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Abstract 

Nanocars: Towards Photoactive, Directionally-Controlled Surface Rolling 

Molecules 

by 

Jason Matthew Guerrero 

Described in this thesis are efforts to advance our understanding of single 

molecule machines through the synthesis and study of an array of nanovehicles. In the 

first chapter, nanoscale transport is explored through the synthesis and solution-based 

studies of a photoactive, metal-ion-chelating nanocar. Utilizing an appended photoactive 

dipyridylethylene moiety as a metal chelating unit, it is expected that this molecule, upon 

photoirradiation, will form a strong bidentate ligand for carrying metal ions along 

surfaces. Following this, in the second chapter, directional control and propulsion are 

explored through the synthesis of motorized nanocars. Studies towards a dual-motored 

nanocar as well as the synthesis of an ultra-fast motorized nanocar are described. The 

third chapter covers our efforts to complement previous STM studies, where single 

molecule fluorescence spectroscopy is used for imaging and mechanistic elucidation of 

translational movement of fluorescently-tagged nanovehicles. The synthetic routes 

towards these molecules are covered, as well. In chapters 4 and 5, various nanovehicles 

are synthesized using contrasting approaches. In chapter 4, self-assembly methods 

mirroring those used in biological construction are used to produce nanocars and 

nanotrains. Moieties of 2-pyridones and terpyridyl groups were used for self-assembling 

via hydrogen bonding and metal complex formation, respectively. Traditional organic 
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synthesis is used to build carborane-wheeled nanovehicles in chapter 5. These molecules 

are expected to move in predetermined patterns on atomically smooth surfaces, 

depending on their specific configuration of axles and wheels. Finally, in chapter 6, 

nanocomponentry is explored through the synthesis and studies of molecular devices 

such as azobenzene-fullerene switches and fullerene-oligo(phenylene ethynylene) 

molecular wires. The presence of fiillerenes and oligo(phenylene ethynylene)s (OPEs) in 

azobenzene derivatives was found to have a large effect on the photoisomerization 

behavior of the molecules. Lastly, a series of fullerene-terminated oligo(phenylene 

ethynylene) (OPEs) molecular wires have been synthesized as potential molecular 

electronic devices. Electronic properties such as the energy levels and the distribution of 

HOMOs and LUMOs of fullerene-terminated OPEs have been calculated using ab initio 

method at the B3LYP/6-31G(d) level. 
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Nanocars'. Towards Photoactive, Directionally-Controlled Surface 

Rolling Molecules 

Preface 

By Jason M. Guerrero 

Science and engineering on the nanoscale offers novel possibilities for the design 

and synthesis of functional materials. Performing electronic and mechanical operations 

with specifically designed molecules presents the ultimate limit of miniaturization and 

has a profound impact on many fields ranging from molecular computing to medicine. 

The quest for functional molecular devices1 has stimulated the design and synthesis of a 

variety of organic compounds such as motors,2 rotors,3 barrows,4 scissors,5 turnstiles,6 

elevators,7 shuttles,8 and nanovehicles9 that resemble macroscopic machinery. This quest 

is driven by the impetus to miniaturize machinery in scientific, medical and technological 

disciplines as the most advanced current fabrication methods, the "top-down" approach 

to miniaturization (such as that used in the semiconductor industry) nears its limits in 

scaling.10 The strategy used in the top-down approach is to shrink, and shrink again, a 

macroscopic entity using photolithography and the related techniques11 to reach an 

equivalent micro- or nano-scopic entity. It is thought that the inherent limitations of this 

strategy will lead to a dead end in the next few years. For instance, silicon's band 

structure disappears when silicon layers are just a few atoms thick.10 Photolithography 

and other related techniques, also used for microelectromechanical systems (MEMS) 

fabrication, are limited by the wavelengths at which they operate. 
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On the other hand, the "bottom-up" approach consists of building functional 

micro- or nano-scopic entities from the most basic organic building blocks. We need only 

12 

to look at the life around us to see that this approach, inspired by what natural systems 

are using, holds promise to develop new molecular devices. Biology uses 

thermodynamically controlled methods such as self-assembly and enzymatically 

controlled assembling routes such as bond scission and replacement that result in the 

precise positioning of molecular-sized entities for the construction of higher order 

structures. Adapting these approaches into the non-natural arena of organic synthesis, 

many of the initial molecular machines synthesized by chemists were made to work and 

to be studied as ensembles in solution, and their processes were readily studied using the 

abundant solution-phase analytical tools available. While these initial studies provided a 

cornerstone for future nanomachine development, to realize the successful execution of 

tasks used in common fabrication, and in a few cases, to mimic the tasks undertaken in 

biological systems, the deposition and study of molecule-sized machines on a surface is a 

crucial step. Thus, there has been a paradigm shift toward the development of surface-

based molecular machines. Accordingly, a few types of surface-mounted molecular 

machines including altitudinal 13 and azimuthal14 rotors, cyclodextrin necklaces, 15 

molecular muscles,16 and molecular shuttles17 have been prepared and assembled on 

surfaces. Macroscopic effects have also been reported, such as the rotation of a 

micrometric glass rod on a liquid crystal film doped with a unidirectional light-powered 

molecular motor18 and the millimeter-length directional transport of a diiodomethane 

drop across a surface using photoresponsive molecular shuttles.17 These studies 

successfully demonstrated the effectiveness of such machines and the ability to exploit 



changes in their conflgurational populations using external stimuli to carry out a specified 

task. 

Despite these exciting results, the manipulation of nano-sized entities still 

represents one of the most difficult challenges for nanoscience. Various 

nanomanipulators have recently been developed for inclusion into microscopy setups and 

are often able to address entities that are only 1-2 nm in size.19 However, these probes 

must be precisely positioned and are able to address only one of these entities at a time. 

Furthermore, control of these materials using a tool that is 8-9 orders of magnitude 

greater in size presents an obvious drawback in terms of efficiency. To overcome this 

hurdle, once again we need to look no further than nature. More exactly, if we examine 

the manner in which biology performs transportation and construction, we find that 

objects are manipulated and organized by molecular machines of comparable size, 

usually within 1-3 orders of magnitude. For example, small molecules such as oxygen, 

amino acids and short protein chains are transported by diffusion or by proteins or 

vesicles via gross fields of influence, diffusion and Brownian motion, and are placed in 

specific locations by enzymes via molecular recognition, to build higher order structures 

or carry out important tasks. Larger systems are transported by motor proteins such as 

dynein, kinesin and myosin, which all move, powered by chemical reactions, in a 

directionally-controlled fashion along a track such as an actin filament or microtubule. As 

an ensemble, these molecular machines can move organelles, vesicles, and, when enough 

of these proteins are present, even neurons and muscles. Concomitantly, the nanoscientist 

is faced with the challenge of controlling differing internal modes of operation including 

rotation of specific bonds for movement, directional control, molecular recognition, etc., 



within a single molecule. We are then posed with the following question: What design 

platform is a chemist able to manipulate, using traditional organic synthesis, for the 

inclusion of multiple components to build functional nanomachines? 

Primary attempts to address some of the hurdles associated with controlling single 

20 

molecule machines resulted in various groups reporting the synthesis of landers, 

wheelbarrows, nanowalkers, and poly-aromatic systems for the purpose of 

investigating their behavior on surfaces. These systems, however, only display a single 

internal mode of operation, carrying out only one task. Further expanding on this idea, 

our group has combined various nanocomponentry with molecular axles containing 

fullerene, p-carborane or organometallic wheels to construct a number of nanovehicles 

designed for directed motion and transport along atomically flat surfaces.9 Due to their 

obvious resemblance to macroscopic vehicles, we have termed these single molecule 

machines "nanocars". These nanocars synthesized in our laboratory are each calculated to 1 Q 

be approximately 3><4 nm in size, and can be produced on the -30 mg scale (-10 

nanocars) using small laboratory reaction flasks, or more nanocars than the number of 

automobiles made in the history of the world (which is <108 automobiles). It would take 

30 nanocars, side by side, to span the 90 nm width of a small line in the most advanced 

logic chip being made today.10 To conceptualize the possibilities of controlling such a 
12 

vast number of molecular machines, by contrast, the concerted movement of -10 

myosin motor proteins which are, on average, 45 times larger than a nanocar, are 

responsible for a typical muscle fiber contraction.24 Therefore, it is the inspiration by 

nature and the resultant possibilities to mimic its capability that drive us to continue our 

quest to develop functional, surface-active molecular machines. Initial proof-of-concept 



experiments have shown, using STM, the directed movement of fullerene-wheeled 

nanocars on atomically-flat Au( l l l ) surfaces upon thermal and electrostatic activation. 

However, our project is still in its embryonic stages, and we are only now learning to 

construct and manipulate these devices with some degree of efficiency. 

Therefore, building upon our initial results, described in this thesis are efforts to 

advance our understanding of single molecule machines through the synthesis and study 

of an array of nanovehicles. In the first chapter, nanoscale transport is explored through 

the synthesis and solution-based studies of a photoactive, metal-ion-chelating nanocar. 

Following this, in the second chapter, directional control and propulsion are explored 

through the synthesis of motorized nanocars. The third chapter covers our efforts to 

complement previous STM studies, where single molecule fluorescence spectroscopy is 

used for imaging and mechanistic elucidation of translational movement of fluorescently-

tagged nanovehicles. Their synthesis is covered, as well. In chapters 4 and 5, various 

nanovehicles are synthesized using contrasting approaches. In chapter 4, self-assembly 

methods mirroring those used in biological construction are used to produce nanocars and 

nanotrains. Traditional organic synthesis is used to build carborane-wheeled nanovehicles 

in chapter 5. Finally, in chapter 6, nanocomponentry is explored through the synthesis 

and studies of molecular devices such as azobenzene-fullerene switches and fullerene-

oligo(phenylene ethynylene) molecular wires. 
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Chapter 1 

Photomodulated Transport 



1.1 

Initial Studies Towards a Surface Rolling Photoactivated Metal Ion Carrier: The 

Nanobackhoe 



Introduction 

Spurred by the ever-increasing interest directed towards bottom-up construction, 

the current thrust of much physical and biological science research is to address the 

eventual need for molecular machinery.1 In order for nanomachines to mimic the 

everyday tasks carried out by their macroscopic counterparts, some of the more difficult 

hurdles associated with molecular machine production must be addressed.2 To help 

provide insight into the development of future nanomachines, particularly methods for 

controlled propulsion, communication, transport and directionality, our group has taken 

interest in the combination and assembly of molecular axles, wheels and interchangeable 

componentry (particularly photo- and electro-active moieties) into surface-rolling 

nanovehicles.3'4 

In recent years, many advances have been made in the design, synthesis and 

testing of photoactive moieties for inclusion into molecular machines.5'6 While these 

molecules have proven to be quite successful in carrying out translational motion in 

solution and on surfaces,7 as it is usually reversible and almost always associated with a 

large change in geometric structure, little work has been done in the area of light-induced 

transportation of nanomaterials. Rather than using photoisomerization as a direct tool for 

propulsion and thus translational motion, we report the synthesis of a new nanocar 

bearing a photoactive dipyridylethylene8 (DPE) unit for the controlled acquisition of 

metal ions,9 as shown in Figure 1. Studies of its photoactive behavior as a free ligand and 

when complexed to a metal, taking advantage of the DPE's two discrete binding 
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modalities when isomerized from trans (weaker, monodentate chelation) to cis (stronger, 

bidentate chelation) are also described. 

trans-Nanobackhoe 1 cis-Nanobackhoe 1 

Figure 1. Structure of nanobackhoe 1 in trans (a,b) and complexed cis (c,d) and its 

geometry optimized in each case (b, d) with MS Modeling 4.0. M = Cu(CH3CN)2+ 

Design and Synthesis of Nanobackhoe 1. The orientation of the 

dipyridylethylene moiety relative to the nanocar is designed to be sterically demanding to 

prevent the chelation of a single metal center to more than one nanobackhoe. As shown in 
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Figure 1, in the absence of a surface, upon isomerization to the cis form of the 

dipyridylethylene claw, the minimal energy conformation, as calculated by molecular 

modeling10 of the complexed nanobackhoe, places the metal center in a seven-membered 

ring with the metal atom above the nanocar. Additionally, the alkynyl moiety of the 

dipyridylethylene claw portion allows free rotation before and after isomerization, 

thereby increasing the possibility of metal release to a surface or other receiving agent. 

Due to the unsymmetrical nature of the molecule, it was necessary to combine two 

different halves of the car in a convergent manner, one bearing an axle which has been 

used in previous syntheses and a second, differentially-substituted axle bearing the 

aforementioned DPE claw. 

Results and Discussion 

To selectively obtain the trans form of the claw with a pendant bromide for 

subsequent Sonogashira coupling, a Horner-Wadsworth-Emmons olefination11 (Scheme 

1) of commercially available a-picoline and 6-bromopyridine-2-carboxaldehyde was 

performed using a-picoline and diethylchlorophosphate to form the in situ deprotonated 

Arbuzov-type product. Immediate condensation onto the aldehyde provided olefin 2 with 

greater than 99:1 E:Z selectivity (as determined by 'H NMR). Sonogashira coupling of 

trimethylsilylacetylene (TMSA) to the aryl bromide at 60 °C afforded TMS-alkyne 3. 
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Scheme 1. Synthesis of dipyridylethylene claw 

The claw-bearing axle was then synthesized beginning with previously described 

44d (Scheme 2) undergoing desilyl bromination using AgNC>3 and NBS in acetone12 to 

provide the dialkynyl bromide, which was immediately reacted with with a cuprated p-

carborane species to introduce wheels, giving diiodide axle 5. To arrive at the lower half 

of the backhoe, TMS alkyne 3 was deprotected and reacted immediately with diiodide 

axle 5 in a statistical Sonogashira coupling to give the desired claw axle 6 in 24 % yield. 
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The second half of the molecule includes the inner chassis of the nanobackhoe 

bearing a central dialkylated benzene ring for increased solubility. Following known 

procedures, l,4-diiodo-2,5-diethylbenzene (7) (Scheme 3) was synthesized in two steps 

from commercially available 4-ethylacetophenone. To ease chromatographic separation 

by adding a highly polar group, a statistical Sonogashira coupling of 2-methyl-3-butyne-

2-ol to diiodide 7 gave the monoalkyne 8 in 77% yield. For stability reasons,14 

triisopropylsilyl-protected acetylene (TIPSA) was chosen to couple to the monoiodide, 

subsequently providing the protected inner chassis 9. For deprotection, 9 was subjected to 

sodium hydroxide in refluxing toluene15 to give the differentially substituted inner chassis 

10. Pd-catalyzed coupling to previously reported iodide axle l l 4 a followed by TBAF 

deprotection gave the free alkyne half-backhoe 12. A final Sonogashira coupling of the 

terminal alkyne to claw axle 6 was performed to provide nanobackhoe 1 in 61% yield. 

Scheme 3. Completion of nanobackhoe 
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Photoinitiated Isomerization and Chelation. To determine the optimal 

conditions for both photoisomerization and chelation, trans 3 was irradiated under a 

variety of conditions and studied by both NMR and UV/Vis spectroscopy (Figures 2 and 

3). Irradiation at the Amax of 3 (313 nm) for extended periods of time yielded a significant 

amount of byproducts in addition to the desired cis isomer, evidenced by the appearance 

of !H resonances not corresponding to either isomer. In an effort to avoid the 
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aforementioned unwanted side reactions, investigation of various wavelengths and 

irradiation times led to a final protocol of pulsed irradiations at 365 nm of compound 3, 

performed at 15 min intervals over the course of several hours. It was interesting to note 

that irradiation slightly off of the Xmax led to more efficient conversion of trans 3 to cis 3. 

It was found that 365 nm and 313 nm wavelengths give clean conversion as long as the 

process involves long pulsed irradiations, with irradiation at 313 nm consisting of 5 min 

intervals. 

T M S 

trans 3 

365 nm 

T M S 

Figure 2. Spectral monitoring of trans-to-cis isomerization of 3 by 'H NMR. Both the 

pyridyl 6' and alkene resonances can be monitored. The pyridyl and alkene protons are 

explicitly shown and labeled for clarity. Relative integration values are shown in the 

boxes. The trans-alkenyl coupling constant is 16 Hz. The c/v-alkenyl coupling constant is 

13 Hz. Note that the Hb trans alkene signal overlaps with an adjacent aryl signal, 

rendering its integration value inaccurate. 
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In addition to monitoring by 'H NMR, the isomerization process can also be followed by 

UV/Vis (Figure 3). Significant decrease in the Amax occurring at -330 nm can be observed. 

As before, pulsed irradiation was performed on a dilute sample to avoid decomposition. 

TMS-DPE 

wavelength (nm) 

Figure 3. UV/Vis monitoring of the photoinduced isomerization from trans 3 to cis 3. 

Upon verification of suitable conditions for isomerization of 3, irradiation was 

then performed on trans nanobackhoe 1. ^ NMR behavior similar to that of compound 3 

could be noted. The cis alkene resonances coalesce in the parent compound. Therefore, 

integration of the monitored cis alkene peak results in a value representing both alkene 

protons. Due to the increased number of aryl signals and their overlap with those of the 

trans alkene, their integration is not a useful diagnostic. 
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Figure 4. Photoisomerization of nanobackhoe 1. Note that both cis alkene protons 

coalesce into a single signal. The slight outer signals adjacent to the cis alkene 

correspond to a slight AB quartet. 

As in compound 3, the photoactive behavior of nanobackhoe 1 could also be monitored 

using UV/Vis. As can be seen in the UV/Vis spectrum (Figure 5), the backhoe exhibits a 

very broad A,max occurring in the range between 330-400 nm. Irradiation using 365 nm 

resulted in a concomitant decrease in the maximum absorption consistent with formation 

of the cis isomer. 
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Backhoe 

Figure 5. UV/Vis monitoring of the photoisomerization of trans nanobackhoe 1 to cis 

nanobackhoe 1. 

The photoattenuative metal ion chelation ability of both model compound 3 and 

nanobackhoe 1 was also investigated using 'H NMR. Unfortunately, a lack of metal-to-

ligand charge transfer (MLCT) peaks in the UV/Vis spectra of 1 and 3 outside of the 

range of their respective k systems (> 400 nm, > 365 nm) precluded the use of UV/Vis as 

a diagnostic tool for chelation. The NMR behavior is shown in Figure 6 for compound 3. 

The initial spectrum represents a pure solution of 3. Upon adding 1 equivalent of 

CU(CH 3CN) 4PF 6 , 1 6 a significant amount of peak broadening occurs in some aryl 

resonances. To ascertain which resonances experience this broadening, 2D NMR was 

performed on a solution of compound 3. It was thus confirmed that the peaks exhibiting 

the most broadening correspond to the free pyridyl ring (distal from the alkyne). 

Interestingly, the behavior of the cis alkene resonances of chelated cis 3 is similar to that 
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of the nanobackhoe 1 post-irradiation, where a coalescence of both alkenes occurs. In this 

case, no AB-quartet is observed. 

•TMS 
trans 

C U ( C H 3 C N ) 4 P F 6 

TMS 

1 

trans 
3 1 3 n m 

1.0 
trans 

"1 1 1 r-
TMS 3 50 8 00 

-T I 1 1-
7.50 

-I 1 I r-
7 00 

Figure 6. NMR monitoring of photoattenuated chelation. From the top down, 100% trans 

solution of 3, followed by addition of 1 equiv. of Cu(CH3CN)4PF6. Note the significant 

peak broadening of the aryl protons on the chelated pyridine. The bottom spectrum is 

post-irradiation at the photostationary state (PSS) in the presence of copper. In the case of 

the monodentate complex, Cu = Cu(CH3CN)3
+ and in the bidentate complex, Cu = 

CU(CH3CN)2
+ 

With a method for chelation and isomerization in hand, the experiments were 

attempted with nanobackhoe 1. As in model compound 3, significant peak broadening 

occured in the aryl region upon addition of 1 equiv. of Cu. Additionally, the pyridyl 6' 'H 

(the most downfield resonance) experiences an upfield shift, encroaching into the region 
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where the cis pyridyl resonance appears. Upon irradiation at 365 nm, 'H NMR indicates 

formation of the cis isomer. However, the cis alkene peaks are severely broadened to the 

point where analysis is difficult. Therefore, monitoring of the process must be done by 

observation of the pyridyl 6' 'H trans-to-cis process. 

Figure 7. From top-to-bottom, a 100% trans solution of nanobackhoe 1, followed by 

addition of 1 equiv. of Cu(CH3CN)4PF6. The bottom trace is after irradiation to the PSS. 

The monochelated Cu = Cu(CH3CN)3
+ while the dichelated Cu = Cu(CH3CN)2

+. 

The unisomerized combinations of both 1 and 3 yielded a monodentate chelation 

complex where the pyridyl ring distal from the alkyne serves as a ligand with the metal 

center. Upon irradiation, a bidentate complex was formed (the "picking up" process), as 
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evidenced by a shift and broadening of cis pyridyl and alkene proton resonances. A 

collapse of the alkene resonances from doublets to a singlet was also observed, which is 

in direct support of the modeled cyclic configuration. 

Attempted Claw Opening for Metal Ion Release. To switch back to the weaker, 

monodentate chelating form (thereby affording the opportunity for release), the back-

irradiation process, cis-to-trans was attempted by using 254 nm light on the model 

compound 3 after the PSS had been reached (approx. 80% cis), as described by Zhu and 

co-workers.9c As the processes were quite facile to observe by UV/Vis, this was the 

method of choice for determination of switching efficiency. Presumably, upon irradiation 

of cis 3, the UV/Vis trace should begin to return to the original trans 3 spectrum. 

However, as shown in Figure 8, upon short pulsed irradiations at 254 nm, the solution of 

cis 3 began to form products not identified as cis or trans 3. Monitoring of this process 

via 'H NMR also revealed signals that could not be identified as cis or trans. Despite this, 

it is possible that the cis-to-trans isomerization behavior of the DPE-based nanobackhoe 

on a surface may prove to be more efficient as has been shown on copper-based self-

assembled monolayers (SAMs).9d 
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Overall Irradiation of Model Compound 3 

nm 

Figure 8. Overall irradiation of the bare ligand 3. Appearance of Amax at 254 nm after 365 

nm irradiation. Attempted back-irradiation of 3 using 254 nm light resulted in the 

appearance of a Xmax at 295 nm that does not correspond to starting trans 3. 

Conclusion 

In summary, we have synthesized a new nanocar with the capability to selectively 

uptake metals when directed by light as an external stimulus. Irradiation of the trans 

isomer of both the model compound 3 and the nanobackhoe 1 at 365 nm provides a 

bidentate ligand with the capability to complex metals for eventual transport and rational 

placement. While the photoactive grasping of metal ions by the nanobackhoe has so far 

proven to be an irreversible process, we consider the successful synthesis and proof-of-

concept controlled uptake of copper to be a large step towards the development of 
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nanoscale construction agents. Furthermore, the structural integrity of the nanobackhoe 

may be compromised after proper uptake and placement of its cargo as a method for 

release. Studies to determine the backhoe's ability to transfer the metal ions to receiving 

agents and its behavior on surfaces are planned. 

Experimental Section 

General Methods. All reactions were performed under an atmosphere of nitrogen 

unless stated otherwise. Compounds 4,4d 713 and l l 4 a were prepared according to 

literature procedures. Cu(CH3CN)4PF6 was purchased from Strem and Sigma Aldrich 

chemicals and recrystallized from acetonitrile prior to use.16 Reagent grade diethyl ether 

and THF were distilled from sodium benzophenone ketyl. Diisopropylamine, 

triethylamine (TEA) and CH2CI2 were distilled over CaH2. TBAF (1.0 M solution in 

THF) and «-BuLi (2.5 M in hexanes) were obtained from Sigma-Aldrich and used as 

received. Flash column chromatography was performed using 230^100 mesh silica gel 

from EM Science. Thin layer chromatography was performed using glassplates precoated 

with silica gel 40 F254 purchased from EM Science. NMR experiments were conducted 

on 400 and 500 MHz Bruker instruments. MS measurements were performed at the 

University of South Carolina Mass Spectrometry facility or the Rice University Mass 

Spectrometry facility. NMR and UV-vis spectroscopy irradiation experiments were 

performed in deoxygenated solutions at -1.7 mM (NMR) or 4-17 ^M (UV-vis) using a 

100 W Hg arc light source (EFOS ActicureA4000 UV light source/curing system) with 

appropriate wavelength Hg line filters (Andover) and band-pass filters. The light intensity 
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after passing through the filters was monitored with a radiant power meter (Oriel). 

• * • 2 

Typical light intensity for NMR and UV/Vis experiments was 1.0 mW/cm . The 

isomerization reactions were done while stirring or in 15 min intervals with intermittent 

sonication to avoid decomposition of the DPE moiety. The rate of the thermal 

isomerization for all experiments was slow enough to allow the determination of the 

photoisomerization yields at the PSS without significant change using normal NMR and 

UV-vis operations (measured within 1-3 min after reaching the PSS). Compounds were 

named using Chemdraw Ultra 11.0. 

General Procedure for the Coupling of a Terminal Alkyne with an Aryl 

Halide Using a Palladium-Catalyzed Cross-Coupling (Sonogashira) Protocol. To an 

oven-dried round-bottom flask equipped with a magnetic stir bar were added the aryl 

halide, the terminal alkyne, PdCl2(PPh3)2 (ca. 2 mol % per aryl halide), and Cul (ca. 4 

mol % per aryl halide). A solvent system of TEA, THF, or both was added depending on 

the substrates. Upon completion, the reaction was quenched with a saturated solution of 

NH4CI. The organic layer was then diluted with hexanes, diethyl ether, or CH2CI2 and 

washed with water or saturated NH4CI (1 x). The combined aqueous layers were extracted 

with hexanes, diethyl ether, or CH2CI2 (2x). The combined organic layers were dried over 

MgS04 and filtered, and the solvent was removed from the filtrate in vacuo to afford the 

crude product, which was purified by column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 
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(£)-2-bromo-6-(2-(pyridin-2-yl)vinyl)pyridine 2. A solution of LDA was 

prepared by adding n-BuLi (4.39 mL, 12.3 mmol) dropwise to a stirred solution of 

diisopropylamine (1.76 mL, 12.3 mmol) in THF (51 mL) at -78 °C. The solution was 

stirred for 30 min, followed by dropwise addition of 2-picoline (0.5 g, 5.6 mmol). The 

bright orange solution was allowed to stir for 20 min at -55 °C, followed by addition of 

diethylchlorophosphate (0.810 mL, 5.61 mmol) upon which the solution immediately 

darkened. The cooling bath was removed for 10 min, and then replaced and the reaction 

was cooled back to -78 °C. A solution of 6-bromopyridine-2-carboxaldehyde (0.800 g, 

4.30 mmol) in THF (10 mL) was then transferred via cannula into the reaction and the 

mixture was allowed to warm to room temperature overnight. The reaction was quenched 

by addition of a saturated solution of NH4CI (50 mL). The organics were extracted with 

Et20 (100 mL), washed with water (3 x 100 mL), dried over MgSC>4, and the solvent was 

removed in vacuo. Purification via column chromatography (1:1 EtOAc:hexanes) yielded 

680 mg (61%) of analytically pure trans-2 as a white solid. FTIR (drop cast) 3049, 1584, 

1564, 1542, 1470, 1436, 1406, 1116, 980 cm"1; lH NMR (CDCI3, 400 MHz) 5 8.64 (d, J 

= 4.0 Hz, 1H), 7.74 (d, J= 15 Hz, 1H), 7.69 (td, J/ = 1.8 Hz, J2 = 7.7 Hz, 1H), 7.61 (d, J 

= 15 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.43 (dt, / / = 8.0 Hz, J2 = 1.0 Hz, 1H), 7.35 (td, Jj 

= 7.8 Hz, J2 = 0.8 Hz, 1H), 7.22-7.19 (m, 1H) ; 13C NMR (CDCI3, 100 MHz) 8 156.5, 

154.7, 150.0, 142.4, 139.1, 136.9, 133.5, 130.1, 126.9, 123.9, 123.2, 122.2; HRMS m/z 

calcd for Ci2H9BrN2 261.0027, found 261.0031 (AO-
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(£)-2-(2-(pyridin-2-yl)vinyl)-6-((trimethylsilyl)ethynyl)pyridine 3. See the 

general procedure for Sonogashira protocol. Note: The reaction was run in an aluminum 

foil-wrapped screw-cap tube to discourage cis isomer formation. The reagents used were 

2 (0.26 lg, 1.00 mmol), TMS A (1.3 mL, 3.00 mmol), PdCl2(PPh3)2 (0.007g, 0.001 mmol), 

Cul (0.015 g, 0.007 mmol), TEA (1.1 mL), and THF (8 mL). The reaction was heated to 

65 °C and allowed to stir 1 h. The reaction was quenched via addition of an aqueous 

saturated solution of NH4CI (20 mL). The organics were extracted with CH2C12 (40 mL), 

washed with 1 x 10"3 M EDTA (10 mL), dried over MgS04, and the solvents were 

removed by rotary evaporation. The material was then purified via elution through a short 

silica gel plug (1:3 EtOAc:hexanes) to yield 0.275 g (99%) of 3 as an off-white solid. 

FTIR (drop cast) 2959, 1585, 1564, 1470,1442, 1384, 1250, 1123, 1084 cm"1; NMR 

(CDC13:CD3CN (1:1), 500 MHz) 8 8.60 (ddd, J/ = 4.8 Hz, J2 = 1.8 Hz, J3 = 0.86 Hz, 1H), 

7.74 (ddd, J, = 7.7 Hz, J2 = 7.7 Hz, J3= 1.8 Hz, 1H), 7.71 (dd, = 7.8 Hz, J2 = 7.8 Hz, 

1H), 7.68 and 7.65 AB quartet (J= 15.8 Hz), 7.51 (ddd, J, = 7.8 Hz, J2= 1.0 Hz, J3 = 1.0 

Hz, 1H), 7.47 (dd, J/ = 7.9 Hz, J2 = 0.97 Hz, 1H), 7.37 (dt, J , = 7.7 Hz, J2 = 0.99 Hz, 1H), 

7.36 (dd, Ji = 7.7 Hz, J2 = 0.99 Hz, 1H), 7.24 (ddd, J/ = 7.5 Hz, J2 = 4.8 Hz, J3 = 1.1 Hz, 

1H), 0.290 (s, 9H) ; 13C NMR (CDC13:CD3CN (1:1), 125 MHz) 8 155.8, 155.1, 150.2, 

143.2, 137.6, 137.3, 133.0, 131.5, 123.8, 123.5, 123.1, 126.9, 104.5, 94.6, -0.232; HRMS 

m/z calcd for Ci7Hi8N2Si 278.1239, found 278.1240 (A/). 
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Compound 5. To a 100 mL round bottom flask was added 4 (1.00 g, 1.91 mmol), 

AgN03 (0.100 g, 0.573 mmol), NBS (0.714 g, 4.01 mmol) and acetone (50 mL). The 

reaction was allowed to stir for 2 h in the dark (covered with aluminum foil), and then 

poured into H 20 (100 mL). The resulting white precipitate was filtered and dried by 

rotary evaporation. Note: The alkynyl bromide decomposes over time to a yellow solid, 

releasing HBr. Care should be taken when handling the compound. Then, to a flame-

dried 50 mL 3-neck flask with stir bar was added p-carborane (0.302 g, 2.10 mmol) and 

freshly distilled THF (15 mL) under nitrogen. The reaction was then cooled to -78 °C, 

upon which «-BuLi (0.880 mL, 2.20 mmol) was added dropwise to yield a thick milky 

solution. The cooling bath was then removed and the reaction was allowed to stir for 30 

min upon which the solution became transparent. The cooling bath was then replaced, 

and the reaction again cooled to -78 °C. CuBr (0.395 g, 2.75 mmol) was added, and the 

reaction was again allowed to stir for 30 min at room temperature until the solution was 

dark green/brown in color. The alkynyl bromide (0.535 g, 1.00 mmol) was then added all 

at once, and the reaction was allowed to stir overnight. The reaction was quenched by 

addition of two drops of H20, then poured through a short silica gel plug and eluted with 

hexanes. Removal of solvent by rotary evaporation and purification via column 

chromatography (100 % hexanes) yielded 0.440 g (61%, 2 steps) of 5 as a white solid. 

FTIR (drop cast) 2613, 1463, 1384, 1123, 1084, 1064, 1047 cm"1; 'HNMR (CDC13, 400 

MHz) 8 7.63 (s, 2H), 3.34-1.47 (br m, 22H); 13C NMR (CDC13, 100 MHz) 8 141.7, 129.9, 

99.6, 91.8, 79.2, 68.9, 61.0; HRMS m/z calcd for C14H24B2oI2 663.1949, found 663.1944 

(At). 
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Compound 6. In a 100 mL round bottom flask, compound 3 (0.275 g, 0.99 

mmol) was dissolved in CH2C12 (50 mL) and MeOH (20 mL). K2C03 (0.500 g, 3.8 

mmol) was added, and the reaction was allowed to stir 3 h, after which H 2 0 (100 mL) 

was added and the organics separated. After drying over MgSC>4, the solvent was 

removed by rotary evaporation to yield the intermediate alkyne, which was immediately 

subjected to the general Sonogashira protocol. Note: The reaction was run in an 

aluminum foil-wrapped sealed tube to discourage cis isomer formation. The reagents 

used were the deprotected alkyne (0.03lg, 0.178 mmol), 5 (0.160 g, 0.298 mmol), 

PdCl2(PPh3)2 (0.007g, 0.012 mmol), Cul (0.008 g, 0.023 mmol), TEA (0.335 mL), and 

THF (3.50 mL). The reaction was heated to 65 °C and allowed to stir overnight. The 

reaction was quenched via addition of an aqueous saturated solution of NH4CI (20 mL). 

The organics were extracted with CH2C12 (40 mL), washed with 1 * 10"3 M EDTA (10 

mL), dried over MgSC>4, and the solvents were removed by rotary evaporation. The 

molecule was then purified via column chromatography (1:4 EtOAc:hexanes) to yield 

0.032 g (24%, 2 steps) of 6 as an off-white solid. FTIR (drop cast) 3060, 2923, 2613, 

1584, 1574, 1543, 1434, 1406, 1384, 1147, 1119 cm"1; *H NMR (CDC13, 400 MHz) 5 

8.64 (d, J= 4.0 Hz, 1H), 7.86 - 7.71 (m, 5 H), 7.55 - 7.36 (m, 4 H), 7.23 - 7.20 (m, 2 H), 

3.30-1.57 (br, 22H); 13C NMR (CDC13, 100 MHz) 5 171.2, 161.2, 155.6, 155.1, 155.0, 

149.9, 149.0, 142.6, 141. 8, 137.5, 137.2, 136.8, 136.77, 136.71, 136.67, 135.6, 133.1, 

132.0, 131.6, 131.3, 131.0, 129.8, 129.1, 128.6, 126.4, 125.3, 123.6, 123.3, 122.8, 122.76, 
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122.2, 120.9, 101.2, 100.3, 92.6,92.5, 91.9, 81.7, 91.1, 80.8, 76.0, 69.0, 64.4, 60.8, 60.6, 

53.5, 36.7, 29.7, 24.7, 23.4, 21.1, 14.2, 8.0; HRMS m/z calcd for C28H33B20IN2 742.3759, 

found 742.3759 (At). 

4-(2,5-diethyl-4-iodophenyl)-2-methylbut-3-yn-2-ol 8. See the general 

procedure for Sonogashira protocol. The reagents used were 2,5-diethyl-l,4-

diiodobenzene 7 (2.50g, 6.48 mmol), 2-methyl-3-butyne-2-ol (0.400 mL, 3.89 mmol), 

PdCl2(PPh3)2 (0.181g, 0.257 mmol), Cul (0.098 g, 0.514 mmol), TEA (7.3 mL), and THF 

(92 mL). The reaction was allowed to stir overnight and quenched via addition of an 

aqueous saturated solution of NH4CI (100 mL). The organics were extracted with CH2CI2 

(100 mL), dried over MgSC>4, and the solvents were removed by rotary evaporation. The 

material was then purified via column chromatography (3:7 EtOAc:hexanes) to yield 1.03 

g (77%) of 8 as light-yellow oil. FTIR (KBr) 3350, 2967, 2930, 2870, 1477, 1456, 1380, 

1264, 1206, 1164, 1061, 997, 962, 930, 890, 874 cm'1; *H NMR (CDC13, 400 MHz) 8 

7.64 (s, 1H), 7.21 (s, 1H), 2.66 (m, 4H), 1.63 (s, 6H), 1.19 (m, 6H); 13C NMR (CDCI3, 

100 MHz) 8 145.5, 144.0, 138.9, 131.8, 122.3, 101.0, 98.3, 80.5, 66.0, 33.7, 31.7, 27.0, 

14.7, 14.6; HRMS m/z calcd for C15H19IO 342.0481, found 342.0471 (ht). 
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4-(2,5-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)-2-methyIbut-3-yn-2-ol 9. 

See the general procedure for Sonogashira protocol. The reagents used were 8 (1.03 g, 

3.01 mmol), TIPSA (0.742 mL, 3.3 mmol), PdCl2(PPh3)2 (0.019g, 0.027 mmol), Cul 

(0.010 g, 0.053 mmol), TEA (3.4 mL), and THF (43 mL). The reaction was allowed to 

stir overnight and quenched via addition of an aqueous saturated solution of NH4CI (100 

mL). The organics were extracted with CH2C12 (100 mL), dried over MgS04, and the 

solvents were removed by rotary evaporation. The material was then purified via a short 

silica gel plug (1:1 EtOAc:Hexanes) to yield 0.910 g (82%) of 9 as light-red oil. FTIR 

(KBr) 3337, 2962, 2941, 2891, 2865, 2146, 1490, 1460, 1463, 1222, 1163, 896, 883 cm-1; 

'H NMR (CDCI3, 400 MHz) 5 7.27 (s, 1H), 7.22 (s, 1H), 2.73 (m, 4H), 2.07 (s, 1H), 1.63 

(s, 6H), 1.22 (m, 6H), 1.13 (s, 21H); 13C NMR (CDC13, 100 MHz) 5 144.0, 143.5, 132.3, 

131.8, 122.9, 122.0, 105.5, 98.5, 95.5, 81.0, 65.9, 31.7, 27.5, 27.3, 18.9, 15.1, 14.8, 11.5; 

HRMS m!z calcd for C26H40OSi 396.2848, found 396.2853 (A/). 

((2,5-diethyl-4-ethynyIphenyl)ethynyl)triisopropylsilane 10. To a 100 mL 

round bottom flask with stir bar was added 9 (0.397 g, 1.00 mmol), NaOH (0.160 g, 4.00 

mmol) and dry toluene (30 mL). The reaction was then fitted with a reflux condenser and 

heated at reflux overnight under nitrogen. H 2 0 (40 mL) was added, followed by CH2C12 

(50 mL). The organics were separated, dried over MgS04, and the solvent removed by 

rotary evaporation. The resulting oil was purified via a short silica gel plug (100 % 

hexanes) to yield 0.212 g (75%) of 10 as a dark red oil. FTIR (KBr) 2961, 2941, 2890, 
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2865, 2147, 1488, 1462, 1062, 995, 882 cm"1; ]H NMR (CDC13, 400 MHz) 5 7.32 (s, 1H), 

7.31 (s, 1H), 3.30 (s, 1H), 2.77 (quintet, J= 7.6 Hz, 4H), 1.25 (t, J= 7.6 Hz, 6H), 1.16 (s, 

21H); 13C NMR (CDC13, 100 MHz) 8 143.9, 143.8, 132.3, 132.1, 123.3, 121.3, 105.2, 

95.6, 82.3, 81.5, 76.7, 27.3, 27.0, 18.7, 14.9, 14.8, 11.4; HRMS m/z calcd for C23H34Si 

338.2430, found 338.2428 (il/). 

Compound 12. See the general procedure for Sonogashira protocol. The reagents 

used were 11 (0.090 g, 0.167 mmol), 10 (0.056 g, 0.167 mmol), PdCl2(PPh3)2 (O.OlOg, 

0.014 mmol), Cul (0.010 g, 0.053 mmol), TEA (4 mL), and THF (8 mL). The reaction 

was allowed to stir overnight and quenched via addition of an aqueous saturated solution 

of NH4CI (10 mL). The organics were extracted with CH2CI2 (30 mL), washed with 1 x 

10"3MEDTA, dried over MgSC>4, and the solvents removed in vacuo. The resulting solid 

was run through a short silica gel plug, yielding a white solid. The solid was then 

dissolved in 10 mL CH2CI2, and TBAF (2 mL) was added. The mixture was stirred for 20 

min, followed by addition of silica gel. The solvent was removed from the resulting 

slurry, and the silica gel-product mixture loaded on to a dry-packed silica gel column 

(100 % hexanes), yielding 0.077 g (78%) of 12 as a white solid. FTIR (KBr) 2609, 1493, 

1061, 888, 825 cm"1; lH NMR (CDC13, 400 MHz) 8 7.42 (d, 1H), 7.38 (d, J= 1.0 Hz, 1H), 

7.37 (s, 1H), 7.23 (d, J= 8.0 Hz, 1H), 7.14 (dd, J/ = 8.0 Hz, J2 = 1 Hz, 1H), 3.34 (s, 1H), 

3.30-1.57 (br, 22H) 1.30 (m, 9H); 13C NMR (CDC13, 100 MHz) 8 144.3, 143.6, 135.2, 
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132.6, 132.4, 131.2, 126.7, 124.0, 122.6, 122.2, 122.1, 93.2, 91.1, 82.5, 82.0, 60.6, 53.7, 

27.2, 15.0, 14.9; HRMS mlz calcd for C28H38B20 591.4965, found 591.4977 {Kf). 

Backhoe 1. See the general procedure for Sonogashira protocol. Note: The 

reaction was run in an aluminum foil-wrapped screw-cap tube to discourage cis isomer 

formation. The reagents used were 14 (0.011 g, 0.018 mmol), 8 (0.013 g, 0.018 mmol), 

PdCl2(PPh3)2 (O.OlOg, 0.014 mmol), Cul (0.010 g, 0.053 mmol), TEA (4 mL), and THF 

(8 mL). The reaction was allowed to stir overnight at 60 °C in a sealed tube and quenched 

via addition of an aqueous saturated solution of NH4CI (10 mL). The organics were 

extracted with CH2C12 (30 mL), washed with 1 x 10"3M EDTA, dried over MgS04, and 

the solvents removed by rotary evaporation. The resulting solid was purified via column 

chromatography (1:4 EtOAc:hexanes) to yield 0.013 g (61%) of 1 as a fluorescent green 

solid. FTIR (drop cast) 2925, 2853, 2614, 2365, 1455, 1384, 1062 cm"1; lU NMR (CDCI3, 

400 MHz) 5 8.67 ( d , J = 4.0 Hz, 1H), 7.86 (d, J= 15 Hz, 1H), 7.79 - 7.71 (m, 3H), 7.61 

(s, 1H), 7.55 - 7.42 (m, 7H), 7.25 - 7.21 (m, 2H), 7.17 (dd, J, = 15 Hz, J2 = 4 Hz, 1H), 
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3.3 - 1.5 (br, 48 H, includes four benzylic protons), 1.40 (t, J = 8Hz, 6H); 13C NMR 

(CDC13, 100 MHz) 5 155.6, 154.9, 149.7, 143.7, 143.6, 142.7, 136.8, 136.4, 135.3, 135.0, 

132.8, 132.4, 132.1,132.0, 131.1, 131.0, 126.5, 126.4, 126.3, 124.8, 124.4, 123.9, 123.6, 

123.0, 122.9, 122.7, 122.2, 95.1, 94.8, 93.2, 91.6, 91.4, 91.3, 91.1, 87.9, 85.4, 69.1, 60.6, 

60.4, 29.7, 27.1, 14.8; DI m/z calcd for C^HyoB^Na 1205, found 1205 (M*). 
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Figure S-l.1-2. 13C NMR Spectrum of Compound 2. 
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Figure S-1.24. IR Spectrum of Compound 10. 
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Figure S-l.1-27. IR Spectrum of Compound 12. 
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Chapter 2 

Towards Increased Rotational Speed of Light-Powered Motorized Single Molecule 

Nanocars 



2.1 

Design and Synthesis of Dual-Motored and Ultra-Fast Nanocars 
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Introduction 

Directing motion of single molecules using external stimuli is one of the most 

intriguing features necessary for the eventual implementation of nanomachinery into real-

world applications.1 Consequently, many groundbreaking and creative molecular devices, 

such as electroactive rotors,2 shuttles,3 DNA motors4 and unidirectional motors,1'5 have 

been developed for this endeavor. Our corresponding efforts have resulted in the 

development of nanocars: single molecules bearing molecular axles and wheels that are 

able to serve as a test-bed for developing surface-based tasks such as directed motion, 

transport and construction of molecular assemblies.6 

Employing scanning tunneling microscopy (STM), we successfully observed 

controlled motion of fullerene-wheeled nanocars. Due to a combination of molecular 

design, the high symmetry of fullerenes (Ih, icosahedral) and the strength of their 

interaction with the gold surface, thermally and electrically induced (by the STM tip) 

motion occurred orthogonal to the axles of the nanocar.7 As proof-of-concept, these 

initial experiments have led us to further pursue directional propulsion using light as an 

o > 

external stimulus. Coincidentally, we have shown that the photoexcited states of 

unidirectional molecular motors and azobenzene molecular switches undergo rapid intra-

and intermolecular quenching by fullerenes, effectively rendering them inactive in Q Q 

solution. ' To this end, after screening various candidates for molecular wheels, we 

arrived at nanocar structure 1, as the symmetry (Dsh point group) and non-

photoquenching nature of />-carboranes, make them an attractive alternative to fullerenes. 
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Rotational Speed = 1.37 * 10"® Hz 

a b 

Figure 1. (a) The structure and rotational speed of the original motorized nanocar 1 and 

(b) its proposed mechanism of motion. The />carborane wheels have BH at every 

intersection except at the left and right vertices which represent C and CH positions, ipso 

and para, respectively, relative to the alkynes. Image adapted from Ref. 8. 

Indeed, upon completion of the motorized prototype using p-carborane wheels and a 

light-powered unidirectional Feringa motor,10 we demonstrated the rotational movement 

of the nanocar's motor in solution at elevated temperature.8 Although the p-carborane 

wheels proved to be very useful for construction and motorization, early STM studies of 

carborane-wheeled nanovehicles have indicated that the relatively weak carborane-gold 

interaction leads to rapid non-directionally controllable motion at ambient temperature.11 

To stifle this non-rotating wheel motion in an effort to obtain fine rotational control, a 

variety of approaches may be necessary, including imaging atop a self-assembled 

alkanethiol monolayer, using a surface with greater interaction with carboranes and/or 

imaging at lower temperatures.12 Furthermore, imaging using other microscopy methods 

where non-conductive substrates such as glass or mica are compatible may be necessary. 
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Exacerbating this issue, solution-based kinetic data of the original motorized 

nanocar indicate that the unstable form of the molecular motor persists for 101 h at room 

temperature.8 Upon photoirradiation, isomerization to the unstable form occurs on the 

femtosecond timescale, making the rate-limiting step for a 180° rotation the thermal 

decay from this unstable state to a relaxed, stable state of the motor, termed a thermal 

helical inversion.13 As two thermal helix inversions are necessary for one full rotation, we 

determined that the original motorized nanocar 1 has a rotation rate of 1.37 x 10~6 Hz, or 

one rotation every 202 h under ambient conditions. Only at a higher operating 

temperature of 65 °C does the motor begin to exhibit a much more manageable 1.8 

rotations per hour. While such stability is a boon for room temperature spectroscopic 

determination of kinetic data, room- and low-temperature imaging would be 

unnecessarily time-consuming and impractical. To overcome this hurdle, we report herein 

a bifurcated approach towards increasing the speed of motorized nanocars through the 

utilization of two distinct types of motors recently reported by Feringa and co-workers.14 

The resultant motorized nanocars should display increased rotational speeds sufficient for 

imaging under a wide range of conditions. 

Results and Discussion 

Molecular Design of Doubly-Motorized Nanocars. In 2006, Feringa and co-

workers described the synthesis of four new light-powered molecular motors.14a It was 

reported that bulky substituents on the cyclopentane moiety cause an increase in double-

bond length of the bridging alkene (the axis of rotation), giving rise to greater single-
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bond character. In addition, the steric interaction of the aryl units as they move past one 

another is decreased, a result of decreasing the size of the bridging cycloalkane. These 

two structural modifications result in motors with increased rotational speed, up to 87 Hz 

at room temperature. 

stable unstable stable 

R k° 
(s-1) 

f1/2 

(s) 
RPH RPS DBL 

(A) 

Ph 1.18 x 10"3 587 3.24 .0009 1.3753 

Me 3.64 x 10"3 190 10.8 .003 1.3775 

'Pr 7.32 x 10"3 95 18 .005 1.3800 

'Bu 1.21x 102 5.74 x 10"3 313200 87 1.3859 

Figure 2. Fluorene-based molecular motors developed by Feringa. Note the increased 

rotational speed (RPS) as the substituent (R) has greater steric demand. k° represents the 

1 /9 

rate constant, t represents the half-life of the unstable form at room temperature, RPH = 

rotations per hour, RPS = rotations per second, DBL = double bond length (given in 

angstroms). Figure adapted from reference 15a. 

To construct a motorized nanocar using a design similar to the fluorene-based 

molecular motors, the extension of fluorenone into indenofluorenedione (Figure 3) was 

necessary to obtain axles with parallel orientation and limit any possible steric interaction 

of the motor with the axles. In addition, the presence of two ketone moieties allows the 
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inclusion of two motors, which may effectively double the number of "power strokes" 

along a surface. Thus, when R = /-butyl, the doubly-motorized nanocar may exhibit up to 

174 rotations per second. 

Figure 3. Structures of indenofluorene-based dual motor nanocar 2 and the nanocar 

resulting from use of fluorene as a stator, nanocar 3. Indenofluorene is colored red, the 

rotors in blue and fluorene in green. Note the steric interaction of the motor and axle in 

nanocar 3. 

Synthesis. The synthesis of the rotor portions of the motorized nanocar, a slight 

variation of the reported sequence by Feringa and co-workers,14a is shown in Scheme 1. 

The /-butyl rotor's purpose for construction was to be included into the doubly-motorized 

nanocar, while the methyl rotor was constructed for use in later nanocars (vide infra). To 

construct the rotors, the appropriate enolate was formed using lithium 

hexamethyldisilazide at -78 °C, followed by alkylation using 2-bromomethylnaphthalene. 

The purifications at this point were quite difficult, thus the crude mixtures were taken 
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through hydrolysis, resulting in acids 4, which were easier to purify and led to an 

increased overall yield in the case of the methyl-substituted version. Formation of the 

acyl chloride using thionyl chloride in refluxing dichloromethane followed by an 

aluminum trichloride-induced Friedel-Crafts intramolecular acylation yielded ketones 5. 

To prepare for the key motor formation step, a Staudinger-type diazo-thioketone 

coupling,15 the rotors were appropriately substituted at their ketonic positions. Due to the 

high steric demand of the ^-butyl-substituted ketone, only one approach can be taken, 

where the rotor bears the thioketone coupling partner. Conversely, both routes have been 

reported with the methyl version,143 where the rotor may serve as either the thioketone or 

diazo coupling moiety. Thus, /-butyl ketone 5a was thionated using phosphorous 

pentasulfide in hot toluene to form thioketone 6. Methyl ketone 5b was heated in 

hydrazine monohydrate, yielding hydrazone 7 (the thioketone proved to be difficult to 

isolate in pure form). To fully realize the diazo coupling partner, 7 was oxidized using 

active manganese dioxide in dichloromethane to form azo 8, which was taken directly on 

to the motor formation step. 
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OMe 
1.) LHMDS, THF, -78 °C 

_X02H 

2.) KOH, EtOH, H20, reflux 4a R = t-Bu, 79% 
4b R = Me, 54% 

Scheme 1. Synthesis of rotor portions for motorized nanocars. 

To arrive at the double-stator indenofluorenedione chassis with pendant bromides 

for eventual axle attachment, as shown in Scheme 2, a Suzuki coupling of l,4-diiodo-2,5-

xylene (9)16 with 4-bromobenzeneboronic acid provided substituted terphenyl 10.16 

Oxidation of the /7-dimethyl moiety to the dicarboxylic acid, followed by immediate 

Freidel-Crafts intramolecular acylation using concentrated sulfuric acid at elevated 

temperature provided dibromo-indenofluorenedione l l .1 6 

1.) KMn04 , H 2 0 
Pyridine, reflux > 

2.) H 2 S0 4 , 80 °C 

43% 

11 

Scheme 2. Synthesis of stator chassis of dual motor nanocar. 
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In an effort to realize the double-diazo coupling partner for motor formation, insoluble 

diketone 11 was both (1) derivatized directly to a dihydrazone by refluxing in hydrazine 

monohydrate and ethanol to produce 12 and (2) coupled to solubilizing 

triisopropylsilylacetylene (TIPSA) at the bromide positions to produce 13 for subsequent 

derivatization. However, attempts to form a soluble dihydrazone from 13 using hydrazine 

monohydrate under various conditions resulted in complete alkyne reduction, precluding 

the use of 13 as a parent compound for double diazo formation. 

H2N 
N 

H2NNH2»H2O 

Scheme 3. Synthesis of dihydrazone and soluble diketone stators. 

As shown in Scheme 4, likely a result of the poor solubility of 12, formation of 

bis(diazo) 14 using bis(trifluoroacetoxy)iodobenzene in DMF, a homogeneous reagent 

for the oxidation of hydrazones to diazo species,17 was unsuccessful. Heterogeneous 

oxidation reagents such as Ag20, HgO and MnC>2 also proved to be ineffectual, thereby 

negating the strategy to react the inner chassis with thioketone 6. 
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F 3 C Y 0 . r 0 CF, 

H2N, 
N 

0 0 0 
N 
N © 

Br 

Br 

1.) DMF, - 30 °C 

X 
Br 

Br 

P® 
N 0 14 

12 

3.) POMe3, PhMe, 130 °C 

15 

Scheme 4. Unsuccessful approach towards formation of dimotor 15 via dihydrazone 12. 

Due to the lower rotation speed of the methyl-substituted version versus a /-butyl (18 

rotations per hour vs. 87 rotations per second), the approach to couple the methyl-

substituted diazo 8 to a dithioketone double stator was not attempted. 

Molecular Design of Ultra-Fast Motorized Nanocar. In 2008, Feringa and co-

workers reported the combination of two previously-reported motor halves, a 

thioxanthenone stator unit and cyclopentane-naphthalene rotor 5b, a combination which 

was shown to increase rotation speed into the MHz regime at room temperature.1413 

Inclusion of this motor into a nanocar (Figure 4), while only a slight change in structure 

from the original motorized nanocar 1, should exhibit a 1012-fold increase in rotational 

speed, affording the capability to study light-powered molecular motion of carborane-

wheeled nanomachines at both ambient and reduced temperatures. 
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Figure 4. Structure of ultra-fast motorized nanocar 16. 

Synthesis. The synthesis of the ultra-fast motorized nanocar is presented in 

Schemes 5 and 6. The coupling agents used for the motor synthesis, 2,6-dibromo-

8 14 

thioxanthene-thione 17 and diazo 8, were constructed using known procedures. ' To 

carry out the Staudinger-type diazo-thioketone coupling, the thioketone 17 was added to 

a stirred solution of diazo 8, freshly prepared by oxidation of the hydrazone using Mn02 

in dichloromethane. The resulting intermediate episulfide was immediately reduced using 

trimethylphosphite in toluene in a screw-cap tube at 130 °C to form dibrominated 

molecular motor 18. 
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N© 

S 
Br BR 1.) CH2CI2 

2.) P(OMe)3, PhMe, 130 °C 

19% 

Br 

17 

18 

Scheme 5. Synthesis of dibrominated MHz rotational speed molecular motor. 

Due to the sterically-hindered and electronically-deactivated nature of the the aryl 

bromides in motor 18, alkynylated axle 1918 was coupled to molecular motor 18 under 

Sonogashira conditions using a Fu catalyst system19 at elevated temperature, giving 

motorized nanocar 16 in 15 % yield. 

Scheme 6. Completion of synthesis of motorized nanocar 19. 

Conclusions 

Studies toward the design and synthesis of two distinct types of motorized 

nanocars are reported. Indenofluorene-based dual motored nanocars 2 proved to be 

19 

18, PdCI2PhCN2, H(P'Bu3)BF4, Cul 

TEA, THF, 4 0 °C 

15% 

16 
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difficult to synthesize. The key step, motor formation, was the limiting step in realizing 

the completion of this class of nanocar. Moreover, the scarcity of literature precedence 

for multiple oxidations of molecules such as 12 is a testament to the difficulty associated 

with the construction of such a system (as of this writing, no one has reported such a 

transformation). On the other hand, construction of nanocars 2 using the opposing 

method where the TIPS-alkynylated indenofluorenedione is dithionated seems promising, 

as similar transformations have been reported on substrates containing multiple ketone 

positions. In addition, oxidations of hydrazones such as 7 have been demonstrated both 

here and in the literature. It may be possible to explore other diazo coupling partners in 

the future to construct other doubly-motored nanocars with fast rotation speeds. 

Conversely, the synthesis of ultra-fast nanocar 16 was a relatively straightforward 

process, although the key Staudinger-type diazo-thioketone coupling proceeded in 

relatively low yield. Although the overall molecular structure represents a slight variance 

from the original motorized nanocar 1, we expect a 1012-fold increase in rotation rate in 

solution and on surfaces, when energy transfer can be mitigated. Future studies of the 

nanocar's rotation rate using transient absorption spectroscopy and its photoactive 

behavior on surfaces are planned. 

Experimental Section 

General Methods. 'H NMR and 13C NMR spectra were recorded at 400 or 500 

and 100 or 125 MHz, respectively. Solid-state 13C NMR were recorded at 50 MHz, with a 

5 KHz spinning rate and 90° *H pulse, using glycine as an internal shift reference (176.46 
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ppm). Proton chemical shifts (5) are reported in ppm downfield from tetramethylsilane 

(TMS). Mass spectrometry was performed at the Rice University Mass Spectrometry 

Laboratory or the University of South Carolina Mass Spectrometry Laboratory. Infrared 

(IR) spectral assignments have 2 cm"1 resolution. All reactions were performed under an 

atmosphere of nitrogen unless stated otherwise. Reagent grade tetrahydrofuran (THF) 

was distilled from sodium benzophenone ketyl. Triethylamine (TEA) and CH2CI2 were 

distilled over CaH2. TBAF (1.0 M solution in THF), LHMDS (1.0 M solution in THF), 

bis(trifluoroacetoxy)iodobenzene and PdCl2(PhCN)2 were purchased from Sigma-Aldrich 

and used as received. HP('Bu)3BF4 was purchased from Strem Chemicals and used as 

received. Organic starting materials for the synthesis of molecular rotors 6 and 7 as well 

as 4-bromobenzene-boronic acid were purchased from Acros Organics. 

Trimethylsilylacetylene (TMSA) was donated by FAR Research Inc. or Petra Research. 

Flash column chromatography was performed using 230-400 mesh silica gel from EM 

Science. Thin layer chromatography was performed using glass plates pre-coated with 

silica gel 40 F254 purchased from EM Science. The synthesis of compounds 5a,14 b,17 6,14 

7-8,17 9,16 l l 1 6 and 178 were performed according to literature procedures. Compounds 

were named using Chemdraw Ultra 11.0. 

General Procedure for the Coupling of a Terminal Alkyne with an Aryl 

Halide Using a Palladium-Catalyzed Cross-Coupling (Sonogashira) Protocol. To an 

oven-dried round bottom flask equipped with a magnetic stir bar were added the aryl 

halide, the terminal alkyne, PdCl2(PPh3)2 (ca. 2 mol% per aryl halide), and Cul (ca. 4 

mol% per aryl halide). A solvent system of TEA and/or THF was added depending on the 

substrates. Upon completion, the reaction was quenched with a saturated solution of 
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NH4C1. The organic layer was then diluted with hexanes, diethyl ether or CH2CI2, and 

washed with water or saturated NH4CI (lx). The combined aqueous layers were extracted 

with hexanes, diethyl ether, or CH2C12 (2x). The combined organic layers were dried over 

MgS04, filtered, and the solvent was removed from the filtrate in vacuo to afford the 

crude product, which was purified by column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 

3,3-dimethyl-2-(naphthalen-2-ylmethyl)butanoic acid 4a. To an oven-dried 100 mL 

round-bottom flask equipped with magnetic stir bar was added LHMDS (9.05 mL, 9.05 

mmol, 1.0 M in THF). The mixture was cooled to -78 °C via dry ice/acetone and methyl 

/<?r/-butyl acetate (1.17 g, 9.05 mmol) was added dropwise over the period of 15 min. The 

mixture was then allowed to stir for 1 h at this temperature. In a separate oven-dried pear-

shaped flask, 2-bromomethylnaphthalene (2.0 g, 9.05 mmol) was dissolved in 16 mL 

THF. This mixture was then added dropwise via cannula to the stirring enolate at -78 °C. 

The reaction was allowed to stir overnight, followed by quenching with NH4C1. The 

organics were then extracted with CH2CI2 (2 x 40 mL), dried over magnesium sulfate, 

and dried by rotary evaporation. The crude material was then dispersed in a 1:1 mixture 

of Et0H/H20 (15 mL). KOH (2.02 g, 36.2 mmol) was added and the mixture heated in a 

sealed tube to 120 °C for 2 d. The ethanol was then removed by rotary evaporation, and 

CH2CI2 (50 mL) was added. The mixture was then stirred and acidified by addition of 

concentrated HC1 (approx. 4 mL). The organics were then separated, dried over MgSC>4, 
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and dried by rotary evaporation. The crude mixture was then purified by column 

chromatography using 10% EtOAc in hexanes as eluent to give compound 4a (1.80 g, 

79%, 2 steps) as an off-white solid. 'H NMR spectroscopic data were in agreement with 

literature values.14a 

2-methyl-3-(naphthalen-2-yl)propanoic acid 4b. The protocol used was similar to that 

described for 4a. Compounds used were LHMDS (61.7 mL, 61.7 mmol, 1.0 M in THF), 

methyl propionate (5.93 mL, 61.7 mmol), 2-bromonaphthalene (15.0 g, 67.9 mmol in 60 

mL THF). Reaction time for the hydrolytic step was 12 h. Materials used in addition to 

the crude ester product were KOH (4.0 g, 71 mmol) and 1:1 Et0H/H20 (60 mL). The 

material was purified as above to yield 4b (7.1 g, 54%, 2 steps) as a light yellow oil that 

solidifies upon standing. 'H NMR spectroscopic data were in agreement with literature 

values.143 

Compound 10. To a 250 mL round-bottom flask was added Ar-degassed H 20 (69.0 mL), 

K2C03 (19.3 g, 140 mmol), THF (14.0 mL), Pd(OAc)2 (0.156 g, 0.698 mmol), 4-
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bromobenzene boronic acid (5.61 g, 27.9 mmol) and l,4-diiodo-2,5-xylene 916 (5.00 g, 

13.9 mmol). The flask was fitted with a reflux condenser and allowed to stir at 65 °C 

overnight. The organics were then separated using CH2CI2 (100 mL), dried over MgSC>4, 

and the solvent was removed using rotary evaporation. The solid mixture was then re-

dissolved in hot CH2CI2 (50 mL) and allowed to cool immediately to 5 °C after which the 

product, a white precipitate, formed. The solid was filtered to give 0.99 g (18%) of 10. 

Additionally, the mother liquor was chromatographed using silica flash chromatography 

and 100% hexanes as eluent to yield a total (including precipitated product) of 3.70 g 

(64%) of 10 as a white solid. "H NMR data were in agreement with reported literature 

values.16 

(2,8-dibromoindeno[l,2-b]fluorene-6,12-diylidene)bis(hydrazine) 12. 11 (0.416 g, 

1.00 mmol) was suspended in a 1:1 mixture of hydrazine monohydrate:EtOH (200 mL). 

The purplish slurry was allowed to stir at 90 °C for 12 h, during which the color changed 

from purple to yellow. The mixture was cooled, poured into 200 mL H2O, and the 

precipitate was collected by filtration. Multiple washings with warm EtOH and THF, 

followed by drying in vacuo yielded 12 (0.355 g, 76%) as a pale yellow solid. Due to the 

insoluble nature of the compound, solution-state NMR spectra could not be obtained. 

CPMAS NMR (50 MHz) 5144.3, 139.4, 136.5, 130.8, 121.0, 117.8, 110.3; FTIR (KBr) 

H2N. 
N 

NH2 
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2359, 1625, 1603, 1585, 1438, 1410, 1298, 1261, 1167, 1063 cm"1; DI-MS m!z calcd for 

C2oHi2Br2N4 465.94, found 465.93. 

2,8-bis((triisopropylsilyl)ethynyl)indeno[l,2-b]fluorene-6,12-dione 13. 11 (0.600 g, 

1.36 mmol), PdCl2(PhCN)2 (0.052 g, 0.136 mmol), HP'BU 3BF 4 (0.118 g, 0.408 mmol) 

and Cul (0.011 g, 0.060 mmol) were added to an oven-dried pressure tube reactor with 

stir bar under nitrogen. PhMe (20 mL) and Et3N (20 mL) were then added followed by 

TIPSA (0.920 mL, 4.08 mmol), and the tube was sealed with a Teflon screw-cap. The 

mixture was then heated to 80 °C and stirred for 18h, after which the insoluble reddish-

purple slurry turned to an electric-red solution. The crude reaction mixture was then 

subjected to the standard workup protocol for Sonogashira couplings (see above) with an 

extra washing of 1 x 10" M EDTA (50 mL, dibasic) during separation. The crude mixture 

was then purified via column chromatography using 30% CH2Cl2in hexanes as eluent to 

give 0.560 g, 64% of 13 as a red solid. FTIR (KBr) 2939, 2862, 1715, 1444, 1384, 1123, 

828, 776 cm"1; NMR (400 MHz, CDC13) £7.80 (s, 1H), 7.76 (dd, J; = 1.5 Hz, J2 = 0.6 

Hz, 2 H), 7.66 (d, J = 1.5 Hz, 1H), 7.64 (d, J = 1.5 Hz, 1H), 7.51 (d, J= 0.6 Hz, 1H)), 

7.49 (d, J= 0.6 Hz, 1H), 1.1 (s, 42H); 13C NMR (100 MHz, CDC13) J 192.2, 145.8, 142.9, 

139.8, 138.9, 134.1, 128.3, 125.3, 120.7, 116.6, 105.9, 94.0, 18.9, 11.5; HRMS m/z calcd 

for C42H50O2Si2 642.3349, found 642.3349. 

O 

TIPS 

O 
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2,7-dibromo-9-(2-methyl-2,3-cIihydro-l//-cyclopenta[a]naphthaIen-l-ylidene)-9//-

thioxanthene 18. Azo 8 was freshly prepared by reacting hydrazone 7 (0.200 g, 0.950 

mmol) with active MnC>2 (0.290 g, 3.33 mmol) in dry CH2CI2 (4.00 mL) in the presence 

of MgSC>4 (0.100 g) for 2 h at -5 °C. The resulting slurry was gravity filtered to yield a 

o 

reddish-brown solution of azo 8. To this solution was added thioketone 17 (0.366 g, 

0.950 mmol) at room temperature under nitrogen. After approximately 20 s, the solution 

began to rapidly evolve nitrogen, indicating successful reaction. The solution was 

allowed to stir another 12 h, after which an insoluble precipitate was filtered away. The 

filtrate was then washed with H2O (100 mL) and the organics were extracted, dried over 

MgS04, and the solvent was removed by rotary evaporation. The crude product was then 

added to a pressure-tube reactor with stir-bar followed by PhMe (5.00 mL) and P(OMe)3 

(1.00 mL, 8.48 mmol). The tube was sealed with a teflon screw-cap and allowed to stir at 

130 °C for 18 h. The mixture was then washed with copious amounts of water to remove 

the P(OMe)3 and the organics were extracted with CH2CI2. The organics were then dried 

over MgS04, passed through a short silica plug using 1:1 CH2Cl2:hexanes as eluent, and 

the solvent removed by rotary evaporation. The residual solid was then purified via 

column chromatography using 10% CH2CI2 in hexanes as eluent to give 0.101 g (19%, 2 

steps) of 18 as a light yellow solid. FTIR (KBr) 3050, 2955, 2922, 2842, 1437, 1382, 
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1082, 807 cm"1; *H NMR (500 MHz, CDC13) <57.89 (d, J = 2.1 Hz, 1H), 7.79 (d, J = 8.2 

Hz, 1H), 7.74 (d, J- 8.5 Hz, 1H), 7.45 (m, 2H), 7.42 (d, J= 8.3 Hz, 1H), 7.36 (dd, J/ = 

8.3 Hz, J2 = 2.1 Hz 1H), 7.24 (m, 1H), 7.13 (dd, J/ = 8.3 Hz, J2 = 2.1 Hz 1H), 6.86 (m, 

1H), 6.80 (d, J= 2.1 Hz 1H), 6.78 (d, J= 8.5 Hz, 1H), 4.19 (qd, J, = 6.6 Hz, J2 = 6.6 Hz, 

1H), 3.66 (dd, J/ = 16 Hz, J2 = 6.6 Hz, 1H), 2.67 (d, 16 Hz, 1H), 0.83 (d, J= 6.6 Hz, 

3H); 13C NMR (125 MHz, CDC13) 8 148.4, 146.5, 141.8, 139.7, 135.8, 135.0, 134.6, 

134.3, 133.4, 131.8, 131.1, 130.9, 129.43, 129.37, 129.3, 128.89, 128.85, 128.3, 125.94, 

125.2, 124.7, 124.0, 120.9, 120.6, 39.9, 38.0, 19.9; MS mtz calcd for C27Hi8Br2S 533.94, 

found 534.00. 

Motorized Nanocar 16. See the general procedure for Sonogashira couplings. Materials 

used were alkyne axle 19 (0.056 g, 0.129 mmol), motor 18 (0.023 g, 0.043 mmol), 

PdCl2PhCN2 (0.008 g, 0.021 mmol), HP'BU 3 BF 4 (0.018 g, 0.063 mmol) and Cul (0.004 g, 

0.0021 mmol). The mixture was heated to 40 °C and allowed to stir overnight. Workup 
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according to the standard procedure and purification on silica gel using 10% 

CH2Cl2:hexanes yielded 0.008 g (15%) of nanocar 16 as a yellow solid. FTIR (KBr) 2957, 

2923, 2852, 2615, 1614, 1463, 1384, 1261, 1084 cm"1; *H NMR (500 MHz, CDC13) 8 

7.89 (d, J= 1.9 Hz, 1H), 7.71 (d, J= 8.2 Hz, 1H), 7.63 (d, J= 9.0 Hz, 1H), 7.57 (d, J = 

8.1 Hz, 1H), 7.55 (dd, J , = 8.1 Hz, J2 = 0.34 Hz 1H), 7.41 (d, J= 8.2 Hz, 1H), 7.37 (dd, 

J/ = 1.7 Hz, J2 = 0.52 Hz, 1H), 7.36 (dd, J/ = 8.0 Hz, J2 = 1.7 Hz, 1H), 7.25-7.19 (m, 4H), 

7.15 (dd, Ji = 8.1 Hz, J2 - 1.7 Hz 1H), 7.11-7.09 (m, 2H), 7.03 (dd, J/ = 8.2 Hz, J2= 1.6 

Hz, 1H), 6.90 (dd, J/ = 1.8 Hz, J2 = 0.39 Hz, 1H), 6.87 (d, J= 1.2 Hz, 1H), 4.32 (qd, = 

6.1 Hz, J2 = 6.1 Hz, 1H), 3.81 (dd, Ji = 16 Hz, J2 = 6.1 Hz, 1H), 3.30-1.60 (br, 45H, 

includes one proton from motor), 0.86 (d, J = 6.6 Hz, 3H) integration of aryl signals not 

corresponding to the nanocar indicate an inseparable impurity in the amount of 10% (see 

1 ̂  

attached spectrum in supporting information of this chapter); C NMR (125 MHz, 

CDCls) S 147.7, 146.5, 140.2, 137.9, 136.8, 136.3, 135.1, 134.9, 134.4, 133.1, 132.2, 

131.9, 131.7, 130.9, 130.7, 130.5, 129.7, 129.4, 128.7, 128.1, 127.9, 127.6, 126.7, 126.5, 

126.45, 125.8, 125.0, 124.5, 123.9, 123.8, 123.7, 121.9, 121.7, 121.0, 94.5, 94.1, 91.4, 

91.1, 88.1, 87.9, 87.3, 86.6, 69.6, 69.3, 60.6, 42.7, 40.8, 40.2, 38.2, 19.9; DI m/z calcd for 

C59H68B4oS 1242, found 1243 [M+H]. 
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Figure S-2.1-3. 'H NMR Spectrum of Compound 13. 
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Chapter 3 

Synthesis and Studies of Fluorescently-Tagged Nanomachines 



3.1 

Micrometer-Scale Translation and Monitoring of Individual Nanocars on Glass 
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Introduction 

Science and engineering on the nanoscale offers novel possibilities for the design 

and synthesis of functional materials. In contrast to the engineering of macroscopic 

objects where large pieces of materials are formed into smaller building blocks, 

nanoscale engineering is driven by a bottom-up materials synthesis. Inspiration for this 

approach can be drawn from nature where self-assembly of smaller molecules into larger 

networks through often weak interactions play an important role. Nanomachines are 

promising new materials that are designed to exhibit controlled mechanical motions 

resembling macroscopic rotors,1"4 elevators,5 shuttles,6"8 ratchets,9 turnstiles,10 scissors,11 

and muscles.12 Performing electronic and mechanical operations with specifically 

designed molecules presents the ultimate limit of miniaturization and has a profound 

impact on many diverse fields ranging from molecular computing to medicine. Among 

the most important tasks for molecular machines is the directed transport of molecules 

and charges. To accomplish molecular directed motion and transport, molecular 

machines that resemble the chassis and wheels of a car, hence called nanocars, have been 

synthesized.13"15 The rotation of the nanocar wheels is thought to induce a directional 

rolling of the nanocars on a surface.15 Understanding the mechanisms by which these 

molecular machines work under different conditions is crucial for the future design of 

even more complex machines and essential for finding novel ways to control the forces 

that are responsible for their mechanical nanoscale motion. 

Ensemble characterization techniques often fail to measure the detailed 

mechanical action of molecular machines as a random alignment of the individual 
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molecules can lead to an orientational averaging, which is particularly problematic for the 

two-dimensional motion of a nanocar on a flat surface. Thermally activated rolling of 

individual fullerene-wheeled nanocars has previously been studied by scanning tunneling 

spectroscopy (STM) on a gold surface.15 While STM is extremely powerful in resolving 

atomic scale details of single molecules,16 the substrate surface must be conductive. As a 

complementary single molecule technique fluorescence imaging17"19 is capable of 

monitoring the motion of single molecules on non-conductive glass. Although the 

resolution of optical single molecule spectroscopy is limited by diffraction, localization 

of individual molecules below 100 nm down to a few nanometers has become possible 

for large photon count rates17'19 while, at the same time, acquiring images that are tens of 

microns large. 

Here, we report on the translational motion of single dye-labeled carborane-

wheeled nanocars on a glass surface, studied for the first time by single molecule 

fluorescence spectroscopy. Using polarization sensitive fluorescence detection in 

combination with a comparative analysis that employed three-wheeled nanocars and the 

dye tag only, we were able to investigate possible mechanisms for the movement of 

carborane-wheeled nanocars. Our results are consistent with a wheel-like rolling of the 

nanocars. 

Imaging of the nanomachines was performed by S. Khatua, and I was responsible 

for molecular design and synthesis of the nanocar and trimer (synthetic details are 

reported in the following section). Dr. G. Vives performed TRITC tagging of the trimer, 

and K. Claytor developed the tracking program to monitor the motion of the 

on 
nanovehicles. 
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Results and Discussion 

Fluorescence visualization of the nanocars with 532 nm excitation light was 

achieved by first attaching an appropriate dye label (tetramethylrhodamine isothiocyanate, 

TRITC) to the end of the nanocar chassis (Figure 1A). TRITC tagging of the nanocars 

was accomplished through an aniline-bearing nanocar reacting with the isothiocyanate 

residue on the fluorophore (supporting info). At room temperature without thermal 

activation, the dye-labeled carborane-wheeled nanocars showed significant displacement 

in successively scanned fluorescence images directly confirming movement of the 

nanocars on a glass surface. Individual nanocars were isolated on a glass surface by spin-

casting from a 10"12 mol/L dimethylformamide (DMF) solution. Single photobleaching 

steps in fluorescence-time trajectories confirmed the presence of single molecules within 

the diffraction limited fluorescence signal.19 10 x 10 fim fluorescence images were 

acquired by scanning the sample over a focused laser beam in a home-built confocal 

microscope setup (Figure IB). Movement of a single nanocar is shown in the images in 

Figs. 1C - IF. The images were acquired continuously every 30 sec for a total time of 5 

min. 
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Figure. 1. (A) Dye labeled four-wheeled nanocar. The vertices in the carborane wheels 

correspond to B-H units while the black dots correspond to C and C-H units, ipso and 

para, respectively. The nanocar is ~2 x 2 nm and the dye "trailer" is ~1 x 1 nm. (B) 

Fluorescence image (10 |im x 10 jam, 128 x 128 pixels, 1 ms/pixel, XeXC, = 532 nm, 1 

kW/cm2) of single nanocars. (C-F) Time-lapse images (2.3 (im x 2.3 jxm) for the nanocar 

circled in (B) demonstrating movement of the nanocar at room temperature. The red 

cross hair provides a stationary reference point. 
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Single nanocar trajectories were obtained by an automated routine that first 

identified individual molecules based on the intensity and size (e.g. number of pixels) of 

the fluorescent spot in the starting image for a time series of frames. If a molecule is 

found at the same position or within a search area in the subsequent frame, the molecule 

is associated with the corresponding one in the previous image. This procedure is 

repeated for all molecules and every frame. Large displacements within the relatively 

long image acquisition time of 30 sec, photo-blinking of the dye, and high single 

molecule coverage could lead to an incorrect association. Photo-blinking was addressed 

by searching in subsequent frames for molecules that blink on again. However, if an 

unambiguous assignment could not be made the corresponding molecules were excluded 

from further analysis. In addition, the dimensions of the search area and the 

concentration of nanocars were carefully adjusted in order to minimize intersecting 

search regions. A typical search radius was 600 nm for images with coverages of 10 - 15 

molecules per 100 jam2. Figure 2A shows the first analyzed frame of a time series of 

fluorescence images for carborane-wheeled nanocars together with superimposed 

trajectories obtained from the following images demonstrating that the displacements of 

individual nanocars can be as large as 500 nm between frames. 
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Figure 2. Analyzed images of nanocar (A) and TRITC (B). Molecules were identified 

based on intensity and size within the region marked by the red box. The positions of the 

molecules for a time series of images are shown superimposed on the first frame. 25% of 

the nanocars showed displacements greater than the error of 100 nm in at least two image 

frames and are color coded in red as 'moving' nanocars. (C) Single molecule trajectory 

of the nanocar indicated by the red circle in (A). Displacements as large as 500 nm 

between frames far exceed the changes in position recorded for the representative TRITC 

molecule labeled with the green circle in (B) (upper left hand corner in (C); note the scale 

bar). (D) Squared displacements SD (r2) calculated from the single nanocar trajectory in 

(C) vs. time. A linear fit according to SD = 4dt yields a squared displacement rate d of 

6.0 x 10"16 m2/s. The inset shows a scatter plot of the linear displacements between 
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images for each of the five 'non-moving' molecules in (A). The 11m shift between the 

blue and red points, corresponding to the origin and the mean position, confirms a 

negligible sample drift. 

A non-specific movement of individual molecules on glass can be excluded here 

because fluorescence imaging of the dye only showed no measurable displacements 

outside our experimental error. We repeated the same single molecule experiments and 

analysis for individual TRITC molecules isolated on a glass surface (Figure 2B). The 

TRITC by itself showed no translational motion, which can be seen from the comparison 

of two typical trajectories obtained for the nanocar and TRITC (Figure 2C). The 

magnified nanocar trajectory in Figure 2C includes the error bars calculated from fitting 

each fluorescence spot to the microscope point spread function, which was approximated 

as a two-dimensional Gaussian.18'19 For TRITC, the displacements are comparable or 

even smaller than the error bars verifying that the TRITC molecules remained stationary. 

On the other hand, the movement of the nanocars is much larger than our spatial 

resolution of 100 nm. The resolution is mainly limited by photon shotnoise and photo-

blinking of the dye as well as a pixel size of 78 nm.18 Despite a longer image acquisition 

time and reduced spatial resolution, the main advantage of our confocal sample scanning 

setup over wide-field imaging is that a non-constant laser illumination of all molecules 

allowed us to extend the total acquisition time and to obtain trajectories spanning several 

minutes. 

It is interesting to note from Figure 2A that not all molecules that were identified 

actually moved. In fact, about 25 % of the nanocars (46 out of 191 molecules) showed 
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translational motion, which further illustrates the power and need for single molecule 

measurement techniques. A main factor contributing to the large fraction of 'non-

moving' nanocars is most likely the surface roughness of the glass surface as it is not 

atomically flat; it is merely a glass cover slip (Fisher Scientific, 12-545-F) and the 

nanocars could become lodged at lattice defects. AFM measurements of a glass cover 

slip confirmed both smooth areas and surface height modulations of several nanometers 

exceeding the dimensions of the nanocars. Secondly, a fluorescent spot only indicates 

the presence of TRITC, which by itself did not move (Figure 2B), and the presence of 

some non-linked TRITC molecules due to decomposition cannot be excluded. In the 

following, we will concentrate only on the nanocars that showed a displacement which 

exceeded the error bar in at least 2 image frames. These 'moving' nanocars are colored 

red in Figure 2A. However, the 'non-moving' nanocars colored yellow in Figure 2A 

served the important role of an internal marker against overall sample drift. We found 

that sample drift (inset in Figure 2D) was 11 nm during the experiment shown in Figures 

1 and 2, which is much smaller than the micron-scale movement of the nanocars as well 

as our spatial resolution of 100 nm. 

We observed no biased movement of the nanocars on this amorphous surface. A 

histogram of angles obtained from the single molecule trajectories for all moving 

nanocars showed an equal distribution of all angles between 0 and 180 degrees (Figure 

SI). Polarization anisotropy analysis of the fluorescence images furthermore revealed 

that the nanocars, when they changed directions, underwent the change rapidly and 

within the time it took to scan the molecule over the laser beam (~ 500 ms, Figure 3A). 

The polarization anisotropy distribution of the nanocars is peaked at zero indicating 
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depolarization due to rotational movement. A rotation of the TRITC on the nanocar can 

be excluded as the major depolarization mechanism because an analysis of only the 

center pixel showed a broader polarization distribution (Figure S2). This is consistent 

with rotational dynamics on the 1-100 ms time scale and is much slower than a bond 

rotation. In contrast, TRITC only did not rotate as the polarization anisotropy values for 

TRITC (Figure 3B) ranged from -1 to 1 consistent with a random and stationary 

distribution of molecular orientations.20'21 The fact that the molecules rotate is not 

surprising, considering that previous STM results15 showed a combined pivot and 

translation motion of fullerene-wheeled nanocars on the nanometer length scale due to an 

independent wheel movement. The roughness of the glass surface is likely to further 

enhance pivoting of the nanocars. 
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50 100 
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Figure 3. (A) Polarization anisotropy distribution of 'moving' four-wheeled nanocars 

(red bars). The polarization anisotropy values are peaked at zero, indicating rotation of 

the nanocars during the image acquisition time. Rotation much faster than the acquisition 

time would result in the distribution given by the green line for shotnoise limited 

polarization detection. The black points and line are a simulation of the polarization 

anisotropy distribution for random hopping with a minimum rate of 10 hops per second, 

assuming an equal weight for all hopping directions. Please note that the polarization 

distribution is also consistent with a rolling and continuous pivoting motion. (B) 

Polarization anisotropy distribution of TRITC confirming the absence of rotational 

motion during the image acquisition time. (C) Mean squared displacement MSD (<r > -

<r>2) vs. time for all 'moving' nanocars. A linear fit according to MSD = 4Dt yields a 

1 f\ 9 • two-dimensional diffusion constant 

D of 2.7 x 10",D ± 0.4 m /s. The inset shows a 

histogram of single molecule squared displacements rates d calculated from individual 

trajectories such as the one shown in Figure 2D. (D) Distribution of speeds of individual 

'moving' nanocars. The average speed of the nanocars is 4.1 nm/s or two nanocar 

lengths per second. 

Given the lack of long-range directionality, we analyzed the single nanocar 

trajectories to obtain displacement rates in analogy to two-dimensional surface 

• 2 2 • • 

diffusion. Figure 2D shows the squared displacement SD of a single nanocar vs. time 

as obtained from the trajectory in Figure 2C. A linear fit according to SD = Adt yields a 

squared displacement rate d of 6.7 x 10"16 m2/s. A histogram of single molecule diffusion 

constants is shown in the inset of Figure 3C. The average single molecule squared 

110 



displacement rate of 2.2 x 10"16 m2/s agrees well with the diffusion constant D of 2.7 x 

10" m /s calculated from a mean squared displacement MSD analysis (MSD = ADt, 

Figure 3C). We also calculated the average minimum speed of the four-wheeled 

nanocars at room temperature and found a value of 4.1 nm/s (Figure 3D). Based on a 

diameter of 0.8 nm for a carborane wheel and assuming here that the translation was 

purely due to a rolling mechanism, a minimum wheel rotation frequency of 2 rotations 

per second was calculated. In contrast, fullerene-wheeled nanocars on a gold surface 

only moved after increasing the temperature to 

500 K.15 The difference is due to the 

much larger surface interaction energy of 200 - 250 kJ/mol per fullerence wheel on 

gold.23'24 

Instead of a wheel-like rolling motion, the nanocars could also translate by 

hopping as has been observed for a large organic molecule such as hexa-tert-

butyldecacyclene (HtBDC, C60H66), on Cu (110) by STM imaging.25 We evaluated this 

scenario using the measured diffusion constant and estimating a minimum hopping rate 

based on the polarization anisotropy distribution of the nanocars. A simulation of the 

polarization anisotropy distribution (Figure 3A), assuming random hopping with an equal 

weight for all directions, gives a minimum hopping rate h of 10 hops per second. 

According to D = 1/4 A2h ,26 a maximum hop length /. of 10 nm is calculated, which is 

several times the size of the nanocar. If the nanocars are unable to rotate freely while 

hopping, the hopping rate increases and the step size decreases, which eventually will 

become indistinguishable from a sliding or rolling motion. 

Using a simple model, we can estimate the contributions due to rolling and 

hopping of the nanocars based on the activation energy for translational motion, which 
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can be estimated from the measured diffusion constant D according to 

D = D0 exp 
( T? \ & 26,27 

v kT)' 
Here, T is the temperature and k the Boltzmann constant. D() is 

the two-dimensional diffusion constant of the nanocar in air given by the Stokes-Einstein 

kT 
diffusion equation D0 = where rj is the viscosity of air and a is the radius of the 

Ajrr]a 

nanocar. If the motion of the nanocar molecule on the surface were free it would have a 

diffusion constant Do. However, because of interactions with the surface the diffusion is 

significantly smaller. This model yields an activation energy E of 42 ± 5 kJ/mol at room 

temperature. For a carborane wheel to sit on a surface, three hydrogen atoms are 

necessary to bond to the substrate, which is illustrated in Figure 4A together with a 

suggested rolling mechanism. The bond strength between a carborane hydrogen and an 

28 

oxygen atom on the glass surface is estimated to be 4.8 kJ/mol. In order for the nanocar 

to roll it has to break one hydrogen bond per wheel and overcome a rotational energy 

barrier of 4.2 kJ/mol per bond connecting the wheel to the chassis,29 which equals a total 

energy of 36 kJ/mol for a total of four wheels per car, in good agreement with the 

measured activation energy. On the other hand, if the nanocars were hopping, 12 

hydrogen bonds have to be broken yielding an activation energy of 57 kJ/mol. This 

exceeds the experimentally measured value making hopping the less likely mechanism. 
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Figure 4. (A) Schematic comparison of a carborane wheel rolling (top) vs. hopping 

(bottom). A wheel on the glass surface forms three hydrogen bonds with the oxygen 

atoms (not shown for clarity) of the SiC>2. For rolling only one of the three hydrogen 

bonds has to break while for hopping the whole wheel has to detach from the surface. 

(B) Dye labeled three-wheeled nanocar. (C) Three representative polarization anisotropy 

time trajectories for trimer nanocars showing that rotational motion is absent on a time 

scale of several minutes. Similar results were also obtained for polarization 

measurements of 'non-moving' four-wheeled nanocars and TRITC only. 

In order to further test this assignment, we measured single molecule trajectories 

and polarization anisotropy distributions for a TRITC-labeled three-wheeled nanocar, 
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(Figure 4B). Compared to the four-wheeled car, the trimer nanocar is expected to have 

only 75% of the interaction energy with the glass surface and would therefore be more 

likely to hop assuming that the interaction of the dye label with the surface is comparable. 

However, we found no movement of the trimer nanocars as the trajectories were similar 

to those measured for TRITC only or the non-moving four-wheeled nanocars. In addition 

to the absence of any translational movement in the trimer nanocars, we also did not 

observe rotational motion as confirmed by the polarization anisotropy distribution 

obtained from the fluorescence images (Figure S3) and the absence of a change of 

polarization anisotropy between image frames (Figure 4C). Although the trimer nanocar 

is expected to rotate, an important difference between the two nanocars is that TRITC is 

attached directly to the wheel of the trimer nanocar (Figures 1A and 4B) and could hinder 

a free wheel rotation. In order to test this hypothesis and to examine a possible role of 

the dye label on the nanocar movement we plan to also study non-labeled nanocars in the 

future. 

Conclusion 

Using single molecule fluorescence imaging, we have observed micrometer 

movement of dye-labeled carborane nanocars on a glass surface at room temperature. 

Polarization-sensitive measurements showed that translation is coupled with rotational 

motion. By comparing the four-wheeled nanocars to a three-wheeled nanocar analog and 

the unbound dye molecules, we conclude that the translation of the nanocars is consistent 

with a wheel-like rolling mechanism. While atomic resolution as with STM is not 
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possible using single molecule fluorescence imaging, the results presented here 

demonstrate that our approach yields complementary data and gives useful insights into 

the micrometer-scale motion of molecular machines. 

It is interesting to speculate how a truly unidirectional motion of nanocars can be 

achieved. Our results suggest that the speed of the nanocars is dictated by the strength of 

the interactions between the nanocar wheels and the surface. Changing the surface 

should therefore have a large impact on the mobility of the nanocars. However, even 

more important for a controlled directional motion seems to be the reduction of pivoting, 

which was found to occur with a minimum frequency of 10 turns per second for the 

carborane-wheeled nanocars on glass. An extended nanocar chassis with an increased 

even number of wheels should be less susceptible to random pivot motion caused by an 

independent wheel movement, but at the expense of a reduced speed due to a stronger 

surface attraction and increased entropy for synchronized bond rotations. 

Experimental Section 

Single molecule fluorescence imaging was performed on a home-built sample 

scanning confocal microscope consisting of a frequency doubled diode-pumped laser 

(Coherent, Verdi), an inverted microscope (Zeiss, Axiovert 200), and avalanche 

photodiode (APD) detectors. Samples were excited by circularly polarized 532 nm laser 

light with an average power of 500 nW focused to a diffraction limited spot size of 250 -

300 nm. To visualize the nanocars, a dye label (tetramethylrhodamine isothiocyanate, 

TRITC) was attached to the end of the nanocar chassis (Figure 1A). TRITC tagging of 
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the nanocars was accomplished through an aniline-bearing nanocar reacting with the 

isothiocyanate residue on the fluorophore (see supporting info for synthesis and 

characterization). We confirmed that the photophysical properties of TRITC labeled 

nanocars are similar to those of TRITC. TRITC and TRITC labeled nanocars were spin-

casted (3500 rpm for 90 seconds) on plasma cleaned coverslips (Fisher Scientific, 12-

545-F) from DMF solution with concentrations of 10"10 - 10"12 mol/L. Prior to spin-

casting and plasma cleaning, the coverslips were sonicated in acetone for 15 minutes. 

Samples were mounted on a xyz piezo scanning stage (Physik Instrumente, P-517.3CL) 

connected to a surface probe microscope controller (RHK Technology, SPM 1000). 

Emitted fluorescence from individual molecules was collected by a 100X oil-immersion 

objective with a numerical aperture of 1.3 (Zeiss, Fluar) and filtered by a dichroic mirror 

and a notch filter to reduce scattered laser light. Fluorescence images were constructed 

by scanning the sample across the excitation laser. Typical images had dimensions of 10 

x 10 |im and consisted of 128x128 pixels with an integration time of 1 ms/pixel (Figure 

IB). Matlab software was written to automatically identify the position of each molecule 

in every image frame. For polarization sensitive detection, the fluorescence was 

separated into orthogonally polarized components Ix and Iy using a polarizing 

beamsplitter and detected by two APDs. After integrating the intensities over an area of 

5x5 pixels corresponding to size of a single molecule, the polarization anisotropy was 

calculated according to P = ( / -1x)/(Iy +1x). For all of the samples studied we have 

measured about 200 molecules in order to extract statistically meaningful values. 
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3.2 

Synthesis of Fluorescent Dye-Tagged Nanomachines for Single Molecule 

Fluorescence Spectroscopy 
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Introduction 

Watershed moments in the construction of nanomachines that exhibit controlled 

movements in solution1 have lead researchers to explore the design, synthesis and 

manipulation of more complex, highly functional devices that can be studied not only as 

an ensemble, but as single entities.2 Adapting the approach taken by biological systems, 

synthetic strategies often arrive at these structures via bottom-up construction - quickly 

• • • 3 

generating nanometer-sized configurations from the most basic organic building blocks. 

Concomitantly, the development of increasingly powerful imaging tools has enabled 

nanoscale engineers to study the individual rotational, translational and transportation 

dynamics of biological4 and synthetic5 nanomachines on surfaces. 

Though many interesting results have been obtained using other methods,513'50 

STM remains unparalleled in its ability to resolve and manipulate single atoms as well as 

track the translational movement of nanoscale objects.6 To this end, various groups have 

synthesized landers,7 wheelbarrows,315'8 nanowalkers,9 and poly-aromatic systems10 for 

the purpose of observing their behavior on metallic surfaces. Similarly, our group has 

combined various nanocomponentry with molecular axles containing fullerene, p-

carborane or organometallic wheels to construct a number of nanovehicles designed for 

directed motion and transport along atomically flat surfaces.3a'f Proof-of-concept 

experiments have shown, using STM, the directed movement of fullerene-wheeled 

nanocars on atomically-flat Au(l 11) surfaces upon thermal and electrostatic activation.11 
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Although STM remains invaluable in the study of atomic detail and mechanism, 

conditions required for precise measurement are often less than ideal and time 

consuming; conductive substrate surfaces must be used, and cryogenic and high-vacuum 

settings are often required to obtain clean images.6b'12 Single molecule fluorescence 

spectroscopy (SMFS), which has been widely used to track motion in biological 

systems,13 offers a complementary technique to STM to study single molecules on non-

conductive surfaces. While SMFS does not have the atomic resolution of STM, 

nanometer localization is possible with large photon count rates14 and fast measurement 

of distances as low as several nanometers has been realized on larger scan areas.15 To 

exploit these advantages, we recently employed single molecule fluorescence imaging as 

a complementary technique to STM for monitoring the motion of fluorescent nanocars on 

non-conductive glass under ambient conditions.16 

To obtain accurate measurements of single molecules, it is of paramount 

importance to ensure that a) the molecules of interest fluoresce well and b) fluorescence 

from impurities, optic and substrate surfaces is avoided.17 Molecular design ensures that 

the first requirement is met, while the other is typically met by the utilization of 

excitation light with wavelengths greater than 500 nm, as few molecules and substrates 

1 8 

are known to absorb in this region. In our case, utilization of such light came with a 

caveat, as our previously synthesized /7-carborane nanocars19 do not possess absorption 

bands in this region. In general, molecules are tagged with a high-quantum-yield 
20 

fluorescent dye to provide the capability for visualization at longer wavelengths. For 

our purposes, tetramethylrhodamine isothiocyanate (TRITC) was an attractive dye, as it 

possesses an excitation wavelength centered at the emission line of our Nd:Yn laser (532 
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nm), good quantum yield of fluorescence, and is appended to structures via a simple urea 

formation by reaction with amines. The attachment of TRITC to nanovehicular 

structures should afford the ability to unabatedly study the behavior of nanocars on 

surfaces. 

In an effort to elucidate the mechanism of movement and control the 

directionality of nanovehicles via specific arrangements of their molecular axles and 

wheels, reported here is the synthesis of three fluorescently-tagged nanovehicles (Figure 

1) specifically designed for SMFS studies. The molecules all bear a TRITC fluorescent 

tag for excitation at 532 nm and p-carborane wheels. Our main reasons for choosing p-

carborane were two-fold: (1) its ability to be substituted at both carbon atoms para to one 

another and (2) its stability towards many organometallic and photoinitiated processes. 

My research consisted of the synthesis of 1 and 2 as well as the starting nanocooper for 

nanocar 3, while the synthesis of nanocar 3 was completed by Dr. G. Vives. As shown in 

Figure 1, nanocar 1 was designed to move along a straight trajectory due to the placement 

of the axles parallel to one another. Analogous to our previous work with fullerene 

nanomachines, trimer 2 was designed to exhibit a pivoting motion with no translation. 

Due to the initial results from imaging trimer 2,16 nanocar 3 was designed to ascertain the 

effect of TRITC on wheel rotation/nanocar movement. 
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Figure 1. Structure of TRITC-Tagged nanovehicles 1-3 and their expected directional 

motion. Every vertex of the carborane wheel is BH except the darkened sites, where the 

outer is CH and the inner is alkynyl-substituted when in a molecular axle. Only the 5-

isomer adduct of TRITC is shown. 
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Results and Discussion 

Design and Synthesis. The strategy to arrive at each target adopts a convergent 

approach, where the inner components of each nanovehicle are synthesized and then 

attached to versatile p-carborane-containing axles (arms in the case of the trimer). The 

design of nanocar 1 dictated the use of two different molecular axles, with one axle 

bearing a pendant aniline for the attachment to amine-reactive TRITC. To arrive at 

trimer 2 and nanocar 3, we used a convergent, symmetric approach to synthesize a late-

stage intermediate, followed by statistical attachment of an extended aniline to one wheel 

for the purposes of TRITC tagging. 

Scheme 1. Synthesis of TRITC-tagged Nanocar 1 
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In Scheme 1, iodide axle 422 is coupled to the methoxy-containing inner chassis of 

the nanocar 5 using normal Sonogashira conditions followed by deprotection to yield 

terminal alkyne 6. Immediate coupling with known aniline axle 723 was performed to 

give the aniline nanocar 8. In a final step, the aniline was reacted with TRITC in DMF at 
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elevated temperature, with triethylamine as base to give target nanocar 1 in 19% yield. It 

is possible that the low yield was a result of steric bulk around the reacting aniline. 

SMFS results show that the axle-tagged nanocar 1 has sufficient energy at room 

temperature to move along the glass surface at high rates of displacement.16 This was an 

encouraging result, as the attachment of a large moiety to the axle of nanocar 1 

demonstrates the ability to transport on the nanoscale, albeit with a lack of long-range 

directionality. To further explore our ability to study directionality and molecular 

behavior, trimer 2 was designed and synthesized to have analogous properties to those of 

a previously studied fullerene-wheeled trimer, where the molecule undergoes no 

translation, but rotates about the central trialkynylated benzene.11 

Scheme 2. Synthesis of Trimer 2 
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To synthesize trimer 2 (Scheme 2), we first attempted to use an early-stage 

statistical coupling to 1,3,5-tribromobenzene, followed by the coupling of a fully-

elaborated pendant aniline arm to the benzene core. This method, however, proved to be 

lengthy and low yielding. Using a late-stage statistical approach, we were able to 

synthesize potentially useful intermediates which may be used in other future STM and 
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fluorescence studies. Thus, trimer 2 is convergently constructed in four synthetic steps, 

where 1,3,5-triethynylbenzene 919 is coupled to 3 equiv. of known carborane arm 1019 to 

give the symmetrical trimer 11 in good yield. Initially, statistical attachment of the p-

ethynylnitrobenzene (12) unit was carried out under standard conditions for unsubstituted 

p-carborane functionalization: the molecule is deprotonated using 1 equiv. of n-

butyllithium at -78 °C, followed by equilibration at room temperature for 30 min, then 

cooled again to -78 °C. Transmetalation is then performed by addition of CuBr and 

allowing the mixture to warm to room temperature, follwed by coupling with the alkynyl 

bromide. Unfortunately, no product was obtained using this protocol and the starting 

material was almost totally recovered. In monosubstituted /7-carboranes, Fox and co-

workers have reported an influence of the substituent on the unsubstituted carbon.24 

Substitutions by electron-donating groups increase electron density on the para carbon, 

following a Hammet op plot with good correlation. In our case, it is likely that the 

resulting anion and/or organocopper intermediates decompose during the room 

temperature equilibration step of the substitution process due to the highly electron-

donating nature of the chassis/inner core. Consequently, modification of the procedure by 

lowering the temperature of the equilibration steps to -15 °C and increasing the 

equilibration times to 1 h led to formation of p-ethynylnitrobenzene-substituted trimer 13 

in 22% yield. The pendant nitro was then reduced smoothly using zinc powder and acetic 

acid in THF to provide the aniline 14 in quantitative yield. Reaction with TRITC 

provided fluorescently-tagged trimer 2 in 49% yield. 

Scheme 3. Synthesis of Wheel-Tagged Nanocar 3 
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Lib R = NOz 

17 R = NH2 

SMFS imaging of TRITC-tagged trimer 2 showed that the molecule is quite 

stationary, exhibiting no translational motion. While a lack of translational motion was 

expected, the molecule also failed to show any rotational movement by polarization 

anisotropy measurements.16 This lack of rotation could be due to molecular design, where 

TRITC is attached via a pendant group directly off of one wheel, causing it to act as a 

brake. 

To test our hypothesis, we synthesized a wheel-tagged fluorescent nanocar 

(Scheme 3). Known nanocooper 1519 was subjected to similar statistical carborane 

substitution conditions to those developed for the synthesis of the trimer, resulting in a 

16% yield of 16, lower when compared to the trimer due to the statistical contribution of 

one extra wheel. The substitution of only one of the four wheels of nanocar 15 leads to 

two regioisomers, corresponding to substitution on the ortho- or meta-positioned ethynyl 

carborane relative to the inner chassis. The two isomers are obtained as a 1:1 mixture that 
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is inseparable by column chromatography. The current mechanism of translocation 

suggests that the two isomers should exhibit similar behavior on the glass surface, so 

their mixture is carried on through the rest of the synthetic sequence. Subsequent 

reduction to aniline 17 and TRITC attachment gave wheel-tagged nanocar 3 in a 29% 

yield. Initial SMFS results indicate that TRITC may indeed act as a brake, as only 5% of 

the nanocars exhibit translational motion, compared to 25% for nanocar 1. 

Conclusion 

The design and synthesis of three fluorescently-tagged nanovehicles for the 

purpose of SMFS imaging is reported. Due to our recent findings where TRITC may 

hinder movement when attached directly to molecular wheels, we are currently 

undertaking the synthesis of a non-wheel tagged trimer. Other nanocars with varying 

orientations and numbers of axles are near completion, and their imaging, in combination 

with a non-wheel-tagged trimer, should provide more insight into the nature of the 

translational movement of nanocar 1. Encouraged by our initial results, we are 

undertaking the synthesis of other highly functionalized fluorescent nanomachines and 

the development of new techniques for the purpose of blue excitation light fluorescence 

visualization (imaging of non-tagged nanovehicles). 
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Experimental Section 

General Methods. [H NMR and 13C NMR spectra were recorded at 400 and 100 

MHz, respectively. Proton chemical shifts (8) are reported in ppm downfield from 

tetramethylsilane (TMS). Mass spectrometry was performed at the Rice University and 

University of South Carolina Mass Spectrometry Laboratory. Infrared spectra (IR) 

assignments have 2 cm"1 resolution. All reactions were performed under an atmosphere of 

nitrogen unless stated otherwise. Reagent grade tetrahydrofuran (THF) was distilled from 

sodium benzophenone ketyl. Triethylamine (TEA) and CH2CI2 were distilled over CaH2. 

TRITC, TBAF (1.0 M solution in THF) and «-butyllithium (2.5 M solution in hexanes) 

were purchased from Sigma-Aldrich and used as received. Trimethylsilylacetylene 

(TMSA) was donated by FAR Research Inc. or Petra Research. CuBr was purified by 

suspension in hot methanol and filtration. Flash column chromatography was performed 

using 230-400 mesh silica gel from EM Science. Thin layer chromatography was 

performed using glass plates pre-coated with silica gel 40 F254 purchased from EM 

Science. The synthesis of compounds 4,19 5,23 7,23 9,19 10,19 and 1519 was performed 

according to literature procedures. 

General Procedure for the Coupling of a Terminal Alkyne with an Aryl 

Halide Using a Palladium-Catalyzed Cross-Coupling (Sonogashira) Protocol. To an 

oven-dried round bottom flask equipped with a magnetic stir bar were added the aryl 

halide, the terminal alkyne, PdCl2(PPh3)2 (ca. 2 mol% per aryl halide), and Cul (ca. 4 

mol% per aryl halide). A solvent system of TEA and/or THF was added depending on the 

substrates. Upon completion, the reaction was quenched with a saturated solution of 
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NH4CI. The organic layer was then diluted with hexanes, diethyl ether or CH2CI2, and 

washed with water or saturated NH4CI (lx). The combined aqueous layers were extracted 

with hexanes, diethyl ether, or CH2CI2 (2x). The combined organic layers were dried over 

MgSC>4, filtered, and the solvent was removed from the filtrate in vacuo to afford the 

crude product, which was purified by column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 

General Procedure for Deprotection of TIPS-Protected Alkynes using TBAF. 

In a round-bottomed flask equipped with a magnetic stir bar, the protected alkyne was 

dissolved in CH2C12 ([protected alkyne] = 0.05 - 0.1 M). TBAF in THF (1.0 M, 1.1 equiv 

per alkyne) was added. The mixture was stirred at room temperature for 0.5 h or until the 

reaction was complete (monitored by TLC). Silica gel was added and the solvent was 

removed in vacuo. The resulting product loaded onto silica gel was then purified by 

column chromatography (silica gel as the stationary phase) to provide the product. 

Compound (6). See the general procedure for the Pd/Cu coupling reaction. The 

materials used were 419 (0.150 g, 0.28 mmol), 523 (0.091 g, 0.27 mmol), PdCl2(PPh3)2 

(0.020 g, 0.028 mmol), Cul (0.012 g, 0.063 mmol), TEA (0.32 mL), and THF (4.0 mL) at 

room temperature overnight. The residue was purified by flash column chromatography 

with 20 % CH2CI2 in hexanes; the product-containing fractions were combined, 

concentrated and the residue was subjected to the general procedure for the deprotection 

of TIPS-protected alkynes. The materials used were the TIPS protected intermediate 

H 
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(0.090 g, 0.12 mmol), TBAF (0.20 mL, 1.0 M in THF) and CH2C12 (3 mL). The mixture 

was stirred at room temperature for 0.5 h, then passed through a silica plug using 30 % 

CH2CI2 in hexanes as eluent to yield 6 (0.071 g, 45%, 2 steps) as an off-white solid. FTIR 

(KBr) 2926, 2615, 1502, 1463, 1408, 1385, 1221, 1064, 1041, 785, 665 cm"1; !H NMR 

(400 MHz, CDCI3) £7.45 (d, J =1.2 Hz, 1H), 7.22 (d, 1H, J= 8.0 Hz), 7.13 (dd, Ji = 8.0 

Hz, J2 = 1.2 Hz, 1H), 7.04 (s, 1H), 7.01 (s, 1H), 3.97 (s, 3H), 3.89 (s, 3H), 3.44 (s, 1H), 

3.40-1.45 (br, 22H); 13C NMR (100 MHz, CDCI3) 5 154.5, 154.0, 135.3, 132.1, 131.0, 

126.4, 123.8, 122.0, 116.2, 115.6, 113.4, 112.5, 91.8, 91.0, 90.4, 87.8, 82.8, 79.9, 77.9, 

77.7, 60.3, 56.5, 56.4; EI-HRMS m!z calcd for C26H34B20O2 595.4549, found 595.4552. 

Compound (8). Terminal alkyne 6 (0.019 g, 0.031 mmol) was subjected to the 

general Sonogashira protocol, using 723 (0.019 g, 0.034 mmol), PdCl2(PPh3)2 (0.002 g, 

0.003 mmol), Cul (0.001 g, 0.006 mmol), TEA (1 mL), and THF (5 mL) and stirred at 

room temperature overnight. The resulting residue was purified by column 

chromatography with 25 % CH2CI2 in hexanes to give product 8 (0.017 g, 53%) as a light 

yellow solid. IR (drop cast) 3493, 3395, 3061, 2924, 2853, 2614, 2358, 2205, 1615, 1507, 

1220, 1063, 727 cm"1; *H NMR (400 MHz, CDCI3) 5 7.47 (d, J= 1.5 Hz, 1H), 7.33, (s, 

1H), 7.22 (d, J= 8 Hz, 1H), 7.13, (dd ,J= 8 Hz, J= 1.5 Hz, 1H), 7.04 (d, J= 1.3 Hz, 2H), 

6.59 (s, 1H), 4.13 (brs, 1H), 3.98 (d, J= 2 Hz, 6 H), 2.6 (br, 44 H); 13C NMR (100 MHz, 

CDCI3) 5 154.0, 153.7, 147.4, 136.1, 135.3, 132.1, 130.8, 126.6, 125.1, 123.7, 121.9, 
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117.2, 115.5, 115.4, 114.1, 112.2, 106.6, 92.7, 92.6, 91.6, 90.9, 87.7, 77.9, 77.8, 74.8, 

60.2, 56.3, 29.6; MALDI calc'd for C4oH59B4oN02: 1018.9, found: 1019.0. 

Nanocar (1). In a Schlenk tube under nitrogen 8 (0.021 g, 0.026 mmol) was 

dissolved in DMF (1.0 mL) and Et3N (0.1 mL). TRITC (5.8 mg, 0.013 mmol) in solution 

in DMF (1.0 mL) was added dropwise and the mixture was heated to 60 °C, then stirred 

overnight in the dark. The solvents were then removed by rotary evaporation under 

reduced pressure. The resulting solid was purified by flash column chromatography with 

10 % methanol in CH2Cl2to yield 1 as a purple solid (0.003 g, 16%). IR (drop cast) 3349, 

2960, 2921,2851,2615,2359, 2342, 1737, 1596, 1510, 1249, 1185, 1112, 1039, 828, 803 

cm"1; !H NMR (400 MHz, CDC13) 5 7.98 (br s, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.48 (m, 

1H), 7.15 (m, 5H), 6.82 (m, 2H), 6.69 (d, J= 8.6 Hz, 2H), 6.50 (d, J = 2.0 Hz, 2H), 6.42 

(dd, J= 7.6 Hz, J= 2.0 Hz, 2H), 4.01 (s, 6H), 3.00 (s, 12H), 3.00-1.47 (br m, 44H). The 

material was not soluble enough for 13C analysis. MALDI calc'd: 1461.9, found: 1462.2. 

N— 
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Compound (11). Trialkyne 919 (0.100 g, 0.667 mmol) was subjected to the 

general Sonogashira protocol, using 10 (0.978 g, 2.00 mmol), PdCl2(PPh3)2 (0.126 g, 

0.179 mmol), Cul (0.066 g, 0.346 mmol), TEA (3.0 mL), and THF (10.0 mL) and stirred 

at room temperature overnight. The resulting residue was purified by column 

chromatography with 25 % CH2C12 in hexanes to give product 8 (0.557 g, 68%) as a light 

yellow solid. FTIR (KBr) 2963, 2613, 1579, 1502, 1423, 1218, 1061 cm-1; 'H NMR (400 

MHz, CDC13) 81.51 (s, 3H), 6.89 (s, 3H), 6.76 (s, 3H), 3.92 (t, J= 5.2 Hz, 6H), 3.87 (t, J 

= 5.2 Hz, 6H), 3 .15-1.90 (br, 33H), 1.82 (m, 12H), 1.08 (m, 18H); 13C NMR (100 MHz, 

CDCI3) 8 154.5, 153.7, 134.2, 124.3, 117.2, 117.1, 114.5, 112.5, 93.5, 91.0, 87.1, 76.2, 

71.4, 71.1, 22.9, 22.8, 10.8, 10.7; MALDI m/z calcd for Qo^BsoC^ 1226.0, found 

1226.0. 

Compound (12). l-Nitro-4-trimethylsilylacetylene-benzene (2.19 g, 10.00 mmol) 

was combined with AgN03 (0.340 g, 2.00 mmol), NBS (1.80 g, 10.1 mmol) and acetone 

(100 mL). The mixture was stirred for 2 h in the dark, and poured onto a pad of silica gel. 

The pad was then eluted with 40% CH2Cl2 in hexanes and the solvents removed to yield 
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12 (2.37 g, 91%) as a light yellow solid. Caution: alkynyl bromides decompose over time 

and evolve HBr. Care should be taken when handling. (FTIR (KBr) 3105, 2196, 1772, 

1698, 1591, 1508, 1346, 1192, 853, 748 cm"1; lU NMR (400 MHz, CDC13) £8.18 (d, J= 

8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCI3) 8133.0, 123.8; EI-

HRMS m!z calcd for C8H4BrN02 224.9425, found 224.9419. 

Compound (13). Trimer 11 (0.40 g, 0.33 mmol) was added to an oven-dried 

three-neck round bottom flask, followed by THF (4.66 mL). The mixture was cooled to -

78 °C, and n-BuLi (2.5 M in hexanes, 0.13 mL, 0.033 mmol) was added dropwise. The 

mixture was allowed to stir at -15 °C for 1 h, followed by cooling to -78 °C. To the blue 

mixture was then added CuBr (0.061 g, 0.424 mmol), followed by warming to -15 °C and 

stirring for 1 h. Alkynyl bromide 12 (0.096 g, 0.424 mmol) was then added all at once as 

a solid, and the mixture was allowed to warm to room temperature and stirred overnight. 

The reaction was quenched by addition of 1 drop of water, followed by elution through a 
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celite pad with CH2CI2. The resulting residue was then purified using flash 

chromatography with 25 % CH2CI2 in hexanes as eluent to give product 13 (0.098 g, 

22%) as a light yellow solid. FTIR (KBr) 2963, 2925, 2875, 2855, 2615, 1579, 1502, 

1467, 1423, 1387, 1343, 1276, 1218, 1062, 1017, 989 cm"1; NMR (400 MHz, CDC13) 

8 8.14 (d, J = 7.2 Hz, 2H), 7.57 (s, 3H), 7.47 (d, J = 6.8 Hz, 2H), 6.89 (s, 3H), 6.76 (s, 

3H), 3.92 (t, J = 5.2 Hz, 6H), 3.86 (t, J = 5.2 Hz, 6H), 3.20 - 1.90 (br, 33H), 1.81 (m, 

12H), 1.07 (m, 18H) ; 13C NMR (100 MHz, CDCI3) 8154.5, 153.7, 147.8, 134.2, 133.1, 

128.2, 124.3, 124.2, 123.7, 117.19, 117.17, 117.1, 117.0, 114.8, 114.5, 93.7, 93.5, 91.1, 

87.1, 71.4, 71.3, 71.1, 71.0, 29.9, 22.9, 22.8, 10.8; MALDI m!z calcd for CegH^oNOg 

1371.0, found 1371.0. 

Compound (14). To a round bottom flask with stir bar was added trimer 13 

(0.074 g, 0.054 mmol), Zn powder (0.353 g, 5.39 mmol), 1 drop AcOH and THF (3.0 

mL). The mixture was allowed to stir for 1 h and the reaction quenched by elution 
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through a celite pad with CH2C12. The resulting residue was then purified using flash 

chromatography with 25 % CH2C12 in hexanes as eluent to give product 14 (0.072 g, 

100%) a light yellow solid. IR (drop cast) 3568, 3386, 2964, 2934, 2876, 2614, 2364, 

2229, 1619, 1605, 1578, 1501, 1422, 1386, 1276, 1217, 1062, 1015 cm-1; *H NMR (400 

MHz, CDCI3) 5 7.57 (s, 3H), 7.11, (d, J= 8.7 Hz, 2H), 6.89 (s, 3H), 6.75, (s, 3H), 6.53 (d, 

J= 8.7 Hz, 2H), 3.92 (t, J= 6.5 Hz, 6H), 3.86 (t, J= 6.2 Hz, 6H), 2.6 (brm, 46H), 1.06 (t, 

J= 7.4 Hz, 18H); 13C NMR (100 MHz, CDC13) 5 154.5, 153.7, 134.2, 133.5, 124.3, 117.2, 

117.1, 115.7, 114.7, 114.5, 112.5, 112.4, 93.6, 87.1, 76.2, 71.4, 71.1, 29.9, 22.9, 10.8; 

MALDI calc'd for C68H90B30NO6: 1341.0, found: 1342.1 (M+H). 

Trimer 2. Into a Schlenk tube under nitrogen, trimer 14 (15 mg, 0.01 lmmol) was 

dissolved in CH2C12 (1 ml) and TEA (0.1 ml). TRITC (5 mg, 0.011 mmol) in solution in 

DMF (1 ml) was added drop wise and the mixture was stirred overnight in the dark at 

room temperature. The solvents were removed by rotary evaporation. The resulting 

residue was then purified using flash chromatography with 10% MeOH in CH2C12 as 

eluent to give 2 (9 mg, 45%) as a purple solid. IR (drop cast) 3350, 2961, 2924, 2853, 
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2615,2369, 1596, 1500, 1421, 1365, 1349, 1218, 1188 cm"1; 'H NMR (400 MHz CDC13) 

8 8.05 (br s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.74 (br s, 1H), 7.58 (m, 1H), 7.52 (s, 3H), 

7.20 (m, 4H), 7.05 (d, J= 9.5 Hz, 1H), 6.85 (s, 3H), 6.72 (dd, J= 8.3 Hz J= 2.0 Hz, 2H), 

6.71 (s, 3H), 6.67 (d, J = 2.0 Hz, 2H), 3.88 (t, J = 6.5 Hz, 6H), 3.82 (t, J = 6.5 Hz, 6H), 

3.21 (s, 12H), 3.00-1.47 (br m, 33H), 1.77 (m, 12H), 1.02 (m, 18H); MALDI calc'd for 

C93H110B30N4O6S: 1784.1, found: 1785.1 (M+H). 
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(x2> y2) -e 

( x l f y ^ 
( x 3 , y 3 ) 

50 100 
Angles (0) 

150 

Figure S-3.1-1. Directionality of nanocar movement. To evaluate if the nanocars 

showed motion with a preferential direction, we calculated the angular displacements 0 

from unidirectional translation using the single molecule trajectories. The definition of 

the angle 8 is shown on the top and the histogram of 0 is given on the bottom. The equal 

distribution over all possible values of 0 indicates movement in all directions without a 

bias for directional motion. Translation along a straight line would result in a histogram 

that is peaked at zero. 
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Figure S-3.1-2: Polarization anisotropy distribution of 'moving' four-wheeled nanocars. 

The polarization anisotropics were calculated by integrating over the area of the single 

molecules (5x5 pixels, red bars) and the center pixel with the highest intensity only 

(black line). Because of the scanning image acquisition, the different integration areas 

correspond to integration times of 500 ms and 1 ms, respectively. The polarization 

anisotropy distributions are peaked at zero indicating depolarization due to rotational 

movement. However, the larger width in the polarization anisotropy distribution for the 

center pixel suggests that rotational dynamics occur on the 1-100 ms time. 
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Figure S-3.1-3 Polarization anisotropy distribution of three-wheeled nanocars. The 

equal distribution of polarization anisotropics over the entire region from -1 to +1 

indicates the absence of rotational movement of the trimer nanocars within the 

acquisition time of 500 ms. 
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Figure S-3.2-2.13C NMR Spectrum of Compound 6. 
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Figure S-3.2-6. IR Spectrum of Compound 8. 
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Figure S-3.2-7. 'H NMR Spectrum of Nanocar 1. 



13C could not be obtained for this product. 

Figure S-3.2-8.13C N M R Spectrum of Nanocar 1. 
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Figure S-3.2-12. IR Spectrum of Compound 11. 
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Figure S-3.2-12. IR Spectrum of Compound 11. 
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Figure S-3.2-14. 13C NMR Spectrum of Compound 12. 



£91 

Zl pimoduio3 jo uinjjosds tfi 3-inSij 

%Transmittance 

o o to o 
I I I I 

8 S i i. i i i i i i i S •
 1

 •
 1 1

 •
 1 8 8 

• •
 1 1 1 

(D O o o 

03 

3105.45 
A 

1 (D 

(D 
3 
O IO 3 o . o -a. O 

2196.15 

1698.21 

1591.00 
1507.60 

1345.91 
Aims _ 

.1239 77 

1106.56 

853.14 

511.01 



m 

•£I punoduio3 jo rarupads yWN H, '9I-r£"S ajngij 

2.05. 

(0 

00 

Mk 2.04/-

J 
2.88/-

s 
0 
0 
I 
H-
r+ 
0 
r+ 
H 
H-
3 (D 
H 

0) 

oH 

12.19. 

32.22 

12.14. 

w H 

10 

18.69 V: ^ 

•o 
•o 
3 

f 

•£I punoduio3 



Figure S-3.2-17.13C NMR Spectrum of Compound 13. 
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Figure S-3.2-12. IR Spectrum of Compound 11. 
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Figure S-3.2-19. 'H NMR Spectrum of Compound 14. 
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Figure S-3.2-20.13C NMR Spectrum of Compound 14. 
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Figure S-3.2-12. IR Spectrum of Compound 11. 
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Chapter 4 

Construction of Nanovehicles through Self-Assembly 



4.1 

Towards an Assembly Line: Self-Assembling Nanocars 



Introduction 

In recent years there have been significant advancements and increased attention 

in the field of molecular machinery.1 To further the development of nanomachines and 

devices, researchers have looked for information and solutions in nature and its biological 

processes. The concept of self-assembly is a "bottom-up" approach that has inspired 

scientists to develop numerous new structures. However, there are ideas that are not 

reminiscent of biological systems. In our present work, our inspiration comes from both 

the process of self-assembly and the concept of a mechanical assembly line, such as used 

for automobiles. In our efforts to develop machines and devices at the molecular level, 

our research has recently focused on the synthesis and manipulation of surface-rolling 

molecular machines called nanocars.2 To facilitate syntheses and to further our 

understanding and development of new-generation nanocars, we have integrated the ideas 

of assembly lines and self-assembly to construct new nanocar models. 
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Figure 1. Illustration of the self-assembled (a) hydrogen-bond nanocar 1 and (b) metal-

complex nanocar 2. The p-carborane moieties have BH at every intersection except at the 

points denoted by (•), which represents C and CH positions, ipso and para, respectively. 

There are a wide range of noncovalent interactions such as hydrogen bonding, k-k 

stacking, van der Waals forces, hydrophobic/hydrophilic interactions, Coulombic 

interactions, and metal-complexation that have been used to generate impressive 

structures3 in applications such as bioactive systems, sensors, field-effect transistors 

4 8 

(FETs), thermoplastic elastomers and optoelectronic devices. " In particular, hydrogen-

bond and metal-ligand interactions are attractive for obtaining well-defined 

supramolecular structures due to their spatial arrangement and directionality.9 Reported 

here are the syntheses of self-assembled nanocars via hydrogen bonding and metal-

complexation as prepared by T. Sasaki (Figure 1). My research consisted of the synthesis 

of late intermediates (axles) for nanocars 1 and 2, as well as spectroscopic 

measurements.10 

Well-defined hydrogen bonding structures are realized through DNA nucleotide-

like molecules offering multiple binding sites for its increased binding strength and 

organization.11 However, simpler hydrogen-bonding molecules should not be overlooked 

for generating self-assembled structures. 2-Pyridones and their tautomers, 

hydroxypyridines, are well-documented for their ability to form hydrogen-bonded 

dimeric structures in both solution and solid phases.12 Therefore the 2-pyridone moiety 

has been incorporated into the design of nanocar la (Scheme 1). 
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Results and Discussion 
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Scheme 1. Synthesis of hydroxypyridine half-car la. 

The synthesis of the hydrogen-bonded nanocar la started by coupling 

trimethylsilylacetylene (TMSA) via palladium-catalyzed Sonogashira coupling with 2-

hydroxy-5-iodopyridine to afford 3. The TMS-protecting group was removed by 

treatment with tetrabutylammonium fluoride (TBAF) and the resulting crude product was 

used immediately for coupling with wheel/axle molecule 4, a common component used 

in prior carborane-wheeled nanocars, to afford the half-car 1. Incorporation of the p-

carborane wheel into the nanocars structures has proven to be useful because of its 

stability, its ease of imaging by STM,2a'13 and its compatibility with the required Pd-

catalyzed coupling reactions.2'14 
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Figure 2. MALDI-TOF mass spectrometry of hydrogen-bonding nanocar la. a) There is 

no peak that would correspond to the exact mass for the half-car 1 while the peak for the 

exact mass of nanocar l a is clearly discernable; b) an expansion of the exact mass peak 

for la. 

Analysis of the half-car 1 by MALDI-TOF (Fig 2.) direct ionization showed no 

monomer peaks 1 but only the self-assembled nanocar la at peak m/z 1056 (M+). Thus 

we were able to successfully construct a system that spontaneously self-assembles into a 

hydrogen-bonded nanocar la. 
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Scheme 2. Synthesis of metal-complexed nanocars 2a and 2b. 

To retain a relatively rigid chassis as well as a molecule compatible with 

palladium-catalyzed Sonogashira couplings, terpyridines were used as an initial strategy 

to synthesize a metal-complexing nanocar. Due to the electrochemical properties and ease 

of isolation with different metals, terpyridyl ligands are used in variety of applications 

such as redox polymers, electrocatalysis, photovoltaics and electrochromic devices.15"17 
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The most attractive metals for complexation for the self-assembling nanocars 2a, and 2b 

were iron and ruthenium due to their simple solution complexation at room temperature. 
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Figure 3. Evidence for nanocar 2a and 2b formation; 'H NMR aromatic region of the 

half-car 2 (top); *H NMR of the aromatic region of nanocar 2a with peak broadening due 

to the presence of iron (middle); 'H NMR of the aromatic region of nanocar 2b with peak 

broadening due to the presence of ruthenium (bottom). 

The terpyridyl ligand suitable for the half-car 2 was synthesized using known 
i o t t 

protocols (Scheme 2) to form the OTf-terpyridine 7. Under Sonogashira conditions, 7 

was coupled to TMSA to form 8, which was immediately deprotected with TBAF in THF 

to afford 9. To complete the synthesis, the alkyne 9 and the carborane wheel/axle 4 were 

again coupled to afford half-car 2. 

The self-assembled nanocar 2a was obtained by mixing a 2.5:1 ratio of 2 to FeCb 

in ethanol at room temperature for 1 h followed by adding the counter ion 
18 1 tetrabutylammonium hexafluorophosphate (NB114PF6). Characterization using H NMR 

(Fig. 3) showed clear differences between the half-car 2 and complexed 2a. Due to the 

presence of iron in the complex, the T2 relaxation time is shortened thus producing line-

broadening of the peaks. Similarly, the ruthenium complex 2b was synthesized by mixing 

a 2.5:1 ratio of 2 and RUCI3, respectively, in MeOH. After adding a drop of 1-

ethylpiperidine, the mixture was heated to reflux for 24 h. NB114PF6 was added as the 

counter ion and the reaction was heated to reflux for an additional 2 h. Analysis by NMR 

resulted in similar 'H NMR broadening with the terpyridyl peaks being slightly more 

downfield in the ruthenium complex than in the iron complex. 
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Figure 4. (a) Absorption spectra of 2 (2.0 x 10" M) in CH3CN with increased amount of 

FeCl2 in CH3CN. (b) Changes observed at MLCT at 570 nm from 0 ^ 1.5 equiv of Fe(II) 

added. 
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From the visible absorption spectrum (Fig. 4a), a new band was formed after the 

addition of Fe(II) to a solution of 2 in CH3CN that is indicative of metal-to-ligand charge 

transfer (MLCT). Changes at 570 nm shown in Figure 4b indicate that the formation of 

2a is complete after a stoichiometric amount (0.5 equiv) of Fe(II) is added. Gradual 

formation of monoterpyridyl Fe(II) results from further addition of Fe(II), as evidenced 

by the slight decrease in the absorption spectra. The small shoulder formed at -375 nm is 

due to changes in 71-71* transition. The two distinct maxima (315 nm and 325 nm) 

observed are blue-shifted compared to our past optical studies on carborane-containing 

conjugated molecules.2g The blue-shift can be attributed to the steric hindrance between 

the carborane wheels and the terpyridyl core, which leads to a high dihedral angle 

between the axle and the core. The two maxima indicate that the molecule adopts a rigid 

conformation in its ground state, a confirmation that is frequently observed in cases of 

rigid ladder-shaped molecules.19 The rigidity of the complex after self-assembly may be a 

problem during surface studies because the terpyridyl-complexed core of the molecule 

may act to lift the wheel moieties off the surface. The synthesis of a less rigid, more 

nearly planar metal-complex is planned in the future. 
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Figure 5. (a) Emission spectra of 2 (5.0 x 10~7 M) in CH3CN excited at 315 nm with 
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Fluorescent optical studies of carboranes are scarcely reported,2® but fluorescent 

imaging could be an alternate to STM for discerning movement of these molecules on 

surfaces. The emission spectrum of 2 in CH3CN (Fig. 5), when excited at 315 nm, gave 

rise to an emission band in the UV-blue region. The quenching behavior as a result of 

FeCl2 addition is due to the coordination of Fe(II) to the terpyridyl units (Fig. 5a). Similar 

results were obtained as a solution of RUCI3 in CH3CN was added in the same manner 

(Fig. 5b). 

Conclusion 

In summary, incorporating an assembly line approach to the synthesis of two 

types of self-assembled nanocars has been successful. Work continues on assembling 

these molecules on surfaces to demonstrate both self-assembly and rolling of these 

nanocars. With the use of these simple moieties for self-assembly, one can envision other 

complex nanomachine architectures such as nanotrains being constructed through a 

similar complexation process. 

Experimental Section 

General Methods. Starting materials were purchased from Aldrich and Acros Chemicals. 

All reactions were performed under an atmosphere of nitrogen unless stated otherwise. 

Reagent grade tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. 
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Triethylamine (TEA) and CH2C12 were distilled over CaH2. TBAF (1 M solution in THF) 

was obtained from Aldrich and used as received. Trimethylsilylacetylene (TMSA) was 

donated by FAR Research Inc. or Petra Research. Flash column chromatography was 

performed using 230-400 mesh silica gel from EM Science. Thin layer chromatography 

was performed using glass plates pre-coated with silica gel 40 F254 purchased from EM 

Science. Compounds 4,2g 618 and 718 were prepared according to literature procedure. 

Compounds 1 - 3, 8 and 9 were prepared as described by Sasaki and co-workers.10 
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4.2 

Nanotrains and Self-Assembled Two-Dimensional Arrays Built from Carboranes 
Linked by Hydrogen Bonding of Dipyridones 
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Introduction 

Supramolecular engineering through noncovalent interactions is a promising tool 

• 1 ^ • 

for nanotechnological advances, " such as potential applications in bioactive systems, 

sensors, field-effect transistors, thermoplastic elastomers, and optoelectronic devices.4"13 

With the use of interactions such as hydrogen bonding, n n stacking, van der Waals 

forces, hydrophobic/hydrophilic interactions, and Coulombic interactions, separately or 

in combinations, impressive structures including helices, cylindrical tubes, grids and 

cyclic assemblies14"31 have been realized through specific molecular design. In particular, 

hydrogen bond interactions are attractive for obtaining well-defined supramolecular 

structures due to their spatial arrangement, selectivity and directionality. 

Well-defined hydrogen-bonded structures have been realized through an 

understanding of biological systems.33 Multiple binding sites seen in DNA nucleotide-

like molecules offer increased binding strength and organization. However, simpler 

hydrogen bonding molecules should not be overlooked for generating self-assembled 

structures. Both 2-pyridone and its tautomer, hydroxypyridine, are well-documented for 

their ability to form hydrogen bonded dimeric structures in both solution and the solid 

phase.34'35 Although simple methods have been proposed to modify the bond strength of 

these dimers, such as cocrystallization between carboxylic acid units, there are few 

reports of imaging or the use of multiple 2-pyridone moieties to generate more complex 

assemblies.36"38 
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There are two notable difficulties in imaging assembled structures of 2-pyridones. 

Firstly, imaging via scanning tunneling microscopy (STM), requires conductive 

substrates. The substrate-molecule interactions for 2-pyridones on metallic surfaces or 

metal atoms are stronger than the hydrogen bonds between 2-pyridone molecules,39"43 

although there is one example of 2-pyridone species forming a dimeric 2-D adlayer 

imaged via STM on modified, highly oriented pyrolytic graphite (HOPG).38 There are 

also atomically resolved STM images of other hydrogen bonding moieties that self-

assemble into unique architectures but the substrate-molecule binding energies are 

usually lower.44'45 Despite the disadvantages of using STM as an imaging technique, its 

lateral resolution remains unparalleled. The second difficulty is that 2-pyridones form 

one-molecule thin self-assembled structures that are difficult to image with good lateral 

resolution. To address these difficulties, in the present work, imaging with atomic force 

microscopy (AFM) allows for the use of a wide range of surfaces including non-

conductive ones for imaging the self-assembly of 2-pyridones. The resolution in AFM 

imaging, however, depends upon both the in-plane (X Y) and Z-axis effects. The tip effect 

results in geometrical broadening (the approximate molecular width + 2 x tip diameter) 

of the molecules.46 Although there are reports suggesting the use of a single molecule as a 

tip,47 the sharpest tips currently available are at best 1 nm in radius,48'49 thus resolution at 

the atomic or small molecule scale is extremely difficult. Other factors in AFM resolution 

are shot noise in the cantilever deflection photo detector and thermal vibration noise of 

the cantilever that occurs in the Z-axis. The combination of the noise effects contributes 

from ~0.2 to 0.7 nm in lost resolution depending on probe type, optical detection 
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technique, and surface roughness,46 and thus resolving a monolayer of planar molecules 

is very difficult. 

Our research in recent years has generated a class of surface-rolling molecules 

termed nanocars.50"60 Preferential rolling versus sliding motion was observed on surfaces 

with the incorporated wheels interacting strongly with the substrate. The wheels, 

fullerenes (1 nm in diameter) or />-carboranes (0.8 nm in diameter),61 that have been used 

can potentially serve as height-enhancing units for AFM imaging to enable imaging 

despite noise and tip effects. As an extension to the nanocar work, the synthesis of 

monomer 1 containing 2-pyridones and a resulting self-assembled structure, a nanotrain, 

imaged by AFM is reported. For control purposes, monomer 2 without the wheels was 

also synthesized. 

1 2 

Figure 1. Target monomer molecules for hydrogen-bonded self-assembled structures. 

Monomer 1 contains p-carborane moieties to produce heightened images for AFM 

analysis. Monomer 2 serves as a control. The carborane has a B-H at each vertex except 

the darkened positions that have C-H para and C ipso to the alkyne. 
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Results and discussion 

The synthesis of compounds 1 and 2 as well as the AFM imaging on SiC>2 was 

done by T. Sasaki. To complete the project,621 synthesized the dialkynylated axle 3 and 

compound l(as follow-up experiments were necessary) and carried out the self-assembly 

of the nanotrains on mica prepared from different solvents. I was also responsible for 

some AFM data collection in collaboration with A. Leonard. Compound 1 was 

synthesized using a known procedure,56 starting with the installation of the p-carborane 

wheels with the alkynyl bromide 3, to give 4 (Scheme 1). This was followed by the 

deprotection of the triisopropylsilylacetylene (TIPSA) groups to give 5. Finally, Pd-

catalyzed coupling of the 2-pyridone moieties gave nanotrain monomer 1 (Fig. 1). 

R. 

1) A7-BuLi, THF, - 7 8 °C 

2 ) CuBr 

3 ) TIPS, 

TIPS 

TBAF, THF 
7 3 % 

4 R = TIPS 

5 R = H 

7 1 % 

NH 
O 

P d C I 2 ( P P h 3 ) 2 

Cul, NEt 3 , THF 

54% 
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Scheme 1. Synthesis of compound 1. 

Similarly, the dialkynyl benzene precursor 663 was coupled via a simple Sonogashira 

protocol to obtain control monomer 2 (Scheme 2). In some cases, the NMR analyses do 

not give first order spectra. We assume that there is some degree of hydrogen bonding 

and/or tautomerization detected in the NMR analyses, and that causes peak broadening as 

well as the presence/absence of peaks. 

NH 
I-

PdCI2(PPh3)2 
Cul, NEt3, THF 

64% 

Scheme 2. Synthesis of compound 2 

To study the self-assembling nature of these 2-pyridone derivatives, a 10 |imol/L 

solution of the monomer in tetrahydrofuran (THF) was drop-cast onto a SiC>2 or a freshly 

cleaved mica surface, vacuum dried (in the case of the samples on SiC>2; vacuum drying 

the mica samples did not produce good results), and observed by AFM.64 Conventional 

tapping-mode etched silicon probes (TESP) with tip sizes of approximately 25 nm in 

diameter were used in ambient atmosphere. 
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Figure 2. (a-d) Four AFM images of drop-cast nanotrain 1 and control 2 in THF (1 * 

10"5 M) on Si02; scan rate 1.30 Hz, sample resolution 512; (a) 2, 20.0 pm x 20.0 nm; (b) 

1, 0.90 nm x 0.90 nm; (c) 1, 2.5 nm * 2.5 nm; (d) 1, 6.5 nm x 6.5 nm; (e) typical height 

profile of the self-assembled nanotrain. Scale bar is representative of all images. 

For superior lateral resolution, high resolution (MikroMasch HI-RES) tips of diameter 1 

nm were also used under similar conditions. Without the height-enhancing carborane 
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structures, monomer 2 showed no recognizable self-assembled structures anywhere on 

the Si02surface (Fig. 2(a)) whereas monomer 1 self-assembled into linear structures (Figs. 

2(b)-(d)) with lengths as long as ~5 |am. Heights were in the range of 0.7 - 1.6 nm, within 

the range of the molecular height of carboranes or carboranes with axles.61 Although 

imaging of the nanotrain using MikroMasch HI-RES tips on mica surfaces indeed 

provided sharper images than their conventional counterparts (Figure 3), the data from 

Figs. 2 and 3 are in agreement that intra- or interchain interactions arising from folding, 

or multiple chains bound side-to-side, are quite possible due to the widths of the observed 

formations. Unfortunately, in an effort to obtain images of single nanotrains, AFM using 

the HI-RES tip of samples deposited from toluene or toluene/ THF on mica did not 

produce usable images.65 
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(a) (b) 

(c) 

Figure 3. High resolution AFM images of nanotrain Monomer 1 drop-cast from THF (1 

x 10-5 mol/L) onto a mica surface; scan rate 0.988 Hz, sample resolution 512; (a) 2.0 |im 

x 2.0 jam; (b and c) sectional analysis of (a) 

There are three possible combinations of hydrogen bonding patterns through 

rotation about the alkyne bond linking the 2-pyridone to the rigid core (Fig. 4). In Fig. 

4(a), with an assembly of the monomer in the cis conformation only, where both of the 2-

pyridones are facing the same side, a linear chain is produced. 
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Figure 4. Nanotrain configurations from monomer 1. Three possible patterns of 2-

pyridone self-assembly, (a) cis only, linear assembly; (b) trans only, linear diagonal 

assembly; (c) combination of cis and trans in random fashion, which can result in 

curvature. 

In Fig. 4(b), a linear chain is again produced with all the monomers in the trans 

conformation and the pyridones facing the opposite directions. In Fig. 4(c), the 

combination of both the cis and the trans confirmations of 1 linking randomly can result 

in a curved structure. We are not able to resolve the individual moieties responsible for 

hydrogen bonding, and all three structures could co-exist. In a report of similar hydrogen 

bonding via dipyridone structures linked by alkynes to a rigid core, X-ray crystallography 
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showed a preferential planar polymeric motif based on the trans pattern.36 This result is 

based on a closely packed crystalline structure, whereas the diluted condition on the 

surface presents a different environment, and thus the exact hydrogen bonding scheme is 

unknown. 

Conclusions 

In summary, self-assembled structures using simple but strong hydrogen bonding 

of 2-pyridone moieties have been designed, synthesized and imaged by AFM. A linear 

nanotrain was synthesized with two hydrogen bonding sites at opposite positions. 

Imaging of the nanotrain at the atomic level on modified substrates is underway with the 

eventual goal of imaging concerted rolling motion. 

Experimental Section 

General Methods. All reactions were performed under an atmosphere of nitrogen unless 

otherwise stated. 'H NMR and 13C NMR spectra were recorded at 400 and 100 MHz 

respectively. Proton chemical shifts (5) are reported in ppm downfield from 

tetramethylsilane (TMS). Mass spectrometry was performed at the Rice University and 

University of South Carolina Mass Spectrometry Laboratory. Infrared spectra (IR) 

assignments have 2 cm-1 resolution. Reagent grade tetrahydrofuran (THF) was distilled 

from sodium and benzophenone under a N2 atmosphere. Triethylamine (NEt3) was 

distilled from CaH2. All other reagents were purchased from commercial suppliers and 
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used without further purification. Trimethylsilylacetylene (TMSA) was donated by FAR 

Research Inc or Petra Research. Flash column chromatography was performed using 230-

400 mesh silica gel from EM. TLC was performed using glass plates precoated with 

silica gel 40 F254 purchased from EM Science. Compounds 1 and 2 were synthesized as 

fVJ 

described by Sasaki and co-workers. 

Typical Procedure for Self-Assembly onto Silica Surfaces 

A solution of self-assembling molecule 1 or 2 was prepared in THF (1.0 x 10"5 M), and 

drop-cast onto a freshly-cleaned SiC>2 surface66 attached to an AFM puck via double-sided 

tape. The puck was then placed into a dessicator and vacuum dried for 1 h. The dessicator 

was back-filled with nitrogen and AFM measurements were taken. 

Typical Procedure for Self-Assembly onto Mica Surfaces 

A solution of self-assembling molecule 1 or 2 was prepared in THF (1.0 x 10-5 M), and 67 

drop-cast onto a freshly-cleaved silica surface attached to an AFM puck via double-sided 

tape. The puck was then placed into a dessicator and allowed to stand for 1 h under 

nitrogen and AFM was taken. 
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Chapter 5 

Carborane-Wheeled Nanocars 



5.1 

Synthetic Routes Toward Carborane-Wheeled Nanocars 



Introduction 

The development of microscopy tools, particularly scanning tunneling 

microscopy (STM), has allowed scientists to study biological1 and artificial2 molecular 

machines on surfaces. The quickly expanding field of nanomachines has been reviewed.3 

Because translational motion is the easiest to monitor by STM, much effort has been 

devoted to observe single molecule translational movement on flat metallic surfaces. For 

instance, a family of molecular barrows with triptycene moieties as wheels has been 

developed.4 Although these molecules can be imaged and manipulated by STM in the 

direction perpendicular to the axles, calculations suggest sliding rather than rolling of the 

molecules due to the lack of positive interactions with the surface.43 Furthermore, other 

molecules have been imaged to slide or migrate across surfaces.5 To improve 

directionality, four fullerene-wheeled nanocars were recently synthesized by our group.6 

Fullerene's spherical and smooth shape and most importantly its affinity towards gold 

surfaces, have produced directional rolling motions of the nanocars on the gold surface 

upon heating or electrostatic control.63 However, synthetic problems arise when using 

fullerenes. First, fullerenes and fullerene-containing molecules have very poor solubility. 

Long alkyl chains are incorporated to alleviate the solubility problems, but in return this 

addition increases the number of synthetic steps required to construct the nanocar. 

Second, because of their tendency to deactivate metal-catalyzed reactions, fullerenes have 

to be introduced onto the nanocar at the final step of the synthesis, resulting in a low 

yielding tetra-substitution reaction. Additionally, the electronic nature of fullerene makes 
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it unsuitable for the development of more complex nanomachines using light as the 

power input due to the rapid energy transfer to the fullerenes.7 

Figure 1. Molecular structures of 1-4 and the expected directionality of motion. 

We report here the synthesis of four different nanovehicles: nanocars 1 and 3, 

nanocaterpillar 2 and trimer molecule 4, all bearing p-carboranes (Figure 1) as prepared 

by J. -F. Morin. Some synthetic intermediates as well as spectroscopic measurements 

were done by T. Sasaki. In completing the project, my work consisted of synthesizing 

some of the intermediates in route to various final products as well as spectroscopic 

measurements. /?-Carborane was our choice for the potential development of rolling 
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molecules because of its spherical shape and its aromatic nature8 that allow for easy 

substitution reactions at one or both of the carbon atoms positioned para to each other.9 

Moreover, they are robust, and unlike fullerenes, are very soluble in common organic 

solvents, thus allowing for the synthesis of smaller molecular machines in fewer synthetic 

steps. Lastly, carboranes can be introduced at any stage of the synthesis because they do 

not inhibit organometallic coupling reactions (unlike fullerenes). The work presented 

here is an extension of our previous work on the fullerene-containing nanocar6 and the 

first step toward development of easily accessible functional nanomachines to address 

molecular rolling on surfaces. As shown in Figure 1, molecules 1-4 are designed to move 

in specific patterns on the surface. Nanocar 1 and nanocaterpillar 2 are expected to 

translate in a one-dimensional fashion since the axles are parallel to each other. The 

difference in the number of wheels will assist in the dimensional analysis of the 

molecules sliding or rolling on the surface by STM. Nanocar 3 was designed to make 

small circular motions on the surface. This movement could be useful for monitoring 

surface motion using the STM.6a Trimer 4 was designed to pivot on the surface with no 

translational movement, analogous to the pattern observed for the related fullerene 

trimers.6 

Results and Discussions 

Synthesis. Two different strategies were used to synthesize nanocar 1 and 

nanocaterpillar 2. For 1, the four wheels were introduced at the end of the synthetic 

pathway on the tetra(bromoalkyne) moiety. On the other hand, the wheels on 2 were 
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coupled to the axle prior to the synthesis of the central part of the chassis. This allowed us 

to compare both routes in terms of synthetic feasibility and efficiency. 

1 

Scheme 1. Synthesis of the nanocar 1. Every vertex on the starting carborane is BH 

except the darkened sites that are CH. The product nanocar, 1, has the internal carborane 

carbon alkynyl-substituted. 

In Scheme 1, the methoxy groups were installed to increase the polarity of the 

molecules, which was necessary in order to chromatographically separate the large excess 
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of non-polar unreacted />carborane from the desired product. The starting compound 1,4-

dimethoxy-2,5-bis(trimethylsilylacetylene)benzene was synthesized in two steps 

following known procedures.10'11 The alkynes were then deprotected. Due to the unstable 

nature of the free alkyne intermediate, the deprotection step was carried out immediately 

prior to the coupling with the l-iodo-2,5-bis(trimethylsilyacetylene)benzene that was 

previously synthesized.7 The four TMS protecting groups were removed by desilyl 

bromination12 to give 6 in good yield. Finally, the /^-carborane moieties were introduced 

at the four bromoalkyne positions to give 1 in 68% yield. The nanocar 1 is quite soluble 

in common organic solvents such as chloroform, acetone, THF and toluene. 

Thermogravimetric analysis (TGA) was performed on 1 in order to obtain information on 

its thermal stability. At a scan rate of 20 °C/min (under N2), Gradual decomposition of 1 

from its original mass was observed around 390 °C. This result suggests that the alkyne-

carborane bond is stronger and more stable than the alkyne-fullerene which showed 

decomposition around 300 °C upon heating, and this data will be essential as substrate 

heating6 is used to propel the nanocars. 

A CPK model of the planar conformation of 1 was generated using Spartan X. As 

shown in Figure 2, the wheel-to-wheel distance for 1 is approximately 14 A in both 

directions (parallel and perpendicular to the axles), meaning that 1 is nearly a square 

molecule. Although 1 is one of the simplest nanocars we can synthesize, the square 

configuration limits its usefulness for STM studies. Since we can only image the wheels 

and not the inner chassis due to the relative differences in their density of states, we will 

not be able to distinguish the orientation of 1 on the surface. Thus addressing 

directionality will be even more difficult. 
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To bypass this problem, nanocaterpillar 2, with three axles rather than two, was 

synthesized. The CPK model (Figure 2) of the planar conformation of 2 shows minimal 

spacing between the aligned carborane wheels. The UV data, explained in the latter 

section, confirms steric hindrance between the wheels that might lead to problems for 

surface rolling. The strategy used for the synthesis of 2 is depicted in Scheme 2. 

1 2 

Figure 2. CPK models of planar conformations of 1 and 2. 

Following known procedures,13'14 l,4-dibromo-2,5-

bis(trimethylsilylacetylene)benzene was synthesized in two steps from 1,4-

dibromobenzene. The bromides were replaced by iodides using terf-butyllithium 

followed by 1,2-diiodoethane. This step was necessary in order to perform the 

Sonogashira coupling reaction between the iodide-containing axle and the central 

chassis.15 The TIPS-acetylene groups were introduced on 7 by standard Sonogashira 

coupling to provide 8 in good yield. Selective desilyl bromination of the TMS-acetylene 

groups12b was achieved using NBS and AgNC>3 in acetone to give 9 in almost quantitative 

yield. The />carborane wheels were introduced to give 10 followed by deprotection of the 
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TIPS-acetylene groups. The resulting 11 was then coupled with wheel/axle (l-iodo-2,5-

bis(p-carboraneacetylene)benzene)7 to give the nanocaterpillar 2. As with 1, 2 is also 

soluble in common organic solvents. 

Br, 
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Scheme 2. Synthesis of the nanocaterpillar 2. 

The wheel/axle (l-iodo-2,5-bis(/>-carboraneacetylene)benzene)7 is a versatile tool 

and can be used in combination with several different chassis to create nanovehicles 

having specific conformations for accomplishing different tasks, hence Scheme 2 is 

preferable over Scheme 1. In this regard, we synthesized nanocar 3 (Scheme 3) which is 

expected to move in a circular motion due to its "curved" conformation (Figure 1). The 

chassis 13 of nanocar 3 bearing two terminal alkynes was synthesized in four 

straightforward steps.16 Compound 13 was then coupled to the wheel/axle to give nanocar 

3 in 67% yield. 

1) C4H9B1-, N a O H , T B A H 
a c e t o n e , r e f lux 

Br Br 1) T M S A , P d ( O A c ) 2 , P P h 3 

Cul, ( / -Pr) 2 NH, 8 0 °C 

2 ) N B S , C H C I 3 

7 4 % 

2) K 2 C 0 3 , M e O H / T H F 

5 6 % 
N 
H 

N 

12 

C 4 H 9 

1 3 

N 

P d C I 2 ( P P h 3 ) 2 

Cul , NEt 3 , THF 

6 7 % 

3 

Scheme 3. Synthesis of the "curved" nanocar 3. 
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The CPK model of 3 and 4 was modeled by Spartan X (Figure 3). Despite the 

"curved" feature of the inner chassis of 3, the model shows no overlapping of the inner 

carborane wheels. Unlike 1, the distances perpendicular and parallel to the axis are 

distinct. This will allow for an easier assessment of molecular orientation and movement 

on the surface. Trimer 4 was designed to rotate on the surface with the center of rotation 

coincident with the center of the molecule. A similar molecule, bearing fullerene wheels 

instead of /?-carborane proved to be useful in studying the pivot-rolling mechanism using 

STM, since it did not show translational movement on a gold surface.6® 

Figure 3. CPK models of planar conformations of 3 and 4. 

To synthesize 4 (Scheme 4), we first tried a linear strategy involving the 

successive addition of phenylacetylene moieties onto a 1,3,5-trisubstituted benzene ring 

followed by addition of the three carborane wheels. However, we found that desilyl 

bromination of the long oligo(phenylene ethynylene) (OPE) gave a low yield and led to 

various side products. Compound 4 was instead synthesized using a convergent strategy 
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involving a triangular central part and a carborane-containing substituted phenylacetylene 

moiety. Thus, the triangular core was synthesized in two steps from 1,3,5-

dibromobenzene using a Sonogashira coupling reaction followed by a deprotection 

reaction to provide 18 in 79% overall yield.17 Compound 18 was then coupled to 14, 

synthesized in three steps from hydroquinone,18 using the Sonogashira coupling reaction 

to afford 19 in 68% yield. The carborane-containing moiety was synthesized in two steps 

from l,4-bis(propyloxy)-2,5-diiodobenzene19 by desilyl bromination12 followed by 

reaction with carborane-copper adduct as described above. In this case, the latter reaction 

proceeded slowly and 48 h were necessary for the reaction to be completed. This can be 

attributed to the electron-donating nature of the propyloxy groups present on the phenyl 

ring that partially deactivate the alkynyl bromide toward oxidative addition. Compound 

20 was then coupled to 16 to give 4 in good yield. 
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Scheme 4. Synthesis of the trimer 4, designed to rotate about its center on the surface. 
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Optical Properties. There are few reports on the optical properties of carborane-

containing conjugated molecules; therefore, the optical properties of molecules 1-4 were 

investigated using solution phase absorption and fluorescence spectroscopy. As an 

alternative to STM, it is possible that the optical properties could be exploited to image 

these molecules on a non-metallic surface using fluorescence, hence these studies are 

essential. As shown in Figure 4, 1-4 absorb light in the regions Amax — 375—410 nm, as 

commonly observed for OPEs containing three phenyl rings.20 Compound 4 absorbs light 

at the longest wavelength out of the four (Xmax = 410 nm), which can be attributed to the 

electron-donating nature of the four propyloxy groups and the increased conjugation 

length of the OPE. Electron donating substituents are known to increase the energy of the 

HOMO level and, consequently, the band gap of Tc-conjugated systems. A portion of this 

effect can be attributed to the aromatic character of carborane,8 acting to extend the 

conjugated length of the molecule. Next, compound 1 (Xmax = 385 nm) is further red-

shifted than 2 and 3 due to again the electron donating methoxy groups. However, lower 

conjugation of this molecule results in a shorter wavelength than that of compound 4. 

Compound 3 contains no significant electron-withdrawing groups resulting in a shorter 

wavelength. The interesting feature is that the spectrum of 3 shows a slight absorbance at 

-362 nm, that may indicate a rigid conformation.21 On the other hand, the UV-visible 

spectrum of 2 is blue-shifted compared to 1, 3 and 4. This blue shift can be attributed to 

the steric hindrance between carborane wheels of different axles, which leads to a high 

dihedral angle between phenyl rings of the molecule's core, thereby possibly limiting its 

usefulness on a surface. However, the surface-carborane attraction might be sufficient to 

make the system planar; therefore we are waiting expectantly the surface analyses. 
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Additionally, the UV-visible spectrum of 2 shows two distinct maxima (353 and 375 nm) 

indicating that 2 adopts a rigid conformation in its ground state. This type of vibronic 

structure is frequently observed in cases of rigid ladder-shaped molecules.21 The energy 

difference between the two maxima (about 0.20 eV) is consistent with a C=C stretching 

mode that would be expected to couple strongly to the electronic structure. In 

comparison, 1, 3 and 4 do not show significant vibronic structure, indicating that they 

have a fairly flexible conformation in the ground state. 

Wavelength (nm) 

Figure 4. UV-visible absorption spectra of 1-4 (1.0 x 10"5 M) in chloroform. 

To determine the specific effect of the carboranes on the optical properties of 

conjugated molecules, UV-visible spectra of 1 and its TMS-substituted precursor 5 were 

compared. As expected, the hmax of 1 (386 nm) is red-shifted compared to its precursor 5 

(379 nm). This can be attributed to an increase in the conjugation length of the molecule 

containing carborane, therefore underscoring the conjugation effect of the carboranes. 
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The electron-withdrawing nature of carborane can be part of an intramolecular charge-

transfer complex with the 1,4-dimethoxy moiety of the core, decreasing the band gap. 

Furthermore, the introduction of carborane does not induce significant steric hindrance 

between the two axles since both spectra have a similar shape with no vibronic structure. 

The fluorescence properties of 1-4 were investigated with the results summarized 

in Figure 5 and Table 1. As expected, all four compounds fluoresce in chloroform in the 

UV-blue region. The wavelength of the emission maxima increases in the order of 2 < 3 

< 1 < 4 reflecting the extent of conjugation plus the influence of electron rich moieties of 

the propoxyl, methoxyl, and butyl carbazole groups. A reversed result is seen with the 

band gap (optical, Eg, from the lower energy onset of the absorption spectra) in the order 

of 4 < 1 < 3 < 2, as expected. Interestingly, 2 and 4 show fine vibronic structure, 

generally associated with a rigid conformation in the excited state. The small Stoke shift 

observed for compound 2 (14 nm) is characteristic of a molecule having a rigid 

conformation.23 Table 1 summarized the optical data. 

Wavelength (nm) 
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Figure 5. Fluorescence spectra of 1-4 (1.0 x 10"7 M) in chloroform. 

Table 1. Optical properties of compound 1-4 

Compound Abs(/,max) Emi (Xmax)a Eg(eV)b 

1 386 426 2.89 

2 375 (353) 389(411) 3.14 

3 379 414 3.05 

4 399 427(451) 2.85 

a Spectra in chloroform. 

b Band gap (optical), determined from the lower energy onset of the absorption spectra. 

Conclusion 

The design and the synthesis of four potential nanovehicles bearing /7-carborane 

as wheels is reported. The use of /7-carboranes overcomes several synthetic problems 

observed in fullerene-wheel nanovehicles: no long-chain alkyl groups are necessary to 

obtain soluble structures and addition of the wheels at different stages in the synthesis is 

possible. STM imaging analysis of the 1-4 is underway to investigate the movement of 

these nanovehicles on a metallic surface. The synthesis of more complex functional 

nanomachines is also underway. 

Experimental Section 
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General Methods. 'H NMR and 13C NMR spectra were recorded at 400 and 100 MHz 

respectively. Proton chemical shifts (5) are reported in ppm downfield from 

tetramethylsilane (TMS). Mass spectrometry was performed at the Rice University and 

University of South Carolina Mass Spectrometry Laboratory. Infrared spectra (IR) 

assignments have 2 cm"1 resolution. Reagent grade tetrahydrofuran (THF) and diethyl 

ether (Et20) were distilled from sodium and benzophenone under a N2 atmosphere. 

Triethylamine (NEt2) and CH2CI2 were distilled from CaH2 under N2 atmosphere unless 

otherwise stated. THF and NEt2 were degassed with a stream of argon for 1 h before 

being used in the Castro-Stephens-Sonogashira coupling. All other reagents were 

purchased from commercial suppliers and used without further purification. 

Trimethylsilylacetylene (TMSA) was donated by FAR Research Inc or Petra Research, n-

BuLi 1.7 M in pentane, and /-BuLi 2.5 M in hexanes from Sigma-Aldrich Co. were used. 

Flash chromatography was carried out using silica gel (grade 60, mesh size 230-400, EM 

science). Thin layer chromatography (TLC) was performed using glass silica gel plates 

(40 F254 0.25 mm layer thickness, Merck). Melting points were measured on a Mel-Temp 

instrument (uncorrected). All reactions were conducted under a dry oxygen-free 

atmosphere using oven-dried glassware unless otherwise stated. P d C ^ P P l ^ , 1 1,4-

dimethoxy-2,5-diiodobenzene,5 l,4-dimethoxy-2,5-bis(trimethylsilylacetylene)benzene,6 

1,4-dibromo-2,5-diiodobenzene,7 1,4-dibromo-2,5-bis(trimethylsilylacetylene)benzene8 

and l,4-bis(propyloxy)-2,5-diiodobezene9 were prepared using literature procedures. 1 -

6, 8 - 11,19 and 20 were prepared as described by Morin and co-workers.24 
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General Procedure for Palladium-Catalyzed Coupling Reaction of Terminal 

Alkynes and Aryl Bromides or Aryl Iodides (Castro-Stephens-Sonogashira 

Coupling). An oven-dried round bottom flask equipped with a magnetic stir bar was 

charged with the terminal alkyne (1 equiv), aryl halide (1 equiv), PdCl2(PPh3)2 (3-5 

mol % per halide), Cul (6-10 mol % per halide), triethylamine (4 equiv per halide) and 

THF ([aryl halide] = 0.1 - 0.3 M). If the halide was an aryl iodide, the mixture was stirred 

at room temperature for 24 h. In case of an aryl bromide, PPI13 (6-10 mol % per halide) 

was added and the mixture was stirred at 70 °C for the same period of time. After that 

period, saturated NH4CI was added and the mixture was extracted twice with 

dichloromethane. The combined organic layers were washed with water and dried over 

MgSC>4. The mixture was filtered and the solvent was removed and the desire product 

was isolated using column chromatography (silica gel as stationary phase) to provide the 

product. 

General Procedure for Deprotection of Trimethylsilyl-Protected Alkynes. To a round 

bottom flask equipped with a magnetic stir bar, the protected alkyne was dissolved in a 

mixture of THF and MeOH ([protected alkyne] = 0.05 - 0.1 M). Then, K2C03 (2 equiv 

per alkyne) was added. The mixture was stirred at room temperature for 2 h or until the 

reaction was complete (monitored by TLC). After that period, brine was added and the 

mixture was extracted twice with dichloromethane. The combined organic layers were 

washed with water and dried over MgSC>4. The solvent was removed and the desired 

product was isolated using column chromatography (silica gel as stationary phase) to 

provide the product. 
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TMS TMS 

l,4-Diiodo-2,5-bis(trimethylsilylacetylene)benzene (7). An oven-dried 250 mL round 

bottom flask equipped with a magnetic stirrer was charged with l,4-dibromo-2,5-

bis(trimethylsilylacetylene)benzene8 (2.59 g, 6.05 mmol), diethyl ether (60 mL) and THF 

(60 mL). The mixture was cooled -78 °C and /-BuLi (16.0 mL, 27.2 mmol) was added 

over 15 min. The resulting deep red solution was stirred for 1 h at -78 °C and 1,2-

diiodoethane (5.45 g, 19.4 mmol) was added quickly. The solution was stirred 1 h at -

78 °C and an additional 16 h at room temperature. The red solution was poured into water 

and extracted twice with dichloromethane. The combined organic layers were washed 

with 0.1 M sodium bisulfite, water and dried over MgS04. The solvent was removed 

under reduced pressure and the resulting orange solid was purified by column 

chromatography (silica gel, hexanes as eluent) to provide 1.93 g of the title product as a 

white waxy solid (61%): mp 129-131 °C; IR (KBr) 1453, 1248, 1048, 887, 860, 837, 796, 

761 cm"1; *H NMR (400 MHz, CDC13, ppm) S 7.87 (s, 2H), 0.27 (s, 18H); 13C NMR (100 

MHz, CDC13, ppm) 6 141.8, 131.0, 104.8, 102.3, 99.7, -0.1; HRMS calcd for Ci6H2ol2Si2 

521.9193, found 521.9191. 

l,4-Bis(propyloxy)-2-iodo-5-trimethylsilylacetyIenebenzene (14). See general 

procedure for Castro-Stephens-Sonogashira coupling. The compounds used were 1,4-

P C 3 H 7 

-TMS 

C3H7O 

226 



bis(propyloxy)-2,5-diiodobenzene9 (3.35 g, 7.51 mmol), TMSA (1.06 mL, 7.51 mmol), 

Cul (86 mg, 0.45 mmol), PdCl2(PPh3)2 (158 mg, 0.23 mmol), well-degassed 

triethylamine (5 mL) and THF (75 mL) at room temperature for 16 h. The resulting 

brown oil was purified by column chromatography (silica gel, 8% dichloromethane in 

hexanes as eluent) to provide 1.77 g of 14 as a yellow solid (56%): mp 34-36 °C; IR 

(KBr) 2149, 1495, 1464, 1376, 1248; 1216, 860, 845 cm"1; *H NMR (400 MHz, CDC13, 

ppm) 8 7.26 (s, 1H); 6.84 (s, 1H); 3.90 (m, 4H); 1.81 (m, 4H); 1.07 (t, 6H, J = 7.4 Hz), 

0.25 (9H); 13C NMR (100 MHz, CDC13, ppm) 8 155.3, 152.1, 124.4, 116.7, 113.9, 101.2, 

99.9, 88.3, 72.0, 71.8, 23.1, 23.0, 11.2, 10.9, 0.4; HRMS calcd for C n ^ I C ^ S i 416.0669, 

found 416.0671. 

l,4-Bis(propyloxy)-2-iodo-5-bromoacetylenebenzene (15). A 25 mL round bottom 

flask equipped with a magnetic stir bar was charged with 14 (400 mg, 0.96 mmol) and 

acetone (12 mL). Then, freshly purified and dried iV-bromosuccinimide (205 mg, 1.15 

mmol) and silver(I) nitrate (16 mg, 96 [amol) were added. The mixture was stirred in the 

dark at room temperature for 2 h and poured into water (100 mL). The resulting slurry 

was extracted twice with dichloromethane and the combined organic layers were dried 

with MgSC>4. The solvent was removed under reduced pressure and the resulting orange-

red oil solid was purified by column chromatography (silica gel, 10% dichloromethane in 

hexanes as eluent) to provide 330 mg of 15 as an orange oil (81%): IR (KBr) 2961, 2933, 

2872, 2200, 1586, 1487, 1461, 1375, 1262, 1214, 1060, 1048, 1009, 974, 853, 837, 731 
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!H NMR (400 MHz, CDCI3, ppm) S 7.27 (s, 1H), 6.82 (s, 1H), 3.90 (m, 4H), 1.82 (m, 

4H), 1.06 (q, J = 7.5 Hz, 6H); 13C NMR (100 MHz, CDCI3, ppm) 8 155.1, 151.8, 124.1, 

116.6, 113.1, 88.3, 76.4, 71.69, 71.63, 54.1, 22.7 (2C), 10.9, 10.6; HRMS calcd for 

Ci4H16BrI02 421.9378, found 421.9374. 

l,4-Bis(propyloxy)-2-iodo-5-(l',12'-dicarba-c/o50-dodecaborane)benzene (16). An 

oven-dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with 

/7-carborane (135 mg, 0.94 mmol) and THF (20 mL). The solution was cooled to -78 °C 

and w-BuLi (0.39 mL, 0.98 mmol, 2.5 M in hexanes) was added dropwise. The solution 

was allowed to warm to room temperature and stirred for 30 min before it was cooled 

again to -78 °C. Copper® bromide (146 mg, 1.02 mmol) was then added and the mixture 

was allowed to stir at room temperature for 30 min. A solution of 15 (330 mg, 0.78 

mmol) in THF (10 mL) was then added and the resulting mixture was allowed to stir at 

room temperature for 48 h. A few drops of water were added and the mixture was filtered 

through a silica gel pad using dichloromethane as the eluent. The resulting greenish solid 

was purified by column chromatography (silica gel, 20% dichloromethane in hexanes as 

eluent) to provide 288 mg of 16 as a white powder (76%): mp 96-98 °C; IR (KBr) 2614, 

1496, 1486, 1463, 1383, 1212, 1064, 1026, 979 cm"1; !H NMR (400 MHz, CDC13, ppm) 

8 7.19 (s, 1H), 6.63 (s, 1H), 3.83 (m, 4H), 3.39-1.39 (broad m, 15H), 1.05 (t, J = 7.4 Hz, 

6H); 13C NMR (100 MHz, CDC1 , ppm) 8 155.2, 151.8, 124.0, 116.1, 111.8, 90.3, 88.9, 

O C 3 H 7 

C3H7O 
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76.0, 71.9, 71.4, 60.18, 60.15, 22.94, 22.85, 11.0, 10.8. HRMS calcd for C16H27B10IO2 

488.1986, found 488.1984. 
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Supporting Information for Chapter 5.1 



Compound 7 

Figure S-5.1-1. 'H NMR Spectrum of Compound 7. 
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Chapter 6 

Fullerene-Based Nanodevices 



6.1 

Synthesis and Photoisomerization of Fullerene - and Oligo(phenylene ethynylene) -

Azobenzene Derivatives 
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Introduction 

Advances in molecular science continue to facilitate the miniaturization of 

devices and the innovation of new molecule-based functional devices.1"5 Of particular 

interest to our group is the design and synthesis of molecular machines that resemble 

macroscopic machinery; the ultimate goal of such work is the realization of useful 

ft 7 nanomachines constructed using a "bottom-up" approach. ' In the development of such 

molecular-sized devices and machines, the design scheme is quite different from that in 

• 6 8 

the macroscopic world. " A strong understanding of both the functionality of molecular 

building blocks and the specific interactions between them is essential in the construction 

of devices and machines at the molecular scale.9"11 Because the number of potential 

molecular building blocks continues to increase, we have focused on those that contain 

functionality such as electro- and photoactive components. The understanding of the 

interaction between these components has been gradually advanced.12"14 In our previous 

study of the construction of a light-powered molecular vehicle, or a "motorized nanocar," 

we found that the motor unit was inoperative in the presence of fullerenes.15 The result 

implied that rapid intramolecular energy transfer to the fullerene moiety quenched the 

photoexcited state of the motor moiety. Similar quenching of a photoexcited state with 

fullerenes have been reported.16 

On the other hand, among the several photoisomerization processes studied 

previously, cis-trans photoisomerization of azobenzene chromophores have been 

extensively examined since their discovery in the late 1930s,17 and widely used, even to 

the present, in photo responsive systems and devices.18"21 The advantage of using 
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azobenzenes is based on the large geometrical change accompanying cis-trans 

isomerization and their photo-stability, enabling the development of variety of photo-

responsive functional devices such as smart polymers,18 liquid crystals,19 and molecular 

switches20 and machines.21 Recently, a hybrid of the azobenzene chromophore and 

fullerene was reported as a dendrimer having a fullerene in its core, and 

photoisomerization of the azobenzene moiety was briefly demonstrated.22 The unique 

combination of the two functional groups, azobenzene chromophores and fullerenes, may 

lead to advances in the field of molecular switching because of the novel functional 

23 25 

synergy. " However, no report on the properties of such hybrid materials has been 

published except for the brief communication on the dendritic fullerene derivatives.22 In 

particular, the effect of the fullerene moiety on the photoisomerization behavior of the 

azobenzene has been overlooked. In the present work it has been found that the presence 

of the fullerene can strongly affect the photoisomerization behavior of azobenzenes, and 

in some cases, quench photo excitation of azobenzenes so that no photoisomerization 

occurs. This is in concert with findings in our previous work on the light-powered 

molecular motor15 and other's stilbene-fullerene derivatives.16 

It has also been found that oligo(phenylene ethynylene)s (OPE)s attached to an 

azobenzene moiety have a strong impact on its photoisomerization behavior. OPEs are an 

important class of organic building blocks for molecular device scientists because their 

shape-persistent nature and the relatively simple synthetic access facilitate the design and 

construction of devices with well-defined order.26"30 Recently, the combination of the 

shape-persistent nature of OPEs and large geometrical changes of the azobenzene 
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photoisomerization was used to generate dendrimers in which a large photo-modulation 

of hydrodynamic volumes was achieved.31 

Here we report the effect of fullerenes and OPEs on the photoisomerization 

behavior of azobenzene moieties using a variety of fiillerene-azobenzene hybrid 

molecules and azobenzene derivatives (Figure 1) designed for UY-vis and NMR 

spectroscopic studies. The cis-trans photo isomerization of azobenzenes in the presence 

of fullerenes and OPEs only proceeds under certain conditions, and these conditions are 

delineated here. 
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Figure 1. Fullerene-azobenzene hybrid and OPE-conjugated azobenzenes studied in this 

work. Compound 4 contains /^-carborane termini where the two darkened vertices are C 

and CH, ipso and para, respectively, and all other vertices are BH. 

Result and Discussion 

Synthesis and testing of molecules 1, 2, and 6 was done by Y. Shirai. Molecules 

3 and 4 were synthesized and tested by T. Sasaki. My research was the synthesis and 

testing of the carborane axle-functionalized 5 as well as the intermediates for 2 (Figure 1). 

Energy transfer between the fullerene and azobenzene moieties occurs via intra- or 

intermolecular interactions, or a combination of both. We examined intermolecular 

interactions between pristine C ô and simple diiodo-azobenene 1732 using NMR 

spectroscopy. Intramolecular interactions between the functionalities were studied in two 

different cases, wherein the separation of the two functional groups was small, as in 1, or 

large, as in 2. The effect due to the presence of multiple fullerenes was examined with 3. 

Finally, the effect due to the presence of OPEs was examined with structures 4-6). 

Design and synthesis of azobenzene derivatives, (a) Fullerene-azobenzene 

hybrids. The details of the syntheses of fullerene-azobenzene hybrids 1-3 are given in 

Schemes 1-3. The structures were designed and synthesized to produce two extreme 

cases: where the fullerene and azobenzene moieties are close together as in structure 1, 

and where they are farther apart as in structure 2. The difullerene derivative 3 was also 

synthesized to determine the effects of multiple fullerenes. In Scheme 1, the azobenzene 

derivative 7 was coupled with trimethylsilylacetylene (TMSA) to afford compound 8, 
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and then it was attached to the fullerene via the in-situ ethynylation method34 to afford 1. 

For the isolation of the fullerene and the azobenzene moieties in 2, we used a dodecyl 

alkyl chain for ease of synthesis and to produce a large isolation distance. Thus, in 

Scheme 2, 10 ' was alkylated with dibromododecane using sodium hydride in DMF, 

and then the 4-iodophenol was alkylated to afford compound 12. After the Pd-catalyzed 

coupling reaction with TMSA and the removal of the TMS group in TBAF, fullerene was 

attached using the in-situ ethynylation method34 to obtain the product 2 in 49% yield. In 

Scheme 3, the difullerene-azobenzene hybrid 3 was synthesized in a similar manner. The 

diiodo-azobenzene (14) was coupled with compound 15,34,36 and then the fullerenes were 

attached via the in-situ ethynylation method.34 

TMS 

Pd/Cu, TEA/THF 73% 

Scheme 1. Synthesis of the azobenzene derivatives 1 and 6. Pd/Cu = PdCl2(PPh3)2, Cul. 
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10 
OH 

1,12-Dibromododecane 

NaH, DMF 
43% 

Nal, K 2C0 3 , DMF 

53% Pd/Cu, TMSA 
THF/TEA 

r 83% 

13 
0 - ( C 1 2 H 2 4 ) — 

TBAF, THF 74% 

1)C6 0 , LHMDS, THF 
2) Mel (excess) 

' 49% 

-TMS 

Scheme 2. Synthesis of the fiillerene-azobenzene hybrid 2. Pd/Cu = PdCl2(PPh3)2, Cul. 

h21c10q 

h ^ s — { ^ — — t i p s 

— OC10H21 

\ — N , / = \ 1) Pd/Cu, TEA/THF 64% 

H21C10Q 

n-
1 4 2)TBAF, THF 98% 

h2,c10o 

— 16 ocioH2 
OCiqH21 

1)C60 , LHMDS, THF 

2) TFA 
34% 

Scheme 3. Synthesis of the fiillerene-azobenzene hybrid 3. Pd/Cu = PdCl2(PPh3)2, Cul. 
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(b) Azobenzene derivatives with conjugated OPEs. Addition of functional 

groups to the azobenzene moiety has various effects; it was thought that in addition to 

fullerenes, OPEs might also strongly affect their photoisomerization behavior. Because 

there are only a few reports on azobenzene-OPE conjugates31"33 and there is no report on 

the photoisomerization yield of these azobenzene derivatives, it was decided to 

investigate this class of compounds. Schemes 4 and 5 outline the syntheses of the mono 

(5)- and di (4)-OPE substituted azobenzene derivatives. Another mono-OPE substituted 

azobenzene 6 was also prepared as an example of an OPE-azobenzene conjugate without 

carboranes (Scheme 1). The carboranes have no effect on the photoisomerization 

behavior of azobenzenes, and they were attached for other purposes in the later study of 

this class of compounds. It was found in previous work that the carborane will not 

interfere with the photoexcited state of a stilbene-like derivative, a molecular motor 

unit.15 In Scheme 4, 19 was synthesized from l,4-bis(propyloxy)-2,5-diiodobenzene 

(17)37 by the Pd-catalyzed coupling reaction with TMSA followed by the in situ desilyl 

38 39 

bromination. ' The bromoalkyne 19 was then coupled with the /?-carborane-copper 

adduct to afford the /^-carborane-containing moiety 20. The coupling reaction with 19 

proceeded slowly and 48 h were necessary for the reaction to be completed. This can be 

attributed to the electron-donating nature of the propyloxy groups present on the aryl ring 

that partially deactivate the alkynyl bromide toward oxidative addition by the 

organocopper reagent. Compound 20 was then coupled to 2140 to give the final product 4 

in good yield. The mono-OPE substituted azobenzene 5 (Scheme 5) was synthesized in 

three steps from the iodo-azobenzene 22. Following the Pd-catalyzed coupling reaction 
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with TMS A and the removal of the TMS group with TBAF, the dicarborane unit 2515 was 

coupled to afford the product 5. 

OC3H7 

I 56% 

17 
NBS, AgN03 

acetone, 81% 

18 R = TMS 

-19 R = Br 

1) n-BuLi, 
THF, -78°C 

2) CuBr, rt, 48 h 

3) 19 C3H70 

76% 

OC3H 3 n 7 

^ / r = -
20 

21 

PD/CU, TEA/THF 
75% 

Scheme 4. Synthesis of the OPE-azobenzene hybrid 4. Pd/Cu = PdCl2(PPh3)2, Cul. 

TMS 
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Scheme 5. Synthesis of the OPE-azobenzene hybrid 5. Reagents: Pd/Cu = PdCl2(PPh3)2, 

Cul. 

Intermolecular energy transfer between Ceo and azobenzenes. Intermolecular 

interactions between pristine C6o and the diiodo-azobenene 14 were studied using NMR 

spectroscopy (Figure 2). The interaction was monitored using three different mixtures; 

1:1 molar mixture of C6o and 14, 1:9 molar mixture, and 14 without C60. Upon irradiation 

of these samples in a NMR tube with 365 nm light, the intensity of new peaks 

corresponding to the cis isomer of 14 increased with a concomitant decrease in the trans 

isomer peaks. Within 10 min of irradiation, a photo stationary state (PSS) was achieved 

in all three cases (Figure 2 inset). Almost complete conversation from trans to cis isomer 

was achieved without C60, while the conversion was decreased severely when even a 

small amount of Cgo was present. The relaxation process from the cis to trans isomer in 

dark conditions at room temperature was also monitored following the same NMR peaks. 

It is clear from Figure 2 that C6o has a dramatic impact both on the photoisomerization 

yield and the rate of the thermal relaxation process. The increase in the rate of conversion 

from the cis to trans isomer implies that the C6o catalyzes that isomerization. Catalytic 

activity of electron acceptors such as tetrachloroquinone on thermal isomerization of 

azobenzenes has been previously shown.41 The decrease in the photoisomerization yield 

implies that the photo excited singlet state of the azobenzene moiety is quenched by 

fullerenes via intermolecular electronic energy transfer. With the excitation at 365 nm, 

the pristine C6o should also be excited along with azobenzenes. In the diffusion limited 

bimolecular process, however, only triplet-triplet energy transfer can take place because 
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of the very short lifetime of the fullerene singlet excited state. The triplet-excited energy 

level of the fullerenes (-35 kcal/mol)42'43 is higher than that of the cis azobenzene 

derivatives (~29 kcal/mol) and comparable to that of the trans azobenzene derivatives 

(-35 kcal/mol)44 Therefore, fullerenes could act as a triplet sensitizer rather than a 

quencher in the presence of the cis azobenzene derivatives. In fact, such bimolecular 

photo-induced energy transfer processes between pristine or functionalized fullerenes and 

many other compounds has been well studied 42 It is also known that, in the triplet 

excited state, azobenzene derivatives favor trans isomers.45"48 Therefore, as a quencher or 

a triplet sensitizer, fullerenes will always shift the isomerization equilibrium of 

azobenzenes at the PSS to the trans isomers. Because the bimolecular reaction can be 

diffusion limited, the intermolecular interactions should be suppressed under more 

diluted conditions. This was confirmed by the UV-vis spectroscopic study of the 1:1 

molar mixture of 14 and C6o at 17 (J.M for both compounds, which is 100 times less 

concentrated than that of the NMR study. In this case, no decrease in the 

photoisomerization yield and no significant change in the rate of the thermal 

isomerization were observed over the time periods used in the former NMR study. 

100 

I 

u 
£ 

80 

60 

40 

20 

10Q1 • • 
8 0 -

M 
B 

6 0 -
• 

* * 

4 0 -
* 

U V - o n 

2 0 - * , 
0 -

UV-o f f 
0 5 10 15 20 25 

Tim* (min) 

1 a 

j l . 

• 0% 060 
* 10%C60 
» 100% C60 

20 40 60 80 
Time (h) 

100 120 

252 



Figure 2. Changes in the amount of cis isomer of 14 in mixtures of 14 and C6o at three 

different ratios (1:1 (100% C60) and 9:1 (10% C60) molar ratios, and no C60 (0% C60)) in 

the dark after establishing a photo-stationary state using 365 nm light. Inset: trans to cis 

conversion in the same sample solutions during irradiation with light at 365 nm. 

Intramolecular energy transfer in the fullerene-azobenzene hybrid. Photo-

excited properties of fullerenes including both pristine C6o and functionalized fullerenes 

are generally known for their low-lying excited electronic levels (~1.7 eV for singlet and 

~1.5 eV for triplet).42'43 These electronic levels are smaller than that of the lowest excited 

state Si of azobenzene derivatives (~2.9 eV).44 An exothermic energy transfer from the 

excited azobenzene to the covalently linked fullerene in the fullerene-azobenzene hybrid 

can be expected. We investigated such intramolecular energy transfer process using 1 and 

2 (Figure 1). In 1, the two functional moieties are isolated by a single triple bond, and one 

sp -hybridized carbon atom isolates the fullerene n system from the azobenzene moiety. 

However, there is experimental evidence suggesting that there is a weak electronic 

interaction called periconjugation49 between the fullerene and attached moieties, thus 1 

can be treated as an example of weakly conjugated fullerene-azobenzene hybrid. On the 

other hand, in 2, the long saturated carbon chain between the azobenzene and the 

fullerene moieties should disrupt electronic communication between the two functional 

groups. These analyses can be experimentally supported by observing the electronic 

absorption spectra of the each functional moiety (Figures 3 and 4). In 1, the electronic 

transition (Figure 3, red line) is different from the sum of original features of both 

functional groups (Figure 3, blue line), while the electronic transition of 2 (Figure 4, red 
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line) remains unchanged from the sum of each component (Figure 4, blue line). These 

results suggest that there is no electronic communication in the isolated fullerene-

azobenzene hybrid 2 and there is a strong interaction in the conjugated fullerene-

azobenzene hybrid 1. 

Upon irradiation of each solution (17 |j,M) at 365 nm (Figure 3) or 334 nm (Figure 

4), the azobenzene moiety underwent photoisomerization from trans to cis with a 

characteristic decrease in the 320-370 nm band. However, the change in the absorption 

(Aabs) of 1 was extremely small. This may indicate an efficient electronic energy transfer 

between the azobenzene and fullerene moieties, as predicted from its conjugated structure. 

From the Aabs of 1 (0.03) and 8 (0.33) in Figure 3, the photoisomerization yield of 1 is 

estimated to be about 10% of that of 8 (no fullerene moiety). On the other hand, from the 

Aabs of 2 (0.025) and 13 (0.07) in Figure 4, the photoisomerization yield for 2 was about 

35% of 13 (no fullerene moiety). The 1:1 molar mixture of the pristine C60 and the 

compounds without a fullerene moiety (8 and 13) showed no decrease in the 

photoisomerization yield (blue lines in the Figure 3 and 4), indicating that there is no 

significant intermolecular effect at the studied conditions. Although the length of 

separation between the two functional moieties in 2 is 3 nm when displayed as drawn in 

Figure 1, the actual distance is likely much closer in solution due to the flexibility of the 

alkyl chain. The decrease in the photoisomerization yield for 2 was much smaller than 

that of the conjugated azobenzene-fullerene hybrid 1. The result clearly indicates that the 

isolation of the two functional groups has some effect. Nevertheless, the physical 

separation of the 7t-systems has a marked effect on the isomerization of the azobenzene. 
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Wavelength (nm) 

Figure 3. Absorption spectra of 1, 8, and 1:1 mixture of 8 and C6o (chloroform, -17 pM). 

Upon irradiation with 365 nm light for 10 min, the electronic transitions at -357 nm were 

decreased in all cases and the PSS was achieved (change in abs. at 357 nm: 0.05 (1), 0.33 

(8), 0.33 (mixture of 8 and C6o)). Due to the electronic communication between the 

fullerene and azobenzene moieties, the absorption spectrum of 1 (red line) is significantly 

different from the sum of the spectrum for 8 and C6o (blue line). 
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Figure 4. Absorption spectra of 2, 13, and 1:1 mixture of 13 and C6o (chloroform, ~4 

faM). Upon the irradiation with 334 nm light for 5 min, the electronic transitions at 

~330nm were decreased in all cases and the PSS was achieved (change in abs. at 330 nm: 

0.025 (2), 0.07 (13), 0.07 (mixture of 13 and C 6 o ) ) . Absorption spectrum of 2 (red line) is 

almost identical to the sum of the spectrum for 13 and C6o (blue line), suggesting the no 

electronic communication between the two functional groups. 

Effect of the conjugated OPEs attached to azobenzene moiety. Finally, we 

examined the effect of OPEs on the photoisomerization behavior of azobenzene 

chromophores. Because of the shape-persistent nature of OPEs and their simplicity of 

design and synthesis, many molecular devices and machines use OPEs in the molecular 

framework.26"30 However, not many examples of the azobenzene derivatives incorporated 

into OPEs have been reported,31"33 and there is no report on the effect of OPEs on the 

photoisomerization yield of azobenzene derivatives. The photoisomerization yield for 
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each OPE-azobenzene derivative 4-6 was determined using NMR, and the results are 

summarized in Table 1. In this work, the following trend was observed: as the number of 

OPEs attached to the azobenzene moiety was increased, a significant decrease in the 

photoisomerization yield at the PSS was observed. Thus, when only one OPE was 

attached to the azobenzene (5 and 6), the photoisomerization yield was reduced to -50% 

of that of the azobenzene derivative without any OPEs (8), while the yield was further 

reduced to less than 25% when two OPEs were attached as in 4. The other noticeable 

feature of the disubstituted azobenzene 4 was the red shift of the azobenzene absorption 

band due to the elongated conjugation along the OPE backbone (see Figure S-l in the 

Supporting Information for the UV-vis spectrum of 4). Visible light at - 436 nm was 

necessary to achieve the highest conversion to cis isomer in this case. As expected from 

the other fullerene-azobenzene hybrids, the difullerene and OPE substituted derivative 3 

showed no photoisomerization. Because 4, which is similar to 3 but with carboranes 

instead of fullerenes, showed a small but noticeable photoisomerization yield, the data 

suggests the severe deactivation of 3 is due, in large part, to the presence of the two 

fullerene moieties. 

Table 1. Photoisomerization Yield at the PSS for Various Azobenzene Derivatives 

Excitation 

Type Compound % cis wavelength 

(nm) 

Fullerene Azobenzene 14 > 90a 365 

257 



mixtures 14 + C60 (10%) 58a 365 

14 + C60 (100%) 19a 365 

Fullerene-azobenzene 1 <10b 365 

conjugated hybrid 8 > 90a'b 365 

Fullerene-azobenzene 2 ~35b 334 

isolated hybrid 13 > 90b 334 

Difullerene-azobenzene 
3 365 

hybrid 

4 22a 436 
Azobenzene-OPE 

5 48a 365 
hybrid 

6 46a 365 

a Photoisomerization yield was determined by NMR. bPhotoisomerization 

yield was estimated by UV-vis.50"52 

Conclusion 

It has been shown that fullerenes and OPEs have a large effect on the 

photoisomerization behavior of azobenzene derivatives (Figure 1). Fullerenes can 

severely reduce the photoisomerization yield for cis isomers, while OPEs directly 

attached to the azobenzenes have a noticeable but smaller effect. These trends have not 

been previously considered for fullerene- and OPE-azobenzene derivatives but were 

clearly detected in this work using NMR and UV-vis spectroscopies. Fullerenes, OPEs, 

and azobenzenes are examples common molecular device building blocks; however, 
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when they are combined together to form more complex systems, the present work 

underscores that their synergistic effects must be considered. 

Experimental Section 

General Methods. All reactions were performed under an atmosphere of nitrogen 

unless stated otherwise. Precursors 7,33 9,53 1 0,33'35 1 4,32 1 5,34'36 17,37 18-20,54 21,40 2233 

and 2515 were prepared according to literature procedures. Compounds 1- 4, 6, 11-13, 

were prepared as described by Y. Shirai and co-workers.55 Reagent grade diethyl ether 

and THF were distilled from sodium benzophenone ketyl. Triethylamine (TEA) and 

CH2CI2 were distilled over CaH2. Fullerene (99.5+% pure) was purchased from MTR Ltd. 

and used as received. LHMDS (1 M solution in THF) and TBAF (1 M solution in THF) 

were obtained from Sigma-Aldrich and used as received. Flash column chromatography 

was performed using 230-400 mesh silica gel from EM Science. Thin layer 

chromatography was performed using glass plates pre-coated with silica gel 40 F254 

purchased from EM Science. Melting points were uncorrected. The ultrasonicated 

fullerene slurry in THF was prepared in general ultrasonic cleaners. 

NMR and UV-vis spectroscopy irradiation experiments were performed in 

deoxygenated solutions at -1.7 mM (NMR) or 4-17 |aM (UV-vis) using a 100 W Hg arc 

light source (EFOS Acticure A4000 UV Light Source/Curing System) with appropriate 

wavelength Hg line filters (Andover) and band-pass filters. The light intensity after 

passing through the filters was monitored with a radiant power meter (Oriel). Typical 

light intensity for NMR experiments was 10-50 mW/cm2, and up-to 10 mW/cm2 for UV-
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vis experiments. The rate of the thermal isomerization for all experiments was slow 

enough to allow the determination of the photoisomerization yields at the PSS without 

significant change using normal NMR and UV-vis operations (measured within 1-3 min 

after reaching the PSS). In all experiments, reversibility of the photoisomerization 

process was checked by irradiating the sample solutions with appropriate wavelength cut-

on long-pass filters or by keeping the samples in the dark to induce cis-trans reverse 

isomerization. ChemDraw 9.0 was used in naming the compounds. 

General Procedure for the Coupling of a Terminal Alkyne with an Aryl 

Halide Using a Palladium-Catalyzed Cross-Coupling (Sonogashira) Protocol. To an 

oven-dried round bottom flask equipped with a magnetic stir bar were added the aryl 

halide, the terminal alkyne, PdCl2(PPh3)2 (ca. 2 mol% per aryl halide), and Cul (ca. 4 

mol% per aryl halide). A solvent system of TEA and/or THF was added depending on the 

substrates. Upon completion, the reaction was quenched with a saturated solution of 

NH4C1. The organic layer was then diluted with hexanes, diethyl ether or CH2CI2, and 

washed with water or saturated NH4CI (lx). The combined aqueous layers were extracted 

with hexanes, diethyl ether, or CH2CI2 (2x). The combined organic layers were dried over 

MgSC>4, filtered, and the solvent was removed from the filtrate in vacuo to afford the 

crude product, which was purified by column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 

General Procedure for the Addition of C60 to Terminal Alkynes Using 

LHMDS, in situ ethynylation method. To an oven-dried round bottom flask equipped 

with a magnetic stir bar was added the terminal alkyne and C60 (2 equiv per terminal 

alkyne H). After adding THF, the mixture was sonicated for at least 3 h. To the greenish-
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brown suspension formed after the sonication was added LHMDS drop wise at room 

temperature over 0.5 to 1.5 h. As the reaction progressed, the mixture turned into a deep 

greenish-black solution. During the addition of the LHMDS, small aliquots from the 

reaction were extracted and quenched with trifluoroacetic acid (TFA), dried, and re-

dissolved in CS2 for TLC analysis (developed in a mixture of CS2, CH2CI2 and hexanes). 

Completion of the reaction was confirmed by the disappearance of the starting materials. 

The reaction was usually complete within 1.5 h from the beginning of the LHMDS 

addition. Upon completion, the reaction was quenched with TFA or Mel to give a 

brownish slurry. When Mel was used, the reaction was stirred at room temperature for at 

least 6 h. Excess TFA or Mel and solvent were then removed in vacuo to afford a crude 

product that was purified by flash column chromatography (silica gel). Eluents and other 

slight modifications are described in the following experiments for each compound. 

Compounds 1-4 and 6 were prepared as described by Shirai and co-workers.55 

(E)-l-PhenyI-2-(4-((trimethylsiIyl)ethynyl)phenyl)diazene (23). See the general 

procedure for the Pd/Cu coupling reaction. The materials used were 22 (0.2 g, 0.65 

mmol), TMSA (0.28 mL, 1.95 mmol), PdCl2(PPh3)2 (0.005 g, 0.006 mmol), Cul (0.0025 

g, 0.012 mmol), TEA (0.8 mL), and THF (9 mL) at room temperature for 20 min. The 

dark brown solid was purified by flash column chromatography with 5% CH2CI2 in 

T M S 

II 
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hexanes to give product 23 (0.12 g, 67%) as an orange powder. FTIR (KBr) 3057, 2962, 

2898, 2154, 1594, 1492, 1250, 1223, 1152, 866, 843, 762, 588, 588 cm'l; 'H NMR (400 

MHz) 8 7.91 (dd, Jj = 8.0 Hz, J2= 1.6 Hz, 2H), 7.86 (d, J= 8.8 Hz, 2H), 7.60 (d, J= 8.8 

Hz, 2H), 7.49 (m, 3H), 0.27 (s, 9H); 13C NMR (CDC13, 100 MHz) 8 152.9, 152.2, 133.1, 

131.6, 129.4, 126.1, 123.3, 123.1, 104.9, 97.3, 0.27; EI-HRMS m/z calcd for Ci7H18N2Si 

278.1239, found 278.1244. 

(E)-l-(4-Ethynylphenyl)-2-phenyldiazene (24). To a round-bottom flask 

equipped with a magnetic stirrer were added compound 23 (0.12 g, 0.43 mmol), THF (5 

mL), and TBAF (0.8 mL, 0.8 mmol). The reaction mixture was stirred at room 

temperature for 20 min, then quenched with water and diluted with CH2CI2. The aqueous 

layer was extracted with CH2CI2 (x3). Combined organic layers were dried over MgSC>4, 

filtered, and concentrated under vacuum. Crude material was purified by flash column 

with 10% CH2C12 in hexanes to afford deprotected product 24 (0.086 g, 96%) as an 

orange-red solid. FTIR (KBr) 3290, 3260, 3196, 2924, 2564, 1515, 1493, 1483, 1265, 

1154, 843 cm'l; !H NMR (CDC13, 400 MHz) 8 7.93-7.87 (m, 4H), 7.63 (d, J= 8.4 Hz, 

2H), 7.54-7.48(m, 3H), 3.22 (s, 1H); 13C NMR (CDCI3, 100 MHz) 8 152.6, 152.2, 133.0, 

131.4, 129.2, 124.7, 123.0, 122.9, 83.3, 79.5; EI-HRMS m/z calcd for Ci4H10N2 206.0844, 

found 206.0842. 
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Compound 5. See the general procedure for the Pd/Cu coupling reaction. The 

materials used were 24 (0.054 g, 0.26 mmol), 25 (0.140 g, 0.26 mmol), PdCl2(PPh3)2 

(0.007 g, 0.0104 mmol), Cul (0.004 g, 0.0208 mmol), TEA (0.3 mL), and THF (3.7 mL) 

at room temperature overnight. The residue was purified by flash column 

chromatography with 10% CH2CI2 in hexanes to give product 5 (0.037 g, 23%) as a red-

orange oil. FTIR (KBr) 3066, 2919, 2849, 2610, 1605, 1497, 1057, 845, 758 cm"1; *H 

NMR (500 MHz, CDCI3) 5 7.98 (m, 4H), 7.71 (d, J = 9.0 Hz, 2H), 7.56 -7.50 (m, 3H), 

7.46 (dd, J= 1.5, 0.5 Hz, 1H), 7.25 (dd, J = 8.0, 0.5 Hz, 1H), 7.16 (dd, J= 8.0, 1.5 Hz, 

1H), 3.0 -1.9 (broad m, 22H); 13C NMR (125 MHz, CDC13) 5 152.6, 152.1, 135.1, 132.6, 

132.1, 131.3,131.1, 129.1, 126.2, 125.2, 124.0, 122.97, 122.96, 122.0, 94.0, 91.2, 88.7, 

87.9, 77.8, 77.6, 69.3, 69.0, 60.4 (*2); EI-HRMS m/z calcd for C28H34B20N2 615.4713, 

found 615.4708. 
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Fullerene Terminated Molecular Wires 



Introduction 

Our approaches to molecular electronics using oligo(phenylene ethynylene) OPE 

devices1"4 have gained considerable attention since the successful demonstration of 

• C 7 

switching effects using this class of compounds. " To further advance the development 

of OPE based devices for molecular electronic applications, we have investigated 

fullerene-OPE hybrid devices (Figure 1). These fullerene-terminated molecular wires 

with thiol and protected thiol alligator clips can be easily prepared using our in situ 

ethynylation method8 (Scheme 1-6). Moreover, this class of fullerene-derivatized OPEs is 

unique in that one can expect periconjugation9'10 effects due to the close proximity 

between the fullerene cage and the OPE n systems. Fullerenes have gained considerable 

attention since their discovery due to their unusual structure and optical and electrical 

properties, and there has been a tremendous amount of research aimed at developing new 

fullerene-based materials with novel and potentially useful applications.11'12 The 

combination of self-assembled monolayer (SAM) formation13 with the advantageous 

properties of fullerene derivatives could lead to advances in this field.14'15 To that end, we 

have demonstrated the self-assembly of fullerene-OPE hybrid devices on Au surfaces, 

and delineated the specific mechanisms associated with self-assembly of fullerene-OPE 

hybrids.16 Here we expand the series of fullerene-terminated molecular wires by 

introducing a variety of functional groups, and describe their electronic properties with 

the aid of theoretical calculations. Ultraviolet photoelectron spectroscopy (UPS) and 

inverse photoemission spectroscopy (IPES) studies were also done to further examine the 

electronic properties of the fullerene-terminated OPEson gold surfaces. 
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Figure 1. Fullerene-terminated molecular wires presented in this work. 

Results and Discussion 

Synthesis of fullerene-terminated OPEs 1 and 7.Compounds 1, 2 and 7-12 were 

prepared by Y. Shirai. Compound 5 was prepared by T. Sasaki. Compound 6 was 

prepared by G. Vives. My research consisted of the preparation of compounds 3 and 4 as 

well as intermediates for 5 and 6. The fullerene-OPE hybrids 1 and 7 can be synthesized 

in a single step from the known compound 1317 using the in situ ethynylation method8 
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with moderate yields (Scheme 1). The ethyl-TMS group (-CH2CH2TMS) was employed 

as the protecting group for the sulfur atom because it can tolerate the in situ ethynylation 

reaction using lithium hexamethyldisylazide (LHMDS). Once the fullerene moiety is 

attached, the ethyl-TMS protecting group can be easily removed using 

tetrabutylammonium fluoride (TBAF) in THF (1-Me-SH) or converted to the acetyl 

group (1-Me-SAc) using AgBF4 and acetyl chloride (AcCl).18 The in situ deprotection 

and self-assembly of the ethyl-TMS protected derivatives have been shown previously,19 

however, in our hands, it was difficult to obtain consistent assembly results.20 We also 

found in our previous work that the thiol esters (-SAc) were more convenient and 

reliable.16 The functional group attached on the fullerene cage can be modified in the 

ethynylation step by quenching the fullerene anions with the appropriate alkyl iodide or a 

proton. In the synthesis of 7, 1-iodoheptane was used to introduce a bulky group at the 

fullerene site to reduce the cross-sectional mismatch that was one of the causes for the 

head-to-tail assemblies in fullerene SAMs.16 Unfortunately, this synthesis approach 

proved to be difficult, with a low yield presumably because of the lower reactivity of the 

1 -iodoheptane toward the fullerene anions. 

Synthesis of fullerene-terminated OPEs 2-6. A series of fullerene-terminated 

molecular wires 2-6 were synthesized via Pd-catalyzed coupling reactions and removal of 

the TMS groups followed by the fullerene coupling reaction (Scheme 2). With this 

synthesis scheme, simple modification of the functional groups in the compound 14 can 

result in the rapid generation of the wide variety of the fullerene-terminated molecular 

wires. We have previously demonstrated the combinatorial synthesis of OPE tetramers on 

9 1 a solid support. In this work, we were able to synthesize - H (neutral), -Et (electron 
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rich), -CF3 (electron deficient), -OMe (electron rich), and -NO2 (electron deficient) 

derivatives of the fullerene-terminated molecular wires 2-6. The ethyl-TMS protecting 

groups for the sulfur atom were removed as before, except for the nitro derivative 3, that 

was found to undergo side reactions to form insoluble materials during the deprotection 

step. 

Synthesis of fullerene-terminated alkyl thiol 8 and disulfide 9. Fullerene-terminated 

molecular wires incorporating a long alkyl chain were prepared as thiol ester 8 and 

disulfide 9 (Scheme 3). The 4-iodophenol was alkylated with 1,12-dibromododecane, and 

the mono-functionalized bromododecane 17 was isolated using chromatography. The 

ethyl-TMS protected sulfur atom was introduced by the lithiation of 2-

(trimethylsilyl)ethanethiol followed by a condensation reaction with bromododecane 17, 

giving the product 18. After the introduction of the terminal alkyne via Pd-catalyzed 

reaction with TMSA and the removal of the TMS group, the fullerene moiety was 

coupled to give the fullerene-terminated alkyl thiol 21. The sulfur atom protecting group 

was converted from ethyl-TMS to the thiol ester with the same strategy as in previous 

reactions to give the product 8. Basic deprotection of the thiol ester 8 and oxidative 

coupling of the resulting thiol in air can easily generate the disulfide 9. 

Synthesis of fullerene-tripods 10 and 11. Fullerene-terminated molecular devices 

incorporating a tripod base were also synthesized (Schemes 5 and 6). The ethyl-TMS 

protected sulfur atom was introduced by the lithiation of 2-(trimethylsilyl)ethanethiol 

followed by a condensation reaction with 3-iodobenzyl bromide (22) affording the 

product 23. Each leg of the tripod base (25) was obtained by a Pd-catalyzed reaction with 

trimethylsilylacetylene (TMSA) followed by the removal of the TMS group, and then the 
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legs (25) were coupled to the center part (26) to give the ethoxyl-terminated tripod 27. 

The aryl lithium generated from the bromide 28 displaces the ethoxyl group of 27 to give 

the product 29. Finally, the tripod 30 was obtained after deprotection of the terminal 

alkyne. The fullerene tripod 10 was obtained after the in situ ethynylation of fullerenes 

and the conversion of the sulfur protecting groups using the same strategies with AgBF4. 

The fullerene tripod with azobenzene functionality (11) was also synthesized from the 

* • * 2 2 • 

tripod 30 by introducing the azobenzene moiety 31 before the fullerene coupling and 

the protecting group exchange reaction (Scheme 6). 

Synthesis of the fullerene-triazene hybrid 12. The fullerene-triazene hybrid 12 can be 

easily synthesized from the triazene 35 with a terminal alkyne using the in situ 

ethynylation method (Scheme 7). This strategy can be useful to assemble fullerene-

terminated molecular wires on silicon surfaces.23 

Scheme 1. Synthesis of the Fullerene-Terminated Devices 1 and 7. 
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Scheme 2. Synthesis of the Fullerene-Terminated Molecular Wires 2-6. 
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Scheme 3. Synthesis of the Fullerene Terminated Alkyl Thiol 8 and Disulfide 9. 
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Scheme 4. Synthesis of the Fullerene Tripod 10. 
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Scheme 5. Synthesis of the Fullerene Tripod 11. 

Scheme 6. Synthesis of the Fullerene-Terminated Device 12. 

278 



I! 
H 

II 1) C60, LHMDS, THF 

35 

2) CH3I (excess) 

52% 

Theoretical study on fullerene-terminated OPEs. 

The molecular orbital (MO) level is an important concept in explaining the 

fundamental behaviors of molecules, such as reactivity and kinetics. Furthermore, MO 

theory has been utilized as a powerful tool in the field of molecular electronics to 

describe charge transfer processes on molecules. Electron transfer through molecules can 

be influenced by several factors such as molecular length, conformation, and various 

functional groups present within the molecule, and these factors eventually determine the 

frontier MOs such as the highest occupied MO (HOMO), lowest unoccupied MO 

(LUMO), and HOMO-LUMO gap energies.24 Thus, it is quite common to extract trends 

in molecular behavior based on the MOs. For example, a smaller HOMO-LUMO gap can 

generally provide higher charge transport efficiency.25 Molecules with deep-lying HOMO 

and LUMO levels can possibly result in better candidates for n-type organic 

semiconductors. The spatial distribution or extent of these MOs within the molecule is 

also important because the rectifying behaviors of molecules can be predicted.26'27 

Unfortunately, although MO theory is of immense utility, popular computational methods 

such as the B3LYP/6-31G(d) protocol cannot provide accurate (absolute) MO energy 

values. Nevertheless, the method is quite reliable for predicting molecular geometry and 
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total energies. We calculated total energies using B3LYP/6-31G(d) implemented in the 

Gaussian03 program, and geometry optimizations were done using the HF/3-21G* level 

of theory. The calculated frontier MO energies (HOMO and LUMO eigenvalues in the 

total energy calculation) for our fullerene-terminated OPEs 1-6 are tabulated along with 

the similar OPEs without C6o for comparison (Figure 2 and Table 1). In order to minimize 

calculation time, the propoxyl groups of 6 were replaced by methoxyl substituents for the 

calculation. The frontier MOs for the pristine C6o was also calculated to compare with our 

devices. It is clear from Table 1 that the HOMO-LUMO gaps (HLG)s of our fullerene-

terminated molecular wires 1-5 (2.75-2.77 eV) are almost identical to that of pristine C60 

(2.76 eV) even though our devices contain various functional groups with different 

electron-donating (-Et for 4), -accepting (-NO2 and -CF3 for 3 and 5, respectively) 

characters, or length of OPEs (one benzene ring for 1 and two rings for 2). This is 

unusual compared with common OPE-based devices (2ph, 3ph, 6ph, see Figure 2 for 

structures), whose HLGs vary depending on the functional groups attached to the OPE 

backbone. Only the molecule with -OMe groups (6) gave a unique HLG (2.53 eV), which 

was the smallest of all. On the other hand, reasonable correlations between these 

electron-donating or -accepting characters of functional groups and HOMO/LUMO 

energy levels are clearly observed (Figure 2). Both HOMO and LUMO levels are aligned 

in the order of increasing electron-donating characters, -NO2 < -CF3 < -H < -Et < -OMe 

groups. The molecule with the nitro group (3) has the lowest HOMO and LUMO levels, 

and the molecule with methoxyl groups (6) gives the highest energy levels for both 

HOMO and LUMO. The size of the OPE backbone has almost no effect because 

compound 1 and 2 share almost identical HOMO and LUMO levels. The HOMO and 

280 



LUMO levels of pristine C6o are deeper than that of our devices by ~0.2 eV, and this 

calculation result suggests that electron-accepting power of fullerene is reduced when it is 

functionalized. This is a physically observable phenomenon, which we and other groups 

have previously reported in the study of fullerene-OPE hybrid devices using cyclic 

voltammetry.16 The redox waves for fullerene derivatives always shift toward more 

negative potentials relative to pristine C60, possibly due to the decrease of n-

delocalization on the fullerene cage after the introduction of two sp3 carbon atoms. The 

examination of the spatial distribution of these MOs suggests that the frontier MOs in 

these fullerene-terminated molecular wires are dominated by the fullerene-related MOs. 

This can be demonstrated when these frontier MOs are plotted on molecules (Figure 3). 

Except for compound 6, all frontier MOs reside predominantly on the fullerene cage, 

giving a narrow distribution of HLGs for fullerene-terminated OPEs. 

Table 1. Molecular Orbital Energies Calculated Using B3LYP/6-31G(d) Theory3 

Energies (eV) 
Compound 

HOMO LUMO HOMO-LUMO 
gap 

C60 -5.99 -3.23 2.76 
1 -5.76 -3.00 2.76 
2(-H) -5.74 -2.99 2.76 
3 (-N02) -5.84 -3.07 2.77 
4 (-Et) -5.72 -2.97 2.75 
5 (-CF3) -5.80 -3.03 2.76 
6 (-OMe) -5.46 -2.93 2.53 
2ph -5.64 -1.72 3.92 
3ph -6.00 -2.70 3.30 
6ph -5.20 -1.59 3.61 
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"For the structures of 1-6, see Figure 1. The stuctures of 2ph, 3ph and 6ph are shown in 

Figure 2. 
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Figure 2. Calculated MO energy levels. The inset shows chemical structures for 2ph, 3ph, 

and 6ph. The structures of 1-6 are shown in Figure 1. 
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Figure 3. The HOMO and LUMO molecular orbitals of representative fullerene-

terminated OPEs. 

Ultraviolet Photoelectron Spectroscopy and Inverse Photoemission Spectroscopy 

results on Fullerene-Terminated OPE. 

The electronic structure of the fullerene-terminated OPE monolayer on the Au surface 

was examined. Figure 4 shows the distribution of the occupied and empty electronic 

states determined by the UPS and IPES, respectively. The simulated density of states 

(DOS) of the model compound (inset of Figure 4) was also plotted along with the 

experimental spectra. The simulated DOS was shifted for the best fit with the 

experimental spectra, and the vertical bars along with the DOS spectrum show the 

positions of the calculated MOs. The convolution of the MOs was performed using a 

Gaussian function with FWHM of 0.5 eV. The MO calculation was performed by 

applying B3LYP/LanL2DZ theory to the compound 2-Me-S adsorbed at the three-fold 

hollow site of the Au cluster (inset of Figure 4). The small Au cluster containing three 

gold atoms was used as the Au surface for the calculation because we are interested in the 

qualitative picture of MOs on surfaces. The strength of the small cluster approach has 

been justified with theoretical studies of self-assembled monolayers on metal surfaces.29" 

32 

During the structure optimization using the HF/LanL2DZ method, the Au-Au bond 

distances were fixed at 2.884 A and equivalent S-Au distances were maintained. All 

other parameters were allowed to relax during the structure optimization. The optimized 

molecular structure is shown in the inset of Figure 4. 
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The work function of the clean Au substrate was 5.2 eV in our work, and it was 

decreased to 4.4 eV after the SAM formation. The decrease of the work function by ~0.8 

eV is in accord with previous studies of self-assembled monolayers on metal surfaces.25'32 

The ionization potential (IP), electron affinity (EA), and bandgap (Eg) energies were 

estimated to be 5.2 eV, 3.7 eV, and 1.5 eV, respectively, from these photoelectron spectra. 

The observed UPS spectrum was broad comparing to that of the simulated DOS spectrum. 

The broadening can be a result of the strong intermolecular interactions in the SAM. Our 

previous study on fullerene SAMs revealed the existence of mixed species such as head-

to-tail assemblies due to the strong fullerene-Au and/or fullerene-fullerene interactions.16 

Thus, the observed UPS spectrum can be the sum of the signals from these mixed species 

in slightly different electronic and/or chemical environments, resulting in the rather broad 

spectrum. The observed small bandgap (1.5 eV) is noticeable, and it is presumably due to 

the unique structure of our fullerene-terminated OPEs, in which the C6o moiety can be 

connected to the Au surface through the conjugated OPE backbone. 
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Binding Energy (eV) 

Figure 4. UPS and IPES spectra of 3-Me-SAc assembled on Au surface. The inset shows 

the molecular conformation of 3-Me-S on Au cluster that was used for the simulation of 

DOS. 

Conclusions 

In this chapter, we have reported efficient synthesis routes for the generation of a 

variety of fullerene-terminated molecular wires (Figure 1). Theoretical studies using DFT 

calculations have been performed to reveal the electronic nature of those fullerene-

terminated OPEs. The calculation indicates that the frontier MOs of fullerene-terminated 

OPEs reside mainly on the fullerene cage and give the narrow distribution of HLG values 

regardless of the functional groups of the OPE moiety. The electronic structures of 
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fullerene-terminated OPEs on Au surfaces have also studied using UPS and IPES 

methods. The broad nature of the UPS and IPES spectra can be an indication of strong 

intermolecular interactions, a result which agrees with our previous findings on the self-

assembly of these fullerene-terminated molecular wires on Au surfaces.16 The observed 

small bandgap (1.5 eV) shows the unique nature of our fullerene-terminated OPEs, in 

which the C6o moiety can be coupled to the Au surface through the conjugated OPE 

backbone. 

Experimental Section 

Materials. The synthesis of compounds 1-Me-xxx, 2-Me-xxx, 8-10, and 13 have been 

detailed in the literature.16 Precursors 14a-e,21 15a,33 15e,33 16a,33 16e,33 31,22 and 3534 

were prepared according to literature procedures. Compounds 1, 2, 5-7, 11 and 12 were 

prepared as described by Y. Shirai and co-workers.38 All reactions were performed under 

an atmosphere of nitrogen unless stated otherwise. Reagent grade diethyl ether and 

tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl. Triethylamine 

(TEA) and CH2C12 were distilled over CaH2. Fullerene (99.5+% pure) was purchased 

from MTR Ltd. and used as received. LHMDS (1 M solution in THF) and TBAF (1 M 

solution in THF) were obtained from Aldrich and used as received. Flash column 

chromatography was performed using 230-400 mesh silica gel from EM Science. Thin 

layer chromatography was performed using glass plates pre-coated with silica gel 40 F254 

purchased from EM Science. Melting points were uncorrected. Ultra-sonicated fullerene 

slurry in THF was prepared in general ultrasonic cleaners. 
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Ultraviolet Photoelectron Spectroscopy (UPS) and Inverse Photoemission 

Spectroscopy (IPES). Photoemission spectroscopy of occupied and unoccupied states of 

the system was performed using a VG ESCA Lab system equipped with both UPS and 

IPES.35"37 The spectrometer chamber of the UHV system had a base pressure of 8 x 10"11 

Torr. Occupied states spectra were obtained by UPS using the unfiltered He I line (21.2 

eV) of a discharge lamp with the samples biased at -5.0 V to avoid the influence of the 

detector work function and to observe the true low-energy secondary cut-off. The typical 

instrumental resolution for UPS measurements ranges from ~ 0.03-0.1 eV with photon 

energy dispersion of less than 20 meV. Unoccupied states were measured by IPES using 

a custom-made spectrometer composed of a commercial Kimball Physics ELG-2 electron 

gun and a bandpass photon detector. IPES was done in the isochromat mode using a 

photon detector centered at a fixed energy of 9.8 eV. The combined resolution (electron + 

photon) of the IPES spectrometer was determined to be ~ 0.6 eV from the width of the 

Fermi edge measured on a clean polycrystalline Au film. The UPS and IPES energy 

scales were aligned by measuring the position of the Fermi level on a freshly evaporated 

Au film. The position of the vacuum level, E v a c , was measured for each surface using the 

onset of the secondary cut-off in the UPS spectra. The HOMO/LUMO level was 

determined directly using the onset edge in the UPS/IPES spectra instead of the peak 

value. All the measurements were done at room temperature. 

Synthesis details for all new compounds. 

General Procedure for the Coupling of a Terminal Alkyne with an Aryl Halide 

Using a Palladium-Catalyzed Cross-Coupling (Sonogashira) Protocol. To an oven-
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dried round bottom flask equipped with a magnetic stir bar were added the aryl halide, 

the terminal alkyne, PdCl2(PPh3)2 (ca. 2 mol% per aryl halide), and Cul (ca. 4 mol% per 

aryl halide). A solvent system of TEA and/or THF was added depending on the substrates. 

Upon completion, the reaction was quenched with a saturated solution of NH4CI. The 

organic layer was then diluted with hexanes, diethyl ether or CH2CI2, and washed with 

water or saturated NH4CI (lx). The combined aqueous layers were extracted with 

hexanes, diethyl ether, or CH2C12 (2x). The combined organic layers were dried over 

MgSC>4, filtered, and the solvent was removed from the filtrate in vacuo to afford the 

crude product, which was purified by column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 

General Procedure for the Addition of C60 to Terminal Alkynes Using LHMDS, in 

situ ethynylation method. To an oven-dried round bottom flask equipped with a 

magnetic stir bar was added the terminal alkyne and C60 (2 equiv per terminal alkyne H). 

After adding THF, the mixture was bath-sonicated for at least 3 h. To the greenish-brown 

suspension formed after the sonication was added LHMDS dropwise at room temperature 

over 0.5 to 1.5 h. As the reaction progressed, the mixture turned into a deep greenish-

black solution. During and after the addition of the LHMDS, small aliquots from the 

reaction were extracted and quenched with trifluoroacetic acid (TFA) or methyl iodide 

(Mel), dried, and re-dissolved in CS2 for TLC analysis (developed in a mixture of CS2, 

CH2Cl2 and hexanes). Completion of the reaction was confirmed by the disappearance of 

the starting materials. The reaction usually completed within 1.5 h from the beginning of 

LHMDS addition. Upon completion, the reaction was quenched with TFA or Mel to give 

a brownish slurry. When Mel was used, the reaction was stirred at room temperature for 
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at least 6 h. Excess TFA or Mel and solvent were then removed in vacuo to afford a 

crude product that was purified by flash column chromatography (silica gel). Eluents and 

other slight modifications are described below for each compound. 

Compound (3-Me-TMS). The compound 16b (0.15 g, 0.40 mmol) was subjected to 

the general in situ ethynylation procedure with C6o (0.22 g, 0.31 mmol), THF (120 mL), 

LHMDS (1.0 mL, 1.0 mmol), and Mel (5 mL, 80 mmol). Crude products were dissolved 

in CS2 and directly loaded onto flash column, and eluted with 100% CS2 in hexanes. The 

product was further purified using another flash column with graduated elution of 5-75% 

CS2 in hexanes then CS2: CH2C12 :hexanes (4: 1: 5) to afford the product (0.079 g, 23%) 

as a brown solid. FTIR (KBr) 2950, 2922, 2208, 1713, 1606, 1588, 1541, 1514, 1344, 

1248 cm"1 (drop cast); JH NMR (CS2:CDC13, 1:5, 500 MHz) 6 8.47 (d, J = 1.5Hz, 1H), 

7.95 (dd, J= 1.5, 8.3 Hz, 1H), 7.78 (d, J= 8.3 Hz, 1H), 7.51 (d, J= 8.6 Hz, 2H), 7.26 (d, 

J = 8.6 Hz, 2H), 3.52 (s, 3H), 3.03-2.99 (m, 2H), 0.99-0.96 (m, 2H), 0.08 (s, 9H); 13C 

TMS 
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NMR (CS2:CDC13, 1:5, 125 MHz) 5 156.6, 152.6, 149.4 (Ar), 148.0, 147.8, 146.6, 146.5, 

146.4, 146.3, 145.9, 145.7, 145.6, 145.5, 145.4, 145.01, 144.98, 144.8, 144.6, 143.2, 

142.71, 142.66, 142.21, 142.16, 142.1, 142.0, 141.7, 141.6, 140.7 (Ar), 140.4, 140.2, 

135.7, 134.7 (30 signals from sp2-C in the C60 core), 134.5, 134.2, 132.4, 128.2, 127.3, 

123.1, 119.1, 118.5, 99.8, 92.6, 85.2, 82.8, 61.7 (CCH3 in the C60 core), 59.7 (quaternary 

sp3-C in the C60 core), 33.0, 28.6, 16.6, -1.7; MALDI-TOF MS m/z (sulfur as the matrix) 

calcd for C82H23N02SSi 1114.2, found 1114.2 (At). 

Compound (4- TMS). The compound 16c (0.100 g, 0.275 mmol) was subjected to the 

general in situ ethynylation procedure with C60 (0.297 g, 0.413 mmol), THF (125 mL), 

LHMDS (0.600 mL, 0.600 mmol), and Mel (6 mL). Crude products were dissolved in 

CS2 and directly loaded onto flash column, and eluted with 1-40% CS2 in hexanes. The 

product was further purified using another flash column with graduated elution from 

hexanes to CS2:CH2Cl2:hexanes (1:3:6) to afford the product (0.093 g, 31 %) as a brown 

II 
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solid. FTIR (KBr) 2960, 1496, 1429, 1248 cm"1; NMR (CS2:CDC13, 1:5, 400 MHz) 8 

7.65 (s, 1H), 7.59 (m, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.28 (s, 1H), 3.53 (s, 3H), 2.99 (m, 

4H), 1.39 (t, J= 7.5 Hz, 3H), 0.97 (m, 2H), 0.07 (s, 9H); 13C NMR (CS2:CDC13, 1:5, 100 

MHz) 5 157.5, 153.6, 148.4, 148.0, 147.8, 146.6, 146.5, 146.4, 146.3, 146.0, 145.6, 145.5, 

142.6, 142.2, 142.1, 142.0, 141.8, 141.7, 141.6, 141.5, 140.3, 140.2, 138.7, 134.6, 134.4, 

132.2, 131.8, 131.5, 129.4, 128.0, 123.2, 122.4, 120.0, 94.9, 89.5, 88.0, 85.4, 61.8, 59.9, 

33.0, 31.6, 29.0, 27.8, 22.7, 16.7, 14.7, -1.7 ; MALDI-TOF MS mtz (sulfur as the matrix) 

calcd for C84H28SSi 1096, found 1096 (Kf ). 

Compound (4-SAc). To a round bottom flask equipped with a magnetic stirrer was 

added compound 4-TMS (32 mg, 0. 029 mmol), excess AcCl (1 mL), CH2C12 (20 mL), 

and AgBF4 (17 mg, 0.08 mmol). The reaction mixture was stirred for 1 h at room 

temperature, and then quenched with saturated NaHC03, diluted with CH2C12 and water. 

The aqueous layer was extracted with CH2C12 (xl). The combined organic layers were 

dried over MgS04, filtered, and concentrated under vacuum. Crude material was loaded 
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onto flash column using pure CS2, and eluted with hexane, CS2:CH2Cl2:hexane (1:1:3), 

and then CS2:CH2Cl2:hexane (5:2:3) to give the product 4-SAc as a brown powder (12.0 

mg, 40%). FTIR (KBr) 2963, 2923, 1709, 1495 cm'1; NMR (CS2:CDC13, 1:1, 400 

MHz) £7.64 (m, 1H), 7.57 (m, 4H), 7.41 (d, J = 8 Hz, 2H), 3.53 (s, 3H), 2.96 (q, J = 8 

Hz, 2H), 2.45 (s, 3H), 1.39 (t, J = 8 Hz); 13C NMR (CS2:CDC13, 1:1, 100 MHz) 5157.0, 

153.2, 147.9, 147.7, 146.52, 146.51, 146.4, 146.3, 146.2, 146.0, 145.6, 145.5, 145.4, 

145.3, 145.2, 145.0, 144.8, 144.7, 143.2, 142.7, 142.6, 142.2, 142.13, 142.12, 142.0, 

141.7, 141.5, 140.3, 140.2, 134.5, 134.4, 134.2, 132.3, 132.0, 131.6, 129.4, 128.4, 124.4, 

122.8, 122.7, 94.2, 89.7, 89.6, 85.3, 61.7, 59.8, 33.0, 30.2, 29.9, 27.9, 14.8; MALDI-TOF 

MS m/z (sulfur as the matrix) calcd for C8iH18OS 1038, found 1038 (Kt). 

TMS 

Compound (15b). See the general procedure for the Pd/Cu coupling reaction. The 

materials used were 14b (1.03 g, 2.98 mmol), 13 (0.615 g, 2.62 mmol), PdCl2(PPh3)2 

(0.033 g, 0.047 mmol), Cul (0.014 g, 0.074 mmol), TEA (10 mL), and THF (20 mL) at 

room temperature overnight. The residue was purified by flash column chromatography 

with 10-20% CH2C12 in hexanes to give product 15b (0.99 g, 84%) as a yellow solid. 

TMS 

I! 
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FTIR (KBr) 2954, 2211, 2163, 1588, 1542, 1499, 1346, 1249, 1089 cm"1; 'H NMR (500 

MHz, CDCI3) 58.16 (s, 1H), 7.63 (s, 2H), 7.49 (d, J= 8.5 Hz, 2H), 7.26 (d, J= 8.5 Hz, 

2H), 3.03-2.98 (m, 2H), 0.99-0.94 (m, 2H), 0.28 (s, 9H), 0.07 (s, 9H); 13C NMR (125 

MHz, CDCI3) S 149.4, 140.6, 135.8, 134.5, 132.5, 128.3, 127.6, 123.9, 118.9, 118.7, 

102.2, 99.6, 99.3, 85.3, 28.8, 16.8, -0.1, -1.5; EI-MS m/z calcd for C a ^ N O a S S i a 451.14, 

found 452.15 ([M+H]+). 

Compound (16b). To a round bottom flask equipped with a magnetic stirrer was added 

15b (0.36 g, 0.8 mmol), THF/MeOH (1:1) (30 mL), and K2C03 (0.16 g, 1.2 mmol). The 

reaction mixture was stirred for 1 h at room temperature, then quenched with water and 

diluted with hexanes. The aqueous layer was extracted with CH2CI2 (x2). Combined 

organic layers were dried over MgS04, filtered, and concentrated under vacuum. Crude 

material was filtered through a plug of silica gel using CH2Cl2/hexanes mixture to give 

the product 16b as reddish-brown solid (0.30 g, 99%). FTIR (KBr) 3288, 2951, 2209, 

1588, 1498 cm"1; lU NMR (400 MHz, CDCI3) 58.19(s, 1H), 7.66 (s, 2H), 7.50 (d, J= 6.7 

Hz, 2H), 7.26 (d, J= 6.1 Hz, 2H), 3.30 (s, 1H), 3.03-2.99 (m, 2H), 0.99-0.94 (m, 2H), 

0.08 (s, 9H); 13C NMR (100 MHz, CDC13) 5 149.4, 140.7, 136.0, 134.6, 132.6, 128.5, 
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127.6, 122.8, 119.2, 118.8, 99.5, 85.1, 81.5, 81.2, 28.8, 16.8, -1.5; EI-HRMS m/z calcd 

for C2iH2iN02SSi 379.1062, found 380.1136 ([M+H]+). 

TMS 

Compound (16c). See the general procedure for the Pd/Cu coupling reaction. The 

materials used were 14c (0.353 g, 1.506 mmol), 13 (0.498 g, 1.506 mmol), PdCl2(PPh3)2 

(0.025 g, 0.036 mmol), Cul (0.010 g, 0.053 mmol), TEA (10 mL), and THF (20 mL) at 

room temperature overnight. The residue was purified by flash column chromatography 

with 1-5% CH2C12 in hexanes to give product 15c (0.471 g, 72%) as a yellow oil. The 

solid was then transferred to a round bottom flask equipped with a magnetic stirrer 

dissolved in THF:MeOH (1:1) (30 mL), and K2C03 (0.312 g, 2.26 mmol). The reaction 

mixture was stirred for 1 h at room temperature, then quenched with water and diluted 

with hexanes. The aqueous layer was extracted with CH2C12 (xl). Combined organic 

layers were dried over MgSC>4, filtered, and concentrated under vacuum. Crude material 

was filtered through a plug of silica gel using CH2Cl2/hexanes (20%) mixture to give the 

product 16c as yellow/orange oil (0.372 g, 99%). FTIR (KBr) 3294, 2952, 1590, 1496, 

1248 cm"1; *H NMR (400 MHz, CDC13) SI.37 (m, 3H), 7.32 (d, J= 1 Hz, 1H), 7.24 (dd, 

Ji = 8 Hz, J2 = 1.5 Hz, 1H), 7.19 (d, J = 8.5 Hz, 2H), 3.09 (s, 1H), 2.95 (m, 2H), 2.8 (q, J 
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= 7.5 Hz, 2H), 1.23 (t, J= 7.5 Hz, 3H), 0.88 (m, 2H); 13C NMR (100 MHz, CDC13) S 

146.2, 138.8, 132.1, 132.0, 131.8, 129.5,128.0, 123.3, 122.0, 120.1, 94.8, 88.1, 83.8, 78.6, 

29.1, 27.7, 16.8, 14.7, -1.6; EI-HRMS m/z calcd for C23H26SSi 362.1524, found 

362.1525. 
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Figure S-6.1-2. 13C NMR Spectrum of Compound 23. 
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Figure S-6.1-4. 13C NMR Spectrum of Compound 24. 



£0£ 

•g punodmo3 jo uimpads ^NM H, ajngij 

00 
Ln 

co 

vi 
In 

4.30 

cr» 
in 

ui 
In 

tn -

fw 

UJ 
Ln 

LO 

hJ 
In 26.86 

§ 

r7.977 
r7.960 

f7.947 
1
7.945 
7.707 J 

7.462 
7.260 
7.255 
7.254 

L
7.239 
7.237 
7.172 
7.169 
7.156 
7.152 

2.701 

-1.436 

p tn 



90£ 

g punoduicQ jo uitupads Dei '9-1'9-S wnSij 

tn tn 

S 
^-152.619 

152.078 

Ul 

a 
r-j tn 
fo o 

-135.124 
-132.600 
-132.139 
-131.312 
-131.119 
-129.138 
-126.191 

3M25.213 
124.040 

-122.973 
-122.961 
-121.974 

o <-n 

vo tn 

<Ot> • tn 

—94.015 
—91.210 
r-88.685 V

87.862 
CD 
O 

Ul 

a> tn 

O 

j-77.792 

< 
77^552" 

69.275 
69.031 

-60.357 



Supporting Information for Chapter 6.2 

307 



SWI-3JM-£ punoduio3 jo uirupads "HJAIM H, 'l-r9-S 

ppm 

^8.46854 
46562 

-/-7.95708 
Is-1.94094 

—7.93758 
-^——7.78353 

7.76696 
NN-7.52311 

"VV 7.50509 
-7.26424 
7.24738 

8.9492]jr >j 

-3.52485 

-3.02625 
-2.99127 

-1.49559 

-0.99148 
-0.95656 

0.08933 
0.08270 
0.07628 
0.00008 



£0£ 

£ punoduio3 jo uinjpads HWN Dn 'Z-V9S wnSij 

TJ TJ 3. 

O 

M- O 

O- O 

CD_ O 

o 

O" 

ppm 

_^~156.639 

/

146.494 
146.320 
145.923 

-145.490 
-144.980 
-144.796 
-144.639 
-143.247 
-142.161 
-142.133 
-141.688 
-140.233 
-134.716 
-132.388 
-127.324 
-123.055 
-119.073 
-118.534 

99.792 
92.614 
85.238 
82.804 
77.299 
77.045 
76.792 

61.667 
59.706 

33.042 

28.629 

8-
16.575 

0.000 
-1.740 



ho> 

o 

Figure S-6.2-3. 'H NMR Spectrum of Compound 4-TMS. 

310 



00 • 0 
e/.'S'i • 
35'91 • 
OS'LZ • 
!.6'$Z • 
tO'EC• 
8̂'fiS-

ZL' 9/, 
16 ' 9 i . 

WU 
H'lL 
'iVLL • 
6t' 1.L • 
SS 'LL 

99 '/.;. 
Si.'a • 
68'/:./.. • 
St'58 
60'88 • 
f.s' 68 
68'H • 

66' 611 
ly'ZZT 
13'e si • 
s r m • 

jrsti 
I9'iei • 
9i.'I£[ 
is'in 
;:6'in • 
0r?CT 
if? • • 
lS'HI • 
ZL '8£T 
ZZ'OH • 
IC'OH • 
bb'If'I 
69' m -
3G" SI"X • 
Li'ZK • 
rczbl • 
i inn 
l.y'in 
60'm 
erm• 
li'Stl • 
TS'PH 
ol'WI 
srsn 
6t'?H 
9S'SS>1 • 
19' ?H 
L 0 ' 31' 
ie'9? 
SE'Sfr 
LV9H 
6P ' 
iV3S> 
06 'it 
96'm • 
tt'ESI • 

t a a 

o 
CM 

O * 

o 
co 

o 
CO 

o o 

o 
cm 

o 
<t 

o (0 

o 
00 

Figure S-6.2-4.13C NMR Spectrum of Compound 4-TMS. 
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Figure S-6.2-4.13C NMR Spectrum of Compound 4-TMS. 
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Figure S-6.2-4.13C NMR Spectrum of Compound 4-TMS. 
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Figure S-6.2-4.13C NMR Spectrum of Compound 4-TMS. 
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Figure S-6.2-4. 1 3C NMR Spectrum of Compound 4-TMS. 
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