strain, which has araC and lacI knocked out (Stricker et al., 

2008). The genes were knocked in using bacteriophage lambda integrase (Diederich et al., 

1992). The inserted genes were first cloned into a vector with the lambda attachment site 

attP. Next, the origin of the vector was cut out and the linear DNA was re-ligated to form 

circular DNA. The target strain was transformed with a helper plasmid, which contains 

the integrase. The expression of the integrase is repressed by a temperature-sensitive cI 

gene. The circular DNA was then transformed into the target strain with the heat shock 

method. Growing the cells at 42°C caused the integrase to insert the genes into the attB 

site of the E. coli genome. The integration was checked by colony PCR. 

2.1.3. Promoter characterization 

To characterize the promoter activity, the fluorescence expression of three circuits, 

PBAD reporter-only, Plac reporter-only, and Plac/ara reporter-only, were measured with 

various inducer concentrations. Cells were cultured overnight and then diluted 1:100 and 

200 L was transferred to a 96-well plate. The inducer was added at this time. The cells 

were grown in a 37°C shaker for two hours to reach an OD of approximately 0.10.3. 

The YFP fluorescence and OD600 were measured using an Infinite® 200 PRO 

fluorescence reader. The fluorescence was divided by the OD600 value to generate the 

induction curve (Figure 8). Each data point is an average of three measurements. The 

Plac/ara promoter is approximately 10-fold stronger than the PBAD promoter. The inducer  
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Figure 8. The induction curves of promoters Plac, PBAD, and Plac/ara. (A) Plac activity under 

different IPTG concentrations. Three IPTG concentrations were chosen to trigger the 

activation circuit. (B) PBAD and Plac/ara activities under different ARA concentrations. Four 

ARA concentrations were chosen to trigger the repression circuit. Notice that PBAD and 

Plac/ara respond differently to ARA concentration. PBAD is approximately 10-fold stronger 

than Plac/ara (data not shown). 

concentrations used to trigger the other circuits were based on the measured induction 

curves. 

2.2. Microfluidic device and microscope experiment 

2.2.1. Dial-a-wave chip 

To measure the distribution of delays among isogenic cells, a microfluidic device 

was used to trigger circuits and to observe single cells under the fluorescence microscope. 

The ‘dial-a-wave’ chip was designed by Andrew Hirning for the purpose of this study 

(Figure 9). The chip is composed of five ports linked to syringes with different media. 

The media port was loaded with LB. The inducer port was loaded with LB and inducers 

as well as the dye Sulforhodamine 101 (Sigma-Aldrich). The two waste ports were  



25 
 

 

Figure 9. The “dial-a-wave” microfluidic chip. The chip is composed of five ports for 

loading media. The junction is where the inducer is calibrated. The mixer is a feature 

used to fine-tune the media composition. The cell trapping chamber is where single cells 

are grown and imaged. The calibration images were adapted from (Bennett and Hasty, 

2009). 

loaded with LB. The cell-loading port was used to insert cells into the device. The 

junction and mixer were used to fine-tune the media composition ranging from 0% 

inducer to 100% inducer. At the junction, the dye was used to calibrate the heights of the 

syringes feeding the media port and inducer port to produce ranges between 0% to 100% 

inducer. The cells were loaded into the cell trapping chamber, which is 100 μm wide, 300 

μm long, and 0.95 μm high. The channels are 10 μm high. Cells in the chamber were 

subsequently photographed. 

To make a PDMS chip from a wafer, first the PDMS base and catalyst were 

mixed at a ratio of 10:1. The wafer was cleaned with isopropanol and wrapped in 
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aluminum foil. Then the mix was poured onto the wafer. The gas inside the uncured 

PDMS was removed by vacuum pump before curing the chip at 80°C in an oven. After 

the PDMS was cured, the five ports were opened with a tissue puncher. Then, the PDMS 

was cut into individual chips and cleaned with methanol in an ultrasonic cleaner. The 

chips were baked at 80°C for another 30 minutes. After the coverslip was cleaned with 

ozone, the chip was then ready for binding with the coverslip. The final PDMS chips 

were baked overnight to enhance the binding. 

 

 

Figure 10. Microscope experiment. The chip was loaded with media from syringes, 

which were hung on columns. The heights of the syringes can be automatically adjusted 

and the difference in heights (h) will determine the composition of media inside the chip. 

The chip is mounted onto the stage of the fluorescence microscope, which take phase-

contrast and fluorescence images. The temperature is kept at 37°C by an enclosed case 

and a heater. 
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2.2.2. Microscope experiment 

Before conducting the microscope experiment, microfluidic device needed to be 

set up. First, the chip was mounted on the stage of the Nikon Eclipse Ti-E microscope. 

Then the chip was flushed with 0.1% tween, which prevents cells from adhering to the 

walls. It is important to make sure the cell trapping chamber is flushed. Then, all syringes 

can be loaded with media. For the waste port, 5 mL LB with 5 μL antibiotics were loaded 

into 20 mL syringes. For the media port, 10 mL LB with 10 μL antibiotics were loaded 

into 60 mL syringes. For the inducer port, 10 mL LB, 10 μL antibiotics, inducers, and 20 

μL of 1 mg/mL dye were loaded into the 60 mL syringe. After the chip was mounted on 

the stage of the Nikon Eclipse Ti-E microscope, the syringes were connected to the chip 

via tubes and pins (Figure 10). The height of the waste port was kept low at all times. The 

heights of the media port and the inducer port needed to be calibrated using the dye 

(Figure 9). Then, the chip was ready for loading the cells. 

 

Figure 11. Loading cells into the cell trapping chamber. When cells are loaded into the 

chip, some of the cells get stuck at the edge of the chamber. To push the cells into the 

chamber, the operator can click the tubing. An instantaneous increase of the flow rate will 

push the cells into the chamber. Then, the operator waits for cells to accumulate to 

around ~4050 cells to start the imaging. 
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After the characterization, the overnight culture of cells was diluted 1:50 into 5 

mL LB for one hour to allow cells to resume the exponential phase. The cells were then 

loaded into the chip via the cell loading port. However, some cells would get stuck on the 

edge of the cell trapping chamber (Figure 11). Clicking the tubing can create extra 

pressure to push cells into the chamber. After the number of cells reached approximately 

4050, the imaging was started. Phase contrast (100× magnification with additional 1.5× 

magnification) and fluorescence images (mCherry and YFP channels) were taken every 

minute. A 20-watt excitation light was used for the fluorescence excitation. The exposure 

time for the YFP and mCherry were 300 ms and 100 ms, respectively. The inducer was 

switched to 100% after 10 minutes. The YFP signal in this 10-minute period was used as 

the background level to define the threshold for the activation of the circuit. 

 

 

Figure 12. Definition of time for microscope experiments. (A) The dye trajectory for a 

step function input. It takes 5 min for the fluorescence level to reach maximum. This is 

limited to the mixing of the media in the chamber. (B) The time at which the first point of 

fluorescence increase was seen was set as time 0. For strong promoters, such as Plac/ara, 

the fluorescence increase can be detected in 12 minutes, using this time reference. 
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Each experiment was performed twice to get at least 60 single-cell fluorescence traces for 

statistical analysis. The imaging was conducted over a two-hour period, and the images 

were used to determine single-cell YFP expression. 

The dye signal from the mCherry channel was used to track the concentration of 

the inducers. Typical dye trajectories show that it takes approximately five minutes for 

the inducer to reach its maximal concentration (Figure 12A). The first time point that 

inducer started to increase was defined as time 0 (5%). I found that for YFP expressed 

from strong promoters, such as Plac/ara promoter, the YFP signal can be detected within 

12 minutes (Figure 12B). The same time reference was used for all experiments. 

2.3. Data analysis 

2.3.1. Cell segmentation and fluorescence readout 

To extract single cell fluorescence signals, the cells in the phase-contrast images 

needed to be segmented manually (Figure 13). mtPaint was used to facilitate the task by 

clicking two points to create a line segment (http://mtpaint.sourceforge.net/). When the 

cells divided, I randomly picked one sibling cell to segment. Then, the segmented images 

were analyzed by a semi-automatic tracking algorithm developed by Alan Veliz-Cuba. 

The algorithm can identify the same cells on the time-series of images according to their 

limited movement and using a one-to-one correspondence. It also allows for manual 

correction. After all the cells are identified, it reads out the fluorescence for each cell 

from the fluorescence images. The fluorescence value is the total fluorescence signal in 

the segmented region divided by the number of pixels. Therefore, it is proportional to the  
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Figure 13. Image analysis. The cells in the phase-contrast images were first segmented 

manually. Then, a script tracked each cell’s lineage along the time course. After the cell 

lineage was confirmed, the single-cell fluorescence was calculated from the fluorescence 

images. 

YFP concentration inside the cell. The single-cell fluorescence data is used for further 

analysis. The script can be downloaded online (github.com/alanavc/rodtracker). 

 

2.3.2. Calculation of P-values for the correlation test 

In this work, I measured the delay of transcriptional regulation and the 

downstream gene expression of single cells. The correlation coefficients of each inducer 

concentration tested show that the two variables are negatively correlated, except for the 

short delay data. To test whether the two variables have a linear relationship, the null and 

alternative hypotheses are set as: 

 

Null hypothesis H0: 𝜌 = 0 

Alternative hypothesis HA: 𝜌 ≠ 0 

 



31 
 

The test statistics for the t-test for testing the population correlation coefficient is 

𝑡 =
𝜌√𝑛−2

√1−𝜌2
, where n is the sample size. Then, the two-tailed P-value can be determined 

when t and n are known. It can be calculated using an online tool 

(https://graphpad.com/quickcalcs/pValue1/). A P-value is the probability of how likely it 

is that a given result will be obtained when the null hypothesis is true. If the P-value is 

small, it is likely that the two variables are correlated. 
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Chapter 3 

Transcriptional delay in synthetic genetic 

cascades 

In this section, the data from the built circuits will be presented. The activation 

circuit and repression circuit were used to measure the delay for transcriptional activation 

and repression, respectively. Mathematical models were also proposed to explain the 

measured delays. Finally, the two-step genetic cascade was used to examine how the 

delay is convolved when two circuits are combined together. The precision of the 

measurements was also tested. 

3.1. AraC activation time 

The activation circuit was used to measure the transcriptional activation of the 

PBAD promoter by AraC (Figure 14A). The AraC gene was placed under the inducible 

promoter Plac. YFP was placed under the control of the PBAD promoter as a reporter. 
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Once IPTG and ARA are added, AraC will be expressed from the Plac promoter, bind 

with ARA, and activate the PBAD promoter. Then, YFP is expressed and the fluorescence 

signal inside cells increases. The circuit was tested with three different IPTG 

concentrations (Figure 14B). The PBAD-only reporter circuit was also tested as a control 

(Figure 6). The single-cell data shows that when IPTG concentration is high, the YFP 

expression of the activation circuit is similar to the PBAD-only reporter circuit (Figure 15). 

Reducing the IPTG concentration resulted in lower YFP expression, and YFP signals 

appeared later. At 0.05mM IPTG concentration, most cells did not express much YFP, 

but a few cells had high YFP expression. 

Figure 14. Measurement of activation delay. (A) The activation circuit. Adding IPTG 

will trigger the production of AraC. Then AraC will bind to ARA to turn on the YFP. (B) 

Three IPTG concentrations were tested on the circuit to see how the production rate of 

AraC would affect the activation delay. 
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Figure 15. Single-cell fluorescence of activation circuit with 2 mM, 0.2 mM, and 0.05 

mM IPTG plus 2% ARA, and PBAD reporter-only circuit with 2% ARA. Each experiment 

was repeated twice and at least 60 cells were collected. 

 

To estimate the delay of transcriptional activation, the background fluorescence 

signal was used to define a threshold for the activation time (Figure 16). The threshold 

was chosen to be the mean plus N standard deviations of the 10-minute background 

fluorescence signal, where N is a positive integer. 
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Figure 16. Estimation of activation time and YFP expression rate. The 10-minute 

background signals were used to define a threshold for estimating the activation time. 

The YFP expression rate was estimated by calculating the difference in YFP fluorescence 

10 minutes after the activation time. 

 

When N < 4, the estimated delay of some cells was shorter than the YFP maturation time 

(N=3 case, Figure 17), which is unrealistic. This is probably a result of using only 10 data 

points for reference. Therefore, the threshold is defined to be the mean plus four standard 

deviations of the 10-minute background fluorescence signal. The threshold was chosen to 

be minimal to reflect the timing of YFP increase, but not to underestimate the activation 

time. 
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Figure 17. Underestimation of activation time when N = 3. Some cells are estimated to 

be activated within four minutes, which is shorter than the maturation time of the PBAD 

reporter-only circuit. 

The estimated YFP maturation time was 6.4 ± 1.3 minutes based on the 

measurement of the reporter itself (Figure 18). For the activation circuit, when the 

inducer concentration was high (2 mM IPTG), the estimated activation time was 7.2 ± 1.4 

minutes. Subtracting the mean of YFP maturation time from the mean of activation time, 

the 2 mM IPTG data shows that the activation can take place in less than one minute.  
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Figure 18. Estimated activation time from the activation circuit and the PBAD reporter-

only circuit. The activation time was only a few minutes and is close to the PBAD reporter-

only circuit when triggered with 2 mM IPTG. Reducing IPTG concentration resulted in 

longer activation time, and the time becoming variable among single cells. 

Reducing the IPTG concentration leads to an increased delay; the activation time 

increased to 13.8 ± 4.1 minutes at 0.2 mM IPTG, and 27.9 ± 12.9 minute at 0.05 mM 

IPTG. The mean and variability both increased when IPTG was reduced. This shows that 

the production rate of AraC could affect the timing of PBAD activation. 

To quantify the YFP expression rate (∆YFP), the fluorescence 10 minutes after 

the activation time was used (Figure 16). The expression of the activation circuit at  
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Figure 19. Estimated YFP expression rate from the activation circuit and the PBAD 

reporter-only circuit. The YFP expression rate of activation circuit was close to the PBAD 

reporter-only circuit when triggered with 2 mM IPTG. Reducing IPTG concentration 

resulted in a lower YFP expression rate. 

2 mM IPTG was close to the PBAD-only reporter circuit (Figure 19). The expression 

decreases when the inducer is reduced. At 0.05 mM IPTG, cells did not express much 

YFP, though the YFP signal did pass the defined threshold. This shows that AraC is not 

able to fully trigger PBAD activation at low IPTG concentration. 

Finally, a linear regression analysis for the YFP expression rate and the activation 

time was conducted (Figure 20). The results show that they are negatively correlated (r = 
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0.3967, P = 0.0001 for 2 mM IPTG; r = 0.4857, P = 0.0001 for 0.2 mM IPTG; r = 

0.2495, P = 0.0525 for 0.05 mM IPTG). These results indicate that the cells that are 

turned on faster have higher YFP expression. On the contrary, for cells that are turned on 

slowly, the YFP expression is low. Hence, the AraC expression might be correlated with 

YFP expression by extrinsic noise (Elowitz et al., 2002). The PBAD reporter-only circuit 

showed no correlation between the activation time and YFP expression rate (correlation 

coefficient r = 0.0055, P = 0.9643). 

 

Figure 20. Scatter plot of YFP expression rate and activation time of single cells. The 

correlation coefficients showed that YFP expression rate and activation time are 

negatively correlated for the activation circuit for all IPTG concentrations tested. The two 

variables are not correlated for the PBAD reporter-only circuit. 
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3.2. LacI repression time 

The repression circuit was used to measure the transcriptional repression of Plac/ara 

promoter by LacI (Figure 21A). The LacI gene was placed under control of the inducible 

promoter PBAD, and the YFP gene was placed under control of the Plac/ara promoter. Plac/ara 

is a hybrid promoter, which is activated by AraC and repressed by LacI. Once ARA is 

added, LacI and YFP will be activated by the constitutively expressed AraC. Because of 

the transcriptional delay of LacI, the YFP signal will increase first, then decreases. By 

changing the ARA concentration, I was able to see how the production rate of LacI 

affected the transcriptional delay. The magnitude and duration of the pulse are 

determined by the promoter activities of PBAD and Plac/ara under different ARA 

concentrations (Figure 21B). 

Figure 21. Measurement of repression delay. (A) The repression circuit. Adding ARA 

will trigger both the productions of LacI and YFP. Then LacI will repress the productuib 

of YFP. (B) Four ARA concentrations were tested on the circuit to see how the 

production rate of LacI would affect the activation delay. 

 



41 
 

The circuit was tested with four different ARA concentrations. The single-cell data shows 

pulses of YFP expression, with decreased amplitudes at lower ARA concentrations 

(Figure 22). In addition, the position of the peak of the pulse seems to appear later and be 

more variable.  

 

Figure 22. Single-cell fluorescence of repression circuit under 2%, 0.1%, 0.05%, and 

0.02% ARA. Each experiment was repeated twice and at least 60 cells were collected. 



42 
 

To estimate the delay of transcriptional repression, the position of the peak is used 

to reflect the timing when Plac/ara is completely repressed by LacI (Figure 23). At 2% 

ARA, the repression time is 8.6 ± 1.1 minutes (Figure 24). The delay increases when 

ARA concentration is reduced: 10 ± 1.9 minutes at 0.1% ARA, 17.9 ± 9.4 minutes at 

0.05% ARA, and 24.4 ± 9.7 minutes at 0.02% ARA. Combining the results of activation 

circuit, both data show that the delay increases when the TF production rate is reduced. 

The mean and variability increase. 

Figure 23. Estimation of repression time from the fluorescence pulse. The position of the 

peak was used to estimate the repression time. The peak height was also recorded. 
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Figure 24. The estimated repression time from the repression circuit. The repression time 

was only a few minutes when triggered with 2% ARA. Reducing ARA concentration 

resulted in longer activation time and the time becoming variable among single cells. 

 

Additionally, at very low inducer concentration, the mean of the delay is close to the cell 

doubling time (27.9 minutes for the activation circuit and 24.4 minutes for the repression 

circuit). Thus, the transcriptional delay can range from a few minutes to one cell doubling 

time, depending on the production rate of TF.  
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Figure 25. Estimation of minimal repression time of LacI. (A) For the fluorescence 

expression of the repression circuit at 2% ARA, the time difference was considered to 

obtain the differential fluorescence. The position of the peak reflects the timing of Plac/ara 

being affected by LacI and was used to estimate minimal repression time. (B) The 

estimated minimal time is 35 minutes. 

 

Since AraC can activate PBAD within one minute when it is triggered with 2 mM 

IPTG, it is of interest to know how quick LacI can become functional. The answer is 

important for modeling the robust genetic oscillator (Mather et al., 2009). To estimate it, I 

considered the time difference of the fluorescence signals at 2% ARA. The position of 

the peak indicates the time when the expression rate of YFP starts to decrease, so it 

reflects the timing when LacI becomes functional (Figure 25A). The results show that it 

takes 35 minutes for LacI to become functional, once it is triggered with 2% ARA 

(Figure 25B). The results are the same as the delay proposed by a theoretical model 

(Mather et al., 2009). 



45 
 

 

Figure 26. Scatter plot of peak height and repression time of single cells. The correlation 

coefficients showed that peak height and repression time are negatively correlated, except 

for 2% ARA. 

Finally, I also did a linear regression analysis for the repression time and the 

height of the pulse (Figure 26). The results show that they are negatively correlated (r = 

0.4781, P = 0.0001 for 0.1% ARA, r = 0.3043, P = 0.0054 for 0.05% ARA, and r = 

0.2642, P = 0.0165 for 0.02% ARA). The exception is 2% ARA (r = 0.0233, P = 

0.8597). This means that cells expressing more YFP tend to have shorter repression times. 

On the contrary, for cells that express less YFP, the repression time is longer. Hence, the 

LacI expression might be correlated with YFP expression. This is similar to the 

transcriptional activation. 
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3.3. Stochastic simulation for transcriptional regulation 

To explain the observed phenomena for both the transcriptional activation and 

repression, I started with ODE models to fit the data. In the model, I only set variables for 

proteins, and every protein has two variables to represent the immature form and the 

functional form. The immature protein is used to account for the existing delay, such as 

the minimal transcriptional delay and YFP maturation time. The transition rate of the 

immature form to the functional form is based on the measured data. The production rate 

of TFs is scaled to the induction curve. The production rate of YFP is modeled as a Hill 

function (Alon, 2006). Proteins are diluted by cellular growth. If the protein is tagged 

with LAA, it is degraded by an enzymatic term. The model was fitted to the average of 

the single-cell fluorescence for all inducer concentrations tested. Then, the ODE model 

was transformed into the stochastic model following the Gillespie algorithm (Gillespie, 

1977). 

  The activation circuit model has four variables: A, A*, Y, Y*, representing the 

concentrations of immature AraC, functional AraC, immature YFP, and mature YFP, 

respectively. The ODEs are as follows: 

 

dA

dt
= k1(IPTG) − k2 ∗ A − γ1 ∗ A − γ2 ∗

A

R + A + A∗
 

dA∗

dt
= k2 ∗ A − γ1 ∗ A

∗ − γ2 ∗
A∗

R + A + A∗
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dY

dt
= k3 ∗

(
A∗

α )
β

1 + (
A∗

α )
β
− k4 ∗ Y − γ1 ∗ Y 

dY∗

dt
= k4 ∗ Y − γ1 ∗ Y

∗ 

I fitted the parameters manually and with the fitted parameters: 

k1([2mM IPTG]) = 0.93 molecules/(min ∗ cell volume) 

k1([0.2mM IPTG]) = 0.71 molecules/(min ∗ cell volume) 

k1([0.05mM IPTG]) = 0.17 molecules/(min ∗ cell volume) 

k2 = 1 min
−1 

k3=10 molecules/(min ∗ cell volume) 

k4 = 0.5 min
−1 

γ1 = 0.027 min
−1 

γ2=1 molecules/(min ∗ cell volume) 

α = 15 molecules/cell volume 

β = 2 

R = 30 molecules/cell volume 

The numerical simulation with the ODE model was close to the average fluorescence 

(Figure 27).  
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Figure 27. Numerical simulation of the ODE model of the activation circuit. The 

parameters of the ODE model were fitted to the mean fluorescence of single cells. 

To transform the ODE model into the stochastic model, the rate terms were 

written as simple chemical reactions: 

∅
k1(IPTG)
→      A 

A
γ1
→∅ 

A
γ2∗

A

R+A+A∗
→        ∅ 

A
k2
→A∗ 

A∗
γ1
→∅ 
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A∗
γ2∗

A∗

R+A+A∗
→        ∅ 

∅

k3∗
(
A∗

α
)β

1+(
A∗

α
)β

→        Y 

Y
γ1
→∅ 

Y 
k4
→Y∗ 

Y∗
γ1
→∅ 

 

The model was simulated 1,000 times for the analysis using the C programming 

language. When the threshold for Y* was set at 1, the resulting activation time and YFP 

expression rate showed qualitatively similar results to experimental data (Figure 28).  

For the repression circuit, the model has four variables: L, L*, Y, Y*, representing 

the concentrations of immature LacI, functional LacI, immature YFP, and mature YFP, 

respectively. The ODEs are as follows: 

 

dL

dt
= k1(ARA)-k2 ∗ L − γ1 ∗ L − γ2 ∗

L

R + L + L∗ + Y + Y∗
 

dL∗

dt
= k2 ∗ L − γ1 ∗ L

∗ − γ2 ∗
L∗

R + L + L∗ + Y + Y∗
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Figure 28. Numerical simulation of the stochastic model of the activation circuit. (A) 

1,000 single-cell trajectories generated by the stochastic model. (B) Estimated activation 

time. (C) Estimated YFP expression rate. 

dY

dt
= k3(ARA) ∗

1

1 + (
L∗

δ
)
β
− k4 ∗ Y − γ1 ∗ Y − γ2 ∗

Y

R + L + L∗ + Y + Y∗
 

dY∗

dt
= k4 ∗ Y − γ1 ∗ Y

∗ − γ2 ∗
Y∗

R + L + L∗ + Y + Y∗
 

With the fitted parameters 

k1([2% ARA]) = 0.9 molecules/(min ∗ cell volume) 

k1([0.1% ARA]) = 0.85 molecules/(min ∗ cell volume) 

k1([0.05% ARA]) = 0.66 molecules/(min ∗ cell volume) 
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k1([0.02% ARA]) = 0.28 molecules/(min ∗ cell volume) 

k2 = 0.25 min
−1 

k3([2% ARA]) = 1.1 molecules/(min ∗ cell volume) 

k3([0.1% ARA]) = 0.35 molecules/(min ∗ cell volume) 

k3([0.05% ARA]) = 0.21 molecules/(min ∗ cell volume) 

k3([0.02% ARA]) = 0.14 molecules/(min ∗ cell volume) 

k4=0.5 min−1 

γ1 = 0.027 min
−1 

γ2=1 molecules/(min ∗ cell volume) 

δ = 1.5 molecules/cell volume 

β = 2 

R = 30 molecules/cell volume 

The numerical simulation of the ODE model was close to the average fluorescence 

(Figure 29).  

To transform the ODE model into the stochastic model, the rate terms were 

written as simple chemical reactions: 
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Figure 29. Numerical simulation of the ODE model of the repression circuit. The 

parameters of the ODE model were fitted to the mean fluorescence of single cells. 

∅
k1(ARA)
→     L 

L
γ1
→∅ 

L
γ2∗

L

R+L+L∗+Y+Y∗
→             ∅ 

L
k2
→L∗ 

L∗
γ1
→∅ 

L∗
γ2∗

L∗

R+L+L∗+Y+Y∗
→             ∅ 

∅

k3(ARA)∗
1

1+(
L∗

δ
)β

→            Y 
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Y
γ1
→∅ 

Y
γ2∗

Y

R+L+L∗+Y+Y∗
→             ∅ 

Y 
k4
→Y∗ 

Y∗
γ1
→∅ 

Y∗
γ2∗

Y∗

R+L+L∗+Y+Y∗
→             ∅ 

The model was simulated 1,000 times for analysis. The resulting activation time 

and YFP expression rate showed qualitatively similar results to the experimental data 

(Figure 30).  

 

 

Figure 30. Numerical simulation of the stochastic model of the repression circuit. (A) 

1,000 single-cell trajectories generated by the stochastic model. (B) Estimated repression 

time. 
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Here, I used stochastic models to explain the observed phenomena for both the 

transcriptional activation and repression. The increased delay and decreased YFP 

expression can be attributed to the existence of a threshold for TFs to regulate promoters. 

The increased variability of timing is also reflected in the stochastic model. Therefore, to 

model synthetic genetic circuits, the use of ODE model is sufficient. If necessary, small 

delays can be incorporated to reflect the minimal transcriptional delays. The negative 

correlation between delay and downstream gene expression, however, is not reflected in 

the model proposed. The results from the models showed that their correlation is positive 

(Figure 31). To account for this, we may need to incorporate sources of extrinsic noise, 

such as the partitioning of plasmids. 

 

 

Figure 31. Correlation of delay and downstream gene expression from stochastic 

simulation. (A) Scatter plot of YFP expression rate and activation time. The correlation 

coefficients indicate that they are positively correlated. (B) Scatter plot of peak height 

and repression time. The correlation coefficients indicate that they are positively 

correlated. 
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3.4. Two-step genetic cascade and the convolved signaling times 

The two-step genetic cascade was used to validate the measured delays of 

transcriptional regulation. Comparing the delay of the cascade with the convolved delays 

of single steps would give an estimate of the precision of the measurements. To build a 

two-step genetic cascade, the Plac promoter of the AraC gene was replaced with the PTet 

promoter. The PTet-AraC circuit was combined with the repression circuit to complete the 

two-step genetic cascade (Figure 32A). When triggered with anhydrotetracycline (aTc) 

and ARA, AraC will be expressed first, and then it will activate both the LacI and YFP 

genes. The peak position of the pulse will then be the summation of the delays of 

activation and repression. When the cascade was triggered with 1 g/mL aTc and 2% 

ARA, single-cell fluorescence showed a pulse with a delay relative to the repression 

circuit (Figure 32B). 

 

Figure 32. Single-cell fluorescence of the two-step genetic cascade and the repression 

circuit. After adding the activation step, the pulses of the cascade appear later relative to 

the repression circuit. Additionally, the heights of the pulses are smaller. 
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Figure 33. The constituents of the cascade and their measured delays. (A) The modified 

activation circuit was used to measure T1+Ty. (B) The PBAD reporter only circuit was used 

to measure Ty. (C) The repression circuit was used to measure T2. 

The position of the peak was used to determine the delay T1+2. To measure the 

delays of single-step regulation, the modified activation circuit, repression circuit, and 

PBAD reporter-only circuit were used (Figure 33). The modified activation circuit was 

triggered with 1 g/mL aTc and 2% ARA. The measured activation time T1+TYFP was the 

summation of transcriptional activation delay T1 and YFP maturation time TYFP. The YFP 

maturation time TYFP was measured with the PBAD reporter-only circuit. The 

transcriptional repression delay T2 was measured by the repression circuit. 

To see whether the measured delay T1+2 of a two-step genetic cascade can be 

derived from the delays of its constituent steps T1+Tyfp, Tyfp, and T2, the values for T1+T2 

= (T1+Tyfp)  Tyfp + T2 needed to be calculated. These values were assumed to be 

independent random variables for performing the deconvolution and convolution. 

Numerically, this can be done with a Monte Carlo simulation: 
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1. Ti, Tj, and Tk are randomly selected from the data T1+Tyfp = Ti1, Ti2, …,TiN1, Tyfp = 

Tj1, Tj2, …, TjN2, and T2 = Tk1, Tk2, …, TkN3, where N1, N2, and N3 are the number 

of single cells measured.  

2. Calculate T1+T2 = TiTj+Tk. Store the value into an array. 

3. Repeat step 1 and step 2 100,000 times. 

4. Calculate the frequency of T1+T2. 

 

The calculated T1+T2 is then compared to the measured T1+2. The difference 

between the means of T1+T2 and T1+2 is of less than one minute (Figure 34A). However, 

the calculated standard deviation is slightly larger than the measured one. This might be a 

result of some correlations among the measured data. For example, if we assume some 

positive correlation between (T1+Tyfp) and Tyfp, the mean T1+T2 is the same but the 

standard deviation would be smaller. The method used to calculate T1+T2 when (T1+Tyfp) 

and Tyfp are positively correlated is as follows: 

 

1. Assume (T1+Tyfp) and Tyfp are normally distributed and fit the data with a normal 

distribution to calculate the means μ1+yfp and μyfp and standard deviations σ1+yfp 

and σyfp. 
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2. Use the property that the difference of (T1+Tyfp) and Tyfp is still normally 

distributed. T1 can be generated from the normal distribution with mean μ1+yfp  

μyfp and standard deviation √σ1+yfp2 + σyfp2 − 2𝜌 ∗ σ1+yfp ∗ σyfp, where 𝜌 is the 

correlation coefficient between (T1+Tyfp) and Tyfp. Here I generated 100,000 points 

of T1 from this distribution. 

3. Ti and Tj are randomly selected from the data T1=Ti1, Ti2, …, TiN1 and T2=Tj1, 

Tj2, …, TjN2, where N1 = 100,000, and N2 is the number of single cells measured. 

4. Calculate T1+T2 =Ti+Tj. Store the value into an array. 

5. Repeat step 3 and step 4 100,000 times. 

6. Calculate the frequency of T1+T2. 

 

Figure 34B shows the case for 𝜌 = 0.5. The simulation shows that the mean is unchanged, 

but the standard deviation is closer to the measured value. Note that it is not the only way 

to get smaller standard deviation. If we assume that T1 and T2 are negatively correlated, 

we can get a similar result. To really understand what factors affect the convolution of 

delays in a multi-step gene cascade, we may fuse multiple fluorescent protein reporters to 

TFs, and characterize how the upstream regulator affects its target. 

The single-step delays were convolved to calculate T1+T2 using the Monte Carlo 

method. When compared to T1+2 of the two-step genetic cascade, it shows that their 

means are very close, with a less than 1-minute difference. This demonstrates that the 
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measurements of single-step gene regulation are precise enough to reflect the summed 

delay of a two-step genetic cascade. The standard deviation of T1+T2 is larger than the 

standard deviation of T1+2. This might be a result to small sample size. The single-delays 

might be also correlated. For example, if we assume that T1+TYFP and Tyfp are positively 

correlated, the standard deviation of T1+T2 can be smaller, with the mean being the same. 

 

Figure 34. The measured delay of cascade and the convolved delay from single-step 

circuits. (A) The difference between the means of both delays is less than one minute. 

The variance of the convolved delay is larger than the measured one. (B) Reduced 

variance of convolved delay when assuming T1+Ty and Ty are positively correlated with r 

= 0.5. The difference between the standard deviations is less than one minute. 

3.5. Stoichiometry of signaling molecules 

To gain more insight into the process of transcriptional regulation, I examined the 

known parameters of the signaling molecules, and compared our data to times predicted 

by those parameters. First, the YFP signal, 𝑌, can be converted to numbers of single YFP 

molecules, 𝑁 , per cell. I followed the same approach as described in the paper of 
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Rosenfeld and et al (Rosenfeld et al., 2005). The idea is that if YFP molecules are 

randomly segregated into daughter cells at cell division, the number of YFP molecules 

one daughter cell receives will follow a binomial distribution. To follow their approach, I 

first recorded the individual division events of the repression circuit at 2%, after the Plac 

promoter was completely repressed (Figure 22). The events were grouped by the YFP 

signal strength. Then for each group, the root mean square (RMS) difference in 

fluorescence between two daughter cells was calculated, and fit to √𝜈𝑦 ∗
√𝑌1+𝑌2

2
, where 𝜈𝑦 

is the fluorescence signal generated from one YFP molecule, and 𝑌1  and 𝑌2  are two 

daughter cells’ fluorescence. The fitted 𝜈𝑦 is 0.14 fluorescence per YFP molecule. Then 

the number of YFP molecule can be calculated by 𝑁 = 𝜈𝑦 ∗ 𝑌 (Figure 35).  

 

Figure 35. Binomial errors in YFP molecule partitioning at cell division. The 

flourescence signal difference of two daughter cells 
|𝒀𝟏−𝒀𝟐|

𝟐
 was used to estimate 𝝂𝒚 , 

which is the fluorescence generated from one YFP molecule. Then the flouresnce can be 

converted to numbers of YFP molecules 𝑵 by 𝑵 = 𝝂𝒚 ∗ 𝒀. Blue line is the fitted function 

√𝑵𝟏+𝑵𝟐

𝟐
. 
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Since the mean threshold for the determination of activation delay is 1.1 (Figure 15), it 

means that at least 1.1/0.14=8 YFP molecules are needed for the YFP signal to be higher 

than the background noise. 

To make sure the measured delay corresponds to the known parameters of 

participated signaling molecules, here I examined the data of the repression circuit. The 

dissociation constant 𝐾𝐷 of LacI is estimated to be 10 pM (Falcon and Matthews, 2000). 

Given that the size of an E. coli cell is roughly 1 𝜇𝑚3 = 1 𝑓𝐿, the unit of the dissociation 

constant can be converted to molecules per cell: 𝐾𝐷 = 10 𝑝𝑀 = 10 
𝑝𝑚𝑜𝑙𝑒

𝐿
= 6 ∗

1012  
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝐿
= 0.006 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑓𝐿
=  0.006 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
. The dissociation constant 

corresponds to the LacI concentration at which half of the operator sites are repressed. 

Given the fact that there are three operator sites in the genome, the number is 

unrealistically small. Since the 𝐾𝐷  was determined in vitro, the difference of the 

experiment environment, such as high salt concentration, may underestimate the 

dissociation constant of LacI. In order to calculate the in vivo dissociation constant, here I 

used a different approach. It was measured that on average one cell has 265 LacI 

monomers (Li et al., 2014), which means that at least 61 LacI tetramers are needed to 

repress the lac operator sites. From this we can assume that 31 LacI tetramers will give 

half repression, and the in vivo dissociation constant 𝐾𝐷 = 31 ∗ 4 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
=

123 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
. 

Next, the LacI production rate can be estimated from the YFP production rate 

from the PBAD promoter. The average YFP production rate from the PBAD reporter only  
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Figure 36. Repression delay is linearly proportional to the inverse of PBAD promoter 

activity. The time delay for LacI to accumulate to a certain number is linearly 

proportional to its production rate, which directly depends on the PBAD promoter activity. 

circuit (Figure 15) is 
2.5

𝜈𝑦 
 
1

𝑚𝑖𝑛
=

2.5

0.14
 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚𝑖𝑛
= 18 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚𝑖𝑛
. Assume that the protein 

production rates are same for YFP and LacI, when they are expressed from the PBAD 

promoter, the production rate of LacI is 18 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚𝑖𝑛
. If we ignore the inducer uptake 

time, based on the measured delay of 8.6 minutes, it can be calculated that 18*8.6=155 

LacI molecules are needed to completely repress the 20 lac operator sites on the plasmids. 

Then the dissociation constant 𝐾𝐷 is roughly to be  
155

2
 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
  =  76 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
, which 

is close to the previous estimated 123 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
. Thus, the in vivo KD of LacI estimated 

from these two approaches matches each other. At lower arabinose concentrations, the 

time needed to accumulate to 155 LacI is approximately proportional to the inverse of the 

PBAD activity (Figure 36).  
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To examine whether the ligand uptake time can be ignored, here I estimate the 

transport rate of the ARA permease. I assume that the ligand uptake rate follows the 

Fick’s law: 𝐽 = −𝐷
𝜕𝐶

𝜕𝑧
≈ 𝐷

∆𝐶

𝐿
, where 𝐷 is the diffusion coefficient of the ARA, 𝐶 is the 

concentration of the ARA outside cell, 𝑧  is the direction perpendicular to the cell 

membrane, and 𝐿  is the length of the permease. The diffusion coefficient 𝐷  of the 

arabinose is 7.7 ∗ 10−6  
𝑐𝑚2

𝑠𝑒𝑐
= 7.7 ∗ 102  

𝜇𝑚2

𝑠𝑒𝑐
 (Nagy et al., 2009). For 2% arabinose, 

∆𝐶 = 2 ∗ 10−2  
𝑔

𝑚𝐿
= 2 ∗ 10−14  

𝑔

𝜇𝑚3
= 1.3 ∗ 10−16  

𝑚𝑜𝑙𝑒

𝜇𝑚3
= 7.8 ∗ 107  

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝜇𝑚3
. The 

regular size of a permease is 5 nm = 5 ∗ 10−3 𝜇𝑚 (Li and Tooth, 1987). The transport 

rate is the flux multiplied by the cross-sectional area of the channel of the permease. The 

radius of the channel 𝑟 is roughly 1 nm = 1 ∗ 10−3 𝜇𝑚 (Pisponen et al., 2016). Based on 

these numbers, the transport rate of arabinose into cell is 𝐽 ∗ π𝑟2 = 𝐷
∆𝐶

𝐿
∗ π𝑟2 = 7.7 ∗

102  
𝜇𝑚2

𝑠𝑒𝑐
∗
7.8∗107 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝜇𝑚3

5∗10−3 𝜇𝑚
∗ 3.14 ∗ 1 ∗ 10−6 𝜇𝑚2 = 3.8 ∗ 107  

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑠𝑒𝑐
. The dissociation 

constant of arabinose binding to AraC is 3 ∗ 10−7 𝑀 = 1.8 ∗ 1017  
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝐿
=

1.8 ∗ 102  
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑓𝐿
= 180 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙
 (Phillips, 1976), which is the concentration at which 

half of AraC molecules are bound with the arabinose. Based on these numbers, the 

inducer uptake time is far less than in 1 second, even when the arabinose concentration is 

low. However, the estimation provided here is based on theoretical calculation and needs 

to be validated experimentally. 
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3.6. Conclusion 

In summary, I measured the transcriptional delay of the transcriptional activator 

AraC and the repressor LacI by building synthetic genetic circuits. When TFs are highly 

induced, the delay can be as short as a few minutes. Reducing the expression of TFs leads 

to an increased delay. When the expression of TFs is very low, the mean of the delay is 

roughly the same as the doubling time of E. coli. In addition, the variability of the delay 

increases as the mean increases. This phenomenon can be explained by the existence of a 

concentration threshold for TFs to regulate the promoter (Figure 37A). The promoter 

activity can be modeled as a Hill function of TF concentration (Rosenfeld et al., 2005). 

To regulate the promoter, TF concentration needs to reach a threshold, H. When the TF is 

fully triggered, the time it takes for TFs to reach the threshold is short and the variability 

of the timing is small (Figure 37B). When the TF is weakly triggered, it takes longer to  

 

Figure 37. Increased delay can be explained by a threshold effect. (A) The promoter 

activity versus TF concentration. TF concentration needs to be above a threshold (H) to 

affect promoter activity. (B) TF concentration versus time when TF is produced at a 

constant rate. The 100% rate leads to a shorter delay than the 20% rate. The bold line 

shows the 50% fluctuation of TF production rate. The 20% rate tends to have larger 

variation of delay. (C) The measured activation time of AraC under 2 mM IPTG and 0.05 

mM IPTG. 
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reach the threshold level and the variability of the timing becomes greater. Since the time 

is inversely proportional to the rate, the distribution of the timing will be right-skewed 

(Figure 37C). Furthermore, when the TF is weakly triggered, it does not regulate the 

promoter effectively. This can be seen in the YFP expression rate of the activation circuit. 

I also found that the transcriptional delay and the downstream gene expression are 

negatively correlated. This cannot be explained by the proposed stochastic model, which 

only incorporates the intrinsic noise of reactions. The negative correlation might be a 

result of extrinsic noise, which affects the TF and the reporter at the same time. For 

example, the plasmid copy number might be a source of extrinsic noise. 

I further used the two-step cascade to show that the delay of cascade is close to 

the sum of single-step delays. The difference between the means is less than 1-minute. 

This shows that the measurements of the delay are precise enough to predict the timing of 

a more complex circuit. The standard deviation, however, is smaller than the summed 

delays. The difference in the variations of the delay distributions is possibly a result of 

correlations between single-step delays, which are not measured in this study. For 

example, plasmid copy number variation might lead to correlation between delays. If 

cells have more plasmids, they could express more TFs and YFPs, which will lead to 

shorter activation delay and YFP maturation time. When activation delay and YFP 

maturation time are positively correlated, the variation of the summed delay will be 

smaller. Also, resource competition could lead to reduced variability of the summed 

delay. Tabor et al designed competing RNA with the same RBS as a GFP reporter to 

study how the translational capacity affects gene expression (Tabor et al., 2008). They 

found that when the competing RNA is expressed, the mean GFP expression is lower and 
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it has larger variation. Therefore, one gene’s expression could affect other genes. If cells 

express more AraC molecules, they may have less LacI molecules. Therefore, the 

activation delay and repression delay could be negatively correlated, and this will also 

lead to reduced variation of the summed delay. 

The stoichiometries of the molecules were also examined. First, I found that my 

experiment setup can detect as low as eight YFP molecules, after converting fluorescence 

signal to the YFP molecules. Second, I found that the in vitro dissociation constant of the 

LacI repressor is underestimated when compared to the in vivo experiments. The copy 

number of LacI per cell was used to estimate the in vivo dissociation constant of LacI, 

which agrees with the estimation from the measured transcriptional delay of LacI. 

Finally, I found that the time for AraC and LacI to be functional can be as short as 

a few minutes. This suggests that modeling synthetic genetic circuits only needs to 

incorporate a small constant delay rather than a distributed one. The longer delay at low 

inducer concentration can be explained by the existence of a threshold for TF to pass, 

which do not need to assume a long delay in the model. The incorporation of a small 

constant delay is especially important for gene circuits with feedback regulation, such as 

the oscillator.  

3.7. Discussion 

One immediate question from the results is whether other TFs show similar 

results and, if so, why. If TFs behave similarly, the same design principles can be applied 

to build similar functional modules. Then, as more genetic parts are being discovered 
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(Stanton et al., 2014), scaling-up synthetic genetic circuit design will become possible. 

However, why should they behave in the same way? Why is the delay bound by the cell 

doubling time? In the future study, we can test whether other TFs have similar delays. 

Since each TF has different binding affinity to the target promoter, the delay may be 

different. We could also characterize the delay for different copy-number plasmids or for 

genes on the genome to test how gene copy number affects the time delay. Other factors 

such as protein degradation rate, temperature, culture media could affect time delay as 

well. After a systematic study of the circuit’s behavior, we will have a clearer picture 

about how the genetic circuit is working in the cell. 

It is thought that the uptake of the inducer may contribute to most of the delay of 

the transcriptional regulation. The delay of inducer uptake at low concentrations has been 

shown to be long (Megerle et al., 2008). Here I used the fluorescence of the repression 

circuit at 0.02% ARA to examine the inducer uptake time (Figure 38A). The inducer 

uptake time is estimated by the activation delay as well, which is 9.7 ± 6.3 minutes 

(Figure 38B). Subtracting the inducer uptake time from the LacI repression time, we can 

estimate the delay from transcriptional regulation, which is 14.1 ± 6.8 minutes (Figure 

38C). It shows that when the production rate of TF is low, transcriptional delay can be 

significant, and the variability of the delay is also large. To avoid the inducer uptake time, 

the transporters for the inducer can be expressed from plasmids to increase its number. 

Khlebnikov et al. have shown that by doing so the gene expression from PBAD promoter is 

more homogeneous over a wide range of arabinose (Khlebnikov et al., 2001). It is then 

important to study how much variability of delay is from the inducer uptake. 
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To avoid the inducer uptake step and directly measure the transcriptional delay 

and, we can follow the optogenetics approach developed by Olson et al. (Olson et al., 

2014). In their approach, the transcription factor is expressed from a light-inducible 

promoter, and the response time depends only on the phosphorylation step of the light-

switchable proteins. Thus, we can avoid the possible long inducer uptake time at low 

inducer concentrations. Based on this optogenetics approach, they found that the delay 

for TetR to repress the PTet promoter is 7.0 ± 5.4 minutes, which is pretty similar to the 

measurement of LacI in this study (8.6 ± 1.1 minutes), although with a larger standard 

deviation. We could follow the same approach to repeat our measurements and see how 

the delay increases as the production rate of TF is decreased. With more data points, we 

Figure 38. Import delay and transcriptional delay. (A) Single-cell fluorescence of the 

repression circuit at 0.02% ARA concentration. (B) The import delay is estimated by the 

activation time of the single-cell fluorescence. (C) The transcriptional delay is calculated 

by subtracting the activation time from the repression time in Figure 24. 
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can see whether the delay is inversely proportional to the TF production rate. One 

drawback of the optogenetics approach is that it is not applied to the single-cell 

experiments of E. coli cells, which does not allow the characterization of the variability 

of delay. Also, the energy needed to excite the light-switchable proteins may not allow as 

frequent snapshots of cells as the microfluidic approach, which could lead to lower 

temporal resolution. 

To understand how the delay is summed up in multi-step cascades, we can fuse a 

different fluorescent protein to the TF, and study how the TF concentration affects the 

output. This approach has been used to study how the noise from upstream gene 

expression is propagated to the downstream gene (Pedraza and van Oudenaarden, 2005), 

and to measure the gene regulation function (Rosenfeld et al., 2005). Then we can answer 

why the summed delay in the cascade has a smaller variability than expected. We can 

also use this approach to study how the delay affects circuit's dynamic behavior, 

especially for those with feedback regulations. 

The transcriptional signaling time can be considered as a tunable variable in the 

synthetic genetic circuit design (Orosz et al., 2010). For example, it has been theoretically 

shown that increasing the transcriptional delay can stabilize bistable genetic circuits 

(Gupta et al., 2013). Since changing the inducer concentration could affect the delay, it is 

possible that modifying the genetic parts could affect the delay as well. For example, 

changing the RBS or promoter could affect the rate of the signaling process. Tools such 

as CRISPR interference (CRISPRi) (Qi et al., 2013) or antisense RNA (Hoynes-

O’Connor and Moon, 2016) could also be used to change the delay. Then, we likely 

could fine-tune circuits’ behavior, such as changing the frequency of the oscillator. The 
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tunability, however, is probably limited, since the effective delay can be no longer than 

one cell doubling time. Nevertheless, it is interesting to test the idea. For example, tuning 

the delay of negative feedback of the oscillator might lead to change in the period. 

The timing of biological events is a largely unexplored area. It has been shown 

that increasing the length of a genetic cascade can improve the precision of timing (Amir 

et al., 2007). Theoretical works have also studied how the feedback could affect the 

precision of timing in gene expression (Ghusinga and Singh, 2016). With improved 

fluorescent protein reporters and microscopes, higher temporal resolution can be 

achieved. We can then study systems for which timing is important, such as cell 

differentiation (Narula et al., 2015) and cell cycle control (Murray, 1992). Also, how cells 

reduce the delay to deal with risks (Uphoff et al., 2016) and how they use delay as a bet-

hedging strategy (Balaban et al., 2004) could be both interesting research topics. 
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Chapter 4 

Antisense RNA-based gene regulation 

Antisense RNA research is a side project of this focus, which aims to develop 

robust antisense RNA targeting genes. Unlike traditional antisense RNA approach, the 

antisense RNA design I propose here has the characteristic stem-loop structure to 

recognize the mRNA. The stem-loop structure is thermodynamically stable and will not 

be disrupted by RNA secondary structure. With 60bp antisense RNA, this approach 

successfully down-regulates the gene expression of four different proteins - YFP, 

mCherry, AraC, and LacI. The antisense RNA design proposed here can be applied to 

synthetic genetic circuit design. 

4.1. Gene regulation methods for E. coli 

Tools have been developed to control gene expression in bacteria. They allow 

researchers to easy turn on and turn off endogenous genes with encoding specific effector 

molecules. The most successful example is the CRISPRi method, which has been shown 
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Figure 39. Two gene regulation methods used in E. coli. (A) The CRISPRi system is 

composed of sgRNA and dCas9. After binding to sgRNA, dCas9 will bind to the DNA 

sequences specified by the sgRNA. (B) shRNA is an antisense RNA with a short-hairpin 

structure. Protein Hfq will bind to shRNA and stabilize the binding betweeb mRNA and 

antisense RNA. 

to down-regulate the genomically integrated YFP 1000 fold (Qi et al., 2013), and already 

been used to screen for essential genes in Bacillus subtilis (Peters et al., 2016). The 

CRISPRi system is comprised of two parts – the dCas9 protein and a short-guide RNA 

(sgRNA) (Figure 39A). The sgRNA contains a scaffold and a sequence complimentary to 

the target DNA. Once the dCas9 binds to the scaffold, the complex will bind to the DNA 

complimentary to the defined sequence. dCas will spatially block the proceeding of RNA 

polymerase and down-regulate the mRNA expression. Another commonly used gene 

regulation method is to use antisense RNA to bind to mRNA and disrupt the binding of 

ribosome. However, the repression efficiency of antisense RNA is unpredictable and 

oftentimes the antisense RNA design fails. For example, seven antisense RNAs were 

tested on RNaseE gene but only one antisense RNA succeeded (Kemmer and Neubauer, 

2006). To improve the repression efficiency, it is suggested to add a short-hairpin RNA 

(shRNA) to the antisense RNA, which can stabilize the binding between mRNA and 
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antisense RNA (Na et al., 2013) (Figure 39B). The stabilization is due the binding of Hfq 

to the shRNA. Rather than introducing shRNA, the antisense RNA I proposed here uses a 

stable stem-loop structure to achieve higher efficiency. Next I will introduce the 

development of CRISPRi and antisense RNA methods. 

4.1.1. CRISPR 

CRISPR system is a prokaryotic immune mechanism that fights against the 

infection of phages or plasmids. Initially, it is found that prokaryotic genome contains 

repetitive sequences, which are flanked by spacers (Mojica et al., 2000). Since these 

repetitive sequences are homologous to the genes of invaders, it was postulated that these 

sequences may be used to recognize the invaders’ DNA (Mojica et al., 2005). Then cas 

genes were discovered, which are located next to these repetitive sequences (Jansen et al., 

2002). A study has found that the repetitive sequences and spacers are transcribed into 

CRISPR RNAs (crRNAs) in the presence of invaders (Marraffini, 2015). Then crRNAs 

were cleaved by the Cas proteins. Also, one Cas protein can bind to crRNA. Since 

crRNA contains sequences that are complimentary to the invading DNA, the complex 

can recognize and cut the invading DNA. It is estimated that approximately 40% of 

bacteria and 90% of archaea have CRISPR systems that target either foreign RNA (Hale 

et al., 2009) or DNA (Barrangou et al., 2007). 

Among all kinds of CRISPR systems, the one from Streptococcus pyogenes is 

rather simple: it is only composed of one Cas protein (Cas9) and two RNAs (a crRNA 

and a trans-acting RNA (tracrRNA)) (Deltcheva et al., 2011). It was further found that 

crRNA and tracrRNA can be fused together to be one single-guide RNA (sgRNA), which 
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binds to Cas9 to cut the target DNA (Jinek et al., 2012). More importantly, by 

manipulating the sequences of sgRNA, this CRISPR system can be programed to target 

any DNA sequence for cleavage. After the DNA cleavage, cells will undergo either the 

non-homologous end joining or homology directed repair pathways. With a template 

DNA, the system can therefore be used to edit any genes (Hsu et al., 2014). The method 

has been applied to a broad range of organisms, including bacteria (Jiang et al., 2013), 

yeast (Dicarlo et al., 2013), worms (Waaijers et al., 2013), flies (Ren et al., 2013), fish 

(Hwang et al., 2013), plants (Xie and Yang, 2013), mice (Wang et al., 2013), and human 

cells (Cong et al., 2013). 

Not only editing genes, CRISPR system can also be modified to control gene 

expression. After introducing point mutations to the nuclease domain, the Cas9 loses its 

nuclease function but still can bind to DNA. The deactivated Cas9 protein (dCas9) 

therefore can block the transcription elongation and down-regulate gene expression (Qi et 

al., 2013). The repression efficiency of this CRISPR interference (CRISPRi) method is 

high E. coli. However, when applied to mammalian cells, only modest repression was 

observed. The system was improved by fusing domains of transcription repressors to 

dCas9 (Gilbert et al., 2013). Other functional domains have been successfully fused to 

dCas9, such as transcription activator (Gilbert et al., 2013), chromatin remodeler (Keung 

et al., 2014) and fluorescent protein (Chen et al., 2013). Hence, CRISPR system can be as 

a modular platform for different applications. 
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4.1.2. Antisense RNA 

Antisense RNA is a single-stranded RNA that is complimentary to mRNA. In the 

presence of antisense RNA, translation may be inhibited since mRNA could base-pair to 

it. Several antisense RNAs were discovered in E. coli, and they can be categorized into 

either cis-acting RNAs or trans-acting RNAs. cis-acting RNAs are usually located in the 

5’- untranslated region (5’ UTR) of mRNA. After transcription, cis-acting RNA will form 

a secondary structure and interfere with the binding of ribosome. In the presence of its 

complimentary RNA, the secondary structure will re-shape and the ribosome binding site 

can bind with ribosome again. The situation can be the opposite. The translation only 

proceeds in the presence of the complimentary RNA. An example of cis-acting RNA is 

the control of gene expression of RepC. RepC is a protein required for plasmid 

replication (Brantl and Wagner, 2002). Its expression is down-regulated by the antisense 

RNA, so the plasmid copy number is controlled. Unlike cis-acting RNA, trans-acting 

RNA is complimentary to mRNA, but not the 5’ UTR. One example is the hok/sok 

system (Gerdes and Wagner, 2007; Gerdes et al., 1985). Hox is a toxin protein that kills 

cells. sok is the antisense RNA that binds to hox mRNA. The pair was found on R1 

plasmid. After cell division, daughter cells which lose the plasmid will die. 

Both cis-acting RNA and trans-acting RNA have been employed to control gene 

expression. For example, gene expression can be either activated or repressed by the 

antisense RNA by designing the 5’ UTR (Chappell et al., 2015b; Lucks et al., 2011). The 

synthetic cis-acting RNAs have been shown to be highly specific and efficient (Green et 

al., 2014). Also, naturally occurring trans-acting RNAs have been compared to discover 
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consensus scaffolds (Na et al., 2013). It is thought that these scaffold will bind to some 

proteins and it could facilitate its binding with the mRNA. By fusing these scaffold to 

antisense RNA, the synthetic trans-acting RNA can be used to repress gene expression. 

However, there is no general design rules for both cis-acting RNA and trans-acting RNA, 

and often large library selection is required. Currently, CRISPR is more robust and 

efficient than the antisense RNA method. 

 

Figure 40. Antisense RNA design strategy. (A) Ideally, the antisense RNA can bind with 

mRNA and interfere with ribosome binding. The secondary structure makes antisense 

RNA bind to itself and to not be able to bind with mRNA. (B) The designed stem-loop 

structure is stable and can be used to recognize mRNA. Once the loop is bound, the stem 

will unwind and the remaining antisense RNA will bind with the mRNA. 
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4.2. Antisense RNA design 

To solve the problem that the secondary structure of RNA will interfere the 

binding of antisense RNA to mRNA, I designed a stem-loop structure, which can prevent 

interference with the complimentary sequence (Figure 40). The strategy is to first find a 

non-folding sequence along the target sequences, and use it to construct the loop. Then 

the flanking sequences can be used to construct the stem. By choosing the appropriate 

length of flanking sequences, a stem-loop structure with sufficient stability can be 

designed. The loop then can be used to search the target RNA. When the loop of the 

antisense bind to mRNA, the binding energy will unwind the stem structure and the 

remaining antisense RNA can entirely bind to the mRNA. The procedure for designing 

antisense RNA is as follows: 

 

7. Search for the longest sequence of the target gene that does not have secondary 

structure. The secondary structure can be calculated on the mFOLD website 

(http://unafold.rna.albany.edu/?q=mfold). Take YFP as an example, three 19bp 

sequences can be found that have no secondary structure (Figure 41). The most 

upstream one was used to construct the loop (tcaccttcaccctcgccac). 

8. Starting from the non-folding sequence, select a 60bp sequence for the antisense 

RNA sequence (tcaccttcaccctcgccacgcacggaaaacttatgaccgttgacatcaccatccagttcc). 
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Figure 41. The three non-folding sequences within YFP coding sequence. The non-

folding sequence has no repeats and can be used to construct of the loop structure. 

9. Add a 14bp sequence (taagttttccgtgc) to the 5’ end of the antisense RNA, which is 

complimentary to the downstream sequence of the non-folding sequence 

(gcacggaaaactta). The two 14bp flanking sequences will base-pair to form the stem 

structure (Figure 42). 

10. PCR amplify the antisense RNA into a strong promoter such as PLlacO-1 or J23100. 

Note that a transcription terminator is attached to the antisense RNA. 

11. Co-transform the antisense RNA plasmid with the target gene plasmid. Induce the 

antisense RNA and measure the repression efficiency. 
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Figure 42. Secondary structure of antisense RNA for YFP repression. The stem-loop 

structure predicted from mFOLD is very stable. 

4.3. Repression efficiency 

To test the antisense RNA, the antisense RNA was expressed from strong 

promoters PLlacO-1 and J23100 and the construct was on a high copy-number ColE1 

plasmid. The target genes were on a medium copy-number p15A plasmid. The two 

plasmids were co-transformed into DH10BALT strain cells. After overnight culture, the 

sample was diluted 1:100 to LB and transferred to a 96-well plate, with the inducers 

added. After the plate was placed in the shaker at 37°C for two hours, the fluorescence 

and OD were read with an Infinite® 200 PRO fluorescence reader.  

The antisense RNA was first tested on two fluorescent proteins - YFP and 

mCherry, which have quite different sequence compositions. The results showed that 

antisense RNA reduced 89% and 63% of expressions for YFP and mCherry, respectively 

(Figure 43). Next, the antisense RNA was tested on the transcription factors AraC and 
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LacI. The activation and repression circuits built previously were co-transformed with the 

antisense RNA plasmids. The results showed that antisense RNA reduced 44% and 29% 

of expressions for AraC and LacI, respectively.  

Although the antisense RNA can reduce the expression of the chosen four 

proteins, it seems that the repression efficiency is not good on the TFs. A recent research 

showed a similar repression efficiency for the shRNA to repress TFs (Hoynes-O’Connor 

and Moon, 2016). Their results showed that the maximum repression is approximately 

50%. The method I proposed here can be an alternative to other antisense RNA methods. 

 

 

 

Figure 43. Antisense RNA efficiency on different genes. The antisense RNA works 

better for fluorescent proteins YFP and mCherry than transcription factors AraC and LacI. 
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4.4. Conclusion 

Although the antisense RNA method is less efficient than the CRISPR method, it 

still has some advantages. First, the size of antisense RNA (~100bp) is much smaller than 

the CRISPR system (~4000bp). It can be easily implemented into existing designs. Also, 

the antisense RNA should be less toxic to CRISPR. The antisense RNA may be used to 

fine-tune the behaviors of existing synthetic genetic circuits. For example, change the 

period of the oscillator or reduce the leaky expression. It can also be used to repress the 

sgRNA, which creates an additional control (Lee et al., 2016). 
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Appendix 

1. List of genetic parts 

   

Part name Type DNA sequence 

AraC gene 

Atggctgaagcgcaaaatgatcccctgctgccgggatactcgtttaacgcc

catctggtggcgggtttaacgccgattgaggccaacggttatctcgattttttt

atcgaccgaccgctgggaatgaaaggttatattctcaatctcaccattcgcgg

tcagggggtggtgaaaaatcagggacgagaatttgtctgccgaccgggtg

atattttgctgttcccgccaggagagattcatcactacggtcgtcatccggag

gctcgcgaatggtatcaccagtgggtttactttcgtccgcgcgcctactggca

tgaatggcttaactggccgtcaatatttgccaatacgggtttctttcgcccgga

tgaagcgcaccagccgcatttcagcgacctgtttgggcaaatcattaacgcc

gggcaaggggaagggcgctattcggagctgctggcgataaatctgcttga

gcaattgttactgcggcgcatggaagcgattaacgagtcgctccatccaccg

atggataatcgggtacgcgaggcttgtcagtacatcagcgatcacctggca

gacagcaattttgatatcgccagcgtcgcacagcatgtttgcttgtcgccgtc

gcgtctgtcacatcttttccgccagcagttagggattagcgtcttaagctggc

gcgaggaccaacgcattagtcaggcgaagctgcttttgagcactacccgga

tgcctatcgccaccgtcggtcgcaatgttggttttgacgatcaactctatttctc

gcgagtatttaaaaaatgcaccggggccagcccgagcgagtttcgtgccg

gttgtgaagaaaaagtgaatgatgtagccgtcaagttgtcatga  

LacI gene 

Atgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatca

gaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcg

ggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcg

tggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacct

ccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcg

cgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcg

gcgtcgaagcctgtaaagcggcggtgcacaatcttctcgcgcaacgcgtca

gtgggctgatcattaactatccgctggatgaccaggatgccattgctgtgga

agctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacc

catcaacagtattattttctcccatgaagacggtacgcgactgggcgtggag

catctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaa

gttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgc

aatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtc
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cggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcg

atgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattacc

gagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgat

accgaagacagctcatgttatatcccgccgttaaccaccatcaaacaggattt

tcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcaggg

ccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaa

aaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccg

attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagt

ga  

sfYFP gene 

Atgcgtaaaggcgaagagctgttcactggtgtcgtccctattctggtggaac

tggatggtgatgtcaacggtcataagttttccgtgcgtggcgagggtgaagg

tgacgcaactaatggtaaactgacgctgaagttcatctgtactactggtaaact

gccggtaccttggccgactctggtaacgacgctgacttatggtgttcagtgct

ttgctcgttatccggaccatatgaagcagcatgacttcttcaagtccgccatgc

cggaaggctatgtgcaggaacgcacgatttcctttaaggatgacggcacgt

acaaaacgcgtgcggaagtgaaatttgaaggcgataccctggtaaaccgca

ttgagctgaaaggcattgactttaaagaagacggcaatatcctgggccataa

gctggaatacaattttaacagccacaatgtttacatcaccgccgataaacaaa

aaaatggcattaaagcgaattttaaaattcgccacaacgtggaggatggcag

cgtgcagctggctgatcactaccagcaaaacactccaatcggtgatggtcct

gttctgctgccagacaatcactatctgagcTACcaaagcgttctgtctaaa

gatccgaacgagaaacgcgatcatatggttctgctggagttcgtaaccgca

gcgggcatcacgcatggtatggatgaactgtacaaatga  

TetR gene 

Atggctggttctcgcagaaagaaacatatccatgaaatcccgccccgaattc

atatgtctagattagataaaagtaaagtgattaacagcgcattagagctgctta

atgaggtcggaatcgaaggtttaacaacccgtaaactcgcccagaagctag

gtgtagagcagcctacattgtattggcatgtaaaaaataagcgggctttgctc

gacgccttagccattgagatgttagataggcaccatactcacttttgcccttta

gaaggggaaagctggcaagattttttacgtaataacgctaaaagttttagatg

tgctttactaagtcatcgcgatggagcaaaagtacatttaggtacacggccta

cagaaaaacagtatgaaactctcgaaaatcaattagcctttttatgccaacaa

ggtttttcactagagaatgcattatatgcactcagcgctgtggggcattttactt

taggttgcgtattggaagatcaagagcatcaagtcgctaaagaagaaaggg

aaacacctactactgatagtatgccgccattattacgacaagctatcgaattat

ttgatcaccaaggtgcagagccagccttcttattcggccttgaattgatcatat

gcggattagaaaaacaacttaaatgtgaaagtgggtcttaa  

PA1lacO-1 promoter 
Aaatttatcaaaaagagtgttgacttgtgagcggataacaatgatacttagatt

caattgtgagcggataacaatttcaca 
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PBAD promoter 
Acattgattatttgcacggcgtcacactttgctatgccatagcatttttatccat

aagattagcggatcctacctgacgctttttatcgcaactctctactgtttctcc  

Plac/ara promoter 

Tgtgtggaattgtgagcggataacaatttcacacagggccctcggacaccg

aggagaatgtcaagaggcgaacacacaacgtcttggagcgccagaggag

gaacgagctaaaacggagcttttttgccctgcgtgaccagatcccggagttg

gaaaacaatgaaaaggcccccaaggtagttatccttaaaaaagccacagca

tacatcctgtccgtccaagcagaggagcaaaagctcatttctgaagaggact

tgttgcggaaacgacgagaacagttgaaacacaaacttgaacagctacgga

actcttgtgcgtaaggaaaagtaaggaaaacgattccttctaacagaaatgtc

ctgagcaatcacctatgaactgtcgactcgagcatagcatttttatccataaga

ttagcggatcctaagctttacaattgtgagcgctcacaattatgatagattcaat

tgtgagcggataacaattgcatgc 

PTet promoter 
Tccctatcagtgatagagattgacatccctatcagtgatagagatactgagc

ac 

PLlacO-1 promoter 
Aattgtgagcggataacaattgacattgtgagcggataacaagatactgag

cac 

J23100 promoter Ttgacggctagctcagtcctaggtacagtgctagc  

BCD RBS 
Cacttaaaaaggagatcaacaatgaaagcaattttcgtactgaaacatcttaa

tcatgctaaggagaaatactagt 

B0034 RBS Aaagaggagaaa 

LAA tag peptide Actagtgcagcgaacgacgaaaattacgcccttgcagcg  

Antisense 

YFP 
RNA 

Taagttttccgtgctcaccttcaccctcgccacgcacggaaaacttatgacc

gttgacatcaccatccagttcc 

Antisense 

mCherry 
RNA 

Agttcatgcgcttcccctccatgtgcaccttgaagcgcatgaactccttgatg

atggccatgttatcctcctcg 

Antisense 

AraC 
RNA 

Ctcgtttaacgccctaaacccgccaccagatgggcgttaaacgagtatccc

ggcagcaggggatcattttgcgc 
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Antisense 

LacI 
RNA 

Ttctgcgaaaacgcccatcgccgcttccactttttcccgcgttttcgcagaaa

cgtggctggcctggttcaccacgcg 

 


