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Abstract

Classic snap-through of curved beams, plates, and shells has long been an object of

attention in structural engineering. Euler buckling under axial loading is perhaps an even

more entrenched part of the canon of engineering education and practice. In this paper we

introduce a relationship between the two phenomena, that to our knowledge has not been

directly addressed before. The relationship shows that Euler buckling configurations are

connected by the force-displacement curve under transverse loading. The results are used

to develop a very simple metric to estimate the number of unstable static equilibria of a

buckled structure based only on its geometry with no need for static or dynamic solvers.

The study is focused on beams as this allows for an unambiguous discussion of the idea

on the simplest possible structure.
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1. Background and Motivation

Static and dynamic snap-through of curved structures such as beams and plates is the

subject of much research in the literature [1–8], to the extent that it was the main driving

force in the initial development of the arc-length method [9, 10]. This is not surprising, as

it has proven to be an important critical phenomenon, for example in slender aerospace

structures [11, 12]. Alternatively, it is sometimes seen as a desirable phenomenon in

switching [13–16], filtering [17], and energy harvesting applications [18].

Despite the long history of research, snap-through continues to yield new and surpris-

ing results. This is particularly true for continuous (infinite dimensional) systems such as

beams or plates, as they may present extremely complex potential energy hyper-surfaces

with the possibility for bifurcations under both axial and transverse loading, or under

changes of geometric parameters. For example, in [19] it was shown, using arc-length

path following of equilibrium solutions [10] and branch-switching [20, 21], that curved

structures may exhibit many “hidden” unstable equilibrium curves that emanate out of

a series of critical point bifurcations.

In this paper, we present a connection between the Euler buckling loads for initially

flat beams and the force-displacement curve under transverse loading for buckled beams.

Through this connection, a simple calculation provides insight into the degree of instability

(the number of unstable equilibria) of beams without running any simulations.

The driving idea behind the paper is illustrated in Fig. 1. Part (a) shows a schematic

of an initially flat beam, buckled well beyond the first Euler buckling load (which could

be caused by thermal load, or displacement of the supports) and subsequently subjected

to a transverse point load applied at an offset from the middle. The corresponding force-
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displacement curve obtained via arc-length path following is shown in part (b). Also

illustrated in part (b) are the configurations of the structure at the zero-transverse-load

crossings (ZTLCs) (locations marked with circles where the transverse force is equal to

zero on the equilibrium curve). The equilibrium configurations labeled 1, 2, 4, and 5 are

very similar to the classic Euler buckling mode shapes.

Although only three ZTLCs are marked (Fig. 1b) on the force-displacement curve, five

zero load crossings exist as the deformed shapes of the beam indicate. It appears as if at

the middle zero load crossing the curve intersects itself. This is not the case, however, as

the apparent intersection is due to the projection of a high-dimensional curve into a 2D

space.

The force-displacement curve can be qualitatively described by the number of ZTLCs,

or by the number of “loops” it makes before reaching the snapped-through stable equilib-

rium (state 5 in Fig. 1). Additional “loops” in the force-displacement curve, and therefore

additional zero crossings (and higher buckling mode shapes), can be induced by increasing

the axial stiffness or by increasing the buckling-induced rise (the reason for this will be

discussed later). The importance of the slight offset in the point load will also be discussed

later.

In the following work we test the hypothesis that as the buckling-induced rise is re-

duced, the unstable zero transverse load equilibrium configurations approach the shape

of the Euler buckling modes (i.e., the error between the Euler mode shapes and the un-

stable equilibrium configuration at the ZTLCs such as states 2 and 4 will approach zero).

However, as the buckling-induced rise is reduced, the axial stiffness must be increased

in order to yield higher buckling modes. The work is focused on post-buckled initially
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(a) Initially flat beam buckled to desired rise h and thereafter subject to transverse load.
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(b) Force-deflection curve with ZTLCs (red circles) and beam deformed shape at each crossing.

Figure 1: Schematics of the loading for an initially flat beam and of the transverse force-displacement

curve with beam deformed shapes at ZTLCs.

flat beams without imperfections. This was intentionally done in order to allow for an

exact comparison with classical Euler buckling, as imperfections or initially curved beams

induce geometric bias into the system. The results, however, hold nominally for shallow

curved beams, but such systems are not the focus of this paper.
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The remainder of the paper is structured as follows. Section 2 introduces the connec-

tion between the Euler buckling loads and the force-displacement curve under transverse

load through simple examples, and provides the estimate on the upper bound on the num-

ber of ZTLCs. Section 3 discusses the influence of geometric parameters (rise, thickness,

cross-sectional area) and the effect of transverse load location and type on the equilibrium

configurations and implicitly on the upper bound. Finally, Section 4 summarizes main

conclusions and potential applications.

2. Connection between Euler buckling and snap-through buckling

Post-buckled initially flat beams allow for an exact comparison with the classical Euler

buckling loads and mode shapes. Using the finite element method (FEM), we analyze an

initially flat beam that is axially compressed until it buckles to a certain buckling level

(rise) and then subjected to a transverse point load (at the center or just off-center).

Pinned-pinned boundary conditions are considered. In the FEM simulations presented in

this paper, we use a beam formulation based on the Euler-Bernoulli theory extended to

large deformations [22]. The numerical procedure that combines arc-length and branch

switching methods introduced in [23] is used to obtain the bifurcated equilibrium states

using FEA.

The beam is homogeneous with Young’s modulus E, length L, uniform cross-section A,

moment of inertia I, Poisson’s ratio ν and density ρ. These geometric and material

properties are listed in Table 1.
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Length (L) [mm] 304.8

Cross-section area (A) [mm2] 0.32258

Moment of Inertia (I) [mm4] 0.1387438

Young’s Modulus (E) [N/mm2] 206843

Poisson’s Ratio (ν) 0.28

Density (ρ) [N s2/mm4] 7.834×10−9

Table 1: Flat beam dimensions and material properties

2.1. Description via simple examples

To illustrate the relationship, consider the examples of initially flat buckled beams

with transverse point load applied at the center or just off-center. In both cases the

initially flat beam is first buckled to a rise h = 3 mm. The numerical procedure presented

in [19] is used to trace the equilibrium paths under transverse force.

First we analyze the example with load applied at the center. The force-deflection

curve has a primary path and two mirror image (of each other) bifurcated branches. The

equilibrium path for the beam can follow either only the primary equilibrium path (black

line in Fig. 2a) or it can initially begin on the primary equilibrium path, switch to one

of the bifurcated branches and then return on the primary path (black line in Fig. 3a).

The relationship between the axial and the transverse force at the equilibrium states is

denoted by the black line in Fig. 2b and Fig. 3b respectively. We will refer to these

representations as axial equilibrium plots in the remainder of the paper. In these figures,

the gray lines correspond to equilibrium configurations that are not visited under the load

path followed. The axial equilibrium plots also highlight why the bifurcated branches
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Figure 2: Equilibrium path and axial force for beam buckled to rise = 3 mm subject to transverse mid-

point load ( Equilibrium path followed in simulation, Equilibrium path not followed in simulation),

and the beam deformed shapes at the ZTLCs compared to the Euler buckling mode shapes and the flat

configuration.

are typically preferred by structures in displacement-controlled experiments (experiments

inherently have imperfections), in that they have a significantly lower axial force and

thereby present a lower potential energy barrier.

The ZTLCs are marked with circles in Figs. 2a and 3a. The deformed shapes of

the beam at these crossings correspond to Euler buckling mode shapes or to the flat

configuration (see Figs. 2c-2e and Figs. 3c-3e which show that the deformed shapes are

nominally identical to the Euler buckling mode shapes). Also the axial forces in the beam
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(b) Axial plot
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Figure 3: Equilibrium path (with branch switching) and axial plot for beam buckled to rise = 3 mm

subject to transverse mid-point load ( Equilibrium path followed in simulation, Equilibrium path

not followed in simulation), and the beam deformed shapes at the ZTLCs compared to the Euler buckling

mode shapes. Note that a mirror image of part (d) could also be visited.

correspond to the Euler buckling loads (Figs. 2c, 2e, 3c-3e) or to the axial force required

to perfectly flatten the beam (Fig. 2d).

The Euler buckling mode shapes are given by D sin nπx
L

, where for scaling purposes D

is chosen in each case as the maximum displacement of the deformed shape of the FEM

results. The Euler buckling loads are found through the well known formula PE = n2π2EI
L2 .

For the flattened configuration, the axial force corresponds to the force required to shorten

the beam to a length equal to the distance between the supports (shortening denoted by
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∆L). The estimate based on linear theory for the axial force at this flattened configuration

is given by N = EA
L

∆L, where A is the cross-sectional area. In what follows we will refer

to this axial force as ’squash’ force.
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(b) Axial plot
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Figure 4: Equilibrium path and axial plot for beam buckled to rise = 3 mm subject to transverse load

applied off-center, and the beam deformed shape at the ZTLCs.
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Next we discuss the case where the load is applied off-center. In this case the force-

deflection is more interesting, even when the offset is very small. There is only one equilib-

rium path (Fig. 4a) that passes very near to the original primary and bifurcated branches

(approaching it ever more closely with decreasing load offset), effectively stitching them

together into one single path.

The equilibrium path starts (approximately) in the (stable) first buckling mode, then

passes through the second, then it flattens, after which it passes through the mirror-

image second buckling mode and finally the first buckling mode (i.e., the snapped-through

configuration) (see Figs. 4c- 4g). In other words, when the load is applied off-center the

structure visits all ZTLCs (symmetric and asymmetric).

The axial plot in Fig. 4b shows that at some of the ZTLCs, the curve passes through

the same axial force value (in this case crossings labeled 2 and 4 for instance, or the

pair 1 and 5). This is also seen in Fig. 5 where the bars show the axial force values at

the ZTLCs (black bars) compared to the Euler buckling loads (gray bars). The dashed

line corresponds to the axial ’squash’ force. The middle black bar corresponds to the

maximum axial force at the ZTLCs, and the middle gray bar to the next higher Euler

buckling load which is not reached.

The force corresponding to the dashed line in Fig. 5 is the maximum axial force that

a beam buckled to a specific rise can encounter. Its significance comes from the ability to

predict the highest possible Euler buckling load for a specific geometry (and thereby the

number of ZTLCs on the force-deflection curve) by carrying out a simple calculation that

only uses information about the shortening ∆L.
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Figure 5: Axial force at the ZTLCs for beam buckled to rise h = 3 mm with off-center transverse load

compared to the Euler buckling loads and the force required to flatten the buckled beam.

2.2. Upper bound number of ZTLCs

The number of ZTLCs has an upper bound. We will look next at how the number of

ZTLCs changes in order to estimate the upper bound. Consider the initially flat beam

from the previous examples, buckled to various rises and subject to off-center transverse

load.
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Figure 6: Force-deflection curve (left), axial plot (middle), axial force at ZTLCs (right).
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The force-deflection curve for the buckling-induced rise h = 2 mm is shown in Fig. 6a

and the corresponding axial equilibrium plot in Fig. 6b. The three ZTLCs on the force-

deflection curve are marked with circles. The two stable equilibria correspond approxi-

mately to the first Euler buckling load (two mirror images). On the axial force plot the

gray regions correspond to axial force values in the intervals from zero to the first Euler

buckling load, and from the second Euler buckling load to the third Euler buckling load.

Such a representation allows for an easy comparison between the maximum attainable

axial load in the beam and the Euler buckling loads. For this rise the maximum axial

force in the beam is below the second Euler buckling load. This implies that the structure

will have an axial force at the first crossing equal to the first Euler buckling load, then

at the second crossing an axial force value equal to the ’squash’ force, finally returning at

the third crossing to an axial force equal to the first Euler buckling load (Fig. 6c).

Increasing the buckling rise to h = 2.43 mm leads to the force-deflection curve in

Fig. 6d. In this case, the force-deflection curve has an additional small loop and five

ZTLCs. The axial plot (Fig. 6e) reveals that the maximum axial force value in the beam

is higher than the second Euler buckling load, but below the third Euler buckling load.

The maximum axial force in the beam and the force necessary to flatten it out compare

very well (Fig. 6f). Recall that the analytical expression used to obtain the necessary

force to flatten the beam is just a linear approximation.

The size of the loop in the force-deflection curves increases with an increase in the

buckling-induced rise as long as the maximum axial force in the beam is below the third

Euler buckling load (e.g. see Fig 6d, Fig 6g and Fig 6j).

Further increasing the buckling rise results in axial force in the beam higher than
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the third Euler buckling load (Fig. 6n). Once the axial force is higher than the third

Euler buckling load, another loop appears on the force-deflection curve. Each new Euler

buckling load that can be reached represents a seed for a new loop (and two additional

ZTLCs) on the transverse force-deflection curve.

The axial plots reveal that at the ZTLCs corresponding to symmetric buckling modes

the crossing is shallow, while at the crossings corresponding to asymmetric buckling modes

the crossing is steep. The steepness is influenced by the location of the transverse load,

decreasing with increase in load offset. Finally, the steepness of the curves indicates that

the axial force changes very little throughout asymmetric portions of the equilibrium

paths.

The interaction of Euler buckling and snap-through can be thought of through a

folding-unfolding analogy. The offset point load initially folds the structure by increasing

the spatial wave number (i.e., increasing buckling modes) with each loop before eventually

reaching the flat configuration, after which it unfolds the structure through the mirror

images of the Euler buckling modes into the snapped-through configuration. For example

Fig. 7 shows the details of the path from Fig. 6m. The path starts in the first buckling

mode, then the second, third, and finally the flat configuration before traveling backwards

through mirror images. Additionally, the given 2D projection of the force-displacement

curve is useful in identifying the alternating nature of the asymmetric and symmetric

ZTLCs, as the asymmetric crossings have zero mid-span displacement.
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Figure 7: Equilibrium path for beam buckled to rise = 4 mm subject to transverse load applied off-center,

and the beam deformed shape at the ZTLCs.

These results show that there is an upper bound on the number of ZTLCs for a

buckled beam. This bound depends on the maximum axial load in the buckled beam.

The shortening ∆L allows for the rapid calculation of the maximum possible axial force,

which facilitates the comparison with the Euler buckling loads. Once the maximum Euler

load at the ZTLCs is known, it is straightforward to find the upper bound number of

ZTLCs (or the number of equilibrium configurations present without transverse loading).

We can write the inequality n2π2EI
L2 ≤ EA∆L

L
. From this inequality we obtain nmax

corresponding to the maximum Euler force as |nmax| ≤
√

AL∆L
π2I

where nmax is the

largest integer number satisfying the inequality. If nmax satisfies the equality exactly,

i.e., |nmax| =
√

AL∆L
π2I

, then the maximum number of ZTLCs is equal to 2nmax − 1 since

each buckling mode is visited twice, except the highest mode, which in this case coincides
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with the flat configuration and therefore is visited only once. However, if |nmax| <
√

AL∆L
π2I

, the maximum number of ZTLCs is then 2nmax+1 , consisting of the flat configuration and

nmax buckling modes with each buckling configuration visited twice. Knowing this upper

bound is useful, since for a certain rise it provides insight into the degree of instability of

the system before running any simulations. Additionally, the maximum number of mode

shapes may prove useful in the reduced order modeling or other modal Rayleigh-Ritz type

solution methods.

The calculation of ∆L will depend on the type of loading. In the analysis herein, the

beams were buckled by applying an end displacement (as an initial step prior to applying

transverse load), and therefore ∆L was immediately available as the displacement of the

end node. In the case of thermal buckling, the shortening is given by ∆L = αL∆T where

α is the coefficient of thermal expansion and ∆T is temperature change. Finally, in the

case of initially unstressed curved beams, the ∆L could be determined by calculating the

arc-length of the curved beam, and subtracting from it the distance between the supports

(although, as stated earlier the results only hold nominally for curved beams).

3. Influence of parameters

In this section we analyze the effects that the geometric parameters and the location

and type of the transverse load have on the force-deflection curve and on the number of

ZTLCs.

3.1. Effect of rise/thickness

As shown in the previous section, the rise to which a flat beam is buckled influences the

force-deflection curve under transverse loading and consequently the number of ZTLCs.
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Fig. 8 shows the equilibrium paths as the buckling-induced rise increases. The curves

obtained become more complex and the number of ZTLCs increases. It is worth noting

that the difficulty in tracing the equilibrium paths also increases with the number of

crossings. This is not related to the robustness of the algorithm chosen to trace the

equilibrium path, but to the fact that for higher buckling-induced rises the force-deflection

curves have more loops that are closer to each other, thus increasing the probability of

jumping from one loop to another. The axial plots also become more complex, reflecting

the increased number of ZTLCs (Fig. 9).

The relative error (Fig. 10) between the axial load at the ZTLCs and the Euler buckling

loads is a metric that reflects the influence of the buckling-induced rise. The relative load

error is represented with diamonds for the symmetric modes and with squares for the

asymmetric modes. As the rise reduces, the axial load values at the ZTLCs approach

the Euler buckling loads. The relative difference between the axial load at the crossing

corresponding to the flat configuration and the load to flatten the buckled beam also

decreases as the buckling-induced rise approaches the flat configuration. The reason

for the larger error for deeper arches is likely due to the simple fact that the equation

EIy(IV ) + Py′′ = 0 (with appropriate boundary conditions) from which Euler buckling

modes are derived is only accurate for small deformations.

For a specific rise, the relative error of the axial force at the zero crossing configura-

tions decreases as the mode is higher. This is somewhat expected since the load values

(and hence the denominators) increase for higher modes, and the magnitude of the de-

formation decreases, making the linear approximation more accurate. The insensitivity

of the axial force to changes in the transverse force over the asymmetric parts of the
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equilibrium path is a possible explanation for the lower errors of the asymmetric modes.

The deformed configurations at the ZTLCs also match the mode shapes very well (the

errors
∫ L
0 (y(x)−yE(x))2dx

L
are below 1.5% of the rise for all cases (and usually much lower),

where y(x) is the deformed shape of the beam at a ZTLC, and yE(x) is the Euler buckling

mode of a beam with equivalent length).
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Figure 8: Equilibrium paths for initially flat buckled beams at different rises subject to transverse off-

center load.
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Figure 10: Relative error between Euler buckling loads and axial force at ZTLCs for initially flat buckled

beam with transverse off-center load.
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The geometric parameters of the beam influence the force-deflection curve under trans-

verse loading. These parameters are not independent. For the purpose of this study,

increasing the axial stiffness (in this particular case changing only the area) or increas-

ing the buckling-induced rise have the same effect on the number of loops in the force-

displacement curves [23]. The parameter study was therefore focused only on the variation

of the rise.

3.2. Effect of load offset and type

In this paper we have up to this point considered a flat buckled beam that is subjected

to a transverse point load applied at the center or slightly off-center. We next investigate

how the location of the transverse force affects the force-deflection curve and which of

the possible ZTLCs are visited by a particular path-following regime. Figs. 11(a) - 11(c)

show the equilibrium paths (transverse force against displacement at the middle point)

for a beam buckled to rise h = 8 mm at increasing offset values starting with no load

offset, then a very small offset and finally a large offset. Although the force-deflection

curves change with the offset, the load offset does not influence the number of ZTLCs,

nor does it change the fact that the axial force values at these ZTLCs correspond to the

Euler buckling loads. Moreover, regardless of the load offset, all ZTLCs have the same

mid-point deflections as indicated by the vertical dashed lines in Fig. 11. The main

difference between force-deflection curves for the symmetric mid-point load and for the

load with an offset is that for perfectly symmetric load patterns the asymmetric buckling

configurations are not captured without branch-switching routines.

Next we examine the influence of the load pattern by applying a transverse distributed

load instead of a point load (Figs. 11(d) - 11(e)) and observe that the ZTLCs on the force-
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deflection curve still have the same mid-point deflections. Therefore, we also conclude that

the load type does not influence the location of the crossings. Similarly with the point-

load patterns, the asymmetric buckling configurations are not visited when a symmetric

distributed load pattern is applied.

The axial force values at the crossings in Figs. 11(b), (c), (e) and (f) compared to

the Euler buckling loads corresponding to symmetric and asymmetric mode shapes are

shown in Fig. 12. For a center point load (Fig. 11(a)) or a uniformly distributed load

(Fig. 11(d)) all the deformed shapes at the ZTLCs are the symmetric mode shapes.

23



-5

0

5

fo
rc

e
 [
N

]

-5

0

5

fo
rc

e
 [
N

]

-5

0

5

displacement at mid-point [mm]

fo
rc

e
 [
N

]

-30

-20

-10

0

10

20

30

displacement at mid-point [mm]

w
  
[N

/m
]

-30

-20

-10

0

10

20

30

displacement at mid-point [mm]

w
  
[N

/m
]

-10 -5 0 5 10

-50

0

50

displacement at mid-point [mm]

w
  
[N

/m
]

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Equilibrium path for beam buckled to rise = 8 mm subject to various force patterns.
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subject to transverse load (point load or distributed load).

4. Discussions

The results of this work indicate that all of the Euler buckling loads and corresponding

mode shapes are connected via the transverse force-displacement path of a beam in the

limits: (i) infinitesimal initial rise induced by axial buckling just beyond the first Euler

buckling load, and (ii) infinite axial stiffness. Beyond these limits, the Euler buckling

relationship provides reasonable estimates of the axial load in the beam at the ZTLCs

(with errors of < 10% for rise-to-span ratios of up to 1/10 and typically much lower than

1%). Additionally, the method allows for a rapid prediction of the number of “loops”

in the force-displacement curve of post-buckled beams by comparing the Euler buckling

loads with the axial force of the “flattened” beam.

The ZTLCs of the force-displacement relationship present an interesting window into

the potential energy surface of curved and buckled structures. This is because at the
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ZTLCs, the pattern of the forcing does not matter as the overall load is zero. The

authors conjecture that the ZTLCs visited on the force-deformation paths constitute all

of the possible unloaded equilibrium configurations when small asymmetries are induced

in the loading. This cannot be guaranteed from the work shown, nor is it guaranteed

by the fact that the Euler buckling loads can be used to estimate the number of ZTLCs.

This latter point is due to the fact that Euler-Beroulli beam theory is formally correct

for linear behavior, and thus arches of very deep rise could potentially exhibit additional

stationary points that are fundamentally different than buckling modes (e.g. they could

have shapes that do not resemble symmetric or asymmetric buckling modes), with very

different bifurcation behavior.

The results presented in the paper are limited to structures with no geometric im-

perfections. This was done intentionally in order to allow for an exact comparison with

the classical Euler buckling. However, in many applications it is difficult to control the

dimensions of the beams, and the uncertainties in the geometric parameters in the fab-

rication process can affect the responses predicted for curved structures. Imperfections

were not directly examined, but they are worthy of further study, since they would change

the nominal behavior.
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