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Abstract

Reoptimization in Interior�Point Methods with

Application to Integer Programming

by

Cassandra M� McZeal

This thesis examines current reoptimization techniques for interior�point methods

available in the literature and studies their e�cacy in a branch�and�bound framework

for ��� mixed integer programming problems� This work is motivated by the observa�

tion that there are instances of integer programming problems where each individual

linear program generated in a branch�and�bound tree can be solved much faster by

an interior�point algorithm than by a simplex algorithm� in spite of the fact that

e	ective 
warm�start� techniques are available for the latter but not for the former�

Because of many unresolved issues surrounding e	ective reoptimization techniques

for interior�point methods� interior�point algorithms have not been commonly used

as linear programming solvers in a branch�and�bound framework�

In this work� we identify and examine a number of key factors that may a	ect and

even preclude e	ective reoptimization for interior�point algorithms in the branch�and�

bound framework� including change in optimal partition� distance to optimality� and

primal infeasibility� We conclude that even though various 
warm�start� techniques

are capable of reducing the reoptimization cost to some extent� for certain prob�



lem instances a rapid reoptimization can not always be expected from interior�point

methods due to their inherent limitations�

Continued research is needed in the direction of the present study in order to

provide comprehensive guidelines for the most e	ective utilization of interior�point

algorithms in a branch�and�bound algorithm�
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Chapter �

Introduction

Integer and combinatorial optimization involves the maximization or minimization of

a linear objective function subject to a �nite number of linear constraints and subject

to integrality restrictions on a subset of the variables� These types of problems are

referred to as linear mixed�integer programs �MIPs�� Among the many applications

of discrete optimization are planning problems such as portfolio analysis� design prob�

lems such as transport network design� and political problems such as the division of

a region into electoral districts� Because linear mixed�integer programming problems

have wide applicability� solving an instance of MIP is of great interest to researchers�

Solving a linear mixed�integer programming problem means either to produce an op�

timal solution or to determine that the problem is infeasible or unbounded� Many

algorithms for solving instances of MIP are special purpose� but currently only one

algorithm is the basis of many commercial codes branch and bound�

Branch�and�bound methods generate and solve a sequence of linear programs in

order to �nd the solution to a given linear mixed�integer programming problem� The

ability to reoptimize e�ciently the next linear program from a previous one is a key

issue in a branch�and�bound code� The dual simplex method� used almost exclusively

in practice for reoptimization� enables the user to optimize the current linear program�

using information from a previous optimization� usually in only a few iterations as

compared to optimizing from scratch�

Although the dual�simplex method is typically the algorithm of choice for reop�

timizations in a branch�and�bound code� there are instances of linear mixed�integer

programming problems in which each linear program generated in a branch�and�



�

bound algorithm can be solved faster by an interior�point algorithm than by a sim�

plex algorithm� However� the issues surrounding e	ective reoptimization techniques

for interior�point methods in the branch�and�bound framework have not been fully

resolved� For example� since it is widely accepted that the optimal solution for one

problem cannot be used as the starting point in an interior�point algorithm for a per�

turbation of that problem� what type of 
warm� starting point should be used� Also�

once we determine the type of 
warm� starting point� is it clear that this point can

be found� This thesis examines current reoptimization techniques in the literature

for infeasible primal�dual interior�point methods and evaluates their e�cacy in the

branch�and�bound framework in order to address these questions� The study shows

that a rapid reoptimization should not always be expected and identi�es a number of

factors that a	ect the e�ciency of reoptimization�

The thesis is organized as follows� In the remainder of Chapter �� Section ��� pro�

vides formal de�nitions of a linear mixed�integer programming problem and of related

terminology� A complete description of the branch�and�bound algorithm comprises

Section ���� The infeasible primal�dual interior�point framework studied in this work

as well as related terminology are de�ned in Section ���� Chapter � provides an

overview of reoptimization techniques for interior�point methods from the literature�

Chapter � describes the warm�start techniques implemented in this work� Chapter �

describes the set of mixed�integer programming problems tested� Chapter � outlines

the key factors a	ecting reoptimization studied in this work and motivates our nu�

merical tests� Chapter � describes the numerical tests and gives the results of these

tests along with some discussion about the results� Finally� concluding remarks can

be found in Chapter ��



�

��� Linear Mixed�Integer Programming

The linear mixed�integer programming �MIP� problem can be de�ned as follows

min cTx � hTy �����

st Ax � Gy � b

x � Zn�
�

y � Rn�
�

where c � Rn�� h � Rn�� b � Rm� A � Rm�n� � G � Rm�n� �

The set S � fx � Zn�
� � y � Rn�

� � Ax � Gy � bg is called the feasible region� and

an �x� y� � S is called a feasible solution� If S �� �� then the problem is said to be

feasible� The function z � cTx � hTy is the objective function� and an �x� y� � S for

which this function is optimized is called an optimal solution� If �x�� y�� � S is an

optimal solution� then z� � cTx��hTy� is the optimal value of the solution� A feasible

instance of MIP may also have no optimal solution� a situation that indicates that

the problem is unbounded� An instance of MIP is unbounded if for every real number

there exists a feasible solution for which the objective function value is smaller than

that number�

Two special cases of the MIP problem deserve notice� When none of the variables

is restricted to hold integer values� then the problem is a linear programming problem�

Conversely� when all of the variables are restricted to hold integer values� then the

problem is a pure integer programming problem�



�

��� Branch and Bound

Land and Doig ��� developed the �rst branch�and�bound algorithm for MIP in �����

Branch and bound can be described as an enumerative relaxation algorithm for solving

instances of MIP� In this algorithm� a divide�and�conquer approach is taken� The

feasible region S is divided into k smaller sets such that S � �k��i�� S
i� and a relaxation

of the problem is solved over each of these sets� The divisions used in a branch�and�

bound algorithm can be represented in a branch�and�bound search tree as shown in

Figure ���� For example� in this tree S� is a parent node and the smaller sets into

which it is divided� S��� S��� and S��� are its children nodes� Likewise� S�� is a parent

node whose children nodes are S��� and S����

S 02 S 03S 01

S

S S

0

021 022

Figure ��� A branch�and�bound search tree in which S� is a
parent node and S��� S��� and S�� are its children nodes�

Dividing the feasible region into a number of subsets whose union is the feasible

region is valid since

minfcTx � hT y  �x� y� � Sg � mink��i�� fminfcTx � hTy  �x� y� � Sigg�
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The divisions are used to enforce the integrality of the integer variables so that over

each Si it is not necessary to solve the smaller MIPs created� but only their relaxations�

linear programs� The branch�and�bound algorithm used in this work is as follows

Algorithm ��� �Branch and Bound�

Given p � fmin cTx � hTy  �x� y� � Sg where S � fx � Zn�
� � y � Rn�

� � Ax �

Gy � bg� let zup � ��� z�lo � ��� P � fpg� and S� � S� While P �� � do the

following

��� Select and delete a problem pi from P �

��� Solve a relaxation of pi � fmin cTx � hTy  �x� y� � Sig for �x� y�i

with optimal value zi� if one exists�

��� If pi is infeasible� then go to step ���� If zi � zup� then go to step

���� If x of �x� y�i is not integral� then go to step ���� Otherwise �pi is

feasible� zi � zup� and x of �x� y�i is integral�� set zup � zi and delete

all problems pj from P with zjlo � zup and go to step ����

��� Let fSijgk��j�� be a division of Si� Add problems fpijgk��j�� to P� where

zijlo � zi� Go to step ����

At the end of this algorithm� the set P of problems de�ned over each division

is empty� and if zup � �� then �x� y�k which yielded zup is an optimal solution� If

zup � �� then the MIP problem is infeasible�

��� Infeasible Primal�Dual Interior�Point Method

Although the branch�and�bound algorithm can be stated as a step�by�step process�

there are many aspects to consider when formulating a branch�and�bound code�

Deciding how to divide the feasible set and in what order to solve the problems
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over these divisions are two such considerations� One of the most computationally

important aspects involves solving the linear programs�

Consider the following linear programming problem

min cTx �����

st Ax � b

� � x � u

where x� u� c � Rn� b � Rm� A � Rm�n �m � n� and A has rank m� This is

referred to as the primal problem� By adding the slack variables to the second set of

constraints on x� we can convert ����� to standard form

min cTx �����

st Ax � b

x � s � u

x � �

s � �

where s � Rn�

A dual of this problem is

max bT y � uTw �����

st ATy � z � w � c

z � �

w � �
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where y � Rm� and z� w � Rn� The variables y and w are known as the dual variables

and z as the dual slack variable�

The optimality conditions for a solution to the primal and dual problems can

be stated as a special case of the optimality conditions for general constrained opti�

mization� These conditions for optimality of a solution� which are called the Karush�

Kuhn�Tucker �KKT� conditions� consist of a system of linear�quadratic equations with

nonnegativity constraints on some variables� That is� �x�� s�� is a solution to ����� and

�y�� z�� w�� is a solution to ����� if and only if the following holds for �x�� s�� y�� z�� w��

F �x� s� y� z� w� �

�
BBBBBBBBBBBBB�

Ax� b

x � s� u

ATy � z � w � c

XZe

SWe

�
CCCCCCCCCCCCCA

� �

�x� z� s� w� � �

where X � diag�x�� Z � diag�z�� S � diag�s�� W � diag�w� and e is the n�vector of

all ones�

Primal�dual interior�point methods apply variants of Newton�s Method to the

KKT conditions in order to �nd primal�dual solutions �x� s� y� z� w�� A primal�dual

solution is a point �x� s� y� z� w� such that �x� s� solves ����� and �y� z� w� solves ������

These methods also modify search directions and step lengths so that the nonnega�

tivity constraints� �x� z� s� w� � �� are strictly satis�ed at each iteration� Newton�s

Method for systems of nonlinear equations can be de�ned as follows

Algorithm ��� �Newton	s Method for Systems of Nonlinear Equations�

Given F  Rn 	 Rn continuously di	erentiable and v� � Rn� At each iteration

k until jjF �vk�jj is 
small��
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��� F ��vk�!vk � �F �vk�

��� vk�� � vk � !vk�

Under standard conditions� we know that Newton�s Method is a highly e	ective

method for solving F �x� s� w� z� y�� If started close enough �problem dependent� to

the solution� Newton�s Method gives Q�quadratic convergence� Convergence is not

assured in general� however� if Newton�s Method is started too far away� The instance

of primal�dual interior�point methods used here can be described as the perturbed

and damped composite Newton�s Method�

The dampening is introduced in equation ���� A step length �k is used to facilitate

global convergence

vk�� � vk � �k!vk�

Additionally� by using the composite Newton�s Method we can increase the con�

vergence rate of the algorithm to Q�cubic without incurring a substantial amount of

extra work� In this variant of Newton�s Method� an intermediate point "v is calculated

and the same Jacobian is used twice

F ��vk�!"v � �F �vk�� "v � vk � !"v

F ��vk�!vk � �F �"v�� vk�� � "v � !vk�

Ensuring the nonnegativity of the iterates ��x� z� s� w� � �� is an issue that can

not be ignored when using Newton�s Method to solve linear programming problems�

It is well�known that if any variable involved in a complementarity pair is allowed to

have value zero� then that variable will stay at zero in all subsequent iterations of

Newton�s Method �commonly called 
sticking to the wall��� Thus� it is necessary not

only to maintain nonnegativity� but also strict positivity� Also� it is computationally
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advantageous to avoid any variable attaining a positive value that is prematurely too


small�� To address this problem� a perturbation parameter � is introduced in the

complementary equations� XZe � �� SWe � �� at each iteration� Thus� we have

XZe� �e � ��

SWe� �e � �

where � converges to zero in a controlled manner�

The arc of strictly feasible points parameterized by � is called the central path and

is de�ned as follows

C � f�x�� s�� z�� w��j� � �� �x�� s�� z�� w�� � F�� XZe � �e� SWe � �eg

where

F� � f�x� s� y� z� w�jAx � b� x � s � u�ATy � z � w � c� �x� s� z� w� � �g�

The set F� is referred to as the primal�dual strictly feasible set and is a subset of the

feasible set

F � f�x� s� y� z� w�jAx � b� x � s � u�ATy � z � w � cg�

A point �x� s� y� z� w� is called strictly feasible if it is in F�� If C converges to any

point as � converges to zero� then it converges to a primal�dual solution of the linear

programming problem�

The optimal partition is de�ned by two index sets B and N � For any optimal

solution �x�� s�� y�� z�� w�� to a given linear program� if we let "x� � �x�� s�� and "z� �

�z�� w��� then

B � fi � �� ���� �nj "x�i ���g

and

N � fi � �� ���� �nj "z�i ���g�
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These sets are invariant over the interior of the solution set whenever the solution set

is not a singleton�

The sets B and N form a partition of the index set f�� �� ���� �ng� each index

i belongs to either B or N but not both� It is clear from an examination of the

complementarity equations of the KKT system

Xz � �

Sw � �

that B and N are disjoint� The result B�N � f�� �� ���� �ng is know as the Goldman�

Tucker theorem ��� � Primal�dual solutions that are strictly feasible are known as

strictly complementary solutions� and the Goldman�Tucker theorem ��� guarantees

that at least one such solution exists� A primal�dual solution is called degenerate if

it is not strictly complementary�

Kojima� Mizuno� and Yoshishi ��� �rst introduced the use of a perturbation

in a primal�dual interior�point algorithm� The algorithm they described required a

nonnegative feasible starting point� in many cases a prohibitive requirement� However�

Lustig� Marsten� and Shanno ��� later show that the algorithm introduced by Kojima�

Mizuno� and Yoshishi can be modi�ed so that an infeasible starting point can be used�

The state�of�the�art infeasible interior�point algorithm� described by Mehrotra ��� �

is called the predictor�corrector method and is an enhanced version of the infeasible

interior�point algorithm introduced by Lustig� Marsten� and Shanno ��� � Tapia�

Zhang� Saltzman and Weiser ��� show that Mehrotra�s method can be seen as a

modi�cation of the perturbed damped composite Newton�s Method�

If we de�ne #e to be the vector in Rm��n such that the �rst m � �n components

are zero and the last �n are one� then the algorithmic framework for the infeasible
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primal�dual interior�point method �Mehrotra�s predictor�corrector algorithm� can be

seen as follows

Algorithm ��� �Infeasible Predictor�Corrector Interior�Point Algorithm�

Given v� � �� at each iteration k until jjF �vk�jj is 
small��

��� Solve F ��vk�!"v � �F �vk� for !"v�

��� Set "v � vk � !"v�

��� Choose �k � ��

��� Solve F ��vk�!vk � �F �"v� � �k#e for !vk�

��� Choose �k � ��� � �

��� Set vk�� � vk � �k�!"v � !vk��

The implementation details of this algorithm such as the starting point� the stop�

ping criteria� and the computation of certain parameters have been intentionally

omitted at this point� Chapters � and � will outline many of the particulars of each

of these issues relevant to this work� The next chapter will give some background on

some existing methods used to �nd starting points that utilize information from a

previous optimization for interior�point algorithms�
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Chapter �

Reoptimizing the Linear Programming

Subproblems

In ����� Karmarkar ��� introduced the use of interior�point methods as an e	ective

computational tool for solving linear programming problems� Interior�point methods

generate iterates that travel through the interior of the feasible region in order to

�nd an optimal solution� Until this time� the simplex method� introduced by Dantzig

��� in ����� had been the primary method for solving linear programs� Unlike an

interior�point method� the simplex method systematically examines the vertices of

the feasible region in an e	ort to �nd an optimal solution�

Associated with the simplex method �referred to as the primal�simplex method�

introduced by Dantzig is the dual�simplex method� introduced by Lemke ��� in �����

which applies the simplex method to the dual linear programming problem as op�

posed to the primal linear programming problem� The dual�simplex method can be

used to �nd quickly a new optimal solution after certain changes have been made to

a previously solved problem� Fixing to one bound or another a fractional variable

in a solution to a parent node problem to create a child node problem� as is done

in a branch�and�bound algorithm� is one such change that can be handled e�ciently

by the dual�simplex method since the parent optimal solution remains dual feasi�

ble� However� how to e	ectively reoptimize using an interior�point algorithm after

changing a problem remains unresolved�

In ����� Gondzio and Terlaky ��� divide the reoptimization techniques attempted

for interior�point methods into three categories shifted�barrier function methods

�Freund ��� � ������ modi�ed barrier function methods �Polyak ��� � ������ and per�
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turbation methods �Lustig� Marsten and Shanno ���� �� � ���� and ������ Additionally�

Borchers �� in ���� described a method designed speci�cally for use in a branch�and�

bound code� More recently in ����� Gondzio ��� designed a reoptimization method

for a cutting�plane scheme� Each of the next �ve sections will give an overview of

these methods�

��� Shifted�Barrier Methods

Freund ��� examines the theoretical e�ciency of a shifted�barrier function algorithm

for solving

min cTx

st Ax � b

x � ��

The shifted�barrier function method described solves a sequence of shifted�barrier

problems Sh��� of the form

Sh���  minx cTx� �
nX

j��

ln�xj � �hj�

st Ax � b

x � �h � �

where h is a given and �xed strictly positive shift vector and for a sequence of values

� � � that converge to zero� Freund points out that the main advantage of using the

shifted�barrier problem Sh��� to solve a linear program is that the algorithm used can

be initiated with a 
warm start�� A 
warm start� in this context means a guess of

the solution #x to the linear program that is perhaps not feasible �meaning that either

Ax�� b or x�� � or both� but is possibly very close to the optimal solution� The author
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shows that if one is given an approximate center point of the dual feasible region of

the problem to be solved� along with the initial guess #x� then the shift vector h can be

chosen in such a way that establishes the theoretical e�ciency of the shifted�barrier

algorithm�

In a later paper� Freund ��� extends the shifted�barrier function approach and

constructs a potential function for which he describes a potential�function reduction

algorithm� The potential function is given by

F �x�B� � q ln�cTx�B��
nX

j��

ln�xj � hj�c
Tx� B��

where q � n� n���� h is a given strictly positive shift vector� and B is a lower bound

on the optimal value of the linear program� The algorithm developed solves the linear

program directly from an infeasible 
warm start�� A 
warm start� #x in this context

means that A#x � b� but #x ����

In both of these algorithms� Freund attempts to deal with the issue of keeping

the iterates nonnegative� Instead of forcing the iterates to be nonnegative at every

iteration� he allows them to attain temporarily negative values while gradually moving

the iterates back into the positive orthant�

��� Modi�ed Barrier Function Method

Like Freund� Polyak ��� devises a Newton Modi�ed Barrier Function Algorithm that

also attempts to address the issue of allowing negative iterates before convergence�

Here the author replaces the nonnegativity conditions

x � � and z � �

with

x � � e � � and z � � e � �
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where � is some positive scalar and e is the vector containing all ones�

In a later paper ��� � the author shows theoretically that for the Newton Modi�ed

Barrier Function Algorithm there exists a 
hot start� point from which the algorithm

has a better rate of convergence for nondegenerate problems� This 
hot start� point is

not used for reoptimizations� but is realized during the solution process� Also� Jensen�

Polyak and Schneur ��� show numerically that the algorithm attains this 
hot start�

point�

��� Perturbation of Optimal Solution

Lustig� Marsten and Shanno ��� examine starting and restarting the infeasible primal�

dual interior�point method� For restarting� the problem set they examine is the

DINAMICO model from Manne ��� � An example of this model can be found in

NETLIB ��� as stair� Lustig� Marsten� and Shanno ��� examine solving several

linear programs that di	er only in the objective function used� The authors solve a

base�case linear program and use the solution from this linear program to solve the

others� The optimal solution from the base case is perturbed so that any components

of nonnegative primal and dual variables that fall below a given threshold � are set

to �� �They set � � ����� The algorithm then adjusts � and solves to optimality� The

authors report a �fty�percent or better reduction in the number of iterations required

to start from this perturbed solution than from a 
cold start��

In a later paper� Lustig� Marsten and Shanno ��� proposed a variant of this earlier

algorithm� Again� they propose to shift small nonnegative primal and dual variable

values to larger positive values� The authors implement the idea of a shift vector as

is used in the shifted�barrier function method by Freund ��� � They derive a speci�c

shift vector to be applied to the nonnegative variables that is based on scaling the

constraint matrix A� Additionally� the authors scale the shift vector so that once the
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nonnegative iterates are perturbed they lie in a critical neighborhood N as de�ned

by Kojima� Megiddo� and Mizuno ��� �

��� Early Termination

In his thesis� Borchers �� implements an experimental branch�and�bound code that

uses a primal�dual interior�point method to solve the linear programming subprob�

lems generated� A heuristic is described for detecting fractional variables before the

completion of the optimization process of each relaxation� and a warm�start heuristic

based on the work of Lustig� Marsten� and Shanno ��� is used� The fractional vari�

able detection heuristic is based upon Tapia�s indicators studied by El�Bakry� Tapia�

and Zhang ��� � These indicators are designed to detect the zero�nonzero partition

of variables as they converge towards optimality in the primal�dual interior�point al�

gorithm� Borchers uses these indicators to detect whether or not a binary variable

xi and its complement � � xi are tending toward a nonzero value� If so� then the

author assumes that the variable will be fractional at optimality� Thus� branching

will be necessary� and the optimization can be terminated early� In order to end the

optimization early� the author also requires that the primal and dual feasibility and

duality gap are within a certain range and that the binary variables are neither zero

nor one�

The solution to the parent node that is found using the early termination proce�

dure is used as the initial solution for the child node in the branch�and�bound search

tree� To reoptimize the child nodes in the branch�and�bound tree� Borchers uses the

idea of perturbation introduced by Lustig� Marsten� and Shanno ��� � The centering

parameter is then calculated as a function of the infeasibility introduced� In later

papers� Mitchell ���� ��� �� extends this work by showing that the dual slack values

generated in an interior�point algorithm can be used to �x binary variables to their
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bounds in the same manner that the reduced costs are used to �x variables in the

simplex method�

��� Centered Iterate

Gondzio ��� develops a procedure for reoptimizing the sequence of linear programs

generated by a cutting�plane scheme �see Chv�atal �� �� The author suggests that

di�culties arising from reoptimizing interior�point methods stem from the use of a

near optimal solution as the starting point for the next optimization� Gondzio points

out that a near optimal solution is in most cases too near the boundary and therefore

makes a particularly di�cult starting point� He also suggests that merely perturbing

a solution as had been done by Lustig� Marsten� and Shanno ��� � Borchers �� � and

Mitchell ���� ��� �� is not su�cient for obtaining a good starting point�

Instead of using the �nal solution to one optimization as the starting point for

the next� Gondzio proposes dividing the solution process into two phases� In the

�rst phase� a point thought to be good for the next reoptimization is identi�ed� and

from this point the current optimization is completed� The author refers to the point

generated in the �rst phase as a 
close�to�optimality approximate analytic center�

because the point is nearly feasible and has well�balanced complementarity products�

The next chapter will focus on the details of this method and introduce a method

for �nding such a point for use within a infeasible predictor�corrector primal�dual

interior�point framework�
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Chapter �

Reoptimization Methods Implemented

��� Centered Iterate

����� Background

Gondzio ��� implements a warm�start procedure for use in an infeasible primal�dual

interior�point algorithm when solving the restricted master problem from a column

generation technique �see Chv�atal �� ��

The author is concerned with the following problem

min $cT $x �����

st $Ax � b

$x � �

where $c� $x � RN � b � Rm� and $A � Rm�N � The number of variables� N � is assumed

to be much larger than the number of constraints� m� In fact� all the columns in the

matrix $A may not be given explicitly� and N can be in�nite� This problem is referred

to as the full master problem� To handle the di�culties arising from not having a

complete representation of the full master problem� the strategy taken in a delayed

column generation technique is to work with only relatively few columns at a time

and generate more as needed� Thus� a restricted master problem�
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min cTx �����

st Ax � b

x � �

where c� x � Rn� b � Rm� and A � Rm�n� is solved� In this restricted master

problem� n 
 N and A is a submatrix of $A� Once a solution to this problem

is found� information from the dual solution is used to append more columns to A�

This process is repeated until an optimal solution is found for the full master problem

����� or no further columns can be found�

Adding columns in this way to the restricted master problem ����� is equivalent

to adding rows �or cutting planes� to the dual problem

max bT y �����

st ATy � c

where c � Rn� b� y � Rm� and A � Rm�n� Because a 
good� dual solution that is

su�ciently close to optimality is needed in order to make wise choices for columns

�rows� to add to A �AT �� Gondzio elects to use a primal�dual interior�point algorithm

applied to the dual problem within the cutting�plane scheme to solve the full master

problem� In a cutting�plane algorithm� a linear program is solved and the solution

is examined� If the solution does not meet optimality criteria� then constraints or

cuts are generated that this solution violates� These constraints are added to the

constraint matrix� and the problem is reoptimized� This process is repeated until

optimality or until no further constraints can be generated�

Since� like branch and bound� a cutting�plane method involves solving a sequence

of linear programs� Gondzio is interested in e	ective reoptimization techniques for
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the primal�dual interior�point algorithm� Unlike other reoptimization techniques�

Gondzio�s method does not attempt to use an optimal or near�optimal solution �or a

perturbation of such a solution� as the starting point� He calls the starting point that

he uses a close�to�optimality approximate analytic center
 Gondzio de�nes 
close to

optimality� as a solution that has � to � digits of accuracy and expects that from

such a point optimality would be reached in only a few iterations� By 
approximate

analytic center� the author is referring to a point that is nearly primal and dual

feasible� and the di	erence between the minimum and maximum of the products in

the complementarity equations is not 
large��

In order to �nd a close�to�optimality analytic center� Gondzio proposes to divide

the optimization into two phases� In the �rst phase� the algorithm iterates until a

solution that �ts the criteria for a close�to�optimality analytic center is found and

saved for future use a warm start� In the second phase� the algorithm continues the

optimization process until the conditions for optimality of the problem are met�

Gondzio�s reoptimization technique is applied in the context of the multiple cen�

trality corrections primal�dual interior�point algorithm ��� � Like Mehrotra�s predictor�

corrector method introduced in Chapter �� the multiple centrality corrections algo�

rithm is based on Newton�s Method� and the Newton direction taken is computed in

two parts� The �rst part of the step taken in each iteration is the a�ne�scaling step

which does not include the barrier parameter �� In the second part� � is chosen and

the computation of a 
corrector� term for the a�ne direction is an iterative process

that is repeated a number of times that is determined heuristically� These corrector

terms are designed to improve the centrality of the next iterate and increase the step

sizes in the primal and dual spaces by encouraging iterates not to fall on the central

path� but to lie in a loose neighborhood of the central path� Gondzio does this by
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changing the perturbation vector �e in the complementarity equations�

XZe� �e � ��

based on the belief that requiring the iterates to go to the central path is too high a

goal to be attainable without a new factorization�

De�ne #e to be the vector in Rm��n such that the �rst m� n components are zero

and the last n are one� Let 	�ajB� where a � Rp and B � Rp be the component�wise

projection of a onto B� Also de�ne C � �
�� 
� 
p as a hypercube in Rp whose sides

are of length 
� � 
�� Using these de�nitions� the framework for Gondzio�s multiple

centrality corrections method can be seen as follows

Algorithm ��� �Multiple Centrality Corrections Interior�Point Algorithm�

Given �x�� y�� s�� � �� at each iteration k until jjF �xk� yk� sk�jj� is 
small��

��� Solve F ��xk� yk� sk�!p � �F �xk� yk� sk� for !p�

��� Choose �p�

��� Compute ! and choose ��

While j � J do

�a� Set �"x� "y� "z� � �xk� yk� sk� � �p!p�

�b� Choose � � �

�c� Set vt � 	� "X"zjH� � Rn where H � ��min�� �max� �n

�d� Solve F ��xk� yk� sk�!m � �F �"x� "y� "z� � �vt � "X"z�#e for !m�

�e� Choose � for the composite direction ! � !p � !m

�f� If � � �p � � where � is an 
acceptable� increase in step size�

then j � j � � and !p � !�

�g� Else ! � !p and j � J �
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��� Set �xk��� yk��� sk��� � �xk� yk� sk� � �!�

For the details of this algorithm including parameter settings� the reader is referred

to Gondzio ��� �

In order to save a future warm start in the multiple centrality corrections frame�

work� Gondzio modi�es Step ��b� of the algorithm� Once the relative duality gap

of the current iterate falls below a speci�ed tolerance� � is set equal to a fraction of

the average value of the pairwise complementarity products� The value of � is not

changed until a warm start is found� After � has been �xed� an iterate is considered

a warm�start point when the relative primal and dual feasibilities have fallen below

a certain tolerance and when all of the complementarity pairs fall between #�min�

and #�max�� Note that #�min and #�max di	er from �min and �max used earlier and

are� in fact� more restrictive than the earlier parameters since according to Gondzio

a tighter neighborhood increases the quality of the warm�start point saved� Also�

�min � ��max� Once the point to be used for future warm starts has been saved� �

is recomputed as before and the algorithm continues to proceed toward optimality�

����� Centered Iterate Method Implementations

In this thesis� we are concerned with starting and restarting problems ����� and �����

within an infeasible predictor�corrector interior�point method� As the previous section

detailed� Gondzio�s reoptimization technique is applied in the context of his multiple

centrality corrections interior�point algorithm� However� we can �nd within an infea�

sible predictor�corrector interior�point algorithm a warm�start point that satis�es the

criteria for a 
good� warm�start point as outlined by Gondzio in ��� �

To accomplish this modi�cation� we add to the infeasible predictor�corrector

interior�point method a procedure for �nding a warm�start point satisfying Gondzio�s
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criteria� This procedure begins once the relative duality gap of the current iterate falls

below a speci�ed tolerance� The perturbation parameter #� is �xed within the pro�

cedure� and Newton steps are iteratively taken until a warm�start point is attained�

The length of each step is chosen in a line�search with backtracking framework� The

merit function � in the line�search algorithm is de�ned as

��xk� sk� yk� zk� wk� � �n
min�Xz� Sw�

�xk�T zk � �sk�Twk

Once this warm�start point is found� we return to the infeasible predictor�corrector

algorithm and proceed to optimality� Algorithmically� the method can be seen as

follows

Method ��� � Centered Iterate Method ��

At each iteration of the infeasible interior�point algorithm� if jcTxk � bT yk �

uTwj�jcTxkj � �� � �g and a warm�start solution �xws� sws� yws� zws� wws� has

not been saved� then set #� � #���xk�T zk��sk�Twk��n� let vk � �xk� sk� yk� zk� wk�

and do

��� If

jjAxk � bjj��� � jjxkjj�� � �p�

jjATyk � zk � wk � cjj��� � jjykjj� � jjzkjj� � jjwkjj�� � �d�

�min #� � xizi � �max #��

and

�min #� � siwi � �max #�

then set �xws� sws� yws� zws� wws�� �xk� sk� yk� zk� wk�� save the warm start

and go to Step �

��� Solve for the step !vk

F ��vk�!vk � �F��vk�



��

��� Choose �k � ��� �� and set �k � min��� �k $�k� where

$�k �
��

min��Xk���!xk� �Sk���!sk� �Zk���!zk� �W k���!wk�

��� Let vk�� � vk � �kv
k� While ��vk��� � ��vk� do

����� �k � ��k for � � �l� u 

����� Go to step ��

��� Go to Step �

��� Return to interior�point algorithm

As Gondzio suggests in ��� once the relative duality gap�

jcTxk � bTyk � uTwj�jcTxkj� ���

falls below �g� #� is set equal to a fraction of the average value of the pairwise comple�

mentarity products�

#���xk�Tzk � �sk�Twk��n�

The perturbation parameter #� stays at this value for subsequent iterations until the

relative primal feasibility�

jjAxk � bjj��� � jjxkjj���

and relative dual feasibility�

jjATyk � zk � wk � cjj��� � jjykjj� � jjzkjj� � jjwkjj��

fall below �p and �d� respectively� and the centrality conditions

�min #� � xizi � �max #�

and

�min #� � siwi � �max #�



��

are satis�ed�

Our numerical tests showed that the best setting for the parameters �g and #� is

�� The tests also show that the primal feasibility requirement should be not be very

stringent� so �p is set to �� Notice that for warm�start nodes in a branch and bound

tree� dual feasibility is satis�ed� As suggested by Gondzio� �min and �max are set to

�
�

and �� respectively�

In Step � of the algorithm� the step length �k is chosen in each iteration by a ratio

test �where � � is as ������� and then scaled so that the next iterate lies inside the

neighborhood

N � f�x� y� z� s� w�  �x� z� s� w� � ��min�Xz� Sw� � ��
xT z � sTw

�n
g

where �� is chosen by default as ����� The set N is a neighborhood of the central

path� and points in N are guaranteed to be positive�

For the ratio test� we compute #�k such that

�#x� #s� #z� #w� � �xk� sk� zk� wk� � min��� #�k��!xk�!sk�!zk�!wk�

is either positive in the case #�k � � or on the boundary of the nonnegative orthant

in the case that #�k � ��

The step length is then scaled by �� if necessary� in a backtracking framework such

that

�xk��� sk��� yk��� zk��� wk��� � �xk� sk� yk� zk� wk� � �k�!xk�!sk�!yk�!zk�!wk�

is in N where �k � �#�k� The parameter � is decreased� if necessary� by a predeter�

mined factor until

��xk��� sk��� yk��� zk��� wk��� � ��xk� sk� yk� zk� wk��
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The next version of the centered iterate idea aims to examine the e	ect that a

change in proximity measure has on the performance of the reoptimization technique�

A proximity measure is a distance function that measures the distance between a

feasible point and either the central path or a point on the central path� Recent work

by Gonz%alez�Lima� El�Bakry� and Tapia ��� indicates that the choice of proximity

measure can make a computational di	erence when approaching the central path� To

test this idea in the context of reoptimization techniques� we change the central path

proximity measure from the one suggested by Gondzio to the l� proximity measure�������
�

#�

�
B� Xz

Sw

�
CA� e

�������
�

�

We also change the associated merit function � to

��x� s� y� z� w� � kF��x� s� y� z� w�k���

The second centered iterate method can be seen algorithmically as follows

Method ��� � Centered Iterate Method ��

At each iteration of the infeasible interior�point algorithm� if jcTxk � bT yk �

uTwj�jcTxkj � �� � �g and a warm�start solution �xws� sws� yws� zws� wws� has

not been saved� then set #� � #���xk�T zk��sk�Twk��n� let vk � �xk� sk� yk� zk� wk��

and do

��� If

jjAxk � bjj��� � jjxkjj�� � �p�

jjATyk � zk � wk � cjj��� � jjykjj� � jjzkjj� � jjwkjj�� � �d�

and �������
�

#�

�
B� Xz

Sw

�
CA� e

�������
�

� �
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then set �xws� sws� yws� zws� wws�� �xk� sk� yk� zk� wk�� save the warm start

and go to Step �

��� Solve for the step !vk

F ��vk�!vk � �F��vk�

��� Choose �k � ��� �� and set �k � min��� �k $�k� where

$�k �
��

min��Xk���!xk� �Sk���!sk� �Zk���!zk� �W k���!wk�

��� Let vk�� � vk � �kv
k� While ��vk��� � ��vk� � 
�kr��vk�T!vk do

����� �k � ��k for � � �l� u 

����� Go to step ��

��� Go to Step �

��� Return to interior�point algorithm

As before� in Step � of this algorithm the step length �k is chosen in each iteration

by a ratio test� In Step � this �k is then scaled� if necessary� so that the next iterate

is deemed 
acceptable� by our merit function ��

The step length is scaled by � in a backtracking framework such that

��vk��� � ��vk� � 
�kr��vk�T!vk

where vk � �xk� sk� yk� zk� wk� and !vk � �!xk�!sk�!yk�!zk�!wk��

The parameter settings for �g� #�� and �p are the same as in the Centered Iterate

Method �� The parameter � is set to �
�
�

In the next section we we show how convergence to a 
well�centered� warm start

can be proven for the Centered Iterate Method ��



��

����� Convergence Theory for Centered Iterate Method �

In this section� we show that the inner loop de�ned by the Centered Iterate � Method

terminates with a point �xws� sws� yws� zws� wws� such that

�������
�

#�

�
B� Xwszws

Swswws

�
CA� e

�������
�

� �

for �xed #��

First� recall the perturbed KKT conditions for the problems we are considering

F��x� s� y� z� w� �

�
BBBBBBBBBBBBB�

Ax� b

x � s� u

ATy � z � w � c

XZe� �e

SWe� �e

�
CCCCCCCCCCCCCA

� ��

We would like to �nd a point that is nearly on the central path parameterized

by � of the feasible region of the problem that we are solving� That is� we would

like a point that is near an �#x� #s� #y� #z� #w� such that F��#x� #s� #y� #z� #w� � � for �xed #��

As is standard in nonlinear optimization� we transform the problem of solving the

system of equations F��x� s� y� z� w� � � into the problem of minimizing the function

kF��x� s� y� z� w�k�� and then apply a globalization strategy within Newton�s Method�

The globalization strategy that we use is the method of line searches with backtrack�

ing� The merit function in the line search with backtracking strategy outlined in Step

� of the Centered Iterate Method � is de�ned as

��x� s� y� z� w� � kF��x� s� y� z� w�k���

and as the following lemma shows the steps taken in the algorithm are a descent

direction for this function�

-



��

Lemma ��� Consider � � � �xed� then �!xk�!sk�!yk�!zk�!wk�T

generated by the Centered Iterate Method � is a decent direction for the

merit function

��x� s� y� z� w� � kF��x� s� y� z� w�k���

Proof� Let v � �x� s� y� z� w�T and !vk � �!xk�!sk�!yk�!zk�!wk�T �

then

r��v�T �!vk�T � ���F
�

��v�F��v��T ��F
�

��v����F��v��

� ���F��v��TF��v�

� ��kF��v�k�� � �

and the property follows� �

Next� we need to show that the norm of the steps taken in the algorithm

k�!xk�!sk�!yk�!zk�!wk�k�

are bounded�

Lemma ��� Consider � � � �xed and let f�xk� sk� yk� zk� wk�g be gen�

erated by the Centered Iterate Method �� Assume

�a�� min� 	Xk 	Zke

��	xk
T 	zk


� �
�n

where $x � �x� s� and $z � �z� w� for all k and some


 � ��� ���

�a�� f�xk� sk� zk� wk�g is bounded�

�a�� A has full rank�

Then�

k�!xk�!sk�!yk�!zk�!wk�k� � C � ��
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for all k � � and some C�

Proof� Consider

F
�

��x� s� y� z� w� �

�
BBBBBBBBBBBBB�

A � � � �

X S � � �

� � AT I I

Z � � X �

� W � � S

�
CCCCCCCCCCCCCA
�

which is bounded on f�xk� sk� zk� wk�g since every submatrix is bounded�

This along with assumptions �a��� �a��� and �a�� implies that �F
�

��x� s� y� z� w����

exists and is bounded on the sequence�

Let vk � �xk� sk� yk� zk� wk�T and !vk � �!xk�!sk�!yk�!zk�!wk�T �

then�

k!vkk� � k � �F
�

��vk����F��vk�k�

� k�F
�

��vk����k�kF��vk�k�

� C � ��

for all k � � and some C ��

Finally� we can show that if the sequence generated by the inner loop of the

algorithm converges� then it converges to a point �xk�� s
k
�� y

k
�� z

k
�� w

k
�� � F and

�������
�
B� Xk

�Z
k
�e

Sk
�W

k
�� e

�
CA� �e

�������
�

	 �

Theorem ��	 Consider #� � � �xed and let f�xk� sk� yk� zk� wk�g be gen�

erated by the Centered Iterate Method � and � � ��� ��� Then

F��x� s� y� z� w� 	 �
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Proof� Let vk � �xk� sk� yk� zk� wk�T � It is known �see Dennis and

Schnabel ��� � that the backtracking line�search strategy used in the Centered

Iterate Method � produces

r��vk�!vk

k!vkk�
	 �

Since

r��vk�T �!vk�T � ��kF��vk�k��

and

k!vkk� � C � ���

we have

kF��vk�k�� 	 ��

From the de�nition of F��vk��

�������
�
B� XkZke

SkW ke

�
CA� �e

�������
�

	 ��

and the result follows��

Corollary ��� The Centered Iterate Method � terminates with a warm�

start point �xws� sws� yws� zws� wws� such that

�������
�

#�

�
B� Xwszws

Swswws

�
CA� e

�������
�

� �

for �xed #��

��� Early Termination Method

We also implement a version of the early termination method described in Section

��� of this thesis� The early termination method attempts to �nd a good warm�start
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point by ending early the interior�point optimization of the current relaxation at a

branch�and�bound node� Mitchell ��� points out that the bene�ts of this are twofold�

Clearly� fewer iterations of the interior�point algorithm are required at each node

in the branch�and�bound tree� and secondly it is hoped that an iterate not on the

optimal face will be more well�centered�

The drawback of this method is that an interior�point optimization could be ter�

minated too early� That is� the branch�and�bound algorithm may branch on a parent

problem that could have been pruned had the interior�point optimization been taken

to completion� There are three cases where branching may be too early� The �rst

is when the optimal solution to the relaxation is integral� the second is when the

objective function value of the optimal solution to the relaxation is worse than the

best integer incumbent� and the last is when the relaxation is infeasible� Mitchell

��� describes safeguards to avoid terminating when the optimal solution is integral

and when the optimal solution is worse than the best bound on the integral optimal

solution� The early termination method with these safeguards was implemented by

Borchers �� � For the problems that he tested� the number of iterations required for

a reoptimization was one�third to one�half fewer than the number of iterations from

a cold start�

To avoid branching on a node whose optimal solution is integral� a heuristic is

described for detecting fractional variables before the completion of optimization�

Tapia�s indicators �see El�Bakry� Tapia and Zhang ��� � are used to detect whether

or not a binary variable xi and its complement �� xi are tending toward a nonzero

value� It is then assumed that the variable xi at optimality is not � or ��

Recall that the optimal partition is de�ned by two index sets B and N such

that for any optimal solution �x�� s�� y�� z�� w�� to a given linear program� if we let
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"x� � �x�� s�� and "z� � �z�� w��� then

B � fi � �� ���� �nj "x�i ���g

and

N � fi � �� ���� �nj "z�i ���g�

Tapia�s primal indicators are

T x
p �

xk��
i

xki
and T s

p �
sk��
i

ski
�

and

limk��
xk��
i

xki
�

���
��

� if i � N

� if i � B

limk��
sk��
i

ski
�

���
��

� if i � N

� if i � B

The dual Tapia indicators are

Tw
d �

wk��
i

wk
i

and T z
d �

zk��
i

zki
�

and

limk�����
zk��
i

zki
� �

���
��

� if i � N

� if i � B

limk�����
wk��
i

wk
i

� �

���
��

� if i � N

� if i � B

Borchers combines the primal Tapia indicator with its corresponding dual indica�

tor� The combination of Tapia�s primal indicators for determining that a variable is

tending towards zero is

T� �
xk��
i

xki
� j��

zk��
i

zki
j�
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Likewise the combination for determining that a variable is converging to a nonzero

value is

T� �
sk��
i

ski
� j��

wk��
i

wk
i

j�

If a binary variable xi is fractional at optimality� then the slack on the upper

bound constraint for xi� namely si� is also fractional� Since the solution satis�es

strict complementarity� we also know that the corresponding dual variables� zi and

wi� must be zero at optimality� Thus if the binary variable xi is fractional then T�

and T� will both approach two� However� if xi is not fractional� then T� and T� should

approach zero� Once both T� and T� are at least ���� it is heuristically assumed that

they will not approach zero�

To decrease the chance of branching on a node that could be fathomed by bounds�

Borchers �� suggests not terminating the relaxation until the duality gap is within a

speci�ed range� Also� so that infeasible nodes are not branched� the relaxation is not

terminated until the primal feasibility is below a set tolerance�

Finding a warm�start point for the early termination method can be seen algo�

rithmically as follows

Method ��
 �Early Termination Method�

At each iteration of the infeasible interior�point algorithm do

��� If

������ � xi � ������ for all i

T� � ���� and T� � ����

jjc� ATy � w � zjj��� � jjyjj� � jjwjj� � jjzjj�� � �����

jjb� Axjj��� � jjxjj�� � �����
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and

jcTx� �bTy � uTw�j�� � jbT y � uTwj� � �����

then save the point �x� s� y� z� w� as a warm start� and terminate the

algorithm�

��� Else return to algorithm�

In our tests� we follow Borchers �� implementation for �nding warm starting

points� but we do not terminate early�

��� Total Relative Error Method

Our �nal method� is the total relative error method� This method accepts an iterate

as a warm�start point during a parent optimization if the total relative error is less

than a speci�ed tolerance� The total relative error is de�ned as

jjAx� bjj�
max��� jjbjj��

�
jjATy � z � wjj�
max��� jjcjj��

�
jjx � s� ujj�
max��� jjujj��

�
jcTx� bT y � uTwj

max��� jcTxj� jbTy � uTwj�
�

When the total relative error is less than ����� a warm�start solution for sub�

sequent problems is saved� The motivation behind this method is twofold� First�

since the total relative error must be below the stopping tolerance for convergence of

the interior�point algorithm used in this work� �nding a warm�start point for feasi�

ble problems is guaranteed� Secondly� we hope that the total relative error measure

characterizes a solution to the parent problem well� and the relatively loose tolerance

required for saving the warm�start point will allow for good convergence to optimality

for child problems�
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Chapter �

��� Mixed Integer Programming Problem Set

��� MIPLIB

The majority of the problem instances tested are a part of MIPLIB �� � an elec�

tronically available library of both pure and mixed integer programs� MIPLIB is a

standard test set for comparing the performance of mixed integer optimization codes�

The problem statistics for the MIPLIB problems can be found in the appendix�

��� Capacitated Facility Location

The second set of problems is a set of four capacitated facility location problems

available from the OR�Library �� � These problems were also examined in Borchers�

thesis �� to test the interior�point branch�and�bound code he implemented� The

problem statistics for the capacitated facility location problems can be found in the

appendix�

��� Conrail

The instance of MIP that motivated this study comes from Consolidated Rail

Corporation �Conrail� The model uses actual data from ���� and attempts to choose

the departure times for ��� trains over ��� yards such that the trains depart at some

point during the correct day� and the number of locomotives needed to power the

schedule is minimized� The trains are of two types� regular and exchange� Regular

trains contain cars� as well as� locomotives� and exchange trains contain only loco�

motives� The trains run according to a weekly schedule� and there is an adjustable
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parameter that controls the number of departure time periods each day� When this

parameter is set to three the trains leave every eight hours� when set to twenty�four

they leave hourly� and when set to the maximum� ninety�six� trains leave every �fteen

minutes� There is a time period parameter for each of the two types of trains in the

model� For regular trains the time period parameter is called NumTP� For exchange

trains the parameter is called NumEnsTP� and must divide NumTP evenly� The

problem statistics for the Conrail problems can be found in the appendix�

The objective is to minimize the total number of locomotives used by the schedule�

The possible moves that a train can make on any given day and hour are modeled

on a time�space directed graph� The network consists of nodes� InvNode� and three

types of arcs� X �for regular trains�� XEns �for exchange trains�� and I �for inventory

at each yard�� The nodes are indexed on yards� days� and hours� Each arc measures

the number of locomotives used to get a train from its origination yard on a particular

day at a particular time to its destination yard at the appropriate arrival day and

time�

Given that a train t can travel on day d� at hour h� from some yard y� then an arc

Xt�d�h or XEnst�d�h is placed between node InvNodey�d�h and the node corresponding

to the destination yard for train t from yard y� on the estimated arrival day� and at

the estimated arrival time� Each arc Xt�d�h has an upper bound MaxPower� This

constant upper bound is the maximum number of locomotives that a regular train

can contain� The arcs Iy�d�h connect� for a given yard� the previous day and�or hour

to the next day and�or hour� The &ow on the Iy�d�h arcs tells how many locomotives

remain in inventory from one time period to another at a yard�

For each yard� the node corresponding to the last hour of the last day of the week

is connected by an inventory arc to the �rst hour of the �rst day of the week� This

forces the weekly time line generated by a solution to be a cycle in the network�
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In Figure ���� we have an example of the time�space directed graph� For ease of

exposition� we assume that a week has only two days� Also� assume that we have

one regular train that runs daily and one exchange train that runs only on the �rst

day of the 
week�� The trains originate at one of the two yards� and arrive at the

other� There are three time periods each day regular as well as the exchange train�

To arrive at its destination yard from its origination yard� the regular train takes two

time periods� and the exchange train takes one time period� Also notice� that when

a train starts at the end of the week and the day and time needed to �nish in that

week is exceeded� it ends at the beginning of the week� during the appropriate time

period� at its destination yard� That is� Sunday follows Saturday in the time line�

A regular train can travel from its origination to its destination only once during

any day� so in addition to the variables corresponding to the arcs in the network�

there are also decision variables� The variable zt�h is � if a regular train t is used

during time period h� and � otherwise� Any regular train t is also required to have

some minimum number of locomotives� xPowerNeedstd� on each day d�

In order to count the number of locomotives used to power the schedule� the

objective function tallies the total number of locomotives during a certain time period�

Any time period will do� but the model uses time period zero �h � ���

The complete model can be described as follows� The objective is to minimize the

number of locomotives

X
�t�d��
�A

Xt�d�h �
X

�t�d��
�B

XEnst�d�h �
X

�y�d��
�C

Iy�d�h�

where A and B are the sets of arcs for regular trains and exchange trains� respectively�

and C is the set of inventory arcs� We are constrained by &ow conservation constraints

over the network as well as capacities of size MaxPower on each arc Xt�d�h�
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Each regular train is restricted to run in only one time period�

X
h�H

zth � ��

where H is the set of time periods� Also� for each regular train t we do not allow

Xt�d�h to hold positive values when zth is zero

X
�t�d�h
�A

Xt�d�h � jAj �MaxPower � zt�h�

Finally� we are constrained by the need for a minimum number of locomotives�

xPowerNeedstd� to power each regular train on a given day

X
�t�d�h
�A

Xt�d�h � xPowerNeedstd�

	���� Preliminary Numerical Tests

There are �� problems from the Conrail test set of sizes ranging from ������ variables

and ���� constraints to ������� variables and ������� constraints� Due to the size

and the computational e	ort expended� we report preliminary results for the �rst ��

problems�

The Conrail problems are instances of integer programming problems where each

individual linear program generated in a branch�and�bound tree solves faster using

an interior�point algorithm than a simplex�based algorithm when no reoptimization

techniques are used for either method� Table ����� shows the running time in seconds

of the root nodes generated in a branch�and�bound tree for the Conrail set� In our

numerical tests� we used CPLEX ��� on one of four SGI Power Challenge�L multipro�

cessors� Each multiprocessor consists of four �� megahertz MIPS ���� processors� ���

megabytes of memory� � gigabytes of SCSI disk� and an ��� megabit HIPPI interface�
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Name Interior Point�Crossover� Dual Simplex Primal Simplex
con�� ����� ������� ������ ������
con�� ����� ������� ������ ������
con�� ������ ������� ������ ������
con�� ����� ������� ������ �������
con�� ������ ������� ������� �������
con�� ������ ������� ������� �������
con�� ������ ������� ������� �������
con�� ������ ������� ������� �������
con�� ������ ������� ������� �������
con��� ������ ������� ������� �������
con��� ������ ������� ������� �������
con��� ������ �������� ������� �������
con��� ������� �������� ������� �������
con���� ������� �������� n�a n�a
con��� ������� �������� n�a n�a
con��� ������� ������� n�a n�a
con��� ������� �������� n�a n�a
con��� ������� �������� n�a n�a
con��� ������� �n�a� n�a n�a
con���� n�a �n�a� n�a n�a
con���� n�a �n�a� n�a n�a

Table 	�� Solution times �secs� for branch�and�bound search tree root node
for CPLEX�s interior�point� dual�simplex� and primal�simplex codes where
n�a indicates that a solution was not found within the time limit given�
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	���� Integer Feasible Solution Heuristics

The computational e	ort expended to solve one node of the branch�and�bound tree

generated by the Conrail model can be extensive� For example� more than ������

seconds are required to solve the root node only for problems con���� and con����� A

large branch�and�bound search tree for these problems could be prohibitive� The size

of a branch�and�bound search tree is reduced by the presence of appropriate upper

and lower bounds on the optimal solution� In order to �nd good upper bounds�

heuristic algorithms are used to generate integer feasible solutions whose objective

function value provides an upper bound on an optimal solution�s objective function

value� The heuristics implemented are based upon �xing the variables zth in the

Conrail model so that some subset of the cover constraints

X
h�H

zth � ��

are satis�ed�

The �rst heuristic is a simple rounding heuristic� When the linear program�

ming relaxation is solved using the primal�dual interior�point codes �either CPLEX

or LIPSOL�� with the exception of the �xed variables� nearly every zth is within a

very small amount of ��NumTP� With a crossover solution from CPLEX� however�

we found that more of a distinction could be made between the jHj variables in each

row� and our rounding heuristic has greater success� Thus� in our implementation

we are given a basic feasible solution x as input to our rounding heuristic� SR is the

current feasible region with the integrality restrictions relaxed� and � is the integrality

tolerance ������ We saw the most favorable results when we let RND TOL equal

����

Algorithm 	�� LP�Based Rounding Heuristic

Given x such that x � SR and � � xj � �� � for some j

-
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While SR �� � do

��� If xj � RND TOL� then set xj equal to ��

��� Solve the resulting LP for x�

��� If � � xj � �� � for some j� then let

RND TOL � min�RND TOL� ���� maxj xj�

Since the linear programming relaxations of the Conrail problems require lengthy

computation times to solve� a rounding heuristic that is not based on linear program�

ming relaxations was also implemented� A great deal of the underlying structure

of the Conrail problems consists of a network� Since solving the embedded network

linear program is a considerably easier task than solving the original LP� the second

heuristic takes advantage of this structure in order to �nd an integer feasible solution�

The cover constraints X
h�H

zth � ��

enforce the condition that each regular train run only at one speci�c time period�

Notice that if we are given to which time period each train is assigned �any such

assignment will do� not necessarily an optimal one�� then we can quite readily com�

pute the number of locomotives necessary to power such a schedule� The problem

reduces to an upper�bounded transshipment problem �or a minimum cost network

&ow problem� �see Chv�atal �� �� and any �xing produces an integer feasible solution�

Algorithm 	�� Network�Based Rounding Heuristic

��� For each train t� randomly select an hour h for t to run� Set zt�h

equal to one� For all other possible hours "h for train t� set zt��h equal to

zero�
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��� Solve the resulting LP for x�

The results for these rounding heuristics are in table ������ The �rst column

is the optimal objective function value of the linear programming relaxation of the

problems� The second column contains the best integer feasible solutions returned

from CPLEX ���� the third column contains the results from the lp�based rounding

heuristic� The fourth contains the best integer feasible solution from the network

based rounding heuristic� The table indicates that the Network�Based Rounding

Heuristic provides better bounds on the optimal solution value than either CPLEX

or the linear programming based rounding heuristic�
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Name LP SOLN CPLEX LP RND NET RND
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con�� ������������ ��� ��� ���
con��� ������������ ��� ��� ���
con��� ������������ ��� ��� ���
con��� ���������� ��� ��� ���
con��� ������������ ��� ��� ���
con���� ������������ n�a ��� ���
con��� ������������ ��� ��� ���
con��� ������������ ��� ��� ���
con��� ������������ ��� ��� ���
con��� ������������ n�a ��� ���
con��� ������������ n�a n�a ���
con���� n�a n�a n�a ���
con���� n�a n�a n�a ���

Table 	�� Results of rounding heuristics for Conrail problems where n�a
indicates that a solution was not found within the time limit given�
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Chapter 	

Factors A
ecting Reoptimization

In theory� the global convergence of an infeasible primal�dual interior�point algorithm

is guaranteed from starting points for which the non�negative variables are strictly

greater than zero� The algorithm restricts the iterates to a subset of points for

which the primal and dual infeasibilities are bounded by some multiple of the duality

measure and the pairwise complementarity products are balanced� The algorithm

ensures that the primal and dual infeasibilities decrease with each iteration and keeps

the Newton�like search directions from causing the algorithm to stall near a boundary�

Although convergence is assured theoretically from any starting point� computa�

tional experience shows that a good starting point should be well�centered �i�e�� the

di	erence between the maximum and the minimum of the complementarity products

should be small�� and the ratio of infeasibility to duality measure should not be too

large� A popular heuristic used to cold start the infeasible primal�dual algorithm

attempts to �nd a point that satis�es these two conditions �see Mehrotra ��� and

Wright ��� ��

It is commonly held that although a point designed for use as a good warm start

may likely be more well�centered and have a smaller ratio of infeasibility to duality

measure than a cold�start point� a factor of two or three savings in iteration count and

runtime is all that can be expected� This behavior is due to the di	erence between the

optimal partition of the original problem �from whence the warm�start point came�

and the optimal partition of the perturbed problem that we are attempting to warm

start�
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In the following sections� we address some of the issues thought to a	ect the

convergence of the iteration sequence generated by interior�point methods during

reoptimization�

��� Infeasibility

Suppose that we are given the following linear�programming relaxation as the problem

de�ned at some node of the branch�and�bound tree for a ��� integer programming

problem

min cTx � ckxk �����

st Ax � akxk � b

x � s � e

xk � sk � �

x� xk � �

s � �

where x� u� c� s � Rn� ak and b � Rm� A � Rm�n� xk� sk� and ck � R� and e is the

vector of all ones of length n�

The dual problem is de�ned as follows

max bTy � eTw � wk �����

st AT y � z � w � c

aTk y � zk � wk � ck

z� zk � �

w�wk � �
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where y � Rm� z� w � Rn� and zk� wk � R�

Also� suppose variable xk is fractional in a optimal solution to the parent node

problems ����� and ������ Fixing this variable to one of its bounds �� or �� yields the

following pair of problems for the child node

min cTx �����

st Ax � $b

x � s � e

x � �

s � �

where $b � b if xk is �xed at � and $b � b� ak if xk is �xed at �� and

max $bT y � eTw �����

st ATy � z � w � c

z � �

w � �

Clearly� �xing xk to either of its bounds introduces infeasibility in the primal

problem ����� de�ned for the child node� but no infeasibility in the dual problem

����� de�ned for the child node� Therefore� it is reasonable to suppose that this primal

infeasibility introduced each time a child node is created in a branch�and�bound tree

has some bearing on the e�ciency of a reoptimization in an interior�point algorithm

that uses information from the optimization of the parent node problem� However�

since the interior�point method that we are interested in is an infeasible interior�point



��

method� primal infeasibility alone does not prohibit us from using information from

the parent optimization to reoptimize a child problem�

The infeasible primal�dual interior�point algorithm used in this work restricts iter�

ates to a central path neighborhood that includes infeasible points� This neighborhood

is de�ned by

N���
� �� � f�x� s� y� z� w�  k�rb� rc�k � �k�r�b � r
�
c�k�

� ��� �����

�x� s� z� w� � ��min�Xz� Sw� � 
�g

where 
 � ��� �� and � � �� � � �xT z�sTw��n� rb � Ax�b� and rc � ATy�z�w�c�

The values of ��� r�b and r�c are evaluated at the starting point �x�� s�� y�� z�� w��� The

�rst inequality in ����� is known as the Feasibility Priority Principle �see Zhang ��� ��

For all points in N���
� �� the infeasibility in the primal and dual constraints is

uniformly bounded by some multiple of the duality measure �� By forcing �k to zero

monotonically and forcing all iterates to satisfy

k�rkb � r
k
c �k � �k�r�b � r

�
c�k�

� ��k�

the infeasible primal�dual interior�point method ensures that rkb 	 � and rkc 	 � as

k 	 �� This inequality also ensures that infeasibility decreases at least as fast as

complementarity�

Theoretical analysis �see Wright ��� � and computational experience tells us that�

although we have considerable &exibility in choosing a starting point for the infeasible

primal�dual interior�point method� the starting point should not be too infeasible�

That is� the ratio of infeasibility to duality measure of �x�� s�� y�� z�� w�� should not be

too large� Because of this� it is reasonable to expect that a warm�started optimization

should experience a reduction in iteration count of one�third to one�half that of a cold�

started optimization�
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The next section will address the second inequality in the de�nition of N���
� ��

������

��� Centrality and Boundary Behavior

In Chapter �� we de�ned the central path as the the arc of strictly feasible points

parameterized by � such that the pairwise products xizi and siwi are identical for

all i � f�� ���� ng� Primal�dual interior�point algorithms keep iterates in a general

vicinity of the central path� This is done to prevents the Newton�like search directions

from being distorted by components of �x� s� z� w� that approach the boundary of the

positive orthant prematurely� The second inequality in the de�nition of N���
� ���

min�Xz� Sw� � 
�� �����

where 
 � ��� �� and � � �� � � �xT z � sTw��n addresses this concern� Iterates

that satisfy ����� have pairwise products that decrease at a controlled rate� That is�

no pairwise product can converge to zero too much faster than the others�

For Newton�s Method� we know that a variable that is positive at optimality

becoming zero at some iteration can have a devastating e	ect on the optimization�

To see this� recall the KKT conditions for optimality of a feasible point

F �x� s� y� z� w� �

�
BBBBBBBBBBBBB�

Ax� b

x � s� u

ATy � z � w � c

XZe

SWe

�
CCCCCCCCCCCCCA

� �

�x� z� s� w� � �

where X � diag�x�� Z � diag�z�� S � diag�s�� W � diag�w� and e is the n�vector

of all ones� Suppose that si is positive at optimality� and ski � � and wk
i � � at the
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current iteration k� The Newton equation for SW � e in the KKT conditions is

S!w � W!s � SWe� �����

Examining the i�th component of ����� at iteration k yields

ski !wk
i � wk

i !ski � skiw
k
i � �

which implies that !ski � �� Thus� ski will remain at zero for all subsequent itera�

tions� For primal�dual interior�point methods this type of behavior translates into

an iteration sequence that can be severely slowed because short steps must be taken

when a component of a nonnegative variable is too close to the boundary�

��� Distance to Optimal

Along with being well�centered and not 
too� infeasible� the distance a warm�start

point is from an optimal solution is another factor that should e	ect reoptimization�

Primal�dual interior�point methods are based on Newton�s method� and for Newton�s

method� under standard assumptions� convergence is assured if the starting point is

within a speci�c neighborhood of the optimal solution �see Dennis and Schnabel ��� ��

Given this� if a warm�starting solution is close enough to an optimal solution� then

we would expect a savings in iteration count over starting from a cold solution�

We would also like to have some measure of how long it should take for the

interior�point method to converge from a point that is a certain distance from the

optimal solution set� A comparison can be made between the number of iterations

required from each iterate in a cold�started optimization to optimality and the total

number of iterations required for a warm�started optimization� If during a cold�

started optimization an iterate is distance d from optimality� and the warm start

used to reoptimize this problem is also distance d from optimality� it is reasonable to
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expect that the numbers of iterations required for each of these scenarios should be

comparable� Figure ��� illustrates the two distances with which we are concerned�

�

cold start

warm start
equiv. dist.

cold start
optimal solution

warm start optimal
solution

cold start
iterate

Figure 
�� This �gure demonstrates the
computation of the expected iteration count�

��� Change in Optimal Partition

When the data associated with a linear program is changed� the new optimal solution

set may have a di	erent optimal partition than the original problem� Such is the case

when a variable in the parent node problem in a branch�and�bound tree is modi�ed

to create the child node� and the solution to the parent node is used to reoptimize

the child node� The indices that switch between B and N cause the central path

to change� This change could mean that the interior�point iterates of the changed

problem must follow a very dissimilar path from the iterates of the original problem� If

the given warm start is far from the newly created central path� then the primal�dual
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interior�point algorithm may take several iterations to adjust to this central path�

since the algorithm must �rst balance the new pairwise complementarity products

before proceeding to optimality�

We can demonstrate the e	ect of a change in optimal partition on Newton�s

Method with the following linear program�

min �x� � x� �����

st x� � x� � �

x� � x� � �

x� � x� � �

x�� x� � �

and its dual

min �y� � �y� � �y� �����

st y� � y� � y� � �

y� � y� � y� � �

�y� � �

y� � �

y� � �

The optimal solution to these two linear programs is

x� �

	

� �

�

�
� and y� �

	





�

�

�

�

�
�
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We can apply damped Newton�s Method to the KKT conditions of this problem

starting from two pairs of points�

"x �

	

� �

�

�
� and "y �

	





�

�

��

�

�
�

and

#x �

	

� ����

�

�
� and #y �

	





�

�

��

�

�
� �

These two points are the same distance from the optimal solutions to ����� and �����

and also have approximately the same primal and dual infeasibility �all primal and

dual slacks are perturbed from � to ������

Table ��� demonstrates that although �"x� "y� and �#x� #y� have the same infeasibility

�Column �� and are the same distance from optimal �Column ��� the number of iter�

ations required for convergence �Column �� for �"x� "y� is nearly twice that for �#x� #y��

The third column of Table ���� with sw standing for 
switch�� gives the number of

indices i for which the primal variable x�i or s�i is nonzero but the corresponding com�

ponent in the starting point is near zero plus the number of indices i for which the

dual variables z�i or w�i is positive� but the corresponding component in the starting

point is near zero� An examination of the iteration sequence reveals that this di	er�

ence can be attributed to the algorithm�s attempt to match more components of the

starting point �"x� "y� to the optimal partition of �x�� y���

We can infer from this example that� for primal�dual interior�point methods� if

the optimal partition of the linear program de�ned at a parent node in a branch�and�

bound tree is very di	erent from the optimal partition of the linear program at the

child node� then the reoptimization could be severely slowed�
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Initial Point iters sw jjxo � x�jj jjr�b jj�jjbjj� ��
�"x� "y� �� � ���������������� �����������������e���
�#x� #y� �� � ���������������� �����������������e���

Table 
�� Iteration counts and factor
comparisons for damped Newton�s method

I I I I 
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Chapter �

Numerical Experience

Our numerical tests were performed on a Sun Ultra � Model ��� with ��� megabytes

of memory running Solaris ���� For our �rst run of the branch�and�bound algorithm�

we solve each node of the search tree generated using an initial point derived from

a cold�start heuristic� We then take the branch�and�bound search tree that was

created from the �rst run and re�run the branch�and�bound algorithm using the same

search tree� In this second run we warm start each node with one of the four methods

outlined in Chapter �� We allow the branch�and�bound algorithm for the cold�started

search tree to run for no more than ��� seconds and generate no more than ��� nodes�

Over the entire MIPLIB test set� approximately ���� nodes were generated� Over

the Capacitated Facility Location set� there were �� nodes �these problems solved to

optimality within the time frame given�� Due to the size of the Conrail model� we

only examined one problem con��� For this problem we increased our solution time

to ���� seconds and generated approximately �� nodes�

The linear programming solver we use at each node of the branch�and�bound tree

is LIPSOL ' Linear�programming Interior�Point Solver ��� � Like LIPSOL� our code

is implemented under the MATLAB environment� MATLAB is a high level technical

computing environment for numeric computation and visualization� Node selection

in the branch�and�bound search tree is done by depth �rst search until an integer

incumbent is found� Afterwards� node selection is done by best bound
 Best bound

is a node selection strategy in which the node with the smallest lower bound on the

optimal solution is examined next� The branching variable is selected by maximum

integer infeasibility which in our case means that we choose a binary variable whose
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value in the optimal solution of the linear programming relaxation is closest to one�

half�

Table ��� provides the number of feasible nodes in the branch and bound tree

that were successfully reoptimized using each of the warm�start techniques� Column

� in Table ��� gives the total number of nodes in the branch�and�bound tree for

each method in column �� The third column gives the number of feasible warm�

started nodes that converged to an optimal solution� The number in the fourth

column provides the number of feasible warm�started nodes that did not converge

to an optimal solution� Additionally� the number in Column � includes those parent

nodes that were unable to �nd and save a warm�start solution for its child nodes that

satis�ed the criteria of the method indicated in the table�

Method Total Converged Not Converged
Total Relative Error ���� ���� ����
Centered Iterate � ���� ���� ��
Centered Iterate � ���� ���� ��
Early Termination ���� ���� ����

Table ��� Node counts for each method

The stopping criterion given in LIPSOL has not been extensively tested� and

thus cannot be relied on exclusively for a determination of infeasibility and can in

some cases incorrectly conclude that a problem is infeasible� In order to combat this

problem� we modify the stopping criteria so that the heuristics used to determine

infeasibility are disabled� We concluded that each node in Column � of Table ���

was not converging to optimal only if after �� iterations the total relative error was

greater than the stopping tolerance� We can see that the Centered Iterate Methods

outperformed the other two methods in terms of reliably and correctly converging to

optimality�
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Table ��� gives some idea how the each method performed over the problem set�

For each method� the ratio of the number of iterations required to converge from a

warm�start initial point to the number of iterations required to converge from cold�

start point is reported� Column � gives the number of nodes in the branch�and�bound

search tree whose ratio �wscs� was less than ���� Columns � and � give the number

of nodes whose warm�start to cold�start ratio is in ����� ���� and ����� �� respectively�

The last column reports the number of nodes for which the number of warm iterations

is greater than the number of cold iterations� Recall that the total number of feasible

nodes for which convergence is obtained for each method is di	erent�

Method ws�cs � ��� ��� � ws�cs � ��� ��� � ws�cs � � ws�cs � �
Total Relative Error ��� ���� �	
� ��
�
Centered Iterate � �	� �	�� ��� ��		
Centered Iterate� �	� ��	
 ��� ���
Early Termination 	�� ���� ���� ���


Table ��� Node counts by ws�cs ratio for each method

Table ��� also shows that the number of nodes from the Centered Iterate Methods

whose warm�start to cold�start iteration ratio was strictly less than ��� is lower than

the other two methods� However� the total number of feasible nodes whose ratio is

less than one is higher than the total number of feasible nodes whose ratio is less than

one for the other two methods�

Method � Converged � Not Converged � ws�cs � � � ws�cs � �
Total Relative Error 
���� ����� 	���� ����
Centered Iterate � ����� ��	� ����� �����
Centered Iterate� ���
� ���
 ����
 �����
Early Termination ���	 ��� ���� 	����

Table ��� Performance results for each method
based on convergence and ws�cs ratio

I 

I 
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These tables demonstrate that the centering of the parent iterate to be used to

reoptimize the child node in the two Centered Iterate Methods is bene�cial�


�� Factor Calculations

For each of the reoptimization methods referenced in the previous sections� there

were a considerable number of problems that either took much longer to reoptimize

from a warm start than from a cold start or were unable to converge to optimality

within �� iterations� To gain some insight into this behavior� during the optimization

and reoptimization of the branch�and�bound search trees generated for the problems

we compute the values of the factors discussed in Chapter � thought to a	ect the

convergence of reoptimizations in the primal�dual interior�point framework�

De�ne �x�ws� s
�
ws� y

�
ws� z

�
ws� w

�
ws� as the warm�start point used to initialize a reopti�

mized child node in the branch�and�bound search tree� Also� de�ne the warm�start

optimal solution �x�ws� s
�

ws� y
�

ws� z
�

ws� w
�

ws� as the optimal solution to which the warm�

started sequence �xkws� s
k
ws� y

k
ws� z

k
ws� w

k
ws� converges� The duality measure ��ws is de�

�ned as ��x�ws�
T z�ws � �s�ws�

Tw�
ws��n where n is the number of primal variables�

The initial primal infeasibility of the warm�start point is computed in a standard

manner as

kAx�ws � bk��kbk� � ���

The ratio of infeasibility to duality measure of the warm�start point is computed as

k�Ax�ws � b� ATy�ws � z�ws � w�
ws�k��

�
ws�

Proximity to the central path is measured as

�������
�

��ws

�
B� X�

wsz
�
ws

S�
wsw

�
ws

�
CA� e

�������
�

--
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The distance that a warm�start point is from the optimal warm�start solution is

computed as

kx�ws � x�wsk��

The next set of tables �Tables ���� ���� ���� and ���� report the average values

of the factors described in Chapter � for each method� The averages are reported

within speci�c warm�start to cold�start iteration ratio ranges� The �rst column gives

the range of the ratio of warm�start to cold�start iterations for the data on that

row of the table as well as� in parentheses� the number of nodes involved in the

computation� The average percentage of the number of indices that switched from B

to N is reported in the second column� The third column gives the average Euclidean

distance between the warm�start optimal solution and the warm�start point� The last

two columns report the average relative primal infeasibility� and the average ratio of

primal and dual infeasibility to duality measure� respectively where

r�b � Ax�ws � b

and

r�c � AT y�ws � z�ws � w�
ws�

�the subscript for the l� norms has been omitted for brevity��

Two problems from the MIPLIB problem set were intentionally omitted from the

calculations in Tables ���� ���� ���� and ���� Problems harp� and enigma were omitted

because the initial primal infeasibilities of their warm�start points generated by each

method were so much larger than that of the other problems tested�

We can see from Tables ���� ���� ���� and ��� that as the warm�start iterations

to cold�start iterations ratio increases� the greater the change in optimal partition

between the parent and child nodes� The same observation holds for the relative

primal infeasibility� jjr�b jj�jjbjj� ���



��

A correlation between the distance that a warm�start solution is from optimal

and the iteration counts ratio is observed for each method as well� Notice that the

average distances that the warm�start initial points were from optimality are larger

for the two Centered Iterate Methods� This behavior for methods that balance the

complementary pairs before saving a warm�start initial solution is not surprising�

No relationship can be seen between the iteration counts ratio and the ratio of in�

feasibility to duality measure jj�Axows�b� A
T yows�zows�w

o
ws�jj��

o
ws� Nor� interestingly�

was there an obvious correlation between the proximity measure used�������
�

��ws

�
B� X�

wsz
�
ws

S�
wsw

�
ws

�
CA� e

�������
�

and the warm�start to cold�start iterations ratio� Recent work by Gonz%alez�Lima� El�

Bakry� and Tapia ��� � indicates that this observation does not indicate that proximity

to the central path can be ruled out as a factor� The authors study di	erent centrality

measures and show in the general primal�dual interior�point framework that their use

makes a computational di	erence when approaching the central path�

( sw�n jjxows � x�wsjj jjr�b jj�jjbjj� �� jj�r�b � r
�
c�jj�

wscs � ��� ����� ������ ������� ������ ������e���
��� � wscs � ��� ������ ������ ������� ������ ������e���
��� � wscs � � ������ ������ �������� ������ ������e���
wscs � � ������ ������ ��������� ������ ������e���

Table ��	 Total Relative Error Method average factor calculations


�� Expected Iteration Count

De�ne �x�cs� s
�
cs� y

�
cs� z

�
cs� w

�
cs� as the cold�start point used to initialize a node in the

branch�and�bound search tree during the �rst run� Also� de�ne the cold�start opti�



��

( sw�n jjxows � x�wsjj jjr�b jj�jjbjj� �� jj�r�b � r
�
c�jj�

wscs � ��� ����� ������ �������� ������ ������e���
��� � wscs � ��� ������ ������ ��������� ������ ������e���
��� � wscs � � ������ ������ ��������� ������ ������e���
wscs � � ������ ������ ��������� ������ ������e���

Table ��
 Centered Iterate Method � average factor calculations

( sw�n jjxows � x�wsjj jjr�b jj�jjbjj� �� jj�r�b � r
�
c�jj�

wscs � ��� ����� ������ �������� ������ ������e���
��� � wscs � ��� ������ ������ ��������� ������ ������e���
��� � wscs � � ������ ������ ��������� ������ ������e���
wscs � � ������ ������ ��������� ������ ������e���

Table ��� Centered Iterate Method � average factor calculations

( sw�n jjxows � x�wsjj jjr�b jj�jjbjj� �� jj�r�b � r
�
c�jj�

wscs � ��� ����� ������ ������� ������ ������e���
��� � wscs � ��� ������ ������ �������� ������ ������e���
��� � wscs � � ������ ������ ��������� ������ ������e���
wscs � � ������ ������ ��������� ������ ������e���

Table ��� Early Termination Method average factor calculations
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mal solution �x�cs� s
�

cs� y
�

cs� z
�

cs� w
�

cs� as the optimal solution to which the cold�started

sequence �xkcs� s
k
cs� y

k
cs� z

k
cs� w

k
cs� converges�

To �nd the expected number of iterations that a warm�started reoptimization

should take we do the following� Let xkcs be the k�th iterate in the cold�started

iteration sequence and x�cs be the solution that it converges to� Also� let xows be the

warm�start point and x�ws be the solution that it converges to� If we de�ne

dk � jjxkcs � x�csjj�

and

v � j�jjx�ws � xowsjj�e� d�j

where e is the vector of all ones� then the expected number of iterations for the warm

start xows to converge to x�ws is k such that vk is the component of minimum value in

v�

Tables ���� ���� ����� and ���� report the results of our experiment to determine

the number of iterations that would be expected from a warm�start solution based

upon the convergence of the iteration sequence from a cold�start solution� If a cold�

start iterate that is distance d from optimality takes k iterations� then we hypothesize

that a warm�start point that is the same distance d from optimality should take k

iterations� Column � of Tables ���� ���� ����� and ���� indicate the warm�start to cold�

start iterations range for the numbers in the next three columns� The second and

third columns report the average number of cold iterations and the average number

of warm iterations for each range in column one� The �nal column gives the average

expected number of iterations�

As one might expect� the smaller the ratio of warm�start iterations to cold�start

iterations� the closer the average number of warm�start iterations is to the expected

number of warm�start to cold�start iterations� When the ratio is greater than ��� for



��

each method other than the Centered Iterate Methods the expected iterations count

is not a good measure� However� for nodes whose warm�start iterations to cold�start

iterations ratio is less than �� the number of warm�start iterations when using the

Centered Iterate Methods remains relatively close to expected�

cold warm expected
wscs � ��� ������� ������ ������
��� � wscs � ��� ������� ������ ������
��� � wscs � � ������� ������� ������
wscs � � ������� ������� ������

Table �� Total Relative Error Method expected iteration counts

cold warm expected
wscs � ��� ������� ������ ������
��� � wscs � ��� ������� ������ ������
��� � wscs � � ������� ������ ������
wscs � � ������� ������� ������

Table ��� Centered Iterate Method � expected iteration counts

cold warm expected
wscs � ��� ������� ������ ������
��� � wscs � ��� ������� ������ ������
��� � wscs � � ������� ������ ������
wscs � � ������� ������� ������

Table ���� Centered Iterate Method � expected iteration counts

Tables ���� and ���� demonstrate the expected iterations count measure on con��

and cap��� respectively� Table ���� shows that the expected number of iterations



��

cold warm expected
wscs � ��� ������� ������ ������
��� � wscs � ��� ������� ������ ������
��� � wscs � � ������� ������� ������
wscs � � ������� ������� ������

Table ���� Early Termination expected iteration counts

based on distance is a very good measure of how well the Total Relative Error Method

performs on con��� Table ���� demonstrates that the Centered Iterate Method �

outperforms the expected number of iterations based on distance for cap��� The

centrality of the warm�start solution allows for larger step sizes than the iterate in

the cold optimization sequence that is a comparable distance from optimality�


�� Branch and Bound� Children Are Di�erent

When selecting a warm start for the child nodes of a particular problem� the warm

start chosen may not be a point that is the best possible point for either child node�

In fact� of the parent iterates the best warm�starting points for each child may be

far apart� Table ���� demonstrates this for problem cap��� For each binary variable

in cap�� the up�branch ��xing variable to one� and the down�branch ��xing variable

to zero� were warm started using each iterate in the parent optimization sequence�

Table ���� contains the results�

Table ���� demonstrates the di	erence between initializing the optimization of

children nodes with the best parent iterate for each versus initializing the optimization

of the children nodes with the best iterate for both� The column Var is i such that

xi is fractional in the optimal solution of the parent node� The columns Best Down

and Best Up provide information about the reoptimization that converges in the



��

Node Cold Its� Warm Its� Expected Its�
� �� � �
� �� �� ��
� �� �� �
� �� �� �
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��

Table ���� Expected iteration counts for
con�� using Total Relative Error Method�
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Node Cold Its� Warm Its� Expected Its�
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��
�� �� �� ��

Table ���� Expected iteration counts for
cap�� using Centered Iterate Method �
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fewest number of iterations for xi �xed at � and xi �xed at one� respectively� These

columns also give the corresponding number of iterations when a parent iterate is

used as the warm start for xi �xed at zero or one� respectively� The column P Itt

under Best Down tells which iterate k of the parent optimization was used as the

initial point for xi �xed at zero� and �Its�� is the number of iterations required to

reoptimize this child problem when it is initialized with the 
P Itt�th iterate� The

columns under Best Up are de�ned likewise�

Var Best Down Best Up Best Up � Down
P Itt �Its�� P Itt �Its�� P Itt �Its�� Its��

� � ���� �� ��� �� ���� ���
� �� ���� �� ��� �� ���� ���
� � ���� �� ��� � ���� ���
�� �� ���� �� ��� �� ���� ��
�� � ���� �� ��� �� ���� ��
�� � ���� �� ��� �� ���� ���
�� �� ���� �� ��� �� ���� ��
�� �� ���� �� ��� �� ���� ��

Table ���	 Iteration count comparisons for problem cap��

The minimum number of iterations required to reoptimize cap�� when x� is �xed

to zero is �� using parent iterate � as the warm�start initial point� and when x� is

�xed to one the minimum number of iterations is � using parent iterate �� as the

warm�start initial point� Yet� the parent iterate used as the warm�start initial point

that attains the minimum total number of iterations for both the up�branch and the

down�branch is iterate ��� Starting from iterate �� requires �� iterations for the

down�branch and �� iterations for the up�branch to converge to optimal� Notice that

the number of iterations to solve the down�branch alone starting from iterate �� is

more than the sum of the minimum number of iterations for the up�branch and the

minimum number of iterations for the down�branch�
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Problem cap�� demonstrates the di�culty that arises when an attempt is made

to �nd a 
good� starting point for two problems that for interior�point methods

are vastly di	erent� This di	erence can be attributed primarily to a change in the

optimal partition that occurs when a variable is �xed to either zero or one� The

optimal partition of the parent node does not change when the up branch is created�

however �� indices switch from B to N and vice versa when the down branch is

created�

nt� ��	� x� � �� cold iter� ��� � opt part� 	� x� � �� cold iter� �� � opt part� �

Parent Iterate � 	� � � 	� �
Iterations �� �� �� �� �� �
jjxows � x�wsjj �����e��	 ������e��� 	����e��� ����
�e��	 �
���e��� ������e���
jjr�

b
jj��jjbjj� �� ���
e��� ��
	�e��� ������e��� ���	e��� ��	��	e��� ��


e���

jj�r�
b
� r�

c
�jj�� ������e��� ��
��e��� ���	�e��
 ���
��e��� ������e��� 
�����e���

Table ���
 Key factor comparisons for problem cap��

In addition to the di�culty of �nding a warm start that 
pleases two children� �the

up�branch and the down�branch�� reoptimizing with interior�point methods requires

that one not �nd a warm�starting point that is so good for a child node that a good

warm�start point cannot be found for the subsequent child nodes of this child node�

For the Centered Iterate Method � this can happen when the warm start is close

to optimal� but not close to the central path� Several iterations could be wasted

readjusting to this new central path instead of moving the iteration sequence toward

optimality�

We can see this happening if we examine the �rst four nodes in the branch�and�

bound tree for problem stein�� Row � gives the number of the node� Row � of Table

��� gives the number of iterations required to converge from a warm start for the

�rst four nodes� Rows � and � give the number of iterations required to converge to

optimality when the nodes are warm started with a node from the parent found by

I I 
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the Centered Iterate Method �� However� Row � contains not only the number of

iterations required to reoptimize the node using this warm start� it also contains the

number of iterations required to reoptimize and �nd by the Centered Iterate Method

� a warm�start point to be used for its subsequent children�

Node in B)B tree for problem stein� � � � �
* cold�start iterations � � � �
* warm�start iterations� �nd child warm start � � �� ��
* warm�start iterations� don�t �nd child warm start � � �� ��

Table ���� Iteration counts for �rst four nodes in
problem stein� using Centered Iterate Method �

Table ��� demonstrates that if we do not look for a warm�start point for the child

nodes of any of the �rst four nodes� we see that the problem can be solved in fewer

iterations� For node �� for example� the number of iterations to solve this node from

a cold start is �� and to reoptimize this node directly from a good warm start requires

only three iterations� When a centered�iterate warm�start point must be saved for

the next child extra iterations are required to �nd a point that satis�es the centrality

criteria for the warm�start point�


�� Newton�s Method� The Pull of the Boundary

Di�culties associated with reoptimizing child nodes in the branch�and�bound code

can also be attributed to the e	ects of Newton�s method that underlies the primal�

dual interior�point method� As we demonstrated in the previous sections� a change in

optimal partition can cause problems for the interior�point algorithm� Several nodes

that were reoptimized in the branch�and�bound search tree su	ered from the e	ect

of taking short steps near a boundary�

111 I I 
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It can be shown for the primal and dual programs ����� and ����� that the distance

to optimality and primal feasibility are not necessarily the dominant factors for the

di�culties in reoptimization� In fact� it can be shown that there exists a linear

program such that for any � � �� we can �nd a point that has distance � to optimality�

but Newton�s Method does not converge�

Let the ��ball around v� be de�ned as

B�v�� �� � fv  jjv � v�jj � �g�

then we have the following theorem

Theorem ��� For any � � �� there exists a linear program �LP��

min cTx �����

st Ax � b

x � ��

such that the following properties hold

�� The LP has a nondegenerate optimal solution �x�� y�� z���

�� The LP has a feasible primal�dual solution �xo� yo� zo� � B��x�� y�� z��� ���

�� The sequence �xk� yk� zk� generated by Newton�s Method or damped

Newton�s Method starting from �xo� yo� zo� does not converge to �x�� y�� z���

Proof� Consider the following linear program

min �x� � x� � x� �����



��

st x� � x� � x� �
�

�
�

x�� x�� x� � �

and its dual

min �
�
� y �����

st y � z� � �

�y � z� � �

y � z� � �

z�� z�� z� � �

�� Clearly� the pair ����� and ����� have a unique primal�dual optimal

solution �x�� y�� z�� equal to ��� �� �
�
�� �� �� �� ���

�� Consider the point �xo� yo� zo� equal to ��
�
�� �

�
�� �� �� �� �� ��� This point

is feasible� and since

jj�x�� y�� z��� �xo� yo� zo�jj �

s
��

�

�
��� � ��

�

�
��� � �

�

�
��� � �

it is contained in B��x�� y�� z��� ��

�� At each iteration of Newton�s Method or Damped Newton�s Method

the following system is solved for the pair ��� and ��� at each iteration

k

F ��xk� yk� zk��!xk�!yk�!zk� � �F �xk� yk� zk�



��

where

F �x� y� z� �

�
BBBBBBBBBBBBBBBBBBBBB�

x� � x� � x� �
�
�
�

y � z� � �

�y � z� � �

y � z� � �

x�z�

x�z�

x�z�

�
CCCCCCCCCCCCCCCCCCCCCA

If our initial point is �xo� yo� zo�� then at iteration k � � the linearized

complementarity equation for x� and z�

zo�!xo� � xo�!zo� � �xo�z
o
�

implies that !xo� � �� Thus� x�� � xo� � �!xo� � � where � �� �

for damped Newton�s Method and � � � for Newton�s Method� By

induction� xk� � � for all iterations k of Newton�s Method or damped

Newton�s Method� but x�� � �
�
� at optimality� Therefore� neither

Newton�s Method nor damped Newton�s Method will converge from

�xo� yo� zo� to �x�� y�� z���

We know that under standard assumptions primal�dual interior�point methods

converge from any starting point for which the nonnegative variables are strictly

greater than zero� Theorem ��� shows that closeness to optimal is not enough to

ensure convergence� As in the case of the linear programs in this theorem� we see

that the 
pull� of the boundary precludes convergence� An initial point can in fact

be arbitrarily close to optimal� yet still Newton�s Method is unable to converge to

optimality� By continuity� we can argue that for initial points su�ciently close to

the boundary� as may be the case for a warm�start initial point� the 
pull� of the

boundary can signi�cantly slow convergence�
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Table ��� demonstrates this phenomenon� The �rst column is the ratio of warm�

start to cold�start iterations� The second column is the number of variables that

switch from B to N when the child node is created� The third column is the number

of primal variables� The fourth and �fth columns report the distance the primal x

variable is from optimality and the relative primal infeasibility� respectively� The

�nal column is the average step size taken during the reoptimization� For each of the

eleven nodes in the table� the primal variable x is very close to optimal� the number

of switches is relatively low� and the relative primal infeasibility is small� Yet� the

average step size is small causing the warm�start to cold�start iterations ratio to be

high�



��

wscs sw n jjxows � x�wsjj jjr�b jj�jjbjj� �� avg��p� �d�
������ � ���� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������
������ � ��� ������ ������ �������� �������

Table ���� These eleven nodes from the MIPLIB problem set demonstrate
the e	ect of the 
pull� of the boundary in spite of the primal solution being

very close to optimal�
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Chapter �

Concluding Remarks

Of the methods implemented in this work� we have shown that the prior centering of

the warm�start initial point suggested by Gondzio ��� provides for a more e�cient

and reliable reoptimization technique� However� none of the techniques presented

were capable of keeping the ratio of warm�start iterations to cold�start iterations

below one for all nodes�

We have established that a rapid reoptimization is not always possible in a branch�

and�bound framework when using an interior�point method to solve the linear pro�

grams generated� We have shown that the 
pull� of the boundary� the distance to

optimality� and the initial primal infeasibility can negatively e	ect reoptimizations�

We have also shown that the change in optimal partition from the parent node when

a child node is created impacts the e�ciency of the reoptimization�

This study shows that using an interior�pont method as the linear programming

problem solver in the branch�and�bound framework does not have wide applicability

for general ��� integer programming problems� However� for those problems where the

linear programs generated in a branch�and�bound search tree solve faster for interior�

point methods than simplex methods� the centering idea introduced by Gondzio ��� 

provides the best basis for an e	ective reoptimization technique� Continued research

is needed in the direction of the present study in order to provide comprehensive

guidelines for the most e	ective utilization of interior�point methods in a branch�and�

bound algorithm�
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Appendix A

Problem Statistics

Problem statistics for each problem set can be found in the following tables� Tables

A�� and A�� correspond to the MIPLIB problem set� and Table A�� corresponds to the

Capacitated Facility Location problem set� The �rst column� NAME� contains the

name of the model� The next two columns� ROWS and COLS� contain the number

of rows �constraints�� not including free rows� and the number of columns �variables�

in the problem� respectively� The column INT speci�es the number of variables that

are restricted to integer values� and the ��� column speci�es how many of these

integer variables are binary� The column CONT speci�es the number of variables

that are continuous� The next two columns report the best�known integral solution

and the optimal value with the integrality restrictions relaxed� respectively� The

entries in the INT SOLN column indicate the optimal integer solution� The last

column LP SOLN contains the solution to the linear programming relaxation for

each problem�

For the Conrail problem statistics in Table A��� the �rst column� �TP� and

second column� �ETP� correspond to the value of the parameters NumTP and

NumEnsTP � respectively� The next two columns� ROWS and COLS� contain the

number of rows �constraints�� and the number of columns �variables� in the problem�

respectively� The column INT speci�es the number of variables that are restricted to

integer values� and the ��� column speci�es how many of these integer variables are

binary� The column CONT contains the number of variables that are continuous�The

next two columns report the best�known integral solution and the optimal value with

the integrality restrictions relaxed� respectively� The entries in the INT SOLN



��

column indicate the best known integer solution� The last column LP SOLN contains

the solution to the linear programming relaxation for each problem�



��

NAME ROWS COLS INT ��� CONT INT SOLN LP SOLN
��teams ��� ��� ���� ALL �� ��	 ��

air�� �� 

� 

� ALL � �
�� �
	���
air�� � �

	 �

	 ALL � 
��� 
�	���
air�� ��	 ��

 ��

 ALL � �	���� �����	��
air�	 ��� ���	 ���	 ALL � ���
 ��	��
air� 	�� 
�� 
�� ALL � ���
	 ��

����
cap���� ��
� ���� ���� ALL � ��	��

 ��	��
���
cracpb� �	� 
� 
� ALL � ����� �������
danoint ��	 �� � ALL 	� ���
 �����
���	��
dcmulti ��� 	� 
 ALL 	
� ������ ����
���

egout �� �	�  ALL �� ������ �	����
enigma �� ��� ��� ALL � ��� ���
�ber ��� ���� ��	 ALL 		 	��������� �������
�
�xnet� 	
� �
� �
� ALL �� ���� �������
harp� ��� ���� ���� ALL � �
����
����� �
	���	����
khb��� ��� ��� �	 ALL ���� ����	���� ����	�	��
l��lav �
 ���� ���� ALL � 	
�� 	�����
lp	l � ���� ���� ALL � ���
 ��	��
lseu �� �� �� ALL � ���� ��	���
markshare� � �� � ALL �� � �
markshare� 
 
	 �� ALL �	 � �
mas
	 �� �� �� ALL � ��������
 ��	���
����
mas
� �� �� �� ALL � 	�����	� ����������	�
mkc �	�� �� ��� ALL � ���
�not opt� ������������
mod��� � ��� ��� ALL � ��
 ������
mod��� �	� �� �� ALL � �	� ������
mod��� 		�� ���� �� ALL ����� �	�� �����������
modglob ��� 	�� �� ALL ��	 ��
	��� ��	���	
��
p���� �� �� �� ALL � ���� ����

p��	� �� 	� 	� ALL � ����
 ��
���
p���� ��� ��� ��� ALL � 
�� ��
��
p���� �	� ��� ��� ALL � ��	�� �
���
��
p�	� �
� 	� 	� ALL � ���� �����
p�
� 
 �
� �
� ALL � ���	 �����

pk� 	 ��  ALL �� ���� ���
pp��a ��� �	� �	 ALL �
� 
���� �
	���	����
pp��aCUTS �	� �	� �	 ALL �
� 
���� 	���������
qiu ���� �	� 	� ALL 
�� ������
���
 ���������


Table A�� MIPLIB Problem Statistics
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NAME ROWS COLS INT ��� CONT INT SOLN LP SOLN
rentacar ���� �
  ALL ��� ����
�� �������
��		
rgn �	 ��� ��� ALL �� ������� 	��
���
sample� 	 �
 �� ALL 	� �
 �	
��
sentoy �� �� �� ALL � �


� �
�����
�
set�ch 	�� 
�� �	� ALL 	
� 	�
�
 ����
�
�
stein� �� � � ALL �  	��
stein� �� � � ALL � � 
��
stein�
 ��� �
 �
 ALL � �� ����
stein	 ��� 	 	 ALL � �� ����
vpm� ��	 �
� ��� ALL ��� �� ��	��

vpm� ��	 �
� ��� ALL ��� ���
 �������	�
�

Table A�� MIPLIB Problem Statistics� continued

NAME ROWS COLS INT ��� CONT INT SOLN LP SOLN
cap	� �� ��� �� ALL ��� 	�����������e��� 	������	����e���
cap	� �� ��� �� ALL ��� 	�����	�����e��� 	������
���e���
cap	� �� ��� �� ALL ��� 	�����������e��� 	�����	���	�e���
cap		 �� ��� �� ALL ��� 	�����������e��� 	�������
���e���

Table A�� Capacitated Facility Location Problem Statistics

NAME �TP �ETP ROWS COLS INT ��� CONT BEST INT LP SOLN
con�� � � ���� �
		� �
� ALL ���� 
� �������	
���
con	� 	 � 
��
 �
�� ���� ALL ����	 
�� ��
����
�	��
con		 	 
��
 ���	� ���� ALL ����� �� ����	��
�	
con�� � � ��� ����� �
� ALL ��	
� 
�� ��������	
��
con�� � ��� ���� �
� ALL �	��	 
�	 ���
�	��

con�� � ��� �	��� �
� ALL ���� ��� ���	
����
con�� � � ���� ����	 ���� ALL ���� 
�	 ����	�����
con�	 	 ���� �			� ���� ALL ����	 ��� 
�
	�
��
con�� � ���� 		
� ���� ALL 	���� ��� ����������
con��� �� � ���� 	���� ��	 ALL ����� 
�� 
	��	�����
con��� � ���� 	��
	 ��	 ALL ��
� 
�� �������
�	
con��	 	 ���� 	��� ��	 ALL 	���� ��� �������	�
con��� � ���� ��	� ��	 ALL 	
�		 �� ���������
con���� �� ���� �
��� ��	 ALL �	��� ��� 	�������	
con�	� �	 � �
��
 
		�� 
��� ALL �
	�	 
�
 �	�����	�
con�	� � �
��
 

�� 
��� ALL 
��	� 
�	 ����������
con�		 	 �
��
 ����� 
��� ALL 
���� �� ����
�	��

con�	� � �
��
 ��	 
��� ALL 
��� ��� 	���������
con�	� � �
��
 ���	� 
��� ALL �	��� ��� 	����������
con�	�� �� �
��
 ����
� 
��� ALL ���	 ��� 		�
		����

con�	�	 �	 �
��
 ����� 
��� ALL ������ ��� �

Table A�	 Conrail Problem Statistics

I I I I I I I I I 
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Appendix B

Factor Calculations

The following tables provide for each reoptimization method the factor calculations

for each problem set� The second column gives the average warm�start to cold�start

iterations ratio for the problem named in column one� The NODES column reports

the number of reopt nodes in branch and bound tree� The average of the number of

indices that switched from B to N divided by the number of primal variables is in

column four� The average distance between the warm�start optimal solution and the

warm�start point� the average of the relative primal infeasiblity and the average of

the ratio of primal and dual infeasibilty to duality measure over all of the nodes in

the branch and bound tree are reported in the last three columns�
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PROB NODES ws�cs sw�n jjxows � x�wsjj jjr�
b
jj��jjbjj� �� jj�r�

b
� r�c �jj��

��teams �	 ��	��
 ����� ������e��� ����� ��		e��

air�� � �����	 ������ �����e��� ����
� ��
��e���
air�� �� ���� ������ ����
�e��� ����	� �����e���
air�	 � ��	��	 ������ ������e��� ���			 ���
�e���
air� 
 ������ ������ ��

�e��� �����
 ���
�e���
bm�� �� ������ ���
� �����e��� ����� ��
	e���
cap���� � ��

�	 �����	 
�����e��� �����
 
���	e��	
cracpb� 
	 ����
� ����� 	����e��� ����� ���		e��

danoint 
 ��
�� ����	 ������e��� ���	�	 ����	�e��
dcmulti ��� ����� ����
 �����e��� ���
� �����e���
egout �
� ����� ���	�� ��	
��e��� ����� ��	��
e���
enigma �� ��
��� �����
 ����e��� 	������� ����	e���
�ber  ��	��	 ����		 �����e��� ������ ��			e��
�xnet� �� ��	�
� ������ ��	���e��� ���	� ���
��e���
harp� � ��	
� ������ �����e��� ��	�����	
� 	�����e���
khb��� �� n�a n�a n�a n�a n�a
l��lav �� ������ ������ ��
�	�e��� �����
 �����e���
lp	l ��� ���
�	 ������ ���
�e��� ���
�� 
��
��e���
lseu 	
 ���	�� ������ �����e��� ����
� �����e��
markshare� �� ��	
�
 ����	� ��
��e��� ����� �����	e���
markshare� �� ��	��� ����	� ��
	
�e��� ����	� ������e���
mas
	 �� ����� �����	 ������e��� ���	�	 �	��e��
mas
� �� ������ ����� �����	e��� ����	 ������e��
mkc �� ��		
� ������ 	���
�e��� ����� ��	�e��
mod��� �	� ����� ����� 
�����e��� ����� 	�����e���
mod��� 	� ��
�
� ����� ������e��� ����
� ���	�e���
mod��� �� ����	� ����� ����
�e��� �����
 
���	e���
modglob �� ����		 ������ ������e��	 ������ 	�	�	�e��
p���� ��� ���� ����� ��	���e��� ������ 	���
�e���
p��	� 
� ���
�� ������ 	�����e��� ���
�� 	�����e��
p���� �� �����
 ���	
 �����e��� �����	 ����
	e���
p���� �� ��	��� ����	� 
��	

e��� ���
	� �����e���
p�	� �	 ������ ������ ���	�e��� ������ �����e��
p�
� 	� �����	 ������ ���	�e��� ������ ���	�	e��
pipex ��� ���	�� ���	� ������e��� ���
	� ���	�e���
pk� �� ���		� ������ 
�����e��� ������ ����
�e���
pp��a ��� ����� ������ �����
e��� ������ ���
��e���
pp��aCUTS ��� ����� ������ ���
��e��� �����	 	����e���
qiu �� �����	 ����� �����
e��� �����
 ���
�e���

Table B�� Average of data for Total Relative
Error Method on the MIPLIB problem set
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PROB NODES ws�cs sw�n jjxo
ws
� x�

ws
jj jjr�

b
jj��jjbjj� �� jj�r�

b
� r�

c
�jj��

rentacar � ������ ������ �����e��� ����� ����e���
rgn �	� ���
�� ������ ������e��� �����
 
����e��
sample� ��� ����� ���� ���	�e��� �����
 
����e���
sentoy �
� ����� ������ ��
�	�e��� ���	� ��	���e��	
set�ch 
� ������ �����
 	��
�e��� ���	�� ��
��e���
stein� �� ����

 ������ ��
��e��� �����	 	����e���
stein� ��� ���		
 ����� ��	��
e��� ������ ��
��e���
stein�
 �� ����	� �����	 ���
	
e��� ����	 ���		�e��	
stein	 ��� ������ ����� �	���e��� ������ �����
e��	
vpm� �� ������ ����� ����	�e��� �����
 �	��e���
vpm� ��� ���
�	 �����
 
�		��e��� ������ ������e���

Table B�� Average of data for Total Relative Error
Method on the MIPLIB problem set� continued�
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PROB NODES ws�cs sw�n jjxows � x�wsjj jjr�
b
jj��jjbjj� �� jj�r�

b
� r�c �jj��

��teams �� ���� ������ 
����e��� ���	�� 	����
e��

air�� 	 ������ ������ �����	e��� ���
�� �����e���
air�� �� ����� ������ ���

�e��� ���
 ��
���e���
air�	 � ��	��� ������ ������e��� ���	�� ���
e���
air� 
 ����� ������ ��
��e��� ����� ������e���
bm�� �� ������ ���
� ���	�e��� ����� ������e��	
cap���� � �����	 �����	 ������e��� ������ ������e���
cracpb� 
	 ������ ����� 	�
��e��� ������ ���
��e��

danoint 
 �����
 ����	 ���
��e��� ���	�� ���	�
e���
dcmulti �	� ���
� ���� ���
��e��� ���


 ����
e���
egout ��� ���	� ���	�� ��
��e��� ���		 �����e���
enigma ��� ��
��� ����� ����	�e��� ��
����
 ���	�
e���
�ber  ���	� ����		 ���
�e��� ������ ���	
�e���
�xnet� �� �����
 ������ 	�����e��� ���	�� ������e���
harp� � ��	
� ������ �����e��� ��	�����	
� 	�����e���
khb��� �
� ���
�� ������ ���
��e��� ����� �����e���
l��lav � ���
�� ������ ����	�e��� ���	� ��	���e��
lp	l 	� ������ ����� �����e��� ���	
� ����e���
lseu ��� ���
�� ����
� ����e��� ����	� ��
��	e��
markshare� �	� ���� ����	 �����e��� ������ ������e���
markshare� �� ����� ����	� ��
��e��� ����	� ��	���e���
mas
	 �� ������ �����	 ��	���e��� ����
	 ����	e��
mas
� �� ��
�	
 ����� 
���
�e��� ����� �����e��
mkc �� ��	��� ������ ����	�e��� ��		�� ����

e���
mod��� �	� ���
�	 ����� 	�	�
�e��� ���

� ��

�
e��
mod��� 	� ��
��� ����� ��
�	�e��� ������ 
�����e���
mod��� �	� ���
 ����� �����e��� ����
� ������e���
modglob �	� ������ �����	 ��
��e��	 ��	
�
 	���	�e���
p���� ��� ���
�� ������ ���		�e��� ���
�� �����
e���
p��	� 
� ����	 ������ 	�	�
�e��� ������ �����e���
p���� ��� ��
��
 ������ ���
�e��� ������ ����e���
p���� ��
 ������ ������ ������e��� ������ 	�����e���
p�	� �	 ���
		 ������ ������e��� ������ ����e��
p�
� 	� ���	�� ������ 
�	���e��� ������ ����
e��
pipex ��� ���	� ���	
� �����e��� ������ �����e���
pk� �� ���

� ������ ����	�e��� ����� 	���
�e���
pp��a ��	 ���
�� �����	 ���	

e��� ������ �

��e���
pp��aCUTS �� �����	 ������ ����	e��� ����� ������e���
qiu �� ���	� ����� �����e��� ������ ���
��e���

Table B�� Average of data for Early
Termination Method on the MIPLIB problem set�
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PROB NODES ws�cs sw�n jjxo
ws
� x�

ws
jj jjr�

b
jj��jjbjj� �� jj�r�

b
� r�

c
�jj��

rentacar �
 ������ ����

 ������e��	 ������ ������e���
rgn ��� ����
� ������ 	�����e��� ���
�� �����
e���
sample� ��� ��	
�� ���� ������e��� ����
 ���	�e��	
sentoy �
� ���		 ������ �����
e��� ���	�� �����e��	
set�ch ��	 ��
�
� ����� ����e��	 ����� ����e���
stein� 	� ��
��� ���	
 ��
���e��� ���		� ����e���
stein� �� ������ ������ ��	�	�e��� ���
� ���
��e���
stein�
 �	� ���
 ����� ��	���e��� ����
 ������e��	
stein	 ��� ������ ����� 	���e��� �����
 ������e��
vpm� ��� ������ ������ ���	��e��� �����
 ��	���e��	
vpm� �� ���
� �����
 ������e��� ����� �����e���

Table B�	 Average of data for Early Termination
Method on the MIPLIB problem set� continued�
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PROB NODES ws�cs sw�n jjxows � x�wsjj jjr�
b
jj��jjbjj� �� jj�r�

b
� r�c �jj��

��teams �� ��
�� ������ ��	��e��� �����
 ��	�
�e���
air�� � ��	��� ������ ����
	e��� ������ ������e���
air�� � ���
�� ������ ���

�e��� ���	�	 ������e���
air�	 � �����
 ������ ������e��� ������ ��	��e���
air� 
 ����
� ������ 	�����e��� ������ ������e���
bm�� �� ����� ���
� �����e��� ����
� ��	��	e���
cap���� � ����� �����	 �����e��� ������ ���
	e���
cracpb� �
� ���� ������ ��	���e��� ����
� 
�	�	e���
danoint 
 ���	
� ����	 ����	e��� ������ ����e���
dcmulti �	� ��	�� ����� ����
�e��� ���� ��
��	e���
egout ��� ����� �����	 �	�	�e��� ����� ����	�e���
enigma ��� ����	� ������ ���
�e��� �
������ ������e���
�ber ��� ��
�� ������ ���	�e��� �����	 �����	e���
�xnet� �� ���
 ������ ��
��	e��� ����	� ��	���e���
harp� �� ��	��� ������ ���		e��� ���	�����	� ������e���
khb��� ��
 ����	� ������ 
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Appendix C

Expected Iterations Count Data

The following tables report the average expected iteration counts versus the average

warm�start iterations for each problem set� The second and third columns report

the average number of cold iterations and the average number of warm iterations�

respectively� for each problem in column one� The �nal column gives the average

expected number of iterations�
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