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ABSTRACT 

Advancing	methods	for	wastewater	disease	surveillance	of	antibiotic	

resistance	and	SARS-CoV-2	

by 

Esther Ge Lou 

 Wastewater-based epidemiology (WBE), which involves using biological 

indicators in sewage to provide information on the overall health of a community, is a 

powerful tool to monitor public health. WBE offers several advantages that make it 

complementary to conventional clinical surveillance: it is rapid and resource-efficient, 

enables broad monitoring of large populations, is able to detect symptomatic and 

asymptomatic infections, and is not biased by health seeking behavior or access to 

healthcare resources. Recent studies have shown that WBE is a powerful tool for estimating 

community-level prevalence of COVID-19 by measuring levels of SARS-CoV-2 RNA in 

wastewater, and for predicting the prevalence of clinical antibiotic resistance by screening 

wastewater for antibiotic resistance genes. Furthermore, WBE has enabled global 

collaboration through national (e.g., National Wastewater Surveillance System (NWSS) on 

COVID-19) and international (e.g., the Enhanced Gonococcal Antimicrobial Surveillance 

Program) programs to advance the integration of WBE into public health response. Despite 

the surge of interest in applying WBE, there are currently no standardized methods for 
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wastewater disease monitoring, including how and when to collect samples, what methods 

to use for analysis, and how to interpret the data to inform action. Without a more complete 

understanding of the methodological challenges involved in characterizing target 

indicators in wastewater samples, our ability to leverage WBE for routine monitoring and 

international collaboration is limited. This dissertation aims to evaluate the strengths and 

weaknesses of several current methods used for wastewater monitoring of antimicrobial 

resistance (AMR) and SARS-CoV-2, and discuss implications of method selection for 

future WBE work. The research focuses on four objectives, corresponding to the four 

chapters presented in this dissertation: (1) characterize the impact of wastewater sampling 

designs (i.e., grab and composite sampling) on the ARG removal rates achieved by a 

wastewater treatment plant (WWTP), (2) elucidate the fate of different forms of cell-

associated and cell-free ARGs in an emerging wastewater treatment process, (3) compare 

two targeted methods (i.e., RT-ddPCR and targeted amplicon sequencing) for monitoring 

SARS-CoV-2 mutations in wastewater, and (4) evaluate short- and long-read 

metagenomics and a targeted method (epicPCR) for tracking ARG host range across a 

WWTP. 

 Sampling design is critical to the collection of representative samples for WBE and 

for estimating removal rates of genes across wastewater treatment processes. We compared 

grab and composite sampling in terms of their corresponding calculated removal rates for 

a suite of genes, including several clinically-relevant ARGs (blaNDM-1, blaOXA-1, 

MCR-1, MCR-5, MCR-10, and qnrA). We find that the diurnal variation of ARG loading 

in the WWTP influent and effluent created significantly different instantaneous ARG 

removal rates among all grab samples collected throughout a day, indicating grab sampling 
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can introduce bias to ARG removal calculations. Overall, using composite samples are 

more representative for WBE and for assessing removal of ARGs across wastewater 

treatment processes as compared to grab sampling which may overestimate ARG removal 

rates.  

 The form of the ARG, specifically whether it is cell-free or cell-associated, is 

critical to understanding ARG removal across wastewater treatment processes. We found 

that the fraction of cell-associated ARGs decreased whereas the fraction of cell-free ARGs 

increased in the treated effluent as the influent organic loading rate was gradually increased. 

The results indicate that the ARGs in treated effluent can transit between cell-associated 

and cell-free DNA in response to changing operational conditions, which should be 

considered to better evaluate the total ARGs in the wastewater treatment system.  

WBE has been widely applied to track SARS-CoV-2 infections in communities and in 

some cases to identify circulating variants of concern. There are several different methods 

that have been applied to screen for variants of concern in wastewater. We compared two 

targeted methods for screening SARS-CoV-2 variants of concern in wastewater samples. 

The results demonstrated that RT-ddPCR is more sensitive and should be applied for 

mutation quantification or variant confirmation in wastewater, whereas detection via 

targeted amplicon sequencing was influenced by the depth of sequencing, viral load, and 

mutation concentration. These findings caution the use of quantitative measurements of 

SARS-CoV-2 variants in wastewater samples determined solely based on targeted 

amplicon sequencing. 

 We compared targeted and untargeted methods for ARG detection in wastewater. 

The results demonstrate that despite its significantly lower sequencing depth, long-read 
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sequencing outperforms short-read sequencing with higher sensitivity for detecting ARGs, 

especially for ARGs associated with mobile genetic elements (MGEs). In addition, long-

read sequencing consistently revealed a wider range of ARG hosts compared to short-read 

sequencing. Nonetheless, the host range detected by long-read sequencing represented only 

a subset of the host range detected by a targeted method, epicPCR (Emulsion, Paired 

Isolation, and Concatenation PCR).  

 Taken together, the results have implications for future WBE, particularly in terms 

of method selection: 1) collect composite samples rather than grab samples to acquire a 

representative view of the monitoring targets in a population; 2) include different forms of 

DNA (cell-associated and cell-free) to analyze ARGs because effluent ARGs are present 

in both forms and can transition between these forms in response to environmental 

conditions; 3) apply RT-ddPCR for quantitative analysis and early variant detection if 

targets are known; and 4) use long-read sequencing for routine wastewater AMR 

surveillance and use epicPCR to obtain a high-resolution host range of clinically-relevant 

ARGs. The findings provided by this research contribute to establishing a scientific 

consensus on method selection for WBE, thus advancing it as a routine tool for public 

health surveillance.   
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Nomenclature 

AMR antimicrobial resistance 

AnMBR anaerobic membrane bioreactor 

ARB antibiotic resistant bacteria 

ARG antibiotic resistance gene 

caARG cell-associated ARG 

COVID-19 the causative virus of novel pneumonia 

cfARG cell-free ARG 

epicPCR Emulsion, Paired Isolation, and Concatenation PCR 

HGT horizontal gene transfer 

MGE mobile genetic elements 

RT-ddPCR reverse transcription droplet digital PCR 

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 

WBE wastewater-based epidemiology 

WWTP wastewater treatment plant  
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Chapter 1 Introduction and Objectives 
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1.1. Problem Statement 

 Ever since the first case of methicillin-resistant Staphylococcus aureus (MRSA) 

was identified in the 1960s (Ventola, 2015), antimicrobial resistance (AMR), or antibiotic 

resistance, has presented a major threat to public health. New global data showing 1.27 

million deaths a year in 2019 reveal the urgent need to address antimicrobial resistance 

(Murray et al., 2022). More than 2.8 million antibiotic-resistant infections occur in the 

United States each year, and more than 35,000 people die as a result (CDC, 2022b). From 

a public health perspective, this situation is cause for alarm, especially in the context of the 

estimated cost of $55 billion every year in the United States due to AMR, including $20 

billion for health care and about $35 billion for loss of productivity (Dadgostar, 2019). 

 Disease monitoring is critical for public health surveillance and response. In the 

cases of antimicrobial resistance (AMR) and viral diseases such as COVID-19, 

surveillance primarily occurs in a clinical setting. This often involves isolating resistant 

serotypes and SARS-CoV-2 viruses in patients’ specimens and studying the factors that 

contribute to the resistance and virulence, respectively. While clinical surveillance 

provides information about emerging resistance or virulence, this approach generates data 

from a very small proportion of the population who are ill and symptomatic. Clinical data 

on AMR surveillance are scattered and lack representativeness due to a large fraction of 

asymptomatic or mildly symptomatic infections (Ashley et al., 2019) especially for low- 

and middle-income countries (Iskandar et al., 2021). This is problematic because 

individuals can carry AMR for months without having any symptoms but still induce 
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infections and transmissions (Carlet, 2012). Wastewater-based epidemiology (WBE), on 

the other hand, provides a snapshot of the overall health of the community based on what 

is being excreted in pooled sewage samples (O’Keeffe, 2021; Polo et al., 2020). Leveraging 

wastewater to monitor disease indicators such as SARS-CoV-2 has been so effective that 

in September 2020, the U.S. CDC established the National Wastewater Surveillance 

System (NWSS) to inform public health responses to COVID-19 and future outbreaks 

(CDC, 2022a). NWSS plans to expand to include monitoring for antibiotic resistance gene 

targets in the near future. 

 WBE is suitable for monitoring population-level AMR. Wastewater samples reflect 

the community’s gut microbiome (Cai et al., 2014; Newton et al., 2015), which is regarded 

as the “epicenter” of antibiotic resistance (Carlet, 2012; McInnes et al., 2020; van Schaik, 

2015). The vast majority of human gut bacteria are commensal, but they can develop 

resistance due to the selection effect exerted by antibiotics. Antibiotics are taken 

therapeutically to treat infections caused by pathogenic bacteria, but can also result in 

resistance development in commensal bacteria, a phenomenon called “standby selection” 

(Tedijanto et al., 2018). In addition, horizontal gene transfer (HGT) is able to convert the 

commensal bacteria into resistant opportunistic pathogens (Carlet, 2012). For example, two 

ARGs each encoding the production of carbapenemase and extended spectrum beta-

lactamase (ESBL), which are prevalent in a few opportunistic pathogens, can readily be 

transferred to and spread among indigenous commensal Proteobacteria in the gut (Goren 

et al., 2010; Göttig et al., 2015). The gut microbiome, including resistant organisms, are 

shed in feces. In sewered communities, excrement along with other wastewater enters the 

sewer system, where it is conveyed to wastewater treatment plants (WWTPs). Untreated 
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wastewater (WWTP influent) represents a pooled sample of every person that contributed 

to the waste stream and can be sampled and analyzed to reveal a community’s resistome 

(defined as “all ARGs, including those circulating in pathogenic bacteria, antibiotic 

producers, and benign nonpathogenic bacteria”) (Wright, 2007, 2010) and ARG hosts 

(defined as the microorganisms that host ARGs, mainly bacteria) (L. Ma et al., 2016), 

identify clinically-relevant resistance markers, and track the evolution of multidrug 

resistance in the community. 

 WBE has proven to be a powerful tool to monitor not only public health threats 

such as AMR but also viral diseases such as the COVID-19 pandemic. Numerous studies 

have demonstrated SARS-CoV-2 RNA levels in wastewater are a strong predictive 

indicator of trends in the nasal positivity rate (Ai et al., 2021; Arora et al., 2020; Stadler et 

al., 2020). WWTP influent (untreated wastewater) or primary sludge can be used as a near 

real-time pooled specimen for an entire community, providing rapid information on trends 

of community-level prevalence and enabling quick responses. Several studies on WBE of 

SARS-CoV-2 RNA provided information that was used to evaluate the effectiveness of 

lockdown measures (Hillary et al., 2021) or to guide public health decisions and actions to 

control the local pandemic (Prado et al., 2021). 

 In addition to leveraging influent wastewater for WBE, the microbial quality of 

WWTP effluent has drawn increased attention primarily driven by interests in using treated 

wastewater for reclamation and water reuse (Hong et al., 2018; Leiva et al., 2021). 

Irrigation using reclaimed wastewater may lead to the dissemination of antibiotic resistance 

(X.M. Han et al., 2016; Q. Qin et al., 2015b), which has become one of the primary 

obstacles to reuse of treated wastewater for agricultural irrigation. To advance applications 
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regarding reuse of treated wastewater, it is crucial to investigate the profile and abundance 

of ARGs and ARG hosts in treated effluents of conventional WWTPs and other treatment 

systems. The profile and abundance of ARGs and host bacteria in the WWTP effluent can 

also differ from those in the WWTP influent (Majeed et al., 2021a) because of HGT events 

and selection effects exerted by the treatment processes (Qiu et al., 2018; T. Zhang et al., 

2011). In fact, the predicting or modeling the fate of ARGs and ARG hosts across 

wastewater treatment processes is still challenging, in part because of the vast diversity of 

ARGs and ARG hosts present in wastewater, and because of the unknown contribution of 

HGT among the co-mingling enteric and environmental bacteria in WWTPs. Substantial 

progress has been achieved to elucidate the close association between wastewater resistome 

and mobilome (Che et al., 2019b; J. Guo et al., 2017; Yin et al., 2022) that potentially 

facilitates the transfer of antibiotic resistance between WWTP- and human-associated 

bacteria (Che et al., 2021, 2022). Future WBE studies should continue investigating the 

profile of ARGs and ARG hosts in treated effluents to improve our understanding of HGT 

of ARGs across the treatment processes, in addition to assessing the efficacy of wastewater 

treatment in attenuating the risk of AMR dissemination.  

 In spite of the significance and benefits in studying these public health indicators 

(i.e., ARGs for AMR and SARS-CoV-2 RNA for COVID-19) across WWTPs, currently 

there is no consensus among scientists and practitioners on which methods should be used 

to characterize the public health indicators in wastewater samples (Liguori et al., 2022). 

Without a more complete evaluation of the methodologies to investigate the target 

indicators, our ability to advance WBE for routine monitoring and to study the fate of AMR 

across wastewater treatment processes is limited. Therefore, it is important to have a 
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thorough evaluation of methods that can impact the results of target indicators and provide 

guidelines of method selection for characterizing target indicators in wastewater samples. 

These guidelines can contribute to closing the knowledge gap regarding risk assessment of 

AMR and other disease indicators for public health protection.  

1.2. Objectives and Significance 

 The overall objective of this research is to evaluate a set of WBE methods including 

wastewater sampling method (i.e., grab versus composite sampling), concentration 

methods for cell-associated and cell-free DNA, and molecular analysis techniques (i.e., 

RT-ddPCR, epicPCR, targeted amplicon sequencing and metagenomics sequencing). 

Specifically, this research aims to explore the following subjects:  

Investigate the impact of sampling design on the variability and instantaneous 

removal of ARGs across a wastewater treatment plant (WWTP) 

Significance. The nature of wastewater samples poses several challenges that can impact 

the detection of the signals associated with target indicators. First, the flow and 

composition of wastewater comprising the influent to a WWTP can fluctuate drastically 

over a day and due to weather conditions, which can affect the variability of measurements 

and consistency of detection of target indicators over time. Wastewater sampling is the first 

step in the WBE workflow, and the representativeness of collected samples influences the 

quality of the resulting information. Considering variations in the flow and composition of 

influent, composite sampling appears to be a better strategy compared to grab sampling 

because it provides a pooled sample matrix consisting of multiple discrete subsamples 

collected within a period of time (i.e., usually 24 hours), which accounts for diurnal 
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variations. Recent studies have suggested that diurnal variations of SARS-CoV-2 RNA in 

wastewater can potentially lead to false-negative detections when grab samples are 

collected during the low-loading time window (Bivins et al., 2021a; Mendoza Grijalva et 

al., 2022a). Yet the majority of researchers studying AMR in water and wastewater system 

continue to use grab instead of composite samples for AMR monitoring likely because of 

convenience (S. Sun et al., 2021). To assess the importance of collecting representative 

samples on AMR monitoring results and conclusions on ARG removal across wastewater 

treatment, it is necessary to investigate the diurnal variations of the loading of a suite of 

clinically relevant ARGs across the treatment process units of a WWTP and the associated 

ARG removal rates. 

 

Examine the impact of wastewater sample processing on the quantification results 

of target indicators 

Significance. Another factor that can affect the results of WBE is how a sample is 

processed and target analytes are concentrated prior to quantification. Target analytes in 

wastewater are often extremely dilute, and thus a concentration step is required prior to 

quantification. The choice of sample concentration protocol impacts the recovery of the 

target analyte in a sample. For example, filtration-based concentration protocols use size 

selection methods and as a result are biased in the form of analyte they capture. In WWTPs, 

AMR gene targets can be present in both cell-associated and cell-free forms depending on 

the status of the host cells. However, the method widely used for wastewater sample 

concentration (i.e., filtration using 0.22 μm filters) is biased towards capturing the cell-

associated fraction (Y. Zhang et al., 2018b). For example, studies have shown that the vast 
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majority of anaerobic enteric bacteria decay in the sewer system during transport to the 

WWTP (L. Li et al., 2021) and during the wastewater treatment process (Eregno et al., 

2018). Cell decay can release cell-free DNA into the surroundings (Ibáñez de Aldecoa et 

al., 2017), converting cell-associated ARGs to cell-free ARGs. In fact, cell-free ARGs in 

treated effluents of WWTPs are of particular importance because they are highly persistent 

in the downstream environment (Nagler et al., 2018; Oliveira et al., 2021; Sivalingam et 

al., 2020) and can disseminate via natural transformation, as shown in microcosms (Dong 

et al., 2019; Mao et al., 2014) and in situ experiments (Kittredge et al., 2022). The 

development of cell-free DNA concentration and extraction methods (Calderón-Franco, 

van Loosdrecht, et al., 2021; D.-N. Wang et al., 2016; Q.-B. Yuan et al., 2019b) make it 

feasible to analyze cell-free ARGs from wastewater samples, but a limited number of 

studies have investigated the fate of cell-associated and cell-free DNA in effluent from 

treatment systems for wastewater reclamation. Anaerobic membrane bioreactors 

(AnMBRs) are an emerging biotechnology which is ideally suited for wastewater 

reclamation because they produce nutrient-rich effluents (nitrogen and phosphorus) that 

can be utilized for irrigation (Martinez-Sosa et al., 2011; Peña et al., 2019). However, its 

ability to remove ARGs from wastewater has not been studied carefully, precluding its 

application for water reuse. Therefore, to advance AnMBRs for water reuse applications, 

it is important to understand their ability to remove ARGs and the persistence of effluent 

ARGs in both the cell-associated and cell-free fractions. 

 

Evaluate two targeted methods (RT-ddPCR and targeted amplicon sequencing) in 

quantifying characteristic mutations of SARS-CoV-2 variants in wastewater 
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Significance. In addition to sampling and concentration methods, the choice of molecular 

analysis techniques (i.e., PCR-based quantifications, sequencing technologies) used to 

detect and quantify target indicators in DNA and RNA isolated from the wastewater 

samples can also impact WBE results and conclusions. To elaborate, we categorized these 

techniques into two groups: targeted methods such as RT-ddPCR, epicPCR (Emulsion, 

Paired Isolation and Concatenation PCR) and targeted amplicon sequencing, and non-

targeted methods such as short-read and long-read metagenomics sequencing. Wastewater 

represents a complex matrix of biological and chemical compounds which can inhibit 

molecular analysis (Schrader et al., 2012). In addition, target indicators such as SARS-

CoV-2 RNA in wastewater can be degraded, fragmentized and diluted (Canh et al., 2021; 

Kantor et al., 2021; Wurtzer et al., 2021). All these factors make it challenging to detect 

and recover target indicators. Therefore, for detecting SARS-CoV-2 titers in wastewater, 

an enrichment step based on PCR amplification is typically needed prior to sequencing to 

improve sensitivity (Crits-Christoph et al., 2021a). For instance, targeted approaches based 

on PCR amplification, including RT-ddPCR and amplicon-based targeted sequencing, 

have been widely applied to detect SARS-CoV-2 RNA in wastewater (Ciesielski et al., 

2021; Tyson et al., 2020). Targeted amplicon sequencing (i.e., multiplex tiling PCR 

coupled with amplicon sequencing) is considered the lower-cost and faster approach 

(Chiara et al., 2021; X. Lin et al., 2021). In addition, it is a powerful tool to enable 

comprehensive screening of all potential mutations without any prior knowledge, 

providing opportunities to proactively discover cryptic variant lineages (Karthikeyan et al., 

2022; Smyth et al., 2022) and emerging lineages of concern (Karthikeyan et al., 2022; 

Sapoval et al., 2021). However, it is unclear how quantitative is this approach as compared 
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to the gold standard RT-qPCR (Alygizakis et al., 2021; Van Poelvoorde et al., 2021) or 

RT-ddPCR (Nyaruaba et al., 2022) methods. Thus, a direct comparison between targeted 

amplicon sequencing and RT-ddPCR (or RT-qPCR) for mutation detection and 

quantification using wastewater samples is needed to assess the validity of using the results 

generated via targeted amplicon sequencing to indicate quantitative information of 

mutations in the community. 

 

Evaluate a targeted method (epicPCR) and a widely used non-targeted method 

(metagenomic sequencing) in tracking ARG hosts in wastewater 

Significance. While targeted methods enable sensitive detection of genetic targets in 

wastewater, they depend on a priori knowledge of the target sequences to design primers 

and/or probes for PCR amplification (e.g., primers/probes for RT-ddPCR or RT-qPCR, and 

primer panels for targeted amplicon sequencing via multiplex tiling PCR). In contrast, non-

targeted, unbiased methods such as metagenomics do not require prior knowledge of 

targets and thus can be used to comprehensively screen of wastewater samples for a variety 

of disease targets including ARGs (Prieto Riquelme et al., 2022), DNA and RNA viruses 

(Corpuz et al., 2020), bacterial and fungal pathogens (Y. Yang et al., 2022) etc., albeit with 

less sensitivity and arguably less quantitatively. Metagenomic sequencing is one of the 

most widely used methods to analyze AMR in wastewater. It has several advantages such 

as showing the contextual information of ARGs [e.g., the associations of ARGs with 

mobile genetic elements (MGEs)] and enabling ARG host tracking (Ju et al., 2019; L. Ma 

et al., 2016; G. Zhang et al., 2020). The majority of wastewater metagenomic sequencing 

studies on AMR have used short-read sequencing platforms, generating amplicons of 75-



 
22 

350 bp. The development and application of long-read based sequencing (e.g., Nanopore 

technology), which can generate amplicons from 500 bp to up to 2.3 Mb (Payne et al., 2019) 

can provide contextual genetic information for ARGs, and thus has improved confidence 

and efficiency in identifying ARGs associated with MGEs, multi-drug resistance, and ARG 

hosts (Che et al., 2019b; Leggett et al., 2020; Y. Yang et al., 2022). So far, no study has 

directly compared how short- and long-read sequencing approaches for detection of ARG 

hosts in wastewater. In addition, it is unknown how non-targeted metagenomic sequencing 

differ from targeted methods specifically for ARG host tracking. Evaluating these methods 

in terms of ARG host tracking is important because of the consensus that not just the ARGs, 

but the ARG and its associated hosts, is the critical to assess AMR threats to public health.  

1.3. Dissertation Organization 

 This dissertation is organized into 6 chapters. Chapter 1 gives an overview of the 

general background and contextualizes the research objectives and significance. Chapter 

2, “Instantaneous ARG removal rates across wastewater treatment plants are not 

representative due to diurnal variations”, assesses the impact of sampling design (grab 

versus composite sampling) on the conclusions regarding the variability and instantaneous 

removal of ARGs across a WWTP. Chapter 3, “The fate of cell-associated and cell-free 

antibiotic resistance genes in the effluent of an anaerobic membrane bioreactor co-treating 

domestic wastewater and cattle manure”, investigates effluent ARGs and their presence in 

the cell-associated and cell-free fractions of the treated effluent of an AnMBR treating a 

high strength mixture of domestic wastewater and cattle manure. Chapter 4, “Direct 

comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation 
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monitoring in wastewater”, compares the detection sensitivity of two different targeted 

methods for mutation detection, RT-ddPCR and amplicon-based targeted sequencing 

(ARTIC v3), for the detection and quantification of five characteristic mutations associated 

with SARS-CoV-2 variants of concern. Chapter 5, “Using long- and short-read 

metagenomics and epicPCR to profile antibiotic resistance genes and their bacterial hosts 

in wastewater”, evaluates the non-targeted methods, namely, short- and long-read 

metagenomic sequencing, as well as a targeted approach that uses single-cell emulsion 

PCR (epicPCR), to identify ARG hosts across a WWTP. Chapter 6 summarizes the 

findings of this work, discusses its engineering implications, and makes some suggestions 

for future research. 
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Chapter 2 Instantaneous ARG removal rates 
across wastewater treatment plants are not 

representative due to diurnal variations  

Esther G. Lou, Priyanka Ali, Karen Lu, Prashant Kalvapalle and Lauren B. Stadler 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract To evaluate the threat of the environmental dissemination of antibiotic 

resistance associated with wastewater treatment plants (WWTPs), the removal efficiency 
of antibiotic resistance genes (ARGs) during wastewater treatment needs to be assessed. 
Sample collection strategy is one factor that is often overlooked in study design and most 
studies on ARGs in wastewater perform grab sampling. In this study, we hypothesized that 
wastewater sampling (i.e., grab sampling and composite sampling) influences the observed 
ARG concentrations and calculated removal rates across a WWTP. We compared the 
removal rates calculated based on the two different sampling methods for a suite of genes, 
including several clinically-relevant ARGs (blaNDM-1, blaOXA-1, MCR-1, MCR-5, 
MCR-10, and qnrA). We conducted summer and winter 24-hour sampling campaigns 
where grab samples were collected every two hours from the influent, secondary effluent, 
and final effluent. We found the instantaneous removal rate of each target gene calculated 
based on the 12 grab samples fluctuated by 0.5 – 1.6 log in the winter and 0.9-2.7 log in 
the summer throughout the day, indicating diurnal variation. Overall, for each target gene, 
the removal rates calculated based on 24-hour composite samples were approximately 
equal to the median of the 12 instantaneous removal rates. Our study confirms the 
importance of using composite rather than grab samples to monitor ARGs in wastewater. 
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2.1. Introduction 

 The worldwide dissemination of antibiotic resistance has raised serious public 

health concerns. According to the CDC, more than 2.8 million antibiotic-resistant 

infections occur in the US each year and more than 35,000 people die as a result (CDC, 

2022b). Antibiotic resistant organisms living in the human gut are excreted via feces and 

enter wastewater treatment plants (WWTPs) through public sewer systems (Rousham et 

al., 2018). Therefore, WWTPs are regarded as a hotspot for the environmental 

dissemination of antibiotic resistance genes (ARGs) (Rizzo et al., 2013b). It is important 

to incorporate ARG removal efficiency assessment into the body of environmental 

monitoring of antibiotic resistance, because it could shed light on strategies to mitigate the 

spread of antibiotic resistance from WWTPs (Liguori et al., 2022). In addition, ARGs have 

great potential to propagate and spread among bacteria during wastewater treatment, which 

results in persistence and proliferation of ARGs across the treatment processes (Che et al., 

2019a; Ju et al., 2019; Majeed et al., 2021a). Furthermore, the profile and load of ARGs in 

treated effluent needs to be evaluated, particularly in the context of water reuse, to assess 

their potential human health risks (Hong et al., 2018; Leiva et al., 2021).  

 The pattern of ARG removals can be complicated by the diurnal variations in ARG 

loads at a given WWTP due to flow fluctuations that result from toilet flush frequency, 

which usually peaks in the morning and early evening (Coutu et al., 2013b). Diurnal 

variations of many different constituents in wastewater such as suspended solids, chemical 

oxygen demand (COD), ammonia (Butler et al., 1995; Metcalf & Eddy, 1991; Munksgaard 

& Young, 1980; Young et al., 1978), pharmaceuticals (Joss et al., 2005; Nelson et al., 2011), 

antibiotics (Göbel et al., 2005; Plósz et al., 2010; Coutu et al., 2013a), xenobiotics (Joss et 
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al., 2005; Nelson et al., 2011) have been studied. Daily loads of antibiotics were found to 

correlate with influent flow and ammonium load (Göbel et al., 2005) and to peak daily in 

the morning hours during the highest hydraulic loading (Plósz et al., 2010). Viruses in 

wastewater, such as SARS-CoV-2, also exhibit diurnal variations (Bivins et al., 2021b; 

Gerrity et al., 2021; B. Li et al., 2021; Mendoza Grijalva et al., 2022b). SARS-CoV-2 

detection rate, defined as the proportion of samples with quantifiable RNA concentrations, 

was the highest at peak flow (Mendoza Grijalva et al., 2022b). A 10-fold increase in RNA 

concentration in the influent was measured in 24-hr, flow proportional composites samples 

as compared to grab samples collected in the morning (at minimum observed flow rate), 

due to diurnal variation (Gerrity et al., 2021). However, to the best of our knowledge, only 

one study has examined the temporal variations of ARGs in WWTPs that occur over the 

course of a day. Sun et al. reported that the concentrations of several tetracycline and 

sulfonamide resistance genes fluctuated across a day (S. Sun et al., 2021). ARG removal 

rates across different treatment units processes in WWTPs may also differ throughout the 

day due to the impact of flow variation on the hydraulic residence time in each unit process, 

similar to what has been observed for antibiotics (Marx et al., 2015). 

 Previous studies have reported inconsistent ARG removals across WWTPs, and 

discrepancies in removals underscore the current challenges in predicting the fate of ARGs 

in WWTPs (Berendonk et al., 2015). It is also unknown if wastewater sampling contributes 

to the inconsistencies in ARG removal among studies. For example, Sabri et al. found that 

the concentrations of sul1 in the secondary effluent increased as compared to the influent 

in one WWTP (Sabri et al., 2020), whereas Gao et al. reported approximately 2-log of 

reduction of sul1 between influent and secondary effluent (Gao et al., 2012b). Both studies 
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were on conventional activated sludge process, but Sabri et al. used composite sampling 

and Gao et al. used grab sampling. A myriad of factors, such as wastewater composition, 

WWTP designs and operational parameters can impact the removal of ARGs (Uluseker et 

al., 2021; J. Wang & Chen, 2022). In order to accurately compare ARG removal across 

full-scale systems that experience dynamic loading, it is critical to standardize how removal 

of ARGs is measured and calculated, and thus it is necessary to understand how sampling 

methodological decisions impact the interpretation of results reported across studies. 

 There are two dominant sampling methods used for wastewater monitoring: grab 

sampling and composite sampling (Simpson et al., 2013). A grab sample is typically a 

single, discrete sample. Composite samples can be divided into two categories: (1) time-

weighted composite samples, and (2) flow-proportional composite samples. These types of 

composite samples consist of a single sample pooled from a series of individual samples 

taken at a specific time interval with the same volume (time weighted), or with flow-

proportional volumes (flow proportional). A composite sample (most often performed over 

a 24-hour period) is considered a more representative sample than a grab sample because 

it is less likely to be affected by an irregularity in the system and is an averaged 

representation of wastewater characteristics during the compositing period (H. Lee et al., 

2007). However, grab sampling is much easier and faster to conduct as compared to 

composite sampling. In a recent study, the authors reported that out of 55 prior studies that 

sampled from a total of 263 WWTPs for ARG analysis, 42 of those studies analyzed grab 

samples (S. Sun et al., 2021). Little is known if these two wastewater sampling methods 

(grab versus composite sampling) can impact ARG wastewater monitoring results and 

assessments of ARG removal rates across wastewater treatment processes. A better 
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understanding of the diurnal variability of ARGs across wastewater treatment processes is 

needed.  

 In this study, we assess the results from grab and composite sampling by 

performing two 24-hour sampling campaigns, one in winter and one in summer. Samples 

were collected every two hours from the influent, secondary effluent, and final effluent of 

a WWTP. A suite of clinically relevant genes including ARGs that confer resistance to 

fluoroquinolone (qnrA), carbapenem (blaNDM-1), ESBL (blaOXA-1), and colistin (MCR-

1, MCR-5, and MCR-10) as well as a clinical class 1 integron-integrase gene (IntI1) were 

quantified. We examined: 1) the concentration of ARGs and ARG load across a typical 

weekday; (2) the variability in calculated ARG removal rates based on intra-day hourly 

grab samples; (3) the difference between ARG removal rates calculated based on the grab 

samples and 24-hour composite samples; and (4) the impact of secondary treatment 

(activated sludge treatment and clarification) and chlorine disinfection on the removal of 

ARGs. 

 

2.2. Materials and Methods 

2.2.1 24-hour sampling campaign 

 We sampled from the City of West University Place WWTP (Houston, TX) that 

treats an average of approximately 0.86 (summer) and 0.93 (winter) million gallons of 

municipal wastewater per day. The instantaneous plant flow rates are provided in the 

Supporting Information (Table S2.1). The treatment process consists of primary screening, 

secondary treatment via a contact stabilization process, secondary clarification, chlorine 
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disinfection using gaseous Cl2, and sodium bisulfite addition for dechlorination. The 

hydraulic retention time (HRT) of the plant is approximately 12 hours depending on the 

flow rate. Two 24-hour continuous sampling campaigns were conducted on two separate 

weekdays, one in December 2019 and one in June 2022. Both sampling campaigns were 

conducted during dry weather conditions. Samples were collected from three locations: 

influent channel, secondary effluent (after contact stabilization and clarification), and final 

effluent (after dechlorination). Samples were collected every 2 hours over 24-hours, and 

replicate samples (n=2) were collected during the summer campaign. Instantaneous flow 

rate was recorded at each sampling event via a digital flow meter measuring the plant’s 

final effluent. Field campaign details including the sampling time, ambient temperature, 

and number of samples collected are listed in Table S2.2.  

 Immediately after collection, samples were aliquoted and aliquots were preserved 

for determination of chemical oxygen demand (COD), ammonia-N (NH3-N), and for DNA 

extraction. Sample volumes, a description of the pretreatment and storage of samples, and 

procedures for COD and NH3-N quantification are described in the Chapter 2 Appendix 

Section 1.1. The results of COD and NH3-N concentrations and removal rates are provided 

in Table S2.3. DNA extraction was performed using FastDNA SPIN Kits for Soil (MP 

Biomedicals) following the manufacturer’s instructions. 

 

2.2.2 Real-time PCR (qPCR) on target genes 

 We used qPCR to quantify the absolute abundance (concentration) of each target 

gene in the samples. Target genes for qPCR quantification included several ARGs [sul1, 

tet(W), AmpC] and one mobile genetic element (MGE), and clinical IntI1 (Zheng et al., 
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2020), all of which are ubiquitous and abundant in the environment (Gao et al., 2012; Laht 

et al., 2014; J. Wang et al., 2020). We also analyzed a suite of ARGs that are clinically-

relevant, including three colistin resistance gene variants (MCR-1, MCR-5, and MCR-10), 

one fluoroquinolone resistance gene (qnrA), one ESBL-production gene (blaOXA-1), and 

one carbapenem resistance gene (blaNDM-1). We quantified the 16S rRNA gene to 

measure the abundance of bacteria and other microorganisms and use for normalization of 

ARG and mobile genetic elements (MGE). Each grab sample was analyzed as an individual 

sample without compositing. Since all grab samples were collected at a constant time 

interval, and the volume for each type of sample (influent, secondary effluent, and final 

effluent) was constant, we simulated the target gene concentration of the time-weighted 

composite sample by averaging the concentrations of the target gene in all grab samples. 

For the flow proportional composite sample, we calibrated the volume of each individual 

grab sample proportional to the flow, then pooled them together to calculate the 

concentration of the target gene in a simulated flow-proportional composite sample.  

 The copy numbers for all genes except for three MCR variants were assayed using 

a SYBR green-based method (i.e., one target per assay). The qPCR reactions were carried 

out in technical triplicates each containing 10 μL 2X Forget-Me-Not EvaGreen qPCR 

mastermix (Biotium), 50 nM ROX (Biotium), 250 nM of forward and reverse primer, PCR 

grade H2O, and 1 μL DNA template. A triplex assay was developed in this study to 

multiplex MCR-1, MCR-5 and MCR-10 using a probe-based method. The qPCR reactions 

were carried out in technical triplicates each containing 10 μL 2X qPCRBIO Probe Mix 

(PCRBIOSYSTEMS), 400 nM forward and reverse primer, 200 nM probe, PCR grade H2O, 

and 2 μL DNA template. All targets were assayed using the QuantStudio 3 Real-Time PCR 
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system (ThermoFisher Scientific) using the fast 2-step mode. Primer sequences, standard 

curve information, and qPCR reaction conditions are provided in Table S2.4. 

 

2.2.3 Calculations of instantaneous ARG removal rates using grab samples, ARG 

removal rates of 24-hour composite samples, and the removal of 24-hour ARG loads 

 We first used the copy number of target genes (16S rRNA gene, ARGs and IntI1) 

in each sample obtained by qPCR and the volume of the corresponding sample to calculate 

the absolute abundance (i.e., concentration in copies/L), as described in Equation 1. The 

relative abundance of ARGs and IntI1 was calculated by normalizing the absolute 

abundance of the target gene to the absolute abundance of the 16S rRNA gene (Equation 

2). The instantaneous removal rate of each target gene via grab sampling was calculated in 

terms of the absolute abundance and relative abundance in the influent and effluent samples 

(Equation 3). To calculate the removal rates based on 24-hour composite sampling, the 

simulated absolute abundance of the target genes in the composite influent and effluent 

samples as described above were used (Equation 4 & 5). The removal of the load of target 

genes via 24-hour composite sampling was calculated using Equation 6. A detailed 

explanation on Equation 6 is provided in the Chapter 2 Appendix Section 1.4 (Figure S2.1). 

Note that for the removal rates, we calculated the removal by secondary treatment 

(Equation 3a, 4a, 5a and 6a) and by chlorination (Equation 3b, 4b, 5b and 6b). 

Absolute	abundance	of	the	target	gene:	C!"#.

=	
copy	number	of	the	target	gene	per	reaction	(copies) × total	volume	of	the	DNA	extract	per	sample	(µL)

volume	of	sample	(L) 	× 	volume	of	the	DNA	extract	per	reaction	(µL) 	(Eq. 1)	

Relative	abundance:	C!"#. =	
C%&'.

	C()*	!,-.,%&'.
	(Eq. 2)	



 
32 

Instantaneous	removal	rate	by	secondary	treatment	 = Log(0 ?
C%&'.,1-2
C%&'.,*3

@ (Eq. 3a)	

Instantaneous	removal	rate	by	chlorination = Log(0 ?
C%&'.,*3
C%&'.,23

@ (Eq. 3b)	

Removal	rate	by	secondary	treatment	in	the	24 − hour	time	weighted	composite	sample

= Log(0 ?
∑ 𝐶4,56789
4:0

∑ 𝐶4,;<89
4:0

@ (Eq. 4a)	

Removal	rate	by	chlorination	in	the	24 − hour	time	weighted	composite	sample

= Log(0 ?
∑ 𝐶4,;<89
4:0

∑ 𝐶4,7<89
4:0

@ (Eq. 4b)	

Removal	rate	by	secondary	treatment	in	the	24 − hour	flow	proportional	composite	sample

= Log(0 ?
∑ C=.,1-2𝑓489
4:0

∑ C=.,*3𝑓489
4:0

@ (Eq. 5a)	

Removal	rate	by	chlorination	in	the	24 − hour	flow	proportional	composite	sample

= Log(0 ?
∑ C=.,*3𝑓489
4:0

∑ C=.,23𝑓489
4:0

@ (Eq. 5b)	

The	removal	of	ARG	loads	by	secondary	treatment	in	the	24 − hour	sampilng	period

= Log(0 ?
C0,1-2𝑓0 + 2∑ C=,1-288

4:8 𝑓4 +	C89,1-2𝑓89
C0,*3𝑓0 + 2∑ C=,*389

4:8 𝑓4 +	C89,*3𝑓89
@ (Eq. 6a)	

The	removal	of	ARG	loads	by	chlorination	in	the	24 − hour	sampilng	period

= Log(0 ?
C0,*3𝑓0 + 2∑ C=,*388

4:8 𝑓4 +	C89,*3𝑓89
C0,23𝑓0 + 2∑ C=,2388

4:8 𝑓4 +	C89,23𝑓89
@ (Eq. 6b)	

t	(hour)	–	the	time	at	which	the	grab	sample	was	collected	with	a	range	from	0	to	24	and	an	

increment	of	2,	

𝑓4	(L/hour)	–	the	instantaneous	flow	rate	at	time	t.	

 

2.2.4 Statistical analysis 

 A Welch two sample t-test was applied to compare two datasets. A p-value of less 

than 0.05 was the threshold to indicate a “significant” difference between the two datasets. 
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The relative standard deviation (RSD), which is usually used to represent how data points 

are scattered around the mean, was calculated to indicate the diurnal variation in 

instantaneous concentrations of each target ARG across a day.  

 

2.3. Results and Discussion 

2.3.1 Instantaneous removal rates via grab sampling varied significantly within a day, 

demonstrating diurnal variations 
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We first assessed the instantaneous removal rates of each target gene via grab 

sampling with respect to time, then compared them to the removal rates calculated based 

on the simulated 24-hour composite samples (Figure 2.1a). All target genes demonstrated 

removal rates greater than 90% (i.e., one-log removal) via 24-hour composite sampling, 

Figure 2.1 Removal rates of target genes in winter and summer sampling. Removal rates of 
target genes (x-axis) as calculated based on grab samples collected during the winter and 
summer sampling campaign (a), including instantaneous log removal rates (grey points), log 
removal rates of the 24-hour time-weighted composite sample (red) and the flow-proportional 
composite sample (blue). Instantaneous removal rates (left y-axis) of all target genes and the 
flow rate (right y-axis) over 24 hours during the winter (b) and summer sampling campaigns (c). 
The scatter points represent the instantaneous removal rates of all target genes at that specific 
time. Boxes represent the interquartile range, with solid lines as medians. Whiskers represent the 
standard deviation. The dashed brown line represents the flow rate.  
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which is consistent with previous studies reporting that WWTPs are effective in reducing 

ARG concentrations from wastewater (Karkman et al., 2016; K. Qin et al., 2020). However, 

instantaneous removal rates were highly variable throughout the day (Figure 2.1b & c): the 

difference between the maximum and minimum observed instantaneous removal rates of 

each target gene fluctuated by 0.5 – 1.6 log in the winter and 0.9-2.7 log in the summer. 

This trend was most evident in the summer sampling campaign data (Figure 2.1c), where 

higher ARG removal rates tended to be observed using grab samples collected during the 

daytime, whereas lower ARG removal rates were observed for samples collected during 

the nighttime. The maximum instantaneous removal rates of all target genes were observed 

most often for the samples collected in the early morning (6:40 AM) or late night (12:40 

AM) in summer, and for those samples collected at 2:40 PM in winter. These specific times 

coincided with times when the plant flow rate was the lowest across the day (Figure 2.1b 

& c). However, it is hard to disentangle the intrinsically complicated effects of the flow 

rate on ARG removal. Flow impacts the concentration of genes via dilution (i.e., the fecal 

content in the wastewater becomes diluted by other liquids that do not contain the genes). 

Additionally, flow fluctuation can change the residence time of each treatment process, 

which in turn impacts the removal of the target genes. 

 The 24-hour time-weighted and flow-proportional samples generated similar 

removal rates with respect to a given target gene (Figure 2.1a). For each target gene, the 

percentage difference between the removal rate of the 24-hour time weighted sample and 

24-hour flow proportional sample ranged between 1.50-21.4% (mean: 3.40%) in the winter 

campaign, and from 0.794-26.5% (mean: 11.0%) in the summer campaign. Statistically, 

the median of the instantaneous removal rates of the 12 grab samples approached the values 
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of removal rates corresponding to the 24-hour composite samples. To summarize, when 

the grab sampling approach is used for quantitative ARG measurements across WWTPs, 

diurnal variation can potentially exclude samples with the lowest ARG removal, leading to 

biased removal results. Both time and flow composite sampling methods generated 

comparable ARG removal rates, underscoring that composite samples provide a more 

balanced and thus representative snapshot of target gene removal trends in a WWTP. 

 

2.3.2 Seasonality of ARG removal was significant as shown by an overall greater 

removal in relative abundance in the summer 

 In the summer and winter sampling campaigns, all target genes were successfully 

removed in absolute abundance as indicated by the average positive removal rates 

generated by the grab samples collected across the day (Figure 2.1). However, the relative 

abundance of several target genes (calculated as the absolute abundance of target genes/the 

absolute abundance of 16S rRNA genes) in the final effluent increased as compared to in 

the influent, rendering negative removal rates, especially in the winter (Figure S2.2). One 

possible reason for the increase in relative abundance may be the ecological selection of 

the corresponding ARG hosts due to their ubiquity and environmental fitness across 

treatment (Do et al., 2022; Pärnänen et al., 2019). In addition, apart from the ARG hosts, 

the environmental conditions in the wastewater treatment processes that resulted in 

increased expression of the ARGs can also contribute to the increase of ARG relative 

abundance. Those conditions include the selective pressure posed by antibiotics, biocides, 

heavy metals (Ju et al., 2019; McNamara et al., 2014), and disinfectants or disinfection 

byproducts that can induce co-selection (D. Li et al., 2016). 
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 In the winter, AmpC and blaNDM-1 consistently showed negative instantaneous 

removal rates in relative abundance across a day (n = 12, Figure S2.2). Clinical IntI1 

showed negative instantaneous removal rates in relative abundance as observed in 10 out 

of 12 grab sampling events. In addition, negative instantaneous removal rate in relative 

abundance was observed once for blaOXA-1 among the 12 events. In the summer, although 

negative instantaneous removal rates in relative abundance were observed once (blaOXA-

1, clinical IntI1, MCR genes, sul1) or twice (blaNDM-1) across a day (n=12), the overall 

removal in relative abundance was greater as compared to in the winter (Figure S2.2). 

 Specifically, as indicated by instantaneous removal rates calculated from all grab 

samples, for the target genes AmpC and blaNDM-1, the removal rates in both absolute and 

relative abundance were significantly higher in the summer (p<0.001, n=12); for clinical 

IntI1, the removal rates in relative abundance were significantly higher in the summer 

(p<0.001, n=12). In terms of removal rates calculated based on 24-hr composite samples, 

the three target genes, AmpC, blaNDM-1 and clinical IntI1, showed negative removal rates 

in relative abundance in the winter. This is concerning because blaNDM-1 is a clinically 

relevant ARG that codes for the production of New Delhi metallo-β-lactamase which 

hydrolyzes carbapenem, one of the most reliable last-resort treatments for bacterial 

infections (Meletis, 2016). Interestingly, the removal rates in absolute abundance of MCR 

genes were significantly higher in the winter (p<0.05, n=12). The seasonal variations in the 

removal efficiency for certain ARGs were reported by several studies (An et al., 2018; H. 

Chen & Zhang, 2013b; Schages et al., 2020; Sui et al., 2017; Zheng et al., 2019). However, 

considering the negative removal rates in relative abundance and the loads in the treated 
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effluent (discussed further in Section 2.3.4), certain ARGs such as blaNDM-1 and AmpC 

should receive extra attention during the winter, when they may proliferate in the WWTP.  

 

2.3.3 Greater removal of target genes occurred during secondary treatment than 

chlorine disinfection 

We next characterized the diurnal variation of ARGs for each sampling location 

across the WWTP (i.e., influent, secondary effluent, and final effluent) by calculating the 

relative standard deviation (RSD) of the target gene concentrations in grab samples 

collected throughout the day (Table S2.5). The diurnal variations of target gene 

concentrations in the influent, secondary effluent, and final effluent samples were 

significant, indicated by the large RSD value of the instantaneous absolute abundance of 

each target gene calculated for samples across all three sampling locations (ranging from 

19.1 – 99.2% for influent, 24.7 – 99.6% for secondary effluent, and 20.3 – 163.1% for final 

effluent, Table S2.5). These RSD values are comparable to those reported by Sun et al. (S. 

Sun et al., 2021). Furthermore, we found significant differences in RSD values across the 

three sample types, where influent RSD < secondary effluent RSD < final effluent RSD 

(p<0.0001), indicating that the wastewater treatment processes magnify the diurnal 

variability of the concentration of the genes. These findings underscore that composite 

samples are more representative for assessing the concentrations and loads of ARGs across 

each wastewater treatment unit process. 
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To further understand how the treatment process impacted the observed trend in 

removal rates across the day, we calculated the removal rate across secondary treatment 

and chlorine disinfection individually for each target gene in absolute abundance (Figure 

2.2) and relative abundance (Figure S2.3). In both winter and summer sampling 

campaigns, the instantaneous removal rates of target genes via secondary treatment were 

significantly higher than via chlorine disinfection (p<0.0001). This finding is in contrast 

to previous studies that reported that disinfection process can provide superior removal of 

ARGs as compared to secondary treatment alone (X. Cheng et al., 2021; M. Pei et al., 

2019; Quach-Cu et al., 2018). However, one study found that biological treatment 

resulted in greater ARG removal (0.76–1.94 log reduction) as compared to ultraviolet 

disinfection (less than 0.5-log reduction) (L. Yang et al., 2019). The mechanisms that 

enable ARGs to persist across each unit process (including secondary treatment using 

activated sludge process) is still not well understood (Barancheshme & Munir, 2018; 

Figure 2.2 Log removal by the WWTP treatment unit process (n=12): secondary treatment and 
chlorine disinfection. a. Unit process removal of target genes calculated using absolute 
abundances during the winter sampling campaign. b. Unit process removal of target genes 
calculated using absolute abundances during the summer sampling campaign. In each panel, 
instantaneous removal rates as shown as black dots for the target genes. Secondary treatment 
removal rates are in red, and chlorine disinfection in blue. Boxes represent the interquartile range, 
with solid lines as medians. Whiskers represent the standard deviation.  
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Uluseker et al., 2021). Removal of ARGs during secondary treatment in aerobic systems 

has been reported in previous studies (Munir et al., 2011; Thakali et al., 2020). Aerobic 

treatment systems are effective at reducing ARGs for several reasons. First, the high 

dissolved oxygen concentration causes stress to enteric bacterial hosts of ARGs, which 

are usually anaerobic or facultative anaerobic microorganisms. For example, a recent 

study demonstrated the reduction in relative abundance of ARG hosts that are anaerobic 

(e.g., members of the phyla Bacteroidetes and Firmicutes which are dominant in human 

gut microbiota) in aerobic sludge as compared to in raw influent wastewater (Dai et al., 

2022). In addition, previous studies concluded that ARG removal by activated sludge 

process is achieved due to the separation of suspended solids in the settlers (H. Chen & 

Zhang, 2013b; Gao et al., 2012b). Applying coagulation and settlement was found to 

remove significant abundance of ARGs through removing the biosolids associated with 

ARGs (Li et al., 2017).  

 In addition, the diurnal variation of target gene removals was observed for both 

secondary treatment and chlorine disinfection (Figure 2.2). Many target genes rendered 

both positive and negative removal rates via secondary treatment or chlorination at 

different times of the day (Figure 2.2). In addition, in the summer sampling campaign, the 

standard deviation of the removal rates via secondary treatment was significantly smaller 

than the standard deviation of the removal rates via chlorination (p<0.05), although in the 

winter sampling campaign, no significant difference was observed. This result showed 

that in summer, the target gene removals via secondary treatment presented fewer diurnal 

variations than the target gene removals via chlorination. Overall, secondary treatment 

contributed significantly to the removal of the vast majority of target genes as compared 
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to chlorine disinfection (Figure 2.2, p<0.0001) which on average showed limited (less 

than one-log) or even negative removal. There were several notable outliers that did not 

conform to the general removal patterns observed. For example, in the winter sampling 

campaign, the removal rates of the relative abundance of AmpC, IntI1, and blaNDM-1 

were not significantly higher via secondary treatment as compared to chlorine 

disinfection (p>0.05, Figure S2.3). In the summer sampling campaign, the removal rates 

of the absolute abundance of qnrA and the relative abundance of qnrA and blaNDM-1 

showed no significant difference across unit processes (p>0.05, Figure S2.3), either. 
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2.3.3 Removal of ARGs across the WWTP based on 24-hour loads 

Figure 2.3 Removal of ARGs across the WWTP based on 24-hour loads. The removal 
rate of each target gene (x-axis) based on 24-hour loads across the WWTP in winter a. 
and in summer b. The removal rate of the 24-hour loading of each target gene (x-axis) via 
secondary treatment and chlorination, respectively (c: winter, d: summer). Secondary 
treatment accounted for the majority of the removal observed across the treatment system. 

A B 

Secondary treatment ChlorinationTreatment unit process
C D 
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 Finally, we calculated the removal of each target gene across the treatment 

processes during the 24-hour sampling period based on gene loads, which accounted for 

the plant flow rate (Figure 2.3). The load of ARGs in the treated effluent may be more 

informative as compared to the concentrations of ARGs to indicate ARG dissemination 

into effluent-receiving environments, because it represents the actual abundance of ARGs 

released from a WWTP over a specified period of time (Cacace et al., 2019; Schwermer 

& Uhl, 2021; P. Wang et al., 2019). We found that all target genes were removed in terms 

of 24-hour loads (Figure 2.3a & b), but the degree of removal varied for different targets 

and across different unit processes (Figure 2.3c & d). There were still significant loads of 

ARGs and IntI1 present in the final effluent, which is consistent with previous studies (Ju 

et al., 2019; N. Li et al., 2017; Munir et al., 2011; K. Qin et al., 2020). This finding 

further highlights the need to elucidate the potential of effluent ARGs to disseminate and 

transfer in the downstream receiving environments. Notably, the load of certain 

clinically-relevant ARGs, including blaNDM-1, blaOXA-1, MCR variants, and qnrA 

increased as a result of chlorine disinfection during the winter field campaign (Figure 

2.3c & d). This finding, consistent with conclusions reported by other studies in which 

the ARG selection was observed by chlorination (Jin et al., 2020; S.-S. Liu et al., 2018), 

underscored the need to reduce the loads of ARGs before they reach the chlorine 

disinfection process. 

 The relatively weak degree of ARG removal from the disinfection process and the 

residual abundance of ARGs in the final effluent further emphasize the need for strategies 

to attenuate the dissemination of effluent ARGs. One modeling study recommended 

limiting the amount of treated WWTP effluents released in receiving waters to ensure a 
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minimum dilution rate to control the propagation of ARGs in the receiving waterbody 

(Corno et al., 2019). Other strategies, such as additional low-cost and effective treatment 

methods could be applied to remove residues in the treated effluents including ARGs, 

such as using sewage-sludge biochar and iron-oxide-coated sands (Calderón-Franco, 

Apoorva, et al., 2021) and electrocoagulation (L. Chen et al., 2020). 

 

2.4. Conclusion 

 In this study, we quantified the diurnal variation of a suite of ARGs and one MGE 

across a WWTP. We found that the concentrations of target genes varied across the day, 

resulting in inconsistent and unrepresentative calculated removal rates based on grab 

samples taken at different times of day. We also found that the time when most target genes 

achieved their highest instantaneous removal rate coincided with the time when the lowest 

flow rate was observed. The results indicate that unintended bias could occur when using 

grab samples, and caution making conclusions about the removal of ARGs and MGEs 

based on grab samples. The diurnal variation in target gene concentrations was magnified 

by the wastewater treatment processes as reflected by the increasing RSD of target gene 

concentrations in the secondary effluent and final effluent as compared to the influent. 

Overall, secondary treatment contributed significantly to the removal of target genes 

whereas chlorine disinfection showed limited or even negative removal especially during 

the winter sampling campaign. We observed that chlorine disinfection resulted in increased 

loads of certain clinically-relevant ARGs. To reduce the load of ARGs discharged to the 

environment via the final effluent, efforts should focus on reducing ARGs before they 
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reach chlorine disinfection or using different disinfection methods that are more effective 

at inactivating ARGs. 
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Chapter 3 The fate of cell-associated and cell-
free antibiotic resistance genes in the effluent of 

an anaerobic membrane bioreactor co-treating 
domestic wastewater and cattle manure 

Esther G. Lou, Moustapha Harb, Adam L. Smith and Lauren B. Stadler 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract Anaerobic membrane bioreactors (AnMBRs) can manage complex combined 

waste streams, recover energy, and produce nutrient-rich effluents for irrigation. To 
advance AnMBRs for water reuse, the removal of antibiotic resistance genes (ARGs) 
during co-treatment of waste streams requires further attention. In addition, the effluent 
ARGs in the form of cell-free DNA that are discharged by wastewater treatment systems 
was recently found to be a neglected but important source of ARGs in the environment. 
Here, an AnMBR was fed domestic wastewater with increasing amounts of cattle manure. 
We assessed 1) the removal of target genes including nine ARGs and two mobile genetic 
elements (MGEs), and 2) the fate of cell-associated ARGs (caARGs) and cell-free ARGs 
(cfARGs) in the effluent. Manure addition significantly improved the removal of target 
genes. Further, in the effluent, the concentration of caARGs decreased steadily with 
increased manure loading whereas cfARGs were predominant when manure loading was 
greatest. Results imply that to advance AnMBRs to treat waste streams that contain ARGs, 
AnMBRs likely need to be paired with a downstream disinfection process in agricultural 
reuse applications to reduce cfARGs and caARGs in the effluent. In addition, our results 
show that application of AnMBRs for the co-treatment of domestic wastewater and 
livestock manure could reduce the proliferation risk potential during reuse, as they generate 
an effluent with relatively low ARG concentrations where cfARGs (which are easier to 
inactivate than caARGs via disinfection) make up a substantial fraction of the total effluent 
ARGs and MGEs evaluated in this study.  
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3.1. Introduction 

Seventy percent of the world’s freshwater supply is currently used for agricultural 

irrigation (AQUASTAT, 2014) which is driving the adoption of nontraditional water 

sources to ensure the long-term supply of water for crop production. Treated wastewater 

represents a reliable source of water that can offset the rate of freshwater depletion while 

concurrently reducing nutrient discharges into freshwater systems and redirecting those 

nutrients to offset fertilizer requirements. Anaerobic membrane bioreactors (AnMBRs) 

are an emerging biotechnology that are ideally suited to co-manage manure and 

wastewater because they produce a high-quality, nutrient-rich effluent for reclaimed water 

irrigation while also recovering energy in the form of biogas. 

However, irrigation using reclaimed wastewater may lead to the dissemination of 

antibiotic resistance (X. M. Han et al., 2016; Q. Qin et al., 2015a), which has become one 

of the primary obstacles to reuse of treated wastewater for agricultural irrigation. 

Antibiotic resistance has been deemed one of the most significant human health 

challenges of the 21st century (Prestinaci et al., 2015). Wastewater treatment plants 

(WWTPs) represent a hotspot for the dissemination of ARGs in the environment (Rizzo 

et al., 2013a). Even after treatment, the elevated concentrations of nutrients, salts, 

disinfectants, disinfection byproducts, and lytic phages in wastewater effluents can 

contribute to cell competency and transformation, which can further promote the uptake 

of ARGs by microbial communities in receiving environments (Keen et al., 2017). 

Therefore, a comprehensive evaluation on antibiotic resistance, namely, antibiotic 

resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the treated effluent is 

crucial to validate the application of any wastewater reuse system.  
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To ensure the comprehensiveness of the evaluation on the treated effluent in terms 

of antibiotic resistance, it is necessary to investigate the fate of not only cell-associated 

ARGs (caARGs), but also cell-free ARGs (cfARGs, i.e., extracellular ARGs that are 

present due to lysis of dead cells or the secretion of DNA from live cells). As pointed out 

by a recent publication, a substantial body of previous analyses only focused on caARGs, 

while cfARGs are largely unexplored albeit highly abundant in the treated effluent 

discharged by WWTPs (Y. Zhang et al., 2018b). This issue is originated from one 

limitation of a commonly used methodology to reduce wastewater sample volumes for 

DNA extraction and analysis: filtration using 0.22 μm filters, because caARGs can be 

intercepted by the filters thus concentrated while cfARGs can pass through the filters and 

usually be discarded with the flow-through. In fact, cfARGs in the treated effluents are of 

particular importance. Several previous studies demonstrated that cfARGs were proven to 

be highly persistent in the downstream environment, especially when they are adsorbed 

into soil, sediments, clay minerals and humic substances (Dong et al., 2019; Mao et al., 

2014; Nagler et al., 2018). Those cfARGs were found to contain clinically relevant ARGs, 

such as those encoding resistance to carbapenem, extended-spectrum beta-lactam and 

fluoroquinolone (Oliveira et al., 2020; Sivalingam et al., 2020). Furthermore, both 

microcosm (Dong et al., 2019; Mao et al., 2014) and in situ (Kittredge et al., 2022) 

experiments have shown that cfARGs released from dead bacteria can undergo natural 

transformation and be uptake by the live bacteria. In addition, approximately 65% of the 

extracellular DNA content of a wastewater metagenome consisted of mobile genetic 

elements (MGEs), which can directly promote antibiotic resistance development 

(Calderón-Franco, van Loosdrecht, et al., 2021). Therefore, the acquisition of clinically 
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significant cfARGs and MGEs by potentially pathogenic bacteria in the environment 

could transform them into resistant pathogens and may pose a potential threat to human 

health. 

AnMBRs have been successfully applied for both low-strength domestic 

wastewaters and high-strength organic waste streams (e.g., food waste and manure), 

illustrating their versatility in managing organic waste streams (Amha et al., 2019; Smith 

et al., 2013). Furthermore, AnMBR systems in or proximal to agricultural areas could be 

used in decentralized applications to increase energy recovery while also managing 

livestock waste by co-treating wastewater with animal manure. Co-management of 

domestic wastewater with higher strength waste streams, such as animal manure, increases 

the potential for net energy positive treatment using AnMBR (Smith et al., 2014). In 

addition, AnMBRs may be uniquely suited to reduce antibiotic resistance proliferation 

during the co-treatment of wastewater and manure because membrane systems, in general, 

have been shown to achieve better ARG removal than conventional activated sludge 

systems (Harb & Hong, 2017a). A lingering question related to ARG removal by AnMBRs, 

however, is the extent to which cell-free ARGs (cfARGs; i.e. extracellular ARGs that are 

present due to lysis of dead cells or the secretion of DNA from live cells) are capable of 

passing through the membranes of these systems (H. Cheng & Hong, 2017a). 

To advance the application of AnMBRs for the co-management of wastewater and manure 

for water reuse applications, we need a better understanding of their ability to remove 

ARGs and mobile genetic elements (MGEs) during treatment. The goal of this study was 

to (1) determine if there is an association between the amount of cattle manure added to 

domestic wastewater and the corresponding removal efficiencies of target genes in 
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AnMBR, and (2) investigate how manure addition impacted the profile of ARGs and 

MGEs and their dominant form (i.e., cell-associated vs. cell-free) in AnMBR effluent. Note 

that to comply with the Environmental Microbiology Minimum Information (EMMI) 

Guidelines (Borchardt et al., 2021), we spiked all samples with internal DNA standards in 

both forms of cell-free and cell-associated to account for the recovery of caARGs and 

cfARGs during sample concentration and DNA extraction. This is the first study to 

characterize ARG removal during AnMBR co-treatment of real wastewater and manure, 

and the first study to differentially characterize effluent cell-associated and cell-free ARGs 

and MGEs from an AnMBR treating real waste streams. 

3.2. Materials and Methods 

3.2.1 AnMBR set-up and monitoring in stages with increasing manure addition 

 A bench-scale AnMBR with a liquid volume of 4.5 L (Chemglass Life Science, 

Vineland, NJ) was operated at ambient temperature (average 17.7 ± 0.39 °C). The pH of 

reactor mixed liquor was checked regularly, and the observed values ranged from 7.2 to 

7.6). The reactor was equipped with three submerged membrane housings that each 

contained a flat-sheet silicon carbide ultrafiltration membrane (Cembrane, Denmark) with 

0.1 µm pore size and 0.015 m2 effective surface area. Headspace biogas was recirculated 

via transversally mounted sparging tubes to limit membrane fouling while operating at a 

sub-critical flux of 5.27 L/m2/h (LMH), which yielded a hydraulic retention time (HRT) of 

approximately 19 hrs. The AnMBR was inoculated with anaerobic digester sludge from 

the Joint Water Pollution Control Plant (Carson, CA). The detailed configuration of the 

AnMBR and operational parameters are shown in Chapter 3 Appendix Section 1.1.1. 
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The operation of the AnMBR consisted of 5 stages: Baseline operation, Stage 1, Stage 2, 

Stage 3, and Stage 4. Domestic wastewater used in this study was collected from the City 

of West University Place WWTP (Houston, TX), a full-scale activated sludge WWTP that 

treats an average of 2 million gallons per day. The wastewater samples were collected 

periodically under dry weather conditions and at the same time of day to avoid diurnal 

variations. The wastewater was immediately transported to the lab and stored at 4 °C before 

feeding preparations. In Stages 1 through 4, manure slurry was added to the domestic 

wastewater in increasing amounts. Manure from beef cattle was collected from McGregor 

Research Center (McGregor, TX) and then diluted with water to form a manure slurry with 

a target solids content of 3%. Chapter 3 Appendix Table S3.1 provides detailed influent 

composition along with the corresponding organic loading rate (OLR) for each stage. 

Across the different stages of treatment, the OLR increased from 0.6 kg COD/m3/d in 

Baseline operation to 2.5 kg COD/m3/d in Stage 4 operation.  

Performance indicators including chemical oxygen demand (COD), soluble COD (sCOD), 

mixed liquor total and volatile suspended solids (MLSS/MLVSS), pH, volatile fatty acids 

(VFAs; including acetic acid, formic acid, propionic acid, butyric acid, and valeric acid) 

and headspace biogas were monitored and described in Chapter 3 Appendix Section 1.1.2. 

In addition, chemical cleaning using 0.5% sodium hypochlorite was performed at the end 

of each operational stage to avoid the potential impact of membrane fouling on the 

experimental results, and to maintain a consistent flux across all operational stages. In 

addition, effluent tubing was cleaned periodically to remove downstream tube wall 

biofilms that may have formed. 

 



 
52 

3.2.2 DNA extraction with internal standards 

 Cell-associated DNA (caDNA) and cell-free DNA (cfDNA) were separated to 

quantify cell-associated ARGs (caARGs) and cell-free ARGs (cfARGs), respectively. 

Internal standards were spiked into all samples prior to DNA extraction. caDNA internal 

standards were E. coli cells containing a modified engineered plasmid (Chapter 3 Appendix 

Section 1.2). The plasmid, pReporter_8 (RRID: Addgene_60568; Yang et al., 2014), is a 

low-copy plasmid that was previously modified by knocking out the gene encoding green 

fluorescence reporter (GFP) and inserted with the methyl-halide transferase (MHT) gene 

found in Batis Maritima (H. Y. Cheng et al., 2016). A 112 bp region on MHT gene (primers 

listed in Chapter 2 Appendix table S4) was selected as the target for qPCR to quantify the 

initial concentration of standard spiked into the samples (Co in Equation 1, see below) and 

the amount recovered in each corresponding sample (Cs in Equation 1, see below). E. coli 

cells were harvested from overnight culture supplemented with 34 µg/mL chloramphenicol, 

mixed well and aliquoted into equal volumes for: (1) spiking in the influent and effluent 

samples, and (2) conducing plasmid extraction on three of the aliquots to get the reference 

copy number through qPCR (Co in Equation 1). 

 cfDNA internal standards were pUC19 plasmids containing a target insertion for 

qPCR quantification (Chapter 3 Appendix Section 1.2). The insertion was a 183 bp 

fragment of the ARHGAP11B gene, a human-associated gene that is specific to the brain 

neocortex (Florio et al., 2016) and was not found to be present in any sample collected in 

this study (data not shown). Approximately 108 copies of plasmids were spiked into each 

effluent sample prior to filtration (for sample concentration). The initial concentration of 

spiked cfDNA (Co in Equation 1) was quantified by performing qPCR on the plasmid stock. 
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The concentration of recovered internal standard was quantified using qPCR to determine 

Cs. caDNA and cfDNA standards did not amplify in non-spiked influent, manure, or 

effluent samples in 40-cycles of qPCR (data not shown). 

 Influent and effluent samples were passed through membrane filters (mixed 

cellulose ester, 0.22 µm pore size, Millipore Sigma, MA) and caDNA was defined as DNA 

extracted from biomass retained on the filters, whereas cfDNA was defined as DNA in the 

filtrate. Five influent (30 mL each) and five effluent (350 mL each) samples were collected 

during each operational stage. caDNA was quantified in influent and effluent samples, and 

cfDNA was quantified in effluent samples only because the influent contained significantly 

higher cell counts than the effluent indicated by the concentration of rpoB (50 to 104-fold 

higher concentrations in the influent versus effluent). Right before the sample filtration 

step, both caDNA and cfDNA internal standards were spiked into samples and mixed well. 

 Membrane filters with caDNA were stored in 50% ethanol at -20 °C until DNA 

extraction. DNA extraction was performed using FastDNA SPIN Kits for Soil (MP 

Biomedicals, CA). cfDNA was analyzed in effluent samples by successively collecting the 

filtrate from the 0.22 µm filtration step and concentrating the DNA in the filtrate using an 

NAAPs-based method as previously described (D. N. Wang et al., 2016). cfDNA samples 

were stored at -20 °C until DNA extraction using FastDNA SPIN Kits for Soil (MP 

Biomedicals, CA). DNA was quantified in caDNA and cfDNA extracts using Qubit 3.0 

coupled with dsDNA HS Assay Kit (Invitrogen, CA).  

 

3.2.3 Quantification of ARGs and MGEs 
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 Target genes for qPCR quantification included 9 ARGs (sul1, sul2, tet(O), tet(W), 

ermB, ermF, ampC, blaOXA-1 and blaNDM-1), 2 MGEs (IntI1 and tp614) and rpoB 

(coding for β-subunit of RNA polymerase) used for normalizing ARGs and MGEs to 

calculate relative abundance. These ARGs were selected because they are frequently 

detected in wastewater. In addition, we specifically included, erm because the manure used 

in this study was collected from beef cattle that were fed with Tylosin, a macrolide-class 

antibiotic that may have resulted in selective pressure for ermB and ermF (B. Li, Yang, et 

al., 2015; Sui et al., 2016). A class 1 integron gene (IntI1) and a transposon gene (tp614) 

were also included because they have been found to be associated with the transfer of 

ARGs and to play an important role in the evolution and proliferation of multiple antibiotic-

resistance bacteria (Di Cesare et al., 2016b; Gaze et al., 2011; Stokes & Gillings, 2011). 

The qPCR reaction was carried out in triplicate with each reaction containing 10.5 µL that 

included Forget-Me-Not EvaGreen qPCR mastermix (Biotium, CA), 50 nM ROX (Biotium, 

CA), 500 nM of forward and reverse primers, PCR grade H2O, and DNA template. Primers 

and qPCR reaction conditions are provided in Chapter 3 Appendix Table S4 and S5. Ten-

fold serial dilutions of cloned plasmids with each target gene were amplified in triplicate 

for each qPCR assay. The efficiencies of the real-time qPCR assays for the targeted ARGs 

and MGEs ranged from 89.10% to 102.65%. R2 values were greater than 0.99 for all qPCR 

assays. The concentrations of the lowest standard for the target genes ranged from 6 to 920 

copies/reaction, which was equivalent to 19 to 3066 copies/mL for 30 mL influent samples 

and 2 to 263 copies/mL for 350 mL effluent samples. Quality control steps for qPCR are 

detailed in Chapter 3 Appendix Section 2.3. 
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The concentration of target genes in each sample (gene copy number/mL) was calculated 

using the following equation (1): 

(1) 

Where Cs is the copy number of the target gene in the sample’s DNA extract (copies) 

determined by qPCR, Vs is the volume of sample used (mL) to generate the DNA extract, 

Ci is the copy number of the internal standard (copies) determined by qPCR, and Co is the 

copy number of the internal standard (copies) spiked into the sample prior to DNA 

extraction. Further information on internal standards of cell-associated genes and cell-free 

genes along with the calibration methods can be found in Chapter 3 Appendix Section 1.2. 

The recoveries of caDNA and cfDNA are provided in Chapter 3 Appendix Table S7.  

 

3.2.4 Statistical methods 

 SciPy (https://www.scipy.org) was used for t-test and correlation analysis. The two-

tailed unpaired t-test was used to identify significant differences between effluent target 

gene concentrations between stages (n=5 for cell-associated genes; n=5 for cell-free genes). 

The log removal values (LRVs) reported in this study for each gene for each operational 

stage were calculated using the following equation: LRV = log10(influent gene 

concentration/ effluent gene concentration). The influent and effluent gene concentrations 

were calculated by taking the average of n=5 samples. The effluent gene concentrations 

were the sum of cell-associated and cell-free fractions. A t-test was performed to assess 

whether a given LRV was significantly different between operational stages. Before 

performing a t-test, the Kolmogorov–Smirnov and Shapiro–Wilk tests were used to ensure 
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that the dataset followed a normal distribution (α=0.01). P values less than 0.01 were 

regarded as statistically significant. Pearson’s correlation analysis was used for identifying 

correlations between any pair of two target genes in effluent samples over a 95% 

confidence interval. Pearson coefficient (r) was used to identify strength of correlations. 

3.3. Results and Discussion 

3.3.1 Percent COD removal was consistent across all operational stages 

 Percent COD removal was measured across all operational phases to assess the 

impact of manure addition on AnMBR performance and effluent water quality (Chapter 3 

Appendix Section 2.1). 

 

3.3.2 Wastewater contributed the majority of influent ARGs during manure co-

treatment 

 Although manure contributed the majority of influent COD in Stages 1 through 4 

(Figure 3.1a, p<0.001), the majority of influent ARGs and MGEs across those same stages 

remained dominated by the domestic wastewater (Stage 1 shown in Figure 3.1b, p<0.05). 

The most abundant targeted ARGs and MGEs in the wastewater were intI1, sul1 and sul2, 

which was consistent with previous studies (Munir et al., 2010); (Gao et al., 2012a). While 

approximately 97% of the target ARGs and MGEs in the influent was contributed by the 

wastewater fraction during Stage 1, erythromycin ribosome methylation genes (ermB and 
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ermF) that confer resistance to macrolide antibiotics were mainly contributed by the 

manure fraction (Figure 3.1b). This result is consistent with the fact that the manure was 

collected from cattle that were fed Tylosin, a macrolide antibiotic. Tylosin is a commonly 

used in-feed antibiotic in both cattle and swine livestock farms, and previous studies have 

observed high occurrences of ermB and ermF in livestock wastes (Sui et al., 2016); (Q. Li 

et al., 2015). Interestingly, the multi-drug resistance gene, blaNDM-1 was below the limit 

of detection in the influent and effluent samples during Baseline operation when the 

AnMBR was treating solely domestic wastewater (number of samples = 5) but was detected 

at concentrations above 102 copies/mL when manure was added to the influent (Figure 

3.1b). No studies to our knowledge have specifically investigated the presence of the 

Figure 3.1. AnMBR influent composition: a. COD of wastewater and manure fractions of 
influent, and total influent cod across all operational stages. Error bars represent the standard 
deviation of biological replicates within each stage (n = 5); b. concentrations of ARGs and 
MGEs during a stage 1 loading (influent consisted of approximately 125 g of manure added to 
20 L of domestic wastewater). Separate quantification of target genes in wastewater and 
manure was only performed during stage 1. In all other stages, target genes were quantified in 
the influent after combining the wastewater and manure. 
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blaNDM-1 gene in livestock manure; however, one study detected two blaNDM-1-

postitive bacteria strains in the soil around animal farms (B. Wang & Sun, 2015).  

 

3.3.3 The overall removal efficiency of targeted ARGs and MGEs from domestic 

wastewater was comparable to or greater than reported removal efficiencies of 

conventional wastewater treatment 

Figure 3.2. ARG and MGE removal across operational stages: a. average influent (shaded bars) 
and effluent (solid bars) concentrations of target genes (n = 5 for influent and effluent samples); 
b. log removal values (LRVs) of total target genes across operational stages; c. effluent gene 
concentrations (sum of cell-associated and cell-free fractions; n = 5). Error bars represent the 
standard deviations of gene concentrations within each operational stage. 
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 Influent (cell-associated) and effluent (cell-associated and cell-free) ARGs and 

MGEs were quantified across all operational stages to calculate removal efficiencies. The 

log removal values (LRVs) of the targeted ARGs and MGEs ranged between 0.20 to 4.13 

during Baseline operation when the AnMBR was solely treating domestic wastewater, with 

significant differences across stages (discussed in Section 3.3.4) and genes (Figure 3.2a). 

During Baseline operation, 87.4% (0.90 log) of targeted ARGs and MGEs were removed 

(Figure 3.2b). This removal efficiency is comparable to a study of two full-scale WWTPs, 

which reported a 89.0% – 99.8% removal of targeted ARGs (Mao et al., 2015a). High 

LRVs of tet genes, tet(O) (2.41) and tet(W) (4.63) reported here are consistent with 

previous findings of tet gene log reductions in membrane bioreactors treating domestic 

wastewater (Kappell, Kimbell, Seib, Carey, Choi, Kalayil, Fujimoto, et al., 2018a); (Munir 

et al., 2010). LRVs of sul genes, sul1 (1.43) and sul2 (1.28), were comparable to LRVs 

reported in previous studies on WWTPs, which ranged from 1.2 - 2.7 logs (Munir et al., 

2010); (H. Chen & Zhang, 2013a); (Y. Zhang et al., 2018a). In addition, we observed high 

removal efficiencies of erm genes. The LRVs of ermB and ermF were 3.39 and 3.48, 

respectively, and they were both ~1.0 log higher than the LRVs reported from conventional 

WWTPs (Y. Zhang et al., 2018a); (J. Wang, Mao, et al., 2015). Although erm genes in 

influent increased across stages due to manure addition, the ultimate concentration in 

effluent was still less than 100 copies/mL which is lower than typically seen in biological 

effluent in conventional WWTPs or even in the final disinfected effluents (Y. Zhang et al., 

2018a); (J. Lee et al., 2017); (Di Cesare et al., 2016a). All ARGs and MGEs were 

successfully reduced during baseline operation at over 87% removal, with the exception of 

ampC which actually increased in effluent samples. The enrichment of ampC may have 
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been due to the growth of organisms harboring this gene in the bioreactor. Enrichment of 

certain target ARGs in terms of their relative abundance (ARG copy number normalized 

by rpoB copies) was also observed for sul1 and blaNDM-1, despite the fact that their 

absolute abundance decreased during the AnMBR treatment. Other studies have observed 

enrichment of different ARGs across biological treatment compartments in WWTPs in 

terms of both absolute abundance (Y. Yang et al., 2014a); (Rafraf et al., 2016a) and in 

relative abundance (Munir et al., 2010); (McConnell et al., 2018a). The inconsistent 

patterns of ARG removal/enrichment during wastewater treatment underscore the 

challenges of predicting the fate of ARGs released to the environment and need to develop 

a more mechanistic understanding of the factors that control ARG proliferation and 

attenuation during treatment.  

 To our knowledge, there is only one study on the fate of ARGs in AnMBRs treating 

real domestic wastewater (Kappell, Kimbell, Seib, Carey, Choi, Kalayil, & Fujimoto, 

2018). In this study, a higher LRV of targeted ARGs (3.3 to 3.6 log) was found in the 

AnMBR treating primary clarifier effluent, but the mechanisms behind such high ARG 

removal efficiency were not well understood. This study, in combination with the limited 

number of previous studies on ARG removal during AnMBR treatment on real and 

synthetic wastewater (Kappell, Kimbell, Seib, Carey, Choi, Kalayil, & Fujimoto, 2018); 

(Zarei-baygi et al., 2019), suggests that AnMBRs are effective at removing a large suite of 

diverse ARGs present in domestic wastewater. This could be an important advantage over 

conventional wastewater treatment for improving microbial safety during agricultural 

reuse, especially considering that AnMBRs have also been shown to also surpass pathogen 

removal rates observed for full-scale aerobic MBRs (Harb & Hong, 2017b). 
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3.3.4 ARG and MGE removal efficiency increased with increased manure loading  

 This study is the first to examine the impact of co-treatment of domestic wastewater 

and manure on ARG removal. Results generally showed that the addition of manure was 

beneficial to overall targeted ARG and MGE removal rates, which was strongly supported 

by the consistent trend of decreasing target gene concentration in the effluent through 

Baseline operation to Stage 4 (Figure 3.2c). Further, as the fraction of manure added to the 

influent wastewater was incrementally increased, the removal efficiency of overall ARGs 

and MGEs also increased steadily from Baseline operation to Stage 4 (Figure 3.1b). In 

addition, the overall ARG and MGE removal rate was largely driven by the removal of 

sul1, intI1 and sul2 genes (Chapter 3 Appendix Figure S3.2). The LRVs of intI1, sul1 and 

ampC consistently increased from Baseline operation to Stage 4 due to manure addition 

(p<0.01). In Stage 4, the LRV of all targeted ARGs and MGEs reached 3.31, which was 

mainly due to the highest LRV of the most abundant influent MGEs and ARGs, namely, 

intI1 (4.77) and sul1 (3.54) (Figure 3.2a). The removal efficiency of targeted ARGs and 

MGEs observed in Stage 4 was higher than  previously reported values from several 

WWTP studies (J. Wang, Mao, et al., 2015); (Y. Yang et al., 2014a); (Wen et al., 2016). 

The LRVs of genes blaOXA-1, ermB, ermF, tet(O), tet(W) and tp614 were consistently 

high across all stages (Figure 3.2a; Chapter 3 Appendix Table S3.8). Further, it was 

interestingly observed that ermB, ermF and tp614 were significantly more abundant in the 

influent manure fraction as compared to the influent wastewater fraction (p<0.01, Figure 

3.2b). The higher influent concentrations contributed by manure addition may have 

increased the AnMBR’s potential to remove them when manure was added compared to 
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Baseline operation (when only the wastewater was treated). A previous study found that 

manure was dominated by cell-associated DNA as opposed to cell-free DNA (Y. Zhang et 

al., 2013). We observed that ermB, ermF and tp614 were significantly more abundant in 

the manure than the wastewater fraction of the influent (p<0.01, Figure 3.2b). Thus, their 

superior removal when manure was added to the AnMBR may have been because the cell-

associated DNA was readily removed via filtration. 

 The overall targeted ARG and MGE concentration in the effluent decreased 

consistently with the addition of manure (Figure 3.2c, p<0.01), and in Stage 4 effluent, this 

concentration was approximately 90% lower than that of Baseline operation when the 

AnMBR was treating domestic wastewater without manure. The removal efficiency of 

targeted ARGs and MGEs observed in Stage 4 was higher than the previously reported 

values of several WWTP studies (Wen et al., 2016); (J. Wang, Mao, et al., 2015); (Y. Yang 

et al., 2014a) and of manure treatment approaches including advanced anaerobic digestion 

(Wallace et al., 2018); (J. Wang, Ben, et al., 2015) and composting (Zhu et al., 2019). This 

result, combined with the fact that AnMBRs can recover energy in the form of biogas, 

underscore that AnMBR is a strong candidate for the co-management of wastewater and 

manure because they can potentially reduce the proliferation of ARGs in wastewater and 

animal waste. The results support the application of AnMBRs in decentralized agricultural 

applications where multiple waste streams must be managed and water and energy reuse 

could be harnessed. 

 The improvement in ARG removal with increasing manure loading may have 

resulted from enhanced microbial activity caused by the increasing OLR. The increase in 

microbial activity may have impacted ARG removal in several different ways. First, 
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manure addition could have resulted in a shift in the microbial community to fast-growers 

that could quickly break down the organics in the substrate. This, in turn, may have selected 

for microbes that harbor fewer ARGs since they can exert a metabolic burden (i.e. fitness 

cost) that can result in slower growth rates (Andersson & Levin, 1999). Second, the 

enhanced biological activity resulting from a greater input of nutrients to the system may 

have boosted growth generally and resulted in greater turnover of cells and biodegradation 

of DNA that included ARGs. We also observed a consistent shift in the effluent DNA from 

cell-associated to cell-free from Baseline operation to Stage 4 (Figure 3.3). This 

observation supports the assumption that manure addition resulted in an increase in 

biological activity in the bioreactor as a previous study (Nagler et al., 2018) in which it was 

found that the ratio of cfDNA to total DNA content was significantly positively associated 

with biological activity in anaerobic digesters. Further, the methane COD conversion 

normalized by the feeding COD (Chapter 3 Appendix Table S3.1) showed consistent 

increasing trend from Baseline operation to Stage 4, supporting the increasing bioactivity 

in accordance with manure addition. 

Figure 3.3. Effluent DNA composition: relative abundance (%) of cell-associated and cell-free 
DNA in the effluent in each operational stage. The ratios were calculated based on averaged 
concentrations of effluent caDNA and cfDNA within each stage (n = 5). Error bars represent the 
standard deviations of the corresponding DNA concentrations within each operational stage. 
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3.3.5 The effluent ARG and MGE reservoir shifted from cell-associated to cell-free 

with increased manure loading  

The majority of effluent ARGs and MGEs were cell-associated during all 

operational stages except for Stage 4 (Chapter 3 Appendix Figure S3.4). In Stage 4, the 

cell-free fraction of target genes was significantly elevated as compared to the previous 

stages (t-test, p<0.001) and accounted for approximately 89% of the targeted ARGs and 

MGEs in the effluent. At the same time, the concentration of the cell-associated fraction of 

targeted ARGs and MGEs in effluent decreased consistently from Baseline operation to 

Stage 4 (p<0.01). These results indicated that cfDNA became the primary reservoir of 

target genes in the effluent when the manure loading to the system was the highest. The 

abundance of effluent cell-free ARGs and MGEs confirms that they should not be 

overlooked in wastewater effluents (or unquantified because of the DNA concentration 

protocol used), as they can make up a substantial fraction of effluent ARGs (Q.B. Yuan et 

al., 2019a);(Y. Zhang et al., 2018a). A substantial body of previous studies on ARGs in 

wastewater did not explicitly capture the cell-free fraction of ARGs, and thus may have 
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significantly underestimated the risk of ARG propagation from effluents in receiving 

environments.  

In the cell-associated fraction of effluent target genes, the abundance of intI1 and sul1 

decreased significantly with the addition of manure across all stages (p < 0.05) (Figure 

3.4a). The removal of intI1 may have been due to the elimination of manure-associated 

aerobic hosts of integrons (e.g., Actinomycetales and Bacilli) during anaerobic treatment 

(W. Sun et al., 2016). Overall, the cell-associated fraction of targeted ARGs and MGEs in 

the effluent decreased steadily from Baseline operation to Stage 4 (Chapter 3 Appendix 

Figure S3.4). Indeed, LRVs of the cell-associated fraction of targeted ARGs and MGEs 

across all five stages ranged from 1.54 - 4.20 logs and were consistent with reported ARG 

removal efficiencies using membrane-based treatment technologies (Munir et al., 2010); 

Figure 3.4. Effluent ARG and MGE profiles: concentrations of a. cell-associated and b. cell-free 
fractions of target genes across operational stages (n = 5). Error bars represent the standard 
deviations of the corresponding gene concentrations within each operational stage. 
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(Le et al., 2018); (Sui et al., 2018). Given that ultrafiltration membranes (0.01 - 0.1 pore 

size) retain the vast majority of microbes in AnMBRs, it is likely that some of the caARGs 

in the effluent are due to microbial regrowth within post-membrane effluent lines. 

Considering the higher effluent nutrient concentrations during the stages with higher 

manure addition, it is also possible that the observed reduction of cell-associated target 

genes was due to effluent selection for microbial groups which are less likely to harbor 

ARGs and MGEs due to fitness cost. We also performed correlation analysis to identify 

significant associations between effluent ARGs that were observed in cell-associated and 

cell-free fractions and the results are discussed in the Chapter 3 Appendix Section 3.3. 

 

3.3.6 Implications for advancing AnMBRs for wastewater reuse 

 Results of a previous quantitative microbial risk assessment (QMRA) on AnMBR 

effluents indicate that AnMBR treatment would likely need to be paired with a downstream 

disinfection process in agricultural reuse applications (Harb & Hong, 2017b). Based on 

this, the form of effluent ARGs (i.e., cell-associated vs. cell-free) may also influence their 

inactivation rates during disinfection (here, we define inactivation as the destruction of the 

ARG such that it is no longer functional). Specifically, a greater proportion of ARGs in the 

cfDNA fraction may improve ARG inactivation during disinfection. Cell-associated ARGs 

are more difficult to inactivate because the cell serves as a barrier between the disinfectant 

and DNA and can thus protect the DNA against damage. A recent study evaluated multiple 

disinfection methods including free chlorine, monochloramine, chlorine dioxide, ozone, 

UV, and hydroxyl radicals, and reported that among all these disinfection processes, 

caARG inactivation always lagged behind cell inactivation (Yoon et al., 2017). This 
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indicates that the removal of caARGs requires cell inactivation to occur first, whereas 

cfARGs may be inactivated directly during disinfection. In a few of the very limited 

amount of studies that distinguished between caARGs and cfARGs during disinfection 

processes, caARGs were found to be more difficult to remove than cfARGs during 

chlorination and UV disinfection (Yoon et al., 2017); (He et al., 2019); (McKinney & 

Pruden, 2012). Further, other studies observed that caARGs became cfARGs during the 

disinfection process, indicating some disinfection may not be sufficient to completely 

destroy caARGs (Q.-B. Yuan et al., 2019a); (S. S. Liu et al., 2018).  

 In this study, the concentration of effluent caARGs decreased steadily with 

increased manure loading (Chapter 3 Appendix Figure S3.4). In Stage 4, there were 2.34 × 

104 copies/mL of caARGs in the effluent, which was much lower than secondary effluent 

caARG concentrations reported by previous studies of conventional WWTPs (Mao et al., 

2015a; McConnell et al., 2018a; Mukherjee et al., 2021). Thus, our results show that 

application of AnMBRs for the co-treatment of domestic wastewater and livestock manure 

could reduce the proliferation risk potential during reuse, as they generate an effluent with 

relatively low ARG concentrations where cfARGs (which are easier to inactivate than 

caARGs) make up a substantial fraction of the total effluent ARGs and MGEs assessed in 

this study. However, the abundance of total ARGs in the effluent was still not negligible, 

particularly, the clinically relevant ARGs encoding resistance to ESBL- and 

carbapenemase-production (i.e., blaOXA-1 and blaNDM-1) were still of significant 

concentrations in both cell-associated and cell-free fractions (Figure 3.4). Therefore, 

consecutive treatment should be used to remove those ARGs in the AnMBR effluent. 

Nonetheless, the studies on further treatment of AnMBR effluents for water reuse are 
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scarce. A recent study has demonstrated that disinfection using UV/H2O2 effectively 

removed extracellular DNA with > 2-log reduction, and the remaining extracellular DNA 

were not valid to be transformed into competent hosts (Augsburger et al., 2021). In addition, 

UV/H2O2 treatment can effectively remove emerging contaminants and antibiotic 

resistance elements (ARB and ARGs), avoid formation of disinfection byproducts, and 

preserve high nutrient content in the AnMBR effluent for water reuse (Augsburger et al., 

2021). However, the cost of UV/H2O2 application is usually high (Souza et al., 2013) and 

the energy consumption associated with UV radiation might make AnMBRs less appealing 

as a decentralized treatment technology. Future studies need to evaluate or develop other 

tertiary treatment technologies to achieve the goal of advancing AnMBRs’ (co-)treatment 

with the specific tasks to 1) remove caARGs and cfARGs in the AnMBR effluent, 2) 

preserve nutrients for water reuse, and 3) minimize the required cost and footprint. 

3.4. Conclusion 

	 Our results demonstrate that co-management of domestic wastewater and livestock 

manure using AnMBRs can both improve resource recovery and mitigate the spread of 

antibiotic resistance in reclaimed water. The removal efficiency of total target genes 

significantly improved with the increased manure loading in the AnMBR co-treatment 

process and was greater than many conventional WWTP treatment processes. Increasing 

manure loading not only decreased total target gene abundance in the effluent but also 

made cfARGs the dominant form of effluent ARGs. cfARGs require uptake by competent 

cells to be functional and are easier to inactive during disinfection. Thus, the ability of 

AnMBR to reduce ARGs during co-treatment of wastewater and manure and generate an 

effluent with primarily cell-free ARGs (as opposed to cell-associated) may be 
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advantageous in water reuse applications. Future studies should focus on developing 

technologies for treating AnMBR effluents to close the application gap. 
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Abstract. Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have 

emerged that are more contagious and more likely to cause breakthrough infections. 

Targeted amplicon sequencing approach is a gold standard for identification and analysis 

of variants. However, when applied to environmental samples such as wastewater, it 

remains unclear how sensitive this method is for detecting variant-associated mutations in 

environmental samples. Here we directly compare a targeted amplicon sequencing 

approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR 

quantification for the detection of five mutations that are characteristic of variants of 

concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed 

using both methods in parallel. When we observed positive mutation detections by RT-

ddPCR, 42.6% of the detection events were missed by sequencing, due to negative 

detection or the limited read coverage at the mutation position. Further, when sequencing 

reported negative or depth-limited mutation detections, 26.7% of those events were 

instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of 

sequencing. No or weak associations were observed between quantitative measurements 

of target mutations determined by RT-ddPCR and sequencing. These findings caution the 

use of quantitative measurements of SARS-CoV-2 variants in wastewater samples 

determined solely based on sequencing.  
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4.1. Introduction 

 Over the course of the COVID-19 pandemic, the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) has evolved and numerous lineages have emerged that are 

more transmissible, cause more severe disease, and/or are better at escaping the immune 

response system (Garcia-Beltran et al., 2021; Harvey et al., 2021; Q. Li et al., 2020). 

Tracking the emergence and spread of these variants of concern (VoCs) and variants of 

interest (VoIs) has become critical to public health response and mitigation strategies for 

stopping the spread of SARS-CoV-2. Wastewater-based epidemiology (WBE) is one 

prominent approach that has been adopted by public health departments and water utilities 

to track infection dynamics in communities by quantifying the amount of SARS-CoV-2 

RNA in wastewater samples (Ahmed et al., 2020; Arora et al., 2020). WBE can also be 

used for monitoring VoCs and VoIs in communities (Bar-Or et al., 2021; Fontenele et al., 

2021; Heijnen et al., 2021). 

Variant identification in wastewater samples is challenging because the viral 

genomes are highly fragmented, dilute, and comprised of mixtures of circulating variants. 

The most common methods used for wastewater variant screening are: (1) quantifying 

specific characteristic mutations via RT-qPCR or RT-ddPCR (Ciesielski et al., 2021; 

Heijnen et al., 2021); and (2) enriching and sequencing SARS-CoV-2 genomes in 

wastewater (Swift et al., 2021; Tyson et al., 2020). Underlying both approaches is the 

ability to identify and quantify characteristic mutations that define variants. RT-qPCR is 

regarded as a gold standard method for routine wastewater surveillance (Alygizakis et al., 

2021; Rahman et al., 2021; Van Poelvoorde et al., 2021). Compared to RT-qPCR, RT-

ddPCR has a superior detection sensitivity (Ahmed et al., 2022; Ciesielski et al., 2021; 
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Flood et al., 2021) and is less sensitive to inhibitors present in wastewater (Cao et al., 2015; 

Ciesielski et al., 2021). However, PCR based methods are limited in that the mutations 

must be known ahead of time for primer and probe design. In addition, in practice, they are 

limited by the number of targets that can be multiplexed per reaction, and it is difficult to 

delineate all variants present in the sample by only targeting a few mutations. Next 

generation sequencing (NGS) enables comprehensive screening of all potential mutations 

without any prior knowledge, and thus has been frequently applied for characterizing 

pathogens and viruses (Greninger et al., 2015; J. Yang et al., 2011). The unbiased, non-

targeted metagenomics sequencing approaches often require high- or ultra-high coverage 

in order to obtain enough target sequences (Chiara et al., 2021). On the other hand, targeted 

sequencing approaches using an enrichment step during library preparation maximize the 

detection of viruses effectively (X. Deng et al., 2020). For SARS-CoV-2 genome 

enrichment, multiplex tiling PCR and oligonucleotide capture are the most frequently 

implemented methods, both demonstrating great performance in terms of genome coverage 

(Doddapaneni et al., 2021; Tyson et al., 2020) and mutation detection (Bar-Or et al., 2021; 

Crits-Christoph et al., 2021b). Targeted amplicon sequencing (i.e., multiplex tiling PCR 

coupled with amplicon sequencing) is considered the lower-cost and faster approach 

(Chiara et al., 2021; X. Lin et al., 2021). For example, ARTIC Network panels 

(https://artic.network) are commonly used by laboratories globally to characterize SARS-

CoV-2 present in clinical samples (Charre et al., 2020; J. Li et al., 2020; Mboowa et al., 

2021). However, targeted amplicon sequencing is frequently limited by coverage and/or 

quality dropout due to amplification bias and primer knockout by mutations that happen to 

occur at the priming regions (Davis et al., 2021).  
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 Several studies used amplicon-based sequencing of SARS-CoV-2 from wastewater 

samples to estimate the prevalence of SARS-CoV-2 variants in the communities (Bar-Or 

et al., 2021; Layton et al., 2021; Otero et al., 2021). One study used AF (allele frequency) 

of VoC-associated mutations detected in wastewater sample to estimate the relative 

abundances of different lineages circulating in a community (Ellmen et al., 2021). However, 

it is unclear how quantitative mutation AF are that are generated from wastewater genomes 

via this approach. Thus, a direct comparison between targeted amplicon sequencing and 

RT-ddPCR (or RT-qPCR) for mutation detection and quantification using wastewater 

samples is needed. In this study, we quantified five unique mutations using RT-ddPCR and 

performed targeted amplicon sequencing (ARTIC v3 based) of SARS-CoV-2 in parallel 

on 547 wastewater samples. We compare the consistency in the approaches in terms of (1) 

detection vs. no detection; and (2) quantitative information generated by each method. In 

addition, we evaluated the impact of mutation concentration, single base coverage at the 

mutation position, the overall SARS-CoV-2 concentrations, and SARS-CoV-2 genome 

coverage on mutation detection via targeted amplicon sequencing.  

4.2. Materials and Methods 

4.2.1 Wastewater sample collection, concentration, and RNA extraction 

 We collected weekly wastewater samples from 39 wastewater treatment plants 

(WWTPs) in Houston covering a service area of approximately 580 square miles and 

serving over 2.3 million people. Time-weighted composite samples of raw wastewater 

were collected every 1 hour for 24 hours from the influent of the WWTPs. The sampling 

campaign was conducted during two separate periods of time (Phase I and Phase II). Phase 
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I spanned from February 23, 2021 to April 12, 2021 when Alpha (specifically, B.1.1.7) 

was the dominant SARS-CoV-2 VoC circulating in Texas (GISAID, 

https://www.gisaid.org/). Phase II covered from May 24, 2021 to July 12, 2021 when the 

Delta variant became prevalent, displacing Alpha as reflected by variant confirmed cases 

in Texas (GISAID, https://www.gisaid.org/). In total, 249 and 298 samples were analyzed 

during Phase I and Phase II, respectively. SARS-CoV-2 was concentrated in wastewater 

samples using an electronegative filtration method as previously described (LaTurner et al., 

2021a). RNA extraction was performed using a Chemagic™ Prime Viral DNA/RNA 300 

Kit H96 (Chemagic, CMG-1433, PerkinElmer) with the PerkinElmer viral RNA/DNA 

purification protocol and reagents. Finally, 10 μL of sample extract was used for each RT-

ddPCR reaction, and 11 μL of sample extract was used for sequencing library preparation. 

Detailed concentration procedures, RNA extraction procedures, concentration factors 

(Table S1), and associated quality control measurements are provided in the 

Supplementary materials following the Environmental Microbiology Minimum 

Information (EMMI) Guidelines (Borchardt et al., 2021). 

 

4.2.2 RT-ddPCR quantification of SARS-CoV-2 N1, N2 genes, and five characteristic 

mutations 

 RT-ddPCR was performed on a QX200 AutoDG Droplet Digital PCR System (Bio-

Rad) and a C1000 Thermal Cycler (Bio-Rad) in 96-well optical plates. SARS-CoV-2 N1 

and N2 gene targets were quantified in wastewater samples as previously described 

(LaTurner et al., 2021). Five mutations, namely S:DEL69/70, S:N501Y, S:E484K, 

S:K417T, S:L452R, were quantified via RT-ddPCR. GT Molecular kits were used for RT-
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ddPCR quantification of mutations (kit information provided in Table S2). S:DEL69/70 

and S:N501Y, two characteristic mutations associated with the Alpha lineage B.1.1.7, were 

quantified during Phase I, and S:L452R, S:K417T and S:E484K were quantified during 

Phase II. The latter three mutations were selected due to their reducing SARS-CoV-2 

susceptibility to convalescent and vaccine-elicited sera and mAbs, and their emergence in 

newly evolved SARS-CoV-2 strains (Jangra et al., 2021; Wilhelm et al., 2021). These 

SARS-CoV-2 mutations were quantified using one-step RT-ddPCR assays according to 

the manufacturer’s protocol (GT Molecular). A detailed description of the methods, 

including droplet thresholding and limit of detection (LOD) are described in the 

Supplementary materials (Section 1.4, Table S3 – S5). For all targets (N1, N2, and the five 

mutations), positive detection (+) was defined as above the LOD, and a negative detection 

(-) was defined as below the LOD. RT-ddPCR analysis was used to generate: (1) the 

concentration of the mutation in copies/L-wastewater, and (2) the fraction of SARS-CoV-

2 containing the mutation, which was calculated by normalizing the copies of the mutation 

by the sum of the copies of the mutation and the wild-type.  

 

4.2.3 Amplicon-based sequencing using ARTIC v3 and data analysis 

 cDNA was generated using 11 μL RNA extract via reverse transcription using the 

Superscript IV first-strand synthesis system (ThermoFisher Scientific, 18091050) 

following the manufacturer’s protocol. SARS-CoV-2 genome enrichment via multiplexing 

PCR was conducted using ARTIC v3 protocol (Tyson et al., 2020). Illumina DNA Prep kit 

with the manufacturer’s manual (DNA Flex) were applied for amplicon tagmentation and 

flex amplification, followed by library clean-up. Each sample library was then quantitated, 
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normalized, pooled, and diluted to 6 pM. Finally, sequencing was performed on an Illumina 

MiSeq instrument using MiSeq Reagent Kit v2 (300-cycles, MS-103-2002) following a 

151 + 10 + 10 + 151 cycling recipe. Sequencing read trimming with BBDuk (Bushnell, 

2014) was conducted, followed by read mapping with BWA-MEM (H. Li, 2013). Read 

mapping result was sorted by samtools (H. Li et al., 2009), and primer locations were soft-

clipped using iVar (Grubaugh et al., 2019). Finally, variant calls were performed with 

respect to the Wuhan reference sequence (NC_045512.2) using LoFreq (Wilm et al., 2012).  

 To compare targeted amplicon sequencing (hereafter referred to as sequencing) 

with RT-ddPCR, we first calculated the sequencing read coverage for each target mutation 

in each sample by averaging the single base coverage across the target region used for 

quantification in RT-ddPCR. For example, for the N1 and N2 RT-ddPCR assays, the CDC 

2019-nCoV_N1 probe and 2019-nCoV_N2 probe were applied to RT-ddPCR assays in this 

study. These probes align to nt 28318 – 28332 and nt 29188 – 29210, respectively (the nt 

coordinates correspond to the Wuhan reference NC_045512.2). Accordingly, sequencing 

mapped reads for N1 and N2 were checked at each single base position from nt 28318 to 

28332 (N1 region, containing 15 positions) and from nt 29188 to 29210 (N2 region, 

containing 23 positions), respectively. A positive detection (+) was called for N1 and N2 if 

(1) the single base coverage at each nt position across the target region (nt 28318 – 28332 

for N1 and nt 29188 – 29210 for N2) was at least 1×, and (2) the average single base 

coverage across the target region was at least 20×; otherwise, a non-detect (ND) was called. 

For the five mutations, if there was at least 20× read depth at the position that corresponded 

to the target mutation, a positive detection (+) was called if any reads containing that 

mutation were observed. A negative detection for sequencing (-) was defined as no reads 
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containing the target mutation were observed, and there was at least 20× read depth at the 

mutation location. Finally, for sequencing if less than 20 reads mapped to the mutation 

position, we defined this as “depth limited (DL)”. We used a 20× coverage threshold for 

sequencing analysis based on previous studies that applied tiled PCR and short-read 

sequencing (Illumina) for SARS-CoV-2 wastewater analysis (Baaijens et al., 2021; 

Fontenele et al., 2021). 

 

4.2.4 Statistical Analysis 

 Welch two sample t-test was applied to compare datasets. Spearman rank 

correlation analysis was used to study the associations between quantitative results 

generated by RT-ddPCR and sequencing. For each target mutation, we used Spearman rank 

correlation to assess the correlations between (1) the mutation concentration as determined 

by RT-ddPCR (copies/L-wastewater) and the number of reads containing the mutation as 

determined by sequencing; and (2) the fraction of SARS-CoV-2 containing the target 

mutation (target mutation concentration/total SARS-CoV-2 concentration as determined 

by RT-ddPCR) and the AF of the mutation as determined by sequencing. Strength of 

correlations were identified based on Spearman’s correlation coefficient Rho ®.  

4.3. Results and Discussion 

4.3.1 RT-ddPCR was more sensitive than sequencing for mutation detection 

 547 wastewater samples (249 samples for Phase I, 298 samples for Phase II) were 

analyzed using both RT-ddPCR (targeting N1, N2, and five mutations) and sequencing. 

The wastewater concentrations of SARS-CoV-2 (determined by the average of N1 and N2 
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concentrations) were significantly higher during Phase I than during Phase II (Figure S1, 

p < 0.001). For sequencing, an average fraction of 0.617 (std: 0.222) of the reads in Phase 

I, and an average fraction of 0.298 (std: 0.227) of the reads in Phase II mapped to the 

SARS-CoV-2 Wuhan reference. For the 547 wastewater samples, sequencing generated an 

average of 155,583 ± 249,909 reads (Phase I: 295,938 ± 325,644; Phase II: 46,784 ± 41,349) 

that mapped to the reference genome. The average single base coverage across the entire 

SARS-CoV-2 genome was 973 reads per base (range: 0.03 to 4444). The average breadth 

of coverage, defined as the percentage of genome bases sequenced per sample, was 66.7% 

(range: 1.4% to 99.9%; sequencing read statistics detailed in Table S6). Additional 

information on all samples analyzed, including their detections by RT-ddPCR and 

sequencing for each target are detailed in Figure S4.2.  

 To compare RT-ddPCR and sequencing, we categorized detection events into 

different scenarios. There were four possible scenarios for N1 and N2 detections: positive 

detections by both RT-ddPCR and sequencing (+/+), positive detection by RT-ddPCR and 

not detected by sequencing (+/ND), negative detection by RT-ddPCR and positive 

detection by sequencing (-/+), and negative detection by RT-ddPCR and not detected by 

sequencing (-/ND). For the five target mutations, there were six possible scenarios: positive 

detections by both RT-ddPCR and sequencing (+/+), positive detection by RT-ddPCR and 

negative detection by sequencing (+/-), positive detection by RT-ddPCR and depth limited 

(single base coverage < 20× at the mutation position) for sequencing (+/DL), negative 

detections by both methods (-/-), negative detection by RT-ddPCR and positive detection 

by sequencing (-/+), and negative detection by RT-ddPCR and depth limited by sequencing 

(-/DL). We first assessed the relationship between N1 and N2 detections and mutation 
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detections. Figure 4.1 shows each detection event (center bars) and their corresponding N1 

and N2 detections. As expected, almost all samples with RT-ddPCR and/or sequencing 

positive detections for mutations [(+/+), (+/-), (+/DL); (-/+)] were also positive for N1 and 

N2 [mainly (+/+) and (+/ND)].  

 Among all 1094 N1 and N2 detection events in 547 samples, 67.6% had consistent 

detections for RT-ddPCR and sequencing [(+/+) and (-/ND)]. For RT-ddPCR, we observed 

very consistent N1 and N2 detections for the vast majority (97.1%) of samples, with N1 

and N2 double positive and N1 and N2 double ND events for 531 of the 547 samples. In 

contrast, N1 and N2 detections via sequencing reported consistent detections for only 403 

samples (73.7% of total samples). The inconsistency of sequencing in N1 and N2 

detections was likely due to the significantly lower read depth at the N1 region than at the 

N2 region (p<0.0001). Overall, RT-ddPCR detected 499 N1 and N2 double positive events 

Figure 4.1. Relationship between mutation detection events and N1 and N2 detection events by 
RT-ddPCR and sequencing. The bars on the left and right group are based on N1 and N2 
detection scenarios (format: RT-ddPCR detection/sequencing detection). The bars in the middle 
group are based on mutation detection scenarios. The height of each node corresponds to the 
number of detection events in the specific group. The width of the link between each pair of bars 
represents the number of the shared sample (s) belonging to both detection groups. 
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whereas sequencing only detected 265. These results indicate that sequencing detection is 

less sensitive than RT-ddPCR detection when focusing on commonly targeted N-gene 

regions of the SARS-CoV-2 genome.  

 Unsurprisingly, we also found that sequencing was less sensitive than RT-ddPCR 

for detecting target mutations. We compared 1,354 possible mutation detections using both 

RT-ddPCR and sequencing (Table S4.2, Figure S4.2), in terms of their consistency in 

calling the presence or absence of mutations (Figure 4.2). Among all 1,354 detection events, 

only 39.6% represented consistent detections for both methods [(+/+) and (-/-), Figure 4.2]. 

The inconsistency was mainly attributed to scenario (-/DL) where mutation detections were 

confirmed as negative by RT-ddPCR and were limited by the depth at the mutation 

positions for sequencing. The scenario (-/DL) alone accounted for 39.0% of all detection 

Figure 4.2. Mutation detections based on 1354 detection events via RT-ddPCR and sequencing 
in parallel for 547 wastewater samples. Percentage of detection events grouped by target 
mutations (labeled with different colors) is shown on y-axis. The six independent scenarios 
[(+/+), (+/−), (+/DL), (−/+), (−/−), (−/DL); format (RT-ddPCR detection/sequencing 
detection)], defined by in-parallel detections via RTddPCR and sequencing are on x-axis. The 
six scenarios were grouped accordingly based on RT-ddPCR detection and sequencing 
detection, respectively. 
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events, suggesting sequencing is very likely to miss a negative detection for a mutation. 

The large number of DL events by sequencing largely occurred during Phase II for the 

detection of mutations S:E484K, S:K417T and S:L452R (Figure 4.2). During Phase II, the 

concentrations of SARS-CoV-2 were significantly lower than SARS-CoV-2 

concentrations during Phase I when the samples were assayed for S:DEL69/70 and 

S:N501Y (Figure S4.1, p<0.0001). Phase II samples also had lower average single base 

coverage across the genome by sequencing as compared to Phase I samples (Table S4.6, 

p<0.0001).  

 When we observed positive detections by RT-ddPCR [(+/+), (+/-), and (+/DL)], 

42.6% of the detection events [(+/-) and (+/DL)] were missed by sequencing. When 

sequencing reported negative or depth limited detections [(+/-), (+/DL), (-/-), and (-/DL)], 

26.7% of those events were detected as positive by RT-ddPCR [(+/-), (+/DL)].  These two 

findings indicate that sequencing was less sensitive than RT-ddPCR for mutation detection. 

The majority (96.1%) of RT-ddPCR negative detections [(-/+), (-/-), and (-/DL)] were also 

consistently called as negative or depth-limited by sequencing [(-/-), (-/DL)]. The 

concentration of the target mutation in a sample is, in part, a function of the number of 

individuals infected with a SARS-CoV-2 variant containing that mutation. Thus, it would 

be low in the early stages of a variant outbreak, in which case sequencing may not be as 

sensitive as RT-ddPCR for early detection.  

 

4.3.2 Impact of mutation concentration, single base coverage at the mutation position, 

SARS-CoV-2 concentration, and the average single base coverage across the entire 

genome on mutation detection 
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 To understand when the inconsistencies between sequencing and RT-ddPCR were 

more likely to occur, we evaluated the impact of the mutation concentration (as determined 

by RT-ddPCR) and the average single base coverage at the mutation position (as 

determined by sequencing) on mutation detection events. First, we compared mutation 

concentrations in the sample as determined by RT-ddPCR for events where both methods 

reported positive detections (+/+) to events where RT-ddPCR reported positive and 

sequencing reported negative or depth limited detections [(+/-), (+/DL)] (Figure 4.3a). 

Then, we compared the single base coverage at the mutation position for these scenarios 

as determined by sequencing (Figure 4.3b). Results revealed samples with (+/-) and (+/DL) 

events had significantly lower mutation concentrations and single base coverage than those 

with (+/+) events (t-test, p<0.001; Figure 4.3).  

Figure 4.3 Impact of mutation concentration (a) and single base coverage at the mutation position 
(b) on mutation detection. Violins represent the distribution of detection events in each scenario. 
Boxes represent the interquartile range, with dashed lines as means and solid lines as medians. 
Whiskers represent the standard deviation. “ns”, “*”, and “****” indicate “not significant 
(p>0.05)”, “p < 0.05” and “p < 0.0001”, respectively, based on a t-test. 
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 In addition, we evaluated the impact of the sample SARS-CoV-2 concentration 

(average of N1 and N2 concentrations as determined by RT-ddPCR) and the average single 

base coverage (read depth) across the entire SARS-CoV-2 genome (as determined by 

sequencing) on mutation detections (Figure 4.4). We found that the SARS-CoV-2 

concentration and the average read depth across the entire genome were significantly 

higher for RT-ddPCR positive detections [(+/+), (+/-) and (+/DL), n=612] than for samples 

with RT-ddPCR negative detections [(-/+), (-/-) and (-/DL), n=742; Figure 4.4]. Further, 

we observed significantly higher SARS-CoV-2 concentrations and the average read depth 

across the entire genome in samples with sequencing positive detections [(+/+), (-/+), 

Figure 4.4 Impact of the average single base coverage (read depth) across the entire SARS-CoV-2 
genome and SARS-CoV-2 concentration on mutation detection. Violins represent the distribution 
of detection events in each scenario. Boxes represent the interquartile range, with dashed lines as 
means and solid lines as medians. Whiskers represent the standard deviation. (a) The average 
single base coverage (read depth) across the entire SARS-CoV-2 genome of samples grouped by 
scenario. (b) SARS-CoV-2 concentration (Copies/L-wastewater) of samples grouped by scenario. 
The inset table under each panel contains the comparisons of the different groups of scenarios in 
terms of SARS-CoV-2 concentration (left table) or the average single base coverage (right table) 
and their significance level. 
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n=342] than samples with sequencing negative detections [(+/-), (-/-), n=296] or DL 

[(+/DL), (-/DL), n=716; Figure 4.4].  

 In addition to SARS-CoV-2 concentration and read depth impacting sequencing 

detection, multiplexing PCR may also introduce amplification bias due to dimer formation 

and low Ta dropping-out (Coil et al., 2021; Tyson et al., 2020). This bias can result in an 

uneven coverage across the genome and impact the number of reads generated at different 

mutation positions, reducing the reliability of mutation calling. In this study, the two target 

B.1.1.7 characteristic mutations (S:N501Y and S:DEL69/70) are located in different 

regions of the SARS-CoV-2 genome, and they were amplified by different ARTIC v3 

primers. The substitution S:N501Y (A23063T) was amplified by the primer pair 

ARTIC.v3_F/R_76, while the deletion S:DEL69/70 (21764ATACATG→A) was amplified 

by primers ARTIC.v3_F/R_72. We found that the average coverage of these two amplified 

regions were highly variable across samples (Figure S4.3); and the average coverage across 

the region amplified by ARTIC.v3_F/R_76 was significantly lower than the region 

amplified by ARTIC.v3_F/R_72 (p<0.05, n=249). This amplification bias helps explain 

the significantly higher average single base coverage at nt position 21764 (corresponding 

to S:DEL69/70) than at nt position 23063 (corresponding to S:N501Y) (p<0.05, n=249). 

Correspondingly, sequencing exhibited more sensitive detection for S:DEL69/70 than 

S:N501Y, detecting 71.2% of S:DEL69/70 RT-ddPCR positive events and 60.2% of 

S:N501Y RT-ddPCR positive events, respectively (Figure 4.2a).   

 With the aim of guiding wastewater-based SARS-CoV-2 monitoring in practice, 

we also attempted to identify whether there was a threshold level of sequencing depth, or 

the total reads mapped to SARS-CoV-2 reference genome, above which sequencing called 
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positive detections concomitantly with RT-ddPCR (Figure S4.4). Two groups of samples 

belonging to scenarios (+/+) and (+/-) were used for this analysis, because there was no 

significant difference in SARS-CoV-2 concentration or in mutation concentration between 

them, ensuring that the sample sequencing depth is the only variable that determined 

mutation detection by sequencing. We were not able to identify a threshold level of reads 

that could differentiate the sequencing positive and negative detection events.  In other 

words, there was no clear pattern in the number of reads for samples with sequencing 

positive versus negative detections (Figure S4.4).  

 

3.3 Allele frequency (AF) and the number of reads supporting the mutation from 

sequencing were not quantitative representations of the mutation concentration as 

determined by RT-ddPCR 

 We next asked if data generated from sequencing could be used to quantitatively 

estimate the proportion of SARS-CoV-2 that contained a target mutation. For each target 

mutation, we compared (1) the mutation concentration as determined by RT-ddPCR 

(copies/L-wastewater); and (2) the fraction of SARS-CoV-2 containing the target mutation 

(target mutation concentration/total SARS-CoV-2 concentration as determined by RT-

ddPCR) to (3) the number of reads containing the mutation as determined by sequencing 

for all sequencing positive and negative detections (i.e., detections with at least 20 × read 

depth at the mutation position); and (4) the AF of the mutation from sequencing for all 

sequencing positive and negative detections. We observed weak positive correlations 

between mutation concentration and raw read counts with the mutation [(1) vs (3); R=0.30, 

p<0.0001)], and between fraction of SARS-CoV-2 with the mutation and AF [(2) vs (4); 
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R=0.32, p<0.0001]. No significant correlation was found between mutation concentration 

and AF [(1) vs (4); p=0.12)], or between fraction of SARS-CoV-2 with the mutation and 

raw read counts with the mutation [(2) vs (3); p=0.17].  

 We further investigated the quantitative relationship (or lack thereof) between 

mutation levels of the two B.1.1.7 characteristic mutations, S:N501Y and S:DEL69/70, as 

determined by RT-ddPCR and sequencing during Phase I when B.1.1.7 was the dominate 

circulating variant in Houston. During this period, the RT-ddPCR-determined 

concentrations of S:N501Y and S:DEL69/70, as well as the fractions of SARS-CoV-2 

containing S:N501Y and S:DEL69/70, were strongly positively correlated (R=0.95, 

p<0.0001 for S:N501Y and S:DEL69/70 concentrations; R=0.90, p<0.0001 for fractions 

of SARS-CoV-2 containing S:N501Y and S:DEL69/70; n = 228). These results indicate 

RT-ddPCR measurements of mutations present in a single, dominant VoC vary 

consistently with one another. However, when we look at the sequencing data, the 

correlation between the number of reads containing S:N501Y and S:DEL69/70, and the 

correlation between the AF values of S:N501Y and S:DEL69/70 were both weaker (R=0.21, 

p<0.05 for the number of reads containing S:N501Y and S:DEL69/70, n=121; R=0.33, 

p<0.001 for AF values of S:N501Y and S:DEL69/70, n=121). We also assessed 

associations between RT-ddPCR and sequencing measurements of N1 and N2 genes. 

Moderate positive correlations were observed between N1 concentration (via RT-ddPCR) 

and average single base coverage at N1 region (via sequencing, n=356, R=0.46, 

p=0.00011), and between N2 concentration and average single base coverage at N2 region 

(n=311, R=0.46, p=0.00066), respectively. Reasonably, N1 and N2 concentrations 

determined by RT-ddPCR exhibited a near perfect positive correlation (R=0.98, p<0.0001), 
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reflecting the robustness of the CDC primers and probes for measuring SARS-CoV-2 levels 

in wastewater samples. On the other hand, the sequencing average coverage at N1 and N2 

regions only displayed a moderate positive correlation with each other (R=0.46, p < 

0.0001). Previous studies that used RT-qPCR for N1 and N2 quantifications in wastewater 

samples found strong correlations between N1 and N2 signals, reporting correlation 

coefficients such as 0.952 (Sanjuán & Domingo-Calap, 2021) and above 0.99 (Ahmed et 

al., 2022). Studies that applied RT-ddPCR for N1 and N2 quantifications in wastewater 

samples also reported strong correlation coefficients above 0.85 (Feng et al., 2021) and 

above 0.90 (D’Aoust et al., 2021). These results highlight that AF values and the read 

counts as determined by sequencing for mutations may not vary consistently with one 

another, and thus are not appropriate for inferring VoC concentrations or relative 

abundances in wastewater samples. 

 

3.4 Implications for WBE on SARS-CoV-2  

 RT-ddPCR or RT-qPCR should be applied for quantitative analyses due to the great 

sensitivity and consistency of detection. In addition, RT-ddPCR and RT-qPCR generally 

have much shorter result turnaround time compared to sequencing (Bloom et al., 2021), 

which is critical for real-time public health response. With knowledge of unique mutations 

associated with each VOC, it is possible to detect signatures of low levels of VOCs in 

wastewater samples that may contain a mixture of variants. Numerous studies have 

emerged that have successfully developed, validated, and applied RT-qPCR or RT-ddPCR 

assays for the detection of specific VOCs by targeting characteristic mutations. For 

instance, RT-qPCR assays have been developed to co-monitor B.1.1.7 and B.1.351 by 
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tracking the trend of a B.1.1.7-specific mutation, D3L, and a B.1.351-specific mutation, 

the deletion 242-244 (Erster et al., 2021; Yaniv et al., 2021). Recently, allele-specific and 

multiplex-compatible RT-qPCR assays targeting mutations T19R, D80A, K417N, T478K 

and E484Q for quantitative detection and discrimination of the Delta, Delta plus, Kappa 

and Beta variants in wastewater were developed and validated (W. L. Lee et al., 2021).   

 The lower detection sensitivity of sequencing (Figure 4.2) can be attributed to 1) 

the low concentration of target mutations in the wastewater sample (Figure 4.3a), 2) the 

lack of sufficient read depth at the mutation position (Figure 4.3b), 3) low SARS-CoV-2 

concentrations (Figure 4.4b), and/or 4) inconsistent single base coverage across the SARS-

CoV-2 genome (Figure 4.4a, Figure S4.3). The sensitivity of targeted amplicon sequencing 

can also be impacted by sample processing and primer choices for genome amplification. 

The form of SARS-CoV-2 RNA in wastewater has only been characterized in a limited 

number of studies, and likely exists in both intact and degraded forms (Canh et al., 2021; 

Wurtzer et al., 2021). The degraded form presents a challenge for amplification. For 

example, the ARTIC v3 primer scheme used in this study amplifies 400 bp regions of the 

genome, and thus may fail to amplify short, degraded RNA fragments. Further research is 

needed to optimize workflows including sample processing and tiled primer design for 

downstream sequencing and analysis using wastewater samples. For example, 

improvements in virus recovery and yields during wastewater sample concentration and 

viral RNA extraction could enhance sequencing sensitivity. In addition, little is known 

about the impact of concentration method on mutation detection via sequencing. Sensitivity 

could also be improved by developing multiplexing PCR schemes of higher amplification 

uniformity and efficiency (Itokawa et al., 2020), or optimizing library preparation protocols 
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(Coil et al., 2021). PCR inhibition due to other constituents in wastewater is another factor 

that may impact the sensitivity of sequencing more than RT-ddPCR, as digital PCR is 

relatively resilient to PCR inhibition (Ahmed et al., 2022; Ciesielski et al., 2021). Another 

approach for increasing sequencing coverage at specific sites is to target a smaller region 

of the genome for amplification and sequencing, such as by sequencing only the spike 

protein region of SARS-CoV-2 instead of the whole genome. For example, the receptor 

binding domain (RBD) on the spike region of SARS-CoV-2, which is involved in the 

interactions with human angiotensin-converting enzyme-2 (ACE-2) receptor, can be 

sequenced instead of the entire genome for mutation or variant analysis (Gregory et al., 

2021). The mutations in the RBD are associated with the severity of infection (i.e., ACE-2 

binding affinity and virus entry to the host cells)(Andersen et al., 2020; Heald-Sargent & 

Gallagher, 2012) and potential antibody-escape affecting antigenicity (Harvey et al., 2021). 

In addition, many of the VoCs are defined by mutations to in the Spike region (Baaijens et 

al., 2021). Furthermore, the spike region only accounts for approximately 12.8% of the 

total genome, therefore, may be a more efficient use of sequencing for mutation detection. 

However, this approach also suffers from amplification and sequencing challenges due to 

degraded RNA inherent to wastewater samples. 

 Despite its lower sensitivity and qualitative nature, sequencing still has a clear 

advantage of being more comprehensive, not limited by a priori knowledge of the target 

mutations, and enables the discovery of cryptic lineages (Smyth et al., 2022) and emerging 

lineages of concern (Sapoval et al., 2021). This can be critical for early detection of variants 

when the availability of primers and probes is limited or delayed due to supply chain 

challenges. In addition, sequencing data facilitates retrospective analyses, such as 
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searching for specific mutations or collections of mutations present in samples collected 

prior to knowledge of the variants in communities (Johnson et al., 2022; La Rosa et al., 

2021; Wilton et al., 2021). In practice, WBE systems can benefit from coupling sequencing 

with quantitative analyses such as RT-ddPCR or RT-qPCR to achieve a comprehensive 

picture of circulating mutations (using sequencing), and sensitive, quantitative information 

on variant-associated mutations (using RT-qPCR/RT-ddPCR). 

 

4.4. Conclusion 

 For WBE work on SARS-CoV-2, sequencing technology has demonstrated 

irreplaceable advantages in efficient screening and the potentials to detect emerging or 

cryptic lineages. We performed RT-ddPCR and sequencing analyses in parallel on 

hundreds of wastewater samples for SARS-CoV-2 monitoring, with a specific focus on 

mutations associated with VOCs. This is the first study to directly compare mutation 

detection consistency between these two methods. Results first showed the significantly 

greater detection sensitivity of RT-ddPCR in detecting five mutations as compared to 

amplicon-based sequencing. Secondly, quantitative results generated from sequencing, 

including allele frequency (AF) and single base coverage of specific mutations failed to 

reflect the concentrations of the corresponding mutations in wastewater, showing poor 

correlations with RT-ddPCR quantification results. Therefore, caution should be exercised 

in using sequencing for quantitative assessments of mutation abundance in wastewater 

samples. RT-ddPCR or RT-qPCR should be applied for quantitative analyses due to the 

great sensitivity and consistency of detection. 
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Chapter 5 Using long- and short-read 
metagenomics and epicPCR to profile antibiotic 

resistance genes and their bacterial hosts in 
wastewater 

Esther G. Lou, Yilei Fu, Qi Wang, Todd J. Treangen and Lauren B. Stadler 
	
	
	
	
	
	
	
	
	
	
	
	
Abstract. Wastewater surveillance is a powerful tool to evaluate the risks associated with 
antibiotic resistance. One challenge is selecting which analytical tool to deploy to measure 
risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial 
hosts. Although metagenomic sequencing is frequently used for resistome analysis, few 
studies have compared the performance of long-read and short-read sequencing in 
identifying the host range of ARGs in wastewater. In addition, metagenomic sequencing 
as an unbiased approach has not been compared to targeted methods such as epicPCR for 
ARG host detection. In this study, we 1) evaluated long-read and short-read metagenomic 
sequencing as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated 
the fate of ARGs and ARG hosts across the WWTP to evaluate potential risks. Results 
showed that despite its significantly lower sequencing depth, long-read sequencing 
outperformed short-read sequencing with higher sensitivity for detecting ARGs, especially 
for ARGs associated with mobile genetic elements (MGEs). In addition, long-read 
sequencing consistently revealed a wider range of ARG hosts compared to short-read 
sequencing. Nonetheless, the host range detected by long-read sequencing only represented 
a subset of the host range detected by epicPCR. The associations between ARGs and their 
host phyla were relatively consistent across the locations sampled in the WWTP. However, 
both long-read sequencing and epicPCR detected new host species that emerged in the 
treated effluent. Based on these findings, we recommend 1) using long-read sequencing for 
routine wastewater surveillance, 2) using epicPCR to obtain a high-resolution host range 
of clinically relevant ARGs, and 3) performing long-term surveillance on specific 
treatment compartments within a WWTP to understand the emergence of new hosts.
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5.1. Introduction 

 The worldwide propagation and dissemination of antibiotic resistance have raised 

serious public health concerns. An estimated 1.27 million deaths were attributed to 

bacterial antibiotic resistant infections in 2019 (Murray et al., 2022). To mitigate this risk, 

a comprehensive understanding of antibiotic resistance in humans, animals, and the 

environment is needed (McEwen & Collignon, 2018). Wastewater treatment plants 

(WWTPs) are regarded as hotspots of antibiotic resistance in the environment, and their 

roles in impacting the fate of antibiotic resistance are quite complex: (1) wastewater 

treatment processes generally remove antibiotic resistance genes (ARGs) and ARG hosts 

from sewage through different mechanisms including but not limited to, anaerobic 

(Kappell, Kimbell, Seib, Carey, Choi, Kalayil, Fujimoto, et al., 2018b; Lou et al., 2020) 

and aerobic processes (Du et al., 2015; Munir et al., 2011), coagulation and sedimentation 

(N. Li et al., 2017), membrane filtration (Cheng & Hong, 2017; Z.H. Li et al., 2019), and 

disinfection (H. Li et al., 2020; W. Lin et al., 2016); (2) a significant abundance of ARGs 

and ARG hosts can remain in treated effluent, which may pose a  risk to downstream 

environments (Mao et al., 2015b; McConnell et al., 2018b; Rafraf et al., 2016b). In fact, 

ARGs and microorganisms discharged by WWTPs were shown to persist in the 

receiving-river biofilms (Kneis et al., 2022) and sediments (Chu et al., 2017; Quintela-

Baluja et al., 2019).  

 Previous studies have proposed metrics for evaluating the risks associated with 

antibiotic resistance in the environment to public health (A.N. Zhang et al., 2021; Z. 

Zhang et al., 2022). For instance, antibiotic resistant, pathogenic ARG hosts, as opposed 

to just ARGs, are the key factor to assess the antibiotic resistance threats to public health 
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(Ben et al., 2019; Rice et al., 2020). Furthermore, mobile genetic elements (MGEs), 

which can directly and indirectly mediate horizontal gene transfer (HGT) of ARGs 

among microorganisms, are regarded as another significant factor contributing to the risk 

of ARG dissemination (Che et al., 2019a; L. Ma et al., 2016; Yin et al., 2022). Based on 

these two aspects, Zhang et al. recently proposed a risk ranking system for ARGs that 

considers: the anthropogenic carriage of ARGs, the pathogenicity of the ARG hosts, and 

the mobility of ARGs (A. N. Zhang et al., 2021).  

 To understand the role of the environmental dissemination of antibiotic resistance 

on public health, methods are needed to obtain high-resolution and sensitive information 

on ARG hosts and the associations between ARGs with MGEs. One of the most widely 

used methods to analyze antibiotic resistance is metagenomic sequencing (Fuhrmeister et 

al., 2021; Majeed et al., 2021b; Riquelme et al., 2021). Next-generation sequencing (i.e., 

short-read) coupled with de novo assembly recovers ARG-host linkages by screening 

taxonomical markers on the assembled ARG-carrying contigs (Ju et al., 2019; L. Ma et 

al., 2016; Yin et al., 2019). However, this method tends to suffer from limited detection 

sensitivity due to the low percentage of raw reads mapping back to the assembled contigs 

(Vollmers et al., 2017) and intergenomic assembly errors (Nurk et al., 2017). Importantly, 

a large portion of reads associated with MGEs fail to assemble because of the extended 

homologous and mosaic sequences found in those regions (Brown et al., 2021; Juraschek 

et al., 2021; Maguire et al., 2020). Third-generation sequencing technologies (i.e., long-

read) are excellent at tracking ARG hosts in environmental samples (Arango-Argoty et 

al., 2019; Che et al., 2019a) because long-read sequencing can reveal the genetic context 

of ARGs without read assembly. For example, two studies that used Oxford Nanopore 
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Technology (ONT) to sequence wastewater metagenomes reported an average read 

length of 2-10 kbp, which was longer than the average length of short-read assembled 

contigs generated from the same samples (Che et al., 2019a; Dai et al., 2022). However, 

because both long- and short-read metagenomic sequencing are unbiased, non-targeted 

methods, their ability to detect ARGs, which are generally present at low abundances in 

the microbial community, is limited (Z. Liu et al., 2019; R. Zhao et al., 2020). On the 

other hand, targeted methods such as epicPCR (Emulsion, Paired Isolation, and 

Concatenation PCR) can circumvent this issue. The cornerstone of epicPCR’s 

methodology is single cells are isolated and encapsulated in a polyacrylamide bead within 

which PCR takes place to fuse a target ARG with the 16S rRNA gene (S. J. Spencer et 

al., 2016). As a result, PCR amplifies the signal of the ARG and its associated host 16S 

DNA from the background environmental metagenome, improving detection sensitivity.  

 In this study, we applied long- and short-read metagenomic sequencing as well as 

epicPCR to assess ARGs and ARG host range in a WWTP’s influent and effluent. Long- 

and short-read sequencing were compared in terms of their sensitivity to detect ARGs 

and ARG-host linkages. In addition, the host range of ARGs detected by metagenomic 

sequencing and epicPCR were compared. Furthermore, the putative pathogenic hosts of 

ARGs, as well as the genetic contexts of ARGs, were scrutinized to understand and 

prioritize ARGs based on their potential impact on human health. To the best of our 

knowledge, this is the first study to explicitly compare ARGs and ARG-host interactions 

as revealed by long- and short-read sequencing, and epicPCR. Based on these 

comparisons, we provided method suggestions for wastewater surveillance on antibiotic 

resistance for public health.  
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5.2. Materials and Methods 

5.2.1 Sample collection, DNA extraction, and pretreatment for epicPCR 

 Wastewater samples were collected from a conventional WWTP (City of West 

University Place WWTP, Houston, Texas, USA) that treats an average of 1 million 

gallons of municipal sewage per day. This WWTP employs a conventional aerobic 

activated sludge process as secondary treatment, followed by chlorination disinfection 

(gaseous Cl2, 2-4 mg/L effective chlorine concentration, 20 mins contact time). Nine grab 

samples were collected from three sampling locations, WWTP influent, secondary 

effluent, and final effluent on three consecutive dry days (n=3 for each sampling 

location). All samples were collected at the same time of the day to avoid diurnal 

variations. After collection, samples were kept on ice, immediately transported to the lab, 

and processed within 45 minutes of collection.  

 DNA was extracted from all samples prior to conducting long- and short-read 

metagenomic sequencing. A 50 mL influent sample, 250 mL secondary effluent sample, 

and 500 mL final effluent sample were filtered through a cellulose nitrate membrane 

filter (pore size 0.22 μm, diameter 47 mm; Millipore Sigma) to concentrate biomass. 

Next, filters were cut into small pieces using sterilized forceps and transferred to a 2 mL 

tube containing 0.1 mL glass beads for bead-beating, followed by DNA extraction. A 

Maxwell RSC Instrument (Cat. Num. AS4500, Promega) using Maxwell RSC PureFood 

GMO and Authentication kits (Cat. Num. AS1600, Promega) were used to extract DNA. 

For epicPCR, all influent (n=3) and final effluent samples (n=3) were centrifuged to 

concentrate cells for cell counting, polymerization, and cell lysis as previously described 
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(Spencer et al., 2015). Only samples with good cell separation and partitioning in 

polyacrylamide beads (i.e., one single cell per 35-50 polyacrylamide beads) were used in 

the downstream experiments to avoid false positive detections. Details of DNA extraction 

and sample pretreatment for epicPCR are provided in Chapter 5 Appendix section 1.2. 

 

5.2.2 Sequencing epicPCR product using MinION (ONT) 

 We selected three ARG targets for epicPCR analysis: sul1, ermB, and tetO. They 

were chosen because of their wide host range as previously reported (Stalder et al., 2019; 

Wei et al., 2021; A. N. Zhang et al., 2021). For example, ermB, the macrolide-

lincosamide-streptogramin B (MLSB) resistance gene, is of clinical relevance because it 

is enriched in human-related environments, harbored by human pathogens, and often 

carried on MGEs (A. N. Zhang et al., 2021). Primer sequences for the three targets used 

in this study are listed in Table S1. Details of the epicPCR experiments consisting of 

fusion PCR and nested PCR are provided in Chapter 5 Appendix section 1.2. After 

attaining nested PCR products, library preparation and sequencing were performed 

following the protocol “Native barcoding amplicons (with EXP-NBD104, EXP-NBD114, 

and SQK-LSK 109)” (ONT). The pooled library was loaded on an R9.4 flow cell (MIN-

FLO106, ONT) in a MinION device. The sequencing run was monitored via the software 

MinKNOW (v.20.10), targeting a >1000X depth per sample.  

 

5.2.3 Metagenomics sequencing (long- and short-read) 

 DNA extracts of all samples were measured using a Qubit Broad Range dsDNA 

assay kit and Qubit 2.0 fluorometer. DNA quality was then evaluated using 
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electrophoresis to ensure a DNA size greater than 3 kbps. For short-read sequencing, 

DNA extracts were shipped on dry ice to BGI Tech Solutions (Hong Kong) Co., Ltd for 

DNBseq general DNA library construction and DNBseq platform sequencing. For long-

read sequencing, 500 ng of DNA from each of the three sample replicates were combined 

for library preparation following the protocol “Genomic DNA by ligation (SQK-LSK 

109)” (ONT). Each of the three libraries (influent, secondary effluent, and final effluent) 

was loaded onto a Flow Cell R9.4 (MIN-FLO106, ONT) and sequenced with a MinION 

device. The sequencing run was controlled via MinKNOW (v.20.10). Long- and short-

read sequencing statistics are provided in Table S5.2. 

 

5.2.4 Analysis of epicPCR reads for ARG host range profiling 

 Raw reads were basecalled via guppy_basecaller (Version 4.4.1+1c81d62). 

Basecalled reads were trimmed by Porechop (https://github.com/rrwick/Porechop) and 

filtered using Nanofilt with a minimum quality score of 7 (De Coster et al., 2018). Next, 

all reads were searched against the corresponding linker primer sequence (RL-sul1-519F′, 

RL-ermB-519F′, and RL-tetO-519F′) using BLAST. The output reads were filtered using 

the perfect match criteria (100% identity and 100% length coverage) to exclude partially 

fused fragments, and only complete ARG-16S rRNA fusion structures were included for 

the downstream analysis. Then, we used a customized script to split the fusion structures 

into the ARG and the 16S rRNA gene portions based on the reverse linker position. We 

then conducted taxonomic classification on the 16S rRNA gene portion using Emu 

(Curry et al., 2022) and the SILVA ribosomal RNA gene database (release 138, 2019). 

To avoid false positives, two actions were taken to further filter the reads: 1) The ARG 
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portion of all split reads was aligned against the SARG database (Yin et al., 2018) using 

BLAST, 2) for each sample, only hosts that were identified consistently from at least two 

sample replicates were counted. The results of epicPCR sequencing statistics can be 

found in Chapter 5 Appendix section 2.1. 

 

5.2.5 Analysis of metagenomic sequencing reads generated by long-read and short-

read sequencing 

 We processed long- and short-read sequencing data in an integrated pipeline as 

shown in Figure S5.1. Our metagenomic analysis included: (1) identification of ARGs on 

long reads (via long-read sequencing) or short-read-assembled contigs (via short-read 

sequencing); (2) filter ARG-carrying long reads and contigs to include only those that 

were chromosome-associated for the host classification step; (3) identification of MGEs 

that were located on the same read or contig as the ARGs, and (4) identification of ARG 

host by taxonomic classification of the chromosomal reads or contigs that were 

associated with ARGs. Detailed methods describing the pipeline used to detect ARG-

carrying long reads via BLAST, ARG-carrying contigs via CARD’s Resistance Gene 

Identifier (RGI, Alcock et al., 2020), and ARG-MGE linkages are provided in Chapter 5 

Appendix section 1.3. ARG relative abundance was calculated by normalizing the copy 

number of ARGs detected on long reads or assembled contigs to the total giga base pairs 

(Gbp) of the sample (Arango-Argoty et al., 2019). 

 ARG-carrying reads or contigs were categorized as “chromosome,” “plasmid,” or 

“unclassified” via PlasFlow (V1.1) (Krawczyk et al., 2018). The “unclassified” reads and 

contigs were re-classified via megaBLAST against the NCBI nt database with a 
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minimum bit score of 50, an E value threshold of e-10, and a 70% sequence similarity 

cutoff, followed by keyword match (“chromosome”) to retrieve chromosome-associated 

long reads and contigs. All ARG-carrying reads and contigs classified as “chromosome” 

were subject to taxonomic classification using Centrifuge (V1.0.4; Kim et al., 2016). 

ARG-host linkages were identified by summarizing the associations between each ARG 

and the taxonomic classification result of the corresponding ARG-carrying read or contig. 

Putative pathogens were scanned according to the WHO resistant pathogen list (WHO, 

2017). In addition, three publicly available datasets from NCBI SRA were downloaded, 

each consisting of long-read (via Nanopore) and short-read (via Illumina) data based on 

sequencing the same wastewater sample (Che et al., 2019a; Fuhrmeister et al., 2021). 

These datasets were run through identical pipelines for analyzing long- and short-read 

sequencing data as used in this study to identify ARG-host linkages. Details regarding the 

three datasets are provided in Table S5.3. Plasmid-associated ARG-carrying reads and 

contigs were subject to plasmid mobility prediction using MOB-suite (v3.0.3; Robertson 

& Nash, 2018) and MOBscan (https://castillo.dicom.unican.es/mobscan/). Furthermore, 

to compare long-read sequencing with epicPCR for ARG host profiling, we processed 

Centrifuge specifically for those long reads that were found to carry ermB, sul1, and tetO.  

  

5.3. Results and Discussion 

5.3.1 Direct comparison of long- and short-read sequencing for resistome analysis 

5.3.1.1 Long-read sequencing resulted in the detection of a more diverse and 

abundant resistome as compared to short-read sequencing 
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 We first compared long- and short-read sequencing in their ability to characterize 

the diversity of ARGs (defined as the number of unique ARGs) and the relative 

abundance of ARGs (the copy number of ARGs normalized to sequencing depth) present 

in the samples. Overall, for raw wastewater (WWTP influent), long-read sequencing 

detected 347 ARGs with a total ARG relative abundance of 614 reads per billion bases 

(RPB), whereas short-read sequencing detected 191 ARGs with a total ARG relative 

abundance of 341 RPB. The total ARG relative abundance generated by both methods 

was comparable to previous metagenomic analyses that quantified ARGs of wastewater 

samples collected from western countries (Hendriksen et al., 2019; Kutilova et al., 2021; 

Riquelme et al., 2021). Therefore, in our study, long-read sequencing detected a 

significantly more diverse and abundant ARG profile as compared to short-read 

sequencing, which was surprising since the long-read sequencing depth was much 

shallower - only 10.12% of that of the short-read counterpart. One explanation for the 

better performance of long-read sequencing is its higher ARG detection sensitivity, 

underscored by the significantly higher proportion of ARG-associated reads among all 

long-read sequencing reads (0.0576%) as compared to the proportion of ARG-associated 

contigs among all short-read-assembled contigs (0.0119%). 

 The greater detection sensitivity of long-read sequencing is likely the result of a 

better preservation of the information of raw reads as compared to short-read sequencing. 

To elaborate, for short-read sequencing data, only 34.3% of raw reads mapped to the 

analyzed contigs, indicating a significant read loss during de novo assembly, which is a 

common issue for environmental metagenomes (Deshpande & Fahrenfeld, 2022; L. Ma 

et al., 2017b; R. Zhao et al., 2020). Of note, the analyzed contigs corresponded to those 
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passed the length filter (1,500 bp), which accounted for approximately 23.1% of all 

assembled contigs, indicating the length of the assembled contigs was a limiting factor of 

ARG detection by short-read sequencing. In this study, short-read assembly was treated 

as a necessary step to avoid false positives caused by highly similar and relatively short 

ARG reference sequences. After de novo assembly, only 0.0125% of the assembled 

contigs passed through the filter of the ARG alignment step (based on RGI “perfect” and 

“strict” matches for ARG calling, Alcock et al., 2020). For long-read processing, 100% of 

reads were directly subject to ARG alignment because no assembly was needed, and 

14.8% of reads passed the filter of the ARG alignment step. Assembly of long reads was 

not performed due to the limited coverage (data not shown). Therefore, the number of 

ARG-carrying reads via long-read sequencing was greater than the number of ARG-

carrying contigs via short-read sequencing (Table S2). Another reason long-read 

sequencing may have been more sensitive is because, on average, the size of the ARG-

carrying reads (mean size=5,387 bp) was significantly larger than the ARG-carrying 

contigs (mean size=3,488 bp; p=1.592e-05). Longer reads increased the likelihood of 

detecting multiple ARGs on the same reads. The number and fraction of long reads 

carrying more than one ARG (413; 23.7%) were greater than the number and fraction of 

contigs carrying more than one ARG (24; 10.7%). In addition, the contigs that carried 

more than one ARGs were carrying two or three ARGs, whereas 26.6% of the long reads 

that carried more than one ARGs were carrying at least three and up to six ARGs. Taken 

together, long-read sequencing resulted in higher ARG detection sensitivity than short-

read sequencing by preventing read loss and through the generation of extended length of 

ARG-carrying reads.  
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 However, both methods identified a comparable ARG composition with respect to 

ARG subtypes; each method detected the same suite of 20 ARG subtypes in wastewater 

(Figure 5.1A). Approximately 90% of the total ARGs detected by each method belonged 

to subtypes of sulfonamide, macrolide-lincosamide-streptogramin (MLS), tetracycline, 

multidrug, carbapenem, aminoglycoside, antiseptics, and non-carbapenem-beta-lactams. 

The consistency between long-read and short-read sequencing in characterizing ARG 

subtypes has also been reported in other studies of wastewater samples and activated 

sludge samples (Che et al., 2019), mock bacterial communities (Leggett et al., 2020), and 

a plant population with a known bacteria spike (Arango-Argoty et al., 2019). 



 

 

5.3.1.2 Long-read sequencing detected more ARGs located on chromosomes, 

plasmids, and on different types of mobile genetic elements (MGEs) as compared to 

short-read sequencing 

Figure 5.1. Resistome profiles revealed by long- and short-read sequencing on paired wastewater 
samples (n = 3). A. Total ARG relative abundance revealed by long- and short-read sequencing 
(left) and ARG composition broken down by drug class subtype (right) according to the relative 
abundance of ARGs of each subtype. B. Distribution of total ARGs across genetic locations 
(plasmid or chromosome) and the associations between ARGs and MGEs as determined by long- 
and short-read sequencing. ARGs associated with more than one MGE were counted separately for 
each MGE involved. C. Distribution of ARGs (grouped by drug class subtype on the x-axis) across 
genetic locations and ARG-MGE associations revealed by long- and short-read sequencing. 
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 Next, we compared the genetic location of ARGs assigned by each sequencing 

method. Both methods captured ARGs distributed across different genetic locations, 

namely, plasmid and chromosome. In addition, the associations between ARGs and 

MGEs (transposases, integrases, recombinases, and integrons) were also recovered. 

Long-read sequencing exhibited a greater abundance of ARGs that were associated with 

every single genetic location as compared to short-read sequencing (Figure 5.1B). More 

specifically, long-read sequencing showed a significantly higher abundance of plasmid-

associated ARGs, 6-fold higher than that of short-read sequencing, and a strikingly higher 

abundance of class 1 integron-integrase genes (IntI1)-associated ARGs, 16-fold higher 

than that of short-read sequencing (Figure 5.1B). The less sensitive detection of MGE-

associated ARGs by short-read sequencing was likely the result of the de novo assembly 

process. To elaborate, the variable copy number and the highly homologous and 

repetitive sequence compositions of MGEs make it problematic to assemble MGE-

associated reads. As shown in a previous study, 82-94 % of chromosomal sequences were 

correctly assembled and binned, but only 38-44 % of genomic islands and 1-29 % of 

plasmid sequences were identified in a simulated low-complexity short-read metagenome 

(Maguire et al., 2020). A similar degree of read loss during short-read assembly was also 

observed in several other studies of wastewater metagenomes (Deshpande & Fahrenfeld, 

2022; J. Liang et al., 2020; Z. Liu et al., 2019; L. Ma et al., 2016). Long-read sequencing, 

on the other hand, does not require assembly as it generates long reads that can be 

directly searched against MGE databases. Therefore, long-read sequencing can overcome 

the data loss issue associated with assembly, making it more feasible to detect ARG-

MGE linkages. 
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 So far, only a handful of studies have compared using long-read and short-read 

sequencing to determine the genetic locations of ARGs in wastewater samples. One study 

that obtained reads via Nanopore sequencing and contigs assembled from Illumina-

sequencing reads found that both resulted plasmid-associated ARGs for all major 

subtypes of ARGs in wastewater and activated sludge samples (Che et al., 2019). 

Similarly, in this study, ARGs were found to be primarily located on plasmids rather than 

chromosomes (Figure 5.1B). In addition, ARGs were mostly co-located with transposases 

and IntI1 (Figure 5.1B). We also investigated the distribution of ARGs across different 

genetic locations with respect to ARG subtypes (Figure 5.1C). For ARGs conferring 

resistance to carbapenem, multidrug, MLS, diaminopyrimidine, aminoglycoside, 

tetracycline, nucleoside, and bacitracin, long-read sequencing demonstrated a consistent 

or slightly wider MGE distribution range compared to short-read sequencing (Figure 

5.1C). However, the distribution patterns of sulfonamide resistance genes, peptide 

resistance genes, rifamycin resistance genes, and antiseptics resistance genes were 

distinct for each method. Short-read sequencing assigned these ARGs only to plasmids 

whereas long-read sequencing assigned these ARGs not only to plasmids but also to other 

MGEs (Figure 5.1C). This inconsistency was likely due to the significantly lower number 

of ARG-associated contigs detected by short-read sequencing for those specific ARGs 

(data not shown), which limited its ability to fully capture the potential of those ARGs 

being associated with MGEs. While this is not the first study to elucidate the genomic 

locations of ARGs by investigating the genetic context of ARGs, it is the first to 

explicitly compare long-read and short-read sequencing in profiling the distribution of 
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ARGs across genomic locations (i.e., chromosomes, plasmids, and other MGEs) in 

wastewater. 

 

5.3.2 Direct comparison of the ARG host range profiled by long-read and short-read 

sequencing demonstrated long-read sequencing’s superior performance for host 

tracking 

 Overall, long-read sequencing identified a greater number of linkages of ARGs 

and their hosts than short-read sequencing (Figure 5.2A, Figure S5.2). This result 

highlights that long-read sequencing produced a more diverse host profile than short-read 

sequencing, even though both methods produced similar total community bacterial 

composition profiles (Table S5.4) and consistent ARG subtype profiles (Figure 5.1A). 

However, these two methods showed inconsistency in ARG host identifications (Figure 

5.2A). In total, 26 ARG-host family linkages, or 21 ARG subtype-host family linkages, 

were consistently detected by both methods, which accounts for only a small fraction of 

the corresponding total linkages detected by each method (Figure 5.2A). Although 

several studies have focused on the consistency of long-read and short-read sequencing in 

resistome analysis (Arango-Argoty et al., 2019; Che et al., 2019; Leggett et al., 2020) and 

sample-wise taxonomic abundance estimation (Brandt et al., 2020; Govender & Eyre, 

2022; Sevim et al., 2019; Y. Yang et al., 2022), ours is the first to explicitly compare 

their ability to characterize ARG host range in wastewater. 



 
108 

 

Figure 5.2. Comparison of long- and short-read sequencing for wastewater ARG host 
identification. A. Venn diagrams illustrating the detections of unique linkages of a specific ARG 
and its host family (left), and of unique linkages of a specific ARG drug class subtype and its host 
family (right). B. Profile of ARG hosts that are bacteria on the WHO list for which new antibiotics 
are urgently needed. Highlighted ARGs are those conferring multidrug resistance (MDR), 
fluoroquinolone resistance, and those encoding ESBL-production and/or carbapenemase-
production. The colors denote a detection of an ARG-host (orange: detected only by long-read 
sequencing, turquoise: detected only by short-read sequencing, red: detected by both sequencing 
technologies). Family-level hosts are grouped by Order on x-axis (C: Campylobacterales, E: 
Enterobacterales, M: Moraxellales, P: Pseudomonadales). C. The number of reads via long-read 
sequencing (light blue bars) and the number of contigs via short-read sequencing (dark blue bars) 
supporting each unique linkage of ARG subtype and host (family level). The left panel consists of 
data generated in this study, and the right panel is using publicly available data of a sample 
collected from the influent of a WWTP in Boston, MA (sample ID: B_ww_1, Table S5.3). 
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 We further compared the ARG-host linkages profiled by each method, focusing 

specifically on those putative hosts included on the WHO’s resistant pathogen list. Long- 

and short-read sequencing altogether recovered 117 ARG-host linkages, covering 80 

ARGs (corresponding to 17 subtypes) and 31 putative pathogenic species (Figure 5.2B). 

Both methods identified Escherichia coli as the putative pathogenic host that carried the 

highest abundance of ARGs. In fact, according to global surveillance of clinical cases, 

among all bacterial pathogens associated with or attributable to antibiotic resistance, E. 

coli ranks first as the cause of direct or indirect deaths (Murray et al., 2022). Not 

surprisingly, most putative hosts identified were within the family Enterobacteriaceae 

which includes the vast majority of commensal and enteric bacteria that live in the 

gastrointestinal tract of humans (Abera et al., 2016; K. Lee et al., 2020; Ngbede et al., 

2021). Consistent with previous studies, Enterobacteriaceae was found to harbor 

multiple classes of clinically relevant ARGs, especially those encoding ESBL (extended-

spectrum beta-lactamase)-production and/or carbapenemase-production (Abera et al., 

2016; Castanheira et al., 2021; L. Li et al., 2021; Søraas et al., 2013). Long-read 

sequencing detected ARG-host connections across six host families and 68 ARGs, 

whereas short-read sequencing only detected Enterobacteriaceae and 

Pseudomonadaceae as the host families for 24 ARGs (Figure 5.2B). Hence, despite 

having a significantly shallower sequencing depth (Table S5.1), long-read sequencing 

detected a more comprehensive profile of putative pathogenic hosts of ARGs than short-

read sequencing (Table S5.5).  

 To investigate the inconsistency between the two sequencing methods, we 

compared the number of reads supporting the ARG-host linkages detected by long-read 



 
110 

sequencing and the number of contigs supporting the ARG-host linkages detected by 

short-read sequencing (Figure 5.2C). To assess the consistency of our results with other 

previous datasets, the results from this study and from one publicly available wastewater 

metagenomic dataset with paired long- and short-read sequencing data [ID: B_ww_1, 

(Fuhrmeister et al., 2021)] are provided (Figure 5.2C, right; results for the rest of the 

example publicly available datasets are provided in Figure S5.2). As expected, long-read 

sequencing demonstrated more ARG subtype-host family linkages as compared to short-

read sequencing. Quantitatively, the numbers of long reads were generally greater than 

the numbers of contigs across the vast majority of the ARG subtype-host family linkages 

(Figure 5.2C). For those reads and contigs that supported the same linkages, their 

numbers were moderately correlated (n=21, Spearman’s Rho=0.43, p<0.05 for this study; 

n=18, Spearman’s Rho=0.47, p<0.05 for B_ww_1), which indicates some degree of 

consistency between these two methods in quantifying the linkages of ARG subtypes and 

host families.  

 To summarize, long-read sequencing demonstrated its superior performance over 

short-read sequencing in detecting ARG hosts in two aspects: 1) it captured a wider host 

range for different ARGs (Figure 5.2B) and ARG subtypes (Figure 5.2C, Figure S5.2); 

and 2) quantitatively, it detected ARG-host linkages by generating greater numbers of 

reads supporting the linkages than the number of contigs (Figure 5.2C, Figure S5.2). Of 

note, the evaluation was based on comparing the detection via long reads with the 

detection via contigs assembled from short reads, rather than directly comparing the raw 

reads generated by both sequencing methods. Several previous studies used raw short 

reads without assembly and identified putative ARG hosts through correlation analysis 
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that compared the abundance of ARGs and taxonomical markers (Jia et al., 2017; B. Li, 

Ju, et al., 2015). However, using raw reads to assign ARG hosts for wastewater 

surveillance has several challenges. First, this approach relies heavily on statistical 

correlation analysis which requires multiple sample replicates. Obtaining and processing 

multiple replicate samples significantly increases the amount of work required for sample 

collection, preparation, and sequencing, as well as the time and cost involved in routine 

surveillance. Most importantly, the raw read approach is prone to introduce false 

positives when detecting ARG-host linkages (Deshpande & Fahrenfeld, 2022). Thus, 

while using assembly is a relatively conservative means to identify ARG-host linkages as 

compared to using raw reads, it is less likely to generate false positives, which is crucial 

in wastewater surveillance and risk assessment. Furthermore, the substantial processing 

time and computational memory requirements of read assembly of short-read sequencing 

data may be overcome by long-read sequencing. Recent studies have shown that ONT, 

one of the leading long-read sequencing technologies, can rapidly and reliably detect 

resistomes and pathogens in one hour in wastewater (Yang et al., 2022) and preterm 

microbiota (Leggett et al., 2020).   

 

5.3.3 EpicPCR captured more ARG hosts as compared to long-read sequencing 

 Since long-read sequencing revealed more ARG hosts than short-read sequencing, 

we next compared the ARG host profile obtained via long-read sequencing to the host 

range of three ARG targets (sul1, ermB, and tetO) detected by epicPCR. We found that 

epicPCR detected a greater number of host species for the three ARG targets than the 

non-targeted, long-read sequencing method (Table 5.1). Note that the host species 



 
112 

generated by long-read metagenomic sequencing were based on classifying chromosomal 

reads that carry the corresponding ARGs (as discussed in section 2.5; Table 5.1). 

 
Table 5.1. The number of ARG-associated reads and host species detected by epicPCR and long-
read sequencing in WWTP influent and effluent samples (n=3). The comprehensive list of 
hosts detected by epicPCR can be found in Chapter 5 Appendix section 2.2 and Table 
S5.5. 

 There are two reasons why epicPCR was more sensitive than long-read 

sequencing in terms of ARG host detection. First, epicPCR is more sensitive as compared 

to non-targeted metagenomics. Second, epicPCR can include plasmid-associated linkages 

that may have been overlooked by metagenomics. With epicPCR (Spencer et al., 2016), 

as long as the target ARG is present in the cell, it can be fused with the taxonomical 

marker (i.e., 16S rRNA gene) via PCR for host classification regardless of whether the 

ARG is located on a plasmid or chromosome. However, metagenomics can only classify 

hosts for ARGs that are associated with chromosomes because it requires the presence of 
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taxonomic markers co-located on the ARG read, which usually appear on chromosomes 

rather than on plasmids. Therefore, in theory, epicPCR should generate a more 

comprehensive host profile than metagenomics, because ARGs are widely distributed on 

plasmids (Che et al., 2019a; Dai et al., 2022; Rozwandowicz et al., 2018). 

 The significantly lower number of hosts identified via long-read sequencing as 

compared to epicPCR was likely attributed to the low fraction of chromosomal reads 

among the total ARG-associated reads. To further investigate, we selected all long reads 

that were found to carry sul1, ermB, and tetO disregarding whether they were on 

chromosomes. As expected, a vast majority of ARG-carrying reads were not classified as 

chromosomal reads for the three ARG targets (Table 5.1). However, it is not feasible to 

classify hosts using metagenomics for non-chromosomal ARGs, such as plasmid-borne 

ARGs, because plasmids do not necessarily resemble their host genomes in either 

abundance or nucleotide composition. In addition, the possibility of HGT of those 

plasmid-borne ARGs is unknown. Nevertheless, despite epicPCR’s improved detection 

sensitivity over long-read sequencing, one undeniable value of long-read sequencing is its 

ability to disclose genetic context of an ARG. For instance, long-read sequencing 

identified the associations between ermB and the gene encoding conjugative transposon 

proteins in Clostridioides difficile (data not shown), highlighting ermB’s potential to be 

horizontally transferred. EpicPCR results in only a short, fused product of the target gene 

and taxonomic marker gene, retaining no additional contextual information in the 

sequenced amplicons. 
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5.3.4 The ARG-host phylum linkages were relatively consistent across WWTP 

influent and effluent, whereas new ARG-host species linkages appeared in the 

WWTP effluent 

 ARGs were efficiently removed via conventional activated sludge treatment 

followed by chlorination disinfection indicated by a 93.6% removal rate based on the 

relative abundance of total ARGs across the WWTP (Figure 5.3A). The removal rate via 

activated sludge treatment (91.8%) was comparable to those reported in previous studies 
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A B

C

D

ARG subtypes

Plasmid-associated
Chromosomal

Figure 5.3. Dynamics of resistomes and ARG hosts across the WWTP revealed by long read 
sequencing. A. The relative abundance of ARGs across the WWTP (influent, secondary 
effluent and final effluent, n = 3 for each sampling location). ARGs were grouped by their 
location (red: plasmids, green: chromosome). B. The composition of chromosomal ARGs 
across samples. ARGs are colored by drug class subtype. C. The composition of plasmid-
associated ARGs across samples. ARGs are colored by drug class subtype. D. The ARG host 
phyla across samples. ARGs are grouped by subtype (y-axis) and hosts are grouped by phyla 
(x-axis). The size of dots represents the relative abundance of ARGs corresponding to the 
specific subtype and host phylum. Dot colors indicate sampling location. 



 
115 

(Mao et al., 2015b; Y. Yang et al., 2014b; Yin et al., 2022). The chlorination process 

further removed chromosomal ARGs, but slightly increased the relative abundance of 

plasmid-associated ARGs, leading to a limited removal of total ARG relative abundance 

(21.0%) from the secondary effluent (Figure 5.3A). Although the role of chlorination 

remains under debate with respect to its impact on antibiotic resistance (Lin et al., 2016), 

several studies have shown that chlorination has a limited or even negative effect on the 

removal of ARGs from secondary effluent (X. Cheng et al., 2021; S.S. Liu et al., 2018; 

Yuan et al., 2015, 2019).  

 To further understand the dynamics of resistomes across the treatment processes, 

the composition of ARGs on chromosomes and plasmids was assessed separately with 

respect to ARG subtypes (Figure 5.3B). Chromosomal and plasmid-associated ARGs 

shared 16 ARG subtypes, whereas ARGs encoding resistance to fosfomycin and 

mupirocin were only detected on chromosomes, and ARGs conferring resistance to 

colistin and glycopeptide were only found on plasmids. The distribution of ARGs across 

chromosomes and plasmids was likely influenced by their resistance mechanism. Those 

ARGs causing antibiotic inactivation or replacement, or protection of the antibiotic’s 

target, tend to be more frequently associated with plasmids than chromosomes, while 

ARGs associated with efflux pumps often appeared to be located on chromosomes 

(Figure S5.3). This distribution pattern is consistent with a recent study investigating the 

distribution of ARGs across chromosomes and plasmids in major groups of 

Enterobacteriaceae (Y. Wang et al., 2022). 

 In general, the ARG subtypes present in secondary effluent and final effluent 

samples were a subset of those in influent samples (Figure 5.3B&C). However, 
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chromosomal ARGs (Figure 5.3B) demonstrated a less consistent composition profile 

across the treatment processes as compared to plasmid-associated ARGs (Figure 5.3C). 

As for the chromosomal ARGs, a spike of rifamycin resistant genes (i.e., rpoB2, RbpA, 

and efpA) in secondary effluent was likely attributed to the growth of their putative host 

Actinobacteria (Figure 5.3D), whose relative abundance increased substantially in 

secondary effluent as compared to in the influent (data not shown). Similarly, the fraction 

of multidrug resistance genes (MDRs) increased in the secondary effluent (Figure 5.3B), 

and these MDRs were also carried by Actinobacteria (Figure 5.3D). The growth of 

Actinobacteria bacteria, which are common aerobes (Barka et al., 2015), was likely the 

result of the presence of high concentration of dissolved oxygen in the activated sludge 

treatment process. In contrast, the relative abundance of the obligate anaerobic 

Bacteroidetes and the facultatively anaerobic Firmicutes decreased in the secondary 

effluent (data not shown). Consequently, associations between Bacteroidetes or 

Firmicutes bacteria with ARGs were only observed in the influent samples (Figure 5.3D). 

Proteobacteria was observed to be the predominant host phylum for ARGs across the 

wastewater treatment processes (Figure 5.3D), which is consistent with previous studies 

(Azli et al., 2022; Gu et al., 2022; Z. Liu et al., 2022). Results indicated that the shift of 

the microbial community in response to the growth or decay of certain phyla drives the 

resistome across the WWTP (Figure 5.3B&C). 

 WWTP influent and effluent hosts were similar at the phylum level, as shown by 

both epicPCR (Figure S5.4) and long-read sequencing (Figure 5.3D, Figure S5.4), which 

is consistent with a study that used Nanopore sequencing for ARG host detection in 

WWTP influent and activated sludge (Dai et al., 2022). However, at the species level, 
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ARG hosts in the WWTP effluent were not entirely a subset of those in the WWTP 

influent due to the emergence of new hosts in the effluent (Figure S5.4). To gain a deeper 

understanding of the mechanisms responsible for the removal and selection of ARG hosts 

by different wastewater treatment unit processes, future research should focus on 

understanding the relative importance of horizontal gene transfer versus vertical 

propagation of ARGs via the growth and decay of ARG host, as well as the impact of 

environmental and operational variables on ARG propagation mechanisms 

(Barancheshme & Munir, 2018). 

 

5.3.5 ARGs associated with pathogens and mobile genetic elements were present in 

the final effluent 

 We narrowed our focus on ARGs that were most likely to pose a public health 

risk using the following criteria: 1) present in the final effluent, 2) associated with an 

MGE, and 3) associated with a pathogenic host species. Given the strong performance of 

long-read sequencing (i.e., high detection sensitivity on resistomes, hosts and MGEs), we 

performed this analysis using information obtained via long-read sequencing results. 

Diverse subtypes of ARGs were found to be present in the final effluent (Figures 

5.3B&C). Among all ARG-carrying reads in the effluent, 41.3% of them contained 

MDRs. We next focused on ARGs associated with pathogens. Not surprisingly, the 

influent contained high abundances of enteric bacteria and as well as a diverse array of 

ARGs and ARG-carrying pathogens (Figure 5.4). Interestingly, ARG-carrying pathogens 

that were detected in the secondary effluent, but not found in the influent, were mainly 

Mycobacterium species carrying rifamycin-resistance genes (Figure5.4).  
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Mycobacterium is ubiquitous in wastewater and activated sludge and is considered a 

scavenger of insoluble compounds in wastewater (F. Guo et al., 2019; Radomski et al., 

2011). One of the detected putative Mycobacterium pathogens, Mycobacterium 

tuberculosis (TB), was found to carry efpA which encodes an efflux pump system capable 

of extruding the isoniazid to the exterior of the cell (Rodrigues et al., 2012). This is 

Figure 5.4. ARG-carrying putative pathogens detected in the influent, secondary effluent, and 
final effluent. ARGs are grouped by drug class subtype on y-axis; pathogenic species are 
shown on the x-axis. Dot size indicates the relative abundance of ARGs. Dot color indicates 
the sample location. The heatmap shows the taxa relative abundance of pathogenic species in 
each sample. 
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particularly concerning because isoniazid is a drug commonly used in TB therapy. 

However, ARG-carrying Mycobacterium species were not found in the final effluent, 

indicating its effective removal in the disinfection process. Burkholderia pseudomallei, 

which can cause the disease melioidosis (Draper et al., 2010), was an ARG host detected 

in the final effluent, but not in the influent or secondary effluent. It was associated with 

MuxB, a resistance-nodulation-cell division (RND) antibiotic efflux pump gene that 

significantly reduces susceptibility to macrolide, beta-lactams, and fluoroquinolones in 

bacteria. 

 Overall, six out of seven ARG-carrying putative pathogens present in the final 

effluent were also detected in the influent (Figure 5.4). It is worth noting that the relative 

abundance of ARGs carried by E. coli, especially those encoding resistance against 

multidrug, beta-lactam, and nucleoside, were persistent across the entire treatment 

process (Figure 5.4). In addition, the estimated relative abundance of total E. coli 

decreased significantly from influent to final effluent (Figure 5.4). Together, these results 

suggest that the chlorination process may have selected for resistant E. coli. Previous 

studies have also observed that multidrug-resistant E. coli was persistent during 

wastewater treatment (Aslan et al., 2018) and was capable of escaping the oxidation by 

disinfectants (Mounaouer & Abdennaceur, 2016). 

 Other than ARG-carrying pathogens, ARGs associated with MGEs can also 

contribute to public health risks because they can potentially be transferred to pathogenic 

hosts. To assess whether plasmid-associated ARGs were likely to be mobilizable, we 

investigated the mobility of the ARG-carrying plasmids by screening for and classifying 

the mobilization genes (MOB) on the reads. Results showed that all ARG-carrying 
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plasmids found in secondary effluent (containing 33 ARG-carrying plasmid reads) and 

final effluent (containing 56 ARG-carrying plasmid reads), as well as most (966 out of 

970) ARG-carrying plasmids in influent, were classified as nonmobilizable plasmids due 

to the lack of a MOB. Only four out of 970 ARG-carrying plasmid reads in influent were 

found to carry MOB genes. However, although long-read sequencing generated greater 

length reads as compared to short-read assembled contigs, the average length of ARG-

carrying, plasmid-associated reads was 4,885 bps. This suggests incomplete plasmids 

were assembled and thus may not have contained information needed to call mobility for 

a plasmid. For example, the length range of 14 representative ARG-bearing conjugative 

plasmids isolated from WWTPs was reported to be 35,925-290,014 kbps (Che et al., 

2022), much longer than the plasmid-associated read length. Therefore, we cannot draw a 

solid conclusion regarding the mobility of plasmids given that the relatively short 

plasmid-associated reads captured incomplete plasmid sequences.  

 A variety of MGEs including IntI1s, recombinases, transposases, and integrases 

were frequently observed in the effluent samples (Table S5.7), which suggests they may 

be involved in the HGT of ARGs among bacteria (Gillings et al., 2015; Knapp et al., 

2008; L. Ma et al., 2017b). Recent studies revealed the striking prevalence of insertion 

sequences (IS) in resistant pathogens and the relatively consistent linkages between 

certain IS and specific ARGs across highly diverse bacterial genotypes, indicating the 

role of IS in mediating the HGT of these ARGs (Che et al., 2021, 2022). Similarly, we 

also found diverse IS families that were associated with ARGs across samples. 

Particularly, the IS6 family transposase was found to be frequently associated with two 

macrolide resistance genes across samples, namely, msrE and mphE (Table S5.7). In 
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addition, this specific mphE/msrE-the IS6 family transposase association was found on a 

conjugative plasmid equipped with the T4SS and MOBQ machinery, highlighting its 

potential for HGT via the interaction of IS and a conjugative plasmid. 

 

5.4. Conclusion 

 The bacterial host and genetic context of an ARG present in our water and 

wastewater systems is critical to assessing its potential risk to human health. Specifically, 

ARGs of highest priority for further study are those hosted by pathogenic bacteria and/or 

with the potential to be horizontally transferred to pathogens (i.e., associated with an 

MGE). In this study, we evaluated and compared long and short-read metagenomic 

sequencing-based methods, as well as a targeted method (epicPCR) for identifying ARG 

hosts and associations with MGEs. We found that long-read sequencing outperformed 

short-read sequencing by generating a higher relative abundance of ARGs, especially of 

ARGs associated with MGEs, as well as a more diverse ARG host profile. Moreover, 

long-read sequencing generally yielded a greater number of reads supporting ARG-host 

linkages compared to the number of contigs assembled from short reads. EpicPCR 

outperformed long-read sequencing in terms of the breadth of hosts detected for three 

ARG targets (ermB, sul1, and tetO), however, it does not provide any additional 

contextual information (e.g., whether the ARG is associated with an MGE). When we 

applied these methods to understand ARG host dynamics across the WWTP, we observed 

consistent trends using long-read sequencing and epicPCR. Overall, the linkages of 

ARGs and host phyla in the WWTP effluent resembled those in the WWTP influent. 

However, at the species level, ARG hosts in the WWTP effluent were no longer a subset 
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of those in the WWTP influent, which reinforces the need for more and longer-term 

surveillance of emerging effluent ARG hosts, and the importance of understanding the 

mechanisms of removal and selection of ARGs and ARG hosts across treatment. 

 These results suggest that for environmental surveillance, long-read sequencing 

has many advantages as a tool for ARG detection and host tracking due to its high 

sequencing efficiency and because it does not require assembly. However, if any 

clinically-relevant ARG targets, such as MCRs (colistin resistance genes), are of 

particular concern to public health, epicPCR assays could be developed and applied to 

capture a more comprehensive host profile to complement routine metagenomic 

screening. Future studies should focus on evaluating standardized methods for 

wastewater-based surveillance of antibiotic resistance, developing guidelines for better 

reproducibility, and establishing a risk estimation framework for ARGs in the 

environment. 
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 The metagenomic long-read sequencing and short-read sequencing analysis 

pipeline and the epicPCR analysis pipeline are deposited at 

https://gitlab.com/treangenlab/wasterwater_arg_metagenomics. All sequencing data can 

be found at NCBI SRA (project accession number: PRJNA842493). 
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Chapter 6 Concluding Remarks 
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6.1 Summary and Conclusions 

 Antimicrobial resistance (AMR) poses an ongoing threat to public health because 

it leads to higher medical costs, prolonged hospital days, and increased mortality. Clinical 

AMR surveillance efforts only capture a fraction of AMR circulating in a community, and 

one of the major challenges in combating the spread of AMR is the complexity associated 

with its spread. The spread of AMR is complex because it is driven by ubiquitous bacteria 

and genetic elements adapted to traverse, persist, and proliferate in a wide array of hosts 

and environments. One significant point source of AMR in the environment is wastewater. 

Monitoring wastewater for AMR can provide information in two important ways: (1) 

influent (sewage, untreated wastewater) represents a pooled sample of all individuals in the 

community can be used to characterize circulating AMR in the community and inform 

public health decision-making, and (2) effluent AMR reflects the ability of WWTPs to 

remove and mitigate the dissemination of AMR in downstream environments. This 

dissertation examines critical methodological choices associated with wastewater 

monitoring, in the context of both AMR and SARS-CoV-2, the virus responsible for the 

COVID-19 pandemic. The results of this work contribute to the establishment of routine 

WBE for the protection of public health, and advancing our understanding of the risks 

associated with AMR in the environment. 

 

Elucidated impact of wastewater sampling design and concentration methods on 

quantitative assessments of AMR in wastewater. Wastewater sampling method (i.e., 

grab versus composite sampling), can influence the observed concentrations of analytes (in 

this case, ARGs) in wastewater samples. Furthermore, concentrating target analytes in 
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wastewater samples prior to nucleic acid extraction and quantification can also impact the 

form and abundance of the recovered analytes. Currently, the majority of studies on AMR 

in wastewater have applied grab sampling, likely due to convenience and minimal 

resources and time as compared to composite sampling. In Chapter 2, we found that the 

concentrations of each gene fluctuated in grab samples collected throughout the day. This 

diurnal variation led to significant differences among the intra-day hourly instantaneous 

removal rates which ranged from 0.5-1.6 logs in winter and 0.9-2.7 logs in summer for 

each target gene. Additionally, the removal rates calculated based on 24-hour composite 

samples were approximately equal to the median of the instantaneous removal rates, 

indicating composite samples provide a more balanced thus representative snapshot of 

removal trends. Furthermore, the diurnal variation of the concentrations of target genes in 

the secondary and final effluent samples were more significant than those in the influent 

samples, indicating the diurnal variation of the target gene concentrations can be amplified 

by the wastewater treatment train. Our study confirms the importance of using composite 

rather than grab samples to monitor ARGs for WBE. In addition, the removal rates of target 

genes across WWTPs should also be assessed via composite samples.  

 The impact of wastewater sample concentration method on AMR characterization 

was discussed in Chapter 3. A widely used method to concentrate wastewater samples 

involves a filtration step using 0.22 μm filters, which can cause cell-free ARGs to be 

overlooked. This is because cell-free ARGs can pass through the filter pores, and are thus 

discarded with the flow-through, while cell-associated ARGs are intercepted by the filters. 

We investigated the profile of ARGs in the effluent of a novel biotechnology for 

wastewater reclamation and water reuse, an anaerobic membrane bioreactor (AnMBR) 
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treating high strength mixture of cattle manure and domestic wastewater. We found that 

the effluent ARG and mobile genetic element (MGE) reservoir shifted from cell-associated 

to cell-free DNA with the increased organic loading rate. This finding would not have been 

discovered if the sample concentration and DNA extraction protocols had not captured both 

cell-associated and cell-free fractions of DNA. Taken together, these two chapters address 

that methodological choices with regards to wastewater sampling and concentration 

impacts the results and conclusions drawn from AMR WBE. Thus, method standardization 

should be established to ensure the validity and reproducibility of WBE results and 

conclusions generated across laboratories to generate actionable information from AMR 

monitoring. 

 

Evaluated two widely applied targeted methods, RT-ddPCR and targeted amplicon 

sequencing, for monitoring SARS-CoV-2 mutations in wastewater. SARS-CoV-2 

RNA in wastewater can be degraded and fragmentized and is commonly found in trace 

amounts. Therefore, for molecular analysis, targeted methods are widely applied because 

they involve an enrichment step (usually based on PCR) to improve detection sensitivity. 

Targeted amplicon sequencing is considered a powerful tool to enable comprehensive 

screening of all potential mutations without any prior knowledge. However, it is unclear 

how quantitative is this approach as compared to the gold standard RT-qPCR or RT-ddPCR 

methods in the context of wastewater monitoring. In Chapter 4, we directly compare a 

targeted amplicon sequencing approach (based on ARTIC v3) with RT-ddPCR 

quantification for the detection of five characteristic mutations of variants of concern 

(VoCs) using 547 wastewater samples. When we observed positive mutation detections by 
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RT-ddPCR, 42.6% of the detection events were missed by targeted amplicon sequencing, 

due to negative detection or the limited read coverage at the mutation position. Further, 

when targeted amplicon sequencing reported negative or depth-limited mutation detections, 

26.7% of those events were instead positive detections by RT-ddPCR, highlighting the 

relatively poor sensitivity of targeted amplicon sequencing. No or weak associations were 

observed between quantitative measurements of target mutations determined by these two 

methods. These findings caution the use of quantitative measurements of SARS-CoV-2 

variants in wastewater samples determined solely based on targeted amplicon sequencing. 

 

Revealed the merits and limitations of metagenomic sequencing for tracking ARG 

hosts in WWTPs and contrasted them against a targeted method, epicPCR. There is 

growing interest in deploying unbiased, non-targeted metagenomics sequencing to monitor 

AMR in WWTPs. In particular, the development and advancement of third generation 

sequencing that can generate significantly longer read lengths, enables the contextual 

genetic information of ARGs to be deciphered and can reveal ARG-host information. 

However, long-read metagenomic sequencing has not been explicitly compared short-read 

metagenomics for the purposes of ARG-host tracking. In addition, it is unknown how 

sensitive metagenomics sequencing is as compared to targeted methods (e.g., epicPCR) for 

ARG host tracking. Identifying ARG hosts is crucial for understanding host-ARG 

interactions and the potential risks posed by pathogenic resistant bacteria. Chapter 5 shows 

that despite its significantly lower sequencing depth, long-read sequencing via the 

Nanopore sequencing platform outperformed short-read sequencing with higher sensitivity 

for detecting ARGs, especially for ARGs associated with mobile genetic elements (MGEs). 
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In addition, long-read sequencing consistently revealed a wider range of ARG hosts 

compared to short-read sequencing. Both long-read sequencing and epicPCR detected new 

host species that emerged in the treated effluent. However, the host range detected by long-

read sequencing only represented a subset of the host range detected by epicPCR. Based 

on these findings, we recommend 1) using long-read sequencing for routine wastewater 

surveillance, 2) using epicPCR to obtain a high-resolution host range of clinically relevant 

ARGs, and 3) performing long-term surveillance on specific treatment compartments 

within a WWTP to understand the emergence of new hosts. 

6.2 Significance and Implications 

 This dissertation contributes to achieving scientific consensus on method selection 

for characterizing disease indicators in wastewater samples. Specifically, guidelines of 

method selection regarding upstream and downstream analyses are provided. 

Guidelines for the upstream workflow of AMR characterization in wastewater (sampling 

and concentration). First, unintended bias could occur with grab sampling, emphasizing 

the issue of using grab samples to indicate ARG and MGE concentration and loading for 

WBE, or to calculate ARG and MGE removal rates across the WWTPs. Composite 

sampling should be conducted at all sample collection locations (i.e.., influent, secondary 

effluent, and final effluent) across any studied WWTP to ensure the representativeness of 

those collected samples. Ensuring the representativeness of the samples collected across 

the WWTP is important, because the samples collected from each of the sampling locations 

reflect the efficacy of each wastewater treatment process unit in attenuating AMR. It may 

also help answer the question that which AMR elements are able to escape wastewater 
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treatment processes and persist in the treated effluent. Furthermore, making composite 

sampling as the standard sampling method for practicing WBE facilitates data sharing and 

comparison among research groups. Second, the widely applied, filtration-based sample 

concentration method is designed to recover the cell-associated fraction of ARGs rather 

than the cell-free. Our research studied ARGs and MGE in the treated effluent of an 

AnMBR which was operated as a candidate for wastewater reclamation and water reuse. 

Our results pointed out that several clinically relevant ARGs can be more abundant in cell-

free DNA rather than in cell-associated DNA under certain operating conditions (i.e., high 

organic loading rate). This finding is significant because it shows that to advance future 

water reuse applications (e.g., irrigation) using the effluents of wastewater treatment 

systems, the sample concentration and DNA extraction protocols should be adapted to 

recover both cell-associated and cell-free ARGs in the effluents in order to achieve a 

comprehensive evaluation on the potential risks associated with AMR dissemination. 

 

Guidelines for downstream workflow of characterizing disease indicators in wastewater 

(molecular analysis techniques) – combining the advantages of different analytical 

methods. Third, we provided guidelines for characterizing SARS-CoV-2 in wastewater to 

enhance our ability to fight the COVID-19 pandemic using WBE. RT-ddPCR or RT-qPCR 

should be applied for quantitative analyses due to the great sensitivity and consistency of 

detection. In addition, RT-ddPCR and RT-qPCR generally have much shorter result 

turnaround time compared to sequencing, which is critical for real-time public health 

response. With knowledge of unique mutations associated with each VOC, it is possible to 

detect signatures of low levels of VOCs in wastewater samples that may contain a mixture 
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of variants. For example, allele-specific and multiplex-compatible RT-qPCR assays 

targeting mutations for quantitative detection and discrimination of the Delta, Delta plus, 

Kappa and Beta variants of SARS-CoV-2 in wastewater were developed and validated. 

Despite its lower sensitivity and qualitative nature, sequencing still has a clear advantage 

of being more comprehensive, not limited by a priori knowledge of the target mutations, 

and enables the discovery of cryptic lineages and emerging lineages of concern. This can 

be critical for early detection of variants when the availability of primers and probes is 

limited or delayed due to supply chain challenges. In practice, WBE systems can benefit 

from coupling sequencing with quantitative analyses such as RT-ddPCR or RT-qPCR to 

achieve a comprehensive picture of circulating mutations (using sequencing), and sensitive, 

quantitative information on variant-associated mutations (using RT-qPCR/RT-ddPCR). 

Finally, for WBE of AMR, long-read metagenomic sequencing has many advantages in 

ARG detection and host tracking. This is because long-read metagenomic sequencing 

demonstrates high sequencing efficiency (i.e., rapid result generation in real-time and no 

need for de novo assembly) and a great ability to capture a comprehensive ARG host profile 

as compared to conventional NGS (short-read). These results highlight that future WBE 

should consider using long-read metagenomic sequencing for comprehensive screening of 

AMR in the community. However, if any clinically relevant ARG targets, such as MCRs 

(colistin resistance genes), are of particular interest according to public health, epicPCR 

assays could be developed and applied to capture a more comprehensive host profile to 

complement routine metagenomic screening. 
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6.3 Suggestions for Future Research 

6.3.1. Validating methods for WBE of AMR to achieve standardized routine 

monitoring 

 This dissertation includes an evaluation of methods including sampling, sample 

concentration, and targeted and non-targeted molecular analysis techniques for WBE of 

AMR. All methods have their merits and limitations, and these methodological choices 

impact the results and conclusions monitoring efforts. Ensuring the validity of AMR 

wastewater monitoring data is necessary to assess the risks associated with AMR in 

communities and track the emergence and evolution of new resistance mechanisms. Here 

we propose three areas for future research on WBE of AMR: 

Advancing long-read metagenomics for ARG host tracking. Metagenomics can be 

applied as an unbiased method for broad screening of AMR in wastewater, thus 

recommended for future WBE (Liguori et al., 2022; Prieto Riquelme et al., 2022). However, 

using long-read metagenomic sequencing for ARG host tracking in wastewater has not 

been thoroughly evaluated, partly because of its limited application for the detection of 

pathogens and ARGs in wastewater samples. It is important to systematically benchmark 

long-read metagenomic sequencing for ARG host tracking, because (1) long-read 

metagenomics poses several irreplaceable advantages in tracking ARG hosts for WBE 

compared to short-read metagenomics (e.g., fast result turnaround time, high detection 

sensitivity), as demonstrated by Chapter 5 of this dissertation; and (2) the relatively high 

error rate associated with long-read sequencing technology is still an unresolved issue, 

limiting its applicability for estimating human health risks. Further research is needed to 

advance long-read metagenomics. First, to track ARG hosts in wastewater metagenomes, 
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most bioinformatic tools available for metagenomic data have been developed, applied, 

and evaluated using short-read sequencing data. There are a variety of bioinformatician 

tools used for metagenomic analysis, serving multiple functions including but not limited 

to read assembly, sequence alignment, target annotation, and taxonomical classification. 

For example, Kraken2, a fast classification tool which uses k-mers to assign a taxonomic 

labels in form of NCBI Taxonomy to the sequence, works efficiently and accurately for 

analyzing sequences generated by metagenomics using short-read NGS (Wood et al., 2019). 

However, previous studies have shown that Kraken2 failed to achieve accurate 

taxonomical classifications at species-level or strain-level for metagenomes sequenced by 

long-read sequencing methods (e.g., Nanopore) (Dilthey et al., 2019; Pearman et al., 2020). 

Nevertheless, Kraken2 was recently used for analyzing long reads sequenced via Nanopore 

platform to identify species-level pathogenic ARG hosts in wastewater (Y. Yang et al., 

2022). To the best of our knowledge, no studies have systematically benchmarked the 

bioinformatic toolbox for long-read metagenomic sequencing specifically for ARG host 

tracking. The challenge in benchmarking bioinformatic tools specifically for 

metagenomics is due to the unknown priori knowledge on the exact genetic composition 

of these complex environmental metagenomes. That is why most validations were based 

on assessing host-associated microbiomes (Abdelrazik et al., 2021; Fosso et al., 2017; 

Langille et al., 2013). Fuhrmeister et al. used real-time PCR as a benchmark to assess the 

sensitivity and specificity of long-read metagenomics via Nanopore platform for the 

detection of pathogens in wastewater samples (Fuhrmeister et al., 2021). However, while 

this assessment compared the detections of known pathogens, a similar approach has not 

been applied to detect hosts of ARGs, which are far more complicated to benchmark due 
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to the challenges in confirming associations between host taxonomic marker genes and 

ARGs. Che et al. assessed the ability of Nanopore sequencing to characterize the relative 

abundance profile of ARG subtypes in wastewater metagenomes using Illumina 

sequencing. In addition, they compared the taxonomic compositions of the multidrug 

resistant cultures isolated from wastewater at species level between Illumina and Nanopore 

sequencing platforms (Che et al., 2019a). However, again, these results were not respect to 

direct ARG host identification in wastewater metagenomes.  

 We recommend future research that (1) evaluates or develops novel bioinformatic 

tools to conduct ARG host tracking via long-read metagenomic sequencing in wastewater; 

(2) performs a quantitative assessment of the false positive and false negative rates of ARG 

host detection via long-read metagenomic sequencing using appropriate benchmarks. A 

good starting point is to design appropriate internal controls. For instance, a recent study 

spiked the sequenced wastewater metagenomes with in silico resistant pathogenic genomes 

with a gradient of genome coverage, and tracked the detections of internal standards after 

performing different analysis pipelines (Deshpande & Fahrenfeld, 2022). Furthermore, a 

recent work found quantitative approaches including experimental procedures to 

incorporate microbial load (in that case, cell count) variation in downstream analyses 

significantly improved the sensitivity of detections and reduced false-positives for 

metagenomic data analysis (Lloréns-Rico et al., 2021). These aforementioned studies 

indicate that applying in silico control and leveraging experimental data for computational 

analyses hold the promise of enabling benchmarking environmental metagenomics. 

Validating novel targeted methods for ARG host tracking. Currently, targeted methods 

such as epicPCR and Hi-C (based on proximity ligation cross-linking) demonstrate great 
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sensitivity in identifying diverse ARG hosts in environmental samples with high taxonomic 

resolution. However, their lengthy protocols and the technical difficulties may easily 

impair the quality of results, hampering their wide applicability (Roman et al., 2021). In 

addition, these novel targeted methods have not been appropriately benchmarked. For 

instance, epicPCR for environmental host tracking has been thoroughly validated using 

internal controls. Hosts identified by epicPCR are those detected across sample replicates, 

as performed by Chapter 5 of this dissertation and a couple of previous publications 

(Roman et al., 2021; Wei et al., 2021). In the case of Hi-C for identification of ARG hosts, 

the quality of a single Hi-C metagenome-assembled genome (MAG) was validated by 

performing conventional bacterial culture and sequencing of an E. coli isolated from the 

same fecal sample that generated the E. coli Hi-C MAG (Kalmar et al., 2022). Therefore, 

future research should conduct a more comprehensive validation for these targeted methods 

to advance their applications for tracking ARG hosts in environmental microbial 

communities.  

 

6.3.2. Making WBE results actionable for public health decision-making 

 Wastewater monitoring has emerged as a powerful tool that complements existing 

public health surveillance systems. In additions to improving methods related to the 

generation of wastewater monitoring data, research is needed to advance the methods 

associated with their interpretation.  We offer the following recommendations for future 

research related to informing public health decision-making using WBE. 

Detect yet-unknown pathogens via environmental surveillance to proactively protect 

public health. Ideally, WBE should be a tool to not only respond to and track disease 
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outbreaks, but also preempt future pandemics. To fulfill this ambitious goal, we need to 

tackle the “black box” of wastewater metagenomic data and examine cryptic disease 

transmission. It is necessary to ask the questions including but not limited to, how we can: 

(1) delineate the genetic determinants that are directly associated with a wide spectrum of 

relevant diseases, (2) validate the detections of those genetic determinants, and (3) predict 

future pandemics based on the detection of genetic determinants. Balaji et al. have 

contributed to answering the first question. by developing SeqScreen, a powerful tool 

which accurately identifies sequences of concern (SoCs) with respect to emerging 

pathogens from environmental metagenomic datasets (Balaji et al., 2022). This tool is 

novel as it addresses pathogenicity of genomic sequences based off of not only searching 

for known taxonomic markers (which is often a poor proxy for pathogenicity), but also 

screening for functional pathogenic labels associated with proteins encoding disease 

functions. Future studies may adapt the methodology of this pipeline by curating a 

representative database containing sequences of disease functions (i.e., virulence factors 

that are real threats to the host) (Godbold et al., 2022), and updating this database timely 

to facilitate proactive disease monitoring. Apart from leveraging this database, we should 

also develop computational tools that can capture the associations between sequences. This 

is because certain public health threats are not contributed by a single functional gene but 

rather a cluster of co-occurring genetic determinants. For example, recently it is reported 

that the synergy between certain insertion sequences (IS) and several conjugative plasmids 

is responsible for facilitating the HGT of certain clinically relevant ARGs between 

pathogenic bacteria (Che et al., 2021, 2022). Monitoring that can detect this synergy and 

associations between ARGs, ISs, and conjugative elements can help elucidate the clinically 
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relevant ARGs that are of high risk to be transferred among bacteria in a community. 

Another recommendation in identifying cryptic AMR is to combine computational mining 

with experimental verifications. For example, a novel functional metagenomics approach 

successfully identified a new integron-borne aminoglycoside resistance gene present in 

clinical pathogens via screening wastewater-impacted environmental metagenomes (Böhm 

et al., 2020). Then the next question is how to make the process of cryptic AMR screening 

more efficient, given the fact that functional metagenomics requires lengthy workflow (e.g., 

functional gene isolation and cloning). 

 

6.3.3. Closing the knowledge gap of risk estimation associated with environmental 

AMR 

 As shown by the results of Chapter 2, 3 and 5, ARGs and ARG hosts are 

ubiquitous in treated effluents. Many previous studies have investigated AMR elements 

in treated effluents and effluent-receiving environments. However, further research is 

needed to quantitatively estimate the tangible human health risks associated with 

environmental AMR. The traditional framework to conduct risk estimation, namely, 

quantitative microbial risk assessment (QMRA), is not able to be directly used to evaluate 

risks associated with environmental AMR because of the paucity of dose-response data 

and the unknown level of acquisition of AMR via HGT in the environment (Garner et al., 

2021) . Recently, Schoen et al. used QMRA to estimate the annual risks of colonization, 

skin infection, bloodstream infection (BSI), and disease burden from exposures to 

antibiotic-resistant and susceptible Staphylococcus aureus (Schoen et al., 2021) . This 

represents a promising framework and example of how to conduct QMRA for water 
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reuse applications. Future research can work on refining the framework of QMRA by 

generating experimental data to disclose the values of those variables (e.g., HGT 

frequency under specific environmental conditions for each specific strain of interest). 

However, estimating risks using QMRA only works for viable and culturable pathogenic 

strains. To estimate the risks associated with an environmental resistome, that includes 

extracellular DNA (as shown by conclusions of Chapter 3 and a considerable number of 

previous publications), additional information may be needed to assess the actual risks of 

HGT (transformation) of the extracellular ARG residues and the risks posed by non-

culturable resistant pathogens. 
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Chapter 2 Appendix: Instantaneous ARG removal rates in across 

wastewater treatment plants are not representative due to diurnal 

variations 

1. Supplementary methods 

1.0 Sampling campaign design 

Table S2.1. The instantaneous plant flow rates in winter and summer sampling campaigns. 

Time 
Flow rate (MGD) 

Winter Summer 
10:40 1.45 1.0405 
12:40 1 1.0285 
14:40 0.83 0.95 
16:40 0.9 0.811 
18:40 1.3 0.7645 
20:40 1.5 1.085 
22:40 1.42 1.2085 
0:40 1.05 0.791 
2:40 0.5 0.51 
4:40 0.4 0.248 
6:40 0.7 0.229 
8:40 1.8 1.164 

 

Table S2.2. Description of the methodology used to obtain the hourly samples in the two field 

campaigns (winter and summer) and sampling conditions. 

Time of 
sampling 

Sample 
aggregation 

Location of 
sampling 

Number of 
samples Frequency Ambient 

temperature 
12/18/2019 - 
12/19/2019 
(winter, dry 

weather, 
weekday) Grab sample 

for 24 hours 

WWTP influent 
(after 

screening), 
secondary 

effluent (after 
contact 

stabilization 
process and 

clarification), 
final effluent 

n=12 for each 
sampling 
location Collected 

every 2 
hours 

2 – 4 ℃ 

5/31/2022 - 
6/1/2022 

(summer, dry 
weather, 
weekday) 

n=24 for each 
sampling 

location (two 
biological 
replicates) 

26 – 30 ℃ 
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(after chlorine 
disinfection) 

 
Table S2.3. (A) Ammonia-N (NH3-N) and (B) total COD concentrations and removal rates across the 
sampling locations in winter and summer sampling campaigns 
 
A.  

Time NH3-N Concentration (mg/L) Overall 
removal rate 

(%) 
Season  Influent Secondary effluent Final effluent 

10:40 48.29 1.70 0.71 98.54 Summer 
12:40 46.14 2.62 0.75 98.37 Summer 
14:40 38.50 3.61 1.52 96.05 Summer 
16:40 37.71 4.56 2.60 93.10 Summer 
18:40 24.42 4.34 2.85 88.31 Summer 
20:40 35.79 5.38 2.45 93.15 Summer 
22:40 23.17 3.93 2.23 90.37 Summer 
0:40 26.96 4.08 2.30 91.47 Summer 
2:40 19.72 3.55 1.65 91.63 Summer 
4:40 26.06 3.10 0.88 96.64 Summer 
6:40 29.56 1.53 0.61 97.92 Summer 
8:40 28.43 2.02 1.66 94.16 Summer 
10:40 50.61 8.20 0.06 99.89 Winter 
12:40 37.70 9.54 0.01 99.97 Winter 
14:40 43.47 10.30 0.30 99.30 Winter 
16:40 44.55 8.23 0.06 1.00 Winter 
18:40 46.29 5.66 0.34 99.26 Winter 
20:40 32.24 7.73 0.29 99.10 Winter 
22:40 69.42 9.29 0.15 99.78 Winter 
0:40 33.50 8.10 0.18 0.99 Winter 
2:40 31.50 4.59 0.17 99.46 Winter 
4:40 36.83 3.97 0.07 99.81 Winter 
6:40 30.87 5.12 0.07 99.76 Winter 
8:40 47.79 6.72 0.11 99.77 Winter 
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B.  
Time Total COD Concentration (mg/L) Overall removal 

rate (%) Season  Influent Secondary effluent Final effluent 
10:40 412.11 26.11 22.38 94.57 Summer 
12:40 553.62 29.25 23.85 95.69 Summer 
14:40 530.71 27.94 23.53 95.57 Summer 
16:40 547.07 32.85 24.67 95.49 Summer 
18:40 508.63 35.47 27.13 94.67 Summer 
20:40 443.19 40.54 24.51 94.47 Summer 
22:40 525.80 27.13 26.31 95.00 Summer 
0:40 419.47 29.06 25.49 93.92 Summer 
2:40 344.21 28.27 25.49 92.59 Summer 
4:40 283.68 39.07 27.78 90.21 Summer 
6:40 277.96 28.92 26.31 90.53 Summer 
8:40 383.48 25.65 26.31 93.14 Summer 
10:40 494.81 9.82 16.68 96.63 Winter 
12:40 524.72 23.83 48.19 90.82 Winter 
14:40 372.26 34.04 Missing data Missing data Winter 
16:40 244.61 19.16 18.87 92.29 Winter 
18:40 521.07 22.08 21.49 95.87 Winter 
20:40 352.57 29.52 44.84 87.28 Winter 
22:40 421.14 6.47 32.00 92.40 Winter 
0:40 368.62 18.58 20.91 94.33 Winter 
2:40 378.83 6.91 52.57 86.12 Winter 
4:40 283.27 61.61 34.19 87.93 Winter 
6:40 358.40 6.61 58.70 83.62 Winter 
8:40 470.74 16.10 24.27 94.85 Winter 

 

1.1 Sample pre-treatment and storage for COD and NH3-N measurement, the procedures 

for measuring COD and NH3-N 

 Pre-treatment of the samples for measurement of COD involved (1) 50 mL influent, 

secondary effluent and final effluent samples were each acidified with concentrated 

sulfuric acid (95.0-98.0%) to lower the pH of the sample to less than 2.0; (2) the acidified 

samples were stored in -4 ℃ till COD measurement. For NH3-N,10 mL of influent, 
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secondary effluent and final effluent samples were filtered using 0.45μm pore size syringe 

filters (Biomed Scientific). The samples were then stored in -4 ℃ till measurement. COD 

measurements were done through colorimetric analysis, according to Standard method 

5220D (Standard Methods, 2005) with COD vial kits (CHEMetrics K7355). Ammonia 

measurement was done through the phenate method according to Standard method 4500-

NH3 F (Standard Methods, 2005). 

 

1.2 Sample filtration for DNA extraction  

 50 mL of influent sample, 350 mL of secondary effluent sample, and 500 mL final 

effluent sample were subject to on-site sample concentration. Each sample was slowly 

poured into a 6-head, Multi-Vac 610-MS Manifold (180310-01, Sterlitech) containing a 

pre-DI-washed 0.45 µM pore size, electronegative microbiological analysis HA filter 

(HAWG047S6, MilliporeSigma). A vacuum pump pulled the sample through the filter and 

was turned off after all filters were completely dry. Next, each membrane filter with 

retained biomass was submerged in 50% ethanol in a 2 mL round-cap microcentrifuge tube 

and stored in -20 ℃ for later DNA extraction.  

 All samples were kept in the storage conditions as previously mentioned during the 

field sampling. After the sampling was done, samples were transferred back to the Rice 

University lab to get processed within 30 minutes. 

 

1.3 qPCR conditions and primer/probe sequences 

 The qPCR program consisted of an initial denaturation for 30 s at 95 °C, followed 

by 40 cycles of denaturation at 95 °C for 5 s, primer annealing and extension at 65 °C (for 
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sul1) or 60 °C (for the rest of the targets) for 30 s, and an optional melt-curve stage (for 

only SYBR green, non-probe-based assays) consisting 15 s at 95 °C, 60 s at 60 °C, and 15 

s at 95 °C. All assays were having amplification efficiencies between 90 – 110% and 

regression coefficients (R2) greater than 0.99 according to the standard curves. The details 

of primers/probes can be found in Table S2.2. 

Table S2.4. Details of primers and probes used in this study. 

Target 
Forward 

primer (5' - 
3') 

Reverse 
primer (5' - 

3') 

Amplico
n size 
(bp) 

Reference for 
primer 

sequences 
Probe (5' - 3') 

Reference 
for probe 
sequence 

16S 
rRNA 

CGGTGAAT
ACGTTCYC

GG 

GGWTACC
TTGTTACG

ACTT 
124 (Suzuki et 

al., 2000) 
  

AmpC 
CCTCTTGC
TCCACATT

TGCT 

ACAACGTT
TGCTGTGT

GACG 
189 (S. Lee et al., 

2022) 
  

blaNDM-
1 

CGCCATCC
CTGACGAT

CAAA 

CTGAGCA
CCGCATTA

GCCG 
214 (Luo et al., 

2014) 
  

blaOXA-
1 

TATCTACA
GCAGCGC

CAGTG 

CGCATCA
AATGCCAT

AAGTG 
199 (Kennedy et 

al., 2017) 
  

sul1 
CGCACCG
GAAACAT

CGCTGCAC 

TGAAGTTC
CGCCGCA
AGGCTCG 

163 (R. Pei et al., 
2006) 

  

tet(W) 
GAGAGCC
TGCTATAT

GCCAGC 

GGGCGTAT
CCACAAT
GTTAAC 

167 (Aminov et 
al., 2001) 

  

IntI1 
(clinical) 

CGAACGA
GTGGCGG
AGGGTG 

TACCCGA
GAGCTTGG

CACCCA 
312 (Zheng et al., 

2020) 
  

qnrA 
AGGATTGC
AGTTTCAT
TGAAAGC 

TGAACTCT
ATGCCAA

AGCAGTTG 
138 

(Colomer-
Lluch et al., 

2014) 
  

MCR-1 
ATCCCATC
GCGGACA

ATCTC 

AGACCGT
GCCATAA
GTGTCA 

177 (Mentasti et 
al., 2021) 

56-
FAM/ATCAA
CACA/ZEN/G
GCTTTAGCA
CATAGCGAT

/3IABkFQ/ 

This study 

MCR-5 
GTATCTCC
ATGGCATA

CCTTAC 

GAAACAG
GTGATCGT
GACTTAC 

149 This study 

/5HEX/AGGT
TTATG/ZEN/
CCGACCAAG
CCTG/3IABkF

Q/ 

This study 

MCR-10 
GCAATAA
CCCGACG
CTGAAC 

GTAACGC
GCCTTGCA

TCATC 
133 (Mentasti et 

al., 2021) 

TARMA/GCG
TACAGCACT
TTCCATTAC
GTGA/BHQ-2 

This study 
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Table S2.5. The relative standard deviation (RSD) of the target gene concentrations in grab samples 
collected throughout the day in winter (A) and summer (B). 
A. Winter 

Target 
RSD (%) in absolute concentration 

Influent Secondary effluent Final effluent 

AmpC 19.08 60.43 20.33 

blaNDM-1 43.14 58.12 22.62 

blaOXA-1 23.54 38.08 85.22 

IntI1 28.68 45.45 37.10 

MCR-1 37.06 99.58 163.07 

MCR-10 35.80 84.90 143.79 

MCR-5 38.83 73.95 131.25 

qnrA 60.26 49.63 156.05 

B. Summer 

Target 
RSD (%) in absolute concentration 

Influent Secondary effluent Final effluent 

AmpC 21.61 39.04 78.33 

blaNDM-1 99.17 41.23 101.08 

blaOXA-1 20.31 44.23 55.86 

IntI1 37.08 30.58 82.29 

MCR-1 52.62 45.86 90.19 

MCR-10 35.05 35.13 62.66 

MCR-5 34.35 33.39 68.96 

qnrA 31.81 52.64 72.02 

sul1 25.22 24.67 67.58 

tet(W) 24.85 55.04 68.37 

 
1.4 Calculation of 24-hr loading of ARGs and IntI1 
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 To calculate the loading of target genes going into and coming out of the WWTP, 

we came up with the estimation method as described in Figure S5.1. In brief, we first 

calculated the instantaneous ARG loading rate R (Equation S1), then plotted the curve of 

R with respect to time (T). Thus, the area bound by the line of R and the axes T represents 

the total ARG loading within that certain period of time. For example, a 4-hr ARG loading 

from T=0 to T=4 hour should be the sum of the area of two trapezoids T1 and T2 (Equation 

S2, Figure S5.1). The loading removal is the difference between the influent trapezoid area 

and the effluent trapezoid area (Equation S3). Extended from this simple example, the 24-

hr loading for a specific target gene can be calculated using Equation S4/Equation 5. 

Similarly, the removal of the 24-hr loading of a specific target gene across the WWTP is 

calculated using Equation S5/Equation 6. 

  



ARG	loading	rate	 R
copies
hour S: 

R = Instantaneous	flow	rate, f	 U >
?@A!

V × 	ARG	concentration, C	(B@CD"'
>
)	

(Eq.	S1)	
The	ARG	loading	from	T = 0	to	T = 4	hour:	

T( + T8 =
(R0 + R8) × (2 − 0)

2 +
(R8 + R9) × (4 − 2)

2 = R0 + 2	R8 + R9	
(Eq.	S2)	

The	ARG	loading	removal	from	T = 0	to	T = 4	hour:	
(T(,1-2 + T8,1-2) − (T(,23 + T8,23) = R0,1-2 − R0,23 + 2	(R8,1-2 − R8,23) + (R9,1-2 − R9,23	

(Eq.	S3)	
The	ARG	loading	within	the	24 − hour	sampling:	R0 + 2	 ∑ 𝑅488

4:8 + 𝑅89	
(Eq.	S4)	

The	ARG	loading	removal	within	the	24 − hour	sampling:	

𝐿𝑜𝑔(0(
R0,1-2 + 2	∑ 𝑅4,56788

4:8 + R89,1-2
R0,23 + 2	∑ 𝑅4,7<88

4:8 + R89,23
)	

(Eq.	S5)	
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Figure S2.1. Demonstration of the calculation of ARG loading. 
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Figure S2.2. Diurnal variation of target genes in terms of relative abundance removal. 
Instantaneous removal rates (y-axis) of all target genes in terms of relative abundance with 
respect to time (x-axis) during the winter sampling campaign. The scatter points represent for 
the instantaneous relative abundance removal rates of all target genes at that specific time when 
the grab samples were taken. Boxes represent the interquartile range, with solid lines as 
medians. Whiskers represent the standard deviation. The dashed brown line represents the flow 
rate. a. Relative abundance removal of all target genes with respect to time during the winter 
field sampling. b. Relative abundance removal of all target genes with respect to time during 
the summer field sampling. 
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Figure S2.3. Log removal by the WWTP treatment unit process (n=12): secondary 
treatment and chlorine disinfection. Unit process removal of target genes calculated using 
relative abundances during the winter (left) and summer (right) sampling campaign. In each 
panel, instantaneous removal rates as shown as black dots for the target genes. Secondary 
treatment removal rates are in red, and chlorine disinfection in blue. Boxes represent the 
interquartile range, with solid lines as medians. Whiskers represent the standard deviation.  
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Chapter 3 Appendix: Livestock manure improved antibiotic resistance 

gene removal during co-treatment of domestic wastewater in an 

anaerobic membrane bioreactor 

1. Methods 

1.1 AnMBR set-up and monitoring 

1.1.1 AnMBR configuration and operational parameters 

The AnMBR with a liquid volume of 5 L (Chemglass Life Science, Vineland, NJ) 

was operated continuously (Fig. S3.1). The hydraulic retention time (HRT) of the AnMBR 

was maintained at 19 h by controlling the membrane permeate flux. Biomass was only 

removed from the AnMBR for sampling purposes, resulting in a solids retention time 

(SRT) of >300 days. Headspace gas was recirculated using a diaphragm pump (KNF 

Neuberger, Trenton, NJ), and then distributed below each membrane through a 

horizontally placed sparging tube designed for fouling control. The gas flow rate passing 

through each sparging tube was controlled via a gas flow meter to maintain the TMPs of 

all three membranes similar to one another and below 5.5 kPa. The TMP across each 

membrane was measured using a pressure transducer (Omega Engineering, Stamford, CT). 

The headspace pressure was monitored using another pressure transducer and the biogas 

was collected using a Tedlar sampling bag attached to the head plate (Restek, Bellefonte, 

PA) after a check valve. The influent was stored in a 4 °C refrigerator and pumped into 

the reactor through a peristaltic pump (Cole-Parmer, Vernon Hills, IL). The effluent was 

continuously withdrawn with another peristaltic pump with a backwash ratio of 10%. The 

liquid level was monitored by a sensor switch. The AnMBR was connected to a computer, 

which operated a control program and LabVIEW (National Instruments, Austin, TX) data 
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acquisition software. The control program was responsible for operation of all pumps, 

biogas recirculation, and mixing. The LabVIEW 2017 software (Student Edition) 

continuously monitored and recorded temperature, TMPs, feed flow rate, and head space 

pressure.  

1.1.2 Operation stages and feeding preparation 

 After inoculation, the AnMBR fed treating domestic wastewater for 3 weeks until 

it reached steady-state operation (defined as headspace biogas methane content > 60% and 

effluent COD < 50 mg/L treating domestic wastewater). Baseline operation data was 

collected 121 – 135 days after startup. Following the Baseline operation, increasing 

amounts of manure were added to the influent in Stages 1 through 4. Baseline operation 

stage, Stage 1, Stage 2, Stage 3 and Stage 4 were operated for 16 days, 20 days, 15 days, 

17 days and 18 days, respectively. The influent for Stages 1 - 4 was prepared by defrosting 

frozen manure slurry in the fridge, homogenizing the manure slurry with a Waring Blender, 

weighing the slurry, and mixing it with freshly collected domestic wastewater. After adding 

the manure to the wastewater, the influent was then passed through a 1 mm sieve to remove 

large solids and prevent influent channel clogging.  

 Biogas was collected in Tedlar sampling bags with valve and septum fittings 

(Restek, PA) through a built-in port to the reactor headspace. The volume of biogas 

produced was measured using a 100 mL BD Slip Tip syringe connected to the gas bag 

valve after the gas bag had been inflated for approximately a day. A one-way check valve 

was place between the headspace and the sampling bag to prevent leaking during sampling. 

For quantitative analysis of the biogas composition, biogas was sampled using a gas-tight 

glass syringe with lock (Hamilton) and assessed by TRACE™ 1300 Gas Chromatograph 
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(ThermoFisher Scientific) with pulsed discharge detector (GC-PDD). The standard curve 

for methane quantification was prepared using analytical grade methane (Airgas).  

Chemical oxygen demand (COD) was measured in accordance with USEPA Method 410.4 

using Genesys 10S UV-Vis Spectrophotometer (Thermo Scientific) and COD vial kits 

(CHEMetrics Inc.). Volatile fatty acids (acetate, propionate, formate and valerate), sulfate 

and nitrate were measured by ion chromatography on an ICS 2100 (Thermo Fisher 

Scientific, Waltham, MA) using methods described previously (S. Chen & Smith, 2018). 

1.2 DNA extraction with internal standards 

 Internal standards of cell-associated DNA (caDNA) and cell-free DNA (cfDNA) 

were spiked into samples prior to filtration and DNA extraction to correct for losses during 

sample processing and DNA extraction. For the caDNA internal standard, we spiked in 

Escherichia. coli DH10β containing an engineered plasmid. The plasmid, pReporter_8 

(RRID: Addgene_60568; Yang et al., 2014), is a low-copy plasmid that was previously 

modified by knocking out the gene encoding green fluorescence reporter (GFP) and 

replacing it with the methyl-halide transferase (MHT) gene found in Batis Maritima 

(Cheng et al., 2016). Prior to spiking the samples with the caDNA internal standard, E. coli 

DH10β was grown up on a Luria broth plate containing 34 µg/mL chloramphenicol at 

37 °C overnight. A single colony was transferred to a tube containing 2 mL Luria broth 

with 34 µg/mL chloramphenicol followed by incubation at 200 rpm under 37 °C. After 12 

h of incubation, 500 µL liquid culture was added to influent and effluent samples, 

respectively, right before sample filtration. qPCR was performed on the samples spiked 

with internal standards to determine the copy number of the recovered caDNA internal 

standard in the final DNA extracts (Ci in equation 1) and the copy number of target genes 
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in the final DNA extracts (Cs in equation 1). In addition, a 500 µL aliquot of liquid culture 

from the same culture tube of internal standard was used in an independent DNA extraction 

to determine the copy number of caDNA internal standard that was spiked into the sample 

(Co in equation 1).   

 Before DNA extraction, membranes were cut to small pieces and transferred to 

Lysing Matrix E tubes (MP Biomedicals). All Lysing Matrix E tubes (containing either 

influent sample, effluent sample or the caDNA internal standards) underwent bead-beating 

with the maximum intensity for 2 minutes (BioSpec Products, Mini-beadbeater 24, 115 V). 

After bead-beating, DNA extraction was performed using FastDNA SPIN Kit for Soil (MP 

Biomedicals) and each sample was eluted to obtain a final volume of 100 µL of DNA 

extract. 

  Plasmid pUC19 with an inserted sequence for qPCR was used as the internal 

standard for cell-free ARG calibration. The insertion is a 183 bp fragment on ARHGAP11B 

gene, a human-associated gene that is specific to the brain neocortex (Florio et al., 2015). 

The DNA fragment was synthesized (gBlocks, Integrated DNA technology Inc.) and 

cloned into pMini T2.0 vector and then transferred to NEB 10-β Competent E. coli using 

the PCR Cloning Kit (New England BioLabs Inc., MA). Plasmids were extracted using ZR 

Plasmid Miniprep kit (ZYMO Research, CA). Approximately 1×108 copies of synthesized 

pMini T2.0 plasmids were added to each effluent sample prior to sample filtration and 

DNA extraction. The quality of all DNA extracts was tested using 1000 UV-Vis 

Spectrophotometer (ThermoFisher Scientific, MA). Qubit 3.0 fluorometer and Qubit 

dsDNA BR Assay Kit (Invitrogen, CA) were applied for DNA quantification.  

1.3 Quantifications of target genes and internal standards in real time qPCR 
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 For all target genes (sul1, sul2, tetW, tetO, ampC, ermB, ermF, blaOXA1, 

blaNDM1, tp614, intI1) as well as caARG and cfARG internal standards, 10.5 uL qPCR 

reactions were performed on MicroAmp Fast Optical 96-Well Reaction Plate (0.1 mL, 

Applied Biosystems) using the QuantStudio 3.0 Real-Time PCR Systems (Applied 

Biosystems, CA). The standard amplification protocol consisted of an initial denaturation 

step at 95 °C for 2 min, followed by 40 amplification cycles at 95 °C for 5 s, annealing 

temperature for 12 s, and 72 °C for 16 s and the melting steps (at 95 °C for 15 s, 60 °C for 

1 min, at 95 °C for 15 s). qPCR standards were prepared by inserting the targeted genes 

into pMiniT 2.0 vector and transformed to NEB 10-β Competent E. coli using the NEB 

PCR Cloning Kit (New England Biolabs, MA). The inserted target genes, before cloning 

and transformation, were purified and sequenced PCR products of the AnMBR sludge. The 

PCR assay was conducted using the exact same primer and condition for qPCR in this 

study. In addition, PCR products were analyzed on 1% agarose gel electrophoresis to verify 

the correct amplicon size and the negative presence of non-specific products. The expected 

PCR products were then cut off from the gel, purified by a Qiagen QIAquick Gel Extraction 

kit, and sequenced by Sanger method (Genewiz, Inc., TX) to confirm the sequences. After 

cloning and transformation, transformed E. coli were selected for on AMP selection plates. 

Grown single colony was picked and cultured overnight again in AMP selection LB 

overnight. Plasmid extraction was then conducted to acquire plasmids from the cell culture 

using a ZR Plasmid Miniprep kit (ZYMO Research, CA). Extracted plasmids were then 

diluted ten-fold to generate standard curve for each qPCR assay. For all qPCR assays 

performed in this study, three technical replicates were conducted for each biological 

replicate, melt curves were checked for all reactions, and 3 NTCs for each assay were used 
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for each run. All assays on actual samples were above the detection limit. The primer 

efficiency and detection limit of each qPCR assay were reported in ESI Table S5. 

 

2. Results 

2.1 Performance 

 The performance of the AnMBR across all operational stages is shown in Figure 

A2. In addition, ion-chromatography results showed trace concentration of formic acid 

(2.21 ± 0.18 mg/L) and acetic acid (2.72 ± 0.16 mg/L) in the effluent during Baseline 

operation. With the addition of manure starting from Stage 1, effluent COD gradually 

increased (Fig. S1). Interestingly, in the effluent of Baseline operation, propionate was not 

detected; however, from Stage 1 through 4, propionate started to accumulate in the effluent 

significantly due to the addition of manure (p<0.01). Previous studies have shown 

propionate is a key indicator denoting process imbalances in anaerobic digesters treating 

complex organic waste (Zitomer et al., 2016; Demirel & Yenigün, 2002), which is 

consistent with the input of manure starting from Stage 1. VFA concentrations were listed 

in ESI† Table S3.2. Solids concentrations were listed in ESI† Table S3.1. 

2.2 The absolute and relative concentrations of target genes in influent and effluent 

across stages 

Relative concentrations are shown in Table S3.10. Absolute concentrations are shown in 

Table S3.8, 9. 

2.3 Correlation analysis of effluent cell-associated and cell-free ARGs 

Correlation analysis of effluent caARGs revealed significant associations between 

different gene types. Effluent cell-associated intI1 concentrations were significantly 
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positively correlated with sul1 concentrations across all stages of treatment (Pearsons, r = 

0.97, p < 0.01). This suggests sul1 may be associated with a Class I integron cassette and 

co-located on the same plasmids, which was consistent with previous studies on ARG fate 

in different environments (Zarei-Baygi et al., 2019)(Duan et al., 2018)(Xu et al., 2016). 

The correlation between intI1 and sul1 is not surprising because they are both associated 

with Class I integrons (Mazel, 2006) (Y. Deng et al., 2015).  We also observed that the 

cell-associated concentrations of ampC were positively correlated with rpoB 

concentrations (Pearsons r = 0.91, p < 0.01) indicating ampC genes are likely cell-

associated, which is consistent with the fact that ampC genes are frequently detected on 

chromosomes (Bergstrom et al., 1982)(Mata et al., 2012).  

We observed that intI1 only correlated with one other ARG (sul1) in the cell-associated 

DNA fraction, but strongly positively correlated with multiple ARGs in the cell-free 

fraction: sul2 (Pearons, r = 0.58, p < 0.01), ampC (Pearsons, r = 0.63, p < 0.01) and ermB 

(Pearsons, r = 0.89, p < 0.01). These results are in contrast to some previous studies on fate 

of ARGs in wastewater environments that reported insignificant associations between intI1 

and sul2, whereas they observed significant positive associations between intI1 and sul1 

(Jang et al., 2018)(Lu et al., 2019)(Xu et al., 2016)(L. Ma et al., 2017a). However, in soil 

and manure environments, significant positive associations between intI1 and sul2 have 

been frequently observed (P. Liu et al., 2017) Guo et al., 2018; (W. Sun et al., 2018)Duan 

et al., 2018; (X. Zhao et al., 2019); (J. Ma et al., 2019). IntI1 has drawn attention in many 

research studies because it is a proxy for anthropogenic pollution including antibiotic 

resistance dissemination (Gillings et al., 2014). However, it is challenging to compare our 

data to these previous studies directly because neither did they explicitly distinguish the 
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cfARGs from caARGs, nor even capture the cfARG fraction due to the methods they used 

(Y. Zhang et al., 2016)(Xu et al., 2017)(M. Sun et al., 2015)(Q. Bin Yuan et al., 2018).  

The concentrations of cell-free blaOXA1, tp614 and blaNDM1 in the effluent increased 

consistently across all stages (t-test, p < 0.05; Fig. 4B). The enrichment of tp614 has also 

been reported in several wastewater treatment processes (Yan et al., 2018), which 

underscores the challenge of removing it. The difficulty in removing tp614 is noteworthy 

because its concentration has been found to positively correlate with persistent ARGs, 

particularly tetracycline and extended spectrum beta-lactamase (ESBL) ARGs (Jong et al., 

2018). We also observed a significant and positive correlation between tp614 and 

blaOXA1 (Pearsons, r = 0.98, p < 0.01), and tp614 and ermF (Pearsons, r = 0.97, p < 0.01). 

The detailed correlation analysis data using Pearson’s correlation analysis can be found in 

Tables S11 and S12. 

Table S1 Solids contents in the influent, effluent and the mixed liquor. 

Table S2 Volatile fatty acids (VFAs) concentrations in effluent across all operational 

stages.  

Table S3 Internal standards for caARG and cfARG. 

Table S4 Primer sequences and qPCR conditions for all target genes. 

Table S5 Primer efficiencies and detection limit of each assay. 

Table S6 caDNA and cfDNA recoveries of all stages. 

Table S7 LRVs of genes across all stages. 

Table S8 Concentrations of target genes in the influent across all stages (copies/mL of 

influent). 
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Table S9 Concentrations of targeted genes in the effluent across all stages (copies/mL of 

effluent) in the (a) Cell-associated fraction and (b) cell-free fraction. 

Table S10 Relative abundance of ARGs and MGEs normalized by copies of rpoB in the 

influent and the effluent samples across all stages (copies/ copies of rpoB): a. influent; b. 

effluent. 

Table S11 Correlation coefficients for target genes in the effluent cell-associated fraction 

across all stages, a. r values; b. corresponding p values. 

Table S12 Correlation coefficients for target genes in the effluent cell-free fraction across 

all stages, a. r values; b. corresponding p-values. 

Table S1 Solids contents in the influent, effluent and the mixed liquor (n=7). 

 

Table S2 Volatile fatty acids (VFAs) concentrations in effluent across all operational 

stages (n=4). The fraction of VFAs in effluent COD is calculated from the theoretical 

COD of VFAs normalized by the total effluent COD. 

Operational 
Stage 

Concentration of VFAs (mg/L)  

Formate Acetate Propionate Butyrate Valerate 

The 
fraction 
of VFAs 

in 
effluent 
COD 
(%) 

Baseline 2.21 ± 0.18 2.72 ± 0.16 - - - 6.9 
Stage1 5.32 ± 0.11 3.02 ± 0.12 10.00 ± 0.16 - - 30.0 

 
Baseline Stage1 Stage2 Stage3 Stage4 

Influent TSS 

(mg/L) 

138.0 ± 2.4 5491.9 ± 

104.3 

8347.3 ± 

164.5 

13130.1 ± 

261.6 

20482.8 ± 

405.0 

Influent VSS 

(mg/L) 

116.0 ± 2.3 4357.0 ± 

85.1 

6618.9 ± 

133.8 

10407.5 ± 

208.1 

16231.9 ± 

321.9 

Mixed liquor 

TSS (mg/L) 

7552.4 ± 

138.9 

8240.3 ± 

164.0 

8691.4 ± 

173.8 

10591.7 ± 

2111.1 

12796.9 ± 

256.1 

Mixed liquor 

VSS (mg/L) 

5513.2 ± 

106.9 

5933.0 ± 

116.0 

6431.7 ± 

127.7 

8155.6 ± 

162.2 

9725.6 ± 

193.4 
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Stage2 9.06 ± 0.20 2.06 ± 0.05 32.66 ± 0.64 - - 61.8 
Stage3 6.29 ± 0.39 - 44.67 ± 0.86 - - 49.3 
Stage4 8.29 ± 0.17 - 57.12 ± 1.21 - - 37.25 

 

Table S3 Internal standards for caARG and cfARG. 

Internal 
Standards Forward primer (5' to 3') Reverse primer (5' to 3') 

Annealing 
temperatur

e (℃) 

  

caARG, 
MHT 

CCCAGATCCCACGGAATC
ACTT 

ATTGCAAAACCATTCCGA
CCCC 61   

cfARG, 
ARHGAP1

1B 

GCCGAGCGGAGTTCAAAT
TTGA 

CGGACACCCTTCACCTTA
AT 60 

  

 
Table S4 The primer sequences and qPCR conditions for all target genes. 
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Table S5 Primer efficiencies and limit of detection of each assay. qPCR standards were 
prepared by inserting the targeted genes into pMiniT 2.0 vector and transformed to NEB 
10-β Competent E. coli using the NEB PCR Cloning Kit (New England Biolabs, MA). The 
inserted target genes were amplified from the AnMBR sludge, purified, and sequence-
confirmed before cloning. The PCR assay was conducted using the same primers and 
conditions used for qPCR in this study. In addition, PCR products were analyzed on 1% 
agarose gel electrophoresis to verify the correct amplicon size and the negative presence 
of non-specific products. The expected PCR products were exacted from the gel, purified 
by a Qiagen QIAquick Gel Extraction kit, and sequenced by Sanger method (Genewiz, Inc., 
TX) to confirm the sequences. After cloning and transformation, transformed E. coli were 
selected for on AMP selection plates. Single colonies were picked and cultured overnight 
in LB containing AMP. Plasmids were extracted from the cell culture using a ZR Plasmid 
Miniprep kit (ZYMO Research, CA). Extracted plasmids were used to generate standard 
curves for each qPCR assay.  

Gene Efficiency (%) R2 
Detection limit for 
influent samples 

(copies/mL) 

Detection limit for 
effluent samples 

(copies/mL) 
rpoB 102.65 0.998 231 20 
sul1 97.24 0.999 237 20 
sul2 90.19 0.998 3066 263 

blaOXA1 107.67 0.996 556 48 
ermF 107.91 0.993 275 24 
tetW 111.86 0.991 102 9 

ampC 114.29 0.998 43 4 
ermB 103.23 0.998 19 2 
tetO 98.39 0.997 374 32 

blaNDM-1 94.10 0.997 282 24 
intI1 97.79 0.998 209 18 
tp614 95.52 0.998 33 3 
iDNA 

standard 88.89 0.9967 175 15 

eDNA 
standard 99.68 0.9995 203 17 

 

Table S6 caDNA and cfDNA recoveries of all stages. The recovery of cfDNA efficiencies 
through all stages were around 30% and was consistent across stages. However, The 
cfDNA extraction method used in this study was originally reported to achieve >90% 
recovery by the group that first developed this method (D. N. Wang et al., 2016). The 
discrepancy between these two reported recovery values likely result from experimental 
steps involved during cfDNA extraction. For example, only cfDNA was targeted without 
the goal to recover caDNA in Wang et al., 2016. Thus, the raw environmental sample (lake 
water) was directly passed through the NAAP beads. In contrast, in our study, we used the 
filtrate harvested consecutively from the filtration step to start NAAP absorption-elution 
of cfDNA, rather than starting off from raw influent or effluent samples while we collected 
caDNA on the filter. As a result, a fraction of cfDNA may be associated with the filter 
directly or with the solids/cells being caught by the filters indirectly and not ending up in 
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the filtrate. In spite of the relatively lower cfDNA recovery in our study as aforementioned, 
it is still higher than some wide-applied methods for cfDNA such as alcohol precipitation, 
CTAB-based extraction and commercial kits (<10%) (Z. Liang & Keeley, 2013); 
(Eichmiller et al., 2016); (F. Li et al., 2018). Last but not the least, the recoveries in this 
study are very consistent across all stages, reflecting the reproducibility of the applied 
cfDNA extraction protocol. Since the goal of applying internal standards for tracking 
recoveries is to calibrate qPCR results of ARGs and MGEs abundances specifically in cell-
associated and cell-free fractions, we believe the reproducibility of DNA recovery is as 
important as, if not more so, than a high recovery value. 
 

Sample Recovery Efficiency (%) 

Baseline – influent Cell-associated 66.00±25.69 

Baseline – effluent 
Cell-associated 49.78±41.66 

Cell-free 33.67±7.69 

Stage1 - influent Cell-associated 38.34±10.27 

Stage1 - effluent 
Cell-associated 78.22±10.23 

Cell-free 31.50±26.21 

Stage2 - influent Cell-associated 56.26±21.9 

Stage2 - effluent 

Cell-associated 34.44±1.28 

Cell-free 30.74±12.11 

Stage3 - influent Cell-associated 34.05±12.64 

Stage3 - effluent 
Cell-associated 50.98±20.11 

Cell-free 29.99±7.70 
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Table S7 LRVs of genes across all stages. 
Genes Baseline Stage1 Stage2 Stage3 Stage4 

intI1 0.21 1.48 2.20 2.43 4.77 
sul1 1.44 1.88 3.00 3.05 3.54 
sul2 1.28 1.01 2.65 3.13 3.07 

ampC -0.36 0.20 1.36 2.06 2.64 
blaOXA1 2.83 2.22 6.08 3.17 2.21 

ermB 3.40 3.35 3.74 4.21 4.04 
ermF 3.49 2.20 3.33 3.37 2.44 
tet(O) 2.41 2.78 3.98 3.91 3.21 
tet(W) 4.63 4.14 2.52 4.22 4.52 
tp614 4.18 3.52 4.17 4.40 3.61 

blaNDM1 - -2.18 1.11 1.79 0.88 
 
Table S8 Concentrations of target genes in the influent across all stages (copies/mL of 

influent). 

 

Table S9 Concentrations of targeted genes in the effluent across all stages (copies/mL of 

effluent) in the (a) Cell-associated fraction and (b) cell-free fraction. 
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Table S9. a 

 Table S9. b

 
 

Table. S10 Relative abundance of ARGs and MGEs normalized by copies of rpoB in the 

influent and the effluent samples across all stages (copies/ copies of rpoB): a. influent; b. 

effluent. 

Table S10. a 
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Table S10. b 
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Table S11 Correlation coefficients for target genes in the effluent cell-associated fraction 

across all stages, a. r values; b. corresponding p values. 

Table S11. a 

 rpo
B 

intI
1 

sul
1 

sul
2 

amp
C 

blaOXA
1 

erm
B 

erm
F 

tet
O 

tet
W 

tp61
4 

blaNDM
1 

rpoB 1.00 0.2
8 

0.0
9 

0.8
5 0.91 -0.23 -

0.09 0.06 
-

0.0
4 

-
0.01 

-
0.14 0.93 

intI1 - 1.0
0 

0.9
7 

0.3
9 0.21 -0.34 0.35 -

0.11 
0.9
5 

-
0.52 0.17 -0.12 

sul1 - - 1.0
0 

0.2
6 0.06 -0.30 0.20 -

0.17 
0.9
8 

-
0.36 0.40 -0.31 

sul2 - - - 1.0
0 0.97 -0.18 0.97 0.82 0.1

2 
-

0.26 
-

0.41 0.82 

ampC - - - - 1.00 -0.21 0.98 0.85 
-

0.0
7 

-
0.29 

-
0.56 0.91 

blaOXA
1 - - - - - 1.00 -

0.36 0.06 
-

0.2
6 

0.73 0.05 0.00 

ermB - - - - - - 1.00 0.76 0.0
7 

-
0.43 

-
0.52 0.84 

ermF - - - - - - - 1.00 
-

0.3
5 

0.23 -
0.25 0.81 

tetO - - - - - - - - 1.0
0 

-
0.41 0.37 -0.40 

tetW - - - - - - - - - 1.00 0.51 -0.18 
tp614 - - - - - - - - - - 1.00 -0.77 

blaNDM
1 - - - - - - - - - - - 1.00 

 

Table S11. b 

  rpo
B 

intI
1 

sul
1 

sul
2 

amp
C 

blaOXA
1 

erm
B 

erm
F 

tet
O 

tet
W 

tp61
4 

blaNDM
1 

rpoB 0.00 0.1
5 

0.6
5 

0.0
0 0.00 0.58 0.64 0.76 0.8

3 0.01 0.48 0.00 

intI1 - 0.0
0 

0.0
0 

0.2
3 0.38 0.63 0.87 0.95 0.0

0 0.01 0.97 0.51 

sul1 - - - 0.5
2 0.01 0.77 0.83 0.94 0.0

0 0.00 0.82 0.95 

sul2 - - - - 0.00 0.74 0.00 0.01 0.6
1 0.91 0.34 0.00 

ampC - - - - - - 0.00 0.00 0.5
7 0.98 0.96 0.00 

blaOXA
1 - - - - - - 0.55 0.92 0.6

8 0.00 0.93 0.99 

ermB - - - - - - - 0.00 0.9
7 0.75 0.25 0.00 
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ermF - - - - - - - - 0.2
8 0.56 0.74 0.00 

tetO - - - - - - - - - 0.53 0.86 0.39 
tetW - - - - - - - - - - 0.00 0.99 
tp614 - - - - - - - - - - - 0.00 

blaNDM
1 - - - - - - - - - - - 0.00 

 

Table S12 Correlation coefficients for target genes in the effluent cell-free fraction across 

all stages, a. r values; b. corresponding p-values. 

Table S12. a 

 rpo
B 

intI
1 

sul
1 

sul
2 

amp
C 

blaOXA
1 

erm
B 

erm
F 

tet
O 

tet
W 

tp61
4 

blaNDM
1 

rpoB 1.00 
-

0.2
0 

0.0
9 

-
0.2
0 

-0.21 -0.21 0.47 -
0.24 

-
0.1
7 

0.77 -
0.09 0.08 

intI1 - 1.0
0 

0.2
9 

0.5
8 0.63 -0.34 0.89 -

0.31 

-
0.2
1 

-
0.49 

-
0.38 -0.33 

sul1 - - 1.0
0 

-
0.5
5 

0.83 -0.47 -
0.15 

-
0.33 

-
0.3
7 

-
0.32 

-
0.45 -0.36 

sul2 - - - 1.0
0 -0.12 0.47 0.67 0.47 0.5

7 
-

0.42 0.46 0.47 

ampC - - - - 1.00 -0.22 0.24 -
0.20 

-
0.1
7 

-
0.31 

-
0.28 -0.22 

blaOXA
1 - - - - - 1.00 -

0.32 0.99 0.9
9 

-
0.23 0.98 0.99 

ermB - - - - -  1.00 -
0.31 

-
0.1
9 

-
0.30 

-
0.32 -0.32 

ermF - - - - -  - 1.00 0.9
9 

-
0.25 0.97 0.99 

tetO - - - - -  - - 1.0
0 

-
0.26 0.97 0.99 

tetW - - - - -  - - - 1.00 -
0.04 -0.23 

tp614 - - - - -  - - - - 1.00 0.98 
blaNDM

1 - - - - -  - - - - - 1.00 

 
Table S12. b 

  rpo
B 

intI
1 

sul
1 

sul
2 

amp
C 

blaOXA
1 

erm
B 

erm
F 

tet
O 

tet
W 

tp61
4 

blaNDM
1 

rpoB 0.00 0.3
5 

0.6
8 

0.3
7 0.34 0.54 0.02 0.27 0.4

4 0.00 0.69 0.72 

intI1 - 0.0
0 

0.7
7 

0.0
0 0.00 0.58 0.33 0.00 0.0

0 0.40 0.00 0.49 

sul1 - - 0.0
0 

0.7
3 0.75 0.56 0.44 0.70 0.5

2 0.54 0.80 0.00 
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sul2 - - - 0.0
0 0.00 0.43 0.36 0.00 0.0

0 0.49 0.00 0.49 

ampC - - - - 0.00 0.72 0.37 0.00 0.0
1 0.43 0.00 0.48 

blaOXA
1 - - - - - 0.00 0.55 0.00 0.0

0 0.16 0.00 0.99 

ermB - - - - - - 0.00 0.27 0.5
1 0.05 0.87 0.39 

ermF - - - - - - - 0.00 0.0
0 0.33 0.00 0.00 

tetO - - - - - - - - 0.0
0 0.62 0.00 0.00 

tetW - - - - - - - - - 0.00 0.89 0.50 
tp614 - - - - - - - - - - 0.00 0.00 

blaNDM
1 - - - - - - - - - - - 0.00 

 
Supplementary Figures 
Fig. S1. AnMBR performance throughout all stages. Influent COD, effluent COD, COD 
removal and methane production are shown. Error bars represent standard deviations of 
all biological replicates within each stage (n>7 for COD data; n = 3 for methane 
production of each stage). 
Fig. S2 Percent removal contributed by the removal of individual target gene across all 

operational stages (n=5). 

Fig. S3. Concentration of target genes (ARGs and MGEs, copies/mL) in the influent 
across operational stages (n=5). 
Fig. S4 Effluent target gene composition: relative abundance (%) of cell-free target genes 

and cell-associated target genes (n=5). 

 

Fig. S1 
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Fig. S2 

 
 

Fig. S3 

 
 

Fig. S4 
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Chapter 4 Appendix: Direct comparison of RT-ddPCR and targeted 

amplicon sequencing for SARS-CoV-2 mutation monitoring in 

wastewater 

1. Materials and Methods 

 The protocols for wastewater sample processing, concentration, RNA extraction, 

RT-ddPCR, and sequencing are described as below. In developing and reporting the 

procedures, we followed the Environmental Microbiology Minimum Information (EMMI) 

guidelines (Borchardt et al., 2021), 

 

1.0 Sample collection 

 During February 23, 2021 to July 12, 2021, we collected wastewater samples from 

39 wastewater treatment plants (WWTPs) in Houston covering a service area of 

approximately 580 square miles and serving over 2.3 million people. Every Monday, time-

weighted composite samples of raw wastewater (influent) were collected every 1 hour for 

24 hours at each WWTP. After collection from each WWTP site, samples were transported 

to Houston Water’s central laboratory facility on ice. At the facility, samples were 

aliquoted into bottles, immediately placed back on ice, and transported to Rice University 

for analysis. Upon arrival, samples were stored at 4 °C prior to sample reduction 

(concentration) for no longer than 2 hours. Phase I (from February 23, 2021 to April 12, 

2021) and Phase II (from May 24, 2021 to July 12, 2021) sampling campaigns included 

249 and 298 wastewater samples that were analyzed in this study. Each wastewater sample 
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was homogenized by agitation and aliquoted into two 50 mL centrifuge tubes before 

sample concentration. 

 

1.1 Sample concentration (reduction) 

1.1.1 Concentration procedure 

 Prior to concentration, 50 mL wastewater samples were centrifuged for 10 minutes 

at 4,200 RPM and 4 °C. After centrifugation, the pellet and any remaining solids were 

discarded, and the supernatant was subject to filtration. Each supernatant was slowly 

poured into a 6-head, Multi-Vac 610-MS Manifold (180310-01, Sterlitech) containing a 

pre-DI-washed 0.45 µM pore size, electronegative microbiological analysis HA filter 

(HAWG047S6, MilliporeSigma). Then, MgCl2*6H2O was added to the supernatant to 

achieve a final concentration of 25 mM. The MgCl2 ensures that the viral particles can bind 

to the negatively charged filter (Ahmed et al., 2020). The samples were gently mixed and 

allowed to sit for 5 minutes. Subsequently, a vacuum pump pulled the sample through the 

filter and was turned off after all filters were completely dry. Finally, each filter was folded 

using sterilized forceps and placed into a bead-beating tube containing 0.1 mm glass beads.  

1.1.2 Concentration quality control 

 To perform quality control on the concentration step, a concentration positive 

control (CPC) and a concentration negative control (CNC) were implemented. We used a 

spiked surrogate virus, bovine coronavirus (BCoV), as the positive control (LaTurner et al., 

2021b). Briefly, 50 µL BCoV stock solution was spiked into two random wastewater 

samples immediately before centrifugation. The spiked wastewater samples were 

processed and concentrated as described above along with other non-spiked, regular 
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wastewater samples to attain two CPC filters. We used deionized water (DI) as the negative 

control. Briefly, two 50 mL DI was poured into a manifold head containing a HA filter and 

processed along with other samples as described above. All control filters were sent to 

RNA extraction immediately, followed by RT-ddPCR. BCoV was always positive for 

CPCs and negative for CNCs. 

 

1.2 SARS-CoV-2 extraction 

1.2.1 Extraction procedure 

 We performed RNA extraction using a Chemagic™ Prime Viral DNA/RNA 300 

Kit H96 (Chemagic, CMG-1433, PerkinElmer). We followed the manufacturer’s 

recommended protocol, with some modifications in the sample preparation prior to loading. 

We added the manufacturer’s lysis buffer (1000 µL) to each bead-beating tube containing 

the filter generated from the previous step. The tubes were bead beaten at max speed in a 

Mini-Beadbeater 24 (3,500 RPM; 112011, BioSpec) for 1 minute, allowed set on ice for 2 

minutes, and bead beaten again at max speed for I minute. After bead beating, the tubes 

were centrifuged to pellet the beads and shredded filters (17,000 g, 4 °C). Subsequently, 

300 µL supernatant was loaded into a 96-deep well plate followed by addition of 300 µL 

lysis buffer and a 14 µL mixture of Proteinase K and Poly(A) RNA reagents as directed by 

the manufacturer’s protocol. Apart from the sample plate, an elution buffer plate, a 

magnetic bead plate, a wash buffer plate and an eluate collection plate were prepared as 

directed by the manual. All plates were loaded onto the Chemagic. The extraction program 

“Chemagic Viral300 360 H96 drying prefilling VD200309.che” was selected for 

automated RNA extraction. Each sample was eluted to generate a 50 µL RNA extract. 
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1.2.2 Extraction quality control  

 In our previous study, we applied the exact same sample collection and 

concentration procedure (described above), but a different RNA extraction procedure 

which involved a different automated nucleic acid extraction system, the Maxwell 48 RSC 

automated platform (AS8500, Promega; LaTurner et al., 2021). Extraction recovery using 

the Maxwell 48 RSC automated platform (Promega) was evaluated using BCoV spiked 

samples (LaTurner et al., 2021b). In this current study, before we switched from Promega 

to Chemagic, we conducted a head-to-head comparison between these two extraction 

systems using six wastewater samples (data not shown). We found Chemagic produced 

higher N1 and N2 signals (represented by SARS-CoV-2 concentrations in copies/L-

wastewater, obtained from RT-ddPCR on N2 and N2 genes) than Promega. We also 

included two negative controls in each plate by directly adding 300 µL DI into the sample 

plate sent for Chemagic extraction and verified that no contamination occurred during 

RNA extraction by quantifying N1 and N2 genes in these samples via RT-ddPCR.  

1.2.3 Extract storage and duration 

 Immediately after RNA extraction, all sample extracts were sealed and stored at 

4 °C for RT-ddPCR analysis within 24 hours. At the same time, 13 µL of each sample 

extract was aliquoted, placed on ice, and transferred to the Houston Health Department 

Environmental Microbiology Laboratory for sequencing. Transport time was less than 30 

minutes and samples were stored in -80 °C upon arrival until reverse transcription and 

library preparation. 

 

1.3 Concentration factors calculation (Table S1) 
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Table S1. The calculation of concentration factors for each step and for the overall sample 
processing procedure.  
 
Volume of each step during 
sample concentration and 
extraction 

Volume  Concentration Factor 

Starting volume: 50 ml  
Reagents (lysis buffer) added 
for bead-beating: 1000 ul 50 

Lysate supernatant transferred 
after bead-beating: 300 ul  

Reagents [lysis buffer, Poly(A) 
RNA and proteinase K]: 314 ul  

Elution volume: 50 ul 6 
The concentration factor for the 
whole process (concentration 
and extraction) 

  300 

 
1.4 RT-ddPCR  

1.4.1 RT-ddPCR quantification and analysis 

 All RT-ddPCRs were performed on a QX200 AutoDG Droplet Digital PCR System 

(Bio-Rad) and a C1000 Thermal Cycler (Bio-Rad) in 96-well optical plates. SARS-CoV-2 

N1 and N2 genes were quantified in wastewater samples as previously described (LaTurner 

et al., 2021). The five target mutations (S:DEL69/70, S:N501Y, S:E484K, S:K417T, 

S:L452R) were quantified using one-step RT-ddPCR assays detailed in Table S2 according 

to the manufacturer’s protocols (GT Molecular). Briefly, a 22 ul reaction mix containing 

10 ul of viral RNA was reverse transcribed using the One-Step RT-ddPCR Advanced Kit 

for Probes (Bio-Rad). Reaction mix compositions and thermal cycling conditions for each 

variant assay are detailed in Tables (S3-S5). Each 96-well plate was processed with 

positive-mutation (positive standards provided by the kit) and no-template controls. A 

reactions was performed for each replicates for all wastewater samples. Droplets in each 
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well were read on a QX200 Droplet Reader (Bio-Rad) followed by analysis using 

QuantaSoft v1.7.4 software. SARS-CoV-2 N1/N2 and Wuhan/UK assays were manually 

thresholded per channel in Sinplex/Duplex mode while the CA/India and Brazil/South 

Africa assays were thresholded in cluster mode using the Advanced Classification Method 

according to GT Molecular’s protocol. Manually thresholded N1/N2 and variant data was 

exported and further analyzed with the concentration factor to obtained gene copies/uL 

RNA and copies/L-wastewater using custom R scripts. Percent mutations per sample well 

were calculated for all variant assays by dividing copies/uL RNA per mutation by the total 

copies/uL RNA in the corresponding well.  

 

1.4.2 Limit of Detection (LOD) 

 Detection of 3 positive droplets was set for all variant assays and an acceptable total 

generated droplet count of at least 10,000 was established for all sample wells as 

recommended by the manufacturer. In addition to the 3 droplets threshold, a per-plate LOD 

for N1/N2 was calculated by assigning the copy number corresponding to wells having 3 

droplets as the initial LOD concentration for that plate. If more than one sample having 3 

droplets is detected, then the concentration for all samples having three droplets is averaged. 

If there are no 3-droplet samples on the plate, a copy number of 0.7 is assumed. A 

concentration of 0.7 gene copies/uL corresponds to 3 droplets given 10,000 total droplets 

when taking into consideration a single droplet volume of 0.86 nL, which is the most 

conservative estimate. The initial LOD concentration is then added to the limit of blank 

(LOB) to obtain the final LOD for the entire plate. The LOB is the mean concentration of 
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all negative control samples on the plate plus 1.6 times the standard deviation of the 

negative controls. 

 The detailed information of the primer/probe used for mutation detection was not 

revealed to the authors due to their proprietary nature. Thus, the false positive and false 

negative rates were not determined for these assays. 

Table S2.  Information regarding sample collection time, RT-ddPCR mutation targets and 
kit info.  

Sample collection 
date  

RT-ddPCR 
target mutations 

(amino acid 
change) 

RT-ddPCR target 
mutations (nucleotide 

change) 

Number of 
samples assayed 

GT-molecular 
Kit for RT-

ddPCR (Catalog 
#) 

Phase I 
(02/23/2021 - 
04/12/2021) 

S:DEL69/70 21764ATACATG->A 249 Digital PCR 4-
plex (Wuhan + 

UK B.1.1.7) 
Differentiation 

Assay (Not 
provided) 

Phase I 
(02/23/2021 - 
04/12/2021) 

S:N501Y 23063A->T 249 

Phase II 
(05/24/2021 - 
07/05/2021) 

S:L452R 22917T->G 260 

GT-ddPCR 4-
plex (Wuhan + 

B.1.427/B.1.429 
+ B.1.617) Assay 

(100144) 

Phase II 
(05/24/2021 - 
07/12/2021) 

S:K417T 22812A->C 298 SARS-CoV-2 
ddPCR 

Multivariant 
Discrimination 
Assay (100134) 

Phase II 
(05/24/2021 - 
07/12/2021) 

S:E484K 23012G->A 298 

Total number of 
detection events   1354  

 
Table S3. Thermal cycling conditions for N1 and N2, S:N501Y and S:DEL69/70.  

Cycling Step Temperature (°C) Time Number of Cycles 

Reverse Transcription 50 60 min 1 
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Enzyme activation 95 10 min 1 

Denaturation 94 30 sec 
40 

Annealing/Extension 59 60 sec 

Enzyme Deactivation 98 10 min 1 

Droplet Stabilization 4 30 min 1 

Hold (optional) 4 24 hrs 1 

  

Table S4. Thermal cycling conditions for S:E484K, S:K417T and S:L452R. 

Cycling Step Temperature 
°C Time Number of Cycles 

Reverse Transcription 50 60 min 1 

Enzyme activation 95 10 min 1 

Denaturation 94 30 sec 
45 

Annealing/Extension 60 60 sec 

Enzyme Deactivation 98 10 min 1 

Droplet Stabilization 4 30 min 1 

Hold (optional) 4 24 hrs 1 

  
Table S5. RT-ddPCR reaction compositions for all variant assays 

Component Volume (μL) 
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One-Step RT-ddPCR Supermix 5.5 

Reverse Transcriptase 2.2 

300 mM DTT 1.1 

GT-4-plex Primer-Probe Solution 1 

RNA sample 10 

RNase/DNase free water 2.2 

  
1.4.3 cDNA concentration  

 cDNA concentrations were measured after tile PCR, clean-up, and size selection, 

right before library preparation. Quantification of cDNA was performed Qubit dsDNA HS 

assay kit coupled with the Qubit fluorometer (Thermo Fisher Scientific). 

 

2. Results and Discussion  

 The average concentration of cDNA in samples after tiled PCR and purification 

was 9.87 ng/µL for Phase I and 5.78 ng/µL for Phase II. 

 
 
Table S6. Targeted amplicon sequencing statistics. During Phase I and Phase II sample 
collections, 249 and 298 wastewater samples were sequenced, respectively. For all 547 
sequenced samples, the average sequencing depth (the average single base coverage across 
the entire SARS-CoV-2 reference genome) per sample was 973 (Phase I: 1702, Phase II: 
363), the average breadth of genome covered per sample was 66.67%, the average breadth 
of genome covered across positions with at least 10× depth was 55.8% (Phase I: 83.6%, 
Phase II: 37.9%). 
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 Samples 
with > 
90% 
genome 
breadth 
covered* 

Samples 
with > 
75% 
genome 
breadth 
covered* 

Samples 
with > 
50% 
genome 
breadth 
covered* 

Samples 
with ≥ 
1000 × 
coverage 

Samples 
with ≥ 
500 × 
coverage 

Samples 
with ≥ 
100 × 
coverage 

Phase I Count (n) 165 198 232 171 220 243 

Fraction 
(n/249; %) 

66.3 79.5 93.2 68.7 88.4 97.6 

Phase II Count (n) 16 38 98 11 81 234 

Fraction 
(n/298; %) 

5.4 12.8 32.9 3.7 27.2 78.5 

* Only including positions with at least 10× depth across the SARS-CoV-2 genome. 
 
 
  

    
 

Figure S4.1. SARS-CoV-2 concentrations across Phase I and Phase II (concentrations 
represent the average of the measured N1 and N2 concentrations, in copies/L-wastewater). 
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a 
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Figure S4.2. Detailed workflow and number of detections by RT-ddPCR and targeted 
amplicon sequencing for Phase I (a) and Phase II (b) samples.  
 
 

b 
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Figure S4.3. The single base coverage across the SARS-CoV-2 genome, based on all 547 
samples analyzed (a). The top zoomed-in figure shows the single base coverage around the 
S:DEL69/70 mutation site and the bottom one shows the single base coverage around the 
S:N501Y mutation site. The single base coverage profiles cross the specific region 
amplified by ARTIC.v3_F/R_72 (corresponding to S:del69/70; b) and by 
ARTIC.v3_F/R_76 (corresponding to S:N501Y; c), based on all Phase I samples analyzed 
(n = 247), respectively. The red triangles denote the exact mutation position of S:DEL69/70 
(nt 21764) and S:N501Y (nt 23063). The numbers in parentheses correspond to the average 
single base coverage value. 
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Figure S4.4. The total raw reads mapped to SARS-CoV-2 genome of samples associated 
with targeted amplicon sequencing negative (+/-) and targeted amplicon sequencing 
positive (+/+) mutation detection scenarios.  
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Chapter 5 Using long- and short-read metagenomics and epicPCR to 

profile antibiotic resistance genes and their bacterial hosts in 

wastewater 
Tables 

Table S5.1. EpicPCR primers used for fusion PCR and nested PCR 
Table S5.2. Long-read and short-read sequencing read statistics 
Table S5.3. Accession numbers and brief descriptions of the three publicly available 
wastewater datasets used for comparing long- and short-read metagenomic sequencing  
Table S5.4. Microbial community composition of the WWTP influent sample generated 
by long- and short-read sequencing 
Table S5.5. ARG hosts detected by long-read sequencing, short-read sequencing, and 
epicPCR 
Table S5.6. Hosts of sul1, ermB and tetO detected by long-read sequencing and epicPCR 
Table S5.7. Associations between ARGs and MGEs detected by long-read sequencing 
 
Figures 
Figure S5.1. Overview of the computational pipeline for analyzing long- and short-read 
sequencing data 
Figure S5.2. Comparison of long- and short-read sequencing in identifying ARG 
subtypes-host family linkages for other publicly available datasets 
Figure S5.3. Composition of chromosomal ARGs and plasmid-associated ARGs in terms 
of resistance mechanisms across samples 
Figure S5.4. WWTP influent and effluent hosts revealed by epicPCR and long-read 
sequencing 
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1. Methods 

1.1 DNA extraction for long-read and short-read sequencing 

 After biomass concentration, filters were cut into small pieces using sterilized 

forceps and transferred to a 2 mL tube containing 0.1 mL glass beads for bead-beating. 

Immediately prior to bead-beating, 1 mL CTAB buffer was added to each sample tube. 

Sample tubes were vortexed for 30 seconds then incubated at 95°C for 5 minutes. Then, 

sample tubes were removed from heat and allowed to be cooled at room temperature for 

no more than 2 minutes. Next, sample tubes were bead beaten at max speed in a Mini-

Beadbeater 24 (3,500 RPM; 112011, BioSpec) for 1 minute. After bead-beating, samples 

were briefly centrifuged and added with 40 µL proteinase K and 20 µL RNase A, then 

incubated at 70 °C for 10 minutes for lysis treatment. During the incubation, Maxwell 

RSC cartridges were setup following the manufacture’s manual. A volume of 300 µL 

lysate from each sample tube was transferred to the cartridge. Each cartridge was also 

added with 300 µL lysis buffer. Finally, all cartridges with added sample lysate and 

reagents were loaded on to the instrument for automated extraction using the “Maxwell® 

RSC instrument with the PureFood GMO Protocol”. After DNA extraction, DNA was 

eluted into 100 µL EB and stored in -80 °C before library preparations. 

 

1.2 EpicPCR 

 1.5 mL WWTP influent sample (n=3) was centrifuged at 10,000 g for 1 minute at 

4 °C. 600 mL of final effluent sample (n=3) were centrifuged at 5,000 g for 10 minutes at 

4 °C. Cell pellets were collected in a 2 mL microcentrifuge tube and washed in DNA 

grade ultrapure water for three times. Next, cells were agitated again using a vortex mixer 
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at max speed (3000 RPM) for 45 seconds. Then, cells were diluted and stained with 

DAPI (4',6-diamidino-2-phenylindole) to perform cell count estimation on a Neubauer 

hemocytometer using a fluorescent microscope (IX 71, Olympus). A final cell count of 1 

- 1.4 ×107 in 30 µL of cell-water suspension was used for polyacrylamide bead formation 

and cell lysis treatment as previously described (S. J. Spencer et al., 2016). 

 Next, fusion PCR and nested PCR were performed for each target per sample 

(n=3 each sample type). Fusion PCR was conducted within 24 hours after bead formation 

and cell lysis to prevent DNA degradation. For fusion PCR, PCR mastermix containing 

fusion templates (45 μL polyacrylamide bead solution), fusion PCR primers (the forward 

ARG primer F-sul1, F-ermB or F-tetO, the reverse 16S rRNA primer 1492R, and the 

linker primer RL-sul1-519F′, RL-ermB-519F′ or RL-tetO-519F′), Phusion HF DNA 

Polymerase (New England Biolabs), and emulsion stabilizers were homogenized in ABIL 

emulsion oil as previously described (Spencer et al., 2015). Fusion PCR conditions were 

optimized as follows: initial denaturation at 94 °C for 30 s; 35 cycles of denaturation at 

94 °C for 5 s, primer annealing at 55 °C for 30 s, and extension at 72 °C for 30 s; a final 

extension step at 72 °C for 5 min. The primer sequences and amplicon sizes can be found 

in Table S1. Immediately after the fusion PCR reaction, 1 mM EDTA was added to the 

pooled sample, followed by diethyl ether/ethyl acetate wash (Spencer et al., 2015). Next, 

Monarch PCR & DNA Cleanup Kit (New England Biolabs) was used for DNA extraction 

from the washed beads. The purified DNA was eluted in 37 μL of EB and was subject to 

nested PCR. Next, nested PCR was performed using the purified fusion PCR products. 

 Nested PCR mastermix consisting of Phusion HF DNA polymerase, HF buffer, 

F’-sul1, F-ermB or F-tetO, and reverse 16S rRNA primer 1391R was divided into 
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quadruplicate aliquots and combined with the purified fusion PCR products. The nested 

PCR program consisted of an initial denaturation for 30 s at 98 °C, followed by 38 cycles 

of denaturation at 98 °C for 5 s, primer annealing at 60 °C (for sul1) or 58 °C (for ermB) 

or 55 °C (for tetO) for 30 s, extension at 72 °C for 45 s, and a final extension step at 

72 °C for 10 min. The final PCR products were loaded onto a 1.5% TAE agarose gel to 

confirm the expected product via electrophoresis (125 V, 50 minutes). DNA products of 

approximately 1 kbps in size were extracted using a Monarch gel extraction kit (New 

England Biolabs). The nested PCR products were purified again using AMPure XP beads 

and subject to library preparation. 

 

1.3 Integrated pipeline for analyzing long-read and short-read sequencing data 

 We processed long-read and short-read sequencing reads in an integrated pipeline 

as shown in Figure S5.1. 

 

1.3.1 Detections of ARG-carrying reads and ARG-carrying contigs, and the 

associations between ARGs and MGEs 

 Long-read sequencing reads were screened for ARGs against the CARD database 

(V3.2.2) using BLAST (https://blast.ncbi.nlm.nih.gov) with a threshold of 70% identity 

and 70% length coverage. Short-read sequencing reads were assembled and processed 

using the resistance gene identifier (RGI, version 5.2.1; Alcock et al., 2020). Only contigs 

carrying the ARGs for which RGI produced “perfect” or “strict” match were selected for 

further analysis. To explicitly compare long-read and short-read sequencing on resistome 

characterization, ARG copy numbers generated by both methods were normalized against 
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sequencing depth as previously described (Arango-Argoty et al., 2019; L. Ma et al., 

2016) to attain the relative ARG abundance in reads per billion bases sequenced (RPB). 

Classification of ARGs was conducted based on the oncology index file curated by 

CARD database. ARGs corresponding to at least two drug classes were classified as 

“multidrug” subtype. Beta-lactam resistant ARGs which confer resistance to carbapenem 

were selected and categorized as the “carbapenem” subtype.  

 ARG-carrying reads (long-read sequencing) and contigs (short-read sequencing) 

were subject to BLASTX under the minimum E-value 1×10-5 with a length and identity 

threshold of 70% using a MGE database curated by NanoARG (Arango-Argoty et al., 

2019). Long-read and short-read sequencing read statistics are provided in Table S5.2. 

 To evaluate the results of the comparison between long- and short-read 

sequencing in terms of ARG-host identification, we downloaded three publicly available 

datasets from two previous studies (Che et al., 2019b; Fuhrmeister et al., 2021). Both 

studies conducted long-read and short-read sequencing technologies to sequence the same 

wastewater samples. Details on the datasets are provided in Table S5.3.  

 

1.3.2 Sample-wise taxonomical abundance estimation for long-read and short-read 

sequencing data 

 The sample-wise taxonomical abundance estimation for long-read data was 

performed via Centrifuge v1.0.4. The program was run directly on ONT and Illumina 

reads and Centrifuge generated a report that contained the sample abundances.   

 

2. Results and discussion 
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2.1 EpicPCR sequencing statistics 

 During read QC, we noticed that even though the size of PCR products was 

verified via electrophoresis, 50.94% of sequenced DNA still had a read length of shorter 

than 1 kbps, which may have been due to DNA fragmentation during gel purification and 

library preparation. We performed an alignment step during which reads were scrutinized 

for perfect match (i.e., 100% identity and 100% coverage) against the corresponding 

reverse linker primer sequence. This alignment step is the key to exclude false positives 

as it filtered out a substantial body of relatively short reads, which were likely partially 

fused PCR products. As a result, after this alignment step, the vast majority (71.8%) of 

remaining reads had a length falling within the range of 1007-1089 bps (i.e., the expected 

length range of nested PCR products given the primer design). Furthermore, the ARG 

portion of the remaining reads aligned to the corresponding ARG references in SARG 

database with relatively high sequence similarity and coverage. The average identity of 

alignment was 93.8 ± 3.1% for ermB, 93.9 ± 3.0 % for sul1, and 94.2 ± 3.0% for tetO. 

The average length coverage of alignment was 96.4 ± 9.8% for ermB, 99.4 ± 6.9 % for 

sul1, and 77.5 ± 5.3% for tetO. With respect to the 16S rRNA gene portion of reads, 

most remaining reads (91.8 ± 9.4%) passed the 16S rRNA gene alignment criteria of 

Emu (i.e., the 16S rRNA annotation tool used in this study, Curry et al., 2022) and 

generated species-level classifications. These results underscore the successful 

acquisition of ARG-16S rRNA gene fusion structures. 

 

2.2 Host range detected by epicPCR 
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 For sul1 hosts, epicPCR classified 61 Proteobacteria species and nine 

Bacteroidetes species (Table S5.5). NCBI Reference Sequence Database (RefSeq) 

reported consistent sul1-host phylum associations, more than 99% (25,195) of the 

reference sequences associated with sul1 in bacteria were assigned to Proteobacteria. In 

previous studies characterizing hosts of sul1 in wastewater, Bacteroidetes was identified 

as the dominant host phyla along with Proteobacteria (Wei et al., 2021; G. Zhang et al., 

2020). To focus on the host range at the family level, the top three host families of sul1 

classified by epicPCR are Rhodocyclaceae, Aeromonadaceae, and Comamonadaceae, 

which was consistent with the sul1 host range profiled by another targeted method using 

proximity ligation (Stalder et al., 2019). For ermB hosts, epicPCR identified 17 

Proteobacteria species, 12 Bacteroidetes species, two Firmicute species, and one 

Fusobacteria species (Table S5.5). In RefSeq, ermB was predominantly associated with 

Proteobacteria (2,415 records), followed by Firmicutes (33 records). Recently, ermB has 

been found more frequently in Bacteroidetes species and was characterized as 

mobilizable based on its association with certain conjugative transposons (Gupta et al., 

2003; Okitsu et al., 2005). Lastly, for tetO hosts, epicPCR detected 59 Firmicutes species, 

6 Proteobacteria species, and 2 Bacteroidetes species. Consistently, according to NCBI 

RefSeq, tetO was found to be associated with Firmicutes (121 records), Proteobacteria 

(111 records), and Bacteroidetes (16 records). Almost all hosts detected by long-read 

sequencing were subsets of the host range detected by epicPCR as discussed in the 

manuscript. In addition, long-read sequencing and epicPCR demonstrated a consistent 

host range profile that sul1 was mainly associated with Proteobacteria, tetO was mainly 
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associated with Firmicutes, and ermB was mainly associated with Bacteroidetes and 

Firmicutes (Table S5.5). 

 

2.3 The profiles of ARG hosts across the WWTP influent and effluent revealed by 

long-read sequencing and epicPCR 

 WWTP influent and effluent hosts were the most consistent at the phylum level as 

shown by epicPCR and long-read sequencing as discussed in the manuscript. In the 

WWTP effluent, as demonstrated by long-read sequencing, there were 12 ARG host 

species that were not detected in WWTP influent (hereafter referred to as “new hosts”) as 

well as eight ARG host species which persisted across the whole treatment process 

(hereafter referred to as “persistent hosts”). In addition, none of the new hosts were found 

in the secondary effluent samples (data not shown). The persistent hosts included E. coli 

carrying mdt genes (i.e., mdtE, mdtN, and mdtO; subtype: efflux pumps) and Aeromonas 

caviae carrying OXA-504 (subtype: multidrug/carbapenem). The new hosts included 

Pseudomonas sp. BJP69 carrying MexD (subtype: efflux pump), Pseudomonas 

oleovorans carrying mexF (subtype: efflux pump), Salmonella enterica carrying OXA-

256 (subtype: multidrug/carbapenem), Pandoraea thiooxydans carrying ceoB (subtype: 

efflux pump), Enterobacter kobei carrying ramA (subtype: efflux pump), and 

Burkholderia pseudomallei carrying MuxB (subtype: efflux pump). Those ARG hosts (E. 

coli, A. caviae, S. enterica, E. kobei, and B. pseudomallei) are putative pathogenic 

species. This finding emphasizes a critical need to include them as the risk indicators, 

because they were harboring resistance genes of clinical relevance while at the same time 

poorly responsive to wastewater treatment. 



Table S5.1. EpicPCR primers used for fusion PCR and nested PCR. 
Fusion PCR 

ARG Primer Sequence (5' - 3') Reference 

sul1 

F-sul1 AAATGCTGCGAGTYGGMK
CA (Wei et al., 2018) 

RL-sul1-519F′ 
GWATTACCGCGGCKGCTG

AACMACCAKCCTRCAGTCC
G 

(Wei et al., 2021) 

ermB 

F-ermB GAACACTAGGGTTGTTCTT
GCA (Stedtfeld et al., 2018) 

RL-ermB-519F′ 
GWATTACCGCGGCKGCTGC
TGGAACATCTGTGGTATGG

C 

The reverse primer portion of 
ermB was from (Stedtfeld et 

al., 2018) 

tetO 

F-tetO ACGGARAGTTTATTGTATA
CC (Aminov et al., 2001) 

RL-tetO-519F′ 
GWATTACCGCGGCKGCTGT
GGCGTATCTATAATGTTGA

C 

The reverse primer portion of 
tetO was from (Aminov et al., 

2001) 
 16S rRNA -

1492R GGTTACCTTGTTACGACTT (S. J. Spencer et al., 2016) 

Nested PCR 

ARG Primer Sequence (5' - 3') Reference Final product 
size (bp) 

sul1 F’-sul1 GACGCCCTGTCCSRTCWGA
T 

(Wei et 
al., 2021) 1037 

ermB F-ermB GAACACTAGGGTTGTTCTT
GCA 

(Stedtfeld 
et al., 
2018) 

1007 

tetO F-tetO ACGGARAGTTTATTGTATA
CC 

(Aminov 
et al., 
2001) 

1043 

 U519F-block10 TTTTTTTTTTCAGCMGCCGC
GGT AATWC/3SpC3/ (S. J. 

Spencer et 
al., 2016)   U519R-block10 TTTTTTTTTTGWATTACCGC

GGC KGCTG/3SpC3/ 
 16S rRNA -

1391R GACGGGCGGTGTGTRCA (Lane et 
al., 1985) 

 
Table S5.2. Long- and short-read sequencing read statistics. 

Method Sample Total bases Number of 
reads/contigs 

Length N50 
(bp) 

Long-read 
sequencing Influent (n=3) 

4,318,719,998 1,178,106 4,748 

Short-read 
sequencing 42,663,854,700 1,796,758 1,210 

Long-read 
sequencing 

Secondary effluent 
(n=3) 2,885,452,624 464,436 7,159 

short-read 
sequencing Final effluent (n=3) 1,944,820,196 1,513,866 1,493 

 



 
192 

  

Table S5.3. Accession numbers and brief descriptions of the three publicly available 
wastewater datasets used for comparing long- and short-read metagenomic sequencing 

ID 
Sequenci

ng 
platform 

Instrument Total 
bases Sample Sampling 

region 
SRR 

Accession Reference 

ST _IN 
Illumina 

Illumina 
HiSeq 4000 

(PE 150) 
18G 

Municipal 
wastewate

r 

Hong Kong 
SRR8208343 (Che et al., 

2019b) 
ONT ONT MinION 2.4G SRR7497167 

B_WW_
1 

Illumina 
Illumina 

HiSeq 2500 
(PE150) 

5.9G 

The greater 
Boston area, in 
Massachusetts, 

USA 

SRR12917052 

(Fuhrmeister 
et al., 2021) 

ONT ONT MinION 1.3G SRR12917048 

B_WW_
2 

Illumina 
Illumina 

HiSeq 2500 
(PE150) 

5.6G SRR12917051 

ONT ONT MinION 0.82
G SRR12917047 

 
Table S5.4. Microbial community composition of the WWTP influent sample generated 
by long- and short-read sequencing 

Family Relative abundance via 
long-read sequencing 

Relative abundance via 
short-read sequencing 

Enterobacteriaceae 4.66 6.24 
Bacillaceae 0.58 3.1 

Pseudomonadaceae 3.22 3.08 
Streptomycetaceae 1.03 2.22 
Flavobacteriaceae 0.67 2.16 
Burkholderiaceae 1.67 1.9 
Lactobacillaceae 0.26 1.88 
Streptococcaceae 1.22 1.73 
Mycobacteriaceae 0.73 1.56 
Microbacteriaceae 0.5 1.45 
Xanthomonadaceae 1.05 1.35 

Rhizobiaceae 0.63 1.23 
Corynebacteriaceae 0.16 1.23 
Mycoplasmataceae 0.11 1.22 

Sphingomonadaceae 0.49 1.07 
Campylobacteraceae 0.49 1.04 

Vibrionaceae 0.39 1.03 
Paenibacillaceae 0.35 0.98 
Comamonadaceae 5.06 0.97 
Pasteurellaceae 0.45 0.97 

Staphylococcaceae 0.16 0.95 
Moraxellaceae 1.82 0.89 
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Yersiniaceae 0.32 0.89 
Clostridiaceae 0.48 0.87 

Roseobacteraceae 0.24 0.83 

Species Relative abundance via 
long-read sequencing 

Relative abundance via 
short-read sequencing 

Salmonella enterica 0.05 2.09 
Escherichia coli 0.26 1.16 

Bacillus cereus group 0.1 0.57 
Helicobacter pylori 0.02 0.47 

Bacillus subtilis group 0.04 0.44 
pseudomallei group 0.11 0.42 

Listeria monocytogenes 0.01 0.38 
Pseudomonas syringae group 0.08 0.35 

spotted fever group 0.01 0.29 
Enterobacter cloacae complex 0.42 0.28 

Pseudomonas aeruginosa group 1.08 0.27 
Burkholderia cepacia complex 0.26 0.26 

Buchnera aphidicola 0.03 0.26 
Staphylococcus aureus 0.01 0.26 

Burkholderia pseudomallei 0.04 0.25 
Yersinia pseudotuberculosis 

complex 0.01 0.22 

Pseudomonas fluorescens group 0.14 0.2 
Acinetobacter 

calcoaceticus/baumannii complex 0.12 0.2 

Pseudomonas putida group 0.17 0.19 
Klebsiella pneumoniae 0.13 0.19 

Pseudomonas aeruginosa 0.25 0.18 
Bacillus amyloliquefaciens group 0.01 0.18 
Mycobacterium avium complex 

(MAC) 0.03 0.17 

Bacillus thuringiensis 0.01 0.17 
Vibrio harveyi group 0.06 0.16 

 
Table S5.5. ARG hosts detected by long-read sequencing, short-read sequencing, and 
epicPCR 
https://rice.box.com/s/d09f8sw7oqj6crn29mk8sbh0w51rn4kt 
 
Table S5.6. Hosts of sul1, ermB and tetO detected by long-read sequencing and epicPCR 
https://rice.box.com/s/897x7c05qz8tawmkne0mm45kw9yr3rjh 
 
Table S5.7. Associations between ARGs and MGEs detected by long-read sequencing 
https://rice.box.com/s/mv46u9ynqi2cyhc5q978y1tw3m106rwk 
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Figure S5.1. Overview of the computational pipeline for analyzing long- and short-read sequencing 
data. A. The detailed pipeline. B. The output of each step, in terms of the number of reads (long-read 
sequencing) and contigs (short-read sequencing), and the number of host species classified based on 
chromosomal ARGs and all ARGs. 
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Figure S5.2. Comparison of long- and short-read sequencing in identifying ARG subtypes-host 
family linkages for other publicly available datasets. Left: sample ID: B_WW_2 (Fuhrmeister et 
al., 2021), right: ST_IN (Che et al., 2019b). 
 
  

0 15 30 0 15 30
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Figure S5.3. Composition of chromosomal ARGs and plasmid-associated ARGs in terms of 
resistance mechanisms across samples. 
 

  
Figure S5.4. WWTP influent and effluent hosts revealed by epicPCR and long read 
sequencing. a. The count of WWTP influent (blue) and effluent (violet) hosts revealed by epicPCR. 
The numbers of hosts for the three ARGs (sul1, ermB and tetO) are shown at species, family, and 
phylum level, respectively. b. The count of influent (blue) and effluent (violet) hosts revealed by 
long-read sequencing. Unique combinations of each ARG and its host counted at the species, family, 
and phylum level, respectively. 
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