


Abstract

Magnetic frustration, Kondo effect, and

superconductivity in strongly correlated electron

systems

Patricia Bilbao Ergueta

The substantial effect of quantum fluctuations in strongly correlated electron

materials often results in a rich phase diagram with many interesting states of matter.

This thesis aims to study some of the mechanisms that give rise to such phenomena.

In Part I, we focus on iron-based superconductors, and use bilinear-biquadratic

spin models to study the different magnetic orderings present in both iron pnictides

and chalcogenides, specifically FeSe and Fe (Te1−xSex). After benchmarking different

methods for the theoretical representation of electron spins, we find our models give

good qualitative descriptions of the phases observed in the aforementioned materi-

als. We also find that the dynamical spin structure factors are in agreement with

experimental inelastic neutron scattering (INS) results.



In Part II, we switch our focus to so-called heavy fermion materials, where the

strong interactions between electrons endow the charge carriers with a very heavy

mass. In particular, we investigate the multichannel Kondo model, which is appro-

priate to describe real materials with multiple conduction electron bands. When just

enough of these bands are present to exactly screen the impurity spin, the heavy

fermion Fermi liquid state is formed. We present a novel technique for solving this

problem in both one- and two-impurity systems. In the latter case, we quantify the

transition from the phase with strong magnetic correlations between the two local

moments to the heavy fermion Fermi liquid regime. Extending this model further,

we aim to capture the superconducting correlations between the conduction elec-

trons on the two impurities. Using the language of auxiliary particles, called bosons

and holons, we find that superconductivity does indeed arise in the region where

correlations between bosons and between holons are both present, provided that an

attractive interaction between the latter exceeds a certain minimum value.

The phenomena described in this thesis provide just a few examples that showcase

the richness in the quantum world of strongly interacting particles. We hope that

the theoretical methods developed in this work will help shed more light on these

quantum phenomena.
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Part I

Magnetic frustrations on a square

lattice and application to

iron-based superconductors

1



Chapter 1

Origin and Models of Magnetic

Frustration

1.1 Magnetic Couplings

The magnetic interactions that arise at the atomic level in materials originate

from properties in principle, not necessarily related to magnetic phenomena. Loosely

speaking, when deriving the main different types of magnetic couplings that we find

in materials, one needs to consider both the Coulomb interaction energy and the

kinetic energy of the electron hopping between sites, along with the Pauli Exclusion

Principle. Of course, all the exchange mechanisms described below are just idealized

versions of the actual phenomena that are found in real materials and, as such, must

only be taken as approximations.
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1.1.1 Direct (Coulomb) Exchange

The direct exchange (also called Coulomb exchange due to the vital role that

this force plays in the mechanism) is due to the interplay of repulsion that electrons

feel against each other and their fermionic nature. The effect of the direct exchange

is best understood considering the limit case of two electrons with single-particle

orbitals that are nearly degenerate. Their space wave functions would then be almost

orthogonal but highly overlapping at the same time.

In this situation, the larger the probability to find the electrons close together,

the stronger the contribution from the electromagnetic repulsion to the total energy

will be. This is when the Pauli Exclusion Principle comes into play. Because two

electrons of the same spin will avoid occupying the same position in space, the

repulsive interaction energy will be minimized in the case where the two electrons

are in a triplet state. Mathematically, the symmetric nature of the spin wave-function

forces the spatial wave-function to be antisymmetric, which must vanish at its center,

which ensures that the two electrons never meet.

One of the clearest examples of the direct exchange in action is, probably, Hund’s

first rule and second rules [1], which describe the aforementioned phenomenon for

any number of degenerate orbitals, giving preference to electrons occupying different

orbitals with the same spin before admitting any double occupations.

1.1.2 Kinetic Exchange

The kinetic exchange also shows the Pauli Exclusion Principle at work but, in

this case, when it’s applied to the hopping of electrons between atomic sites. In a
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second order process, electrons can virtually hop momentarily to a neighboring site

and in doing so, spread out its position, reducing the total energy. However, hopping

to nearest-neighbors with the same spin is prohibited by the Exclusion Principle, so

that an antiferromagnetic order is promoted in compounds that benefit from this

mechanism.

The simplest case in which one can see this mechanism in action, described by

Heitler and London[2] in 1927, is the H2 molecule. On a lattice, however, this

phenomenon is realized in Hubbard’s model[3, 4, 5]:

H = −t
∑
<i,j>

∑
σ=↑↓

(
c†iσcjσ + ciσc

†
jσ

)
+ U

∑
i

ni↑ni↓ (1.1)

Where U represents the Hubbard energy, which comes from electron-electron re-

pulsion, while t is the electron hopping energy. In this case, the decrease in energy

can easily be calculated to second order and takes the value: J = 4t2

U
. This results

in an effective Heisenberg Hamiltonian:

H = J
∑
i,j

Si · Sj, (1.2)

Superexchange

In materials where orbital localization suppresses the hopping between sites, the

above mechanism is not feasible as is. However, a fourth order process of virtual

hopping can occur between neighboring orbitals, with eventually also results in an
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effective antiferromagnetic exchange.

This phenomenon is observed in transition metal compounds with very localized

d-orbitals in cations, where an indirect exchange by means of the anion orbital is

responsible for this superexchange [6, 7].

1.1.3 Double (Indirect) Exchange

In contrast to the direct exchange mentioned above, the double exchange mech-

anism acts indirectly through a combination of the Direct (Coulomb) exchange on

an atom and the kinetic coupling to neighbors via electron hopping. The Kondo

coupling is a manifestation of this double exchange. Although we will devote Part

II of this manuscript to the study of a certain version of the Kondo Hamiltonian, we

briefly touch of how the RKKY interaction arises from the Kondo coupling.

The RKKY interaction

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, taking its name from

the contributors to its derivation [8, 9, 10], is a second order effect of the Kondo ex-

change between magnetic ions and charge carriers. The Kondo mechanism induces

Friedel oscillations [11] in the spin density by polarizing the conduction electrons

around said ion. This new spin distribution then will interact with another, neigh-

boring ion in the lattice. It is worth noting that the RKKY coupling can be either

ferro- or antiferromagnetic in nature since its sign depends on the distance between

the impurities involved in the exchange.
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1.2 Geometric frustration

In a lattice of localized spins, one or more of the exchanges described in the

previous section will coexist, coupling spins to successive neighbors in the lattice.

When all of the interactions are ferromagnetic, the ground state of the system is

trivial since having all of the lattice spins aligned in the same direction will always

minimize the ground state energy. However, if at least some of the exchanges between

spins are antiferromagnetic, it is sometimes not possible to minimize the energies of

all bonds at the same time. This is what we call geometric frustration.

1.2.1 Triangular Lattice

The quintaessential system used to illustrate frustation is probably that of a

triagular lattice with an Ising Hamiltonian [12]:

H = J
∑
<i,j>

σiσj, (1.3)

where σi,j can only take two values: σi,j = ±1. Looking at just one of the Ising

triangles (see Fig. 1.1), one can easily understand where the problem lies.

While we can always minimize the interactions between two of the bonds, when it

comes to choosing the orientation of the spin on the remaining, third site, any option

will leave us with a penalty in energy due to the necessary ferromagnetic alignment

of one of the bonds.
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Figure 1.1: Two possible configurations of an antiferromagnetic Ising triangle.

1.2.2 The J1 − J2 Model on a Square Lattice

For the case of the Heisenberg interactions described above, the simplest model

that showcases frustration is that of competing antiferromagnetic interactions to

nearest and next-to-nearest neighbors (J1 and J2, respectively):

H = J1

∑
<i,j>

Si · Sj + J2

∑
<<i,j>>

Si · Sj, (1.4)

In order to figure out the ground state of this system, we can study the smaller

case of a square plaquette. Here, in the limit where J1 >> J2, all of the spins can form

an antiferromagnetic bond with their nearest neighbors and the energy penalty due

to the next-to-nearest neighbor ferromagnetic bonds is negligible since J2/J1 << 1.
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Figure 1.2: Two possible configurations of the frustrated Heisenberg square plaque-
tte: a) Néel order and b) columnar antiferromagnetic order.

For the particular case where J2 vanishes completely, we have a perfect example of

a system with antiferromagnetic (AFM) couplings but no frustration. That is, at

least one AFM exchange is needed to generate frustration in a system, but AFM

couplings don’t guarantee frustration. This type of arrangement in a lattice is called

Néel ordering.

In the opposite limit, when J2 >> J1, the coupling between nearest neighbors is

negligible and the two sublattices effectively decouple. Now, in principle, this would

leave the angle between the aforementioned sublattices as a free parameter, allowing

any orientation between nearest neighbors (provided that the rest of the sublattice

follows this axis). However, it turns out that through the so-called order by disorder

mechanism [13, 14], quantum fluctuations favor the coplanar arrangements, giving
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the lattice what is called a columnar antiferromagnetic ordering. This consists of

ferromagnetically aligned spin stripes arranged in an alternating order, so that the

bonds in the axis perpendicular to the stripes are all antiferromagnetic.

Throughout this work, we will build upon this basic frustrated Hamiltonian into

more complex models including Heisenberg couplings to further neighbors in the

lattice and between planes, as well as terms with a coupling biquadratic on the spins,

since we will be working with spin values larger than S > 1/2. Biquadratic terms

are unnecessary for the case of S = 1/2 since their only effect is to renormalize the

value of the preceeding Heisenberg coupling and accordingly, don’t introduce any

new physics.



Chapter 2

Magnetism and frustration in

iron-based compounds

2.1 General properties of the iron-based compounds

The discovery of high-Tc superconductivity in iron-based compounds [15, 16]

gathered plenty of attention around these materials, in part due to their shared

characteristics with the cuprate superconductors.

Although the specifics of each compound vary, all iron-based superconductors are

quasi-two-dimensional crystals with stacked iron-pnictogen or iron-chalcogen planes

[see panel a) in Fig. 2.1]. It is the spins in the iron sites [see panel b) in Fig. 2.1]

that exhibit the long-range ordering, with the upper and lower pnictide or chalcogen

element atoms helping to mediate the exchanges between them.

Just like their antecessors [17], the ground state of the iron-based parent com-

10
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Figure 2.1: a) Plane structure of a generic iron-based superconductor. b) Upper view
of said plane. It is spins in the Fe sites that acquire long-range order.

pounds is antiferromagnetically ordered [18]. However, while the former exhibit a

regular Neél pattern, the latter can take on a wide variety of spin structures, which

we will study in Chapters 4 and 5 below.

2.2 Iron pnictides

The ground state of the parent compounds of iron pnictide superconductors is

a columnar antiferromagnet (CAFM), a structure consisting of stripes of spins of

opposite orientation [see panel b) in Fig. 1.2] and with an ordering wave vector

of Q = (π, 0) or Q = (0, π). In their transition from a paramagnetic to an AFM

regime, the pnictides also experience a structural transition from a tetragonal to

an orthorhombic phase. However, the two transition temperatures, TN and Ts, re-

spectively, do not coincide. While Ts ≥ TN , the close proximity between the two

temperatures obscures the specific origin of this transition. Above the structural

transition, INS experiments have found that the C4 symmetry remains broken. In-

deed, Lu et al. [19] observed nematic fluctuations up to a temperature T ∗, well above
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both the magnetic and structural transition temperatures.

In addition to their magnetic properties, the iron pnictide family exhibits a “bad

metal” behavior, which several authors [20, 21, 22, 23] have explained through a

possible proximity of the parent compounds to a Mott localization transition. Ev-

idence towards this prediction comes from the suppression of the Drude peak in

optical conductivity measurements [24, 25] and the spectral weight transfer induced

by temperature [26, 27].

2.3 Iron chalcogenides

Despite their multiple similarities, the iron chalcogenides exhibit certain impor-

tant behaviors that contrast with those in the iron pnictides studied above. Namely,

the chalcogenides are much more correlated materials than the pnictides and their

magnetic orderings greatly differ as well.

While the ground state of the iron pnictides’ parent compounds is always a colum-

nar antiferromagnet (CAFM) [18, 28, 29] with alternating stripes of opposite spins,

the magnetic ordering found in the ground state of Fe1+yTe has a double stripe

structure instead [30, 31, 32]. However, not all chalcogenide compounds exhibit

the same (if any) magnetic ordering. Upon doping the aforementioned compound

with Selenium in order to obtain Fe(Te1−xSex), the long-range order disappears

[33, 34, 35, 36, 37] at a certain concentration x and all the way up to FeSe. However,

INS studies have found large finite-energy spectral weight at wave vectors character-

istic of a CAFM in the latter compound [38, 39, 40], which suggests the proximity
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to this particular magnetic ordering. Indeed, magnetism can actually be induced by

applying hydrostatic pressure to the FeSe samples [41, 42, 43, 44].



Chapter 3

Theoretical methods for the study

of magnetic frustrations

3.1 Hamiltonian models

The two types of Hamiltonian terms we will work with are the usual Heisenberg-

like term, bilinear in the spin operators:

Hbl = J
∑
i,j

Si · Sj, (3.1)

And a biquadratic term with a coupling of value K:

14
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Hbq = K
∑
i,j

(Si · Sj)2 . (3.2)

We detail the specific motivations for including terms of this type below, in

Section 4.1. Unlike the Heisenberg coupling J above [of order O(S0)], we will take

K to be of order O
(

1
S2

)
. This will become relevant when discussing the methods

involving a semi-classical, large-S approach, which will involve expansions up to

different orders of the parameter 1
S

. In practice, it will be useful to use the expanded

form of these terms using the Sz, spin “raising” and “lowering” operators:

S+ ≡ Sx + iSy (3.3)

S− ≡ Sx − iSy, (3.4)

In the case of ferromagnetic ordering, the expression for the dot product is ob-

tained immediately:

(Si · Sj)FM =
1

2

(
S+
i S
−
j + S−i S

+
j

)
+ Szi S

z
j . (3.5)

In the antiferromagnetic case, however, we deal with a bipartite lattice (i ∈ A,

j ∈ B). Because of the opposite spin orientations between sublattices A and B

we must first perform a π rotation along one of the axis perpendicular to the spin
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ordering vector on one of them. Without loss of generality, we choose to rotate the

axis for sublattice B around the x̂ direction, which sends the spin components to:

Sxj → Sxj , S
y
j → −S

y
j , S

z
j → Szj (3.6)

S+
j → S−j , S

−
j → S+

j . (3.7)

This finally leaves us with the following expression for the dot product in the case

of an antiferromangetic ordering:

(Si · Sj)AFM =
1

2

(
S+
i S

+
j + S−i S

−
j

)
− Szi Szj . (3.8)

We now go on to describe some of the main approaches to tackle this problem

using various bosonic spin representations.

3.2 Holstein-Primakoff representation (spin waves)

One simple approach for describing systems with a broken symmetry is to study

the quantum fluctuations around the classic value of the order parameter. In the

case of spin systems, we call these fluctuations spin waves. The simplest method to

describe these spin fluctuations was introduced by Holstein and Primakoff [45]. They

chose the following representation for the spin components in terms of the bosonic

operator a:
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S+ =
(√

2S − a†a
)
a (3.9)

S− = a†
√

2S − a†a (3.10)

Sz = S − a†a (3.11)

,

where, without loss of generality, the broken symmetry of the spin has been taken

along the z-axis.

Intuitively, na ≡ a†a describes the quantized “number” of deviations from the

classically ordered spin, resulting in a reduced value for the spin component Sz ≤ S.

For their part, S+ and S− destroy and create a fluctuation “unit” respectively. This

is consistent with the spin component being raised by S+ and lowered by S−.

Because the z-component of spin has a minimum value of SZmin = −S, the Fock

space must be reduced to:

{|na〉} = {|0〉 , |1〉 , . . . , |2S〉} (3.12)

if one wishes to retain a physical solution. It’s precisely the square roots (
√

2S − na)

in the definitions of the raising and lowering spin operators that act as projectors

to ensure the resulting states belong to the aforementioned reduced, physical Fock

space.

Spin wave theory, being semi-classical in nature, approaches the problem using

a large-S approximation. Thus, the usual techniques involve expanding the square



18

root
√

2S − a†a in powers of O
(

1
S

)
:

√
2S − a†a '

√
2S

(
1− a†a

4S
− a†aa†a

32S2
+ · · ·

)
(3.13)

up to the desired order. This, or course, destroys the constraint on the Fock space

so that it is now necessary to check that the final results remain physical.

3.2.1 Linear Spin Waves (LSW)

The lowest truncation, up to O(S) gives the following bilinear and biquadratic

Hamiltonians:

HFM
bl = NJS2 − JS

∑
<i,j>

(
a†iai + a†jaj

)
−
(
a†iaj + a†jai

)
(3.14)

HAFM
bl = −NJS2 + JS

∑
<i,j>

a†iai + a†jaj + a†iaj + a†jai (3.15)

HFM
bq = NKS4 − 2KS3

∑
<i,j>

(
a†iai + a†jaj

)
−
(
a†iaj + a†jai

)
(3.16)

HAFM
bq = NKS4 − 2KS3

∑
<i,j>

a†iai + a†jaj + a†iaj + a†jai, (3.17)

where we have used the fact that the biquadratic coupling is or the order K ∼

1/S2 and N is the total number of sites. All these can be solved exactly in both

cases. In particular, due to the appearance of off-diagonal terms, we must use a



19

Bogoliubov transformation in the antiferromagnetic case. This will be necessary on

any system whose Hamiltonian has at least one antiferromagnetic term.

3.2.2 Non Linear Spin Waves (NLSW)

Going one order further [O(S0)] leaves us with the following terms instead:

(Sr · Sr′)FM =S2 − S
[(
a†rar + a†r′ar′

)
−
(
a†rar′ + a†r′ar

)]
+ a†ra

†
r′arar′−

− 1

4

(
a†ra

†
rarar′ + a†ra

†
r′arar + a†ra

†
r′ar′ar′ + a†r′a

†
r′arar′

)
(3.18)

(Sr · Sr′)AFM =− S2 + S
(
a†rar + a†r′ar′ + arar′ + a†ra

†
r′

)
− a†ra

†
r′arar′−

− 1

4

(
a†rararar′ + a†ra

†
ra
†
r′ar + a†r′arar′ar′ + a†ra

†
r′a
†
r′ar′

)
(3.19)
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[
[(Sr · Sr′)2]FM = S4 − 2S2 (S − 1)

[(
a†rar + a†r′ar′

)
−
(
a†rar′ + a†r′ar

)]
+

+ S2
(

1 + 6a†ra
†
r′arar′

)
− S2

[
5

2

(
a†ra

†
rarar′ + a†ra

†
r′arar + a†ra

†
r′ar′ar′ + a†r′a

†
r′arar′

)
−

−
(
a†ra

†
rarar + a†r′a

†
r′ar′ar′ + a†ra

†
rar′ar′ + a†r′a

†
r′arar

)]
(3.20)

[
(Sr · Sr′)2]AFM = S4 − 2S2 (S − 1)

(
a†rar + a†r′ar′ + arar′ + a†ra

†
r′

)
+

+ S2
(

1 + 6a†ra
†
r′arar′

)
+ S2

[
5

2

(
a†rararar′ + a†ra

†
ra
†
r′ar + a†r′arar′ar′ + a†ra

†
r′a
†
r′ar′

)
+(

a†ra
†
rarar + a†r′a

†
r′ar′ar′ + ararar′ar′ + a†ra

†
ra
†
r′a
†
r′

)]
(3.21)

One then can use Wick’s theorem to decouple all terms and recover a Hamiltonian

bilinear in the creation and anihilation operators a†r and ar. In this decoupling, we

introduce the following averages:

n =
〈
a†rar

〉
fr̂ =

〈
a†rar+r̂

〉
=
〈
ara

†
r+r̂

〉
gr̂′ = 〈arar+r̂′〉 =

〈
a†ra

†
r+r̂′

〉
.

(3.22)

Here, fr̂ measures the correlations between neighbors along an axis given by the

director r̂ where the bonds are ferromagnetic. The parameter gr̂′ does the same
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job for an axis of antiferromagnetic bonds. The anomalous form of this average

is only due to the rotation of π performed on one of the sublattices in the case of

antiferromagnetic orderings. Once decoupled, the system can then be solved with a

series of self-consistent equations whose form depends on the particular Hamiltonian.

However, if one wishes to save themselves some work, there is a way to simplify

these calculations. By using the so-called Hubbard-Stratonovich transformation to

decouple the biquadratic terms as follows:

(Sr · Sr′)2 ' 2 〈Sr · Sr′〉Sr · Sr′ − 〈Sr · Sr′〉2 , (3.23)

Where the Hubbard-Stratonovich averages themselves can also be expressed in

terms of the order parameters we described above.

Γr̂ = 〈Sr · Sr+r̂〉 = (S − n+ fr̂)2

Γr̂′ = 〈Sr · Sr+r̂′〉 = − (S − n− gr̂′)2 .

(3.24)

Again, r̂ denotes a direction along which the bonds between spins are ferromag-

netic and r̂′ indicates an antiferromagnetically aligned axis instead. In what follows,

we will call this last method, the Hubbard-Stratonovich (HS) or simply decoupled

(SD) approach, in order to distinguish it from the full decoupling (FD) used orig-

inally. As we will see in Section 3.2.3, using the HS simplification comes at the

expense of sacrificing some of the accuracy in the results. The rest of the details for

this method, which depend on the particular Hamiltonian, are described on Appendix

A.
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3.2.3 Comparing the different order results

Before we proceed further, it is useful to compare the effects of higher order

expansions with those of the regular linear spin-wave theory (LSWT). To do so, we

use one of the simplest models to include both frustration and a biquadratic coupling:

H = J1

∑
<i,j>

Si · Sj + J2

∑
<<i,j>>

Si · Sj −K
∑
<i,j>

Si · Sj (3.25)

We study this Hamiltonian on a square lattice, in the J2/J1 > 1/2 regime, where

the system acquires an antiferromagnetic columnar order at T = 0 and plot the

results of the two approaches to the NLSW as well as the LSW dispersion for the

cases of spin S = 1 (Fig. 3.1) and S = 2 (Fig. 3.2).
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Figure 3.1: Dispersions using results from the linear spin waves and both approaches
to the non-linear spin waves for the case of S = 1.
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Figure 3.2: Dispersions using results from the linear spin waves and both approaches
to the non-linear spin waves for the case of S = 2.
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Immediately, we can appreciate the big improvement that the FD method offers

over the HS approach. Indeed, save for the lifting of the goldstone mode at (π, π), the

results obtained using a HS transformation almost overlap with the LSW dispersions

for all K values. In particular, they replicate[46] the appearance of maximum at the

zone boundary [M = (π, π)] with an increasing value of K.

On the other hand, the dispersions that we obtain with a FD correctly account

for quantum fluctuations. This results on the suppression of the aforementioned

maximum, with a local minimum being observed at the (π, π) point for all values of

K.

Finally, while the discrepancies between the HS (along with the LSW) results

and those obtained with a FD increase with the value of K in both cases, the overall

differences are smaller in the case of S = 2 than that of S = 1, indicating a smaller

effect of quantum fluctuations in the former system. This accounts for the fact that

increasing values of spin get progressively closer to the large-S limit, thus approaching

a more classical behavior where quantum fluctuations acquire a more secondary role.

3.3 Dyson-Maleev (DM) bosons

Developed by Dyson and Maleev [47, 48, 49] in 1956-57, the Dyson-Maleev bosons

offer a representation of spin where no expansion around any small parameter is

needed. Because the expressions are obtained by slightly modifying those given by

Holstein and Primakoff, this representation is sometimes given the name of “modified

spin wave”. Ironically, the motivation behind the Dyson-Maleev bosons is precisely
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to abandon a semi-classical approach in favor of a mean field technique that allows us

to study a spin system even in regimes with no broken symmetry, precisely where the

spin wave small fluctuation approach does not work. Because of this, we will use the

Dyson-Maleev bosons both in magnetically ordered phases as well as in paramagnetic

regimes. The spin operators are now defined as follows:

S+ =
√

2S

(
1− a†a

2S

)
a

S− =
√

2Sa†

Sz = S − a†a

(3.26)

The square roots present in the Holstein-Primakoff approach have now disap-

peared but the price to pay is that the spin “raising” and “lowering” operators are

not conjugates of each other anymore. However, when applying this representation

to both bilinear and biquadratic terms, the Hamiltonian remains hermitian, so that

we can proceed with the method at hand. Just like in the case of the non-linear spin

waves, this technique leads to terms with more than two bosonic operators, which we

must decoupled in order to obtain a solvable, bilinear effective Hamiltonian. Both

the HS and FD approaches are possible here but we restrict ourselves to the latter

due to its proven superior accuracy. Specific details can be found in Appendix B.
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3.4 Schwinger bosons

Unlike all previously described approaches, the Schwinger boson representation

introduces two different bosonic operators, a and b to describe the spin components:

S+ = a†b (3.27)

S− = b†a (3.28)

Sz =
1

2
(a†a− b†b) (3.29)

Intuitively, a† creates on “unit” of spin up and b† does the same for a spin down.

As such, the total number of bosons in both modes must satisfy: na + nb = 2S [see

panel a) in Fig. 3.3]. Just like in the case of the Dyson-Maleev representation, this

approach can be used for paramagnetic regimes as well as magnetically ordered ones

due to the lack of an expansion around a small parameters. However, if one decides

to do so, it is possible to condense one of the bosons by expressing its value in terms

of fluctuations in the remaining mode: a =
√

2S − nb. By doing so, we immediately

recover the Holstein-Primakoff representation above.

3.5 Generalized spin waves (flavor waves)

In the case of the Schwinger bosons above, the spin operators are always given by

the same expressions, using an SU(2) representation To derive the generalized spin
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waves however, we start by a generalized SU(N) representation of the spin operators:

Sxmm′ =δm(m′−1)

√
(m+ 1)(2S −m)

2
+

+ δ(m+1)m′

√
(m′ + 1)(2S −m′)

2

Symm′ =δm(m′−1)

√
(m+ 1)(2S −m)

2i
−

− δ(m+1)m′

√
(m′ + 1)(2S −m′)

2i

Szmm′ =δmm′(S −m)

(3.30)

The constraint on the physical space is now given by:

N−1∑
m=0

b†rmbrm = NS (3.31)

By condensing one of the bosons, one can then expand its corresponding operators

using an approach similar to that of the Holstein-Primakoff representation.

b†r0 = br0 =

√√√√1−
N−1∑
m=1

b†rmbrm ' 1− 1

2

N−1∑
m=1

b†rmbrm (3.32)

In order to work with both magnetic and non-magnetic phases alike, it is useful

to recast the Jij−Kij model in terms of the traceless symmetric quadrupolar tensor:
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Qαβ = SαSβ + SβSα − 2

3
S(S + 1)δαβ, (3.33)

whose 5 independent components can be cast into the following 5-component vec-

tor Q ≡
[
(Qxx −Qyy)/2, (2Qzz −Qxx −Qyy)/2

√
3, Qxy, Qyz, Qxz

]
. Using the iden-

tity: 2(Si · Sj)2 = Qi ·Qj − Si · Sj + 8
3

for the case of S = 1, a general Jij − Kij

Hamiltonian can be written as follows:

H =
1

2

∑
i,j

(
Jij −

Kij

2

)
Si · Sj +

1

4

∑
i,j

Kij

(
Qi ·Qj +

8

3

)
. (3.34)

We note that a biquadratic term results in an effective renormalized coupling

Jij − Kij
2

, similar to those in Section 3.2.3. The specific spin wave dispersions for

each particular model described in the chapters below can be found in Appendix C.

3.6 Side-by-side

The earlier differences between the two approaches to NLSW are reminiscent of

the work by Stanek et al. [46], who compared the dispersions obtained with a full

decoupling of the Dyson-Maleev bosons with those of the usual Schwinger boson

approach. In a similar analysis, we compare those same Dyson-Maleev results with

those of the remaining spin representations described above [see panel a) in Fig. 3.4].

Note that in the case of the GSW we only plot the dispersion corresponding to the

lowest energy mode.



30

Figure 3.3: The Schwinger boson approach (left) allows only for fluctuations around
the classical vector field. For S = 1, the GSWT (right) includes an extra mode of
fluctuations that don’t modify the value of Sz. The constraint on the physical space
still remains, so that the maximum number of fluctuation units (the steps, in this
simplified representation) is still 2S.

Just as the full decoupling (FD) of the Holstein-Primakoff (HP) bosons, both of

the newly added methods (namely, the FD of the DM bosons and the GSW) give

an accurate estimate of the effect of quantum fluctuations, evidenced again by the

suppression of the maximum at the zone boundary. In the case of the DM approach,

this is due to the use of a full decoupling of the biquadratic term, which allows us to

account for all spin correlations. In the case of the GSW, the correct dispersions are

a result of including the most general order parameter, in contrast with the expansion

around only the classical vector field used in all other methods. As an aside, the

dispersions resulting from a FD of the HP bosons seem to actually overestimate the
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Figure 3.4: a) Dispersion for all the described spin representations. In b), we plot the
value of the normalized dispersion maxima for increasing values of the biquadratic
coupling K.

effect of quantum fluctuations compared to other methods. This could be attributed

to the absence of all the necessary dispersion modes, which the GSWT correctly

accounts for.

To put an end to our analysis and in the interest of completeness, we briefly touch

on the result for a simpler J −K model with a Néel ground state:

H = J
∑
<i,j>

Si · Sj −K
∑
<i,j>

Si · Sj (3.35)

Stanek et al. [46] used this Hamiltonian as well to initially benchmark the DM

and SB approaches. This allows us to compare their results to those obtained with

out methods of choice. In this case, we plot the value of the dispersion maxima at the
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Method Slope
DM (Stanek et al.) 1.2771
SB (Stanek et al.) 2.6567
NLSW (Simple Decoupling) 2.3284
NLSW (Full Decoupling) 0.7319
DM 1.2771
GSW 1.0000

Table 3.1: Comparison of the spin-wave dispersion slopes dωmax/dK calculated with
different methods in this work and in Ref. [46] (Stanek et al.). Here ωmax is the
maximum of the spin-wave dispersion at (π, π) and the slope is obtained from a
linear fit of the data in panel b) of Figure 3.4.

edge of the Brillouin zone for several values of K [see panel b) in Fig. 3.4], normalized

with respect to the K = 0 case. As expected, the results mimic those obtained for

the previous, frustrated model. The FD of the NLSW and DM bosons, as well as the

GSW, all produce similar slopes, while the SD of the NLSW overestimates the value

of the maxima by an approximate factor of 2 (see Table 3.1 for the exact numerical

values). Yet again, we attribute this discrepancy to the inability of the Hubbard-

Stratonovich method to properly account for the quantum fluctuations. The SB

approach also suffers from this pitfall, with a slope close to that produced by the

simply decoupled NLSW.

We also compute the value of the slope dωmax(K)/dK (see Table 3.1) to obtain

a quantitative measure of the results described above. This also allows us to nu-

merically prove the equivalency of our technique for the DM bosons (self-consistent

system of Euler-Lagrange equations) to that of Stanek et al. (free energy minimiza-

tion).



Chapter 4

Ising-nematic order in the iron

pnictides

4.1 Model and solutions

In order to study the magnetism in the parent compounds of the iron pnictides,

we propose the frustrated Heisenberg J1 − J2 model with a biquadratic coupling K

on a lattice of quasi-local moments:

H = J1

∑
<i,j>

Si · Sj −K
∑
<i,j>

(Si · Sj)2

+ J2

∑
�i,k�

Si · Sk + Jc
∑
i

Si · Si+ẑ
(4.1)

The reasons for this particular choice are many. To begin with, and just as various

other authors have done[50, 51, 52, 20, 53, 54, 21, 55], we use a system of localized

33
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spins. This is due to the prediction of the proximity of the parent compounds to

a Mott localization transition (see Section 2.2 for more details). The two terms

encompassing the frustrated nature of the problem, namely J1 and J2 give us the

ground state we base all of our calculations on. We choose J1 = J2 for the rest of

this work, obtaining a J2/J1 ratio well into the J2/J1 > 1/2 regime where the spins

arrange into a columnar antiferromagnetic (CAFM) structure with alternating spin

stripes of opposite orientation.

We also set the spin value to S = 1 for all the results that follow. Physically,

this is because the Fe ion in the pnictides is in a Fe2+ oxidation state, leaving two

electrons in xz and yz orbitalas that are strongly coupled via Hund’s interaction.

This means that the value S = 1 we’re choosing is justified as the effective spin of

the local moment on each Fe site. This value for the effective spin S also agrees with

results from INS experiments[56], which found an integrated spin spectral weight of

3νB per Fe on the pnictide parent compounds. Indeed, it follows from the formula

for the magnetic moment of a spin:

〈
m2
〉

= (gνB)2 S(S + 1), (4.2)

with g = 2[57] that S = 1 gives, in fact, the best approximation.

Beyond the basic frustrated Heisenberg Hamiltonian, we include the biquadratic

term to nearest neighbors since an effective anisotropic coupling is necessary for

agreement with INS data [58, 59], in particular to correctly describe the dispersion

of the spin excitations near the Brillouin zone boundary. Without it, we would
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need to set Jx1 6= Jy1 , with widely different values for each [58, 60, 61], even beyond

the structural transition, which is unphysical. In fact, even below Ts, the small

(δ . 1%) orthorrombic distortion makes any significant difference between the values

of J1 in each direction highly unlikely. The addition of a biquadratic coupling K

dynamically produces the desired effective anisotropic coupling to nearest neighbors

without directly manipulating the values of J1. Finally, we include an exchange term

of strength Jc between the pnictogen planes to capture the three-dimensional nature

of the real compounds.

Because we will study the system for a wide range of temperatures, ranging from

below the magnetic transition temperature (TN) to above that of the structural tran-

sition (Ts), we need a method that works beyond the ordered phase. This means

that we must discard the semi-classical spin wave approaches that depend on the

fluctuations around the ordered moment to be small. Because the Dyson-Maleev

bosons proved superior to the Schwinger bosons in the treatment of quantum fluc-

tuations (see Section 3.6 above), we choose the former approach for the remainder

of this work. The details of the derivations and the spin excitation dispersions are

given in Appendix B.

4.2 Magnetic and nematic transitions

As explained on Section 2.2, part of the interest in the iron pnictides lies on the

difference between the magnetic and structural transition temperatures (TN and Ts,

respectively). Moreover, the Ising-nematic phase has been observed even beyond the
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structural phase transition. Because of this, it is natural to study the evolution of

order parameters that measure both the magnetic order and the nematicity of the

system. Choosing the staggered magnetization (ms) for the former is straightforward.

In the case of nematicity, we choose to use the difference between the correlations

along the two crystallographic directions:

Γy − Γx ≡ 〈Sr · Sr±ŷ〉 − 〈Sr · Sr±x̂〉 (4.3)

By plotting the evolution of these two parameters with temperature, we can easily

obtain the values of the two transition temperatures. We use the usual nomenclature

TN for the temperature where the staggered magnetization ms vanishes. It is less

clear whether we can identify the temperature our nematic parameter vanishes with

the structural transition temperature Ts or another, higher temperature T ∗ up to

which nematicity survives [19]. Because of this, we choose the alternate notation

Tσ. For a fixed value of K = 0.01J2 (see Fig. 4.1), the difference between the

two transition temperatures greatly reduces every time Jc increases by an order of

magnitude. Note that we normalized the temperature axis so that TN = 1. This

allows use to study the absolute differences among the nematic ranges without those

being obscured by variations on ms. Note that the discontinuous first order transition

that can be observed for the nematic order parameter is only due to the mean-field

nature of our method.

More generally, plotting the actual transition temperature values as we vary the

interlayer coupling (see Fig. 4.2) allows us to obtain a clearer view of the existence
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Figure 4.1: Evolution of the nematic order parameter (Γy−Γx) and staggered magne-
tization (ms) at K = 0.01J2 with temperature normalized to TN = 1, for increasing
values of Jc. The interplanar coupling rapidly reduces the nematic range with each
order of magnitude, having it completely vanish at Jc ∼ 0.1J2.

range of each regime. It turns out that the variation in the temperature range for

the Ising-nematic phase is mainly mediated by the temperature of the magnetic

transition instead. As expected, the magnetically ordered range rapidly increases

with Jc. The mechanism by which the interplanar coupling stabilizes magnetic order

is related to the dimensionality of the problem. In practice, the addition of a finite

Jc takes the system from two to three dimensions. Even though the discrete Z2

symmetry can still be broken in a two-dimensional system at finite temperatures

[62], this is not the case for a continuous symmetry by virtue of the Mermin-Wagner

theorem [63]. Thus, unlike a purely Ising-nematic phase, true long-range magnetic

order can’t strictly exist in two dimensions. Because the value of Jc is, in a way, a
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Figure 4.2: Evolution of both the magnetic and nematic transition temperatures (TN
and Tσ, respectively) for biquadratic coupling values of K = 0 (a) and K = 0.01J2

(b). A finite interplanar coupling effectively changes the dimensionality of the system,
thus stabilizing the magnetic order. This results in a rapid narrowing of the range
where pure nematicity exists. For finite values of K, this range virtually disappears
for appreciable values of the interlayer coupling.

measure of the system dimensionality, the sharp increase in the range where magnetic

order exists when Jc → 0 is a direct consequence of this fact.

When a biquadratic coupling is not present [Fig. 4.2 a)], there still exists a small

range of pure nematicity at the reasonably physical value of Jc ∼ 0.1J2. When K is

turned on, however, the Ising-nematic phase quickly disappears for these values, even

for the very small value ofK = 0.01J2 [Fig. 4.2 b)]. In principle, this is an unexpected

find since previous fits on the INS data [64] have given estimates of about K ∼ 0.6J1

for the biquadratic coupling. However, the samples where these nematic fluctuations

have been detected at a temperature T ∗ well above TN [19] (and Ts, for that matter)

were all detwinned by applying an uniaxial pressure on them, which explicitly breaks
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Figure 4.3: Phase diagrams for interlayer coupling values of Jc = 0.01J2 (a) and
Jc = 0.1J2 (b). The range of temperatures in which a purely nematic regime exists
quickly decreases with the value of the biquadratic coupling K. When the interplanar
coupling reaches values of Jc = 0.1J1, the nematic phase has almost disappeared and
the magnetic and nematic transition temperatures (TN and Tσ) coincide for almost
the entire range of K.

the C4 symmetry. Because of this, T ∗ is a more appropriate measure of a crossover

rather than a true phase transition, and in consequence, could be greatly affected by

the value of the applied pressure. Since our model doesn’t include the effect of this

external variable, this suggests that our definition of Tσ might be better suited to

describe the structural transition temperature Ts. If this is the case, the very narrow

ranges observed for the purely nematic phase are in good agreement with the close

proximity observed between TN and Ts.

If we instead fix the value of Jc and study the evolution of both the magnetic

and nematic transition temperatures as a function of K instead (see Fig 4.3), we

find, yet again, that the range of temperatures where a pure Ising-nematic order

exists shrinks rapidly as the value of the biquadratic coupling increases. This is
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especially noticeable when we choose the more physical value of Jc = 0.1J2 for the

interplanar coupling, in which case the nematic regime vanishes almost completely.

These results are in stark contrast with those of Yu et al. [65], who found an increase

in both transition temperatures with K. However, this work used a simpler version

of the the Dyson-Maleev approach, decoupling the biquadratic term by means of

a Hubbard-Stratonovich transformation, similar to our simply decoupled NLSW.

This method leads to a more straightforward Hamiltonian, with effective couplings

of values
[
Jeff

1

]
x(y)

= J1 − 2KΓx(y). Because Γx < 0, it is clear by these expressions

that the solutions lead to enhanced couplings on the x-direction while the y-direction

coupling is diminished, leading to a more stable breaking of the C2 symmetry the

larger the value of K gets. Our technique, although proven to be more accurate

in describing quantum fluctuations (see Section 3.6), leads to more cumbersome

expressions so that one cannot a priori predict the effects of K on the anisotropy. We

conclude that, within our approach, considerable fine-tuning of both the interlayer

exchange Jc and the biquadratic coupling K are necessary for the existence of a pure

Ising-nematic phase.

4.3 Dynamical structure factors

We now go on to compare the experimentally measured dynamical structure

factors (these are proportional to the differential cross sections in inelastic neutron

scattering experiments) with those predicted by our model (see Appendix B for

expressions). In all cases, we choose a Lorentzian broadening with a width of value
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γ = 0.5J2 to account for both Landau damping and the finite experimental resolution.

We also rotationally symmetrize the results a posteriori so that we can properly

compare them with twinned samples.

We begin by tackling the results at low temperatures, comparing the predictions

of our method at T = 0 with the findings by Harriger et al. [59] (see Fig. 4.4). To

do so, we choose four different cuts of increasing energy ω, where we should observe

maxima at positions q where ω ≈ ωq as a consequence of energy conservation.

Indeed, the rings the appear at the lower energy cuts [Figs. 4.4 a) and b)] are

centered at the two degenerate ordering vectors q1 = (π, 0) and q2 = (0, π), as

expected, and in good agreement with the data [Figs. 4.4 e) and f)]. Both our

theoretical predictions and the experimental results showcase elliptical rings as a

result of the anisotropy of the system. As we increase the energy ω of the cuts, the

positions of the maxima begin to shift towards the magnetic zone boundary and the

rings lose its characteristic shape as they expand. For high enough energies [Figs.

4.4 c) and d)], the structure factor peaks now reside at the q =
(
π
2
, π

2

)
position.

This is in semi-qualitative agreement with the data [Figs. 4.4 g) and h)], where the

discrepancies are likely due to a larger effective broadening γ resulting from Landau

damping.

In order to study the evolution of the dynamical structure factor at finite tem-

peratures, we now choose to compare our theoretical predictions with the INS mea-

surements performed on BaFe2−xNixAs2 by Lu et al. [19]. In the temperature range

where our model allows for a pure Ising-nematic regime (TN < T < Tσ), we do

indeed find a C2 anisotropy in the structure factor [see Fig. 4.5 a)], as expected



42

and in agreement with the data [Fig. 4.5 c)]. This feature disappears at higher

temperatures both in our model [Fig. 4.5 b)] and as measured experimentally [Fig.

4.5 d)].
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Figure 4.4: Side-by-side comparison of theoretical calculations (left side) and ex-
perimental results (right side) [59] for several energy cuts of the low temperature
dynamical structure factors. We fix the value of K = 0.8J2 and choose the energy
values of a) ω = 2J2, b) ω = 3J2, c) ω = 5J2, and d) ω = 6J2 for the aforementioned
cuts.
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Figure 4.5: Calculated dynamical structure factor [a) and b)] with set values of
S = 1, K = 0, and Jc = 0.1J2 for the parameters of our model. The cuts are taken
at energy ω = 0.5J2. Temperatures are a) T = 1.043TN [indicated in Fig. 4.2 a)] and
b) T = Tσ = 1.085TN . Panels c) and d) are experimental INS data on detwinned
BaFe2−xNixAs2 samples above the Néel temperature TN = Ts ∼ 138K [19].



Chapter 5

Chalcogenides

5.1 Model and solutions

In order to study the ground states of the iron chalcogenides, we propose the

following spin Hamiltonian:

H = J1

∑
<i,j>

Si · Sj +K1

∑
<i,j>

(Si · Sj)2

+ J2

∑
<<i,j>>

Si · Sk +K2

∑
<<i,j>>

(Si · Sj)2 + J3

∑
<<<i,j>>>

Si · Sj
(5.1)

Just as the model used for the pnictides, here we include both bilinear and bi-

quadratic terms in the spins as well. However, we have extended the range of the Jm

and Kn constants up to one neighbor further (m = 3 and n = 2, respectively) further.

The need for additional parameters in this model with respect to that in the pre-

45



46

vious chapter shouldn’t come as a surprise, considering the additional magnetically

ordered phases observed in the chalcogenide family (see Section 2.3).

To avoid any confusion, we must also comment on a small change in notation.

Because in Chapter 4, we only used negative values for the constant K, we explicitly

added the a minus sign in front of the biquadratic term on Eq. 4.1 for convenience.

We then went on to exclusively use positive values for the newly defined K througout

the aforementioned chapter. However, in order to accommodete the full range of

possible values for the biquadratic constants, and following the prevalent notation

in more recent literature[66, 67, 68, 69], we now treat the signs of the bilinear and

biquadratic constants on equal footing.

Building up on a variational search for possible magnetically ordered phases on a

4x4 Fe plaquette (performed by Zhentao Wang, see Acknowledgements), we use the

generalized spin wave or flavor wave method described in Section 3.5 for the rest of

our calculations.

5.2 Phase diagrams

Starting from the mean field results [Fig. 5.1, panels a) to d)], if we look at

smaller values of |K1| (this corresponds to the top part of the phase diagrams), we

can easily understand how the coupling between third nearest neighbors (J3) drives

the transition between successive magnetically ordered phases. At small J3 and |K1|

(top left of the diagrams), the system we are looking at is not dissimilar to the one

we studied in Chapter 2.2 to describe the iron pnictides. Because we have chosen
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Figure 5.1: K1 vs. J3 phase diagrams resulting from both the mean field [panels a)
through d)] and the flavor wave [panels e) to h)] approaches.

values for J1 and J2 so that: J2/J1 = 0.8 > 0.5, we find the expected columnar

antiferromagnetic phase (CAFM), as depicted in Fig. (5.2). In this regime, the bonds

between third nearest neighbors are always ferromagnetic (FM). Because J3 favors

antiferromagnetic (AFM) bonds instead, the CAFM phase can remain energetically

favorable only up to a certain value of J3. Unsurprisingly, its region of existence

expands with increasing K2, due to the enhancement of the AFM bonds (in this

case, between second nearest neighbors) discussed in Section 3.5.

Once J3 becomes large enough, the system transitions into a staggered dimer (SD)

phase. Here, the spins in the antiferromagnetically ordered axis remain unchanged

while half of the bonds in the axis perpendicular to this lose their FM ordering

(see Fig. 5.2 for a schematic depiction of this transition). Along this axis then,

all third nearest neighbor bonds have now become AFM. Increasing J3 even further

will eventually result in AFM bonds between third nearest neighbors in both axes,
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Figure 5.2: Simplified depiction of the transitions between the magnetically ordered
phases, where the arrows point in the direction of increasing J3, the coupling between
third nearest neighbors. Initially, on the FM bonds in one direction change, giving
rise to the staggered dimer phase (DS). Eventually, the bonds become AFM in both
directions and the system transitions into a double stripe or plaquette state.

resulting in the so-called double stripe (DS) or plaquette (PL) phases, which are

energetically degenerate within the mean field approach. A simplified depiction of

this transition is also included in Fig. 5.2.

Following up on the discussion about the effect of |K2| started above, we note

than an increasing value of this coupling partially destabilizes the SD phase, by

effectively weakening its FM bonds to second neighbors. This, combined with the

enhanced stability of the CAFM results in a direct transition from the latter phase

to either a DS or a PL regime, without the SD phase existing in between. This same
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effect is responsible for the shrinking of the DS and PL regions as |K2| increases.

The influence of |K1| is most noteworthy on the leftmost side of the diagram,

where J3 is small, and for the case of K2 = 0. In this case, provided J3 is small

enough to be neglected, we are effectively left with the J1 − J2 −K model that we

used before (see Chapter 2.2). In the case of the pnictides though, we never studied

the system for very large values of the biquadratic coupling to nearest neighbors

(first neighbors). It turns out that, even for a ratio of J2/J1 > 1/2, the system

eventually still transitions into a Néel state, provided the aforementioned biquadratic

coupling assumes large enough values. The reason for this is simple. In both the

CAFM and the Néel cases, a finite biquadratic coupling K1 results in a stronger bond

between nearest neighbor AFM bonds. This effect actually stabilizes both phases, by

enhancing the anisotropy in the CAFM case and by doing the opposite in the Néel

case. However, the latter phase has twice as many AFM bonds than the former. The

FM bonds get weakened but the effect is not as stark, so that, for sufficiently large

values of K1, the system favors the isotropic configuration.

As mentioned in Section. 3.5, the flavor wave approach needs the assumption of

a particular state, since all consequently derived expressions depend on it. In this

sense, the mean field approach is more powerful since it can predict new orders and

produce a simplified phase diagram by just finding the energetically favorable state in

each region. However, as far as this mean field method is concerned, all regimes can

in principle exist throughout the entire phase diagram and it’s only their ground state

energy differences that matter. On the other hand, it is the quantum fluctuations

that we can only compute using the flavor waves that are necessary to find the true
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regions where each phase can exist. This is because the flavor waves offer us a tool,

i.e. the spin excitation dispersions, that indicates where each state becomes unstable.

With this, we go on to study the effects that fluctuations have on the regions of

stability of each phase [see Fig. 5.1, panels e) to h)]. Qualitatively, the behavior

of all phases remains the same, with changes to their phase boundaries. This is

expected since quantum fluctuations, when pronounced enough, will destroy the

long range order of the system. If we begin by our most recent discussion, we can

see that both the CAFM and Néel stability regions have expanded. This suggests

that the strengthening effect that biquadratic terms have on AFM bonds is actually

enhanced by quantum fluctuations. In this case and in others throughout the phase

diagram, the addition of quantum fluctuations caused some of the existence regimes

to overlap between phases. As usual, the phase with lowest total energy is plotted

in the overlapping area. That means that we take both the mean field ground state

as well as the zero point energies into account. The latter one can only be obtained

by means of the flavor waves.

This is particularly important in the case of the DS and PL phases, which are

degenerate at the mean field level. However, the two energies split once quantum

fluctuations are added. For small |K2|, it is the PL regime that is energetically

favorable, while this effect reverses for large values of |K2|. However, the stability

range of the PL state remains larger than that of the DS phase in all cases. In the

case where both stability ranges almost completely overlap [K2 = −0.3, depicted in

Figure 5.1 f)], the difference in energies is also the smallest one of all cases. Some of

these energy differences between the DS and PL phases can be seen in Figure 5.3.
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Figure 5.3: Zero point energy evolution with K1 for the plaquette (solid line) and
double stripe (dashed line) phases and across a cut through constant J3 = 1.0. Panel
a) shows the results for K2 = 0, and panel b) those for K2 = K1.

This plot also showcases the first order nature of the transition between the phases.

Finally, although relatively trivial, it is worth mentioning that in both the mean

field and flavor wave approaches, the area where ferroquadrupolar order (FQ) exists

increases with K1 and K2. This is evident from the Hamiltonian model itself and

fluctuations don’t seems to have a significant effect on altering this.

5.2.1 Incommensurate phases

The unshaded regions of the diagram indicate our inability to find stability of

any of the phases in those areas. As mentioned earlier, we can only use the flavor

wave method over ground states already predicted. From this, we can conclude that

the phases existing in those regions couldn’t be predicted by our earlier, variational

method.
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Figure 5.4: a) y-component of the instability vectors at the FQ phase boundary as a
function of J3. This is done for the case of K2 = K1. b) Phase diagram for K2 = K1

[shown also in Fig. 5.1 h)], indicating the regions of the phase boundary for which
each instability vector in obtained.

One possibility is that of incommensurate phases. These cannot exist in the

finite 4x4 Fe-site cluster that was used in the variational method. In addition to

this, there is also experimental evidence for the possibility of their existence. In

particular, according to INS experiments [70, 71, 72], the high temperature spin

structure factor in Fe(Te1−xSex) may be incommensurate. We can study the the Q

vectors at which the instability occurs in the flavor wave dispersion (the value of the

dispersion at vector Q becomes imaginary beyond the boundary). The results are

shown in Figure 5.4.

Throughout the leftmost side of the diagram, the instability vector can be written

as: Q = (π, δ), where δ has two contrasting behaviors. For very small J3, where the

FQ phase border touches the CAFM region, δ = 0, as expected due to the lack

of an intermediate between the two. However, past a threshold value, δ increases
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smoothly towards the value of δ = π/2, although never quite reaches it. This is also

in agreement with the proximity of the FQ region boundary to the SD phase [with

ordering vectors Q =
(
π, π

2

)
and Q =

(
π
2
, π
)
] for those values of J3.

On the rightmost ride of the diagram, the instability vector takes a completely

different for, which we can write as Q =
(
π
2

+ δ, π
2

+ δ
)
. Yet again, this points

towards an intermediate incommensurate phase with ordering vectors close to those

of the DS, which is precisely the phase boundary that follows closely that of the FQ

state for these J3 values. These incommensurable wave vectors will also be observable

in the study of the dynamical spin structure factors discussed in Section 5.3 below.

5.3 Dynamical structure factors

If the ground state of FeSe is indeed that of ferroquadrupolar order [67], then

the increase in value of the third neighbor coupling J3 would mimic the doping of

the aforementioned compound with Te. We now proceed to study the evolution of

the dynamical spin structure factor along a cut of value K1 = K2 = −1, and the

transition from FQ to double stripe order.

The FQ ground state, while maintaining the time-reversal symmetry, breaks the

spin-rotational symmetry of the Hamiltonian. Because of this, the expected Gold-

stone modes at Q = 0 have vanishing intensity [73, 74] in the static limit, which is

consistent with the absence of Bragg peaks in FeSe under ambient pressure [75, 76].

This feature is replicated by our model, as can be seen in panels a), b), and c) of

Fig. 5.3, which lie within the FQ region.
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a) b)

c) d)

Figure 5.5: Dynamical spin structure factors along a cut through K1 = K2 = −1 in
the phase diagram. Panels a) to c) correspond to points within the FQ region for
increasing J3 and panel d) showcases the results within the DS phase.

For small values of J3, the structure factor showcases two very close minima.

One of them, at vector Q = (π, 0), clearly hints at the proximity to the CAFM zone

boundary. The appearance of the other minima is reminiscent of our findings in

Section 5.2.1. In fact, if we write its position in an analogous form Q = (π, δ), we

find that δ indeed increases as we move to the right along the cut never to fully reach

δ = π
2
, as predicted. By the second panel b), it has already become more pronounced

than the minumum at Q = (π, 0). It is here that we also observe the appearance of
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yet another minimum at position Q =
(
π
2

+ δ, π
2

+ δ
)
, with small but finite δ. This is

again in agreement with our previous study of possible incommensurate phases. This

minimum goes on to become the absolute minimum as we reach proximity to the

boundary of the DS phase. Once we cross the phase boundary into the DS region,

the minimum becomes the true Goldstone mode at Q =
(
π
2
, π

2

)
.



Chapter 6

Conclusions

In this first part of the thesis, we have studied two different families of iron-based

superconductors, namely the iron pnictides and the iron chalcogenides, using different

variations of a frustrated spin Hamiltonian and different bosonic spin representation

techniques.

We began by putting the various spin representations to the test by comparing

their spin excitation spectrum. Varying the value of spin allowed us to pinpoint the

effect of fluctuations, and thus to identify the approaches that offer a more accurate

description. These methods, namely, the full decoupling of the non-linear spin waves,

the Dyson-Maleev bosons (also fully decoupled), and the generalized spin waves also

proved superior at capturing the effect of biquadratic terms. With this knowledge

at hand, we restricted ourselves to using only two out of the three aforementioned

techniques in the rest of our study. While both the of the methods that need a

full decoupling also produce systems of self-consistent equations to be solved, the
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application of the generalized spin waves to a problem is immediate. For this reason,

we keep it our main method of choice whenever possible (within magnetically ordered

regions) and resort to the Dyson-Maleev approach only when working in a region with

no broken symmetries.

By using the fully decoupled version of the later, we were able to improve upon

earlier work [65], and in doing so, to obtain a qualitative agreement with both spin

wave dispersions and dynamical structure factors measured by INS experiments on

iron pnictide compounds. Even though we found a small region of pure Ising-nematic

order, we concluded that its existence requires a careful fine-tuning of both the

biquadratic coupling K and the interplanar exchange Jc. This leads us to believe a

single orbital orbital model might be inadequate to describe the complete system,

and further work that involves the multi-orbital physics of the problem is needed.

When it comes to the model proposed for the iron chalcogenides, we found a

phase diagram much richer than that of the pnictides, with many different magnetic

orderings (See Fig. 5.1), including a regime with ferroquadrupolar order. Work-

ing within the areas with a broken symmetry, we used the generalized spin wave

approach to study the shifts in the phase boundaries beyond those predicted by a

simply variational approach. This resulted in new phase diagrams with the possi-

bility of incommensurate orderings. We found that the Te doping responsible for

the transition from the non-magnetic FeSe to a Fe(Te1−xSex) showcasing long range

order in the form of a spin double stripe space can be roughly modeled by increasing

the value of the coupling between third nearest neighbors.



Part II

Superconductivity in

Multi-Impurity Kondo Model
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Chapter 7

Introduction to the Kondo Effect

7.1 The resistance minimum and the Kondo solu-

tion

The main source of resistivity in metals is the scattering off of phonons in the

lattice. As temperature decreases, this scattering dies off and, in principle, would

produce a diverging conductivity. In real materials, however, conduction electrons

scatter off of defects and impurities leaving a saturated, residual resistivity even at

low temperatures.

But observations starting on 1934 [77] and forward disagreed with this model.

Instead of observing that constant resistance, their experiments found that, at low

enough temperatures, the resistivity started increasing again, creating a characteris-

tic minimum. These experiments also noticed the strong dependence of this minimum

on the concentration of impurities, pointing to those as the origin of this phenomenon.
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To explain this, Kondo [78] studied the effect that a single magnetic impurity

would have within a non-magnetic metal. This interaction can be described by

means of the following Hamiltonian [79]:

H =
∑
k,α

εkc
†
kαckα + JK

∑
kk′αβ

S ·
(
c†kα
σαβ

2
ck′β

)
. (7.1)

The first term is the usual kinetic term for the conduction electrons and it’s the

second term that describes the Kondo interaction between the impurity spin and the

conduction electrons, at a strength given by the coupling JK , . Using perturbation

theory, Kondo found an expression for the resistivity that indeed depended on the

magnetic impurity density, entering in the form of constants a and b:

ρ(T ) = ρhost(T ) + aρ0J
2
K + bρ2

0J
3
K log

(
D

T

)
. (7.2)

Here, ρhost refers to the resistivity of the ideal metal, and ρ0 and D correspond

to the density of states at the Fermi level and the bandwidth, respectively. At low

temperatures, the logarithmic term dominates and eventualy produces the observed

increase in resistivity. Physically, this can be modeled as an exchange between the

spin of the impurity and those of the conduction electrons. The resistivity in the

material is then raised by these correlations when they become strong enough.
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7.2 The Kondo problem and the Anderson solu-

tion

As a consequence of the pertubative nature of its solution, Kondo’s approach

results in a diverging resistivity at low temperatures. The approximate temperature

below which perturbation theory fails is known as the Kondo temperature (TK) and

is approximately given by:

TK ∼ De
− 1
ρ0JK (7.3)

Using the so-called “poor man’s scaling”, Anderson [80] fixed this divergence by

predicting the existence of a Kondo singlet, composed of the impurity and one of

the conduction electron’s spins, at low enough temperatures. Because the spin of

the impurity is now compensated, the impurity itself behaves in a non-magnetic way

in this regime. Later on, Wilson [81] confirmed this result by using the numerical

renormalization group.

7.3 Heavy fermion materials

Some of the best candidates to exhibit the behavior predicted by the Kondo model

are the so-called heavy fermion materials. Heavy fermion compounds are materials

composed of rare-earth or actinide elements, thus containing f-electrons. They behave

like a metal at low temperatures, but the values for the physical quantities are

strongly renormalized. These properties were first observed by Andres et al. [82] in
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1975 on a CeAl3 compound. The 4-f and 5-f electrons in these materials are strongly

localized, so that a periodic Kondo Hamiltonian offers a possible way to describe

their low temperature properties.

In addition to the Kondo effect characteristic of these type of materials, some

heavy fermion compounds also exhibit superconductivity. In systems such as those

in the CeMIn5 series (M=Co,Rh,Ir), this superconductivity has been observed in the

vicinity of a magnetic quantum critical point[83].

7.4 The multichannel Kondo model

Initially introduced by Nozières and Blandin [84], the single impurity multichan-

nel Kondo model involves K identical bands (or channels) of conduction electrons of

spin size S interacting antiferromagnetically with a local moment of the same spin

value through the Kondo mechanism:

H =
∑
k,ν,α

εkc
†
kναckνα + JK

∑
ν

sν · S (7.4)

The initial study using a large-N approach was carried out by Cox and Ruck-

enstein [85], who confirmed the non-Fermi liquid behavior of the system. It was

Parcollet et al. [86] who introduced a bosonic representation of the local moment,

with Rech et al.[87] using this formalism to characterize the three possible regimes

we describe below. A crucial point to understand this classification is that we need

N = 2S + 1 particles of spin S to form a singlet. That is, our local moment needs
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an extra P = 2S electrons for a singlet to exist.

7.4.1 Underscreened

When the number of channels K is smaller than P , the number of bands can’t

provide enough electrons to fully screen the impurity by forming a Kondo singlet.

Thus, a portion of the impurity remains unscreened and the system takes on the

behavior of a single local moment.

7.4.2 Overscreened

On the other hand, when there are even more channels than the strictly necessary

to form a singlet (K > P ), the impurity is overscreened and the system exhibits non-

Fermi liquid behavior.

7.4.3 Exactly Screened

When K = P , there are just enough conduction electron channel to exactly

compensate the spin of the impurity. It is in this case that the Kondo singlet it

formed, consisting of the impurity spin and those of the electrons that each channel

supplies. The rest of the conduction electrons then scatter off of the singlet and the

system behaves like a Fermi liquid.



Chapter 8

The single impurity system

8.1 Model and solutions

We begin by considering the single-impurity multichannel Kondo Hamitonian[86,

87] with K channels of conduction electrons and a local moment of spin S located at

the origin, and expressed in terms of bosonic operators. The number of spin flavors

is then fixed to: N = 2S + 1.

H =
∑
k,ν,α

εkc
†
kναckνα +

JK
N

∑
ν,α,β

ψ†ναψνβb
†
βbα − λ(nb − 2S) (8.1)

The first term corresponds to the kinetic energy (εk) of the conduction electrons,

which carry both channel (ν) and spin (α) indices. From now on, K will denote

the number of channels and N the number of spin flavors, which must be fixed to:

N = 2S + 1. Because K is of order N and we are working on a large-N framework,
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the finite quantity κ ≡ K
N

will be of better use in what follows. Since we will work

in the exactly screened regime only, we also have that: κ = nb ≡ 2S
N

. So in a sense,

κ is a measure of both the channel number and the spin size.

The second term in the Hamiltonian encompasses the effects of the Kondo in-

teraction. We use the Schwinger boson representation to write local moment spin

Sαβ = b†αbβ − δαβ/N

The third term is added in order to enforce the physical constraint into the Hilbert

space.

In order to decouple the interaction, we use the standard Hubbard-Stratonovich

technique by introducing the new holon field χν . The holons are of fermionic nature

but only carry a channel index. This transforms the Kondo term above into the

following expression:

HK =
∑
ν,α

1√
N

[(ψ†ναbα)χ†ν + H.c.] +
∑
ν

χ†νχν
JK

(8.2)

Provided that the spinless fermionic fields are given by: χ†ν = JK√
N

∑
β ψνβb

†
β. The

propagators for each particle are given by the following expressions:
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Gb(iνn) =
1

iνn + λ− Σb(iνn)
(8.3)

Gχ(iωn) = − JK
1 + JKΣχ(iωn)

(8.4)

Gc(iωn) =
G0
c(iωn)

1 +G0
cΣc(iωn)

(8.5)

Where the self-energies satisfy the following relations [87]:

Σb(τ) = −kGc(τ)Gχ(τ) (8.6)

Σχ(τ) = Gc(−τ)Gb(τ) (8.7)

In practice, we obtain the expression in the real τ -space by performing Fourier

transforms on the above expressions written in terms of imaginary Matsubara fre-

quencies. As far as the conduction electron self-energy goes, because there is no sum

over K or S involved on its calculation, it remains of order O( 1
N

). In the large-N

limit then, we can neglect it and we will work with the bare electron propagator

instead:

Gc(iωn) ≈ G0
c(iωn) =

∑
k

1

iωn − εk
(8.8)
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Figure 8.1: a) Evolution of the magnetic susceptibility in time for several values of
κ. At low temperatures, it acquires the constant value, characteristic of a Fermi
liquid regime. For high temperatures, however, a typical local moment susceptibility
appears. In panel b), all Tχ ultimately reach a constant value, thus proving the 1/T
dependence.

The final step to solve the problem is to obtain the value of the chemical potential

λ. We do so by imposing the following constraint [86]:

κ = nb =
∑
n

Gb(iωn) (8.9)

8.2 Susceptibilities

After obtaining the value of the chemical potential λ, we can now plot the mag-

netic susceptibility (see Fig. 8.1). At low temperatures we observe a constant be-

havior in the susceptibility, consistent with the Pauli susceptibility characteristic of
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Figure 8.2: Evolution of the a) magnetic susceptibility as T → 0 and b) the temper-
ature at which the susceptibility reaches its maximum value as κ increases.

a Fermi liquid, hinting at the expected Kondo screening.

Now, when it comes to the large temperature region, we easily identify Curie-

Weiss Law ruling the behavior of the tails of the curves. To check that the tail does

indeed have a ∼ 1/T dependence, we plot Tχ as well on the right panel of Figure

8.1.

It is also illuminating to study the evolution of the values of the susceptibility

at certain key points, namely the T → 0 and large-T limits as well as its maximum

value χmax. As we can see in Figure 8.2, all of these quantities increase with κ = nb,

which a measure of the spin size. χ0, the susceptibility in the low temperature limit

[χ(T → 0)] is nothing but the Pauli susceptibility of a Fermi liquid whereas C = Tχ∞

is the so-called Curie constant. By tracking the temperature at which each maxima

happens [panel b) in Fig. 8.2] we can trace a semblance of a phase diagram since

the maxima approximately signals the change in behavior of the susceptibility itself.
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Figure 8.3: a) Evolution of the magnetic susceptibility in time for several values of
D. b) JK dependence on the parameter D, which measures half of the bandwidth.

The range of temperatures for which the Kondo regime exists then, slowly decreases

as the the value of κ increases.

We can also take a quick look at the effect that D, half of the bandwidth has on

the susceptibilities. Plotting the temperature evolution of χ for various values of D

[see panel a) in Fig. 8.3] reveals that its influence is minimal. At high temperatures,

this effect is to be expected since the susceptibility follows the usual Curie behavior

which depends only on the local moments. Thus, no parameter characterizing the

conduction electrons (such as, in this case, the bandwidth D) should affect its value.

At low temperatures, on the other hand, the susceptibility only depends on the

Kondo temperature. In our work, this is set to TK and serves as the unit in which

all other quantities are measured (that is, we set TK = 1 throughout the remainder

of this work). Because of this, the TK dependence is absorbed in the definition of

temperature.
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Finally, by using the approximate formula for the value of the Kondo temperature:

TK = De
− 1
ρ0JK , (8.10)

we can obtain the value of the Kondo coupling JK as a function of D:

JK =
1

ρ0 log (D)
=

2D

log (D)
(8.11)

As seen in panel b) of Figure 8.3, JK increases roughly linearly with D, at least

for reasonable values of the bandwidth. Because this is just an approximate formula,

we may vary the prefactor for JK without affecting results qualitatively.



Chapter 9

The two-impurity system

9.1 The Heisenberg term and the new solutions

For two impurities, the Hamiltonian has independent Kondo terms for each local

moment, along with a Heisenberg interaction between the two, of coupling strength

JH . It takes the following form:

H =
∑
k,ν,α

εkc
†
kναckνα +

JK
N

∑
ν,α,β

(ψ†1ναψ1νβb
†
1βb1α + ψ†2ναψ2νβb

†
2βb2α)−

− λ(nb1 + nb2 − 4S)− JH
N
B†12B12

(9.1)

Where we chose the same Lagrange multiplier for each impurity: λ1 = λ2 ≡ λ due

to symmetry under the exchange 1↔ 2 and the boson pair operators are defined by:

B12 =
∑

α sgn(α)b1αb2ᾱ. We decouple the last interaction term using the mean-field

parameter ∆b = −JH 〈B12〉
N

:

71
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Figure 9.1: Feynman diagrams used to derive the Gorkov equations [88, 89, 90].
Here, we have chosen ∆ to be a real quantity.

−JH
N
B†12B12 → ∆∗bB12 +B†12∆b +

N |∆b|2

JH
(9.2)

Using the Gorkov [88, 89, 90] method, we can obtain the new bosonic Green’s

functions as follows. The Feynman diagrams in Figure 9.1 help us write the following

system of new Dyson’s equations, which now include the order parameter ∆b, for the

propagators:

Gb(iνn) = G0
b(iνn) +G0

b(iνn)Σn(iνn)Gb(iνn) +G0
b(iνn)∆Gb(iνn) (9.3)

Fb(iνn) = G0
b(iνn)Σn(iνn)Fb(iνn) +G0

b(iνn)∆Gb(−iνn) (9.4)

Solving the system results in the new expressions for the normal and anomalous

propagators:
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Gb(iνn) =
−iνn + λ− Σb(−iνn)

[iνn + λ− Σb(iνn)][−iνn + λ− Σb(−iνn)]− |∆b|2
(9.5)

Fb(iνn) =
∆b

[iνn + λ− Σb(iνn)][−iνn + λ− Σb(−iνn)]− |∆|2
(9.6)

Finally, we impose self-consistency on the new order parameter ∆b by requiring:

∆b = −JH
N

< B12 >= JH
∑
n

Fb(iνn) =

= 2∆b

∑
n

1

[iνn + λ− Σb(iνn)][−iνn + λ− Σb(−iνn)]− |∆b|2

(9.7)

9.2 Results

As far as the two-impurity susceptibility goes, yet again, for large enough tem-

peratures, the system showcases the same ∼ 1/T behavior [see panel b) in Fig. 9.2]

as in the previous one-impurity case. Unlike in the case of one impurity though,

the destruction of the Kondo effect for large enough temperatures is not enough for

this behavior to set, unless for very small JH values. However, for large enough JH ,

the ∆b 6= 0 state dominates over the Kondo regime at low temperatures. In this

case, it is necessary for the magnetic correlations between the local moment spins to

disappear (∆b = 0) in order for the Curie behavior to be observable.

This is made clear when comparing the two panels in Figure 9.2. Indeed, the

temperature at which ∆b vanishes [panel a) in Fig. 9.2] coincides exactly with the
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Figure 9.2: Evolution of ∆b [panel a)] and χ [panel b)] with the renormalized tem-
perature T/JH for various values of the JH coupling between local moments spins
and for the case of κ = 0.3. For small values of 1/JH (strong coupling between the
two impurities), we note that the temperature at which the order parameter vanishes
coincides with the point where the behavior of χ abruptly changes. This abrupt be-
havior, however, smooths out as the value of 1/JH increases. Indeed, as the coupling
between the two local moments weakens, the impurities start to decouple and the
susceptibility starts to showcase a smooth maximum, just like the ones we observed
in Fig.8.1, for the case of a single impurity.

point where we observe a sudden change in the behavior of χ [panel b)] for the

smaller values of 1/JH . However, as the strength of the JH coupling decreases (that

is, for larger values of 1/JH), the coupling between the two impurities weakens and

a smooth maximum, not unlike that for the one impurity susceptibilities, begins to

appear.

Computing the evolution of ∆b for sufficient values of JH , we can obtain a dia-

gram (see Fig. 9.3) that gives a more general description of the ranges of existence

of ∆b. Again, we observe the agreement between the results of our method and those

by Rech et al. [87]. As expected, spin size stabilizes the regime with magnetic corre-



75

Figure 9.3: Diagram showcasing the range in temperature and inverse JH coupling
over which ∆b is finite for the indicated values of κ. As mentioned before, here
and throughout the rest of the thesis, the value of the Kondo temperature is set to
TK = 1. The colored areas indicate the regions where ∆b 6= 0.

lations between the localized spins, so that ∆b remains finite for higher temperatures

as κ = nb increases. Surprisingly, when it comes to the boundary dependence on JH ,

larger spin sizes actually shrink the range of JH values within which the correlations

survive.

The diagram above is, however, not the full story. While the situation is trivial

in regions where ∆b = 0 — the two impurities decouple completely so we effectively

have two single impurity systems such as the one described in the previous chapter.

Thus, in the ∆b = 0 regions, the system will exhibit a Kondo behavior, providede

that the value of the temperature is low enough for a Kondo singlet to form.
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Figure 9.4: Color coded phase shift evolution with both the value of JH and the
renormalized temperature T/JH for the case of κ = 0.3.

Once ∆b acquires a finite value, however, things are not so simple, since the Kondo

regime can, in principle, coexist with correlated impurities. One way to elucidate to

what extent both regimes coexist is to compute the holon phase shifts δχ (see Fig.

9.4). A phase shift of value δχ = π will indicate the presence of the Kondo effect.

We can calculate this phase shift δχ by using the following formula:

δχ = Im ln [1 + JKΣχ(0− iδ)] = Im ln [−J2
KG

−1
χ (0− iδ)] (9.8)

However, the argument in the retarded Green’s function used in the expression

above is given as a real frequency in contrast to the imaginary Matsubara frequencies

we have been previously using. Thus, in order to compute this quantity in the real
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Figure 9.5: Holon phase shift evolution with 1/JH for the following temperatures (in
units of TK): a) 0.15, b) 0.25, c) 0.4, and d) 0.6. A least-mean square fit to a function
of the form 0.5[tanh (a+ bx) + 1] is plotted as a red line along the data points (blue
dots). As temperature increases, the transition to the Kondo regime becomes less
abrupt.

space, we use the method of the Padé approximants (see Appendix D) applying it

to either the self-energy or the full Green’s function. As expected, as 1/JH increases

(that is JH decreases, moving from left to right of the plot), that phase shift raises

from δχ = 0 to δχ = π, confirming the Kondo nature of the state at small JHs.

By choosing a constant temperature cuts (see Figure 9.5), one can observe that

the change between the phase shift values becomes more sudden as temperature

decreases. This is consistent with the existence of a quantum phase transition [91,
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92, 93].

We can now draw our attention to the four cuts included at different values of the

inverse coupling (1/JH = 0.25, 1/JH = 0.55, 1/JH = 0.85, and 1/JH = 1.15). We

choose these specific values in order to compare these results with those on Fig. 9.2

above. At a temperature of T/JH = 0.1 (also indicated in the diagram with a green

dashed line), ∆b 6= 0 for all cases. If the two regimes (Kondo and coupled impurities)

were completely incompatible, one would imagine the phase shift to strictly vanish

for all these cases. However, the actual results are very different. Even at the

same temperature, the value of the phase shift varies widely. For example, while

δχ = 0 for the smallest 1/JH and δχ = π for the largest, the value of the phase shift

steadily increases between those two limit value with no abrupt transition. That

is, the stronger the Heisenberg coupling between impurities there is, the smaller the

phase-shift we obtain. This indicated that indeed, both regimes can coexist and,

as expected, the weaker the coupling between impurities is, the easier it is for the

Kondo regime to penetrate beyond the ∆b = 0 boundary and into the region with a

finite ∆b.

However, this last calculation also highlights one of the drawbacks of choosing

to work in the imaginary space for our method, in contrast to the real frequency

approach of Rech et al. [87]. Unlike all the previous quantities we have calculated,

the results of the Padé approximants are extremely sensitive to the Green’s Function’s

exact values. Because of this, a number of frequencies of the order of at least N ∼

5×104 is necessary to begin obtaining somewhat reliable results. As such, our method

is better suited to calculate quantities that can be written in terms of Matsubara
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frequencies only.



Chapter 10

Adding superconductivity to the

system

As we pointed out in Section 7.3, unconventional superconductivity arises in the

115 family of the Cerium-based heavy fermion materials when in the proximity of

a magnetic quantum critical point. Throughout the two previous chapters, we have

already introduced the two main competing mechanisms in these systems. On the

one hand, the Kondo coupling is the essence of the heavy fermion behavior, while

the RKKY spin-spin coupling governs the magnetism. Using the framework we have

already set up, we now proceed to study the possibility of a superconducting regime.

10.1 The holon coupling term

In an analogous way in which we added magnetic correlations into the system,

we now introduce a term which couples the holons in the system with an attractive

80
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strength of value g. We propose that this term may emerge from terms arising in

higher-order expansion of the Schrieffer-Wolf projection from the Anderson model.

Particularly, just as the second order expansion accounts for the RKKY coupling,

we expect a further, fourth order expansion to account for the holon-holon coupling.

We decouple it using the same method as before:

− g

N
H†12H12 → ∆∗χH12 +H†12∆χ +

N |∆χ|2

g
(10.1)

Where now H12 = χ1χ2 and the order parameter is given by ∆χ = g 〈H12〉
N

. Us-

ing an analogous derivation to that in the previous chapter, we arrive to the new

expressions for the holon propagators:

Gχ(iωn) = − JK [1 + JKΣχ(−iωn)]

[1 + JKΣχ(iωn)][1 + Σχ(−iωn)] + |∆χ

JK
|2

(10.2)

Fχ(iνn) =
∆χ

[1 + JKΣχ(iωn)][1 + Σχ(−iωn)] + |∆χ

JK
|2

(10.3)

Note the different units for the new order parameter ∆χ, resulting from the rather

unusual choice of units for the holon propagators. The new self-consistent equation

for ∆χ reads as follows:
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Figure 10.1: Feynman diagrams used to derive the conduction electron anomalous
propagator.

∆χ(T ) = g∆χ(T )
∑
n

1

[1 + JKΣχ(iωn)][1 + Σχ(−iωn)] + |∆χ(iωn)

JK
|2

(10.4)

Unlike in the case of the previously presented order parameter ∆b, one must be

careful when performing the sums in this case. In order for those not to diverge, we

must introduce a cutoff frequency ωD (somewhat analogous to the Debye frequency,

hence our notation). In particular, we renormalize the order parameter used in the

summations [∆χ(iωn) = ∆χ(T )σ(iωn)] using the following regularizer function:

σ(iωn) =
ωD√

ω2
D + ω2

n

(10.5)

Finally, the superconducting order parameter ∆SC will be calculated using the

following formula [see Figure 10.1, where we take only the leading order on Gc(iωn)]:

∆SC =
∑
n

Fc(iωn) =
G0
c(iωn)Ω(iωn)G0

c(−iωn)

1−G0
c(iωn)Σc(iωn)

(10.6)

Here, we have omitted the 1/N prefactor in order to properly compare ∆SC
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Figure 10.2: Evolution of ∆b, ∆χ, ∆SC with the renormalized temperature T/g for
a) 1/JH = 0.05 and b) 1/JH = 0.15. All quantities are normalized with respect to
their maximum values so they can fit in the same plot.

to the two previously presented order parameters. This is because, in the large-N

formalism, ∆SC is of an order higher in the 1/N expansion parameter. Ωc(iω) is the

anomalous self-energy, which results of the convolution between the boson and holon

anomalous propagators in τ -space.

10.2 Results

We now begin by plotting the evolution of all order parameters with the renor-

malized temperature T/g. These quantities are ∆b, ∆χ, and ∆SC, which measure

the correlations between bosons, holons, and conduction electrons, respectively. We

normalize all results to the maximum value of each parameter so they can be shown

in the same plot (see Fig. 10.2). For smaller values of 1/JH = 0.05 (larger values of
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Figure 10.3: Phase diagrams for a) 1/JH = 0.05 and b) 1/JH = 0.15.

JH , left panel in Fig. 10.2), the correlations between bosons survive beyond those

between holons, so that it is the latter that play a decisive part in the existence range

of superconductivity. On the other hand, for larger values of JH = 0.15 (smaller JH ,

right panel in Fig. 10.2), the boson-boson correlations vanish at smaller temperatures

and so does superconductivity with them.

Just like before, gathering data for sufficient values of g results in the phase

diagrams shown in Figure 10.3. In both cases, as temperature increases, the region

of stability in g of the magnetically correlated phase shrinks. As for the correlations

between holons, the range is smaller all over for the case of a smaller JH [1/JH = 0.15

on panel b) of Fig. 10.3], as expected. Intriguingly, a minimum value of g is needed

for the holon correlations to exist at all. This is remarkably different from the case

of BCS superconductivity, where an infinitesimal value of an attractive interaction

is enough to yield superconductivity for electrons in a Fermi surface. This effect
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happens due to the presence of the so-called Cooper logarithm. However, with our

introduction of a cutoff frequency ωD, the famous logarithm doesn’t arise, leaving us

with a threshold value in the coupling in order for superconductivity to emerge.

As far as ∆χ goes, we focus on two main features. First, there is a minimum

value of g below which the phase with correlations between holons doesn’t exist.

Second, its behavior varies little for different values of JH . Qualitatively, once a

phase boundary appears for a finite temperature, the increase of the boundary line

in temperature increases linearly with g until it reaches a plateau. This is indicative

of the phase boundary temperature being of order g (Tχ/g = constant) at large g,

when the effect of the bosonic correlations becomes negligible and the holons are

effectively free. Depending on the value of the JH coupling, this transition between

a varying and a constant phase boundary can happen before (larger JH) or after

(smaller JH) ∆b vanishes. In the former case, the boundary of the superconducting

regime is allowed to reach its maximum possible value set by the existence of a finite

∆χ before decreasing again. In the latter case, however, the disappearance of the

correlations between local moment spins suppresses the superconductivity before it

has the chance to reach its potential maximum temperature. Because of this, we

conclude that a strong correlation between the localized spins plays a crucial role in

maximizing the temperature up to which superconductivity can survive.



Chapter 11

Conclusions

In this part, we have studied the multichannel Kondo model in the exactly

screened regime and for the cases of one and two impurities. First and foremost,

this allowed us to assess the validity of our approach to the problem to that of pre-

vious authors [87]. In particular, Rech et al. solved the system using self-consistent

integrals of propagators in their real frequency representation while we used an iter-

ative method consisting of performing sums over the Matsubara frequencies in the

imaginary axis. In the one impurity case, studying the local moment susceptibil-

ity allowed us to estimate the region where the Kondo regime exists, as well as its

variation with spin size.

The two impurity system introduces the order parameter that measures the cor-

relations between the two impurity spins. In this case, the existence of a Kondo

phase depends not only on temperature but on the value of the JH coupling between

the local moment spins. When this JH reaches a threshold value, the two impurity
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Figure 11.1: Evolution of the phase diagram for CeRh1xCoxIn5 with Co doping [94].
As x increases, the magnetism get suppressed and the system becomes supercon-
ducting.

spins align with opposing direction and the Kondo regime disappears. A change in

the holon phase shift also confirms the suppression of the Kondo effect.

Finally, adding an attractive coupling g between the holons gives rise to super-

conductivity in the system. However, there a few requirements for this phenomenon.

On the one hand, both the correlations between local moment spins (measured by

∆b) as well as those between holons (measured by ∆χ) must both be present. On the

other hand, superconductivity also disappears when the holon-holon coupling moves
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below a minimum value. This rather unusual feature is due to the lack of a Cooper

logarithm in the case of the holons. Because of this, we conclude that relatively

careful fine tuning of both the JH and g couplings is needed for superconductivity

to exist within a reasonable range in this system.

It is a possibility then, to use the JH/g ratio as a measure of doping in real mate-

rials. Indeed, in the Ce-115 family of compounds, the interplay between magnetism

and superconductivity is dependent on the composition. As an example, Co doping

in the CeRh1xCoxIn5 system suppresses magnetic order and drives the system into a

superconducting state (see Fig. 11.1). In this case, due to its magnetism, we would

expect the JH/g to be larger in CeRhIn5. This suggests that the Co doping is actually

responsible for fine-tuning its value so that the compound eventually superconducts.



Part III

Summary and outlook
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In this work we have studied a few examples of phenomena observed in strongly

correlated electron materials. I devoted the first part to iron-based superconductors

and studied their phase diagrams by means of a localized spin model of frustrated

interactions. Particularly, we focused on describing magnetism in both the iron

pnictides and the iron chalcogenides. Among the similarities between these two

types of materials in the valence state of the Fe ions (Fe2+ in this case). This means

that both families of compounds can be effectively described by a lattice of S = 1

spins.

As such, models used to describe them admit spin-biquadratic terms in their

Hamiltonian. Just as with the usual Heisenberg type spin-bilinear terms, one can, in

principle, include couplings up to an arbitrary number of neighboring sites. However,

the J1 − J2 Heisenberg Hamiltonian with a single biquadratic term being a simpler

version of the general model, proved appropriate to compare several different common

approaches used to represent spins. Doing so allowed us to select the methods most

appropriate to describe quantum fluctuations in the system. After choosing the

most convenient representation, we were able to reproduce experimental results such

as the dynamical structure factors both below and above the magnetic transition

temperature in iron pnictide materials, particularly, in the compound BaFe2As2 [59,

19].

The full model with additional couplings is necessary to give an accurate descrip-

tion of the full phase diagram in the case of the iron chalcogenides. In particular, we

were able to model the transition from the non-magnetic order in FeSe to a double

stripe magnetic ordering upon doping with Telurium. The observation of a columnar
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antiferromagnetic ordering under applied pressure was also predicted by this model.

In addition to this, we studied the possibility of intermediate incommensurate phases

appearing in the system.

In the second part, we turned our attention towards the Kondo effect, characteris-

tic of heavy fermion materials. We used a novel approach to tackling the multichannel

Kondo problem for a few impurities, involving sums over Matsubara frequencies in

the imaginary axis. We found agreement with previous results for the susceptibility,

phase diagrams and phase shifts.

Once we had put our method to test, we proceeded to add the final key element

needed to describe the unconventional superconductivity showcase in certain heavy

fermion compounds, namely, the Cerium-based 115 family of materials. Since we had

already accounted for the Kondo and RKKY couplings, we hypothesized a pairing

interaction arising from higher-than-second order expansion on the Anderson inter-

action to be responsible for the appearance of superconductivity. In our framework,

this is represented by a coupling g between the holons, that is, the collective excita-

tions arising from the Kondo interaction of the spin with the conduction electrons.

The inclusion of this pairing indeed translated into the appearance of superconduc-

tivity under certain conditions, namely, the existence of correlations between both

the bosons and the holons of the system as well as a minimum value of the coupling

between the latter. Introducing more than two impurities into the system as well as

different couplings between said local moments could shed light into the interplay

between magnetic frustration and the Kondo effect.



Appendix A

Non linear spin waves

Starting from the Hamiltonian we used for the iron pnictides, we take all averages

to be real for convenience, without loss of generality.

n =
〈
a†rar

〉
gx = 〈arar+x̂〉 =

〈
a†ra

†
r+x̂

〉
fy =

〈
a†rar+ŷ

〉
=
〈
ara

†
r+ŷ

〉
gxy = 〈arar+x̂±ŷ〉 =

〈
a†ra

†
r+x̂±ŷ

〉
(A.1)

We assume the rest of the averages to be zero by virtue of the conservation of

the total z-component of the spin (Sz =
∑

i S
z
i ) in each direction. In principle,

both bilinear and biquadratic terms can be treated in this manner. However, for the

purpose of studying the differences between the different approaches to the decou-

pling procedure, we also use a Hubbard-Stratonovich (HS) transformation for the
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biquadratic spin term:

(Sr · Sr′)2 ' 2 〈Sr · Sr′〉Sr · Sr′ − 〈Sr · Sr′〉2 . (A.2)

The remaining spin bilinears are then decoupled as usual per Wick’s theorem,

whereas the HS averages themselves can be expressed in terms of the mean-field

parameters in Eq. (A.1) as follows:

Γx = 〈Sr · Sr+x̂〉 = − (S − n− gx)2

Γy = 〈Sr · Sr+ŷ〉 = (S − n+ fy)
2 .

(A.3)

The advantage of using the above HS transformation is that it results in simpler

expressions for the spin-wave dispersions (see Eq. A.7 below). However, as we show

in the main text, this comes at a price that the HS decoupling is much worse at

capturing the spin fluctuations compared to the full decoupling (FD) method. With

this proviso, we show the details of both methods below, but the reader is advised

to use the FD method for accurate results.

After full use of Wick’s theorem, the non-linear spin-wave theory results in the

following quadratic Hamiltonian (up to inessential constant terms):

HNLSW =
∑
k

[
Ak

(
a†kak + a−ka

†
−k

)
+Bk

(
aka−k + a†ka

†
−k

)]
, (A.4)

which, after the Bogoliubov transformation, is expressed in terms of new boson
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operators:

HNLSW =
∑
k

ωk

(
α†kαk +

1

2

)
, (A.5)

with the spin wave dispersion:

ωk = 2
√
A2

k −B2
k, (A.6)

where the expressions for the coefficients Ak and Bk are given in Eq. (A.7) for the

HS decoupling and in Eq. (A.8) for the full decoupling (FD):

Ak(HS) =(J1 − 2KΓx)(S − n− gx)+

+ (J1 − 2KΓy)(S − n+ fy)(cos ky − 1) + 2J2(S − n− gxy)

Bk(HS) =(J1 − 2KΓx)(S − n− gx) cos kx + 2J2(S − n− gxy) cos kx cos ky.

(A.7)
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Ak(FD) =J1(S − n− gx) + J1(S − n+ fy)(cos ky − 1)+

+ 2J2(S − n− gxy)−KS2{−S + 2[1 + 5(n+ gx)]}−

−KS2{−S + 2[1 + 5(n− fy)]}(1− cos ky);

Bk(FD) =J1(S − n− gx) cos kx + 2J2(S − n− gxy) cos kx cos ky−

−KS2{−S + 2[1 + 5(n+ gx)]} cos kx.

(A.8)

Minimizing the free energy with respect to the mean-field parameters defined in

Eq. (A.1), we finally arrive at a system of Euler–Lagrange equations:

αx =
1

Ns

∑
k

(〈
a†kak

〉
+ 〈aka−k〉 cos kx

)
=

= −1

2
+

1

Ns

∑
k

(1 + 2nk)
Ak −Bk cos kx

ωk

;

βy =
1

Ns

∑
k

〈
a†kak

〉
(1− cos ky) = −1

2
+

1

Ns

∑
k

(1 + 2nk)
Ak (1− cos ky)

ωk

;

αxy =
1

Ns

∑
k

(〈
a†kak

〉
+ 〈aka−k〉 cos kx cos ky

)
=

= −1

2
+

1

Ns

∑
k

(1 + 2nk)
Ak −Bk cos kx cos ky

ωk

,

(A.9)

where for convenience, we have denoted: αx = n+gx, αxy = n+gxy, and βy = n−fy.

The above equations are to be solved self-consistently because their right-hand side

depends on the mean-field parameters themselves via Eqs. (A.7) and (A.8).



Appendix B

Dyson-Maleev bosons (modified

spin waves)

Once again, we obtain dispersions of the form: ωk = 2
√
A2

k −B2
k for the two-

and three-dimensional cases, respectively:

Ak(2D) =λ+ 2J2(S − αxy) + J1 [rx(S − αx) + ry(S − βy)(cos ky − 1)]

Bk(2D) =J1rx(S − αx) cos kx + 2J2(S − αxy) cos kx cos ky

(B.1)

Ak(3D) =Ak(2D) + Jc(S − αz)

Bk(3D) =Bk(2D) + Jc(S − αz) cos kz

(B.2)

Where rx, ry stand for the following expressions:
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rx =1 +
K

S − αx
[
2S3 − 2S2(1 + 5αx) + S(18α2

x + 8αx + 1)− 12α3
x − 9α2

x − 2αx
]

ry =1− K

S − βy
[
2S3 − 2S2(1 + 5βy) + S(18β2

y + 8βy)− 12β3
y − 9β2

y − βy
]

(B.3)

Finally, we introduced the chemical potential λ to enforce the constraint 〈Sz〉 = 0

in the paramagnetic regime, which results in the following equation:

S =
1

Ns

∑
k

〈
a†kak

〉
→ S +

1

2
=

1

Ns

∑
k

(1 + 2nk)
Ak

ωk
(B.4)

Thus, λ = 0 in the magnetically ordered phase. The resulting set of self-consistent

equations has the same form of (A.9), with the addition of the following equation in

the three-dimensional case:

αz =
1

Ns

∑
k

(〈
a†kak

〉
+ 〈aka−k〉 cos kz

)
= −1

2
+

1

Ns

∑
k

(1 + 2nk)
Ak −Bk cos kz

ωk

(B.5)

We differentiate the two domains, T < TN (where n < S and λ = 0) and T > TN

(where n = S and λ 6= 0).

Finally, the dynamical spin structure factors:
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S(q, ω) =

∫
dt eiωt 〈Sq(t) · S−q(0)〉 (B.6)

are given by[65]:

S(q, ω) =
2π

Ns

∑
k

∑
s,s′=±1

[cosh (2θk+q − 2θk)− ss′]× δ(ω − sεk+q − s′εk)nsk+qn
s′

k ,

(B.7)

where: n−k = nk and n+
k = nk + 1. The angle θq is determined by the coefficients

of the Bogoliubov transformation:

tanh (2θq) =
Bq

Aq

(B.8)

As mentioned in the main text, in practice, we substitute the δ function by a

Lorentzian broadening of width γ in order to obtain finite results. Said function

takes the following form:

δ(ω −∆ε)→ 1

π

γ

(ω −∆ε)2 + γ2
(B.9)



Appendix C

Generalized spin waves (flavor

waves)

In what follows we outline the expressions describing the spin wave dispersions

for all phases identified in the iron chalcogenides. To do so, we use the procedure

outlined in Section 3.5 in order to obtain a quadratic Hamiltonian. In all cases, we

will start by performing a unitary transformation of the bosonic and spin operators

into a new basis:

b̃i = V†i bi (C.1)

S̃i = V†iSiVi, (C.2)

where the transformation matrices are determined by the directors |~di〉 that de-
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scribe each ground state[95].

At the end of each section, when necessary, we also include the formulas for

the dynamical spin structure factors, which we computed following the definition

below[95]:

Sµν(q, ω) = χ′′µν(q, ω) =
NS

N

∑
αβ

∑
f

〈
g.s.|Sµα,q|f

〉 〈
f |Sνβ,−q|g.s.

〉
× δ(ω −Ef +Eg)

(C.3)

Here, |f〉 〈f | = 1 is the complete set of states and the indices α, β are used to

denote the different sublattices, with the ratio N/NS keeping track of their total

number.

C.1 Flavor waves for the ferroquadrupolar (FQ)

phase

In the FQ state the directors ~di are identical on all sites (in total one sublattice

N/NS = 1). Due to SU(2) symmetry of the Hamiltonian, we can safely choose

~di = {1, 0, 0}. (C.4)

Correspondingly, the transformation matrix is same on every site i:
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Vi =


1 0 0

0 1 0

0 0 1

 . (C.5)

The flavor wave Hamiltonian expanded up to quadratic level is given by

Hfw=
∑
q,a

[t(q) + λ] (b̃q,ab̃
†
q,a + b̃†−q,ab̃−q,a) +

∑
q,a

[
∆(q)b̃†q,ab̃

†
−q,a + h.c.

]
+NE0,

(C.6)

where

t(q) = J1(cos qx + cos qy) + 2J2 cos qx cos qy +

+J3(cos 2qx + cos 2qy), (C.7)

∆(q) = (K1 − J1)(cos qx + cos qy) + 2(K2 − J2) cos qx cos qy −

−J3(cos 2qx + cos 2qy), (C.8)

λ = −2(K1 +K2), (C.9)

E0 = 4(K1 +K2). (C.10)

Bogoliubov transformation:
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αq,a = cosh θq b̃q,a − sinh θq b̃
†
−q,a, (C.11)

with

tanh 2θq = − ∆(q)

t(q) + λ
. (C.12)

The diagonalized Hamiltonian:

Hfw =
∑
a=1,2

∑
q

ωq(α†q,aαq,a + 1/2) +N(E0 − λ), (C.13)

where the dispersion ωq is given by:

ωq = 2
√

[t(q) + λ]2 −∆2(q). (C.14)

Finally, the dynamical structure factors in this case are given by:

χ′′xx(q, ω) = 0 (C.15)

χ′′yy(q, ω) = χ′′zz(q, ω) =
t(q + λ+ ∆(q))√
[t(q + λ)]2 −∆2(q)

δ(ω − ωq) (C.16)
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C.2 Flavor waves for the columnar antiferromag-

netic (CAFM) phase

There are in total two sublattices N/NS = 2, whose directors can be chosen

as:

~di∈A = 1√
2
{0, 1, i}, (C.17)

~di∈B = 1√
2
{0, 1,−i}. (C.18)

Correspondingly, the transformation matrices are written below:

Vi∈A = 1√
2


0 0

√
2

1 i 0

i 1 0

 , (C.19)

Vi∈B = 1√
2


0 0

√
2

1 −i 0

−i 1 0

 . (C.20)

The quadratic terms of the resulting Hamiltonian now include cross-terms be-

tween sublattices:
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Hfw=
∑
q,a

(taa + λaa) (b̃A,q,ab̃
†
A,q,a + b̃†A,q,ab̃A,q,a

+ b̃B,q,ab̃
†
B,q,a + b̃†B,q,ab̃B,q,a)

+
∑
q,a

∆aa

(
b̃†A,q,ab̃

†
B,−q,a + b̃†B,q,ab̃

†
A,−q,a + h.c.

) (C.21)

With the coefficients λaa, taa(q) and ∆aa(q) depending on the parameters of the

model as follows:

λ11 = 2(2J2 −K2)− 4J3, (C.22)

λ22 = −K1 + 2(J2 −K2)− 2J3, (C.23)

t11(q) = K1 cos qy, (C.24)

t22(q) = J1 cos qy + J3[cos (2qx) + cos (2qy)] (C.25)

∆11(q) = K1 cos qx + 2K2 cos qx cos qy, (C.26)

∆22(q) = −(J1 −K1) cos qx − 2(J2 −K2) cos qx cos qy. (C.27)

And the diagonalized Bogolibouv dispersions finally taking the following form

(with a = 1, 2):

ωq,a = 2
√

[taa(q) + λaa]2 −∆2
aa(q). (C.28)
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C.3 Flavor waves for the Néel phase

In this case, both the Hamiltonian as well as the diagonalized dispersions have

the same symbolic expression as in the CAFM case. However, the coefficients are

now given by:

λ11 = 2(2J1 −K1)− 2(2J2 −K2)− 4J3, (C.29)

λ22 = 2(J1 −K1)− 2J2 − 2J3, (C.30)

t11(q) = 2K2 cos qx cos qy, (C.31)

t22(q) = 2J2 cos qx cos qy + J3[cos (2qx) + cos (2qy)], (C.32)

∆11(q) = K1(cos qx + cos qy), (C.33)

∆22(q) = −(J1 −K1)(cos qx + cos qy). (C.34)

C.3.1 Flavor waves for the double stripe (DS) phase

Unlike in the previous two cases where the introduction of two sublattices was

enough, four are necessary in this case. However, since there are still only two distinct

directors, the previously shown transformation matrices are enough to derive the

Hamiltonian. It is now convenient to write the actual Hamiltonian down so that it

becomes block diagonal. This is due to the lack of cross terms between the bosonic

operators of the different modes. The quadratic terms can be written in the following

matricial form:
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Hfw=2
∑
q

(ψ†11ψ22)Hfw

ψ11

ψ†22

 , (C.35)

with the block-diagonal form of the Hamiltonian matrix explicitly written as:

S̃νi = V†i Sνi Vi (C.36)

Hfw = 2

J 0

0 K

 , (C.37)

and where: ψ†aa = (b†A,q,a, b
†
B,q,a, bC,−q,a, bD,−q,a). The matrix elements of each 4 × 4

block-diagonal matrix are given by:

J11 = J22 = J33 = J44 = 4J3 +K2 cos (qx − qy) ≡ A, (C.38)

J12 = J ∗14 = J ∗21 = J23 = J ∗32 = J34 = J41 = J ∗43 =
K1

2
(eiqx + eiqy), (C.39)

J13 = J24 = J31 = J42 = K2 cos (qx + qy) ≡ B. (C.40)

and
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K11 = K22 = K33 = K44 =

= −(K1 +K2) + 2J3 + J2 cos (qx − qy) ≡ C, (C.41)

K12 = K∗21 = K34 = K∗43 =
J1

2
(eiqx + eiqy), (C.42)

K∗14 = K23 = K∗32 = K41 = −(J1 −K1)

2
(eiqx + eiqy), (C.43)

K13 = K24 = K31 = K42 =

= −(J2 −K2) cos (qx + qy)− J3[cos (2qx) + cos (2qy)] ≡ D. (C.44)

The dispersions can be derived immediately from a standard Bogoliubov trans-

formation of the Hamiltonian above. This is done by obtaining the eigenvalues of

the new matrix resulting from the similarity transformation: H̃fw = ΘHfw, where the

matrix Θ = diag(1, 1,−1,−1). This gives the following result:

ωq,1,± = 2
√
A2 − B2 ± 2

√
κ1, (C.45)

ωq,2,± = 2

√
C2 −D2 − K1

2
(K1 − 2J1)± 2

√
κ2, (C.46)

where κ1 and κ2 are given by:
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κ1 =
K2

1

2
(A2 + B2)[1 + cos (qx − qy)]−

− K2
1AB
2

[cos (2qx) + cos (2qy) + 2 cos (qx + qy)]−

− K4
1

16
[sin (2qx) + sin (2qy) + 2 sin (qx + qy)]

2

(C.47)

κ2 =
1

2
[J2

1C2 + (J1 −K1)2D2][1 + cos (qx − qy)]+

+
J1(J1 −K1)CD

2
[cos (2qx) + cos (2qy) + 2 cos (qx + qy)]−

− J2
1 (J1 −K1)2

16
[sin (2qx) + sin (2qy) + 2 sin (qx + qy)]

2

(C.48)

The dynamical structure factors, in this case, are:

χ′′xx(q, ω) = 1 (C.49)

χ′′yy(q, ω) = χ′′zz(q, ω) =

=
1

8

∑
i=1,4

|(V 1i
q + V 2i

q )− (V 3i
q + V 4i

q )|2 × δ(ω − ωq,2,+) +

+
1

8

∑
i=2,3

|(V 1i
q + V 2i

q )− (V 3i
q + V 4i

q )|2 × δ(ω − ωq,2,−) (C.50)

Where the V ij
q are the coefficients of the Bogoliubov transformation that diago-

nalize the Hamiltonian:
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bA,k = V 11
k αI,k + V 12

k βI,k + V 13
k β†II,k + V 14

k α†II,k (C.51)

bB,k = V 21
k αI,k + V 22

k βI,k + V 23
k β†II,k + V 24

k α†II,k (C.52)

bC,k = (V 31
−k)∗α†I,−k + (V 32

−k)∗β†I,−k + (V 33
−k)∗βII,−k + (V 34

−k)∗αII,−k (C.53)

bD,k = (V 41
−k)∗α†I,−k + (V 42

−k)∗β†I,−k + (V 43
−k)∗βII,−k + (V 44

−k)∗αII,−k (C.54)

C.3.2 Flavor waves for the
(
π, π2

)
phase

Just like before, all the symbolic expressions are the same as those in the section

above, with the coefficients of the matrix in Eq. (C.37) given by:

J11 = J22 = J33 = J44 = 2J1 −K1 ≡ A, (C.55)

J12 = J ∗14 = J ∗21 = J23 = J ∗32 = J34 = J41 = J ∗43 =

=
K1

2
eiqx +K2e

−iqx cos qy, (C.56)

J13 = J24 = J31 = J42 = K1 cos (2qy) ≡ B. (C.57)

and the coefficients Kij taking on the form:
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K11 = K22 = K33 = K44 = J1 −
3K1

2
−K2 + J3 cos (2qy) ≡ C, (C.58)

K12 = K∗21 = K34 = K∗43 =
J1

2
eiqx + J2e

−iqx cos qy, (C.59)

K∗14 = K23 = K∗32 = K41 = −(J1 −K1)

2
eiqx − (J2 −K2)e−iqx cos qy, (C.60)

K13 = K24 = K31 = K42 = −(J1 −K1) cos qy − J3 cos (2kx) ≡ D. (C.61)

After diagonalizing, the resulting dispersions are now:

ωq,1,± = 2
√
A2 − B2 ±

√
κ1, (C.62)

ωq,2,± = 2

√
C2 −D2 − K1

4
(K1 − 2J1)−K2(K2 − 2J2) cos2 qy ±

√
κ2, (C.63)

with:

κ1 = (A2 + B2)(K2
1 + 4K2

2 cos2 qy)−

− 1

2
(K2

1 − 4K2
2 cos2 qy)

2[1− cos (4qx)]− 8ABK1K2 cos qy+

+ 2(AK1 − 2BK2 cos qy)(2AK2 cos qy − BK1) cos (2qx)

(C.64)
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κ2 = C2(J2
1 + 4J2

2 cos2 qy) +D2[(J1 −K1)2 + 4(J2 −K2)2 cos2 qy]−

− 1

2
[J1(J1 −K1)− 4J2(J2 −K2) cos2 qy]

2[1− cos (4qx)]+

+ 4CD[J1(J2 −K2) + J2(J1 −K1)] cos qy−

− 2[CJ1 + 2D(J2 −K2) cos qy][2CJ2 cos qy +D(J1 −K1)] cos (2qx)

(C.65)

C.3.3 Flavor Wave for the staggered dimer (SD) phase

K11 = K22 = K33 = K44 = K55 = K66 = K77 = K88 = 4J3, (C.66)

K15 = K26 = K37 = K48 = K51 = K62 = K73 = K84 = 0, (C.67)

K13 = K28 = K31 = K46 = K57 = K64 = K75 = K82 = K2 cos (qx + qy), (C.68)

K17 = K24 = K35 = K42 = K53 = K68 = K71 = K86 = K2 cos (qx − qy), (C.69)

K12 = K25 = K38 = K43 = K56 = K61 = K74 = K87 =
K1

2
eiqx , (C.70)

K16 = K21 = K34 = K47 = K52 = K65 = K78 = K83 =
K1

2
e−iqx , (C.71)

K14 = K23 = K36 = K45 = K58 = K67 = K72 = K81 =
K1

2
eiqy , (C.72)

K18 = K27 = K32 = K41 = K54 = K63 = K76 = K85 =
K1

2
e−iqy (C.73)
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J11 = J22 = J33 = J44 = J55 = J66 = J77 = J88 =

= 2J3 − (K1 +K2), (C.74)

J15 = J26 = J37 = J48 = J51 = J62 = J73 = J84 =

= −J3[cos (2qx) + cos (2qy)], (C.75)

J13 = J31 = J57 = J75 = J2 cos (qx + qy), (C.76)

J24 = J42 = J68 = J86 = J2 cos (qx − qy), (C.77)

J28 = J46 = J64 = J82 = −(J2 −K2) cos (qx + qy), (C.78)

J17 = J35 = J53 = J71 = −(J2 −K2) cos (qx − qy), (C.79)

J12 = J43 = J56 = J87 =
J1

2
eiqx , (C.80)

J21 = J34 = J65 = J78 =
J1

2
e−iqx , (C.81)

J14 = J23 = J58 = J67 =
J1

2
eiqy , (C.82)

J32 = J41 = J76 = J85 =
J1

2
e−iqy , (C.83)

J25 = J38 = J61 = J74 = −(J1 −K1)

2
eiqx , (C.84)

J16 = J47 = J52 = J83 = −(J1 −K1)

2
e−iqx , (C.85)

J36 = J45 = J72 = J81 = −(J1 −K1)

2
eiqy , (C.86)

J18 = J27 = J54 = J63 = −(J1 −K1)

2
e−iqy (C.87)



Appendix D

Padé Approximants

Padé Approximants, initially developed by Henri Padé are rational functions com-

puted to be the best possible approximation of another given function. In general the

numerator and the denominator of the approximant can be polynomials of different

order but we will focus on the N-point Padé approximant:

CN(z) =
AN(z)

BN(z)
(D.1)

Here, AN(z) and BN(z) are both polynomials of order (N − 1)/2 if N is odd and

of orders (N − 2)/2 and N/2, respectively is N is even. One can use this method

in order to obtain an analytic continuation of a function with values at points in

the complex plane. In our case, we wish to obtain the real frequency values of the

propagators from the data at the imaginary Matsubara frequencies.

We now proceed to summarize a quick algorithm for computing the Padé approx-
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imant of said function. This was described in [96] by Vidberg and Serene. First, we

write the rational function in the form of continued fraction given by the following

expression, where ui are the values of our function (in this case, the propagators) and

zi the complex points (the Matsubara frequencies, in our case) where the function

takes said values, for indices i = 1, ..., N .

CN(z) =
a1

1 + a2(z−z1)
1+...aN (z−zN−1)

, (D.2)

We know that the function CN(z) should take the already known values at the

zi points:

CN(zi) = ui, (D.3)

with i = 1, ..., N . We can now obtain the ai coefficients by using the recursion

formula: ai = gi(zi). The values of the gi are then given by:

g1(zi) = ui, (D.4)

for i = 1, ..., N , and:

gp(z) =
gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
, (D.5)

for p ≥ 2. These can be written as the following triangular matrix:
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a1 = u1 u2 u3 u4 ...

0 a2 g2(z3) g2(z4) ...

0 0 a3 g3(z4) ...

0 0 0 a4 ...

0 0 0 0 ...

...
...

...
...

. . .


(D.6)

whose pi,j coefficients can be calculated as follows:

p1,j = uj, (D.7)

for j = 1, ..., N , and:

pi,j =
pi−1,i−1 − pi−1,j

(zj − zi−i)pi−1,j

(D.8)

for j = 2, ..., N and i = 2, ..., j. Once we obtain these coefficients, we can use

the diagonal elements ai to finally calculate the recursive expressions for the initial

fraction CN(z) = AN (z)
BN (z)

and thus the value of our function in the real axis. These are

given by:
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A0 = 0 (D.9)

A1 = a1 (D.10)

An+1(z) = An(z) + (z − zn)an+1An−1(z) (D.11)

and:

B0 = B1 = 1 (D.12)

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z) (D.13)
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