


ABSTRACT

General-purpose Programming Techniques for Emerging Systems with Non-volatile

Byte-addressable Random Access Memory

by

Kumud Bhandari

Emerging byte-addressable non-volatile random access memory (NVRAM) technologies

allow persistent data to be accessed and manipulated using CPU load and store instructions.

The persistent data in NVRAM can be persisted in the same format as it is manipulated and

re-used across execution cycles. In order to achieve this persist-reuse programming idiom,

persistent data need to be kept consistent across restarts and tolerated failures, i.e. certain

data invariants need to be maintained. As persistent data may be cached in volatile

structures such as CPU cache and memory instructions may be reordered, failures or

power cycle could violate these invariants and leave persistent data in an inconsistent

state. This thesis work explores general-purpose software techniques that minimize the

burden on programmers to maintain persistent data consistency under this persist-reuse

model. It further focuses on persistent memory management techniques to simplify

NVRAM programming. In this aspect, this thesis work identi�es and addresses challenges

associated with designing a failure-safe and leak-free persistent memory allocator that is

also interoperable with various persistent programming libraries. Additionally, it presents

software techniques to minimize de-/allocation overhead, avoid persistent leaks, and

discusses a memory allocator design approach that enhances the programmability of

NVRAM programming libraries. This thesis work shows that these software techniques can



enable the failure-safe use of NVRAM without placing an undue burden on programmers or

incurring signi�cant performance overheads.
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Chapter 1

Introduction

Limitations in current DRAM technology scaling [1–3] have prompted research in alternate

memory technologies. Almost all alternatives being explored such as Memristor [4], Phase

Change Memory (PCM) [5, 6], and 3D XPoint [7] are non-volatile in nature. Such non-

volatile memory (NVRAM) combines the byte-addressability of DRAM with the persistence of

hard disks. In the near future, NVRAM may at least partially replace DRAM, making persistent

data accessible through CPU load and store instructions. With NVRAM, persistent data can

be manipulated in the same format as stored, thus requiring no expensive and cumbersome

conversion. Consider an example where a linked list has to be saved in a traditional

�lesystem in the absence of NVRAM. Such a linked-list has to be serialized into a stream

of bytes representing its state to save to a �le and deserialized later on before the CPU

can again access the data in some later time, possibly after a system restart. With NVRAM,

a programmer can write code that can directly allocate persistent linked-list nodes, and

manipulate this single copy of the linked-list. Thus, NVRAM opens up an opportunity to

have in-memory object persistence so that program states that outlive the creating process

can be preserved, shared, and reused. Using this persist-and-reuse model, a quick restart of

an application from an intermediate state appears a reality. While starting, an application

looks for existing data that it can reuse. If present, the application adjusts its context

and instead of computing from scratch, merely reuses the existing data for the rest of its

computation.

Although using NVRAM as traditional volatile memory is trivial, taking advantage of in-

memory durability is challenging in the presence of system failures. Updates to persistent

data may not become visible to NVRAM in the order intended due to volatile CPU caches
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or store re-ordering allowed by the memory model. As a result, an interruption such

as a power failure may introduce inconsistencies (e.g. dangling pointer) to persistent

data in NVRAM. This thesis work addresses several aspects of NVRAM programming such as

failure resilient storage of user data in NVRAM, and persistent memory management with

the central goal of enabling programmers to take advantage of persistence provided by

NVRAM while minimizing the direct programming burden on them.

1.1 Thesis Scope

System experts may choose to exploit persistence provided by NVRAM in a highly specialized

setting such as to improve database performance [8] or to design in-memory �lesystems [9].

In contrast to such speci�c use cases of NVRAM, this thesis discusses techniques to make

persistence provided by NVRAM accessible to programmers for general purpose programming.

Using software techniques described in this thesis work, programmers can allocate and

store everyday data structures such as a linked-list or a queue in NVRAM, and reuse them

across system restarts by adjusting the programming context based on the state of the

persistent data. In this direction, this thesis work discusses low-overhead techniques for

developing applications to take advantage of NVRAM persistence, addresses challenges in

managing persistent memory and identi�es the interplay that exists between persistent

memory approach and NVRAM programmability.

1.2 Thesis Statement

Advances in programming models and system software for NVRAM can enable fault-tolerant

use of NVRAM without placing an undue burden on programmers or incurring signi�cant

performance overheads.

1.3 Contributions

This dissertation makes the following contributions:
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• A novel approach for failure consistency that combines lock-based transactional

semantics with copy-on-write. We show that copy-on-write mechanism can be

combined with lock-based transactional semantics to reduce performance overhead

while maintaining programmability

• A design and implementation of a real-world NVRAM application. We designed and

implemented an NVRAM version of the commercially used MDB key-value store

and characterized its performance overheads

• The �rst published detailed assessment of the challenges involved in designing an

interoperable, leak-free persistent memory allocator.

• The �rst published leak-free persistent memory allocator that is interoperable with

numerous NVRAM programming library. To the best of our knowledge, we present

the design and the implementation of the �rst NVRAM memory allocator that is

drop-in replaceable with C/C++ standard malloc/free, that is leak-free and can be

used with various existing NVRAM libraries.

• A novel o�ine recovery and conservative garbage collection approach to prevent

failure-induced leaks, and reduce the online cost of de-/allocation.

• A novel approach for precise o�ine garbage collection over relative heap addresses

using persistent type information.

1.4 Outline

The rest of this dissertation is organized as follows:

• Chapter 2 presents a survey of emerging NVRAM technologies, their performance

characteristics and extensions in Instruction Set Architecture (ISA) to facilitate

NVRAM programming

• Chapter 3 introduces persist-reuse model for NVRAM programming and compares

it with other traditional approaches to persistence such as checkpoint-restart and

orthogonal persistence
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• Chapter 4 presents a novel approach to failure consistency that combines a lock-

based transactional approach with a copy-on-write mechanism to reduce persistence

overhead. It also presents the design and implementation of an NVRAM version of

the MDB key-value store, a commercially used backend for OpenLDAP.

• Chapter 5 presents an assessment of challenges associated with designing a leak-free

interoperable persistent memory allocator and the design of such a memory allocator

for NVRAM

• Chapter 6 presents the design and the implementation of memory allocator that

supports relative addressing and precise garbage collection based on persistent types

• Finally, chapter 7 presents future work and conclusion
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Chapter 2

Survey of NVRAM Technologies and Hardware Support

2.1 NVRAM Device Technologies

Several di�erent device technologies are being explored by hardware manufacturers to

make NVRAM available in future systems. Some of these technologies which have been

productized are described below [10]:

• Ferroelectric RAM (FRAM): uses ferroelectric capacitor formed from a common ferro-

electric material to store bits represented by two reversible polarization states.

• Magnetic RAM (MRAM): uses a two-layer magneto-resistive structure for data storage

and measures the resultant di�erence in resistance between the layers to readout

information.

• Spin Transfer Torque RAM (STTRAM): uses a spin-polarized current to modify the

orientation of a magnetic layer in a magnetic tunnel junction (two ferromagnetic

layers separated by a thin insulator) to store bits.

• Phase Change Memory (PCRAM): uses two reversible phases – amorphous and the

crystalline states – of chalcogenide glass.

Given the di�erences in underlying technologies, future NVRAM devices may vary in

their access times. Table 2.1 lists access times – both write (W) and read (R) – for various

Device Types FRAM MRAM STTRAM PCRAM
Access Time (W/R) 50/75ns 12/12ns 10/10ns 100/20ns

Table 2.1: Access times for various NVRAM device technologies [10]
.
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Device Types NAND Fash HDD DRAM
Access Time (W/R) 200/25 us 9.5/8.5ms 10/10ns

Table 2.2: Access times for various traditional device technologies [10]
.

NVRAM device technologies. Table 2.2 lists access times for DRAM, magnetic hard disk

drive (HDD) and NAND Flash block devices for comparison. As seen from these tables,

many technologies such as STTRAM and MRAM have access latencies comparable to the

current DRAM technology. Others such as PCRAM have higher write latency but are still

orders of magnitude better than NAND Flash or HDD. The endurance of these devices also

vary. PCRAM, for instance, have endurance similar to NAND Flash (105 cycles) whereas

FRAM, MRAM, and STRAM have endurance similar to DRAM (1016 cycles) [10]. Unlike

DRAM which has retention of 64ms (without refresh), NVRAM devices listed in table 2.1

have retention same as NAND Flash devices ( 10 years). Addressing device endurance and

wearability is beyond the scope of this thesis.

2.2 Hardware Support

Traditionally, CPU cache, in general, is functionally invisible to a program that manipulates

data in DRAM. The stores from a CPU can become visible in DRAM out of program order

as long as memory consistency model along with cache coherence protocol ensures that

it becomes visible to other CPUs in a correct order. This may not be true for data stored

in NVRAM. In future systems, data stored in NVRAM is expected to be accessible using CPU

load and store instructions. Consider an example below where some data is being written

before the valid bit is being set.

1: store data "moon"

2: store valid "1"

If store 2 becomes visible in persistent domain (e.g. NVRAM) and power recycle occurs

while store 1 is only present in a transient domain, e.g. CPU cache, the persistent data
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invariant is violated as a valid bit is set when the data �eld in NVRAM contains garbage.

Therefore, being able to order stores visibility to NVRAM is crucial to maintaining persistent

data consistency. Given volatile write-back CPU caches may continue to exist in future

systems with NVRAM and may cache persistent data updates, a persistent memory application

needs to be able to make these cache lines visible in NVRAM in a correct order.

2.3 ISA Extensions:

Intel x86-64 ISA traditionally provides CLFLUSH instruction to invalidate a cache line

by its virtual address such that it gets eventually written back to the memory system.

This instruction is supported by most Intel x86-64 bit CPUs. This instruction has several

drawbacks. First, it stalls the CPU pipeline and thus serializes the execution. Second, it

invalidates the cache line, thus next read/write to the cache line is a miss. Lastly, it only

evicts data to the memory subsystem and does not guarantee that the data has reached the

persistent domain.

In anticipation of NVRAM, Intel announced an extension to its x86-64 bit ISA [11], which

includes CLFLUSHOPT, an optimized version of CLFLUSH. Unlike CLFLUSH, it does

not stall CPU (unordered) and thus the execution of one or more CLFLUSHOPT may

overlap. A CLFLUSH operation is only ordered by a full memory fence (e.g. MFENCE),

whereas CLFLUSHOPT is ordered by store fence (e.g SFENCE). Intel also introduced

another instruction, namely CLWB, which is ordered by SFENCE and writes back a cache

line without invalidating it.

All the instructions mentioned above ensures that a cache line reaches a write pending

queue (WPQ) in the memory controller. In Intel systems with NVRAM, WPQ is expected to

be in the persistent domain. In this light, Intel deprecated the instruction PCOMMIT which

was introduced brie�y as a means to �ush WPQ in systems where WPQ in a memory

controller was not incorporated into the persistent domain. Combination of CLWB and

SFENCE is enough to order the visibility of persistent stores in Intel architecture where

WPQ is in the persistent domain [12]. This is expected to be the case for all future systems
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with NVRAM.

Likewise, ARM has introduced an instruction DC CVAP to clean virtual address to the

point of persistency in Armv8.2 [13].

2.4 Research Ideas/Prototypes

Several ideas have been proposed to make persistent stores visible in NVRAM while exposing

persistent stores concurrency as much as possible at the hardware level. We discuss some

of them below.

Epoch Barrier: Condit et al. proposed a hardware modi�cation in CPU cache to

separate persistent writes into epochs [14]. A set of writes are separated into epoch by

epoch barrier. Each cache line is tagged with epoch id. Whenever a cache line belonging

to a speci�c epoch is evicted, it triggers cascading writes of all cache lines belonging to

earlier epochs. This approach requires tagging cache line with epoch id and tracking oldest

in-�ight epoch per CPU.

Strand Persistency: Pelley et. al. suggest a mechanism where a set of stores from the

same CPU are divided into strands by a strand barrier [15]. Stores from di�erent strands

are made visible concurrently. Within a strand, persist barrier can be used to order store

visibility. This approach requires store dependence tracking at the hardware level for

ordering requirements.

2.5 Summary

The access latency for most future NVRAM devices seems to be similar to DRAM. Furthermore,

with the extension of persistence domain to the memory controller and write pending

queue within it (as seems to be the case for Intel architecture), write latency of actual

NVRAM devices may not be of a large concern to persistent memory programmers.
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ISA architecture is continuously evolving to enable programmers to use NVRAM as a byte-

addressable persistent medium without incurring a large performance penalty for keeping

persistent data consistent across power recycles and failures. Systems with extended

architecture and NVRAM are still not widely available to programmers and researchers,

and the ISA itself appears to be continually evolving. Several other approaches requiring

hardware modi�cations have been proposed but are limited to research ideas or prototypes.

A large body of work on programming models and programming libraries predates these

ISA extensions. Simulation-based studies are equally likely to be inaccurate in the face of

evolving device technology and system architecture. Hence, in the absence of extended

ISA and/or due to lack of wide availability of new hardware support, programming library

and runtime developers/researchers have largely relied on existing instructions such as

CLFLUSH and MOVNTQ (move with non-temporal hint) to design programming libraries

for NVRAM and to roughly estimate their performance [16–19]. This may change in the

future with better access to new hardware.
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Chapter 3

NVRAM Persist-Reuse Programming Model

Persistent data stored in NVRAM are useful only if they are consistent; in particular, their

invariants must be preserved. Even in the presence of NVRAM, there will be volatile bu�ers

and caches in the memory hierarchy, simply because of the performance advantages they

provide. This implies that during program execution, some of the states may reside in

volatile structures and the rest in NVRAM. Figure 3.1 shows a simpli�ed version of the archi-

tectural model that we assume; it is in part based on the Intel x86-64 architecture [20].

The CPU core may temporarily keep each store to memory in a store bu�er. The store

bu�er improves performance by hiding the latency of cache and memory accesses. Cer-

tain instructions such as memory fences result in draining the store bu�er. As shown in

�gure 3.1, we assume that DRAM and NVRAM may co-exist in the same memory system.

As �gure 3.1 shows, even in the presence of NVRAM, volatility remains an important

part of the memory hierarchy. If the program crashes because of a hardware or power

failure, only the state present in NVRAM at the time of the crash will survive a restart. Any

state that was present in volatile structures at the time of the crash is lost. Hence, the

challenge is to ensure that at any point of program execution, there is enough information

on NVRAM to reconstruct a consistent state of the program data structures.

Using low-level hardware primitives described in chapter 2 to maintain the consistency

of persistent data stored in NVRAM diminishes programmability. Several NVRAM programming

libraries have been developed which enable programmers to maintain persistent data

in NVRAM and manipulate them in a fail-safe manner [16, 17, 21]. These independently

developed libraries support the common persist-reuse model described below. Figure 3.2

shows pseudocode written using this persist-reuse model.
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Figure 3.1: A Simpli�ed Architectural Model
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3.1 Persistence Designation

An NVRAM application may persist one or more data structures such as a queue, an array

or other program variables in NVRAM. Such a data structure is designated as persistent by

explicitly allocating it in NVRAM.

This approach is in contrast with earlier pre-NVRAM persistence programming models

such as orthogonal persistence [22]. In orthogonal persistence, all objects were allocated the

same way, and hence all allocated objects are potentially persistent. The persistence is based

on the liveness of the variable and/or its reachability from other persistent objects. This

required pointer reachability analysis at di�erent program points incurring performance

penalties. Furthermore, transient objects such as network sockets, and user passwords

may undesirably become persistent under such a scheme. Such undesirable persistence

of data also unnecessarily increases the size of persistent data. Under the persist-reuse

model described here, only the user-desired data becomes persistent. However, this puts a

burden on a programmer to correctly identify such persistent objects. In the example in

�gure 3.2, line 1 shows a node of a persistent queue being explicitly allocated.

3.2 Persistent Data Failure-safe Updates

Persistent data in NVRAM is stored in the same format as it is manipulated. This single

format makes it possible to manipulate often times a single copy of persistent data in

NVRAM directly using CPU load/store instructions. Such modi�cations need to take place

in a failure-safe manner. In an example in �gure 3.2, the node allocated in line 1 is being

initialized in 2, and �nally being attached to persistent queue in NVRAM in lines 4–7. In this

example, stores associated with lines 1, 2 and 3 need to be visible in NVRAM before stores in

lines 4–7. Additionally, stores from 4–7 need to be visible in NVRAM on-all-or-nothing basis

w.r.t failures and power recycle.

A programming library implementing this programming model may provide tools to the

programmer to identify a section of code that requires failure safety guarantees. The library

may then enforce proper ordering and atomicity of stores based on programmer directives.
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Mnemosyne, one such NVRAM programming library that implements this programming

model, for instance, o�ers software transactional memory to programmers as a means to

enforce failure atomicity. As the readers will observe in the following chapters, the failure

atomicity and store ordering can also be largely inferred automatically for certain class of

legacy code.

This approach is also di�erent than the approach taken traditional orthogonal persis-

tence. To uphold the design principle of "persistence independence", orthogonal persistence

allows a programmer to write code independent of persistence or potential persistence of

the data that the code manipulates [22].

3.3 Restart Code

The central goal of failure safe updates mentioned in the previous section to transition

persistent data stored in NVRAM from one consistent state to another. The programmer is

responsible for writing restart code that adjusts the programming context after failure or

power recycle based on the consistent persistent data in NVRAM. A restart code is never

expected to see an inconsistent version of the persistent data. Depending on the imple-

mentation strategy, the library implementation of the programming model may use some

post-failure recovery logic (e.g persistent logs replay) to restore the state of the persistent

data in NVRAM to a consistent state before user-written restart code accesses such data. In

the example in �gure 3.2, restart code in lines 8–9 re-initializes the head and tail pointers

of a queue with values from NVRAM.

3.4 Persist-Reuse Model vs. Checkpoint-Restart

Persist-Reuse Model is much di�erent that system level checkpoint- restart (SLC) and

closer to application-level checkpoint-restart (ALC). In SLC, a programmer may be able to

de�ne the frequency of checkpoint, but since the checkpointing happens usually at the OS

level, the whole state of execution is usually saved as a snapshot [23]. Such a snapshot may

contain register states, call stack, program variables and so on. The persist-reuse model is
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much more focused on the state of the certain application data rather than the state of the

whole execution.

Some similarities exist between ALC [24] and persist-reuse model in the sense that

programmer much more control over what program variables and data are important to be

saved for later use. However, the emphasis of ALC to recreate the state of computation to

last check-pointed state on restart. As a result, ALC may still need to save more information

about transient program states, which is not typically done under the persist-reuse model.

Persist-reuse model is much data-centric (as opposed to execution-centric) in the sense that

persist-reuse model only concerns with advancing the state of persistent data in NVRAM. For

example, 10 threads may be adding nodes to a persistent queue under persist-reuse model

before a failure occurs. When the application restarts, it initializes from the last consistent

state of the queue (i.e. queue with a certain number of nodes added to it) before the failure

occurred and may resume with a single thread or 20 threads. Alternatively, unlike the ALC,

persist-reuse model does not necessarily attempt to recreate the exact execution scenario

before failure. Furthermore, the persist-reuse model allows a single copy of user data to be

continually updated and the same copy becoming the basis of restart later. This is also

not the case with checkpoint-restart where a snapshot is stored separately in a possibly

di�erent format and never manipulated directly.

3.5 System Assumptions

In the face of evolving hardware architecture, much of the contemporary work on the

persist-reuse programming model for NVRAM (e.g. Mnemosyne, NV-Heaps, Atlas, Pmem.io)

make following general assumptions about the underlying hardware. It is assumed that the

access latency of durable data stored in NVRAM is comparable to transient data stored in DRAM.

At the lowest level, initial NVRAM devices may make trade-o�s resulting in write latencies

appreciably longer than DRAMas discussed in chapter 2. But this increased latency may

not be user visible. It appears likely that memory controllers will have enough capacitive

power backup such that write requests, once accepted by the memory controller, can be
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viewed as persistent. A recent decision by Intel to ensure that persistence domain extends

to write pending queue in memory controller seems to con�rm this case for the future

(see chapter 2) [12]. Even if the power and the CPU die, the controller will ensure that

accepted requests are written. Hence, the actual write latency to the NVRAM device may not

matter for our purposes. Hence, unless otherwise noted, NVRAM is simulated by DRAM using

Linux RAM disk [25] throughout this thesis work.

This thesis work, similar to other related work on persist-reuse programming model,

also assumes that persistent data stored in DRAM and transient data stored in NVRAM

are addressed using the same virtual address space.

A fail-stop model is assumed throughout this thesis and does not address partial failure

scenarios. If a component of a system fails, the whole system is expected to fail. Process

crash, power outage are all assumed as tolerated failures and once such failure happens,

the system halts until it is restarted.

The work in this thesis, along with much of the related work, uses CLFLUSH and

MFENCE instructions when estimating persistence programming performance overhead

instead of new cache management instructions described in section 2.3. This approach is

taken for the following two reasons. First, actual hardware with extended ISA is not widely

available. Second, almost all of the related work (e.g. Mnemosyne, Atlas, nvm_malloc)

against which we can compare our work use CLFLUSH instructions instead of the new

instructions and thus doing so makes it a fair comparison. These performance estimates

using CLFLUSH are rather pessimistic, and throughout this thesis, we describe why we

expect the overhead estimate to decrease (not increase) and the performance to improve

with new and better ISA.

3.6 Summary

The anticipation of NVRAM being widely available has inspired a persist-reuse program-

ming model that is quite di�erent than the traditional approaches to persistence such as

orthogonal persistence and checkpoint-restart. Persist-reuse enables single-copy update
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and checkpointing as opposed to snapshot based checkpointing. It also streamlines the

persistent data needed to restart a program after a failure or power cycle. Unlike in the

implementation of orthogonal persistence, it does not require expensive reachability-based

analysis to determine what variables and states need to be persisted at various program

points.
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/* allocate */
1: Node* t_tmp = nvm_alloc(sizeof(Node));

/* initialize */
2: t_tmp->val = 10;
3: t_tmp->next = NULL;

/* publish */
4: BEGIN FAILURE ATOMIC SECTION
5: p_queue->tail->next = t_tmp;
6: p_queue->tail = t_tmp;
7: END FAILURE ATOMIC SECTION

/* user written restart code */
8: p_queue->head = NVM_root(0);
9: p_queue->tail = NVM_root(1);

Figure 3.2: A sample pseudocode showing persist-reuse model.
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Chapter 4

Combining Lock-based Approach with Copy-on-Write
for NVRAM Persistency

Persistent data stored in emerging NVRAM, can be accessed directly through CPU load and

store instructions. This means that the persistent data is being stored in the same format

as it is being manipulated, thus requiring only a single copy of data to be maintained, and

avoiding expensive and cumbersome conversion.

NVRAM opens up an opportunity to have in-memory object persistence so that program

states that outlive the creating process can be preserved, shared, and reused [16, 17, 19].

Using this persist-and-reuse model, a quick restart of an application from an intermediate

state appears a reality. While starting, an application looks for existing data that it can

reuse. If present, the application adjusts its context and instead of computing from scratch,

merely reuses the existing data for the rest of its computation.

Persistent data must be updated with great care so as to be reusable. Otherwise, updates

may become visible to NVRAM only partially, or not in the intended order. This may happen

as a result of failures in the middle of critical sections, volatile CPU caches, or out-of-

order cache evictions. As a result, an interruption such as a power failure may introduce

inconsistencies (e.g. dangling pointers) to persistent data in NVRAM. Hence, some set of

critical updates to persistent data must be applied on an all-or-nothing basis, and in the

correct order with respect to other updates, to guarantee the consistency of in-memory

persistent data.
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4.1 Log-based Transactional Approach vs. Copy-on-Write

Prior work [16, 17, 19, 21] in this area has focused on developing non-volatile memory

programming libraries (NVMPLs) which enable programmers to specify a failure-atomic

section (FASE) of updates to persistent data using familiar programming languages such

as C/C++. One such NVMPL Atlas automatically infers such a FASE from legacy lock-based

code. All of NVMPLs mentioned above, including Atlas, use persistent transactional logs

to enforce failure atomicity. The major drawback of this approach is the high cost of

writing and �ushing logs synchronously to NVRAM. Furthermore, automatic or manual code

changes are necessary to generate such logs. On the other hand, copy-on-write approach

to updating data is inherently failure atomic without additional code changes. Furthermore,

it does not require expensive logging. The advantage of the log-based approach is the

ability to easily add atomicity to an arbitrary set of writes at an arbitrary granularity. This

chapter of the thesis work demonstrates how the log-based transactional approach can be

combined with copy-on-write to achieve the best of both worlds.

4.2 Lack of NVRAM Applications

previous work has su�ered from the lack of benchmarks and real-world data structures that

are cognizant of NVRAM. This chapter also addresses this problem by developing an NVRAM

version of the commercially used legacy disk-based key-value store. This chapter describes

MDB-NVM, which is an NVRAM-based key-value store implemented using C programming

language. This key-value store preserves the API and the functionality of MDB [26] such

that it could be used instead of MDB-NVM out of the box. MDB is a disk-based key-value

store that is designed to replace BerkeleyDB [27] in a commercial and non-commercial

setting as an improved backend for OpenLDAP. MDB-NVM is implemented partially using

Atlas NVMPL [19] and copy-on-write mechanism for consistency. MDB-NVM played a

crucial role in the development and evaluation of Atlas.
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4.3 Contributions

This work makes the following contributions:

1. demonstrated how copy-on-write can be combined with a lock-based transactional

approach to improve programmability and lower persistence overhead.

2. developed a real-world data structure that is designed to utilize NVRAM,

3. a measurement of the cost of persisting a real-world data structures under workloads

with varying characteristics.

4.4 Atlas Programming Library

Altlas Library adds durability semantics to the lock-based concurrent programs, typically

with very little e�ort from a programmer [19]. In programs written using locks, shared data

structures are modi�ed only within a critical section, marked by lock acquire and release,

to avoid data races and guarantee their consistency. Hence, Atlas assumes that these data

structures only become inconsistent within critical sections and are consistent everywhere

else. This assumption fails in cases of single-threaded programs, data structures that

are isolated by design, or when a programmer writes non-blocking multithreaded code

using primitives such as compare-and-swap. In such cases, a programmer can specify

the section of code that requires atomicity w.r.t failure using programming construct

nvm_begin_durable and a matching nvm_end_durable. Note that this construct does not

guarantee thread-safety.

4.4.1 Failure Atomic Section and Consistency Guarantees

Locks can be acquired and released in a nested pattern. Data cannot be considered consis-

tent when any of the locks are held. Therefore, the whole outermost critical section in a

given thread has to be executed atomically w.r.t failure. This outermost critical section exe-

cuted by a thread is called the Failure Atomic SEction (FASE). FASEs between two threads

may establish a happen before relationship during the runtime through lock acquire and
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release. Note that the start and the end of the outermost critical section may not be marked

by the acquire and the release of the same lock, due to cases such as hand-over-hand

locking.

In Atlas, an execution of a FASE becomes durable (i.e. visible in NVRAMeven after a

restart) only if all updates to persistent memory made within that phase are durable. This

guarantees an all-or-nothing behavior of a FASE w.r.t failure. Furthermore, given FASEs

f1 and f2 such that f1 is sequenced before f2 as established by lock acquire and release,

the f2 is durable only if f1 is so. Lastly, Atlas ensures that if a FASE is made durable,

all updates to persistent memory that are sequenced before the FASE as established by

runtime happen-before relationships are also durable. These requirements enforced by

Atlas library maintains the consistency of persistent data structure stored in NVRAM

across failures and restarts. After failure or restart, the persistent data is in the state as

though each thread stopped execution at some program point where no locks were being

held.

4.4.2 Compiler Instrumentation and Runtime

Hidden from a programmer, Atlas uses a combination of write-ahead logs with undo

information, cache line �ushes and memory fences to ensure correct visibility ordering

of updates to persistent memory and to enforce failure atomicity. A compilation pass

instruments synchronization operations and store operations that appear directed to

persistent memory. During the runtime, the instrumented stores call the Atlas runtime

library which may create persistent logs, execute memory visibility barriers comprising of

memory fences and cache line �ushes. Atlas keeps the log structure and the log entries

themselves consistent across failures. These log entries contain su�cient information to

recreate a consistent state after a failure or a restart.

Atlas makes log entries with undo information visible in persistent memory before

stores to the corresponding locations become visible. This enables Atlas recovery to replay

the log entries to undo the e�ect of any stores that are not part of the last consistent state
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achieved. Furthermore, each log entry becomes visible in NVRAM atomically and in program

order.

Consistent State Computation A helper, separate from the worker thread computes a

consistent state from the persistent log, advances the persistent data structure’s consistent

state, and removes the log entries associated with the latest consistent state achieved. To

advance the consistent state, a helper thread creates a graph where each node corresponds

to a set of log entries associated with each FASE executed by each worker thread. The

ordered edges representing the happens-before relationship may join one or more nodes in

the graph. First Atlas marks all nodes in this graph representing FASEs as durable. Then it

marks FASEs with unmatched acquire(s) and release(s) in the FASE as incomplete and hence

non-durable. Furthermore, all nodes reachable from incomplete nodes are also marked

as non-durable. The e�ects of non-durable FASEs are not to be seen by user code after

a failure or a restart and are not part of the newly computed consistent state. Therefore,

undo information related to incomplete nodes are preserved to undo the memory e�ect in

the case of a crash or restart. The rest of the log entries associated with complete nodes

unreachable from any incomplete nodes are purged.

4.4.3 Failure, Restart, and Recovery

Under the persist-reuse model, Atlas follows, a programmer adds code that checks for the

prior version of the data available upon restart (both normal and post-failure). If the prior

version of the data is available, this "restart code", adjusts the programming context so as

to resume the computation from this data.

In the case of a failure (e.g. sudden power loss), persistent data may not be in a

consistent state. This inconsistent state is never visible to the application. Upon restart,

Atlas �rst computes a consistent state from the persistent logs and prunes the log as helper

thread may have lagged behind before the failure. Next, it replays the outstanding logs

(after pruning) associated with incomplete FASEs and un-does any inconsistent updates
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restoring the data structure to a consistent state. Once the persistent data is restored to a

consistent state, user applications may resume.

4.5 MDB-NVM: NVRAM Key-value Store

MDB-NVM stores data in persistent memory and ensures that it is always consistent. It

is thread-safe and uses a copy-on-write mechanism to avoid con�icts between read and

write transactions. Therefore, multiple read transactions can proceed alongside the write

transaction. MDB-NVM only supports one active write transaction at a time.

4.5.1 Programming Interface

Figure 4.1 lists the common method calls to interact with MDB-NVM. These interfaces are

similar to ones provided by MDB.

Initialization, Setup, and Shutdown API: mdb_nvm_env_create (line 1) creates an

environment object and stores in the location pointed by its argument. A MDB_env object

holds contains several �elds to hold information about the MDB database such as the size

of the NVRAM region to be allocated for this database etc. An NVRAM persistent region is a

named container, similar to a mmap-ed �le, that stores persistent data [19].

mdb_nvm_env_open (line 2) takes the MDB_env object, created by the call to line 1, as an

argument, initializes MDB-NVM and populates the argument object with current MDB-

NVM settings. The three arguments path, flags, and mode are not necessary and are only

preserved for compatibility with MDB. mdb_nvm_txn_begin (line 3) creates a transaction

to be used with the given environment. The parent argument is for a nested transaction

which is not currently supported in MDB-NVM, and as a result NULL can be passed as the

argument. The flag argument indicates whether the transaction is read-only or read-write.

mdb_nvm_dbi_open (line 4) opens a database referred by the name in the given environ-

ment. If the name argument is null, it opens the default database. MDB-NVM currently only

supports a single default database, and hence the name argument is ignored. MDB-NVM
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1: int mdb_nvm_env_create (MDB_env ** env)
2: int mdb_nvm_env_open (MDB_env * env, const char *path,

unsigned int flags, mdb_mode_t mode)
3: int mdb_nvm_txn_begin (MDB_env *env, MDB_txn *parent,

unsigned int flags, MDB_txn **txn)
4: int mdb_nvm_dbi_open (MDB_txn *txn, const char *name,

unsigned int flags, MDB_dbi *dbi)
5: int mdb_nvm_txn_commit (MDB_txn *txn)
6: void mdb_nvm_txn_abort (MDB_txn *txn)
7: void mdb_nvm_dbi_close (MDB_env *env, MDB_dbi dbi)
8: void mdb_nvm_env_close(MDB_env *env)
9: int mdb_nvm_put (MDB_txn *txn, MDB_dbi dbi,

MDB_val *key, MDB_val *data, unsigned int flags)
10:int mdb_nvm_get(MDB_txn *txn, MDB_dbi dbi,

MDB_val *key, MDB_val *data)
11:int mdb_nvm_cursor_open (MDB_txn *txn, MDB_dbi dbi,

MDB_cursor **cursor)
12:int mdb_nvm_cursor_get(MDB_cursor * cursor,MDB_val *key,

MDB_val *data, MDB_cursor_op op)
13:void mdb_nvm_cursor_close (MDB_cursor *cursor)
14:int mdb_nvm_del (MDB_txn *txn, MDB_dbi dbi,

MDB_val *key, MDB_val *data)
...

Figure 4.1: A non-exhaustive list of MDB-NVM API. A complete list can be found in mdb.h



25

returns the database handler object by storing it in at the address provided as the 4th

argument dbi.

mdb_nvm_txn_commit (line 5) commits the given transaction whereas

mdb_nvm_txn_abort (line 6) aborts the transaction. A read-only transaction can

be aborted with no e�ect to the database as such a transaction does not modify the

database.

mdb_nvm_dbi_close and nvm_env_close closes the database handle and destroys the

environment object created respectively. Both of these calls should only be used at the end

to cleanly shutdown the database. They should also only be called once by a single thread.

Read and Write API: mdb_nvm_put (line 9) stores a <key, data> pair into the database

indicated by the MDB_dbi database handler object (returned by line 4). Note that there is

only one default database supported in MDB-NVM at the moment. The key and data both

have to be of type MDB_val, which has the following structure:

typedef struct MDB_val {

/**< size of the data item */

size_t mv_size;

/**< pointer to the data item */

void *mv_data;

} MDB_val;

mdb_nvm_get returns the value and the size of the data associated with thekey argument

if it exists in the database. It returns the value (of type MDB_val) by assigning its address to

the �eld mv_data in the 4th argument data. The address of the data belongs to MDB-NVM

and therefore, the user application should make a copy instead of directly modifying it.

mdb_nvm_cursor_open (line 11) creates a cursor capable of traversing the entire

database. It returns the cursor handle by storing the address of the handle in the cursor

(3rd ) argument. mdb_nvm_cursor_get (line 12) returns the <key, value> pair at the current
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cursor position. The 4th argument op instructs MDB-NVM on the next position of the

cursor. mdb_nvm_cursor_close (line 13) destroys the cursor handle.

Finally, mdb_nvm_del (line 14) deletes the <key,value> pair matching the given key

from the database if it exists. This operation requires the transaction to be opened in the

read-write mode just like the put operation. Figure 4.2

4.5.2 Internal Structure

MDB-NVM is thread-safe, and failure-safe. MDB-NVM stores user data in persistent

memory maintain its consistency. It maintains only the essential metadata about the

database in persistent memory to minimize the cost of persistence. Rest of the metadata is

recreated from the persistent metadata and maintained in transient memory. We discuss

and distinguish below transient vs. persistent metadata:

Persistent B-tree

MDB-NVM stores <key, value> pairs as a B-tree [28]. Each node in the B-tree is system

page size, typically 4096 bytes. This B-tree is stored in an NVRAM persistent region (see sec-

tion 4.5.1), and updated using copy-on-write mechanism. When a new environment is

opened, MDB-NVM looks for the existing NVRAM region containing MDB-NVM database.

If it does not �nd the already initialized persistent region, it creates a new one. Figure 4.3

shows the code snippets from the MDB-NVM initialization routine.

Persistent Metapages

At the beginning of the persistent region, MDB-NVM allocates two identical metapages.

At any given time, only one metapage is active, and all transactions start at the active

metapage. A write transaction toggles the active metapage between the two. An active

metapage stores a pointer to the current version of the database, a current list of unallocated

(free) pages belonging to the persistent region, the id of the last write transaction that

toggled the metapage, a bump pointer keeping track of the last page (highest virtual
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#include "mdb.h"
....
void update_mdb_nvm(){

MDB_env *env; MDB_dbi dbi;
MDB_val key, data;
MDB_txn *txn;
int key;
char sval[32];
int rc;

rc |= mdb_nvm_env_create(&env);
//sets the size of persistent region to be allocated
rc |= mdb_nvm_env_set_mapsize(env, 10485760);
rc |= mdb_nvm_env_open(env, NULL, NULL, NULL);
rc |= mdb_nvm_txn_begin(env, NULL, 0, &txn);
rc |= mdb_nvm_open(txn, NULL, 0, &dbi);

key = 12;
key.mv_size = sizeof(int);
key.mv_data = &key;

sprintf(sval, "foo bar soo boo");
data.mv_size = sizeof(sval);
data.mv_data = sval;

rc |= mdb_nvm_put(txn, dbi, &key, &data, MDB_NOOVERWRITE);
rc |= mdb_nvm_txn_commit(txn);
ASSERT(!rc);

}
...

Figure 4.2: A simple prpgram that inserts a key-value pair into the MDB-NVM
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#include "mdb.h"
....
int mdb_nvm_env_open(MDB_env *env, const char *path,
unsigned int flags, mode_t mode)

{
....
NVM_Initialize();
//initialize a persistent region
env->me_rgnid = NVM_FindOrCreateRegion("mdb", O_RDWR, NULL);
....
if (newenv) {

//allocate large chunk of memory within the region
env->me_map = nvm_alloc(env->me_mapsize, env->me_rgnid);
...
//initialize persistent metadata
mdb_nvm_env_init_meta(env, &meta);

}

//initialize here env object from the existing metadata
...

}
...

Figure 4.3: A Code Snippet showing the creation of a MDB-NVM persistent region



29

address) in the persistent region currently in use by MDB-NVM. MDB-NVM attempts to

reuse earlier allocated free pages before incrementing this bump pointer.

Transient Reader Table

MDB-NVM maintains a transient table of all threads that have opened a read-only transac-

tion to the database during any given execution cycle. Each unique thread has a slot in this

transient table. For each thread that opens the read-only transaction, MDB-NVM stores the

current version of the database that the thread is using. The current version is indicated by

the transaction id of the last write transaction that created the active metapage pointing to

the most current database (which the read-only transaction will be using).

Each thread acquires a "read" lock to create a slot in this table when accessing database

for the �rst time in read-only mode. Once the slot is created, subsequent read-only access

does not require any lock acquisition. This table is not relevant from execution cycle

to another and hence is not persisted. The transaction id of the last write transaction

is already recorded in the metapage. By comparing the transaction id contained in two

metapages, the restart code can determine which metapage contains the latest version of

the database. Note, that there is one slot per thread in this table. Therefore, MDB-NVM

cannot support more than one outstanding transaction per thread.

4.5.3 Persistent Memory Management

All persistent memory allocation in MDB-NVM happens at page-size. Recall that MDB-

NVM modi�es the B-tree that stores <key, value> pairs using the copy-on-write mechanism.

Each time a node has to be modi�ed, it allocates a page from the list of free pages maintained

in the active metapage, copy the content from the old page to the newly allocated page,

and apply the changes to the newly allocated page. The old page is added to the list of free

pages and eventually reused.

The list of free pages is indexed by the transaction id of the write transaction that last

wrote to these free pages. The list is sorted by the transaction id - the most recently written
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pages are added to the end of the list. Each time a page has to be allocated, MDB-NVM

starts at the beginning of the map, i.e entry with the lowest transaction id (the earliest

written page). Each page has a transaction id, indicating the last transaction that wrote

to the page. It tallies this transaction id with the lowest of all the transaction ids for all

readers found in the transient reader table. If the lowest transaction id found in the reader

table is higher than the free page transaction id, the page is safe to be reused as no reader is

reading from this page or will read from this page in the future. Thus, the page is allocated

for a new node. If there are no eligible pages in the free list, a new free page is obtained by

incrementing the bump pointer stored in the active metapage.

Miscellaneous Transient Structures

All other data structures such as MDB-NVM environment handler object (MDB_env),

database handler object (MDB_dbi), transaction handler (MDB_txn) or cursor handler

(MDB_cursor) are allocated in transient memory (see section 4.5.1 for interface description).

These structures either merely replicate the information stored in persistent metapages.

All transient de-/allocations are performed using standard C malloc/free library calls.

4.5.4 Read-Only Transactions

A read-only transaction cannot modify the MDB-NVM database. Therefore, the operations

are limited to get, and database traversal. Each thread initiating a read-only transaction for

the �rst time registers itself in the reader table as described section 4.5.2. In each subsequent

read-only access, the thread �rst copies the metadata �elds such as the root of the current

version of the database, the transaction id of the write transaction that created the current

database version from the active metapage into the transient transaction handler object

associated with the current read-only transaction. It also updates its entry in the reader

table with transaction id from the metapage. Next, all gets and database traversal requests

proceed from the database root stored in the transaction handler. The handler can be

discarded at the end by aborting the transaction.
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4.5.5 Read-Write Transactions

MDB-NVM only allows one read-write transaction to be active at a time. To prevent

another thread from starting the read-write transaction, MDB-NVM requires a thread to

acquire a write lock, set the �ag to indicate a read-write transaction in progress, and release

the lock. All other subsequent attempts to start read-write transaction wait conditionally

on this �ag to be unset. The �ag is unset once the transaction is committed. A thread

that sets the �ag successfully copies the metadata in active metapage into the transaction

handler. This includes the root (pointer) to the current version of the database and the

list of free pages. Each time, it has to modify a node which is stamped with the current

transaction id, the thread allocates a new page (as described in section 4.5.2), stamps the

new page with the new incremented transaction id, copies the existing page (node) to the

new page, modi�es the new page. Each old version of the modi�ed node is added to the

new list of free pages as deallocated pages. Recall that deallocated pages are only used if

they are safe to do so (i.e. no potential readers are active, (see 4.5.2).

To commit the transaction, the following steps occurs atomically with respect to failure:

1. A new root to B-tree is formed as a result of updating the database using copy-on-

write semantics. This new currently stored in the transaction handler is copied to

the non-active metapage.

2. The pointer to a new list of free pages is copied to the non-active metapage.

3. The new incremented transaction id to represent the ongoing read-write transaction

is written to the non-active metapage.

4. Other miscellaneous persistent data is copied from the active metapage and from

the transaction handler to the non-active metapage.

The above set of failure atomic steps ensures that transactions are published in persis-

tent memory on an all-or-nothing basis. Once this completes, the updated metapage is

toggled to active. It also ensures that persistent memory pages are not leaked permanently.

If a failure were to occur before the transaction committed, the existing version of the
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database continues to serve as the most recent version. Also, the existing free pages list is

una�ected. Thus the persistent state of the database remains intact.

#include "mdb.h"
...
mdb_txn_commit(MDB_txn *txn)
{

...
NVM_BEGIN_DURABLE();

//free page list
meta->mm_dbs[0] = txn->mt_dbs[0];

//database root
meta->mm_dbs[1] = txn->mt_dbs[1];

//bump pointer, max page within PR
meta->mm_last_pg = txn->mt_next_pgno - 1;

//new transaction id stamp
meta->mm_txnid = txn->mt_txnid;

NVM_END_DURABLE();
...

}
...

Figure 4.4: A Code Snippet showing the creation of a MDB-NVM persistent region

Failure Consistency: The above failure atomicity is designated using Atlas program-

ming construct nvm_begin_durable and nvm_end_durable. Figure 4.4 shows this failure

code section in MDB-NVM. Note that this failure atomic section is outside the critical

section. The write locks were released immediately after setting the �ag. The write lock

could have been held for the entire duration of the write transaction. This would cause

Atlas to log each persistent write during the transaction, incurring high failure consistency
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cost. To avoid the cost of logging and publishing the log, MDB-NVM uses copy on write

mechanism to publish transactional updates on an all-or-nothing basis. This minimizes

Atlas logging to the small section of the code above.

Although Atlas does not perform logging outside the failure atomic section described

above, it tracks all persistent writes within the read-write transaction leading up to the

failure atomic section (FASE) de�ned by nvm_begin_durable and nvm_end_durable. Recall

that Atlas guarantees the visibility of all persistent writes sequenced before a FASE before

the e�ect of executing a FASE is visible in NVRAM. Therefore, all updates to nodes become

visible when the e�ects of the FASE are published in NVRAM.

Once the active metapage is toggled, the thread acquires the write lock again, unsets

the �ag indicating active write and releases the write lock. This completes the transaction

commit. All new read-only and read-write transactions proceed from the root in the new

metapage. Thus we achieve failure consistency at a much lower cost using copy-on-write

for updating non-metadata pages.

4.6 MDB vs. MDB-NVM

MDB-NVM preserves the interface of MDB, but di�ers drastically in its internal structure

and how a read-write transaction is committed. First, MDB performs all the modi�cations

during a read-write transaction to transient nodes and uses �le I/O to persist these nodes.

Hence, they do not have to address the challenges of persistent memory leaks, and in-place

updates of persistent memory regions. This simpli�es the memory management aspect

of MDB. Furthermore, MDB read-write transactions are oblivious of failure consistency

performance implications. For instance, a writing thread holds a lock for the entire duration

of the write transaction.

4.7 Methodology

Since real NVRAM devices are not yet available17, DRAM was used for simulating NVRAM.

Linux tmpfs [25] was used for “persisting” data and logs. A �le in tmpfs is backed entirely
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by DRAM (instead of disks) and is memory-mapped into the address space of a process.

Although data in tmpfs does not persist past a system shutdown, it provides a directly

mapped, byte-addressable persistent memory across process shutdowns. We successfully

performed crash-recovery testing of these programs but a more extensive testbed is required

for full correctness testing. Unless otherwise stated, experiments were performed on a

Red Hat Linux machine with 4 Intel quad-core Xeon E7330 processors running at 2.4GHz.

Results are averages over 6 runs. We compiled the MDB-NVM library using Atlas compiler.

The benchmarks do not require Atlas instrumentation MDB-NVM transactions provide

failure consistency guarantees, hence they were compiled using regular GNU C compiler.

4.8 Benchmarks

We used the following benchmark to evaluate MDB-NVM implemented using Atlas:

mtest: The workload, Mtest, belongs to the MDB test suite. It �rst inserts 3000 key/value

pairs within a single transaction, where each key is a 4-byte integer and each value is a

32-byte string. Next, it iterates through all the key/values inserted. Then, it deletes some

entries where each deletion is a separate transaction, followed by two iterations - forward

and reverse - of the entries remaining.

Fillseqsync: This workload is taken from the Google levelDB benchmark suite [29].

It inserts 1 million pairs of 16-byte key and 100-byte value in a sequential order of keys.

It perform insertions in multiple batches of key/value pairs, each batch being in its own

transaction.

Fillrandomsync: This workload is also taken from the Google levelDB benchmark

suite [29]. It inserts 1 million pairs in random key order. Like the previous benchmark, it

also performs inserts in multiple batches, each batch being its own transation.
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mt-bench: Working in parallel, a writer thread inserts 3000 key/value pairs within

a single transaction, another writer thread performs some deletions, each in its own

transaction, and each of 5 reader threads scans the existing entries in forward and reverse

orders.

4.9 Results

Two sets of results are presented. The �rst set of results compares the performance of Atlas-

enabled MDB-NVM against the disk-based MDB and measures the gain in performance

from using NVRAM-enabled applications. The second set of results measures the cost of

NVRAM persistence and identi�es quantify some of the sources of overhead.

Disk-based performance Comparison: In �gure 4.5, column 2 shows the total time

taken by the Atlas-enabled in-memory persistent version of each workload. Column 3

is a measure of the speedup obtained with Atlas (between 3x and 31x) over a disk-based

version with disk-subsystem-write-caching enabled. The evaluation machine has a RAID

system with a 512-MB battery-backed DRAM write cache, considered reliable by the RAID

controller. Column 4 shows the speedup obtained when there is no disk-subsystem write-

caching. The numbers in column 4 are obtained by re-running the workloads on an HP

Z600 workstation containing 2 quad-core Intel E5620 Xeon processors (2.4GHz) running

Red Hat Linux. These results demonstrate that a signi�cant performance improvement

can be obtained by using NVRAMbased in-place persistence over the disk-based persistence.

Cost of Persistence: To measure the source and the cost of persistence, the benchmarks

are run in di�erent Atlas modes as described below:

• Transient (TR): This is the base mode with transient data structures alone.

• Atlas (AT): This is the default mode in Atlas and uses all the optimizations [19].

• No-helper (NH): This mode is the same as AT, except that the helper thread is turned

o�, which means no log pruning.
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• Log-only (LO): This mode is the same as AT, except that all visibility barriers are

removed.

Column 2 and 3 in Figure 4.6 shows the problem size and the single threaded runtime

for the transient version of MDB-NVM respectively for the benchmarks listed in column

1. Columns 4, 5 and 6 present the ratios of sequential transient runtime (column 3) for

each benchmark to di�erent Atlas modes described above. The transient version of MDB-

NVM was obtained by compiling MDB-NVM with ordinary GNU C compiler and using a

mmap-ed �le instead of persistent region. Ratios in column 4 show that the persistence

comes at a cost, while ratios in column 5 show that the Atlas helper thread does not add

much performance overhead. Finally, ratios in column 6 con�rm that cache line �ush

instructions and memory fences are signi�cant sources of persistence overhead.

The cost of persistence below is estimated using CLFLUSH instruction instead of new

instructions for cache management such as CLWB (see section 2.3). This is a pessimistic

estimate and we expect the performance of MDB-NVM to improve further with the

instruction for the following reasons. Each combination of CLFLUSH and MFENCE used in

MDB-NVM is replaceable with CLWB and SFENCE combination, which is expected to have

better performance. A further optimization is possible as only a single SFENCE is required

at the end of the copy-on-write phase for all the CLWB issued during the copy-on-write

phase because those updates only need to be guaranteed to be visible by the time the new

metadata page updates are visible. The programming techniques described in this chapter

remain relevant.

4.10 Related Work

There are many key-value stores available such as TokyoDB [30], BerkleyDB [27] which

predate NVRAM. These key-value stores are not designed with NVRAM as a focus. In general,

there is a lack of real-world data structures designed to take advantage of NVRAM. A key-

value store targeting NVRAM was published around the same time this work was carried

out [31]. Venkataraman et. al. presented distributed key-value store targeting NVRAM [32].
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Their work predates this work. The work described here di�ers from their work as MDB-

NVM lends itself to be used with a wider range of NVRAMprogramming libraries supporting

various failure consistency semantics.

Various programming libraries have been developed to aid the programmer in devel-

oping applications that take advantage of persistence provided by NVRAM. Besides Atlas,

Mnemosyne [16], NV-Heap [17], Pmemio [21] are all examples of programming libraries.

Mnemosyne adds persistence semantics to transaction-based programs and uses write-

ahead persistent redo logs to enforce failure consistency. For MDB-NVM, one can expect

the persistence overhead to be similar to Atlas as MDB-NVM requires logging in a limited

area of code. However, implementing MDB-NVM is possibly easier with Atlas compared to

Mnemosyne, as the persistent writes outside the FASE are automatically tracked and made

visible by Atlas before making the subsequent FASE visible. In Mnemosyne, a programmer

has to explicitly request for persistent writes outside the transaction to be published.

4.11 Summary

Through the designs of common data structures such as the key-value store, this work

showed how to design a persistent data structure to take advantage of NVRAM while mini-

mizing the cost of persistence. While this work showed developing a persistent algorithm

using one such programming library Atlas, the general technique such as using the combi-

nation of copy-on-write and logging-enabled failure atomic section is generally applicable

for other programming libraries such as Mnemosyne [16].
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Figure 4.5: In-memory vs disk-based persistence: Disk-c: disk caching enabled, Disk-unc:
disk caching disabled

Benchmarks Problem Size TR sequential runtime (us) AT NH LO
mtest 3000 122695.0 5.0 4.9 3.0

Fillseqsync 1000000 6130 6.5 6.5 3.6
Fillrandomsync 1000000 7020 5.7 5.8 3.3

mt-bench 3000 22145 3.6 3.5 2.2

Figure 4.6: Sources of persistence overhead and the cost of persistence.
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Chapter 5

Recoverable Allocation of Non-volatile Memory

Prior work [16, 17, 19] in this area has focused on developing non-volatile memory pro-

gramming libraries (NVMPLs) which enable programmers to specify a failure-atomic section

(FASE) [19] of updates to persistent data using familiar programming languages such as

C/C++.

This work focuses on e�cient memory management of persistent memory, an issue that

was largely sidestepped by previous work. In addition to ensuring that online allocations

and deallocations are e�cient, two primary challenges are addressed here:

1. Allocator metadata consistency: The internal invariants have to be maintained in

NVRAM in a fail-safe manner across restarts and tolerated failures to continue to

allocate memory correctly.

2. Failure-induced persistent memory leaks: If persistent memory is allocated but a

failure occurs before an application handle can be assigned to that memory, that

memory location is essentially leaked since it is unreachable on program restart.

This paper describes Makalu1, a persistent memory allocator that uses o�ine garbage

collection (GC) to provide leak-freedom. Persistent data has two distinct phases with

respect to a mutator application: (1) online, when the mutator is active and (2) o�line,

when the mutator is absent, but the heap is still accessible. After a failure, once the

NVMPL restores persistent data to a consistent state, Makalu performs the parallel mark

phase of mark-and-sweep GC o�ine followed by incremental sweeps online to avoid both

1 Makalu is the �fth highest mountain in the world. Its four-sided pyramid shape represents the challenges
this work simultaneously addresses: memory management, garbage collection, persistent vs transient data,
and failure-resilience.
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failure-induced and programmer-induced leaks. This approach enables us to interoperate

with other NVMPLs, while supporting unrestricted online usage of standard de-/allocation

interfaces within a C/C++ program.

Makalu has built-in failure-resilience and recovery mechanisms to guarantee con-

sistency of its metadata without depending on any NVMPL. Note that Makalu does not

determine what data needs to be persisted or the structure of the persistent data. It only

determines the structure of the heap in NVRAM.

Makalu’s approach achieves interoperability with existing code while providing a safety-

net against all sources of memory leaks. By having the o�ine GC restore certain metadata,

it avoids the need to ensure full consistency of metadata at every allocation, normally

an expensive online operation. Makalu’s raw online allocation speed and multi-threaded

scalability are comparable to well known transient allocators, a tremendous improvement

compared to state-of-the-art persistent allocators. Makalu has been integrated with two

NVMPLs, Atlas and Mnemosyne, and it saw up to 2x speed improvement in some scienti�c

applications compared to NVMPLs’ default allocators. This observation leads one to believe

that o�ine garbage collection may become an integral part of future NVRAM memory

management schemes.

5.1 Contributions

This work makes the following contribution:

1. A careful analysis of the requirements and opportunities for NVRAM memory alloca-

tion.

2. A set of techniques that result in an NVRAM memory allocator that is often competitive

with widely used DRAM allocators, and provides failure consistency at orders of

magnitude lower cost than prior approaches.

3. A demonstration that recovery time garbage collection not only simpli�es the pro-

gramming model, but also, by allowing reconstruction of metadata at recovery time,
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greatly speeds up NVRAM memory allocation. The o�ine GC is performed at a small

fraction of the cost of general GC.

5.2 Background

5.2.1 Architectural Assumptions

This work makes similar assumptions about the underlying architecture as found in prior

NVMPL work [16, 17, 19]. NVRAM is assumed to retain data through tolerated failures, such

as power failures. For convenience, NVRAM latency is assumed to be comparable to DRAM,

which may or may not be present. At the lowest level, initial NVRAM devices may make

trade-o�s resulting in write latencies appreciably longer than DRAM. But this increased

latency may not be user-visible. It appears likely that memory controllers will have enough

capacitive power backup such that write requests, once accepted by the memory controller,

can be viewed as persistent. Even if the power and the CPU die, the controller will ensure

that accepted requests are written. Hence, the actual write latency to the NVRAM device

may not matter for the purposes of this work.

NVRAM endurance is expected to be orders of magnitude better than that of SSDs [2, 7]

but solutions have been proposed [33] if wear-out is a concern. This work does not address

NVRAM endurance issues.

Several levels of volatile caches and potentially other volatile bu�ers exist between

the CPU and NVRAM. This work assumes a tolerated failure (such as a process crash, an

OS kernel panic, and a power failure) to be fail-stop. In such an event, the data that are

already in NVRAM survive, but other data in volatile hardware structures do not.

Instructions are available to selectively evict or �ush a cache line from the volatile

caches into NVRAM (such as Intel x86 CLFLUSH [20] and CLWB [11]). Once evicted, these cache

lines will eventually reach memory. These instructions are expensive [16, 19] and should

be sparingly used.
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Root 0

Root 1

Root 2

Root 511

Figure 5.1: A snapshot of persistent heap with heap objects reachable from top level region
roots within a NVRAM region.

5.2.2 Programming Assumptions

NVRAM is mapped directly into the process address space without any bu�ering and is

accessible using CPU loads and stores. Persistent data is stored in named containers (a

concept similar to mmapped �les) called NVRAM regions. A persistent heap exists within the

realm of an NVRAM region. When a heap is in a consistent state o�ine, all useful data that

should be accessed upon restart must be reachable from a set of known persistent roots,

otherwise, data can be considered garbage and reclaimed. In Makalu, there are 512 top-level

region roots stored in known locations within the NVRAM region. These assumptions are

similar to ones made by most current NVMPLs [16, 17, 19, 21]. Figure 5.1 shows a sample

persistent heap along with top level roots. This work assumes that an NVRAM region is

always mapped at the same base address so that existing persistent-to-persistent pointers

embedded in it remain valid, while persistent-to-transient pointers are ignored by the

o�ine GC. With more precise pointer identi�cation in the future, the o�ine GC phase can

automatically clear such pointers for the programmer.

This work assumes that Makalu will be used in conjunction with other NVMPLs. The

usage model requires the programmer to identify persistent data and manage them within

an NVRAM region using malloc/free-like calls. Like much recent research in this area [16,
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19], this work assumes an explicit persistence model where persistent data are directly

identi�ed by the programmer at allocation time. In the context of this work, this persitence

designation is done by using Makalu’s APIs to allocate such data. This is in contrast to

reachability-based persistent schemes [22, 34, 35] where programmers are not required to

indicate persistence at object allocation time; instead, all data reachable from a persistent

root must be made persistent. Failure-resilience of persistent data has a cost and the

programmer may not want arbitrary data, such as passwords, to be transparently persisted.

Thus this work chooses to favor explicit programmer control, also avoiding implicit

reachability scans during execution.

Note that Makalu only guarantees the consistency of persistent heap structure, and

not of the data stored within. The latter is expected to be provided by the NVMPL in use.

5.2.3 Terminology

Some commonly used memory allocation terms have the following meaning in this paper:

Memory object: A contiguous sequence of bytes in a persistent heap. The starting address

is returned by the allocator while ful�lling a memory allocation request and the size

corresponds to the number of bytes actually allocated.

Granule: The unit of actual memory allocated. In Makalu, all memory requests are

rounded up to some multiple of the granule size, which is 16-bytes.

Block: A larger �xed-size contiguous sequence of bytes of virtual address space that can

be divided into smaller memory objects to ful�ll memory requests. In Makalu, the default

size of a block is 4096 bytes (same as the page size in common operating systems). The

starting address of a block is always page-aligned in Makalu.

Chunk: A contiguous sequence of one or more block(s).

5.3 NVRAM Allocator Challenges

Traditional factors, such as memory consumption and allocation speed, have historically

in�uenced the design of transient memory allocators. Designing a persistent memory
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allocator for NVRAM o�ers the following additional challenges.

5.3.1 Failure-Induced Inconsistencies

A failure in the middle of updating the allocator’s metadata can lead to metadata inconsis-

tencies. This work categorizes such inconsistencies as internal w.r.t the allocator. Such

internal inconsistencies often have disastrous consequences such as a failure to restart

properly, erroneous re-allocation of memory objects currently in use, or the leakage of

large chunks of memory.

A failure may also cause discrepancies at the mutator/allocator interface. Such incon-

sistencies are classi�ed as external w.r.t the allocator. For example, consider a scenario

where a failure occurs after a call to malloc has returned (i.e. after an allocator has updated

the internal metadata in a fail-safe manner) but before the returned address is stored in a

persistent location by the mutator. This is essentially a failure-induced memory leak since

upon restart, the allocator deems the returned memory object “allocated" though it is not

reachable from any persistent root.

5.3.2 Transient vs. Persistent Metadata

This work classi�es NVRAM allocators’ metadata into two categories: core and auxiliary.

Core metadata is irrecoverable once corrupted. Auxiliary metadata on the other hand

can be re-created using consistent core metadata. Although auxiliary metadata can be re-

created at the beginning of each restart, and maintained in transient memory to avoid the

cost of failure consistency, doing so may cause a long restart time, especially if recreating

such auxiliary metadata is time-consuming. On the other hand, maintaining it in NVRAM

may make restart instantaneous but at the expense of online overhead to maintain its

failure consistency.
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5.3.3 Online Failure Consistency Overhead vs. Recovery

Core persistent metadata often need to be updated in a way that always ensures their

consistency. Such a mechanism frequently uses expensive instructions to �ush cache lines

after each update, and can adversely a�ect the allocation speed.

The consistency of auxiliary metadata stored in NVRAM need not be guaranteed as

aggressively as the core metadata because it can be recreated from core metadata. For

instance, an allocator may choose to only periodically �ush cache lines containing updates

to auxiliary metadata rather than after every update, so long as any resulting inconsistency

is detectable. This approach reduces the online consistency overhead but increases the

recovery time. If a failure occurs when the metadata is momentarily inconsistent, it has to

be re-computed in the recovery phase. Hence, tradeo�s exist between recovery time vs.

the online consistency overhead.

5.3.4 Safe Deallocation

Many of the existing NVMPLs such as Mnemosyne [16] and Atlas [19] use transactional

logging mechanism to guarantee failure-atomic updates within a FASE. When a persistent

allocator is used in conjunction with such an NVMPL in a multi-threaded application, it

has to handle deallocation requests from within a FASE in the following special manner:

the deallocation of the object itself and its reuse to ful�ll future memory requests have

to be delayed until the allocator can con�rm that the deleted memory object will never

become live in the future. Logs belonging to partially executed FASEs could potentially

hold the memory object’s address. When the log is replayed during recovery to restore the

consistency of user data, the memory object may be accessed via the reference in the log

despite the program’s request to deallocate it earlier during the online execution phase.

Memory allocators for programs written using software transactional memory have to

tackle a similar problem (see [36]). A persistent allocator needs to o�er a mechanism to

delay deallocation requests until the NVMPL in use can con�rm that the deallocations can

be done safely.
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5.4 Overview of the Approach

5.4.1 Integrated De-/allocation and Garbage Collection

Makalu is built upon the Boehm-Demers-Weiser garbage collector (bdwgc) [37]. This work

chose to build upon the bdwgc framework instead of other transient allocators, such as

Hoard [38] or jemalloc [39], because the approach described here relies heavily on garbage

collection, and bdwgc provides inherent support for it. Grafting a garbage collector onto a

separately designed allocator is nontrivial, and in fact, quite complex [40]. Having to deal

with the persistence of both sets of data structures in Makalu’s case makes such grafting

even more complicated.

However, Makalu and bdwgc di�er in several key aspects. In addition to the transfor-

mation needed for the allocator to become failure-resilient and function correctly across

restarts, Makalu and bdwgc have some major di�erences in allocation and deallocation

strategies. As bdwgc was designed for automatic memory management online, it has poor

support for explicit deallocations. Explicit online deallocation is important in Makalu as

it only supports GC o�ine. While bdwgc supports thread-local allocations, it does not

support thread local deallocation. Each deallocated object is returned to the global freelist

which requires holding a global lock. This approach lacks multi-threaded scalability and

prevents immediate memory reuse. Makalu, on the other hand, supports thread-local

deallocations, and also uses a simple strategy to tackle the issue of memory blowup in

multi-threaded applications, when some threads favor allocation while others favor deallo-

cation (see section 5.7). This was not a concern in bdwgc in the absence of thread-local

deallocations. Makalu is compared with the intermediate modi�ed version of bdwgc in the

evaluation (see section 5.13). Our results show that Makalu has the ability (rare among

allocators) to support both explicit deallocation and garbage collection e�ciently.

Similar to bdwgc, Makalu’s heap is structured as a Big-Bag-of-Pages, maintaining

persistent metadata only at the block level and in separate headers (see section 5.5.1). This

approach helps minimize the amount of persistent metadata. Core information stored in the
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header about the layout of the heap (e.g. object size associated with a block) is considered

to be irrecoverable once lost, and hence is only updated with ACID guarantees. Makalu

relies on locks for isolation and a built-in log-based approach for ensuring all-or-nothing

visibility for a set of updates to NVRAM (section 5.8).

In this work’s setting, the garbage collector is run in a fully conservative mode, with

no pointer location or type information communicated to the collector. This su�ces to

ensure metadata consistency. As discussed in section 5.9, other choices are also possible.

The notion of o�ine garbage collection to mitigate failure-induced leaks, improve interop-

erability, programmability and online allocation performance explored in this paper can

be applied in the context of strongly-typed languages such as Java and in the presence of

precise garbage collection as well.

5.4.2 Choosing Persistent Metadata

To reduce the cost of persistent metadata updates, Makalu maintains a list of free objects

in transient memory (see section 5.6) during the online phase. An allocation and a deallo-

cation only require the corresponding memory object to be respectively removed from

and added to the transient freelist. A failure may cause outstanding memory objects in

Makalu’s transient freelist to be lost momentarily. Makalu uses o�ine garbage collection

to reclaim such objects and �x all other failure induced external inconsistencies based on

the reachability of memory objects in the persistent heap. As a positive side e�ect, it also

reclaims persistent memory leaked due to programming errors.

To avoid expensive computation at clean non-failure restarts, Makalu stores some

selected auxiliary information, such as the header look-up table (see section 5.5.2), in

persistent memory. It minimizes the expense of persistent updates to these structures

during the online phase, by assuming them to be inconsistent after a failure, and rebuilding

them o�ine from core persistent metadata. Thus, online updates to these structures only

need to be visible in NVRAM by the time Makalu stops gracefully. This assumption enables

Makalu to potentially accumulate some number of updates to persistent structures before
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Interface User Description
MAK_start N One time call to set up and start Makalu

in a new NVRAM region
MAK_restart N Restart Makalu from existing metadata
MAK_start_o� N Restart Makalu o�ine
MAK_collect N Request GC o�ine
MAK_close N Signal Makalu to stop gracefully
MAK_set_free_cb N Set callback function for free (see sec-

tion 5.11)
MAK_safe_free N Execute deferred free(s) (see section 5.11)
MAK_malloc

P
Drop-in replacement for
standard C/C++
de-/allocation methods

MAK_calloc
MAK_realloc
MAK_free
MAK_set_root P Sets/gets top level NVRAM

region rootsMAK_get_root

Table 5.1: List of Makalu’s public interfaces. User: N = NVMPL, P = Programmer

having to guarantee visibility. (see section 5.8.1).

5.4.3 APIs Provided by Makalu

Table 5.1 presents a list of Makalu’s major functions in its public interface. Programmers

are only responsible for invoking a handful of these functions. For integration with a

transaction-based NVMPL, Makalu provides interface to defer deallocation requests until the

NVMPL in use can con�rm that the deallocated object is truly unreachable (see section 5.3.4).

While the programmer-facing interface is largely self-explanatory, the discussion of de-

ferred deallocation and NVMPL-facing interface is deferred until section 5.11.

5.4.4 Comparison with Existing NVRAM Allocators

In both Mnemosyne [16] and Atlas [19], persistent memory allocations must be done within

FASEs in order to guarantee the absence of failure-induced memory leaks. In addition to

overheads incurred by failure-atomicity requirements of a FASE for every allocation, this
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clearly is a programming constraint. NV-Heaps [17] provides automatic garbage collection

using reference counting but requires weak pointers to correctly deal with cyclic data

structures. Some existing NVRAM allocators, such as nvm_malloc [18], require two method

calls just to allocate a persistent object. Other NVMPLs, such as pmem.io [21], combine

allocation, initialization and publication steps into a single allocation method call. These

interfaces are far removed from traditional allocation interfaces. Avoiding failure-induced

memory leaks requires building a consensus between the allocator and the NVMPL after

failure regarding what allocated memory objects are in use vs. free. There are several ways

to obtain this consensus. One simple approach, but a burdensome one for programmers,

is to require explicit code that traverses persistent data structures and reports them to

the allocator after a failure, so that others can be deallocated. Another approach, one

that seems to be taken by existing NVMPLs, is to tightly coordinate de-/allocation actions

with the failure consistency semantics as described earlier. This work presents a superior

approach that relies on o�ine garbage collection by tracing through application data

structures to identify reachable NVRAM locations, essentially reaching consensus with the

NVMPL in use. This way, familiar de-/allocation interfaces remain unchanged and can be

called anywhere in the program, both within and outside FASEs.

BEGIN_FASE();
/* allocate */
Node* t_tmp = nvm_alloc(sizeof(Node));

/* initialize */
t_tmp->val = 10;
t_tmp->next = NULL;

/* publish */
p_queue->tail->next = t_tmp;
p_queue->tail = t_tmp;
END_FASE();

Figure 5.2: An allocation using NVMPL’s default allocator [16, 19]
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/* reserve */
Node* t_tmp = nvm_reserve(sizeof(Node));

/* initialize */
t_tmp->val = 10;
t_tmp->next = NULL;

/* allocate + publish */
BEGIN_FASE();

p_queue->tail->next = t_tmp;
nvm_activate(t_tmp, &(p_queue->tail), t_tmp,

NULL, NULL);

END_FASE();

Figure 5.3: An allocation using nvm_malloc [18]

/* allocate */
Node* t_tmp = MAK_alloc(sizeof(Node));

/* initialize */
t_tmp->val = 10;
t_tmp->next = NULL;

/* publish */
BEGIN_FASE()

p_queue->tail->next = t_tmp;
p_queue->tail = t_tmp;

END_FASE()

Figure 5.4: An allocation using Makalu
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Figures 5.2, 5.3 and 5.4 shows same code snippets using di�erent �avors of persistent

allocators and a generic NVMPL abstraction of a FASE. Pre�xes ‘t_’, and ‘p_’ denote transient

and persistent program variables respectively. Each code snippet shows the common

programming idiom of allocation, initialization, and publication of a persistent node of

a queue. Using a generic abstraction of a FASE [19], each code snippet adds a node

to the persistent queue in a fail-safe and thread-safe manner. With the NVMPL’s default

allocator as shown in �gure 5.2, allocation and publication must happen within the same

FASE to avoid failure-induced memory leaks, resulting in a large FASE. Another stand-

alone persistent allocator, nvm_malloc [18] as shown in �gure 5.3 supports reserving and

initializing a persistent memory object before entering the FASE. However, the actual

allocation and publication steps must still occur within the FASE as shown in �gure 5.3

because nvm_malloc combines allocation and publication steps into a single allocation

method. The primary inconvenience of this approach is the non-traditional interface. The

use of Makalu, as shown in �gure 5.4, results in the smallest FASE, and a more familiar

programming paradigm. In fact, while going from a transient to a persistent version of

this code, the only change necessary in the Makalu-enabled version is the replacement of

the allocation call with Makalu’s corresponding one.

Note that the primary goal of this work is to understand the challenges of developing

an interoperable and leak-free allocator, and investigate design decisions that can minimize

failure consistency overhead. Improving the raw performance of an allocator is only a

secondary goal.

5.5 Internal Structures and Layouts

This section describes the internal structures of Makalu and how they are laid out in

persistent memory within the NVRAM region. Each such structure in Makalu is classi�ed as

either core or auxiliary metadata as described in section 5.3.2.
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header {
void* hb_block;
long hb_sz;
int hb_flag;
long hb_mark_bits[BITS_SZ];
long hb_n_mark_bits;
...

}

Figure 5.5: Structure of the block header

5.5.1 Persistent Block Header

Both an individual block as a well as a contiguous set of blocks (a chunk) in Makalu have a

persistent header associated with them. Figure 5.5 shows the important header �elds. The

�elds hb_block, and hb_sz store the starting address of a block or a chunk and its total

size respectively. The �eld hb_flag indicates whether a block or a chunk is currently in

use or free. If a block is currently used to ful�ll memory requests, hb_sz stores the size of

memory objects allocated from that block. Note that all objects allocated from a single

block are of the same size in Makalu. Makalu regards the above three �elds in each header

as part of the core metadata and the rest are auxiliary. Makalu updates these �elds using

built-in support for ACID guarantees described in section 5.8.

Each object in a block has a corresponding bit in hb_mark_bits. If the bit is set, the

object is either already allocated or some thread has already added to its freelist intending

to allocate it. Alternatively, a thread cannot add to its freelist an object within a block

whose mark bit is already set.

Field hb_n_mark_bits stores the count of mark bits currently set for convenience

purpose. Although mark bits are stored in persistent memory, Makalu regards them

as auxiliary metadata because it has the ability to recreate them o�ine based on the

reachability of objects using GC.

A block header is allocated within header spaces, which are one or more �xed-length

sections of memory within an NVRAM region (and outside the heap) speci�cally designated
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for this purpose and shown in �gure 5.6. Allocating headers only in header spaces enables

Makalu to precisely know where all the core information is located so that it can be found

during recovery to recreate auxiliary metadata.

Occasionally, one or more free adjacent blocks having their own headers coalesce

to form a chunk requiring only a single header for the chunk beyond that point (see

section 5.7.2). This block coalescing action frees up one or more headers which are added

to the header freelist (HFL) for future reuse. HFL is auxiliary metadata as it can be

recreated by scanning header spaces for all free headers.
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Figure 5.6: Layout of Makalu in an NVRAM region

5.5.2 Persistent Header Map

The header map in Makalu provides a method to conveniently look up corresponding

header information for a given memory object, a block or a chunk. Additionally, it provides

iterators to selectively iterate over blocks (free vs. allocated) via headers and without
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touching the actual blocks. This map is adopted from bdwgc [41]. It is stored in header

map space, another specially designated section of memory within an NVRAM region for

this purpose and shown in �gure 5.6.

This map is auxiliary metadata that can be re-created in the header map space from

scratch by adding each header from one or more header space(s). It is nonetheless stored in

NVRAM to avoid the expense of rebuilding it at each normal re-start. A single scan through a

header space during o�ine recovery is enough to create both the header map and the HFL.

Therefore, Makalu maintains their failure consistency less aggressively (see section 5.8.1)

and rebuild them from scratch after each failure, which presumably should be rare.

5.5.3 Persistent Log Space

Makalu uses a log-based approach to update the core metadata in a fail-safe manner (see

section 5.8). Since the persistent logs must be consistent at all times, the log space is a core

data structure. As part of setting up a new region, it designates a �xed amount of space, as

shown in �gure 5.6, within the NVRAM region for persistent logs to be written. This space is

reused repeatedly across execution cycles.

5.5.4 Persistent Roots

Makalu designates a persistent root space (separate from the heap space) within each

NVRAM region for storing top-level NVRAM region roots. Makalu supports up to 512 top-

level NVRAM region roots so that useful data within the NVRAM region’s heap space can be

conveniently accessed. Any ith region root can be accessed using setter and getter methods

listed in table 5.1.

5.5.5 Persistent Base Metadata

Apart from the information in the block header, Makalu also maintains the following

information as part of the core metadata.

• NVRAM region base (rgn_base) and max heap (rgn_curr) address
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• Log space starting address (md_log_space_start)

• Current log version (md_log_version) (see section 5.8)

• List of header spaces

• Address of the header map space

• Persistent root space start address

All of the above information is stored in base metadata space shown in �gure 5.6. Most

�elds in base metadata, such as log space starting address, do not change once set. Other

metadata �elds, such as the current log version, are updated with ACID guarantees when

necessary. Recovery is not possible without the consistent information provided by each

�eld in the base metadata.

5.5.6 Transient Chunk Freelists

During the online phase, Makalu maintains a global transient list of free chunks segregated

by the number of free blocks in them. When Makalu restarts, it recreates the list by adding

all free chunks to it using the iterator provided by the header map.

5.5.7 Transient Object Freelists

Makalu classi�es memory objects as small (≤ 400 bytes), medium (> 400 bytes, ≤ half a

block), and large objects (> half a block). During the online phase, Makalu maintains small

object freelists on a per thread basis and global freelists for medium objects. Both small and

medium object freelists are segregated by object size and each freelist is a transient LIFO

list. Large object de-/allocations are handled directly by the chunk freelist (see section 5.6).

5.5.8 Transient Reclaim Lists

Makalu creates a list of partially allocated blocks (containing some free objects) at the

beginning of each online phase by iterating over allocated blocks using the iterator provided

by the header map. The reclaim list is a global transient structure organized as a set of
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object-size-segregated lists. Such a list enables us to sweep one block at a time looking for

free objects of a particular size to re�ll a freelist.

5.6 Allocation

Allocation requests for small and medium objects are rounded up to the nearest granule

multiple. For small objects, the allocating thread simply removes and returns the �rst

item in the thread local freelist for that size. For medium sized objects, it removes and

returns the �rst item from the appropriate global freelist after acquiring a lock for that

size. Allocating objects from a transient freelist requires no persistent updates – note that

the mark bit for the object is already set by this time (see below).

5.6.1 Re�lling an Empty Freelist

If a freelist for a particular size is empty, the allocating thread performs an incremental

sweep, i.e. it scans a partially allocated block to re�ll the freelist. It acquires a lock for a

reclaim list corresponding to that size, removes the �rst block in the list and looks up the

header for the block using the header map. Each free object, as indicated by its mark bit in

the header, is added to the transient freelist while simultaneously setting the mark bit. A

set mark bit indicates to another thread (going through the block for free objects at later

times) that the object is either already in someone else’s freelist or allocated.

A gracefully terminating thread gives each remaining object in its transient freelists

back to the block by clearing the corresponding mark bit in the header for that object

(so that other threads can use it to re�ll their freelist). During this process, if Makalu

notices that a handful of objects have become available in a speci�c block, it adds that

block back to the reclaim list making it available to other threads for sweeping. Before

a graceful shutdown, Makalu also reinstates all objects in medium object freelists to the

corresponding block in a similar manner.

All persistent updates to mark bits are guaranteed to be visible in NVRAM by the time

Makalu gracefully stops, using techniques described in section 5.8.1. This guarantee is
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su�cient for mark bits to be reliably used in the next online execution cycle (to create the

reclaim list) following a graceful shutdown.

A failure will momentarily leave objects in transient freelists unaccounted for. There-

fore, Makalu starts with a clean slate in recovery mode and reconstruct a set of mark bits

for each block, purely based on object reachability, by using GC. The objects residing

in freelist prior to a failure would appear allocated but unreachable in the heap, and are

guaranteed (modulo GC conservatism) to be discovered by the o�ine GC. Hence, the GC’s

presence enables us to cheaply maintain frequently updated freelists in transient memory.

If the reclaim list for a particular size is empty, the allocating thread allocates a new

block (see below) from the chunk freelist. All objects from the newly allocated block are

then added to the empty freelist after setting the corresponding mark bits in the header.

5.6.2 New Block Allocation

To allocate a new block, Makalu searches for the smallest chunk (cs ) (ideally a chunk with

a single block) available among the transient chunk freelists. Recall that the chunk freelist

is segregated by the chunk size (number of blocks in them). It removes cs while holding a

lock for the speci�c freelist where it �nds cs . Next, Makalu obtains the header for cs . A

block is allocated from cs using the following steps:

1. Remove the �rst block (b1) from cs by adjusting the chunk’s size (hb_sz) and the

beginning address (hb_block) in its header.

2. Allocate a header for b1 and add it to the header map.

3. Set b1 header �elds hb_block, hb_sz with the starting address, and the size of the

object to be allocated from b1 respectively. Set the hb_flag indicating currently in

use.

Once the block is allocated, the remaining portion of cs is returned to the chunk freelist

appropriate for its new size.

Failure-induced partial NVRAM updates from steps 1-3 above can cause inconsistencies in

the core persistent metadata, leading to undesirable e�ects, such as a permanently leaked



58

block. Therefore, the allocating thread performs all persistent updates to core metadata in

steps 1-3 with ACID guarantees (see section 5.8 for failure atomicity).

5.6.3 Large Object Allocation

Allocation requests for large objects are rounded up to the nearest multiple of a block and

serviced directly from the chunk freelist. The process is similar to allocating a new block

described in section 5.6.2.

5.6.4 Expansion of Heap Space

The allocating thread expands the heap when the chunks are insu�cient to ful�ll an

outstanding memory request. Heap expansion requires performing the following steps

with ACID guarantees because updates to core metadata are involved.

1. Increment the NVRAM region bump pointer, rgn_curr (stored as base metadata, see

section 5.5.5)

2. Allocate a header for the acquired chunk and add it to the header map

3. Store chunk’s size, and the starting address in the header, and set the �ag in the

header

Once the heap is expanded, allocations can occur as described earlier.

5.7 Deallocation

Using the header map (section 5.5.2), the deallocating thread computes the block and the

size of the object from the address being deallocated. If it’s a small object, it’s added to

the start of the deallocating thread’s local freelist corresponding to its size. It does not

require any update to persistent metadata. Makalu does not attempt to return the object

to the allocating thread. This is in contrast with the approach taken by some transient

allocators such as Hoard [38] to prevent an allocator from inducing false cache line sharing

in multi-threaded applications. Similar to [42], Makalu expects a programmer to allocate
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cache-aligned objects where false sharing is a concern. Medium-sized objects are added to

the corresponding global freelist after acquiring the per size lock (see section 5.6).

5.7.1 Object Freelists Truncation

The total bytes of memory held in each medium and small object freelist is capped at

twice the size of the block. If a transient freelist (for small and medium objects) grows

to its maximum capacity when a thread deallocates an object, the thread is responsible

for truncating the freelist by half, leaving the top half of the objects for future allocation

requests. This design has the following advantages:

• It prevents unbounded memory blowup in applications with producer-consumer

de-/allocation patterns among threads [38].

• It bounds the amount of work that a gracefully terminating thread has to perform to

purge its small object freelist. It also bounds the number of medium objects in the

global freelist that Makalu has to process before a graceful shutdown.

To truncate a free list, a thread removes one object at a time from the freelist, looks up

the block header for the object removed from the freelist, and marks the object as available

in the future for other threads (to add to their freelist) by clearing the corresponding mark

bit in the block header. Moreover, if a thread notices that a su�cient number of objects

have become free in a block when clearing the mark bit, it adds the block back to the

reclaim list. It acquires a lock for the appropriate reclaim list to do so. Note that objects in

a single freelist may come from more than one block due to a number of factors such as

objects being deallocated from a previous execution cycle, remotely allocated object being

added to the local freelist following a deallocation and so on. Consequently, one or more

blocks may be put back into the reclaim list.

Other threads can re-use the block returned to the reclaim list to re�ll their freelists at

later times (section 5.6). All updates to mark bits are guaranteed to be eventually visible

by the time Makalu shuts down gracefully (see section 5.8.1). If a failure occurs before all
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mark bits become visible, GC will start with a clean slate and create a consistent set of

mark bits in recovery mode as described in section 5.6.1.

5.7.2 Empty Block Deallocation

It is quite possible for the entire set of mark bits to be cleared for some block during the

freelist truncation. A set of all clear mark bits indicates that objects belonging to the block

are neither allocated nor do they reside in any of the transient freelists. At this point,

it is safe for Makalu to deallocate the entire block and add it back to the chunk freelist.

This enables the block to be re-used to ful�ll memory requests for another size class.

Figure 5.7 shows the pseudocode for block deallocation. The deallocating thread attempts

to coalesce with the immediately preceding (lines 9–20) or the following block/chunk

(lines 21–30) (if they exist and are free) to create a larger chunk of memory in the heap.

All updates to the core metadata in header �elds are performed using an internal interface

(store_nvm_*) within an all-or-nothing code section demarcated by start_nvm_atomic

(line 8) and end_nvm_atomic (line 36) (see section 5.8). If a failure occurs before the

complete set of updates to the header metadata in method deallocate becomes visible in

NVRAM, partial updates are guaranteed to be undone restoring the consistency of all headers

involved. The GC will subsequently rediscover the completely empty block o�ine and

will deallocate it using the same fail-safe approach.

5.7.3 Large Object Deallocation

Large object deallocation returns such objects directly to the appropriate chunk freelist

using steps similar to those described above for empty allocated blocks.

5.8 ACID Guarantees for Metadata

Makalu uses internal interfaces presented in �gure 5.8 to specify a set of persistent stores

(to core metadata) that must be atomic w.r.t failure, i.e. which need to be visible in NVRAM

on an all-or-nothing basis. Makalu uses undo-logs to enforce failure atomicity guarantees.
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1: deallocate(Block* b)
2: {
3: lock(gml);
4: hdr* cHdr = map.find(b);
5: hdr* pHdr = map.find(b-1);
6: hdr* nHdr = map.find(b+1);

7: /* ACID section */
8: start_nvm_atomic();
9: /* coalesce with previous block */
10: if (pHdr && isFree(pHdr)) {
11: removeFromChunkFL(pHdr -> hb_block);
12: /* ACID update, core metadata */
13: store_nvm_word(&pHdr -> hb_sz,
14: pHdr -> hb_sz + BLOCK_SZ);
15: store_nvm_word(&cHdr -> hb_sz, 0);
16: store_nvm_addr(&cHdr -> hb_block,NULL);
17: uninstall(cHdr);
18: cHdr = pHdr;
19: coalesced = 1;
20: }
21: /* coalesce with next block */
22: if (nHdr && isFree(nHdr)){
23: removeFromChunkFL(nHdr->hb_block);
24: store_nvm_word(&cHdr->hb_sz,
25: cHdr->hb_sz + nHdr->hb_sz);
26: store_nvm_word(&nHdr->hb_sz, 0);
27: store_nvm_addr(&nHdr->hb_block, NULL)
28: uninstall(nHdr);
29: coalesced = 1;
30: }
31: /* update the current hdr */
32: if (!coalesced){
33: store_nvm_word(&cHdr->hb_sz, BLOCK_SZ);
34: store_nvm_int(&cHdr->hb_flag, FREE);
35: }
36: end_nvm_atomic();
37: addToChunkFL(cHdr);
38: unlock(gml);
39:}

Figure 5.7: Pseudocode for empty block deallocation
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start_nvm_atomic (lines 1–3) marks the beginning of the set of failure-atomic writes. A

call to this method is always preceded by an acquisition of the global mutex lock which

provides the isolation guarantees amidst multiple mutator threads. Within the atomic

section, core metadata is modi�ed using one of the store_nvm_* methods (lines 8–26)

based on the metadata type. Details for the integer method are shown in the �gure (lines

8–23). Each of these methods creates a log entry containing the memory address, the

current value of the metadata , and its data type (lines 9–12) before storing the new value.

The new log entry is published (lines 14–16) by stamping the entry with the current value

of md_log_version. Recall that the current value of md_log_version is stored as Makalu’s

core base metadata (see section 5.5.5). Makalu ensures that the log entry is visible in NVRAM

using memory fences (line 13) and cache line �ushes (line 16) before storing the new value

and making the value visible in NVRAM (lines 19–22). A call to end_nvm_atomic marks the

end of the failure-atomic updates by incrementing the md_log_version and �ushing it to

NVRAM (lines 4–7).

If a failure occurs before the incremented value of md_log_version becomes visible

in NVRAM, Makalu starts in an o�ine phase. It then infers that there are partial updates

from the previous run if there is a log entry in the designated log space with the same

version as md_log_version (the current log version visible in NVRAM). The last log entry

with that version is obtained and the undo entries are applied in reverse order of their

creation, thus nullifying the e�ects of original updates. Once it has fully replayed the

relevant log entries and �ushed all the e�ects of replay to NVRAM, it increments the log

version (while still o�ine) and makes it visible in NVRAM. The number of log entries never

grows beyond a certain number ( 20 entries) because the provided interface is only used

internally in speci�c scenarios. Each scenario has a statically known number of related

updates.
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1: start_nvm_atomic(){
2: next = md_log_space_start;
3: }
4: end_nvm_atomic(){
5: md_log_version++;
6: FLUSH(md_log_version);
7: }
8: store_nvm_int(int* addr, int val){
9: /* create a log entry */
10: next->addr = addr;
11: next->val.int_val = *addr;
12: next->type = INT;
13: MEMORY_FENCE();
14: /* publish */
15: next->version = md_log_version;
16: FLUSH(next);
17: /* next log entry pos. */
18: next++;
19: /* store the value */
20: *(addr) = val;
21: /* make the update visible */
22: FLUSH(addr);
23: }
24: store_nvm_word(int* addr,int val);
25: store_nvm_char(int* addr,char val);
26: store_nvm_addr(void** addr,void* val);

Figure 5.8: Internal facility for failure-atomic updates
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5.8.1 Eventual Visibility for Metadata

The consistency of auxiliary metadata such as header map and mark bits is guaranteed

using a technique less aggressive than one described above. Multiple updates to these

metadata can be allowed over the course of online execution before issuing a cache line

�ush to ensure their visibility. All updates only need to be visible by the time of the

graceful shutdown to avoid expensive recovery and restart. We explicitly guarantee their

visibility before the graceful shutdown to avoid the chance of dirty cache lines getting lost

because of a hardware failure between graceful process termination and next restart. We

use a scheme, roughly analogous to one used in [19], that tracks multiple updates to the

same cache line using a �xed-size hash table. Modi�ed cache lines that have not yet been

�ushed appear in the table. Hash table collisions are resolved by �ushing the cache line

corresponding to the previous entry and removing it. After the last update to auxiliary

metadata before the graceful shutdown, the hash table is emptied by �ushing each dirty

cache line being tracked in the table.

This table enables Makalu to reduce the number of CLFLUSH and MFENCE (CLWB

and SFENCE in future ISA) issued.

5.9 O�line Recovery and GC

The o�ine phase has distinct steps that must be initiated in the following sequence:

5.9.1 Recovery

Following a failure, Makalu starts in an o�ine mode. The log replay ensures that the core

metadata is restored to a consistent state. Next, Makalu purges the existing header map

and builds a new one by scanning each header space and adding headers currently in use

to the header map. Mark bits in the header are also cleared in the process. Free headers

found (not currently assigned to any block) are added to HFL (section 5.5.1).
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5.9.2 Garbage Collection

The NVMPL with which the allocator has been integrated typically makes a request to collect

garbage once it has restored the user data in the heap to a harmonious state. Such garbage

collection is signi�cantly simpler than a conventional garbage collector since there is no

mutator present, and the set of garbage collection roots is limited to a small set of explicitly

speci�ed region roots. The e�ort that garbage collectors normally invest in, for example,

stopping threads and parsing thread stacks, is unnecessary. So are the usual constraints on

the compiler to avoid concealed pointers in registers, etc.

It would be possible to restrict NVRAM data structures so that pointer locations in NVRAM-

allocated objects are apparent. Makalu could require that for NVRAM data structures, roots

and pointer �elds be declared with their correct type (and not, for example, as void * or

intptr_t), and that unions be suitably restricted. Makalu could adopt at least some such

restrictions or annotations in the future so that the garbage collector can reliably clear

persistent-to-transient pointers. Such pointers are obviously invalid after a process restart.

For now, we instead adopt the parallel mark and sweep algorithm from bdwgc as

described in [37,43] in a fully conservative mode for C/C++ setting in this work. It imposes

the fewest restrictions on reuse of existing code in an NVRAM setting. Although this clearly

a�ects the details we describe below, we do not believe it a�ects the fundamental bene�t

of greatly reducing the cost of metadata updates during allocation.2

The mark phase starts by analyzing persistent roots explicitly registered as part of the

NVM region (see section 5.5.4).

The entirely empty blocks found at the end of the mark phase are deallocated using

the process described in section 5.7.2. All mark bits for each partially allocated blocks are

made visible in NVRAM before the o�ine recovery completes. This enables the reliable

2 Note that the "black-listing" mechanism in bdwgc is not currently functional in this setting, since we
have no data from prior GCs about misidenti�ed pointers to unallocated memory. One can expect that,
due to the small root set size, it is also much less necessary than usual. It could be restored with a fully
concurrent, approximate, trace phase while the program is running. Since this would not be used to reclaim
memory, it could be allowed to err in both directions. There should not be any need to synchronize with the
mutator. Or we could just broaden the scope of garbage collection.
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recreation of reclaim list at the beginning of the online restart and threads to subsequently

re�ll object freelists using blocks in the reclaim list (i.e. perform online incremental

sweeping; see section 5.6.1).

5.10 Execution Stages and Failure Mitigation

Makalu is designed to handle tolerated failures at all stages of its execution, o�ine and

online. This section summarizes Makalu’s expected behavior in the case of a failure at

various stages of execution.

5.10.1 One-Time Online Initialization

The initialization is considered complete once the call to the method MAK_start returns. At

the end of the method call, Makalu �ushes all persistent metadata updates to NVRAM. Next,

it stamps the NVRAM region with a “magic number" and �ushes this update synchronously

to NVRAM before the method returns. Each time Makalu restarts, it checks for this magic

number to ensure that the given NVRAM region has been initialized properly. If a failure

occurs before this number is visible in NVRAM, Makalu requires the client NVMPL to re-run

the initialization routine. If a failure occurs after a successful initialization and before the

�rst call to de-/allocation routines, Makalu’s persistent metadata remains una�ected and

hence, a client NVMPL may optionally skip Makalu’s o�ine recovery routine altogether.

5.10.2 Online Re-initialization

Recall that a client NVMPL uses method call MAK_restart to re-initialize Makalu from its

persistent metadata each time NVRAM region is reopened for access. Makalu only reads the

persistent metadata to recreate transient structures during this stage. Hence, a failure does

not a�ect Makalu at all at this stage. A client NVMPL can optionally skip Makalu’s o�ine

recovery routine in this case as well.
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5.10.3 Online Execution

Any failure after the �rst call to de-/allocation routines and before the call to MAK_close

can corrupt Makalu’s metadata and lead to persistent memory leaks. In this case, a client

NVMPL is expected to restart Makalu o�ine and invoke recovery/GC routine.

5.10.4 O�line Recovery

Recall that Makalu’s o�ine recovery has the following three distinct steps. A failure

before the completion of all three recovery steps requires Makalu to be restarted in o�ine

recovery mode.

Step 1: Persistent log replay. First, Makalu replays outstanding persistent undo logs

(if present) to restore the consistency of core metadata (see ??). After Makalu �ushes

all the updates from log replay to NVRAM, it increments the log version and �ushes it

synchronously. If a failure occurs before the new incremented log version is visible in

NVRAM, it detects the same outstanding logs and replays them again.

Step 2: Reconstruction of auxiliary metadata. Recall that Makalu recreates auxiliary

persistent metadata from consistent core metadata. If a failure occurs after the successful

completion of step 1 and before the completion of step 2, the recovery resumes by dis-

carding the partially constructed auxiliary metadata, reclaiming the metadata space and

reconstructing the auxiliary metadata in that space.

Step 3: Garbage collection. If a failure occurs during a GC or anywhere else after step

2 and before the call to MAK_close returns, Makalu discards partially constructed mark

bits and restarts the mark phase with a clean slate. When the call to MAK_close returns,

a complete set of mark bits are guaranteed to be visible in NVRAM and the recovery is

complete.
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5.11 Integration with NVMPL

5.11.1 NVMPL Facing Interfaces

Makalu’s public interface (Table 5.1) provides an easy out-of-the-box integration with

NVMPLs. An NVMPL is expected to enable Makalu to set itself up in a new NVRAM region

using the one-time call to MAK_start. Each time an NVRAM region is reused online, Makalu

expects an NVMPL to reinitialize it via MAK_restart. Makalu restarts from the metadata

stored in NVRAM region and gets ready for de-/allocation requests by rebuilding various

transient internal lists such as reclaim lists and chunk freelists from persistent metadata.

As a part of closing the region, Makalu expects the NVMPL to call MAK_close to signal it

to shutdown gracefully. This involves taking down transient freelists and guaranteeing

visibility of all persistent metadata updates.

For reasons discussed in section 5.3.4, Makalu may need to defer deallocation requests

made using MAK_free. Makalu allows the NVMPL to set up a deallocation callback method

(which is invoked by Makalu each time MAK_free is called) via MAK_set_free_cb. For

each object reported by Makalu through the callback, the NVMPL can use a secondary

MAK_safe_free method to actually deallocate when it is safe to do so. This approach neatly

hides the complexity of deferred deallocation from the programmer.

After a failure, the NVMPL is expected to start the recovery phase by using

MAK_start_off. At the end of this method call, Makalu would have recovered its metadata

to a consistent state. Once the user data is in a harmonious state, the NVMPL can invoke GC

using MAK_collect.

5.11.2 Integration with Atlas and Mnemosyne

The default allocators found in two published NVMPLs, Atlas [19] and Mnemosyne [16], were

substituted with Makalu. These two NVMPLs di�er in their failure consistency semantics.

Atlas infers durable critical sections from lock-based code, whereas Mnemosyne builds

support for persistence around software transactional memory for persistence.
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The integration was straightforward for the most part. Deferring deallocation was

the most challenging aspect of integration in both cases. Both set up a deferred callback

method at the beginning of each execution cycle. In Mnemosyne, deallocations within a

transaction have to be deferred. Mnemosyne creates a list of objects which are deallocated

within the transaction (as reported by Makalu using callback) and deallocates them as a

post-commit action using MAK_safe_free method.

Similar to Mnemosyne, Atlas creates a list of objects deallocated (reported by Makalu)

within a failure-atomic section (FASE) and associates the list with the current FASE. The

logs associated with a FASE are pruned by a distinct helper thread in Atlas [19]. When the

helper determines that a certain FASE can be pruned, it deallocates all objects in the list

associated with the FASE using MAK_safe_free method. In both Mnemosyne and Atlas, a

programmer only interacts with the standard malloc/free interface, while the complexity

of deferred deallocation is completely hidden from them.

Although this work uses log-based NVMPLs to evaluate Makalu’s approach, the allocator

works with other forms of NVMPLs, say an NVMPL based on a copy-on-write approach for

failure consistency. Note that Makalu’s internal metadata or its internal log is never exposed

to the programmer or NVMPL and has absolutely no relation with the log generated by a

log-based NVMPL. Programmers and NVMPLs must concern themselves with only Makalu’s

API listed in table 5.1.

5.12 Related Work

Our work is most closely related to nvm_malloc and pmem [18, 21]3. nvm_malloc di�ers

from our work in two distinct ways. In nvm_malloc, memory allocation requires two

method calls. The �rst only reserves persistent memory of the requested size. The second

method takes the returned persistent address, together with at least one persistent result

location, so that it can failure atomically perform the actual allocation and store (publish)

3 Both of these work essentially use a similar two-step allocation algorithm that we henceforth refer to as
nvm_malloc.
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the allocated memory address in the provided location. This is thus not a drop-in replace-

ment for conventional malloc and pays a higher cost than Makalu for every allocation.

Finally, nvm_malloc does not address interfacing with other NVMPLs. It does not provide a

mechanism to defer deallocations. Hence, it is not clear to us how it operates correctly

with NVMPLs such as Atlas [19] and Mnemosyne [16], which use a log-based approach to

support failure-atomic updates of persistent data.

None of the existing NVMPL allocators provide a safety net against programmer-induced

memory leaks. Makalu’s o�ine garbage collection works as this safety net. NV-Heaps [17]

is the only published NVMPL which o�ers anything comparable, by providing a reference

counting GC. However, it requires a programmer to distinguish between a strong and a

weak reference to break cycles in a persistent heap. We argue that this is error-prone,

especially when dealing with large and complex data structures. NV-Heaps is not publicly

available and the paper does not indicate that GC was used as a means of reducing the

NVRAM allocation cost, nor is it clear this could be done.

A plethora of transient memory allocators have been developed to satisfy the scalability

needs of multicore computing [?,?,38,39]. Our work di�ers from these as our core objective

is low cost crash-resilient persistent memory management in addition to multi-core scaling.

The next section does compare our allocator with a commercially used transient allocator,

Hoard [38].

Our o�ine garbage collection is an adaptation of the conservative garbage collection

algorithm implemented in the bdwgc collector [37,43]. However, garbage collection occurs

only o�ine, when top-level roots are precisely known. Bdwgc does not support NVRAM

allocation, and its free() implementation does not scale on multiprocessors.

5.13 Evaluation

Although NVRAM is getting closer to becoming widely available [44, 45], it is not at the

moment. Hence, Linux tmpfs [25] was utilized to simulate NVRAM during the collection of

results. As �les in tmpfs are only backed by DRAM, a process crash and restart mechanism
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was used to test Makalu’s crash resilience and restart logic. In order to measure failure

consistency overhead, full failure consistency mechanisms such as cache line �ushes and

memory fences were enabled, as it would have been in actual NVRAM systems.

Unless otherwise stated, all the code used in this evaluation were compiled using the

GNU gcc/g++ compiler, version 4.8.4 at optimization level "-O2". All experiments were run

on a 64-bit Ubuntu machine (kernel version 3.13.0-66-generic) that has 12 GiB of RAM,

two Intel Xeon E5-2695 processors, 6 cores per socket (12 cores total), and hyper-threading

switched o�. All results collected were averaged over 6 runs.

We measured the persistence overhead in Makalu using CLFLUSH and MFENCE.

Using these instructions enabled us to easily compare Makalu with other allocator as

other NVRAM allocator nvm_malloc and NVMPLssuch as Atlas and Mnemosyne are also

implemented using such instructions. This is however a pessimistic estimate of Makalu’s

performance. With better instructions such as the combination of CLWB and SFENCE

in future ISA to publish dirty cache line in NVRAM, we expect the performance of Makalu

to improve further for the following reasons. First, each combination of CLFLUSH and

MFENCE is replaceable by a combination of CLWB and SFENCE. This is true for Makalu’s

logs where each log has to be written syhnchronously before updating the metadata.

However, all updates to the metadata (tracked in a table by Makalu) within a transaction

only need to be visible before the transaction commits. Hence, a single SFENCE before the

transaction commits is su�cient for all the CLWB issued within the transaction. Likewise,

for lazy consistency guarantees (see section 5.8.1), a single SFENCE is necessary at the end

of emptying the table that tracks the updated cache lines.

5.13.1 Comparison with Existing Allocators

The allocation speed, throughput, and multi-threaded performance of Makalu was com-

pared with another persistent allocator, nvm_malloc, which is built upon jemalloc [18].

Although the goal of this work is not to produce the fastest or the most scalable transient

allocator, Makalu was compared with Hoard(ver3.10) [38], one such popular allocator, to
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show that Makalu’s raw performance is comparable despite the extra failure consistency

overhead it has to incur. Also include in the comparison are the following three versions

of bdwgc:

1. An unmodi�ed version (ver7.2) with multi-threaded GC, thread-local allocation

enabled, and explicit deallocation disabled (bdwgc).

2. Same as (1), but with GC disabled and the default sub-optimal explicit deallocation

enabled (bdwgc-free).

3. A modi�ed version of (1), with a better support for explicit deallocation and GC

disabled (bdwgc-mod).

Benchmarks

The following often used allocation benchmarks were used for comparison.

Larson: This benchmark has often been used to simulate a multi-threaded long running

server [37, 38, 42, 46, 47]. The benchmark was con�gured to run for 10 seconds, with t

threads where each thread runs for 104 rounds, allocating and deallocating 103 64-byte4

objects in each round. It reports the allocation throughput in a given time window in terms

of operations/sec.

Threadtest: This benchmark has been used by [38,42,46] to measure multi-threaded scala-

bility performance of an allocator. Each thread allocates and deallocates memory in a tight

loop with a con�gurable amount of work in-between. For t threads, the benchmark was

run such that each thread performed 104 rounds of de-/allocation, and 105
t de-/allocations

in each round.

Prod-con: The benchmark simulates applications which have two mutually exclusive

sets of allocating and deallocating threads. Such de-/allocation pattern typically causes

memory blowups [38] or performance degradation in poorly designed allocators. The

benchmark starts an even number of threads t , and creates t
2 blocking queues [48]. It

4 This is the smallest common allocation size; nvm_malloc only supports allocations in the multiples of 64
bytes
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then assigns a producer-consumer thread pair to each queue. An object is allocated by a

producer thread, passed to a consumer thread via a queue, and deallocated there. Each

pair of producer-consumer threads de-/allocates 2×107
t objects that are 64 bytes in size.

Results

The multi-threaded performance results presented in �gure 5.9 shows that Makalu performs

orders of magnitude better than nvm_malloc in common memory allocation patterns

presented by above benchmarks. The di�erence in performance between Makalu and

bdwgc-mod is remarkably thin, making it safe to say that Makalu is only slightly burdened

by failure safety of its metadata. The failure consistency overhead of Makalu was compared

with nvm_malloc in terms of the average number of cache line �ushes issued per thread

and present results in �gure 5.10 for all three benchmarks.

Figure 5.11 compares memory consumption of Makalu (transient + persistent) using

the running process’s peak Resident Set Size (RSS). Linux OS mainatains this information

for each running process. Makalu’s memory consumption is somewhere between the

best and worst case observed and is comparable to that of nvm_malloc across all three

benchmarks. This is especially true as the thread count increases. Notice also that Makalu

outperforms both bdwgc and bdwgc-free especially in the case of prod-con benchmark

mostly because Makalu implements measures to prevent memory blow-ups. Prod-con

benchmark is suseptible to such memory blowups.

5.13.2 Recovery and Garbage Collection

Makalu achieves low online failure consistency overhead at the cost of o�ine recovery

and GC in the rare event of failure. This section quanti�es this o�ine cost.

Benchmark

The o�ine recovery and GC cost is evaluated using the following benchmark:
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bdwgc; bdwgc-free; bdwgc-mod; Hoard; Makalu; nvm_malloc;
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(c) Prod-con: time elapsed vs. thread count (lower is better)

Figure 5.9: Allocation benchmarks: throughput and multi-threaded performance
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mne-def; mne-mak; atlas-def; atlas-mak;
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(b) Threadtest: (lower is better)
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Figure 5.10: Allocation benchmarks: failure consistency overhead (Makalu vs. nvm_malloc)
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SZ MXL TON TREC TGC OVERo f f
MiB ×103 sec ms ms %

200 3.39 1.01 4.18 60.98 6.45
400 6.66 2.00 6.77 133.97 7.05
600 9.84 2.97 7.36 154.94 5.46
800 13.06 3.94 11.73 276.90 7.33

1,024 16.67 5.04 13.66 349.88 7.22
2,048 32.82 10.20 28.23 699.23 7.13
3,072 49.48 15.08 37.96 1,030.57 7.08

Table 5.2: Makalu o�ine recovery and GC performance. SZ = size of allocated heap before
crash; MXL = longest pointer chain explored during GC; TON = online execution time
before the crash; TREC = time taken to recover allocation metadata and restart o�ine; TGC
= time consumed by o�ine GC; and o�ine overhead, OVERo f f = the ratio of time taken
o�ine to time taken online to �ll-up heap, TREC+TGCTON

× 100.

Resur: The benchmark allocates SZ MiB of persistent memory in total by allocating

persistent objects of random size up to half a page before the benchmark crashes abruptly

using process abort. For most environments, this models an absurdly short interval

between failures. With each allocation, a coin is tossed to either retain the allocated object,

in which case it is made reachable from one of 512 NVRAM region roots (randomly selected)

or deallocated immediately. The retained objects essentially form a collection of linked

lists of variable length rooted at region roots. At the time of the crash roughly SZ/2 of the

memory is reachable in the persistent heap. Following a crash, Makalu is started in o�ine

mode. It �rst recovers its allocation metadata to a consistent state and then performs a

parallel GC.

Results

Table 5.2 shows that the time to restart/recover metadata as well as the time to collect

garbage (reported in 4th and 5th columns respectively) are quite small and grow modestly

with the total size of the heap. O�ine overhead data in the 6th column shows that the

total time spent in o�ine recovery and garbage collection remains a small and somewhat



77

constant fraction of the time spent in online allocation (3rd column) even as the total size

of the allocated memory (1st column) and the maximum length of the pointer chain in the

heap (2nd column) grows.

This result greatly enhances the possibility of Makalu being pro�tably used in all but

most peculiar cases where applications have very high rates of failure. In such cases,

persistent applications may have more pressing problems than e�cient memory allocation.

5.13.3 Comparison with NVMPL Default Allocators

In this section, the performance of Makalu is compared to that of the existing NVMPLs’

default allocators. The default allocator in Mnemosyne is built upon Hoard [16, 38].

The possibility of in-place persistence of data became real only recently with the

promise of NVRAM in the near future. As such, to the best of authors’ knowledge, the earliest

NVMPL work [16, 17] is barely half a decade old and still immature. Our work �lls in a prior

omission by providing a leak-free memory allocator with programmer friendly interface.

It aims to promote the development of new NVRAM applications and a more programmable

NVMPL, but it still somewhat su�ers from the status quo of not having standard real NVRAM

application benchmarks. Given the circumstances, the following three applications, which

could bene�t from in-place persistence in the future, were used. Furthermore, other

transient memory management papers [38, 49] have often made use of some of these

benchmarks.

Benchmarks

Barnes-Hu�: This benchmark is a multi-threaded N-body problem solver [50]. The

initial set of 100,000 particle positions and forces are stored in NVRAM, as are the resultant

particle positions and forces after each time-step.

N-queens: It is a lock-based, multi-threaded implementation of a recursive search al-

gorithm for �nding a solution to the n-queens problem [51]. It uses a pool of workers

and work queues. Both work queues, as well as units of work, are allocated in NVRAM. A
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unit of work is essentially a search frontier to be further explored. Each worker removes

a unit of work from the queue and pushes new work generated back to the queue. The

benchmark explored the solution for the 16-queens problem using a variable number of

worker threads. Each worker has to acquire a lock to add or remove work from the queue.

Cholesky: It is a multi-threaded, tile-based algorithm for decomposing a dense matrix

into a lower triangular matrix and its conjugate transpose [52]. Using a variable number

of threads, the benchmark allocated a 1000 × 1000 input matrix in NVRAM, decomposed it

using tile size 4 × 4 and stored results in NVRAM as well.

The same version of the Makalu allocator was integrated with the Mnemosyne and

the Atlas library. The Makalu-integrated Mnemosyne and Atlas shall be referred to as

mne-mak and atlas-mak, whereas versions with default allocators shall be referred to as

mne-def and atlas-def respectively. Mnemosyne requires special Linux kernel support

and compiler support. Therefore, Mnemosyne was compiled using Intel compiler prototype

edition 3 with -O2 optimization and results were obtained on a machine (same architectural

speci�cation as above) running Centos 2.6.32 Linux distro.

Results

Figure 5.12 compares the default allocators in each NVMPL to Makalu using speedups

obtained on the above benchmarks. Since Atlas and Mnemosyne data are collected on

two di�erent systems, they should not be compared to each other. Furthermore, Atlas

and Makalu speedups are calculated based on the single-threaded performance of their

respective default allocators on above benchmarks on their respective machines. Table 5.3

summarizes these base values. In all three benchmarks, the Makalu-integrated version of

NVMPL outperforms the default version by orders of magnitude. The result also demonstrates

the easy interoperability of Makalu with more than a single NVMPL. In order to isolate and

compare the allocation cost, the evaluation process was only concerned with avoiding

inconsistencies in heap metadata for these sets of results. Maintaining the consistency of

the user data stored in persistent heap itself was ignored.
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Barnes-Hutt N-queens Cholesky
sec sec sec

atlas-def 16.44 23.72 19.67
mne-def 18.10 19.69 13.98

Table 5.3: Single-threaded base performance for Atlas and Mnemosyne default allocators.

For one such NVMPL, namely Atlas, more extended results for above benchmarks with

full failure consistency mechanisms enabled are presented in �gure 5.13. For this set of

results, the full instrumentation of code was enabled using Atlas’ LLVM compiler [19]

for ensuring failure consistency of user data, in addition to guaranteeing the absence of

memory leaks and consistency of heap metadata in case of a failure.

Results in �gure 5.13 demonstrate that turning on full failure consistency support in

Atlas hides some of the gains in allocation speed (that could be observed in �gure 5.12) from

using Makalu. Nevertheless, Makalu yields superior performance to the default Atlas allo-

cator. Barnes-Hutt and Cholesky use barriers for synchronization among threads whereas

N-queens uses pthread mutexes. Results in �gure 5.13 show that Makalu-integrated Atlas

yields superior performance for both lock- and non-lock-based code.

Barnes-Hutt N-queens Cholesky
sec sec sec

atlas-def 63.59 59.63 66.16

Table 5.4: Single-threaded base performance for the Atlas’ default allocator (full failure
consistency enabled).

This work have shown that it is possible to build a memory allocator for NVRAM that

maintains the standard malloc()/free() programming model, correctly ensures persistence

of metadata, and interoperates with multiple NVRAM persistence libraries. Surprisingly this

is possible at a cost comparable to transient memory allocators.

The crucial observation is that by relying on o�ine garbage collection during failure

recovery, the per allocation persistence overhead is greatly reduced. A typical small object
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persistent allocation does not need to �ush any data to persistent memory since all relevant

metadata can e�ectively be reconstructed from the object graph during recovery.
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bdwgc; bdwgc-free; bdwgc-mod; Hoard; Makalu; nvm_malloc;
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Figure 5.11: Allocation benchmarks: peak memory consumption
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Makalu; nvm_malloc;
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Figure 5.12: Comparison of Makalu with NVMPLs’ default allocators. Speedup is computed
w.r.t. single threaded performance of respective NVMPLs’ default allocators. Refer to table
5.3 for single-threaded base timing values.
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atlas-def; atlas-mak;
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Figure 5.13: Comparison of Makalu with the Atlas’ default allocator: full failure consistency
enabled. Speedup computed w.r.t. single threaded performance of Atlas default allocator.
Refer to table 5.4 for the base timing values.
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Chapter 6

Relative Addressing and Precise Garbage Collection of
Persistent Heaps Using Persistent Types

Persistent data stored in NVRAM need to be accessible across process and system restarts. For

general-purpose programming, NVRAM programming libraries (NVMPLs) enable persistent

data to be stored in an NVRAM region. An NVRAM region is a named container. Similar to a

mmap-ed �le, the NVRAM region can be mapped to a process’ virtual address space such

that the persistent data stored in the region can be accessed using CPU load and store

instructions. It is possible to store absolute virtual addresses within the NVRAM region when

storing data structures such as a linked-list but doing so poses several problems. An NVRAM

region that stores absolute addresses from a previous execution has to be mapped by each

subsequent process in each subsequent execution to the same starting address in order for

the absolute addresses stored in NVRAM, which is simply not practical. This approach may

also cause address range collision in di�erent scenarios and subsequent failure in mapping

an NVRAM region into a process’ own address space. Many NVMPLs, such as Mnemosyne

and Atlas, continue to use this approach [16, 19] in their initial prototypes.

A superior approach to storing absolute addresses within an NVRAM region is to store

all persistent addresses within an NVRAM region as o�sets from the start of such a region.

In other words, persistent addresses stored in an NVRAM region are relative addresses.

Emerging programming systems/libraries such as NVL-C [53] use this approach. For such

programming systems, we need an allocator that stores its own persistent metadata as

relative addresses so that its own metadata is meaningful across restarts. We need an

allocator that can also handle user allocated addresses in a persistent heap as relative

addresses. Makalu described in chapter 5 is not suited for this purpose since it uses
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absolute addresses for its metadata and can only handle absolute addresses in the heap.

Furthermore, conservative pointer analysis for �nding reachable objects, as done in Makalu,

produces suboptimal results with relative addresses. A conservative pointer analysis may

produce a larger number of false positives when each integer that appears to be a relative

address is converted into an absolute pointer. This issue arises more frequently with

relative addressing because the values of relative addresses are small and comparable

to frequently stored integer values. Consider two integers stored in persistent memory,

one a relative address and other an integer value. Both may appear as a valid pointer

in heap after converting integer values to absolute addresses by adding the appropriate

starting address of the NVRAM region. Therefore, we also need a precise pointer analysis

for the o�ine garbage collection described in chapter 5 to enable it to work properly

with relative addresses. It is pro�table to consider precise garbage collection for NVRAM

programming because programming libraries such as NVL-C already enforce type safety

at both compile time and runtime (e.g. restrictions against non-volatile to volatile pointer

conversions). A precise garbage collection can leverage such type information maintained

by a programming library like NVL-C to precisely locate pointers in a heap object. However,

using relative addresses is not free. Each time a persistent address stored in NVRAM needs

to be used, the relative address has to be converted into an absolute address, requiring

pointer arithmetic.

In this chapter, we discuss an extension to Makalu, called Makalu-rel, that allows it

to use relative addresses for its persistent metadata. Furthermore, we describe the design

of a precise o�ine garbage collection for a persistent heap. We also present some runtime

techniques to reduce the cost translating persistent relative addresses within the allocator.

Similar to Makalu, we expect Makalu-rel to be used along with programming libraries such

as NVL-C and we provide a clean interface for programming libraries and programmers

to interact with it. Our results show that using relative addressing has advantages, and

it comes at some nominal cost. Our results also con�rm that the performance of precise

garbage collection is comparable to that of the conservative approach taken by Makalu.
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6.1 Contributions

This work makes the following contributions:

• a leak-free, persistent allocator that allows de-/allocation of typed persistent objects

and is interoperable with any programming library that supports relative addressing

and typed allocation

• a precise parallel mark-and-sweep o�ine garbage collection that co-ordinates with

the programming library through a clean interface to resolve types and perform

precise pointer identi�cation

• runtime techniques to reduce the cost of translating the relative addresses for persis-

tence

• evaluation of the cost of relative addressing and precise garbage collection in a

relatively addressed heap

6.2 Background

6.2.1 Architectural Assumptions

Makalu-rel makes architectural assumptions similar to Makalu (see section 5.2.1).

6.2.2 Programming Assumptions

Makalu-rel makes similar assumptions as Makalu (see section 5.2.2) unless otherwise noted

in this section. Similar to Makalu, we expect Makalu-rel to be used along with an NVMPL.

We expect a user program to provide Makaku-rel with a type identi�er along with the

size of allocation for each allocation request. By providing the type identi�er associated

with an allocated object, we expect Makalu-rel to be able to obtain the following type

information from the programming library o�ine.

• the number of pointers in the object
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• an array of all o�sets within the object (computed from the beginning of object)

where pointers are stored

Similar to Makalu, Makalu-rel also assumes that all of the useful data stored in a heap

are reachable from the heap roots (stored as relative addresses) when the user data is in

consistent state o�ine.

6.2.3 Terminology

See section 5.2.3.

6.3 Challenges

Apart from the challenges discussed in section 5.3, the design of a persistent memory

allocator with relative addressing and precise o�ine garbage collection has to address the

following additional challenges.

Resolving Persistent Type Information A persistent heap may store objects that

have been allocated over several execution cycles across several restarts. If a precise o�ine

garbage collection is to be performed over such a persistent heap, the type description

corresponding to type identi�er for each such allocated object in the heap also need to be

tracked in a fail-safe manner across all execution cycles and restarts. However, for wider

interoperability, the mechanism by which a collector resolves type with the programming

library needs to be non-speci�c to a particular programming library.

Address Translation Overhead Translating relative addresses to absolute addresses

require performing pointer arithmetics and if this occurs within a frequently executed

code, the e�ect will be observable in terms of increased overhead. An allocator, as well as

the collector, has to address this challenges when it comes to accessing its own metadata.
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6.4 Overview of Our Approach

Makalu-rel is based on Makalu allocator and garbage collector described in chapter 5. We

preserve Makalu’s approach to explicit online de-/allocation, followed by o�ine garbage

collection. However, the o�ine garbage collection algorithm is di�erent in Makalu-rel

compared to Makalu’s conservative garbage collection. Both use the parallel mark-and-

sweep approach. However, Makalu-rel uses type information to obtain precise pointer

locations in heap objects. Makalu requires no coordination with the NVRAM programming

library (NVMPL) during the o�ine phase for garbage collection. In contrast, Makalu-rel

has to coordinate with the NVMPL to obtain detailed type information (e.g. pointer o�sets,

number of pointers) for each object being marked during o�ine.

In order to allocate memory, Makalu-rel also requires a 32-bit type identi�er along with

the size of the allocated object, whereas Makalu only required the size. This type identi�er

for the object is persisted and used later by the o�ine collector to get the detailed type

information about that object from the NVMPL.

Internally, unlike Makalu, all persistent metadata in Makalu-rel is stored using relative

addresses and thus require translation from relative to absolute address during any lookup

of metadata. We implemented some runtime optimizations to reduce the translation

overhead, e.g. caching the most recently used translated metadata addresses.

6.4.1 Makalu-rel APIs

Makalu-rel’s API remains largely unchanged comparable to Makalu’s (see section 5.4.3).

Most of the changes are to the NVMPL facing interface which we will discuss later in

section 6.11.

The only change to the programmer facing interface compared to Makalu is the alloca-

tion interface. Makalu only required the size to be supplied as an argument to Mak_malloc,

whereas Makalu-rel requires both the size as well as a 32-bit type identi�er to be supplied

as arguments, as shown below:

MAK_malloc(size_t sz, unsigned int type);
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The deallocation interface remains the same.

6.5 Internal Structures and Layouts

The transient structures that are described in section 5.5 remains unchanged in Makalu-rel.

However, the persistent structures in Makalu-rel use relative addressing as described below.

6.5.1 Persistent Block Header

Recall from section 5.5.1 that one of the �elds in the block header, hb_block, stores the

starting address of the block for which the header is assigned. This information is used

often throughout Makalu-rel and is crucial in rebuilding internal metadata such as the

header map (see section 5.5.2) and other freelists after a failure. Hence the heap block

starting address is stored as a relative address in Makalu-rel. Figure 6.1 shows the code

snippet for assigning a header to the block, where the block address is being stored as a

relative address at line 4.

1: struct hdr* MAK_install_header(struct hblk *h) {
2: struct hblk *h_rel = (struct hblk *) REL_ADDR(h);
3: hdr * result = alloc_hdr();
4: MAK_STORE_NVM(result->hb_block, h_rel);
5: ...
6: //add hdr to the header map
7: SET_HDR(h_rel, (hdr*) REL_ADDR(result));
8: return result;
9: }

Figure 6.1: Installing a new block header in Makalu-rel

6.5.2 Persistent Header Map

Recall from section 5.5.2 that the header map enables Makalu to map a given object to

the block header for the block to which the object belongs. The address of the block, the

address of the corresponding header in this map, as well as all its internal structure are
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stored as relative addresses in Makalu-rel. The new mapping for the recently allocated

header is set in the header map at line 7 in �gure 6.1. Note that header address is converted

to a relative address before being stored in the map.

6.5.3 Persistent Base Metadata

Recall from section 5.5.5 that Makalu stores the following core metadata in NVRAM:

• NVRAM region base (rgn_base) and max heap (rgn_curr) address

• Log space starting address (md_log_space_start)

• Current log version (md_log_version) (see section 5.8)

• List of header spaces

• Address of the header map space

• Persistent root space start address

In Makalu-rel, all the addresses in these �elds such as log space starting address, root

space start address, the header space addresses etc, are stored as relative addresses. The

frequently used relative addresses (e.g. log space starting address) are translated into

absolute addresses when Makalu-rel re-/starts and stored in transient variables. Others are

translated as needed.

6.6 Reducing Address Translation Overhead

Recall that a block header stores information such as allocation size within the block, mark

bits to indicate which objects are allocated or free, etc. Hence, a block header contains

frequently used persistent metadata and is a major source of persistent address translation

overhead. Furthermore, looking up the header also requires translating addresses for the

components of header map structure. Therefore, we introduced a header cache to store

the absolute addresses of a �xed number of most recently looked up headers. This cache

maps a given object to the correct header for the block to which the object belongs, if

the header exists in the cache. Each thread local heap maintains its own header cache. A
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similar header cache is also maintained at the global level. Looking up the header in the

header cache incurs low overhead as opposed to translating addresses in the header map,

traversing the map and �nally translating the header address when found.

Figure 6.2 shows the header lookup in Makalu-rel where it �rst consults the header

cache. Makalu-rel computes the corresponding block for the given pointer in line 3 and

computes the corresponding entry in the header cache in line 4. It then checks whether

the header cache entry corresponds to the given block ’h’ (corresponding to ’p’) in line 55.

If it does, then it is a cache hit, but before returning the header, it further checks whether

the header in the cache entry is still assigned to the same block as h in line 6. We need

this second check to ensure that the header to block assignment has not changed (e.g. by

another thread) since we last cached this result. This check maintains the header entry

coherence among participating local header caches. If there is a cache miss, we look up the

header from the header map, obtain the translated address, and update the header cache

(lines 11-13).

1: MAK_INNER hdr* MAK_get_hdr(void* p){
2: hdr* hhdr;
3: hblk* h = HBLKPTR(p); //compute p’s block
4: hc_e* hce = HCE(h, hdr_cache, hc_sz); //compute hdr cache entry
5: if (HCE_VALID_FOR(hce, h)) { //check cache entry is valid
6: /* cache hit */
7: hhdr = hce->hce_hdr
8: if (hhdr->hb_block == REL_ADDR(h)) //check header is valid
9: return hhdr;
10: }
11: /* cache miss, update cache */
12: hhdr = HDR(p); //look up header from hdr map
13: UPDATE_HC(hhdr, p, hce);
14: return hhdr;
15: }

Figure 6.2: Looking up a header from header cache
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6.7 Allocation

Allocation requests of all sizes are padded with 4 extra bytes to store the type identi�er

supplied by the user program as an additional argument. Makalu-rel then follows the

usual algorithm described in section 5.6 to allocate an object padded with these extra

bytes. Before returning the allocated object, it stores the user-supplied type identi�er at

the start of the allocated object, and �ushes the type identi�er to NVRAM synchronously.

It then returns the starting address of the allocated address just past the type identi�er.

Calls to Makalu-rel’s allocation routine return absolute addresses for convenience. When

free objects in a block are added to Makalu-rel’s transient freelist (see section 5.6), it

computes their absolute addresses. Allocation from the freelist thus neither requires

address translation nor writes to persistent metadata (see section 5.6. We expect the user

program to only store relative addresses in the heap. Absolute addresses can be converted

into relative addresses before storing them in the heap using Makalu-rel’s helper methods.

6.8 Deallocation

Makalu expects user programs to provide an absolute address for deallocation. The provided

pointer is decremented to the beginning of the actual allocation (i.e. at the beginning

of the stored type identi�er). The rest of the deallocation follows the steps described in

section 5.7.

6.9 Failure Consistency Guarantees

Makalu-rel uses technique similar to the one described in section 5.8 to provide ACID

guarantees while updating core metadata. Makalu-rel however uses relative addresses to

create persisent undo log entries in persistent log space, such that, after a failure, such

logs can be applied to persistent metadata mapped to possibly di�erent absolute addresses.

Figure 6.3 shows code for creating an undo log entry using a relative address (line 2) for

an integer data type.
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1: void create_int_log_entry(int* addr, int val){
2: curr_log_e->addr = (int*) REL_ADDR(addr);
3: curr_log_e->val.int_val = val;
4: curr_log_e->type = INTEGER;
5: curr_log_e->version = MAK_persistent_log_version;
6: FLUSH_SYNC(curr_log_e);
7: curr_log_e++;
8: }

Figure 6.3: Creating undo log using relative address

Likewise, during recovery after a crash, these log entries are replayed by translating

the relative addresses to absolute addresses as shown in �gure 6.4.

1: void MAK_recover_metadata(){
2: ...
3: while ((char*)e >= MAK_persistent_log_start) {
4: addr = (void*) ABS_ADDR(e->addr);
5: switch (e->type){
6: ...
7: case INTEGER:
8: *((int*) addr) = e->val.int_val;
9: FLUSH_FAS(addr, sizeof(int));
10: break;
11: ...
12: }
13: e -= 1
14: }
15: }

Figure 6.4: Replay of Undo logs with relative addresses

The eventual visibility guarantees for auxiliary metadata works the same way as

described in section 5.8.1.
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6.10 O�line Recovery and Garbage Collection

O�ine recovery after a failure proceeds similar to Makalu by �rst recovering the core

metadata to a consistent state using undo logs, then purging and building a new header

map by scanning the header spaces. The recovery logic in Makalu-res has to translate

addresses before applying undo logs and likewise before scanning header spaces.

The garbage collection (GC) in Makalu-rel case uses parallel o�ine mark phase with

precise pointer identi�cation, followed by on-demand onlines. The sweep over marked

blocks happens lazily (incrementally) online on as needed basis when freelists need to be

re�lled.

6.10.1 Precise Parallel Mark Algorithm

Makalu-rel uses one or more threads to discover all persistent objects in the heap reachable

from persistent roots. Each mark thread allocates a �xed-size transient mark stack. Makalu-

rel also allocates a larger global mark stack. The structure of a mark stack entry is shown

in �gure 6.5. The current �eld in the entry stores the starting address of the heap object

(as returned by a call to MAK_malloc). The array of offsets contains the location of the

pointers in the object to be marked relative to current, and the �eld work signi�es the

number of pointers that this marking thread needs to mark.

struct mse {
char* current;
unsigned int* offsets;
unsigned int work;

};

Figure 6.5: Mark Stack Entry for O�ine GC

Each marking thread can o�oad work from the global stack into their own local stack

if their mark stack becomes empty. Likewise, they can also o�oad objects to be marked

from their own stack into the global stack if their stack over�ows. The global stack is
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resized on over�ow.

The o�ine mark phase starts by pushing all the persistent roots stored as relative

addresses into a mark stack. For each object referenced by a pointer (including persistent

roots), Makalu-rel performs the following steps:

1. Mark the object. Makalu-rels �rst obtains the header for the block to which the

object belongs. In the header, it then sets the correspoding bit for the object to

indicate that it is reachable.

2. Get type identi�er for the object. Recall that the type indenti�er for an object is

always stored at the beginning of the allocated object (see 6.7).

3. Obtain type information from NVMPL. Using the type identi�er, Makalu-rel obtains

information such as the number of pointers in the object and the pointer o�sets.

4. Create a mark stack entry. Using information from 3, Makalu-rel populates offsets

and work �elds in the entry and adds it to the mark stack.

For each mark stack entry in the mark stack, each marking thread performs one of the

following two actions:

1. Objects larger than threshold If the number of pointers to be analyzed in the object

is larger than a threshold (default value 512), it carves o� the threshold number of pointers

to mark, and pushes rest of the work back on the stack (for distributing work possibly

among other marker threads). The work �eld and the starting address of o�set array are

updated accordingly before pushing the entry back to the stack.

2. Objects smaller or equal to threshold If the number of pointers to be analyzed in

the object is within a threshold, the marking thread uses steps 1-4 listed above to analyze

each pointer in the object that it is supposed to analyze (as indicated by the work �eld in

mark stack entry).

The empty mark stack entry marks the end of the mark phase. Similar to Makalu, all

mark bits and other auxiliary allocation metadata are made visible in NVRAM before Makalu
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shuts down gracefully in an o�ine mode such that the reclaim list and other freelists can

be created reliably when later restarting online.

6.11 Interaction with NVRAM programming libraries

The API for NVMPL to interact with Makalu-rel remains largely unchanged. We expect

Makalu-rel to simply work out-of-the-box with programming libraries such as NVL-C as

long as the NVMPL has a mechanism to reliably keep track of type information and provide

Makalu-rel with type descriptions on request. We describe below appropriate API calls for

di�erent phases of Makalu-rel.

6.11.1 Online Start

To set up a heap in a new NVRAM region for the �rst time, we expect NVMPL to call MAK_start

and pass in as argument the absolute starting address of the heap, and the maximum size

to which the heap can expand. Note the the starting address needs to be page-aligned. The

maximum size is stored as persistent metadata.

6.11.2 O�line Restart and Recovery

Following a crash, we expect NVMPL to start the Makalu recovery process by calling

MAK_restart and passing in a new absolute starting address of the heap depending on the

address to which the NVRAM region is mapped. Once the recovery �nishes, we expect NVMPL

to call MAK_collect. We expect the NVMPL to pass in as an argument a callback function

with the following signature:

int MAK_persistent_type_descr( unsigned int type,

unsigned int** offset_vector, unsigned int* count);

This callback function is expected to take the type identi�er for an object as the �rst

argument and return the corresponding array of o�sets to pointer locations within an
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object of such a type and a pointer to the number of pointers within the object of such

a type (i.e. the length of o�set_vector) in second and third argument �elds respectively.

Makalu-rel’s precise garbage collection utilizes this callback to obtain type details such

as the the number and the locations of pointers in the object of that type as described in

section 6.10.1.

6.11.3 Online restart

Once the heap has been setup using MAK_restart, we expect the NVMPL to call MAK_restart

to resume online allocation after a recovery or a previous graceful shutdown. The method

call takes absolute starting address of the heap as an argument.

In all states, we handle failure in Makalu-rel in a manner similar to Makalu.

6.12 Evaluation

Although NVRAM is getting closer to becoming widely available [44, 45], it is not currently a

simple matter to create an NVRAM testbed. Hence, Linux tmpfs [25] was utilized to simulate

NVRAM during the collection of results. As �les in tmpfs are only backed by DRAM,

a process crash and restart mechanism was used to test Makalu’s crash resilience and

restart logic. In order to measure failure consistency overhead, full failure consistency

mechanisms such as cache line �ushes and memory fences were enabled, as it would have

been done for actual NVRAM systems.

All the code used in this evaluation was compiled using the GNU gcc/c++ compiler

version 5.4.0 at optimization level "-O2". All experiments were run on a 64-bit Ubuntu

machine (Linux kernel version 4.10.0-42) that has 8 GiB of RAM, 4 cores Intel Core i5-750

CPU @ 2.67 GHz. All results collected were averaged over 6 runs.

We used CLFLUSH/MFENCE instead of the new CLWB/SFENCE instructions to obtain

an estimate of persistence overhead. We explained the reason for doing so and how we

expect the performance of our allocator to improve with new ISA in section 5.13. A similar

reasoning holds for this evaluation as well. We compared the two versions of Makalu in
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this section:

mak-abs: The version of Makalu described in chapter 5 that uses absolute addresses

within a peristent heap and metadata and utilizes conservative garbage collection.

mak-rel: The version of Makalu described in this chapter.

6.12.1 Allocation Performance Comparisons

We compared the allocation speed, throughput, and multi-threaded performance of Makalu-

rel with Makalu to understand the impact of relative addressing and tracking and storing

type identi�ers next to allocated objects.

Allocation Benchmarks

We used the same commonly used allocation benchmarks that we described in sec-

tion 5.13.1:

Larson The benchmark was con�gured to run for 10 seconds, with t threads where each

thread runs for 104 rounds, allocating and deallocating 103 64-byte

Threadtest For t threads, the benchmark was run such that each thread performed 104

rounds of de-/allocation, and 105
t de-/allocations in each round.

Prod-con Each pair of producer-consumer threads de-/allocated 2×107
t objects that are

64 bytes in size.

Results

Figure 6.6 shows multithreaded performance for the above allocation benchmarks. We can

see that mak-abs yields a better performance results compared to makau-rel. Makalu-rel

has a number of sources of extra overhead. First, the extra overhead comes from address
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translation. Second, the extra overhead also comes from having to track type information,

store it in allocated object and �ush it each time the object is allocated. This �ushing

overhead is evident from results presented in �gure 6.7. In each case, Makalu-rel issued

higher number of �ushes per thread compared to Makalu. The peak memory consumption

for both versions of allocator seem to be comparable for these set of benchmarks as seen

in �gure 6.8.

6.12.2 Comparison Using Scienti�c Applications

We used the same set of scienti�c applications that we described in section 5.13.3. We

chose these applications due to the large number of de-/allocations they perform. The goal

is to assess the performance di�erence between Makalu and Makalu-rel using scienti�c

applications that are closer to real-world applications.

Barnes-Hutt: It uses the initial set of 100,000 particle positions and forces are stored in

NVRAM, and stores all results in NVRAM as well after each time step.

N-queens: The benchmark explored the solution for the 16-queens problem using a

variable number of worker threads.

Cholesky: Using a variable number of threads, the benchmark allocated a 1000 × 1000

input matrix in NVRAM, decomposed it using tile size 4 × 4 and stored results in NVRAM as

well.

Results

Performance numbers in �gure 6.9 shows that the performance di�erence between Makalu-

rel and Makalu is more visible in some applications than in others. The overhead of address

translation appears if large number of de-/allocations are along the critical path (e.g

Cholesky). In most cases, the performance is comparable between the two versions of
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Figure 6.6: Allocation benchmarks: throughput and multi-threaded performance. Relative
scalability of the two cases as a function of the number of threads (up to the number of
hardware cores)
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Figure 6.7: Allocation benchmarks: failure consistency overhead (Makalu vs. Makalu-rel)
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allocators, with Makalu performing slightly better for the same reasons as explained in

section 6.12.1.

6.12.3 Comparison: Conservative vs. Precise Garbage Collection

We compare Makalu-rel’s recovery and garbage collection with Makalu’s using the bench-

mark Resur described in section 5.13.2. We seek to understand how precise pointer iden-

ti�cation compares in overhead to the conservative approach. Likewise, we also seek to

understand how address translation overhead a�ects both recovery and garbage collection.

Results

Figure 6.10(a) compares the time required for the two versions of the allocator to recover

its persistent metadata to a consistent state o�ine. Similar to what we observed in sec-

tion 5.13.2, the recovery time grows almost linearly with heapsize. However, there is a

constant di�erence in the overhead between Makalu-rel and Makalu. This di�erence is

primarily due to address translation needed by Makalu-rel during the recovery.

Figure 6.10(b) compares the time needed by the Makalu-rel’s precise collection with

Makalu’s conservative collection. In Makalu, a conservative pointer analysis is required per

pointer, whereas Makalu-rel requires a callback and type description lookup. In this regard,

the two versions simply exchange the source of overhead. The performance of Makalu-rel

GC is in general lower than that of Makalu mostly because of the address translation

needed for each heap object and metadata that need to be looked up. A mark routine

constitutes a "hot code" section in the mark phase. Any perturbation such as translating

addresses within the mark routine has a large impact on performance as the method is

executed thousand of times during the mark phase. Therefore Makalu-rel GC is slower

than Makalu by a constant factor for each heap size. Also, precise collection traverses

the heap in a less cache friendly manner than conservative collection. In conservative

collection, a block of object may be contiguously scanned for possible pointers, which is

also not the case in precise collection.
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6.13 Related Work

Many other programming frameworks such as Open Community Runtime have utilized

addressing relative to the starting of the block to preserve portability and ease of use of

data stored in such blocks across processes [54].

Previous work exists on enabling precise garbage collection in C/C++. For instance,

Magpie [55] looks at a source-to-source compilation of C programs to achieve precise

garbage collection in C. It is not clear whether Magpie handles relative addresses e�ciently.

It certainly is not designed to persist allocation and garbage collection states in a fail-safe

manner.

Likewise, a large body of work exists on enabling parallel garbage collection [56, 57].

Our approach for parallel mark phase is adapted from [37] and the approach taken to

balance the mark load among marking threads is similar to [58], although much simpler in

our case.

For NVRAM programming, NVL-C enforces certain type safety for persistent objects

during compile-time and runtime [53]. It is possible to know precise pointer locations

for a program compiled using NVL-C compiler. However, it only uses simple reference

counting technique to collect unreachable objects, thereby being unable to collect cyclic

data structures. We expect such a programming library to bene�t from using Makalu-rel.

6.14 Summary

We described a new version of persistent memory allocator that uses relative addresses for

its internal metadata and facilitates the use of such addresses in heap. We also described a

design and interface for a precise garbage collection that uses persistent types to identify

pointers in the heap precisely. Our results show that using relative addresses has many

bene�ts and is a superior approach to storing persistent data, but doing so has performance

implications for allocation speed, time to recover and collect garbage. We introduced a

runtime technique to reduce the burden of address translation within heap metadata.
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Figure 6.8: Allocation benchmarks: peak memory consumption
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Figure 6.9: Scienti�c applications: multi-threaded performance (Makalu vs. Makalu-rel)
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Figure 6.10: Comparison of Recovery and GC time in Makalu and Makalu-rel
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Chapter 7

Future Work and Conclusion

7.1 Future Work

This thesis work presented software techniques such as combining the transactional

log-based approach with copy-on-write for failure consistency. An interesting line of

work to pursue is to look various lock-free and non-blocking data structures for non-

volatile memories, how their failure consistency can be guaranteed (either manually or

automatically), and to quantify the overheads involved.

Likewise, we presented a persistent version of a commercially used key-value store.

The current work on NVRAM programming su�ers from a lack of standard benchmarks

and a lack of variety in real life applications from various domains. Another avenue of

work is to explore how persistence provided by NVRAM can bene�t applications in various

domains. A collection of such applications as benchmarks for future NVRAM programming

library developers can be invaluable. Likewise, an interesting study can be made of how

NVRAM persistence a�ects the design and performance of applications in trending �elds

such machine and deep learning.

This thesis also presented one of the �rst general-purpose interoperable persistent

memory management frameworks with o�ine garbage collection. With a large persistent

heap, recovery may take a signi�cant amount of time. Hence, an interesting avenue of

work is to explore incremental recovery and garbage collection. The garbage collection

presented here works o�ine. Another interesting direction for future work could be to

use online garbage collection on a persistent heap, and to perform such garbage collection

incrementally. Exploring alternatives to garbage collection to avoid persistent leaks is

another interesting direction for future work. Performing garbage collection requires
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discovering all reachable objects which can involve a large amount of work for large

persistent heaps. An alternative to garbage collection can include co-operative mechanism

between the user application and the persistent memory allocator to compare and discover

what is allocated yet unreachable after a failure. Such mechanisms are worthy of further

exploration.

7.2 Conclusions

Emerging byte-addressable non-volatile memory technologies allow persistent data to be

stored in the same format as it is manipulated. Programmers can directly allocate, store and

manipulate persistent data in NVRAM using CPU load and store instructions. In architectures

containing NVRAM, volatile caches and DRAM may continue to exist and may temporarily

store updates to persistent data. In case of a crash, such persistent updates may become

only partially visible in NVRAM leaving the persistent data in NVRAM in an inconsistent

state. Hence, updating persistent data correctly with respect to failure is central to being

able to take advantage of the persistence provided by NVRAM.

In this thesis work, we presented a survey of NVRAM technologies and their characteris-

tics in Chapter 2. This chapter also presented a survey of hardware primitives such as ISA

extensions that are being developed to enable NVRAM programming. Programming using

low-level hardware primitives is cumbersome. Hence, we introduced a higher level persist-

reuse programming model in chapter 3 to achieve failure resilient update of persistent data.

In Chapter 4, we realized this persist-reuse model by combining a log-based transactional

approach with a copy-on-write. Programming libraries such as Atlas, which use persistent

transactional logs to achieve failure atomicity incur high overhead in terms of writing and

�ushing persistent logs. We showed that these overheads can be mitigated by combining

log-based approaches with a copy-on-write mechanism to update persistent data. Much of

the previous and current work in NVRAM programming su�ers from a lack of real world

applications that take advantage of persistent memory provided by NVRAM. To address this

problem we also developed a real world NVRAM application and described its design and
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performance characteristics in Chapter 4. The failure consistency in this application is

guaranteed by combining copy-on-write with Atlas’ log-based transactional semantics.

In chapter 5, we addressed persistent memory management, another important compo-

nent of NVRAM programming. Prior to our work, no satisfactory NVRAM memory allocator

was available for NVRAM programming. Each NVRAM programming library contained a per-

sistent memory allocator that could not be used with another programming library. These

existing allocators also put severe programming restrictions in terms of where allocations

could be performed and required complex interfaces for de-/allocation. In Chapter 5

presented a careful assessment of challenges in designing a leak-free persistent memory

allocator that is interoperable with several programming libraries. This chapter then

presented a memory allocator design that combined o�ine garbage collection to address

the challenges. The presented allocator, Makalu, is one of the �rst published leak-free

and interoperable memory allocators. This chapter also introduced several techniques

to reduce persistence overhead within a memory allocator and showed how a persistent

memory allocator impacts programmability.

The allocator described in Chapter 5 uses absolute addresses to store its metadata.

Furthermore, it expects absolute addresses to be stored in the heap for the conservative

garbage collection to work properly. This is a limitation as persistent regions and heaps

in NVRAM may be mapped to di�erent addresses across restart and by di�erent processes.

For Makalu described in Chapter 5 to work, a persistent region always has to be mapped

to the same address. Chapter 6 describes a modi�ed design for Makalu that uses relative

addressing for its own metatada. Furthermore, the modi�ed Makalu handles relative ad-

dresses stored in its heap correctly for garbage collection. Conservative garbage collection

does not usually work well with relative addresses and hence, this chapter also presents a

parallel precise o�ine garbage collector design.

The work described in this thesis represents an advancement in NVRAM programming

and paves the way for future advancement in this �eld. For instance, before the persistent

allocator described in this thesis was developed, developing a new NVRAM programming
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library also required developing an allocator from scratch. Now, such library developers

may simply choose to use Makalu. We expect several software techniques presented in

this thesis, such as combining copy-on-write with log-based approach for failure consis-

tency, o�ine garbage collection to avoid persistent leaks to become the norm for NVRAM

programming in the future.
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Appendix A

CPU Caching Policy Implications in Pre-NVRAM
Architecture

As a prelude to this thesis work, we studied widely available Intel x86-64 bit architecture

that pre-dated the extended ISA described in chapter 2. The study was done from the

perspective of NVRAM programming and led to numerous insight such as the cost and

behavior of the current cache management instruction and the need for a better ones,

CPU caching options, behavior and its implication to NVRAM programming. This chapter

presents this study and insights gained.

A.1 Caching Policy Choices: Write Back vs. Write-Through

It turns out that constraining the order in which writes become visible on NVRAM is at

the core of maintaining consistency. Consider, for example, a common programming

idiom where a persistent memory location N is allocated, initialized, and published by

assigning the allocated address to a global persistent pointer p. If the assignment to the

global pointer becomes visible in NVRAM before the initialization (presumably because

the latter is cached and has not made its way to NVRAM)1 and the program crashes at

that very point, a post-restart dereference of the persistent pointer will read uninitialized

data. Assuming writeback (WB) caching mode, this can be avoided by inserting cacheline

�ushes for the freshly allocated persistent locations N before the assignment to the global

persistent pointer p. This ensures that the initialization and publication are visible in this

order on NVRAM. Higher-level guarantees such as transactional semantics can be built on

top of this low-level visibility constraint.

1 Note that hardware or compiler reordering may have a similar e�ect.



113

However, reasoning in terms of low-level interfaces, such as cacheline �ushes, is error-

prone. Such approach would be akin to memory fence based multithreaded programming,

which are not a very successful programming paradigm. Additionally, insertion of such

cache �ush instructions at appropriate program points requires recompilation and pre-

cludes the use of existing code. This work explores the viability of write-through (WT)

caching mode for persistent data. Using WT mode on Intel x86-64 [20], all CPU stores

result in writes to all levels of caches and through to system memory. Reads continue

getting the bene�t of caching. Though an individual WT CPU store may be slower than a

corresponding WB one, expensive cache �ushes are no longer required, and unmodi�ed

legacy code may be reused in some contexts. In the context of traditional programming

where volatile caches are functionally invisible, WB is traditionally accepted as a superior

choice to WT. However, expensive instructions required to manipulate the state of caches

when manipulating persistent data in NVRAM warrants consideration of caching policies

other than conventional WB.

A.2 Contributions

The experiments in this work were performed on Intel x86 architecture before Intel released

the ISA extensions which included optimized instructions (e.g. CLWB) to make stores

visible in persistence domain. In fact, the experiments conducted as a part of this work

highlighted the need for such optimized instructions. The experiments here report numbers

based on Intel’s existing CLFLUSH instruction at the time. In the light of the existing

architectures at the time, this work made the following contribution through the study of

such architecture in the light of developing programs that utilize NVRAM-based durability:

1. asserts that using WT "selectively" for persistent data structures appears to be a viable

alternative, since programmability bene�ts with WT are a given in any application,

and

2. an experimental version of a Linux kernel that allows programmer to selectively

switch the caching policy of virtual address range associated with the persistent
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data on-the-�y via a set of system calls.

The experimental results reported by this work may need revision in the light of

emerging changes in ISA and memory architecture. However, given the bene�ts of WT

caching policies from the perspective of programmability of NVRAM (see A.3), the case

that this work makes for selectively using WT caching policy for persistent data for certain

types of workloads still holds true.

A.3 Description of Our Approach

This work assumes a programming environment where failure-atomic sections of code are

used to transition data structures from one consistent state to another. In a multithreaded

program, such a section of code provides transactional guarantees of failure-atomicity,

consistency, isolation, and durability. Failure-atomicity implies an all-or-nothing behavior

for visibility of updates to NVRAM. Publication safety [59] is honored so that if a failure-

atomic section completes, the e�ects of all operations on persistent data executed within

or before that code section must have reached NVRAM.

While a programmer reasons in terms of transactional semantics, the underlying

implementation may use a write-ahead log to track accesses to persistent locations to

support failure-atomicity [16, 17]. Once the transactional region commits, the logs have

to be �ushed to NVRAM before the persistent user locations are written and �ushed out.

Once all of this is successfully performed, the log entries can be discarded.

Consider �gure A.1 where a node of a list is allocated, initialized, and inserted at the

head. As shown, most of the code sequence can be non-transactional. This allows reuse

of existing library code, such as for creating a complex data structure, and inserting that

data structure into client objects atomically. This is similar to the previous publication

example. Since failure-atomicity is not implied for non-transactional code, log entries are

not required outside transactions. But to support publication safety, the implementation

must make sure that all updates made before a transaction reach NVRAM at or before the

commit point of that transaction. This ensures that restart code that sees a new head value
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will also see the corresponding node �elds. If WB caching mode is used, and conventional

single- line cache �ush instructions are used, the non-transactional persistent updates

must still be tracked (or directly �ushed) so that the relevant addresses can be �ushed

out at or before the commit point of the succeeding transaction. This incurs costs for

non-transactional code, and prevents reuse of existing library code to ac- cess persistent

data, even outside transactions.

Now consider using WT caching mode for �gure 2. Since any write will be written all

the way down to system memory, the non-transactional code does not have to be tracked

at all. The transactional code will still require logging in order to support failure-atomicity.

Visibility constraints can be enforced without added code, and hence legacy code can be

reused without modi�cation outside of transactions.

A.4 Methodology

This work explored performance tradeo�s of di�erent caching modes available on Intel

x86-64 [20]. In addition to WB and WT, we experimented with two additional caching modes

using Linux 2.6.32: uncacheable (UC, bypasses cache for read and writes), and write

combining (WC, same as UC except writes are combined using a write-combining bu�er

for e�ciency). In the write combining (WC) caching mode, writes are retained in the

WC bu�er temporarily (see �gure 3.1), improving performance. The WC bu�er does not

participate in the cache coherence protocol, and thus the WC mode provides very weak

memory ordering guarantees.

A.4.1 Linux Kernel Modi�cation

Experimenting with wide range of caching policy requires having �ne control of caching

policies over virtual address range at the memory page level granularity. This section

outlines modi�cations to Linux kernel such that programmer have control over caching

policies. We implemented system calls such that user level applications could request

changes to the caching mode of a memory region mapped to persistent storage (de�ned
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PAT Entry Cache Policy
PAT0 Write Back
PAT1 Write Through
PAT2 Uncacheable
PAT3 Strictly Uncacheable
PAT4 Write Back
PAT5 Write Through
PAT6 Uncacheable
PAT7 Strictly Uncacheable

Table A.1: Page attribute table after Linux boots up in Intel x86-64 [20]

by a starting and an ending virtual address) at page-level granularity. Although WT is

available as an option in Intel x86-64, recent versions of Linux do not support this mode

by default. Hence, we modi�ed the Linux kernel initialization code to enable WT support.

In Intel x86-64 with kernel-level privilege, one can specify caching policy at a page-

level granularity. Using bits PAT (7th bit), PCD (4th bit), and PWT (3rd bit) in the page table

entry, one can point to the suitable entry in the Page Attribute Table (PAT) [60]. PAT is

a 64-bit register where each of eight entries is represented by 8 bits. Table A.1 shows

the default PAT values. Notice that entries 4-7 mirror entries 0-3. For instance, setting

PAT to 1, PCD to 0 and PWT to 1 would result in pointing to the 5th entry in PAT which is

write through (WT) by default in Intel x86-64 following a restart or power- up. Current

Linux (2.6.x or higher) does not support WT policy. Hence, as a part of initialization, Linux

changes the 1st and the 5th entry in PAT register to Write Combining (WC). We change the

5th entry to Write Through (WT) and leave other entries unchanged. Next, we add system

calls to Linux kernel to change cache policy of page(s) in a given address range to write

back, write through, write-combining, and uncacheable.

To modify bits in page table entry, we utilize Linux kernel API. When a system call is

made by a user application process, the system call code obtains the pointer to task_struct

for the current process. Next, it obtains the mm_struct inside the task_struct, which

contains information related to memory management. Linux employs four levels of
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hierarchy for page table management [60]. The starting address of the top level page table

Page Global Directory (PGD) is stored in mm_struct. Using the mm_struct and the given

address, the provided macro computes the corresponding PGD entry for the given address.

Next, using the PGD entry and the current address, it computes the corresponding entry in

second level table called the Page Upper Directory (PUD). Likewise, using the PUD entry

and the current address, it computes the corresponding entry in third level table called the

Page Middle Directory (PMD). Finally, it obtains the Page Table Entry (PTE) using the PMD

entry and the current address. We modify the PTE, write the new value using the macro

set_pte, and �ush the Translation Lookaside Bu�er (TLB) entry for the modi�ed page.

A.5 Benchmarks

In order to study the performance characteristics of di�erent caching modes in Intel

x86-64, we experimented with di�erent �avors of a synthetic benchmark and 3 persis-

tent data structures. The synthetic benchmark linearly traverses an array within a loop,

spanning several memory pages, performing: R (read), or W (update to each element), or

RW (read and update to each element). The array takes about 800KB. Transactions are not

used in the synthetic benchmark. The persistent data structures used are a multithreaded

queue, a failure-atomic version of Christopher Clark’s hashtable [61] using transactions,

and a multithreaded copy-on-write array-based list2 (henceforth called cow_al).

In queue, two threads insert and remove 100,000 elements making it a write-intensive

benchmark. In hashtable, the program inserts and removes 4000 elements with traversal

in between, making it read-write balanced. cow_al maintains an internal array that, once

created, is never modi�ed. For every mutating operation, a fresh copy of the array is created,

modi�ed, and a pointer atomically switched. To allow multiple writers, a version counter

is maintained if it has changed since the mutation started, a fresh copy of the internal

array is made with the updated version and the process repeats until the atomic update is

successful (with the original version). A read operation, such as a query, obtains a handle to

2 This benchmark is inspired by Java’s CopyOnWriteArrayList.
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the internal array and proceeds, without any cross-thread interference or synchronization.

Our cow_al driver maintains 2 threads, each of which repeatedly performs a mutation

followed by a traversal of the list such that each thread makes a total of around 1,000,000

writes to persistent locations. A distinguishing characteristic of this benchmark is that

most of the code in this benchmark is non-transactional, the only transactional one being

for the atomic pointer switch. All reported results are averages over 4 runs and are obtained

on a quad-core Intel(R) Xeon(R) E5620 with 12M cache and running at 2.4GHz.

A.6 Results

The �rst three sets of columns in �gure 3 show the runtimes for the synthetic loop

benchmark in each of the described �avors – note that no visibility constraints were added

here. It is evident that WT has read characteristics (R) of WB and write characteristics (W) of

UC. The latter indicates that the write-combining bu�er is not used and hence an mfence

is not required after a WT store to enforce ordering. Volume 3A, Section 11.3 of Intel64

Architecture Software Developer’s Manual [20] mentions that write combining is allowed

in WT. However, our experimental results indicate that the Intel x86-64 machine used in

this experiment does not use it. Likewise, WC has read characteristics (R) of UC and write

characteristics (W) of WB. As expected, stores in WT mode are expensive. But given that

stores to persistent data in WB mode require expensive cache line �ushes, the question is

whether WT mode is attractive when ensuring correct visibility semantics on NVRAM. In our

experiments, we observed that a cache line �ush (guarded by mfence) takes around 300

cycles to complete. Interestingly, our results appear to indicate that a cache line �ush is

equally expensive for clean, dirty, and invalid lines in Intel x86-64.

Next, assuming that the array resides in persistent memory, we added su�cient in-

structions to ensure that stores become visible in order. The R benchmark stays unchanged

as it does not contain stores. The modi�ed W and RW benchmarks are denoted by adding _b

to their corresponding names, i.e. W_b and RW_b.

In WB mode, the visibility constraint is imposed by a FLUSH [32]. On Intel x86-64, a
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//allocate
1: node = nvm_alloc(sizeof(node_t));
//initialize
2: node->value = val;
3: node->next = head;
//publish
4: atomically {head = node;}

Figure A.1: Typical allocation, initialization, publication sequence

Figure A.2: Runtimes for synthetic benchmark �avors
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FLUSH comprises a memory fence (mfence), followed by a cache line �ush of the relevant

address (clflush), followed by another mfence. The �rst mfence ensures that the store

bu�er is emptied before issuing the clflush. The memory fences also ensure the correct

instruction execution order. As noted earlier, more optimized instructions (e.g. CLWB) for

�ushing a cache line have been added to Intel and ARM ISA since the publication of this

work [11, 13]. The results reported below may vary with these new instructions. However,

the actual machine with these instructions are still not widely available and new ISA itself

have gone through several revisions where certain instruction (e.g. pcommit) has been

deprecated (see chapter 2). Under UC and WT modes, we insert a directive asm volatile

("" ::: "memory") following a store to prevent compiler instruction reordering. Since

the Intel x86-64 architecture follows a TSO memory model, a separate memory fence

is not required. We believe that model is semantics-preserving but the Intel x86-64

memory model may need further clari�cation for non-WB caching modes. In case of

WC mode, W_b and RW_b require a hardware memory fence (mfence) after stores so that

the write-combining bu�er is �ushed. Lastly, in WB mode, we experimented with movntq

(move with a non-temporal hint) followed by mfence to achieve visibility and ordering

guarantees of memory stores. We denote these benchmarks by adding _nt to their original

names (i.e. W_nt and RW_nt). The aim is to understand any di�erences in the performance

characteristics between using movntq and WC mode.

In �gure 3, the last four sets of columns show runtimes for W_b, RW_b, W_nt, and RW_nt.

Results for both W_b and RW_b show that employing a WT mode is around 50% faster

than WB mode. Furthermore, W_b under WT mode runs around 12% faster than W_nt. The

memory pages in RW_nt are mapped in WB mode and hence this benchmark su�ers from

cache line eviction each time a write to the line is performed (as outlined in Volume 1,

Section 10.4.6.2 of [20]), which slows down reads. This eviction cost may also explain the

slight di�erence between the runtimes of RW_b in WC mode and RW_nt. As a result, RW_b

under WT mode runs 2x faster than both RW_b under WC mode and RW_nt. We note here

that results not shown here indicate that the performance characteristics of the synthetic
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benchmark remain unchanged regardless of whether the array �ts in L1 cache.

Figure A.3: Runtimes for persistent data structures

Figure A.3 shows the performance comparison for the persistent data structures. queue

performs the best in WB mode — it is 43%, 80%, and 69% slower in WT, WC, and UC modes

respectively. queue is write-intensive with some interspersed reads and most of the updates

in this benchmark occur within transactions. Note that transactional implementations

require frequent cache line �ushes in WB and frequent memory fences in WB and WC modes.

hashtable also performs the best in WB mode – it is 26%, 30%, and 70% slower in WT, WC,

and UC modes respectively. Note that hashtable has a sizable number of both reads and

writes, so a mode that o�ers good performance for both access patterns will provide

good performance. Additionally, all updates to persistent data structures occur within

transactions in hashtable.

On the other hand, cow_al performs the best in WT mode – it is 41%, 226%, and 229%

slower in WB, WC, and UC modes respectively. cow_al has a balanced number of reads and

writes but the distinguishing characteristic is that almost all of them are nontransactional.
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It appears that in a workload with such a pattern (as exempli�ed by a copy-on-write style

implementation), WT mode may perform the best because most of the memory accesses are

unconstrained and the long latency of persistent writes in this mode can be hidden by the

microarchitecture. WB mode su�ers because the non-transactional writes still need to be

�ushed out of the caches. Reads are still important which explains the poor performance of

WC and UC. We believe that the performance characteristics of cow_al (shown in �gure A.3)

mostly track that of RW_b (shown in �gure A.2). In general, the average performance of the

3 benchmarks in WT mode is competitive, and it provides the additional programmability

bene�ts discussed in Section A.3.

A.7 Related Work

Volos et al. [16] use movntq along with mfence to make writes to persistent data instantly

visible in persistent memory. They use FLUSH along with regular WB stores if reads are

involved. To the best of our knowledge, we are the �rst to present the implications of using

WT caching mode for persistent data. Additionally, we present a comprehensive comparative

study and analysis of all the caching modes typically found in modern architectures. Coburn

et al. [17] and Condit et al. [14] both advocate changes at the hardware level to enforce

consistency and visibility of persistent data. In contrast, we focus on techniques that use

existing architectural support.

A.8 Summary

While persisting data in NVRAM, certain consistency semantics have to be maintained in

order for such data to be reusable across machine crashes and restarts. We presented

performance tradeo�s of various caching modes on modern architectures that can be

used in such a context. There is no universally dominant strategy, but overall WT appears

competitive. Its ability to accommodate unmodi�ed legacy code outside transactions may

give it an edge among caching strategies supported by current processors. Clearly these

results may change in the presence of new cache �ushing primitives, such as a mechanism
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for �ushing a cache line to memory without invalidating the cached copy.
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