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ABSTRACT

Semi- and Non-Parametric Estimation and Testing
of Economic Models

by

Xing Ming

Chapter one provides a new estimator for the ordered polychotomous model. The
estimator is based on the use of the average of the standard normal densities with
different means as a parametric approximation to the density of the error term.
The method also, for the first time, provides a consistent, differentiable estimator
of the distribution function of the error term. Chapter two employs the
conventional interpretation of endogeneity in econometric models to develop a
way of eliminating the inconsistency resulting from endogenous explanators in
cross sectional models. The method first obtains an estimate of the unobserved
heterogeneity responsible for the endogeneity and then creates a synthetic
observation by taking a non-parametric weighted average of nearby observations.
The deviations are produced from these synthetic means thereby eliminating the
unobserved heterogeneity. The procedure is particularly useful for estimating
models when the endogenous regressors are censored or appear non-linearly in the
primary equation. Chapter three first calculates the exact distribution of Blum et
al's (1961) statistic, which is based on a comparison of the sample joint CDF with
the product of the sample marginal CDF's, for very small sample size and simulate
the distribution quantiles of it for sample size not large enough to employ the
asymptotic result.  Secondly, the asymptotic distribution of the statistic
constructed from residuals and/or predicted values, to test the independence of the
error term and the regressors in nonlinear regression models, is obtained. Thirdly,
bootstrap technique is used to obtain the distribution quantiles of the statistic
constructed from residuals and/or predicted values. The test is nonparametric in
that it does not specify the parametric form of distributions of the error term and
the regressors.
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CHAPTER 1

Semi-Parametric Maximum Likelihood Estimation of Discrete Choice Models

Chapter one presents a new semi-parametric method to estimate consistently
the parameters of discrete choice models without specifying the distribution func-
tion of the error term. The approach utilizes kernel estimation techniques to
parameterize the distribution function of the error term and maximum likelihood
techniques to obtain the estimates. The estimators are shown to be consistent as
long as the number of nuisance parameters goes to infinity as the sample size goes
to infinity, and a smooth consistent estimator of the distribution function of the
error term is obtained. As the likelihood function of the model can be made as

smooth as possible, the approach is easy to implement.



1.1 Introduction

In this chapter we propose a new semiparametric estimator for the binary
choice model. Our estimator is shown to be consistent. Furthermore, in the process
of estimating the parameters of the model, the distribution function of the error
term is simultaneously and consistently estimated. The method is semiparametric
in that it makes no assumption concerning the specific distribution generating the
disturbances.

The model we consider is given by:

y; = V(zi,00) — wi, (1.1)

where we only observe y; = 1{y} > 0} and 1{-} is the indicator function, V(,-)
is a known function, 2; i; a vector of exogenous variables, 0y is an unknown pa-
rameter vector, and u; is a random disturbance. The subscript ¢ distinguishes
observations. In conventional maximum likelihood estimation of this model one
has to make assumptions about the distribution of the error term. It is well-known
that misspecification of the distribution of the error term may lead to inconsistent
parameter estimates.

The problem of distribution-free estimation of binary choice model was first
addressed by Manski (1975), who introduced the maximum score estimator and
proved its consistency. The most closely related alternative approaches (to the

method proposed in this paper) within the class of distribution-free likelihood esti-



mators are Cosslett’s (1983), which is an application of the result of Kiefer and Wol-
fowitz (1956) and Gallant’s and Nychka’s (1987) which utilized the density func-
tion approximation result of Phillips (1983). In the literature of econometrics, very
few single models have attracted so many researchers, e.g., Ruud (1983), Cosslett
(1987), Han (1987), Ichimura (1987), Manski and Thompson (1986), Horowitz

(1992) and Matzkin (1992) and others.

As in Cosslett, our approach provides a consistent estimator of the distribu-
tion function of the error term. The fundamental difference in our approach is
that Cosslett maximized the likelihood function over the collection of all distri-
bution functions whereas we maximize over a class of distribution functions that
can approximate the true distribution function as closely as possible. Because our
restricted class of distribution functions can be made as smooth as desired, the
method is easy to implement. In addition, our estimator of the distribution func-
tion is itself a smooth function, while Cosslett’s is a step function. Gallant and
Nychka (1987) also maximized over a restricted class of distributions, but their
specification of the parametric functions can not guarantee that they are distri-
bution density functions, unless a restriction is imposed, i.e. they must restrict
the definite integration of the functions to equal to one. This makes it difficult for
empirical practitioners to solve the problem numerically. Ruud (1993) proposes an
algorithm for computing the semi-parametric maximum likelihood estimator for
a class of discrete dependent variable models that include the ordered probit and

multinomial choice models with non-parametric distribution functions. In addi-



tion to the theory, this paper also comes up with a very simple approach to the
computation of the models mentioned above. The methodology adopted in this
paper can also be used in the estimation of other models, e.g. Gallant and Nychka

(1987).

The most recent investigation of the binary choice model was done by Klein
and Spady (1993). Their estimator satisfies all the classical desiderata: consistency,
v/n-normality, and semiparametric efficiency. But the approach in this paper pro-
vides for the first time a consistent smooth estimator of the distribution function

of the error term.

This chapter is organized as follows: Section 1.2 is a brief introduction of the
estimation method; Section 1.3 enumerates the technical assumptions; Section 1.4
presents the theoretical derivation of the estimator and its properties; Section 1.5
presents a Monte Carlo experiment and Section 1.6 briefly discusses applications

of the method to ordered discrete choice models.

1.2 Estimation Methodology

Suppose we know the parametric form of the distribution function of the dis-
turbance term F'(-, ), where « is a vector of parameters with agp being the truth.
The most common way to estimate 0y in (1.1) is to apply the method of maximum
likelihood under the assumption that w and the exogenous variables 2z are mutu-

ally independent of each other and that « and z are jointly i.i.d.. The average



log-likelihood function for this problem is

N
Ly (0,F (-,0) = z_: yilog F[Vj,a] + (1 — ;) log(1 — F[Vj, o)} (1.2)

where V; = V(2;,0). By the strong law of large numbers we know immediately

that Ly (0, F') goes to E[Ln(0, F(-,))]. The explicit form of E[Ly (0, F(-,@))] is:
[PV (60, coltog FIV(0), o] + (1 = FIV(00), o)) log(1 — FIV/(6), ] budz

where g = p(z) is the density function of the expanatory variable vector z and
V() = V(z,00), V(0) = V(z,0). The above objective function is maximized at
(G0, o). This observation is the essence of the maximum likelihood methodology.
For the sake of completeness we will prove this claim later in this paper.

Like Gallant and Nychka (1987) we will construct a series of parametric distri-
bution functions to approximate the true distribution function. The approximation
should be such that it gets as close as possible to the truth when the sample size
becomes sufficiently large. Once the series of approximation functions is obtained,
it can be substituted in place of the true distribution function in equation (1.2).
Estimation of § and the artificial parameters of the approximating function is then
done simultaneously. The estimator 0 of 0y proves to be consistent. Inserting
0 back into the artificially constructed distribution function gives us an estima-
tor of the distribution function. This estimator converges uniformly to the true
distribution function. Cosslett (1983) also obtained a consistent estimator of the
distribution function, and as a matter of fact, our objective function can in some

sense be regarded as a smoothing of Cosslett’s objective function.
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where we use ¢, to denote the n-dimensional vector (a9, -, ). K(-) is some
cumulative distribution function (currently we regard it as the standard normal
cumulative distribution function). and h is the window width!. For notational
simplicity we suppress the dependence on n of h. Given a,,, F(t;a,) is itself a
distribution function.

Some intuition can be gained by writing

n t— o ot n -
F(t;a,) =n"" ZK( ’ a,) = / (nh)! Zk(s ] a')ds =F,(t). (1.3)
i=1 v -0 i=1 v
Assume (@, @, +,0,) are n random experiments drawn from the population

distribution of the error term u; Then f, (s) = (nh)™' T, k(%‘) is nothing but
the nonparametric estimator of the probability density function of the error term u,
see Parzen (1962). The uniform convergence of f,, (s) to its target f (s) needs more
regularity conditions. In the problem at hand, we use only F}, (¢), the integration
function of f, (s). Because of the integration, the uniform convergence of Fy, (t) to
its target F'(t) is guaranteed by the continuity of F'(t). The method of this paper
is outlined as follows: First, we claim that the non-parametric form distribution

function F(t;q,) can approximate any continuous distribution function as closely

as possible uniformly; second we plug I'({; ¢,,) into (1.2) in the place of the true

! In this paper the only requirement for window-width A is limy, oo 2 = 0. From the non-
parametric density estimation literature, e.g. Pagan and Ullah (1992), we know that the optimal
window-width A = O (n‘l/ 5). From the perspective of finite sample estimation, this optimality

rule for h has no use at all.
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distribution function F(-) and maximize the log-likelihood function with respect
to both @ and @,,; third, we prove that providing n increases with the sample size
N, the estimator @,y of f will be consistent; and finally, we prove that, if we plug

the estimator &,y of @, into F(¢; @), F(t; &,n) is an uniform consistent estimator

of F(.).

1.3 Assumptions

As we pointed out earlier, the aforementioned procedure can in some sense be
viewed as a smooth version of Cosslett’s (1983). Not surprisingly the technical
assumptions we are making here are almost the same as those made by Cosslett?.

Assumption 1.1. The parameter space Q is a compact subset of a Euclidean
space, with y being a interior point of Q.

Assumption 1.2. V(z,0) is continuous in 0 for each z, and is measurable in

z for each 0.

Assumption 1.3. The density function pu(z) is a measurable function of
z. One way of achieving this is to suppose that each component of z is either
an absolutely continuous distribution or a discrete distribution, and that p(z) is

continuous with respect to the continuous components of z.

Assumption 1.4. The probability distribution of V/(z,0) is absolutely con-

tinuous and has full support on the real line.

Assumption 1.5. (Identification Condition): (i) If I4[V(z,00)] = Fi[V (2, 01)]

2 Readers are referred to Cosslett (p.769) for discussion of the following assumptions.



for almost all z (with respect to p), then 0y = 01 and Fy = Fy, where 0, 6; € Q and
Fo, F} are two distribution functions. (ii) V/(z,0p) is not homogeneous of degree

one in 0.

If V(z,00) is homogeneous of degree one in 0y, e.g. the linear case, this as-
sumption can be interpreted as normalizing one of the arguments of 6y to one.
For discussion of this problem, readers are referred to Cosslett (1983). For more

general identification discussions for binary choice model, readers are also referred

to Manski (1988) and Matzkin (1992).

Assumption 1.6. The distribution function of the disturbance term has

continuous density function f(-) and satisfies [¢f (¢)dt = 0.

The second part of this assumption seems to be implicit. Because the general
form of our parameterization of the density function is free of mean, we single it

out for emphasis. Without this assumption even the following model can not be

identified:

y=1(1+02*+¢>0)

Because the constant can be absorbed into the error term such that the mean of
the error term becomes 1 and the original regression function becomes linear in 6.
In the following, whenever we mention either the distribution space of the error
term or the parameterization of it, we always assume implicitly that its mean is

Zero.



1.4 Theoretical Derivations

From now on let ® denote the set of continuous distribution functions, i.e.
® = {F(-); F nondecreasing, continuous, and satisfying F(~o0) = 0, F(+00) =
1}. For any sufficiently small o > 0, define the o-truncation F?(¢)® of a function

F(-) valued between 0 and 1 as:

o if Flt)<o
FP(t)={ F(t) if o<Ft)<1l-o0

l-0 if Ft)>1-0

Define ° = {F(); F() € &}, @, = {F(, ), & € R"}, 8 = {F°(, ),
a, € R"}, where F'(:,a,) is defined by (1.3) for some given symmetric kernel & (-).
By definition, all sets ® are subsets of $7.

Lemma 1.1. Assume F'(t) € ®, then there exists a real sequence {o;} such
that F(t;a,) = n7 130, K ('—",T“‘) converges to F(t) uniformly; and F7(t;q,)
converges to F7(t) uniformly, i.e. the o-truncated sequence also goes to the o-
truncation of F(-) uniformly.

Proof: (i) Let «; be the i-th realization of the random experiment according

to population distribution F'(-). Once the experiment is done, {c;} becomes a

non-stochastic real sequence. I claim that any such sequence {«;} satisfies our

3 For any given distribution function F(t), F9(t) is not a distribution function. By controlling
o we can easily controll the absolute distance of the two functions, i.e.

sup | F(t)— F7(t)|< o
teR
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requirements. By construction

1 if a; <t
. t—a; .
nh_{ngK( h >=< 1/2 lf a,-=t
0 if a; >t
\

Thus

n—oo n—oo
a; <t

lim F(t;e,) = lim{Zl{ai<t}+21{ai=t}/2}/n
= El{a <t} +E1{a; =1}]/2

= ()

The second equality is by the strong law of large numbers. When we use the strong
law of large numbers we treat {¢;} as a random variable with distribution function
F(-). The third equality is because E[1{e; = t}] = 0 due to the fact that F(-) is
continuous.

By continuity of I'(:) and page 21, Problem 3 of Billingsley (1968) the uniform
convergence result can be obtained.

Define a metric d(-,-) on the space & (3°) as
d(Fl()1 F2()) = /0 |Fl(t) — F2(t)|(3_mdt.

The completion of & ($9) with respect to the metric d is denoted by & (‘i)"),
which includes all the nondecreasing functions valued between 0 (¢) and 1 (1 — o)%.
Define I' = Q x @, which is also a compact space with respect to the metric & in

I' = Qx . 4 is defined as the sum of the distance d plus the Euclidean distance in

4 This claim will be proven in Lemma 3.
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Q. The metric d(-,-) and & can also be defined on the spaces ®° and I'V = Q x &°
in exactly the same way as above. We use bars to denote the completion of the
corresponding metric, e.g. 'V denotes the completion of I'’.

Lemma 1.2. For given 0, lim,_, d (F7,F°) = 0 if and only if lim, ., F? (to)
= F7 (to) for all continuous points ¢ of F (-), i.e. convergence in metric d(-,-) is
equivalent to pointwise convergence at all continuity points of the limiting function.

Proof: Suppose limp_.o FY(to) # F(to) for some continuous point tp of F7(-).
Without lose of generality we assume that for all n, F2(t) — F7(ts) > a > 0.
Because of continnity of F7(t) at tp, there exists a d > 0 such that whenever
t € [to,to+d], FO(t) — F°(to) < /2. Thus FZ(t) — F°(t) > FZ(to) — F°(t) > /2

for all n and all t € [tp,t9 + d]. We have

n—oo n—o0

lim d(F2, F°) = lim [ |F2(t) = F(t)|eMdt
0

2

o+d
> lim |F2(t) — Fo(t)]e”dt

n—00 to

to-+d
> a/2/ |e“|‘|dt >0
to

which is a contradiction.

Suppose lim,_o FY (ta) = F°(to) for all continuous point tg of F7(-). Due to
the fact that F(-) is a monotone function, the set of its discontinuity points is
countable. A countable set has a zero Lebesgue measure. Thus by the dominated

convergence theorem, we have

lim d(FS,F°) = lim [ |Fo(t) = Fo(t)]eMdt

n-—00 n—oo jo

= / ™ lim |F2(t) — F(t)]e""dt
0

n—o0
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Lemma 1.3. For any F7(-) € @7, there exists a subsequence {FZ,(-); F%(-) €
@2} such that lim,_ d(FZ, F?) = 0, i.e. U, @7 is a dense subset of ° under
metric d(-,-).

Proof: This is an extension of Lemma 1.1 and Lemma 1.2. If F7(.) € &7,
then by Lemma 1.1 and Lemma 1.2 there exists a sequence {F?(-); F3(-) € @7}
satisfying our requirement. The only thing that needs to be proven is that for
any nondecreasing function F'(), which might be discontinuous, there exists a
sequence F2() € ®° such that d(F?, F°) = 0, or we can say ®° contains all
the nondecreasing functions between ¢ and 1 — 0. The following proof is also a
justification of footnote 3.

First we notice that the discontinuity points of a nondecreasing function F(-)
are countable. We order them as {z;}. By Lemma 1.2 the only thing we need
to prove is that for any continuous point ¢ of F?(-) we can find a sequence of
continuous functions such that lim,_,., [77(t) = F?(t). Next we will construct this
functional sequence.

For any € > 0, we use O; to denote the neighborhood (z; —€/2%, z; + €/2%) of ;.
The sum of the Lebesgue measures of these neighborhoods is less that €. Denote

each connection of these neighborhood as (a;,);), which is at most countable.

Define F?(-) as

linear function connecting F'(a;) and F (b;) if z € (a;, b;)
Fe (z) =

F° () otherwise
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By construction F?(z) is continuous. If we choose a positive decreasing ¢,, having
a limit 0, we obtain a functional sequence FJ(-) corresponding to €,. I claim
lim,, 00 FZ (t) = F(t) for any continuity point of F(t). Suppose ¢ is a continuity
point of F7(.). There exists N such that for all n > N, no discontinuity points of
F?(-) belong to (t — €, t + €,), from which we know that ¢ does not belong to any
(a:,b;) corresponding to €,. By definition of FJ(-), we get Fy(t) = F7(t) for all
n > N ie limg,o FZ(t) = F°(t). By Lemma 1.2 this poinfwise convergence is
equivalent to convergence in metric d(-,-).

Lemma 1.4. (Identification Lemma) Assumption 1.5, (i) is equivalent to the
following: there exists small enough ¢ > 0 such that if F§[V(z,00)] = FY[V(z,61)]
for almost all z (with respect to 4), then 0y = 0, and F§ = FY.

Proof: We need only to prove that Assumption 1.5, (i) implies this Lemma.
If there does not exist a ¢ > 0 such that it makes 0y = 0; and F§ = FY, then
we let 0 go to zero, Oy = 0 and Fy = F; can not will no hold even we have
FolV(z,60)] = Fi[V(z,0,)]. This is a contradiction to Assumption 1.5, (i).

Lemma 1.5. (Information Inequality)® Assume that u and the exogenous vari-
ables z are mutually independent of each other, that u and z are jointly i.i.d., and
that the true distribution function of the error term is F', then under Assumption

1.5, we can claim (g, F) is the only solution to max,ry E[Ln(0, F)} for (6, F) € T

5 The most commonly used information incquality is the following

/f (z,00)log f (x,0)dx < /.f (z,00) log f (x,00) for any 0,

where f (z,0) is any probability density function, e.g. Robinson (1991).
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and (6o, F°) is the only solution to maxg,ry E[Ly(0, F)) for (0, F) € T?, where

Ly Z ilog F[V (2, 0)] + (1 —y;) log(1 ~ FlV(z;,0))}

j=1
Proof: We prove only the first part of this Lemma. The second part can be

proven accordingly. First we notice that if o is between 0 and 1 then « solves

max|erlog(z) + (1 — @) log(1 — )]
But

max 5(Ly(0, F)]

= max JAFW @) 10g FIVO)] + (1 = FIV (@) log(1 = FIV(0))}udz

= [ maxd PV o FIV ()] + (1 = FIV (00)]) log(1 — FIV(0)])}udz
i.e. (0o, F) is one solution. Where V (0p) = V (z,0p) and V (0) = V (2,0). As-

sume there is another solution (0, F') to this problem. Then we have F[V(z,0)] =

F[V(z,0,)]. By Identification Assumption 1.5, this is impossible.
[PV (e, 00)] 108 PIV (2, 00)) + (1 = FIV(z, 00 (2 = FIV (2,60}

is termed as the “entropy” of this problem. This Lemma says the maximum value
of the expected log-likelihood is the value of its entropy. Some authors, e.g. Gallant
and Nychka (1987), call E[L(0, )] < E[L(0y, F)] the “Information Inequality”.
Lemma 1.6. Assume the number of elements of F C ®° is infinite. Then
there exists a sequence {F?(-)} C F and a nondecreasing real function Fg(-) € ®°
such that F(t) goes to Fg(t) for all the continuous points of FJ(-), i.e. @ is

compact under metric d(-, ).
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Proof: We use the diagonal method to prove our claim. Suppose all rational
numbers are ordered by {r,}. We can find {F{,(-)} C F such that F{, (r;) has a
limit v;; we can also find a subsequence {FY, (-)} C {Fin(:)} such that Fg (ry) has
a limit vg; « - - - - . When we continue this process we can find a subsequence of
FZ_1,.(), FZ.(-) such that when n goes to infinity F{, () go to v, for all s < k.
Choose F?(-) = FZ,(-) and define F§(rs) = vs. Then by construction FJ(-) goes
to Fg(-) for all rational numbers. The value of F§(-) for all irrational numbers can
be defined by the right limit of the values of F{(-) at the rational points. Function
Fg () satisfies our requirements.
Theorem 1.1. —Ly(0, F) converges to E[—Ly(0, F')] uniformly with respect

o (0,F) € I'?. Where

~Ln(0,F)
- N ﬁ: {1{% > 0}log F[V/(z;,0)] + 1{y; < 0}log(1 — F[V(z;,0)])}
= %i {1{V (2;,00) — u; > 0} log F[V(z;,0)]

(2j,00) — u; < 0} log(1 — F[V(2,0)])}

ZI

+1{V
N
Z s (uj,25,0,F,0p)}

E[_ LN (0’ F)]
= — [{FIV (@) log FV(0)] + (1 = FIV(00)]) log(1 — FIV(0)])} pz

Proof: We prove this theorem using Theorem 1 of Burguete et. al (1982).
Noting that all the summands and the integrands are positive, we choose the dom-

inant function b(e, z) = —2log(c) > 0. By the dominated convergence theorem,
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the target function E[—Ly(0, F)] is continuous in (@, F'} with respect to the metric
& of T°. This is the place we have to restrict the function F (-) € ®°. Without this
restriction we can not use the well-known dominated convergence theorem. As-
sumptions 1, 2 and 3 of Burguete, Gallant and Souza (1982) are satisfied trivially.

Due to the fact that the indicator function appearing in —s(e, 2, 8, F, fp) is not
continuous in its arguments, Theorem 1 of Bruguete et al. can not be utilized
directly. We shall approximate the discontinuous function —s(e, 2,0, F,6p) by a
continuous function —s7(e, z, 0, F, 0p) to which Theorem 1 of Burguete et al. (1982)
applies and show that the approximation error can be made arbitrarily small. The
following technique is adopted from Gallant and Nychka (1987).

Let I(z) be a continuous function with 0 < I(z) < 1, I{(z) = 1 for £ > 0, and
l(x) = 0 for £ < —7. Let m(z) be a continuous function with 0 < m(z) < 1,
m(z) = 1 for z < 0, and m(z) = 0 for > . The two functions satisfy I(z) >
{z > 0}, m(z) < 1{z < 0} and lim,_o!(z) = 1{z > 0}, lim,om(z) = 1{z < 0}.

Let
—s"(u, 2,0, F,0p)
= —l(V(z,0p) — u)log F{V(z,0)] — m(V(z,0p) — u)log(l — F[V(z,0))])
which is a continuous function dominated by continuous function —2log(a). Let

1 N
LY(0,F) = N > {87 (g, 25,0, F,00)}

j=1

then

E{Ly(0,F)]
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= E|[s"(u,z,0,F, 0)]

/ / (U{V(z,00) — u > 0} log F[V (2, 0)]

+m{V(z,0p) — u < 0}log (1 ~ F[V(2,0)])}u () dudz

sup|LN(0’F) - E[LN(Oa F)”
< sup|Ly(0, F) — E[Ly(0, F)]| + sup |L} (0, F') — Ln(0, F))

+sup |E[Ly(0, F)] — E[LY (0, F)]|

where all the suprema are taken with respect to (0, F) € I
The first term of the right hand side satisfies the requirements of Theorem 1

of Burguete et al. (1982); Thus we have

lim sup |LX(0,F) - E[L}(0,F)]|=0.

=0 (0,F)ele

For the second term we have

sup IL;/V(O’F) - LN(O)F)l
(9,F)ele

= e ) 3 log F 1V (O] {13 (06) = ) = 1{V3 (06) > w1}
(0,F)el

+ (oi};gw —l Zlog(l = I [V; ()N {m(V; (0o) = u;) = 1H{V; (o) < us}}|

A
|
2|=

<}

Uq

M

’I':.

7i (00) — uj) — 1{V; (Oo) > u;}}|

_%log (o) |Z{"n(V (00) — ;) — 1{V; (0o) < u;}}|

J=1

IA

_%bg( ) ST{1{V; (00) < w; < V; (0o) + 7}

J=1

+1{V; (Oo) — v < u; < V; (o) }}



18

This last RHS term can not exceed

108 (0) Y1V () =7 < w3 < V5 (00) +7)

5=1

which converges to

K(1) = =1og (o) [{F[V (2,00) + ) = FV (z,00) = 1} (=) d=

K (%) is continuous in 7y by the dominated convergence theorem and K(0) = 0.

For any N the third term is also less than K (). Thus we have

lim sup |Ly(0,F) - E[Ln (0, F)]| < 2K (7).

=% (g,F)el?
K(7) can be made smaller than any given € > 0. The left hand side is fixed

and € is arbitrary so the limit is zero, 7.e.

lim sup |Ln(0,F)— E[Ln(0,F)]] =0.

% (0,F)el?
From now on we use (0nn, Fyn) to denote the solution to max Ly (6, F(-)),
(0, F) € Qx®,, and (0%, %) to denote the solution to max Ly(0, F(-)), (6, F) €
Q x 7, where

Ln(0,F(") fj {y;log F[V(z;,0)] + (1 — y;) log(1 — F[V(z;,0)])}

Theorem 1.2. (o-truncation estimation) For small enough o > 0 such that

the Identification Lemma 1.4 is satisfied, we have

lim |09, — 0| = 0, almost surely,
n,N—o0

lim d(F,,N, I?) = 0, almost surely.

n,N—o0
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Proof: By Theorem 0 of Gallant and Nychka (1987). We will check that all

the requirements of the Theorem are satisfied.
(a) Compactness: ®7 is compact with respect to metric d(-,-) by Lemma 1.6.

(b) Denseness: By Lemma 1.3, U @7 is a dense subset of ° under metric
d(-,-). (note: In Theorem 0 of Gallant and Nychka (1987) condition (b) requires
that the subsets ®7 are nondecreasing. In our definition the @7 do not satisfy this

requirement. When going through the proof of Theorem 0, I found out that the

proof is still valid if ®F is inserted in place of their subset sequences.)
(c) Uniform convergence: This is by Theorem 1.1.
(d) Identification: This is guaranteed by the o we have chosen.
Theorem 1.2 has the following implications:

(i) Theorem 1.2 says that provided n and N go to infinity the estimators will
be strongly consistent, but it does not specify which, n or N, should go to infin-
ity faster or which should be larger. If the number of nuisance parameters n is
smaller than the sample size N, then intuitively everything should be fine. What
if the number of nuisance parameters is larger than the sample size? This is also
acceptable. First the existence of a solution is guaranteed because of the extreme
nonlinearity of the objective function; second our maximization can be regarded
as a restricted version of Cosslett’s (1983). Cosslett maximized the objective func-
tion with respect to all distribution functions and still came up with consistent
estimators. We maximize the ob jective function with respect to a restricted class

of distribution functions, so of course the maximum problem has a solution.
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(i1) Theoretically the o-truncation of all the functions is not a problem as it
appears to be. First, it does not affect the consistency of the estimator Onn of 0; sec-
ondly, the distribution function estimator I'“(:, &,y) can be made to approximate
the true distribution function F'(-) as closely as we want by prechoosing a small
enough ¢ > 0. For empirical practitioners this o-truncation makes the objective
function no longer differentiable, and will cause computation difficulties. However
o-truncation is nothing but a restriction of the tail behavior of the distribution
function. With o-truncation the tails of the distribution function are prevented
from going to 0 or 1 respectively, so that the dominated convergence theorem can
be applied. In fact, the tails of the approximating functions must only go to 0 or 1
at a slower rate than the tails of the distribution function of the error term do in
order for the dominated convergence theorem to be valid. Intuitively, if the tails
of the error term distribution are not “fat”, the o-truncation will not be neces-
sary. Assumption (C.4a)® of Klein and Spady (1993) (p. 392) guarantees another
situation which the o-truncation is not required for strong consistency of our esti-
mator. Thus one suggestion for empirical practitioners is to apply this technique
directly without the o-truncation. If there is no truncation involved in the ob-
jective function, it is very easy for empirical practitioner to implement. General
software packages can solve this problem. Another justification for direct imple-

mentation is that there is no difference between the o-truncation estimation and

6 The assumption is as follows: There exist P and P that do not depend on z such that
0 <P< F[V(2,00))] <P< 1. This assumption, which requires that V (z,00) be a bounded
random variable, serves to bound the probability function F' [V (z, )] away from 0 and 1. Our

o-truncation serves this purpose.
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the non-truncation estimation from the perspective of small sample estimation.
(iii) Ad Hoc inference. Fix n = 5, 10 or whatever point at which we have
strong confidence that the approximating function Fn(t) = 157, & (t"—h"*) will
approximate the true F'(t) to a satisfactory degree such that we can use the afore-
mentioned approximation as the true distribution function of the error term and go

ahead to obtain the MLE estimator 0N. Then éN should be normally distributed

and do inferences based on 0y and its variance.

1.5 Monte Carlo Evidence

The model we are considering is

y=1 (—10.5 + 7z + Opz® > u)

where z is distributed as x? (1), z is distributed as U [~4,4] and u = &%, where
¢ is the uniform distribution on [—3,3]. Under the assumption that 0 = 1, the
average log-likelihood function for this problem is

Z y;log I' (V;) + (1 — y;) log (1 — F'(V}))}

=1
where V; = —10.5 + 7z + 23 , I’ (-) the distribution function of the error term u.

If we parameterize F'(:) as

1 n—1 — n ;
Ploa= {50 (155 vo (HE2E))
i=1

where @ (-) is the CDF of standard normal distribution. This kind of parame-

terization satisfies [tdF [t,a] = 0, the requirement of Assumption 1.6. Then the
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derivative of L with respect to 0 is

uf Vel (L=1)fVpal\ o
5 NZ{F[V,,a] = F(Val }

where

1 [ -y oy
f[t,a]=%{;¢(t ha)+¢(t+zh 1a>}

The derivatives with respect to the nuisance parameters are:

oL L =) | () _¢<Vj+ h’.‘:a,.)]
Oa; B N; nh(l - F[V;,a])
Y [¢ (Ys) — g (D ' >]

nhI [V}, o)

with ¢ (-) the density function of the standard normal.

Let
a0) = (GO fE 0, fE )
4y(0;0) = (‘9;5 (0, 5205, ...,-g—i’f(&a)),
B0 = Gy
Bitie) = 73 (4,0l ia,05e)]
with

a0 FV;,e] 1 - F(V;al

or,  (1-u)[s(452) - g (LrREe)]
Oq; nh(l - F[V;,a])

o) o552

nhI" [V;, ol

oL; _ {yjf[Vj,a] (=) f [V;, }

i
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We will use a Quasi-Newton method to solve the nonlinear equations: A(; a) =

0. The Taylor series expansion of A(0; @) around an arbitrary v = (6o; o) is

A() = A7) + Bi() (v — 1) = 0
Solving for v and then equating <y to ;41 and 7g to y;, we obtain the iteration
Yerr = 7% — [B1(7)] " Alr)
We substitute By(7y;) for Bi(7y:) and use the following iteration
Yitr =% — [B'Z(’Yi)]—l Al)

I have a Gauss program to solve this problem. The program can be modified
to solve any binary choice model semi-parametrically with this method and is
available on request. The following is a report on my experiments:

(1) The number of the nuisance parameters can not be large. Otherwise chances
are that the matrix B, will become singular during the process of iteration. This
may be because that the variance of the regressor is not big enough.

(2) The estimate is very sensitive to the window width h. This is due to the
possibilities that some h will make the target function have many local maximum
points and that some h will make the parameterized CDF closer to the true CDF
of the error term than others.

(3) The Gauss program is fairly easy to write because we are using the Quasi-
Newton method instead of the Newton’s method. If we use the Newton’s method,

we have to calculate the second derivatives of the maximum likelihood function
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Initial value 0 | Initial value « | Initial value h 6
0.9 3.0 1.440 0.943
1.2 3.0 1.432 0.965
1.1 3.5 1.435 0.977

Table 1.1: Three Estimation Results

with respect to the unknown parameters and the nuisance parameters. It is really

involved.

In Table 1 we report three estimation results. All of them are obtained by
setting n = 2, i.e. we choose the parameterized distribution function of the error

term as

ro=3[*(57) (5]

The first column of Table 1.1 is the estimated value of 0, 0, second column the
initial value for 0 when we do our iteration, third column the initial value for
the nuisance parameter and fourth the initial value for window width h. The

estimation is conducted when the sample size is equal to 500.

Our three estimates are not very good for a sample size of 500. In fact we
are still subject to misspecification, because we are only using the average of two
normal distribution functions to represent the true distribution function of the

error term.
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1.6 Extensions to Ordered Discrete Choice Models

This method can be applied to the estimation of other ordered choice models’.
In this section I will present the implementation of our method in ordered discrete
choice models. Proofs concerning the validity of the implementation are the same
as those given earlier for the binary choice model. Before we proceed we shall define
a set of constants «y; such that v, = —00, 7,, = +00, and 71 < 75 < + -+ < Y.
v = (Y2, **,Ym—1) is regarded as a set of parameters to be estimated.

The ordered choice model is

where Y is the underlying response variable, z is a vector of exogenous variables, f is
a vector of parameters, and u is the error term with unknown distribution function
F(-). Y is not observed, but we know that if it belongs to the jth category it will
satisfy 7,1 <Y <7;,7=1,2,---, m. Because Y is observed only ordinally, we
have to be careful about the identification problem, i.e. we have to assume that
V(z,0) is not homogeneous of degree one in 0. If V(z,0) is homogeneous of degree
one in § we just normalize any argument of 0 to be one.

We shall define a set of ordinal variables:

1 if ’)’j_1<}/j<’)/j

lij-—
0 Other“rise i:l,-..’N;j=1’...’rrnl

7 Maddala (1983) (Chapter 2) studics cxtensively discrete regression models. Under reg-
ularity conditions, our mecthod can be used to estimate the discrete regression models semi-

parametrically.



26

The log likelihood function for this model is

Ly le log{Fly; — V(2,0)] — Flv;-1— V(2:,0)}}.
i, j
As in the estimation of the binary choice model, let

)-3ER(5)

i=1

F.(t) = F,

Substitute FJ(t) into the above equation for F(-) to get L% and maximize L%

with respect to a,, v = (2, *,¥m-1) and 0. Denote the corresponding estimators

~

by &%, 4% and 0. Our estimator of the distribution function F () is E,n(t
nNy TnN

R : (t; _(inN )
Theorem 1.3. (o-truncation estimation) Under the assumptions of 1.1-1.6,
and for small enough ¢ > 0 such that the Identification Lemma 1.4 is satisfied, we

have

lim |37y — 7| =0, almost surely,
n,N—o00

lim 0%, — 0o = 0, almost surely,
n,N-co

lim d(F,y, F°) = 0, almost surely.

n,N—oo

For empirical practitioners, we have the same advice as in the estimation of
the binary choice model, namely, that the o-truncation be ignored. As we pointed
earlier in the estimation of binary choice model, provided that the tails of the
approximating functions go to 0 and‘ 1 at a slower rate that the tails of the distri-
bution function of the error do or that Assumption (C.4a) of Klein and Spady is

satisfied, we can get the strongly consistent estimator without the o-truncation.
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1.7 Conclusions of Chapter 1

Kernel estimation techniques and maximum likelihood method are used jointly
to estimate discrete choice models without specifying the distribution of the error
term. Thus the misspecification problem is avoided and the estimators are proven
to be strongly consistent. The insight of this paper is that nonparametric kernel
estimation formula is directly used to parameterize the distribution function of the
error term. From the kernel estimation literature, we know this is a very good
parameterization. A Monte Carlo study shows the method works.

Under stronger regularity conditions, this method may be used in the estima-
tion of commonly-encountered models semiparametrically, e.g. any models that
can be estimated by maximum-likelihood method unless the density function of
the disturbance term is not known. The estimation strategy is to approximate the
density function parametrically with kernel estimation techniques and to maximize
the likelihood function with respect to the parameters of the model and the nui-
sance parameters of the density function simultaneously. The kinds of regularity
conditions needed to be imposed are being investigated in the estimation of the

models studied by Gallant and Nychka (1987).
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CHAPTER 2

Semi-Parametric Estimation via Synthetic Fixed Effects

This chapter employs the conventional interpretation of endogeneity in econo-
metrics to develop a way of eliminating the inconsistency resulting from endogenous
explanators in cross-sectional models. We obtain an estimate of the unobserved
heterogeneity responsible for the endogeneity and re-order the data such that the
distance between individuals is increasing in the difference in the unobserved het-
erogeneity. We create a synthetic “average” observation for each individual by
taking a non-parametric weighted average of nearby observations. We produce
deviations from these synthetic means thereby eliminating the unobserved het-
erogeneity. While our approach is applicable to the conventional simultaneous
equation model it is most attractive, due to its relatively weak distributional as-
sumptions, for models with censored endogenous regressors or selection bias. Our
procedure is also useful for models when the endogenous regressor appears non-

linearly in the primary equation.
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2.1 Introduction

This chapter employs the conventional interpretation of endogeneity in econo-
metrics to develop a new way of eliminating the inconsistency resulting from en-
dogenous explanators in cross sectional models. We do so by adapting some ideas
from panel data estimation to cross sectional models. We argue that cross sectional
data can be organized such that the unobserved heterogeneity generating the endo-
geneity can be eliminated through appropriate data transformations. Unlike panel
data, however, where the arrangement of the data is obvious and generally done
on the assumption that the unobserved heterogeneity is individual specific, our ap-
proach requires an estimate of the unobserved heterogeneity. With this estimate
we re-order the data as though we have observations on “increasingly dissimilar”
individuals and create a synthetic average observation for each individual by taking
a non-parametric weighted average of nearby observations. Deviations from syn-
thetic means thus eliminate the unobserved heterogeneity. As this methodology is
closely linked to the fixed effects, or within estimator, for panel data we call our

approach synthetic fixed effects estimation.

While our procedure is applicable to the conventional simultaneous model sys-
tem it is most attractive for models with censored endogenous regressors (see, for
example, Heckman 1978 and Vella 1993) and variations on the sample selection
model pioneered by Heckman (1979) and extended by others (see, for example,

Olsen 1980, Lee 1982, Garen 1984 and Vella 1993). The reason for this appeal is
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related to distributional assumptions. Models with censored endogenous regressors
or models estimated over non-randomly chosen subsets of the data typically require
strong distributional assumptions. These distributional assumptions are employed
to; 1) estimate the reduced form equation of the censored regressor or the variable
generating the selectivity; and ii) express the error from the primary equation as
some known function of the reduced form error. In estimating the sample selection
models our approach requires no distributional assumption regarding the reduced
form error. It also relaxes the assumption that the relationship between the two
error terms is known, as assumed in Heckman (1979) and others. Nor do we need to
specify the manner in which the relationship is approximated as is required in Lee
(1982), Gallant and Nychka (1987), Newey (1988) and Vella (1993). Our approach
is more in the spirit of Powell (1989) and Ahn and Powell (1993) which eliminate

the unobserved heterogeneity. In this sense the estimator is semi-parametric.

While the advantages of our approach are also enjoyed by the methodology
employed in Powell (1989) and Ahn and Powell (1993) our estimator can also be
applied to a wider range of models involving censored endogenous regressors and
systems with non-conventional forms of selectivity bias. It can also be employed
for the estimation of treatment effects and for models with alternative forms of cen-
soring for the endogenous regressors. As several of these models can be estimated

without any distributional assumptions our estimator is semi-parametric.

Our procedure is also useful for an additional family of models in which the

endogenous regressor appears non-linearly in the conditional mean of the primary
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equation. While these models can be estimated by instrumental variables our
approach avoids the search for instruments. This is a substantial attraction given
the inaccuracies induced by poor instruments (see, for example, Pagan and Jung
1993).

The following section outlines the generic model under focus. Section 2.3
derives the estimation procedure and outlines its properties. Section 2.4 exam-
ines some models, characterized by endogenous censored regressors and sample
selectivity, where our procedure is attractive. We also consider models where the
endogenous regressor appears non-linearly in the conditional mean of the endoge-
nous variable of primary interest. Section 2.5 outlines how our procedure can be
augmented with an additional step to estimate parameters which are unidentified
with the estimator in Section 2.3. Section 2.6 discusses the advantages of our esti-
mator compared with the control function procedure which is often employed for
several of the models described in Section 2.4. Section 2.7 outlines a strategy for
estimating the covariance matrix. Section 2.8 provides some simulation evidence

and Section 2.9 presents concluding comments.

2.2 Model
Consider the following model:
y: = mi/3+3i’)’+ui, 1= 1)"'a n (21)
2l = wil+ v, i=1,---,N (2.2)

vi = ) (2.3)
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s = (=) (2.4)

Dj; 1iff z; € A; and Dj; = 0 otherwise, j =1,---,J (2.5)

where 3} and 2] are endogenous latent variables; w; is a row vector of exogenous
variables; z; is subset of w;; B, v and 0 are parameters to be estimated;  and g are
functions mapping y; and 2] into the observed values y; and z;; A; are subsets of the
real line; Dj; is the indicator function of the event 2} € A;; u; and v; are zero mean
error terms. Equation (2.1) is of primary interest and equation (2.2) is the reduced
form representation of the endogenous explanator. N denotes the entire sample
whereas n < N represents some systematically chosen subset. Furthermore, we
make the following assumptions regarding the structure of the model:

Assumption A:

(Al) E (vi|w;) = 0, E (u;]w;) = 0 and cov (u;,v;) # 0.

(A2) The structural error can be expressed as a function of the reduced form

error plus some random component
w; = B (us|v;) + [ — E (wilvy)] = f(v;) + e (2.6)

where f(t) = E (u;|v; = t) is an unknown function; ¢; = u; — E (w;]v;) and e; is
independent of (zj,wj,vj);yzl foralli=1,--- N.
(A3) (Identification) dim(z;) < dim(w;) — 1.

Using (A2) we substitute equation (2.6) into (2.1) to get
y; =0+ 5y + f(w) + e (2.7)

The ordinary least squares (OLS) estimates from (2.1) will be inconsistent due
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to the endogeneity of z; by (Al). The conventional way to estimate (2.1), when
Y= y/and (A3) is satisfied, is instrumental variables. However, instrumental
variables is not applicable when observations on y} are not available for ranges of
2z} (i.e. sample selection). Accordingly, it is useful to consider an estimator which

is appropriate for a wider class of models.

Consider the following strategy while assuming that y! is observed. First
note it is useful to consider v; as an unobserved individual heterogeneity which
simultaneously influences ¥} and z;. It can be loosely considered a “fixed” individual
effect as it is individual specific. Accordingly, if we had multiple observations
for the same individual we could eliminate this effect through appropriate data
transformations. However, even with a single cross section we can eliminate the
heterogeneity if we can identify observations with values of v which are “near” to
each other. For example suppose we identify multiple pairs of observations ¢ and
4 which have similar values for the error term v. Thus the following transformed

equation

(Wi — ;) = (z: — ;)8 + (2 — )7 + (e — &) (2.8)

can be consistently estimated by OLS as the unobserved heterogeneity responsi-
ble for the inconsistency, f(v;) — f(v;), has been eliminated. This methodology is
employed in panel data estimation as the metric of “closeness” is obvious. Deaton
(1985) also employs this approach to construct artificial panels on the basis of

cohort membership over repeated cross sections. In single cross sectional econo-
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metric studies, however, it has been confined to the work of Powell (1989), Ahn
and Powell (1993), and few others. The following section outlines a estimation

procedure based on residuals to define closeness of observations.

2.3 Estimator

To derive our estimation procedure assume that y! and 2} are observed and

*®

2; = z!. Taking the expectation of equation (2.7) conditional on v; gives
Ely; [vi] = Elwilwi] B + Elzlvly + f (vs). (2.9)

We can now eliminate the unobserved heterogeneity responsible for the endogeneity

of z; by subtracting (2.9) from (2.7) to get
Y = Blyflvi] = [ — B (@ilv)] B+ [z — B (z:lvi)] v + e (2.10)

In general v; is unobserved. However, if we obtain a v/ N-consistent estimate of 6,
denoted 6, we can substitute the residual o; = z} — w;0 in place of v; in equation

(2.10). We rewrite equation (2.10) as
y; — Blyp|o:] = [wi — B (wil0:)] B+ [z — B (2:]0:)] v + & (2.11)

where &; = ¢; + f(v;) — E[f (v;) |:]. Equation (2.11) is consistently estimated by
OLS provided ¢; is asymptotically uncorrelated with these constructed regressors.
This requires I [f (v;) |&:] — E [f (v:) Jvs] = f (v).

Lemma 2.1. Assume g (0,:{ - zuié) =L [f (vi) |2} —wié] and G;(6*) =

g1 (0%, 2} —w;0*) —gq (0%, 2! — w;0*) w; are bounded, then’

L 3} [f (vi) j2F - wi(j] is typically only a function of 27 — w;f, e.g. E [f (i) |27 — wif = ]
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Ef (v) |0} = E[f (v) |lvi] = f (w:)

E [m (&) |z;] = E [m(v) |zi]

where g; (s,t) = 8g(s,t) /0s, ga(s,t) = Og(s,t) /Ot and m () is any continuous
function. Convergence is in probabilily or in probability 1 depending on whether
the convergence of 0 to 0 is in probabilily or in probability 1.

Proof: (a) By Taylor’s series expansion
g (5, 2 - wié) = f(v) + G;(0%) (é - 0)
where f (v;) = ¢ (0, 2! — w;0) and 0* lies between 0 and §. By assumption
Gi(0*) = g1 (0", 2} —w;0*) — g2 (0%, 2} — w;0") w;

is bounded. Thus ¢ (0,:{ - 1ui0) = f(v;) + 0, (1).
(b) E [m (4;) |2;] is continuous in #; and ¢; = z} — w,0 is continuous in . Thus

E [m (#;) |z is continuous in 0.

Lemma 2.1 implies that equation (2.11) satisfies the orthogonality conditions
for OLS asymptotically. Thus under fairly general conditions the OLS estimates
of equation (2.11) will provide consistent estimates of 3 and . While this proce-

dure provides no advantages over existing instrumental variables estimators in the

= g(-). However different § will gencrate different g (+) functions. Accordingly we index

E [f (vi) |27 — wil = ] by ¢ ((),-).
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conventional setting we outline below many models where it is attractive?.

Before proceeding to these models we state our main theorem which is em-
ployed throughout the paper. First, however, we require some additional assump-
tions regarding the generation of the conditional expectations (K), the choice of
bandwidth h (H), the data generating process (D), and the manner in which the
0; are estimated (©):

Assumptions K:

(K1) K (c) is a non-negative function on the real line bounded by K*.

(K2) K (c) has compact support A.

(K3) K (¢) > 7lp for some 7 > 0 and some closed and connected interval B
centered at the origin and having positive Lebesgue measure.

(K4) K (c) is continuously differentiable and max,

K' (c)l < K, a finite con-
stant.

(K5) [ K (c)de =1 and [ |clog |||/ |dK ()| < oo.

Assumption H:

limy_o h =0 and limy_o N1! = 0.

Assumptions D:

(D1) All the exogenous variables are bounded.

(D2) The density function of the error term v, p, (v), is uniformly continuous.

Assumption ©: The parameters 0 and their estimators 0 belong to a compact

set © and VN (0 — 0) =0, (1).

2 The exact relationship between our estimator and two stage least squares is outlined in the

Appendix B.
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oy . . N
Definition. For any series of data observations (z;,¥:);_;, we define

1 N (L‘,'—t
N(IB,t) = mi——:l](( h )
1 X T; —1
et = 57K (5w
Nh; h

The Nadaraya-Watson non-parametric kernel estimate of the conditional expecta-

tion of y given z is defined as

Elylz =t = ry (v, 2,t) /on (z,1) (2.12)
where h is the bandwidth satisfying Assumption H.

Lemma 2.2. If Assumptions K, H and (D2) are satisfied the non-parametric

density estimator of v will converge to the true density uniformly, i.e.
sup [py (v,t) —p, (1) = 0as.  as N — oo.
t

- Proof: From Assumption H, we have Nh? — co. Thus Theorem A in Silver-
man (1978) applies.

Lemma 2.3. If Assumptions K, H, D and © are satisfied, then
mg@&MPE@MM

i (5o (45

() ;,ih*(”";”ﬂlﬂpm

where (§;) = (w;, z;) and 9; = 2} —wlfori=1,2, .-+, N.

= max

Proof: Taylor’s series expansion gives

. — s , Z:-—/:’.f - i i) 0* ~
= K(&%)—%K (( j) h(w w) )(wi—w,-)(O—-o)



where 0* is between d and 6. Thus

E (&19;)

i=1

1 X (- 1 X o —
m21‘< 0 )5f mz’(( P

=1

1 A (Vi —Vj 1 i A
= [mzi:lx (1 hv )fi— \/_Nmngv\/]v (0—0)]

1 V; — U 1
+ ==Y K[= ’> -
lNhZ,.: ' ( D VNh2

where

T, VI (- 9)]

., 1 r 2z~ Z
I, = NZ;I\ <( - -

2 - z‘-) — (w; — wy) 0*

z}) = (w; —w;) 0*
) ( ) )(wi—wj)

J
e

R A G
N;]\( : h

) (w; — wy) &

By Assumption ©, v N (0 — 0) = 0, (1). By Assumption (D1)

IT}, and TT.
are bounded uniformly in j. Thus
maxll’[fv\/—N(O - 0)' =
7
x I VN (0= 0)| =
max |l VIV (0 - 0)|
By Assumption H,

—\7_117]§ max |Hf\,\/f—\/_ (0 - 0)|
1

TN max lH?\ys\/N (0 - 0)[

So

- . 1 (Y — vy
B (gl0) = [mzz\( "

)&' +0p(1)]

/[7\% ; K (1’5 -

”)+%uﬂ



39
holds uniformly in j. By Lemma 2.2, when N is large, ﬁ Y K (3‘—_,1—0-'-) converges

to fy (v;) uniformly in j, and must be strictly positive. Thus our claim follows, i.e.
macx | B (&:]05) — E (&lvy)| = 05 (1).
Lemma 2.4. If Assumptions K, H, D and © are satisfied, then

N 2
;[mw—w%=%m

Proof: From Lemma 2.3

%; EHGENERAE 'DJ')]?
- _lej_z_; (B (&5lvs) = B (&lvs) + "P(l)]2
= (B - B
) N
N2 (B Eleg) = B (€lv3)] - 05 (1) + 0, (1).

j=1
From Theorem 1 of Devroye and Wagner (1980), if E |¢;]* < oo, which is

guaranteed by (D1) for o = 1, 2, then

[1BElo) = B[ Fy () = 0, (1)

where F;, (-) is the probability measure induced by the random variable v. By the
Law of Large Numbers
1 Y a
7 2 (B (6l) = (&)
j=

= [B @) - B[ F (@) + 0, (1) = 0, (1)

This equality holds for o = 1, 2.
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Theorem 2.1. If the following conditions are satisfied:

Condition 1: Assumption © is satisfied and the asymptotic covariance matrix
of\/N(é—O) is Vp;

Condition 2: The conditional expectations in equation (2.11) are estimated by
the kernel method shown in equation (2.12);

Condition 3: Assumptions (Al), K, H and D are satisfied;

then

i) The OLS estimate of § = [3',7]', §, from equation (2.11) is v/N-consistent.

i) VN(6—6) 5 N(0, V5) with Vs = 02Q; 1 +Q; ' Qs VeQ.,, Q5 1, where 02Q; ! is
given by the OLS variance formula of 5 Q,=F (sgsi), where s; = (z; — E (z;|v;) ,
2 — B (z]v)) and Q, = E [iG: (0)).

Proof: Let S; = (fi - FE (fjlf),-)), where £ = (z, 2),

-1
A 1 ' 1 ' 1 1 - ~
VN (6-6) = (?\7 Z sisi) [ﬁ Z Sie; — (N Z:S,-Gi (0 )) VN (6 - o)]
First we prove the following 3 convergence claims:

(a)

1 . '
'N ;S,Sz i’ )04 (sisi)
% 356 (0) L B (51 (0))

ﬁ Zi:Séei LN (O,GEE (s;si))
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Proof of (a):

S;

il
N
oy
I

E (filf)i)) = [(Ei — B (&) + (E (&lvi) — E (€i|ﬁi))]

% Z SiSi = % Z [sis: + 81 + Ajss + A0
where A; = E (§|v;) — E (&:|9;). By the Law of Large numbers
%Z 88 =5 E (s;s,-) .
By Schwartz’s Inequality

5 )=

The equality holds since ¥°; s? /N — (sl) a.s. and ¥; A?/N = 0, (1) by Lemma
(

%gs;Ai <

?

2.4. By the same logic 3; As;/N = o0, (1) and ¥; A;A;/N = o0, (1). Thus

—]%Z S;8; = —}VZs;si +o0,(1)=F (s;si) + 0, (1)

Proof of (b) is similar to that of (a).

Proof of (c):
—\71_1V 21: Sie; = Z 8;€i + \/— 2 ( (&lvi) — (Eilﬁi)) &;. (2.13)
By the Central Limit Theorem
71—N > siei ~ N (0,02E (5is:)) (2.14)

By assumption Al, e;’s are independent of each other and independent of

E (§]v;) — E (&]0;) for § = 1,-- -, N. Thus the variance of the second part is

Vii=oalEk H,‘ > (E' (&ilvs) — E (§i|@i))2] :

1
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By assumption (D1), we know that both E (&]v;) and I (£]9:) are bounded.
By Lemma 2.4 it will also go to zero in L.

Thus far we have shown

\/LN 3 (B (&) — B (&l0)) e =% 0. (2.15)

From equations (2.13), (2.14) and (2.15), we get

—;—N ZS;B, 'L) N (O,(IgE (S;Si)) .

By the definition of e; the correlation between the random variables VIN Y Sies
and (Z,- S;G; (0‘)) VN (0 - 0) is zero. Thus the random variables IV (0, o2E (s;s,-))
and N (0, o2E (w;w,-)) are asymptotically independent. The independence of the

two random variables gives us the two parts of the variance.

If v; is observed we can take conditional expectations in equation (2.11) with
respect to v; and the asymptotic variance is given by 62Q;!. However since the
residuals are estimated, the asymptotic variance of the estimator is inflated by
Q;IQSQVBQ;HQ;]. This latter term characterizes the finite sample correlation be-
tween the error term and the regressors in equation (2.11).

Thus the estimation procedure is as follows. First we estimate equation (2.2)
by some procedure which provides v/N-consistent estimates 0 and 9;. We then use
the kernel method to estimate the conditional expectations of the triple (¥}, 2, z;)
in equation (2.11). We transform the data to produce deviations from synthetic

means and perform OLS.
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Our estimator is closely linked, in spirit, to the procedures proposed by Robin-
son (1988) and Powell (1989) although there are some essential differences. First
contrast our procedure with Robinson’s estimator. The major difference is that we
condition on the estimate of v;, ;, while Robinson assumes that the conditioning
set is observed. Conditioning on the unobserved heterogeneity represents a major
advantage for the types of models on which we now focus. The motivation for
the methodology of Powell is the use of a single index to define the closeness of
observations in the estimation of sample selection models inspired by the work of
Heckman (1979). Powell argues that the sample selectivity is generated by a single
index and thus defines “closeness” on the basis of this single index. In Section‘ 24
we show that the estimators of Powell (1989) and Ahn and Powell (1993) based on
the single index are in fact the same as based on the residual 9; due to the nature

of the mapping from the single index to the residual.

2.4 Some Models of Interest

Thus far we have considered endogenous variables which were fully observed.
To extend our approach we require additional assumptions regarding the censoring
mechanism and the sample selection. In doing so we employ the unusual approach
of first examining a model in which our approach is not applicable}. We do so to
highlight several features of our procedure and to illustrate its relationship with

existing estimators. We then examine alternative models for which our procedure

3 We return to this case in scction 5 to outline how this model can be estimated through the

use of an additional step.
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is attractive. First, however, consider the following model concerned with the
estimation of binary treatment effects.

CASE 1. a) y; =y} b) z; = 1(2f > 0) ; ¢) n = N; This model has the form

Yi = TP+zmy+us (2.16)
2! = wl+vy (2.17)
z o= 1(z} >0). (2.18)

This model has a dummy endogenous explanator in the structural equation
and the reduced form equation has a binary dependent variable. As n = N the
estimates of the parameters from both equations are based on the entire sample.
Models of this type are considered in Heckman (1978) and Vella (1993) although
the treatment in those papers is parametric?.

As 2} is no longer observed we are unable to employ the residuals from the
reduced form equation. Accordingly we project u; = f(v;) + e; onto z; and w;.

This gives

Yi = TP+ 2y + B (f(vi)|wi, ) + [f () = B (f(v)wi, z:)] + e

The regressors z;, z; and E (f(v;)|w;, z;) are orthogonal to the new error term

[ () — E(f(vi)|wi, z:) + e;. If the following identity holds for some function r (-)

E[f(v)|wi, z) = v [E(vs]2:, w;)) (2.19)

4 Vella (1993) also considers where the marginal distribution of v; is normal and the distribu-
tion of u; is unknown. Using those assumptions Vella approximates the conditional distribution
of u; by taking some suitably choscen expansion around v;. We discuss the relative merits of this

procedure below.
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we can eliminate the unobserved heterogeneity r (9;), where ¥; denotes E(v;| 2, wy),
through our proposed methodology. The conditional expectation of the error in

this model is the generalized error given by

2,0t ()t

frud e B (t)dt
1- F(—QU,O)

E(zi,w;) =1(z=1) F(—w;0)

+I(z;=0) (2.20)

where F(-) is the cumulative distribution function of error term v; and F'(t) =
dF(t)/dt. We can then compute (2.20) using VN -consistent estimates of 0. If
we assume v; is normally distributed with constant variance we can estimate 8 by
probit maximum likelihood and (2.20) reduces (see, Gourieroux et al. 1987, Pagan

and Vella 1989) to

F'(w;0) [z — F(w;0)]
1 - F(w0)] F(w0) "

E(vi|z,w;) =

After estimating the expectations conditional on the generalized residuals we es-
timate the transformed form of equation (2.16) by least squares. The form of
the generalized residual shown in equation (2.20) is independent of the paramet-
ric assumptions regarding v;. Thus the normality assumption can be replaced by
alternative parametric assumptions.

An important limitation of our procedure for estimating Case 1 and the follow-
ing Case 2 is captured in Theorem 2.2. For our procedure to be valid we require
equation (2.19) to be satisfied. When f (:) is linear it is straightforward to verify
that (2.19) holds. However, when we estimate (2.16) over all N observations the
only permissible form of f(-) is a linear function. This is stated in the following

theorem.
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Theorem 2.2. If there is a differentiable function 7 (-} such that equation
(2.19) holds then the function f () must be linear when the primary equation is
estimated over all N observations and the expectations are taken with respect to
the generalized residuals.

Proof: Assume A; denotes the interval (p;_y, ¢;]. Taking mathematical ex-

pectation of u, conditional on regressors z; and Dj;, gives

/lzl: 1— w,o f( )¢v (’U) d'U
pi — wi0) — Dy (pj-1 — w;if)’

B lfoi, D = BIY (v) @i, D = 3 Dy

If there exists a function 7, such that E[f(v;)|w;, D;] = v [E(v;|w;, D;)], then we

have for all j,

e [ @) gy (v Jii ov¢u< )dv
2, ( i — w,0) Dy, (p15-1 — wi0) D, (pj — wil0) — By (pj—1 —wih) |’

Let &, (u; — wil) — ¥y (pj—1 — wil) = 1/c, where ¢ is a constant. If ¢, (v) is
unimodal, we can solve uniquely w;0 = m(c¢). Thus the above equation can be

written as

c/l“j—m(C) [ )¢y (v)dv=r lc /l“j_m(C) vy (V) dv] .

tj-1—m(c) 1j—1—m(c)

This 7 function exists but depends on j, ¢.e.

) [f (Ui) |z, Di] = ZDji

o vy (v) dv
Dy (115 — wil) — @y (-1 — wi0)

which cannot be written as 7 (7), where ¥ is the generalized residual.

If we only observe the sub-sample of one group, as the sample selection model,

spi—wil
o Y vy (v) dv
Py (/1’.7 ’lU,,O) o, (,U«j-l - 10,'0) )
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This last expression provides the proof of Theorem 2.3 that follows.

To avoid distributional assumptions we may wish to employ a v/N-consistent
semi-parametric estimator of @ (see, for example, Klein and Spady 1993, and Pow-
ell, Stock and Stoker 1989). With the estimates of § we can construct the single
index w,-é and compute, through kernel estimation, the expectation E[z,-|w,-é ]
which we employ as an estimate of I (wﬁ). We then return to our formulae
for the generalized residual and compute these “quasi” generalized residuals. We
then compute the conditional expectation with respect to these “quasi” generalized
residuals and estimate the primary equation by OLS.

A major issue in the Case 1 setting is the inability to estimate . With an
endogenous binary treatment in the primary equation the generalized residuals
generate an ordering of the data where the observations satisfying z = 0 comprise
the first part of the re-ordered sample while those for which 2 = 1 comprise the
remainder. Thus the terms z; — E (%;|?;) have values of 0 and + is unidentified. In
Section 2.5 we outline a method for the estimation of the binary treatment effects.

CASE 2. a) y; = y!; b) Dj; =1 iff 2} € A; and Dj; = 0 otherwise; n = N.

We now extend the binary treatment model to the ordinal treatment case.
yi = B+ Div+u
o= wil+v;
5z o= jift 2} € Aj
D;; = 1iff z; = j and Dj; = 0 otherwise

where A; are subsets of the real line; Dj; denotes that the latent variable z; is
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in some specific range; D; = (Dy;,- - -, Dy;). The difficulty in estimating 8 and «
is again due to the endogeneity of D;. An example of this model is the impact
of schooling on wages, where z} denotes a latent continuous variable capturing
schooling and y; denotes wages. Dj; indicates the individual ¢ has obtained edu-
cation level in the range of A;. Taking conditional expectations of u; with respect

to w; and Di gives
Y; = :Elﬂ + D,') + D) (f (Ui) |'wia Dl) +G

where ¢; = u; — E (f (v;) |wi, D;). If we assume that v; is normally distributed the

generalized residual is given by (see Vella 1993)

J
$(pj-1 — wi0) — p(p; — wi0)
E[Uzl’lﬂz, 1.] 12::1 ji (I)(/llj _ ’lUiO) — (I)(,Ufj—l _ wlo)

where ¢ and ® are the probability density and cumulative distribution functions of
the standard normal distribution; and the p’s represent the estimated separation
points. This model does not suffer from the non-identifiability of the treatment
effects, 7, when the dependent variable is ordinal with more than 2 outcomes, as
the value of the generalized residuals is no longer unique to a certain value of the
dependent variable. The limitations imposed by Theorem 2.2, however, regarding
the linearity of f(-) are still required. Ideally we would estimate the reduced form
equation by some v/ N-consistent semi-parametric procedure to avoid imposing dis-
tributional assumptions. However there are no such procedures currently available.
It may be possible, however, to employ alternative parametric assumptions.

CASE 3. a) y; = yf X 1(2f > 0) ; b) n < N; This model has the following
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form

v = Tiff +uy

! in + v;.

e
fl

The values of the dependent variable in the primary equation are only observed
for the subset for which z} is positive. The model can be estimated by maximum
likelihood (see Heckman 1974) under appropriate distributional assumptions. It is
also possible to estimate these models, although less efficiently, by various 2-step
procedures (see Heckman 1979). The 2-step procedures exploit the distributional
assumptions and employ the conditional expectation of the reduced form error
as an additional variable in the primary equation. Under joint normality the
conditional expectation is the inverse mills ratio®. A number of semi-parametric
estimators also exist for this model (see, for example, Gallant and Nychka 1987
and Newey 1988). The two semi-parametric estimators closest to our methodology
are Powell (1989) and Ahn and Powell (1993). Before considering the relationship
of these procedures with our estimator we first outline our approach. First esti-
mate the reduced form by some v/ N -consistent procedure. We then estimate the
primary equation over the transformed values for the sub-sample corresponding to
z; = 1. As with Case 1 we are able to employ alternative distributional assump-
tions for v;. Alternatively we can employ a semi-parametric procedure to obtain

“quasi” generalized residuals. A notable extension from the Cases 1 and 2 to Case

5 As discussed by Vella (1993) the inverse mills ratio is the generalized residual for the probit

model.
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3 model is captured in Theorem 2.3.

Theorem 2.3. In estimating /3 over a single sub-sample (i.e. D; =1 for some
Jj) we only require that the f(.) function be differentiable for our procedure to be
valid.

Proof: See the proof of Theorem 2.2.

Theorem 2.3 relaxes the requirement that the primary equation error term is
linearly related to the reduced form error thus extending the estimators of Heckman
(1979) and others (see Olsen 1980, for example) which assume this relationship is
linear. It also presents an extension to the estimators of Lee (1984) and Vella
(1993) who approximate the non-linearity through arbitrarily chosen polynomials.

Our estimator in Case 3 is very closely related to that proposed by Powell
(1989) and extended by Ahn and Powell (1993). It is useful to compare the moti-
vation for our estimator with that proposed by Powell (1989). Powell observes that

in the sample selection model the error in the primary equation can be written as

u; = k(w;0) + e;

where k is a function mapping the single index w;0 into the unknown error gener-
ating the selection bias and e¢; is uncorrelated with the regressors. Powell proposes
defining closeness on the basis of the single index rather than the residual. In the
second step Powell employs a more imaginative instrumental variables procedure
which employs all possible pairwise deviations assigning decreasing weights to ob-

servations far apart in terms of the single index®. The essential difference between

6 Powell notes that an estimator can be derived based on the dilference between actual and
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the Powell procedure and our estimator is the use of the single index rather than
the residual when defining closeness. Note, however, that the expectations condi-
tional on single index and the residual will be identical when the second step is
performed on the sub-sample corresponding to z; = 1. As the sub-sample have the
same value for z; the generalized residual has the form

[0 tF (0)dt

Efvi|w;, z = 1] = 1— F(—w0)

The generalized residual is a real function of the single index w;0 and Powell’s

procedure is identical to ours although differences may arise in the second step.

Note our estimator is easily extended to other circumstances in which the Pow-
ell procedure is likely to be less effective. This is due to the implicit inclusion of
the dependent variable in our conditioning set. For example, consider the following
logic. The objective is to eliminate unobserved heterogeneity by defining observa-
tions that are close to each other in the unobservables. Consider two individuals
which have identical values of w, and thus the single index, but different values of 2.
This could only occur if they have very different values for v. The Powell approach
would consider these observations close while our procedure would, correctly, treat
them as far apart. Although we are not critical of the Powell procedure, as he
is considering the case where all the z;’s are 1, we feel our motivation for taking
the expectations conditional on the residuals is appropriate for a wider family of

models.

expected values, conditional on the single index, of the variables. The theory in his paper,

however, focuses on the pairwisc comparisons.
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Ahn and Powell (1993) estimate the second step in the same manner as pro-
posed by Powell. However the authors relax the single index requirement in the
first step by estimating the probability Pr[z; = 1|w;] non-parametrically. They
then define closeness through Pr[z; = 1|w;).

CASE 4. a) y; =y} x Dj;; b) Dj; = 1; ¢) n < N; An extension of the binary
selection model is where we return to Case 2 and consider the estimation of 3 for
the sub-samples corresponding to different treatments. However, as is shown in
Theorem 2 the inclusion of the treatment effects in estimation imposes linearity
between the error terms. When we relax the direct estimation of the treatment
effects we can relax the assumption of linearity and invoke Theorem 3. However, to
do this we need to examine each sub-sample, corresponding to Dj; = 1, separately
and order the data on the basis of the generalized residuals for each sub-sample in
isolation. We then estimate the vector of 3 for each sub-sample. This procedure is
more appealing than that proposed by Vella (1993) which suffers from the arbitrary
manner in which the non-linearity is approximated”.

Clearly the treatment effects will not be identified when we only have obser-
vations on the sub-samples. Through the three stage technique outlined in next
section it is possible to recover the treatment effects by using the whole sample.

CASE 5. a) y; =955 b) z; =z} if 21 > 0 and 2z; = 0 otherwise; ¢) n < N;

Yi = TP+ zy 4 uy

*

2 = w0+

7 The estimated constant in this model is the sum of the treatment effect and the unconditional

expectation of the u; corresponding to Dj; = 1, i.e. E[E (u;|wi0, Dj; = 1)).
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zi = zlifz! >0, z; =0 otherwise.

Case 5 is a mode!l with a censored endogenous regressor where the regressor is
observed when its latent value is positive. Examples of this model are the following.
When 7 is set equal to zero the latent ! may represent hours worked and the
primary equation may be the wage level for those individuals reporting positive
hours. This is different to the conventional sample selection model in that we
observe the number of hours worked. We can also relax the restriction 7y = 0 and
examine how wages are affected by hours worked. Note, however, that for both of
these models the second stage estimation is only performed for the observations
where 27 > 0.

To estimate this model we can assume the reduced form error is normally
distributed and estimate the reduced form equation by tobit over N observations.
We then compute the generalized residuals (see Gourieroux et al. 1987) given by

—F’(1Ui0) Y
Elvw, 2l = I(2=0) X —————=+1(z] > 0) x (z; — w;0
o, ) = (e = 0) x = 137> 0)x (s i)

noting that for the second stage estimation the residuals for the censored observa-
tions are, for practical purposes, irrelevant. If we do not wish to make distributional
assumptions we can estimate 0 semi-parametrically using the procedures of Powell
(1984, 1986). We now order the observations according to z; — w;0 and then trans-
form the data and estimate by OLS. As we only employ, in the estimation of the
primary equation, the observations with the continuously distributed error terms
we are able to invoke Theorem 3. Note that while we only consider limited forms

of censoring our procedure can be extended to various alternative forms provided
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the corresponding reduced form equation can be estimated.

CASE 6. a) y; = y!; b) z; = z}; The final model we examine has the following

form:

vl o= mfB+ (=) +

»*

2 = wi0+v,-

where v now represents a polynomial function of z; with parameters as its coeffi-

cients.

It is possible to estimate this model by instrumental variables methods al-
though it requires more severe exclusion restrictions to ensure identification. Qur
estimation procedure first estimates the reduced form by OLS to obtain the resid-
uals z; — w;0. We transform the data and perform OLS to obtain consistent

estimates of § and the parameters characterizing 7.

An alternative approach is proposed by Newey, Powell and Vella (1994). In
that procedure the f function is approximated by some flexible method. In our
approach we eliminate the f function so we by-pass the issues associated with
approximating f. The case when the v function is unknown and our interest
is to estimate the parameters 3 is treated in Ming and Vella (1994a). In that
paper we difference out the unknown function 7(z;) and the residual component

by conditioning on z; and ¥; simultaneously.
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2.5 Three Step Synthetic Fixed Effects Estimation

A major limitation of our procedure is its inability to identify the treatment
effects in both the binary treatment model and the sub-sample procedure studied
in Case 4. This, however, can be overcome through an additional step. First note
that we already obtained an /N-consistent estimator Bj of B;, where j indexes

each sub-sample. Thus, defining the first step residuals as 11(1’, = y,(j ) — xﬁ”ﬁ} we
can write

3D = Dy, 4 0.

Assume the index of sub-sample j runs from N;_; 4+ 1 to N; with Ny = 0 and
N; = N and let uy; denote the residuals fori = N;_;+1,---, Nyjand j=1,---, J.
ug; will be asymptotically orthogonal to the exogenous variables w;. Thus using

composite notation we have
dyg = (D, D) (1, )+ wase (2.21)

To estimate (2.21) we invoke Theorem 2.4.
Theorem 2.4. Assume we use T; = (T3, 1%, -+, Ty;) € w; as instruments for
D; = (D,‘l), e ,D,(J)) in equation (2.21). The estimator of 7 is v/ N-consistent,

asymptotically normal, and satisfies the asymptotic linearity condition:

VN (% - 7)
1 N

J . -
= Qb ﬂzﬂ’ui—§m(ﬁmiw§”=1)\/N(ﬁj—ﬂ) +0, (1)

1 J

where P; = Pr (ng) = 1) =Pr(z; € A)), 4; = (uj_1,15°, Qrp=E (T,-’D,-).

8 The E (T;:L'.-le = 1) will not be the same for all § due to the sample selection. However,
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Proof: The data are stacked such that the index of sub-group j is from N;_1+1

to N; with Ng=0and N; =N, J = -+, J. Thus

VN (5 =)

1 &,
epl)

By the Law of Large Numbers, the following holds

-1

%ZT(lg - Tm,)mﬁ ﬁ)].

J=1i=N. i— 1+1

( Z Z Tr,)\/ﬁ(ﬁ. ﬂ)

J=li=Nj_1+1

I N; — N;_, 1 Moo .
= (z:: 'N N;_ lzlgzlﬂnmi)\/ﬁ(ﬁj_ﬁ)

B (T2l DY = 1) + 0, (1)] VIV (85 - 8)

b
\i B (T}l DY = 1) VN (5 — 6) + 05 (1).

So we have

VN (5 - %)

N J . -

= Q7} L S Tiui— 3 PE (Tiz) DY = 1) VN (8- B) + 0, (1)]

L v N =1 7=1

1 XS A .

= Q;,}) —\/—Jz\,ZTim — ZPJE (TleIDEJ) = 1) vNN (ﬂj — IB)] + Op (1)
| i=1 i=1

We can see by the Central Limit Theorem, 717\72?;1 T,-'ui and \/]_V_(B—ﬂ) is
asymptotically normally distributed. Thus their linear combination is also asymp-

totically normally distributed.

Z?_’:l Ti'u,- will have similar propertics as when we use the whole sample directly to estimate the

model.
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While the three step approach is not the strongest aspect of our general ap-
proach it does have some appeal. First, it generally requires less instruments than
direct instrumental variables. For example, if w = z, the direct instrumental
variables approach is impossible due to the lack of instruments for the treatment
effects. Our 3-step instrumental variables procedure is valid, providing the num-
ber of exogenous regressors is no less than the number of the treatment dummies.
Second, the 3-step procedure allows us to relax the linearity of the f function prior
to estimating the treatment effects in the ordinal treatment model. Also note that
this three step procedure can be employed to estimate the treatment effects after
obtaining the estimates of 3 via the methodology of Powell (1989) and Ahn and

Powell (1994).

2.6 Contro! Function Procedures versus Synthetic Fixed Effects Procedures

Some of the models outlined above can be estimated by control function proce-
dures pioneered by Heckman (1979), for the binary treatment effects under normal-
ity, and subsequently extended to alternative distributional assumptions (see, for
example Olsen 1980) and a wider range of censoring rules (see, for example, Vella
1993). It is useful to discuss the relative advantages of our proposed procedure
over this methodology.

The two primary features of our approach, also enjoyed by Powell (1989) and
Ahn and Powell (1993) for the sample selection model, are related to the lack of
distributional assumptions. First, when we are able to avoid the use of distri-

butional assumptions in the reduced form estimation our procedure is robust to
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misspecification of the error distribution in this step. Second, as we do not need
to specify the nature of the f function, or the manner in which it is approximated,

we avoid the possibility of misspecification in this area.

Another advantage is associated with the greatest misgiving with the control
function procedures. Models estimated by control function procedures are typically
identified through the non-linear mapping from the z; to 9;. While this is a valid
form of identification it has received a great deal of criticism (see, for example,
Little 1985). The major objection is the collinearity between all the regressors
zy; and ?¥;, which contaminates the estimates of 4. While this is untrue when
the second step estimation is over the entire sample (i.e. n = N), since le
zy; 0; = 0 by definition?, it is potentially a major advantage when the second
step estimation is over a subset of observation in which any one, or more, of the
zy; are highly correlated with the ©;. Moreover this problem occurs whenever we
examine any sub-sample irrespective of whether the original treatment variable
is dichotomous or polychotomous. However, while this collinearity is a major
issue in the control function procedure when estimating sample selection models
the Monte Carlo evidence in Ming and Vella (1994b) suggests the synthetic fixed
effects estimator is less sensitive. This is due to the additional non-linearity induced

through the conditional expectations operation.

9 This condition is precisely the first order conditions defining 6.
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2.7 Covariance Matrix Estimation

In order to conduct inference we require a consistent estimate of the covari-
ance matrix given in Theorem 1. As there is no general covariance matrix for all
the models which can be estimated by our procedure we outline a strategy for

computing model specific covariance matrices. From Theorem 1
_ 2n-1 -1 " -1
‘/6 - Uer + Qs ng%ng 8 )

where 02 and @, are obtained from OLS estimation and Vj is derived from the
reduced form. The only term we require is Q.
By definition, ¢ (0,2{ - wﬁ) =L [ F(v) = = 1ui0]. Thus we require an esti-

mate of f (v). This can be estimated non-parametrically using the residuals 4; and

3 N D; — U\ . N o0 —
f(v)=§]\’<v hf)u,-/;h (1 - v)

where i; = ¥} — 2;0 — z¥; 0 = 2} — w;0; 3 and 4 are the final stage estimators!®.

’l}i by

~

The terms g (0,;:{ - w,-@ =[ [f (v) |zF = 'wié] and G; (0) = dyg (0, 2t — w,-é) /db
can also be estimated consistently Ly kernel estimation technique. The formulae

are

(0,20 —wd) = B[f(v)la]

= XK (,;) (@) / S K (1%' - )

G; (0) = dg (0,2{ - 11),-0) /dé

10 Recall that we assume y] and 2] are observable in Theorem 1. Thus if the reduced form

dependent variable is censored we employ the generalized residuals.
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- %[;K (#)i(@)/?l{ (1’12—7’)}

The derivative of § in the second equation is with respect to the 0in 0; = z; — w;f
and 9; = 2} — w;0 within the kenel [ (-), not the f in 9; within the f (-). When
these estimations are appropriate, we conjecture that Q,, = E [s;Gi (0)] can be

estimated consistently by
. 1M, .
Quy = 523G (0).-
i=1
We do not, however, provide a proof of the consistency of this estimator.

2.8  Simulation Evidence

We now investigate the performance of our procedure in a controlled and simple

setting by examining Cases 4 and 6. First we consider the following model:

Yi = Tp+dytdytu; i=1,--4n

Z; = T+ Ty + U t=1,--\N

R4
I

0if 2] Sppyzi=110 g < 2] Spgy 2 =210 2] > po

d]i = 1iHZi=1;d2i=1iff2i=2.

To simulate this model we generate the data in the following manner. x, and z, are
independently and uniformly distributed over the interval [-2.5,2.5]; 1 = —0.5
and pe = 0.5; v; ~ N(0,1); &, ~ N(0,1.5); 0pe = 0 and u; = v? — 1 4+ v} + e
We choose N = 1000 and the value of n varies by the replication depending on

the draws of the errors. We employ the density function of the standard normal
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SFE | OLS | CF

MEAN | 1.001 | 0.421 | 1.007

MSE 0.138 | 0.612 | 0.167

Table 2.1: Simulation Results for Ordinal Sample Selection Model

distribution as our kernel and set the bandwidth equal to 0.1. We generated 1000
replications.

To examine the performance of the procedure we estimated the coefficient
on z; in the primary equation for the sub-sample d; = 1. We computed the
mean value of the estimate from the replications and the simulated mean squared
error computed as i‘;"{’(ﬁ‘, — 1)2/1000. To provide comparisons we compute the
corresponding values for the OLS and control function estimates. These results are
reported in Table 2.1. Note that as the function f is not linear, only the synthetic
fixed effects procedure produces consistent estimates.

Table 2.1 strongly suggests that the synthetic fixed eflects procedure works well
for this model and its performance is superior to the control function estimator.
Despite the surprisingly good performance of the control function procedure the

synthetic fixed effects procedure has a smaller bias and a clearly smaller simulated

mean squared error. Finally, the values for OLS indicate that the bias is substantial

The second model we consider is an example of Case 6:

2 3 .
vy = mli+zi+:i +:i +'U‘i; ’L—_‘—l,"',N

i = Tutoytv;i=1,--- N
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il 4 A z

MEAN

SFE 1.00360 0.99525 1.00045 1.00001
OLS 0.20074 1.80310 1.26560 1.00025

2SLS 0.95806 0.96620 1.27652 1.00179

MSE

SFE 0.13792 0.11358 0.02065 0.00153

OLS 0.81441 0.81025 0.26588 0.00281

25LS 0.20737 1.27630 0.27741 0.03703

Table 2.2: Simulation Results for Model with Nonlinear Endogenous Regressors

and the error terms have the following form; v; ~ N(0,3), e; ~ N(0,3) and 0, = 0;
u; = v;4+0.5X (v2—1)+e;. We choose i = 0.05. The simulation results are presented
in Table 2.2. We report the OLS estimates to illustrate the strength of the bias.
We also report the 2SLS estimates which employ zy;, o, 2%, Z2;, T1:T2;, T3,Ta;,

z1;7%; and z3,22; as instruments.

Table 2.2 provides strong evidence of the good performance of our estimator.
The OLS estimates suggests that with the exception of the coefficient for 23 the
estimates are badly biased. While the 2SLS estimates, which are also consistent,
greatly reduce this bias the synthetic fixed effects estimates are superior in terms
of bias reduction. Furthermore, the simulated mean squared errors also support

the better performance of the synthetic fixed effects estimator.
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2.9 Relationship between synthetic fixed effects estimator and the 2SLS

estimator
Assuming all the data is observed and 0 is the OLS estimator of 6 we have
5= w,-@ + 0;.
The 2SLS estimator is the OLS estimator of the following regression
Yyl =28+ 5y + 0,0 + e (2.22)
For explicity, we copy equation (11) here
yi — Ely; 0] = [ — B (2:]0:)] B + [z — E (2:l0:)] 7 + & (2.23)

where &; = f(v;) — E[f (v)|0:] + €. If we generate E [yf|0;] and E (z]0;) via
an OLS linear projection, the OLS estimates of 8 from (2.22) and (2.23) will be
identical.

Thus when the following two conditions hold the 2SLS and synthetic fixed
effects estimates are equivalent:

(i) 0 is the OLS estimator of 0;

(ii) E [y!]9:] and E (z]0;) are estimated with OLS by regressing ¥} and 2; on

2.10 Conclusions of Chapter 2

This Chapter develops a new procedure for eliminating the inconsistency result-

ing from endogenous regressors in cross sectional models. We do so by obtaining an
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estimate of the unobserved heterogeneity responsible for the endogeneity and the
performing appropriate data transformations to eliminate the endogeneity. Given
this approach is often employed in panel data our procedure is closely related to
several panel data estimation methods.

While our approach is applicable to the conventional simultaneous equation
model it is perhaps most useful in dealing with models with sample selection bias
and censored endogenous regressors. This is due to its ability to relax important
distributional assumptions required by most alternative procedures available for
these models. Our approach is also particularly useful when the endogenous in-
dependent variable appears in the conditional mean of the primary equation in a

non-linear manner.
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CHAPTER 3

Semi- and Non-Parametric Tests of Independence

Semi- and nonparametric tests of independence of two random variables are
considered. First, the exact finite-sample distributions of Blum et al.’s (1961) dis-
cretely distributed statistics, based on directly observable variables, are calculated
for small sample sizes, n = 1,2, -, 8. The calculation becomes prohibitively ex-
pensive for n > 10. Second, Monte Carlo simulations are used to approximate the
quantiles for 9 < n < 200. On the basis of these simulations, we find that even for
n = 200, the quantiles of the distribution are still significantly different from Blum
et al’s (1961) asymptotic quantiles. Third, we obtain the asymptotic distribution
of the statistics which is based on variables such as residuals or predictions from a
regression model that are not directly observable. This latter test can be useful in
specification testing for a class of models. Fourth, since the residual based asymp-
totics depends on regression function, distribution parameters of the regressors and
error term, and the estimator, we prove that the bootstrapped statistics has the
same asymptotic distribution as that of the residual and /or predicted value based
statistics. Fifth, we extend our residual-based independence test to test serial in-
dependence of regression error terms. Monte Carlo evidence shows that bootstrap

works well.
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3.1 Introduction

Test of independence finds its new applications in econometric literature in re-
cent years. In linear and nonlinear regression and simultaneous equation models,
the distinction between independence and conditional moment restrictions has an
impact on semiparametric efficiency bounds (see Begun et al. 1982, Chamberlain
1987 and Newey 1990, 1989 ). Also in the literature of residual-based estima-.
tion and prediction (see Brown 1993, 1992 and 1990, Newey 1992a and 1992b and
Robinson 1991a), the independence of the error term and regressors is crucial for
obtaining best estimators and predictors. In time series literature, an appropriate
way of testing the random walk hypothesis is to perform a test of serial indepen-
dence of its first order difference sequence. At the end of section 3, we list out

some concrete examples where test of independence is important.

Hoeflding (1948) first published his paper on the test of independence of ran-
dom variables. Blum et al. (1961) modified the statistics of Hoeffding and obtained
its asymptotic distribution. The tests in both papers are nonparametric in that
they used the empirical distribution functions of random variables to construct the

test.

Recently some authors began to reinvestigate other sorts of independence test,
including Brock and Dechert (1989), Robinson (1991b), Cameron and Trivedi
(1993) Brock and Dechert (1988) and Brock et al. (1995). Our paper can be

viewed as an extension of Blum et al’s (1961) result to the cases where one or
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both of the tested random variables are not observable, e.g. residuals or predicted

values. This paper makes the following contributions:

Section 3.2 calculates the exact distributions of Blum et al’s (1961) statistics
for very small samples, n =1, 2, - - -, 8 and simulates the its distribution quantiles
for 9 < mn < 200. In theory, if computer has enough memory and there is enough
time, our computer program can compute the exact distribution of the statistics
for any size of the sample. Because the statistics is discretely valued and it takes
n! potential differently values, the exact distribution is beyond consideration for
n > 10. Thus we use simulation technique to obtain the quantiles for 9 < n < 200.
Our finding is that even for n = 200, the quantiles we get are still significantly
different from Blum et al.’s (1961) asymptotic quantiles. Thus, when sample size
is small, for inference purposes our table will be more accurate than Blum et al.’s

(1961) table which consists of the asymptotic quantiles of the statistics.

Section 3.3 extends the independence test to the case where the samples are
not directly observed, e.g. residuals and/or predicted values from a regression
model. We find that the asymptotic distribution of the statistics constructed from
residuals and regressors depends on the parameters of the regression model: the
regression function, the distribution of the error term and the regressors. Because
the distribution parameters are not known to us, the test is not feasible. To make
it feasible, we prove that the bootstrapped statistics has the same asymptotic
distribution as that of the original statistics. This independence test can be used

as misspecification test for some class of models.
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Section 3.4 extends the approach to test the serial independence of regression
error terms using residuals. The asymptotic distribution of the statistics con-
structed from residuals depends also on the parameters of the regression model:
the regression function, the distribution of the error term and the regressors.

Section 3.5 conducts some Monte Carlo experiments to show that our boot-
strapped procedure works.

This paper is organized in the above order.

3.2 Exact Finite Sample Distributions of Blum et al.’s statistics

3.2.1 Definition of the statistics The sufficient and necessary condition for

random variables X and Y to be independent of each other is Fy,(c1,c2) =
Fi(c1)Fy(cp) for all (c1,c2) € R?, where Fyy(-,-) is the joint distribution function
of random variables X and Y, and F(-), Fy(-) the marginal distribution func-
tions of X and Y respectively. Hoeflding (1948, Theorem 3.1) proved the following
theorem.

Theorem 3.1. If random variables X and Y are absolutely continuous, i.e.
their density functions are continuous, then the sufficient and necessary condition

for them to be independent is

A= [[[Fafe,y) = F() By @) dFey(w,y) = 0

Hoeflding (1948) and Blum et al. (1961) develop tests of independence based
on empirical distribution functions of X and Y. Assume X and Y are absolutely

continuous and (z1,41), (Z2,¥2), - - -, (¢n,¥n) are independent random draws from
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the population distribution Fy,(z,y). The statistics is defined as follows.

Definition 3.1.
T, =n / [Bu(ts, t2)]2dGoy (t1, t2) (3.1)

where

1 n
-1
1 n
G = 31wy
=1
1 n
Goy(t1,ta) = ;Zl(i‘i <ty S ty)
im1

T, is clearly distribution-free for absolutely continuous random variables. Thus
we will use uniform distribution on [0, 1] x [0, 1] to define T,, hereafter. Blum et al.
(1961) prove the following theorem.

Theorem 3.2. If random variables X and Y are absolutely continuous, i.e.
their density functions are continuous, then 7}, defined in equation (3.1) has the

following limiting distribution,

T = A 1 /) ' BY(s, t)dsdt, (3.2)
where B(s,t) is a separable Gaussian process with time parameter (s,t) in [0, 1] X
[0, 1], explicitly B(s,t) = {B: (s) — sB; (1)) (B, (t) — tB, (1)) with B, (s) and B, (t)
being independent standard Brownian motions.

Random variable T has tabled p-values by Blum et al. (1961).

3.2.2 The Computation of the Exact Finite Sample Distribution of T}, In

this subsection we are going to find the exact finite sample distribution of T}, for
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n = 2,3,4,- --. In fact, it is almost impossible to list out all the values T}, takes
even for n being very small, e.g. n = 10. Because Tjp has 10! potential different
values. Besides, when n is big, T;, becomes very much “continuous” because of the
huge numbers of different values it takes. Thus the following paragraph is only for
theoretical completion purposes. In addition, based on the following logic, we have
compiled a Gauss program! to compute the exact finite sample distribution of Ty,.
If we sort sample (z1,%1), - - -, (Zn,¥n) in the ascending order of (z;) (we call

this sorted sample X-ordered sample) and rewrite 7}, as follows,

T,
3 [Gay (5535) — G () Gy (1)

i=1
n '1 n 1 n 2
= Z —Zl(miﬁl‘j,yiﬂyj)—(—Zl(-'l?iﬁ%)( Zl yz>yg)>]
=1 LS i1 i=1
" . 2
= 2 [=21m:<y) ——( Zl <yj>}
Jj=1 1" i=1
n ]2 1 J 2
j=1 =1

Under the null, i.e. random variables X and Y are uniformly independently dis-
tributed on [0,1], the X-ordered sample of Y, (¥;), is still a random sample from
the uniform distribution on [0, 1]. To simulate statistics T}, expression (3.3) is very

advantageous in that we need only to generate random numbers for Y instead of

that for X and Y.

1 This paper is very computer intensive. We write scveral programs in Gauss to conduct

computations, simulations and bootrapping. All programs are available on request.
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For explicitness, we will compute T3 and T3 manually.

1 1 2
T, = 1 1—5(1(?/1‘5?12)4-1)

1 1
= 16 [1 (> ) = 1_6-1 (1 > yo)

i.e. Ty is a binomial distribution: Pr (T3 = 1/16) = 1/2, Pr (T, =0) = 1/2.

2

1
o= g[l-3( 410 <m)+10m<w)

1
9
471 1 2
+§[§(1('ylSy2)+1)—§(1(711S?/z)‘*‘l'*‘l(ysfyz))

= §1i{2+6-1(21)—1(13)—2-1(21,13)—4-1(23,21)}

where (i7) denotes the event (y; > y;) and 1 (i) the indicator function 1 (y; > v;).
The potential 2* = 8 different events are denoted by: A; = (12,13,23) (1/6); Ay =
(12,13,32)(1/6); A3 = (12,31,23)(0); Ay = (12,31,32) (1/6); As = (21,13,23)
(1/6); Ag = (21,13,32) (0); A7 = (21,31,23) (1/6); As = (21,31,32) (1/6), where
the number in the second parenthesis is the probability the corresponding event
occurs.

If Ay occurs, Ty = 1/81; If Ay, T35 = 1/81; If Ay, T3 = 2/81; If A;, T3 = 2/81;
If A;, T3 = 4/81; If Ag, T3 = 8/81. Thus the distribution of T3 is as follows:
Pr(T3 =1/81) = Pr(A UAUA;) = 1/2. Pr(T3=2/81) = Pr(A44) = 1/6.
Pr (T3 =4/81) = Pr(A;) =1/6. Pr (T3 =8/81) = Pr(4s) = 1/6.

Manual computation of 75, becomes prohibitively expensive for n > 6. We use
a computer program written in Gauss to compute the right hand tail quantiles
of it. Unfortunately, even with a computer program, the computation can not go

any further than n = 8 with a PC. The reason is that the number of potential
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distinct values T, takes is n!l. When n = 9, 8-Mb ram memory in a PC is not
enough. When n = 10, the memory it takes is 10 times as much as it takes as
n = 9. So when n is large we use simulation technique to get an approximation of
the right-tail quantiles. For the sake of theory completion, we formalize the above

finite sample computation method of T;, and present it in Theorem 3.3.

Intuitively, any two samples with the same ranking order will give us the
same value of T,,. Thus any sample (y1,y2, -+, ys) satisfying y; > ya >, -
2 yn will give us a unique value of T, say, a. And we have Pr (T, =a) =
Pr(y1 > y2 >,---,> yn) = 1/nl. If there are other samples with different rank-

ing giving T;, the same value of a, then Pr (7, = a) = (# of ranking such that

T, = a)/nl.

We take it for granted that Pr(each specific ranking) = 1/n!. If this piece
information is unknown to us, two questions should be addressed: (i) How many
different rankings have positive measure? (ii) What is the measure of each specific
ranking? These two questions are answered by the Theorem 3.3 and Lemma 3.1.
For any sample (y1,¥2,* « -, Yn), there are 2% different ways to define the relations
between y; and y;, fori # jandi,j=1,..-,n, where k =nx (n — 1) /2. T,, maps
each relation to a well-defined value. The measures of (y1,y2,- - +,yn) with some
relations are 0, some are not. The relations of (y;) that have non-zero measure
are called consistent relations. The sets defined by consistent relations are called

consistent sets. The strict definition is as follows:

Definition 3.2. Assume we have n independent observations (y1,¥s,*  *,¥n)
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n T, /2

2 | 3.0440(0.5)  0.0000(0.5)
3 | 4.8103(.1667) 2.4052(.1667) 1.2026(.1667) .60129(0.5)
4 | 6.4686(.0417) 4.7563(.0417) 3.2343(.0833) 2.4733(.0833) 1.9025(.0417)

5 | 8.1044(.0083) 6.8576(.0083) 5.4549(.0167) 4.9873(.0083) 4.7536(.0167)

6 | 9.7334(.0014) 8.7939(.0014) 7.5913(.0028) 6.9900(.0056) 6.6518(.0014)

Table 3.1: The Right Hand Tail Exact Distribution of 7T}, /2 for Small Samples

from the uniform distribution on [0,1], a set T =N ;

(y; 0 y;) is called consistent
if Pr(Y) > 0, where the relation sign is either > or <.

The reason we call T consistent? is that the inequalities in the definition of T
can not contradict with each other if Pr (T) > 0, i.e. if y; > y;, we can not deduce
from other inequalities that 4; < y;, for any i and j.

Theorem 3.3. For fixed n, there are n! different consistent sets each witha

measure of 1/n!.

From the proof of Theorem 3.3 we can see that all the consistent sets are
symmetric for fixed n, i.e. we can change one into another by changing their
indexes. In a n-dimensional unit “cubic”, which has a unit measure, there are n!
consistent sets. Thus the measure of each consistent set is 1/n!. We specify this

fact by the following Lemma, which can also be proved by multi-fold integral.

2 The terminology “consistent” here is not accurate. Because y; < yj and ¥; < y; are not

“inconsistent” due to the existence of equality sign. But even there is one pure equality sign in
aset, e.9. (Y1 =¥2,y1 2 U3, Yt 2 Yni¥2 2 Y3,*+* ¥2 2 Yni* i Un—1 2 Yn), the measure of the

set is zero.
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n| 0900 0950 0.990 0.999

5 | 3.5067

6 | 3.4950 4.2466

7 13.2659 4.2193 6.3898 9.1080

8 | 3.1629 4.1142 6.2189 9.2153

Table 3.2: The Exact Distribution Quantiles of 77,,/2 for Small Samples

Lemma 3.1. In n-dimensional unit “cubic”, each consistent set has a measure
of 1/nl.

Right hand tail distributions for small samples, n = 2, 3, 4, 5 and 6, are listed
in Table 3.1. The value in the parenthesis is its probability value. For n = 5 and 6,
Table 3.1 does not exhaust all of their 10% right tail values, which are the values to
make inference on; Thus they are still listed in Table 3.2, a quantile table, listing
the quantiles corresponding to p = 0.9, 0.95, 0.99 and 0.999, i.e. the solutions to

p=Pr(n'T,/2<q)®

3.2.3 Simulations of the Quantiles of 7}, for Finite Sample Size As afore-

mentioned, direct calculation of the distribution of T}, is prohibitively expensive

3 The only reason for us to scale T}, to 71T}, /2 is to make it comparable to the tables compiled
by Blum et. al (1961).

Because of the discretencss, Pr (7r“T5/2 > 3.5067) = Pr (W“T5/2 > 3.7405) = (.0833.
Pr (m*Ty/2 > 3.5067) = Pr (n*7T5/2 > 3.1950) = 0.1167, i.e. Pr (n*T5/2 = 3.5067) = 0.0333.

For n = 6 there exists the same discreteness problem as for n = 5. Pr (7r4T6/2 > 4.2466) =
Pr(m4T5/2 > 4.2842) = 0.05. Pr(vTs/2 > 3.4574) = Pr(71T5/2 > 3.4950) = 0.1. Thus the
quantiles are not accurate. As a matter of fact, quantiles do not exist for n < 4, and some of the
quantiles do not exist for n = 5 and 6. That is why we compiled the distribution Table 1 and an
incomplete quantile Table 2. When n = 7 the quantiles can be accurate to the second decimal.
When n = 8 the quantiles can be accurate to the third decimal. When n > 9 the distribution

function of T}, becomes “almost” continuous that the discreteness problem disappears.
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for large n. Thus we use simulation technique to obtain their right tail quantiles for
9 < n < 200. The exact right tail distribution and the calculated quantiles of T,
for 5 < n < 8 are listed in Tables 3.1 and 3.2 respectively. Simulated quantiles are
listed in Table 3.3. For examining the accuracy of our Monte Carlo simulations,
the simulated quantiles for 5 < n < 8 are also listed in Table 3.3.

We conduct our simulation as follows: For fixed n, we generate random num-
bers uniformly distributed on [0,1] and calculate T, using the formula given by
equation (3.3). We repeat this process for S times and obtain S different values
of T,,, denoted by T;3. In our application, S = 1,000,000. Then we take the right
tail sample quantiles of (73)°_, as our quantile estimates. When n = 5, 6, 7 and 8,
the calculated quantiles in Table 3.2 and the simulated quantiles in Table 3.3 are
exactly the same. This fact gives us more confidence in our simulation procedure.
Another observation about Table 3.3 is the smoothness of our simulated quantiles.
They are monotonic decreasing in sample size n. This fact also strengthens our

confidence in our simulation results.

3.2.4 Variances of the Simulated Quantiles Although the simulated quantiles

in Table 3.3 seems very accurate, they are still randoms. We will next examine
the variances of these random quantiles.

Let 0 < p < 1 denote a given probability, 7, the exact distribution function of
T, and m,g the empirical distribution function of the simulated samples (T,‘;’)le.

Brown and Mariano (1991) has the following asymptotic result

) -t @) < v (0. B, (3.0



0.9

0.95

0.99

0.999

n,p

0.9

0.95

0.99

0.999

3.5067
3.4950
3.2862
3.1629
3.1104
3.0489
2.9906
2.9407
2.9007
2.8640
2.8304
2.8010
2.7508
2.7083
2.6750
2.6464
2.6174
2.5974
2.5776
2.5596
2.5451
2.5322
2.5208
2.5084
2.4951
2.4845
2.4737

4.2466
4.2193
4.1142
3.9938
3.8915
3.8256
3.7557
3.6971
3.6463
3.6020
3.5553
3.4918
3.4334
3.3846
3.3429
3.3071
3.2788
3.2528
3.2349
3.2094
3.1951
3.1739
3.1569
3.1337
3.1166
3.1077

6.3898
6.2189
6.0797
5.9371
5.8149
5.7123
5.6291
5.5429
5.4905
5.4110
5.2956
5.2004
5.1257
5.0784
5.0014
4.9588
4.9126
4.8929
4.8599
4.8155
4.7918
4.7648
4.7138
4.6969
4.6778

9.1080
9.2153
8.9229
8.7766
8.6026
8.5073
8.4122
8.2725
8.2295
8.1363
7.9653
7.8198
7.6940
7.6214
7.5556
7.4576
7.4416
7.3107
7.3038
7.2737
7.2395
7.2004
7.1897
7.1231
7.0542

50
52
55
58
61
64
67
70
75
80
85
90
95
100
108
116
124
132
140
150
160
170
180
190
200

2.4674
2.4632
2.4513
2.4444
2.4387
2.4288
2.4223
2.4168
2.4102
2.4007
2.3955
2.3892
2.3831
2.3786
2.3704
2.3691
2.3568
2.3561
2.3596
2.3505
2.3459
2.3394
2.3381
2.3372
2.3356
2.2860

3.0997
3.0929
3.0720
3.0696
3.0539
3.0472
3.0324
3.0249
3.0161
3.0067
2.9950
2.9887
2.9817
2.9751
2.9666
2.9573
2.9486
2.9391
2.9465
2.9350
2.9196
2.9167
2.9182
2.9167
2.9102
2.8440

4.6624
4.6483
4.6366
4.6103
4.5928
4.5729
4.5524
4.5419
4.5193
4.5163
4.5040
4.4756
4.4640
4.4495
4.4424
4.4212
4.3941
4.4016
4.4097
4.3832
4.3738
4.3599
4.3511
4.3444
4.3432
4.2300

7.0553
7.0256
6.9563
6.9046
6.8825
6.9063
6.9166
6.8472
6.7894
6.7950
6.7077
6.7150
6.6929
6.7234
6.6775
6.6576
6.6178
6.5734
6.5879
6.5722
6.5921
6.5483
6.4920
6.5121
6.4970
6.3200

Table 3.3: Simulated Quantiles of 77T}, /2 for Sample Size Less than or Equal

to 200
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where 7,1 (p) is the p-th quantile of random variable Ty; 7,3 (p) is the p-th quantile
of the simulated random samples ('I’,ﬁ‘)f:l of Th; fa(-) is the density function of
T,.. We take S = 1,000,000. The only unknown in the variance of our simulated
estimator is fy, (-). Fortunately Table I in Blum et al. (1961) lists the asymptotic
distribution function values, from which we can get a rough approximation of f ()
(the asymptotic density) at the four quantile points. The four values are foo =
0.126, foos = 0.06, fog9 = 0.011 and fo.999 = 0.0012, where the indexes denote the
p’s. These asymptotic values are used as substitutes of the corresponding finite
sample density values. Thus we can approximately obtain the standard error of
the simulated quantiles. They are g9 = 0.0023, 0p.95 = 0.0036, 0999 = 0.009 and
Oo.999 = 0.02634. We see from these standard errors that the 0.9-th quantile can be
accurate to the third decimal. The 0.999-th quantile can be accurate to the first or
the second decimal. The accuracy of the other two quantiles are in-between. By
examination of Table 3, we notice that the 0.999-th quantiles of finite sample size
do have some fluctuations, however its first decimal is very smooth. There are only
3 places that the second decimal fluctuates a little bit. Thus the accuracy of the
quantiles conforms with what their standard errors suggest. Because we use the
asymptotic density function at the 0.999-th quantile to be a substitute of the finite
sample density function at the 0.999-th quantile. This substitution may deflate the
finite sample density function at the 0.999-th quantile. However the asymptotic
random variable is infinite and the finite sample statistics are bounded. At the

same 0.999-th quantile, the density function of finite sample random variable may
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be larger than that of the asymptotic random variable. From equation (3.4), we
know that we may have inflated the variance of the 0.999-th quantile estimates.
Thus all the 0.999-th quantiles might be smoother than what their approximated
standard error suggests. This fact is also reflected in the pattern the 0.999-th
quantile estimates: when n becomes bigger, finite sample statistics becomes closer

to the asymptotic one, the fluctuation becomes severe.

3.2.5 Ad Hoc Formula for Calculation of Finite Sample Quantiles As we

noticed in Table 3.3 that the simulated quantiles have very smooth patterns. They
decrease in sample size n. Also the decreasing speed negatively relates to the
sample size n. From these observations, we will assume that the quantile is a
linear function of sample size n and its negative powers and it takes the following
linear form:

77 (p) =y +agn Fagn B payn (3.5)

OLS is used to estimate the coefficients with the simulated quantiles in Table 3.3
for n > 9 as the dependent variables. There are four sets of different coefficients
corresponding to the four different probabilities (0.9, 0.95, 0.99, 0.999).

The criteria to choose the regressors in equation (3.5) are as follows:

(i) R? is close to 1;

(ii) Constant «; is close to the asymptotic quantiles in the last row of Table 3;

(iii) The standard errors of the predicted values is less than the standard errors
of the simulated quantiles so that the noise of the calculated quantiles by (3.5) is

dominated by the noise of simulation.
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By try and error we choose (1,71‘1,71‘2,71‘5/ 2) as our regressors in equation

(3.5) and obtain the following results:

721(0.900) = 2.288 4 9.361 n~'— 21.34 n"24 11.40 %2, R2 ) = 1.000
n (2370)  (91.12) (~5.986) (1.356) '

721(0.950) = 2.842 + 13.58 n~'— 46.26 n~%+ 5143 n~5/2, B2, = 0.999
(772.3)  (34.67) (-3.404) (1.598) -

771(0.990) = 4.228 +23.62 71— 112.9 n724 151.1 n~5/2 R2 000 = 1.000
(1057) (55.45) (—7.640) (4.318)

771(0.999) = 6.311 +40.61 n™'— 294.6 n~24 423.5n7%2 RZ .00 = 0.999
(455.9)  (27.56) (-5.760) (3.498) ’

where numbers in the parenthesis are the corresponding ¢-values.

All the R? are approximately equal to or close to 1. The four constant terms
are very close to the four asymptotic critical values (2.286, 2.844, 4.23, 6.32).
For n = 18, the standard errors of the four predicted values are (0.00055, 0.0021,
0.0023, 0.0080), which are smaller than the four simulated standard errors (0.0023,
0.0036, 0.009, 0.02634). And also, the standard errors of the predicted values are
decreasing functions of sample size. Thus for n > 18, the standard errors of the
predicted critical values will become even smaller. So our four formulae above
satisfy all the three criteria.

How well do our formulae perform? We pick n = 18, 100, compute the four
quantiles and compare them with the corresponding quantiles in Table 3.3. The
calculated quantiles are (2.75036, 3.49043, 5.30113, 7.96672) and (2.37947, 2.97315,

4.45413, 6.69235). They are very close to the simulated values* in Table 3.3.

4 Even there are some discrepancics between the calculated quantiles and the simulated quan-
tiles in Table 3, we suggest to use the calculated quantiles. This is due to the fact that the
numbers in Table 3 are simulated. There are some randomness in them. Our formulae, however,

smooth out the randomness.
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3.3 Residual-Based Test of Independence of Regressors and Error Term

This section extends the independence test to the case where one of the two
random variables is not observable. Instead it is the residuals and/or predicted
values from a regression. In most economic regression models, its errc'ar and regres-
sors are independent of each other almost by the model design. If the error term
is known, the previously defined statistics can be used directly to test indepen-
dence. But the error term is not observable. What we have about the error term
is the regression residual. In this section we obtain the asymptotic distribution of
the statistics using residuals instead of error term observations. This asymptotic
distribution depends on not only the regression model, but also the distribution

parameters of the regressors and the error term.

3.3.1 Extension of the Independence Test Using Residuals Consider the fol-

lowing regression model,
/)(Yi,Xi,ﬂO) =& (3‘6)

which has a reduced form solution
}/i = W(.Xi, ,[7)(), Si). (37)

where X; = (zy;, To;, - * -, i) is a k-dimensional vector regressor; Gy is a I-dimensional
' AN [ .
parameter. We assume that z; = (Y, X])' are i.i.d. and that the disturbance term

)

; and X; are independent.

If the regression function p(Y;, X;, ) is misspecified as y(Y;, X;, 0p), the model
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becomes
’Y(Yn Xia 00) = [’7(}/11 Xi) 00) - p()/n X'b IBO)] + &i.

It is easy to see that regressors X; and the new error term &; = [y(Y;, X, 6o)
—p(Yi, X;, Bo)]+¢&; are no longer independent as long as p(Y;, X;, 6o) # v(Y:, X;, 0o)-
Thus if some independence test rejects the null hypothesis, we have very good
reason to believe that the model is misspecified.

Most chances we do not know f; in regression equaiton (3.6) but a /n-
consistent estimates 8 of 3. Thus the test of the previous section is not applicable
here. This section uses residuals e of the regression to construct the statistics and
derives its asymptotic distribution.

We always use z; to denote one of the k regressors of model (3.6), (3.7).

Definition 3.3. The statistics is defined as

T, (8) = n // [Bu(z, ¢)]2 dGue(z, €) (3.8)

where

G:(z) = ;Zl(v,<w)
i=1
1 n
G.(e) = EZl(ez<c)
i=1
Gre (z,€) = %Zl(:ciSm,eiSe)
i=1

and e¢; = p; (8) = p(%,0).> Under the independence assumption, the limiting

5 If there is not confusion, we also use ¢; to denote the residual p; (B)
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distribution of T, (G) is that of T' in equation (3.2). We call T, (ﬁ) the residual-
based test statistics if 3 is an estimator of fo.

For any 3, we define

ml(B) = me(2,B)=E.[1(p(z,08) < p(z,0)) (3.9)
m'z:s (,B) = Mige (ZJ'HB) =L, [1 (:13 < IBj,p(Z,,B) < P(Zj,ﬁ))] (310)

and make the following assumptions.
Assumption 3.1.

1 n

77 2 A[mF (0 = ml ()] = [ (o) - m ()]}
1 § ji J It J
% ; { [’n’;s (/3) = My (IB)] - ['nzs (:BO) — Mg (/30)]}

is stochastically equicontinuous at f, for given j. Where m#* (8) =1 (p; (8) < p; (8))
and mf, (8) = 1 (z: < x5, p: (8) < p; (8)).°

Assumption 3.2. (a) The partial derivatives Omi (8) /08 and mi, (B) /08
exist and are continuous in a neighborhood of 5;; (b) E.; [amz (Bo) /88 - Omi (Bo) / 3[3]
and E,; [81n (Bo) /038" - Omd, (Bo) /(')/3] exist.

Assumption 3.3.

(a) A is a linear estimator with influence function ¥ (X;,;), i.e

\/ﬁ(ﬁ g) —Z—"‘J\gr—b“”+o (\/lﬁ> (3.11)

(b) E [‘/’( &) P (X 6,)1] exists.
Assumption 3.4. All the regressors and the error term are uniformly inde-

pendently distributed on [0,1].

8 For the definition of cquicontinuity, sce Newey (1991) and Andrews (1994).
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Brown and Newey (1992a), Theorem 1, proves the following lemma.
Lemma 3.2. If Assumptions 3.1, 3.2 (a) and 3.3 (a) hold, the following

expansions are valid.

i=1
= %gl(& Sej)+%% (8- Bo) +o0p (—\71_;;) (3.12)
31 (<2 () <00 (5))
= %gl (z: < zj,8 < g5) + QE‘%%@ (ﬁ - ,30) +0p (\/—lﬁ-) (3.13)
Thus if the Assumptions 3.1, 3.2 (a) and 3.3 (a) are satisfied, T}, (,[:1) can be
written as
T. (6)
- S snn(d) <0 ()
i= i=
13 1 2
-(31Esa) (33510 < ()]

om. (zi,B0) /-
21(51' ggj)+ﬂ_a%{l°_) (ﬂ-—ﬁo))

1& 1\]?
- 1 .),‘<;.' y | ——=
pg s ”’))”’ <f)]

1. 1.0 1.0
—Zl (.’Bi < L& < SJ’) - (—Zl(ﬂ), < .’IIJ)) (-Zl (Ei < 5_7'))
n n = n =

i=1

. ~ o, 2] 3 2
o (Rreeloa) g, o P0el)) (5 ) 4o, (1))

o o Vn
1 n 1 n 1 n
= — ——— e < Ti & &) — " - . .
nj___] [\/;i;l(azz_Tjatls _]) \/ﬁ(niill(zlsmj))

X (lil (e: < Sj)) + G (X, ¢5) _Z;:l”/’\(/____%)_ + 0, (\/Lﬁ)] (3.14)



84

where
, Omge (=5, Fo) Ome (25, Bo) |
G(Xj,e5) = —3,8'1—_ -z X ETﬂJ,——— (3.15)
The asymptotic distribution of T;, (/3) is given by the following theorem:
Theorem 3.4. If Assumptions 3.1—3.4 hold and, without loss of generality,
{z;};_; in the definition of T, (B) is the first regressor {zy;}, then T, (ﬁ) has the

asymptotic distribution

/[0 e [B—l(l)B (81,) + G (5,1) /[0 o ¥ () dB (X) dBE(e)r dSdt (3.16)

where

B_y(1) =[], B: (1), dB(X) = [[, dBi (), dS = ][, ds;
B (s,t) = (B1(s1) — 8181 (1)) (Be (t) — tBc (1)); B1, By, - -+, By and B, are stan-
dard Brownian motions on [0,1] and are jointly independent. The integral with
Brownian motion is in the sense of Ito integral (see Harrison 1985, Chapter 4).

We make the following remark about Theorem 3.4:

Remark 3.1. It is semiparametric in that: (i) We can always transform the
error term of model (3.6), (3.7) such that it is uniformly distributed on [0, 1],
F.[p(Y, X, Bo)] = F:(¢), a uniformly distributed random variable on [0, 1], where
F_(-) is the distribution function of the error term; (ii) The regressors in (3.6),

(3.7) can also be transformed such that they are distributed on [0,1]*:
F[p(Y, F{ o By (1), I o Fi (i) fo)] = Fe (e),

where F;(-) is the marginal CDF of x; and ([} (), - -, F} (x;)) are distributed

on [0,1]* and the marginal distribution of F(z;), i = 1, - -k, is the uniform
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distribution on [0,1]; (iii) The last transformation is to transform the regressors
distributed on [0,1)* such that they are independently uniformly distributed on
[0,1)%. Assume (2,2, - -, z}) are distributed on [0, 1]¥, not independent, we do

the following transformation:
z1 = fi(z1, T2, Th), o0y T = fu (21, 22,0 0, k)

such that (Z;, s, -+, &) are independently uniformly distributed on [O,I]k and

has unique inverse solution:

z1 =91 (Z1,Ta, -+, Tk), -+, Th = Gk (T1,Ta,- - -, Tk)

The existence of this transformation is proved by Lemma 3.3.

Thus if we assume that the regressors are independently uniformly distributed
on [0,1]*, we are making a joint assumptions about the distributions of the regres-
sors and the error term and, about the regression function p.

Lemma 3.3. Assume (&, ,,- - -, 2;) are distributed on [0,1]* with joint den-
sity function f (z;, T, - -, zx) and that the marginal distribution of z;,7 = 1,---, k,

is the uniform distribution on [0, 1], then there exists a transformation:
Ty = fi(zn,®e, @), o, Te = Ji (@1, 32,00, 2k)

such that (&1, %y, - -, %) are independently uniformly distributed on [0,1)* and

has unique inverse solution:

z1=g1(Z1, Ty, -, Tn), o, T = gr (T2, oy -+ -, Tn) -

Remark 3.2. When k£ > 1, the influence function (3.11) is a l-dimensional
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column vector function. The proof of Theorem should be viewed as a proof with
respect to each single argument of the influence column vector function.

Remark 3.3. The asymptotic distribution depends on the number of regres-
sors, the regression function and the distribution parameters of the regressors and
the error term. Thus the test is not feasible unless we know the regression function
and the distribution parameters of the regressors and the error term. To make this
test feasible, we will use bootstrap technique to obtain the corresponding critical
values.

Remark 3.4. Theorem 3.4 is an extension of Blum et al.’s (1961) result.
When k =1 and 3 = (3, the asymptotic result” reduces to that of Blum et al.

Remark 3.5. Theorem 3.4 is also valid when 2 is replaced by predicted value
Y=u (X B, 0). Regularity assumptions about Y is similar to that of the residual

é.

3.3.2 Bootstrapping the Critical Values of the Statistics Our test is not fea-

sible unless we know the regression function and the distribution parameters of
the regressors and the error term. The following bootstrap procedure is to attain
the critical values of the residual-based test statistics to make the test feasible

without having to know the aforementioned unknowns. Our bootsrap procedure

" When 8 is known, the influence function ¥ in the formula (3.16) becomes 0. Thus (3.16)
becomes

/ [B_1(1)B (s,t)]? dSdt
0,12

which is not exactly the same as that of Blum et al But the Gaussian random process
B_1(1)B (s,t) and B (s,t) have the same covariance structure. So their functionals will have

the same distribution.
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is as follows:

(i) Randomly draw sample of size n, (¢}, - - -, ) from residuals (e, eq, - - -, €y),
(X1, X3, -+, X;;) from the original sample (X, Xs,- - -, X;,) with replacement.

(ii) Calculate (y5,93,- - - v3) by v} = (X, ¢}, B).

(iii) Use (93, - -+, y5) from (ii) and (X}, X3, -+, X}}) from (i) to reestimate the
model (3.6) and (3.7) and get a new parameter estimate § and a new set of residuals
R

(iv) Use the z} from (i) and the residuals from (iii) to obtain one value of
T; (8)-

(v) Repeat (i) through (iv) to attain a series of values of T}, (B), for j =1,2,

-+, N.

(vi) The estimated critical values are obtained from the empirical distribution
of Ty; (B), for j =1,2, -, N.

The main task of this section is to find out the asymptotic distributions of
T, (B) With the bootstrapped sample, which is from a discrete population dis-

tribution, for any 3, the expectations of (3.9) and (3.10) become

m(B) = m? (,:; ,,8)
= E-[1(p(="0) <0 (55.8))]

n

= 31 (pGB) < 0 (5.6)) (3.17)

i=]

and

mZ(B) = m;, (35.6)
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= FE, [1 (:v‘ <az,p(zB8)<p (z;’ﬁ))]

= %Z (%z <ajp(2,8)<p (z;,ﬂ)) (3.18)

i=1
With similar regularity assumptions we prove that the expansions in Lemma
3.2 still hold for the bootstrapped samples. The following assumptions about the

bootstrapped samples are analogues of Assumption 3.1 and Assumption 3.3.

Assumption 3.1

and

S {1 (w5 < w500 (9) < 05 (8)) = iz ()]

- [17-”6: <505 (B) < 5 (B)) —mid (B)]}

are stochastic equicontinuous at 3 for any given 5.

Assumption 3.3": The estimator 3 has the same influence function as B, i.e.

Va(p-h) - B o, (1)

Lemma 3.4. If there exists a neighborhood N () of £y such that

ﬁg}\f}:ﬂ{o) I |¢k+l (‘X1/) (‘X$ Y7 /3)) ’ ap (X7 Y7 IB) /816| <o (3’19)

then

rE | r 1
E[Q/)(‘X; )Ei) I.’D],' Ty €1, ',Cn] = n_2 Z ,lp (Aiwej) = Op <_\/_ﬁ>

iy=1
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where 10, +1 (X, €) is the partial derivative of 9 with respect to its last argument.

Lemma 3.5. If Assumptions 3.1, 3.1°, 3.2 (a), 3.3 (a) and 3.3’ hold, we will

have the following expansions

3

5135 () <55 0)

1 om. (:;,ﬂo)

n
1 (=5 <a5,0; (B) <} (B))

1

-
1l

Il
S= 3
'Mu 'Mzs

=

1 (.L: < zj,ef < 5;) +

1=

Lemma 3.6. For fixed j,

1

;;1(.7;; <aj) =25+ 0, (%)

If Assumptions 3.1 and 3.2 (a) hold, we also have

Definition 3.4. Our bootstrapped statistics is defined as

T2 (8) =n [[ Bi(,e)) dGze(a,e)

where

Br‘x (.’1), C) = G;'c (:1:1 (3) - G; (’E) G; (6)

Gi@) = ~> 1 <)
i=1

* 1 = *

G:(e) = ;Zl(c <e)
=1
1 n

Goe(,e) = =3 1(2; <mef <e)

N (e = 1
- §1(5f>€f)+—‘aﬁ'—("‘ﬂ)+°”(%

(3.20)

5 (B—B) +o (—1\/—_7;) (3.21)

(3.22)

(3.23)

(3.24)
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and e} = p}! (B8) = p(z},5). Under our bootstrapped procedure, the bootstrapped

error term and regressors are stochastically independent.

T (B) is our bootstrapped test statistics. The following theorem proves that

/i (B) has the same asymptotic distribution as that of T,, (B)

Theorem 3.5. If Assumptions 3.1, 3.1°, 3.2, 3.3, 3.3’, 3.4 and condition (3.19)
hold, then the bootstrapped statistics 7', (E’) has the same asymptotic distribution

as that of T}, (,[3)

Remark 3.6. If the distribution of either the regressors or the error term or
both are parameterized, the above bootstrap method is still valid. The practitioner
can resample the regressors and/or the error term from their corresponding esti-
mated distribution functions, which are determined by their estimated parameters.
Theorem 3.5 still holds if one or both of the samples are drawn from an estimated

parameterized distribution, which we assume to be absolutely continuous.

3.3.3 The Power of the Test under Alternatives Assume regressor z; in model

(3.6) and (3.7) are not independent of the error term. First, if the mean of the
influence function ¥ (X;,<;) is not zero, then the direct effect of this violation will
be that 0, 9 (X;, &) /v/n goes to either positive infinity or negative infinity. By
the expression of (3.14), T, (ﬁ) goes to positive infinity when the sample size goes
to infinity. Secondly, even if the mean of the influence function ¥ (X;, &;) is zero,
the first part in equation (3.14)

Xn: [%zn:l(-’”i S @58 < g5) - (.lil(l‘i < ﬂ?j)) (%il(si Sﬁj))r

i=1 i=1
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goes to positive infinity. So the null can be rejected when sample size is bigger
enough. Thus this test is consistent in that the rejection probability of the null

converges to 1 under alternatives.

3.3.4 Motivations of Testing the Independence of Regressors And Error Term

We can now test the independence of regressors and error term of a regression
model using residuals. In the literature of semiparametric efficient estimation and
residual-based efficient prediction, e.g. Brown (1993), (1992) and (1990), Newey
(1990) and (1989), Brown and Newey (1992a) and (1992b), Robinson (1991a),
among others, semiparametric efficient estimators and predictors are obtained un-
der the assumption that the regressors and the error term of a regression are
stochastically independent. This section provides some concrete examples.

Consider, again, estimating the nonlinear simultaneous equation model (3.6)

and (3.7). The model has the form
/) (Ya X7 /30) =<

with unique solution

Y=um(X,5/).

The stochastic assumptions arve: (i) Z; = (Y{, X!)' are i.i.d. and (ii) ¢; is stochas-
tically independent of regressors X;.

EXAMPLE 3.1. To estimate the above model, we first consider the best non-
linear three-stage least squares (BNL3S) estimator proposed by Amemiya (1977).

This BNL3S estimator is essentially an IV estimator. Amemiya chooses the in-

struments so as to minimize the asymptotic covariance matrix of the IV estimator.
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Under the assumption (ii), the optimal instruments are given by
Q(X)=25'R
where

So=E [p(Y,X,50) p (Y, X, /i) ]
R=Ey[R(Y,X,5)|X] = E:[R(x(X,e, ), X, Bo) | X]

R (Y’ Xa /HO) = 0/) (Ya ‘Xa ﬁO) /aﬁl

In order to make this estimator feasible, we must estimate both ¥ and R. Let
,l;’ be a preliminary consistent estimator of f, the estimator of ¥y is obviously the
sample average estimated at 3. A number of alternatives have been proposed for
the estimation of R. Given the assumption of independence, an approach that has
been proposed independently by Brown (1990) and Robinson (1991a), is to use

residuals to obtain the following estimator

1
n

R=

zn:R(w (/\Jﬂ) Aﬁ)

j=1
According to the discussion in Brown and Newey (1992), this set of instruments are
the optimal semiparametric estimates of the target conditional expectation under
assumption (ii).

EXAMPLE 3.2. Newey (1990) has several examples of efficient score cal-
culations. All models whose efficient score can be calculated are under either
assumption (ii) or assumption that ¢ is symmetrically distributed conditional on

X. If we do not have any confidence in the conditional symmetry distribution of
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€, we would like to know whether ¢ and X are stochatically independent or not.
Newey’s (1989) Theorem 3.1 develops locally efficient, residual-based estimators
under assumption (ii).

EXAMPLE 3.3. Brown and Mariano (1984) and Brown and Newey (1992a)
study residual-based predictors of a regression system and related efficiency prop-
erties. If z and £ are independent, the residual-based semiparametric predictor of

Y conditional on X, [ 7 (X, ¢, ) f () ds, is the sample average

12 5 12 N\ -

— ™ )(,5“ = - T ):pkﬂ, ’ .

LS () = 155 (300 (.0 ) )
If 3 is semiparametrically efficient, the above predictor will be semiparametrically
efficient. Without independence assumption, residual-based predictions given X
is not feasible.

EXAMPLE 3.4. Another example of the sort of residual-based estimation is

the joint distribution function estimation of regressors X and endogenous variable

Y. Given the assumption that ¢ is independent of regressor X, the residual-based

estimator of the empirical joint distribution of (X,Y)

is
n -~
So1(Xi<a)l(m(X;,é5,8) <b)

j=1 i=1
Brown and Newey (1992a) show that the residual-based estimator is semiparamet-
ric efficient if 3 is semiparametric efficient.

We know from the above examples that the independence of the error term ¢

and regressors X is crucial for residual-based semiparametric efficient estimation



94

and prediction. This test is to serve as means to test the independence of the error

term and the regressors.

3.4 Test of Serial Independence Using Residuals

In time series econometrics, test of serial independence has its applications. For
example, a test of random walk can be regarded as a test of serial independence of
the first order difference sequence. If the data is observable, Blum et al.’s (1961)
test can be utilized to test the first order serial independence by spliting the data
into two groups, one is the odd index group and the other is the even index group.
If data is not observable, for example, if we study the serial independence of a
regression error term, the test, for the same reason discussed in previous section, is
not feasible. This section demonstrates that our residual-based independence test

can be extended to test serial independence.

We still use model (3.6) and (3.7). The null is that the error term {g;} is
serial independent. The alternative is that it has first order dependence®. The
following definition is defined in the same way as in (3.8) and (3.24). Due to the
regrouping of the sample, we assume that the sample size is 2n. All the definitions
and regularity assumptions in this section is parallel to that in Section 3.1. Thus
we omit regularity assumptions, the corresponding lemmas and proof of the main

theorem.

8 This test is to test the k-th order dependence for any fixed k. If we bilicve that there is k-th

order dependence for scveral ks, we should conduct this test scveral times.
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Definition 3.5. Our statistics is defined as

T2 (8) = n [[ [Buler, e2))* dGrcler, e2) (3.25)

where

B (e1,e3) = Gia(er,er) — Gi(e1) Gz (e2)
1 n
Gi(e1) = - > 1(e2i-1 < €1)
i=1

1 n
Gy (e2) = - > 1(en < ey)
=1

1 n
> 1(eni-1 < ep,e0 < €g)

i=l

Gia (61,62) =

n

and e; = p; (B) = p(z:;,B) fori = 1,2,---,2n. Under the independence assumption,

the limiting distribution of 7;; () is that of 7" in equation (3.2). If 3is an estimator

of fo, T2 ([3) will be called the residual-based serial independence test statistics.
The main task in this section is to derive the asymptotic distribution of T} (B)

For any (3, we define

m(2;-1,8) = LE.[1(p(2,8) < p(25-1,0))]
m(z95,0) = L. [1(p(z,8) < p(z,06))
miy (B) = mu (22-1, 225, B)

= Lp(l(p(21,8) £ p(225-1,8),p (22, 8) < p(225,0))]

where the last expectation is with respect to z), 25 and 2; and 2, are stochastically

independent.

Under regularity assumptions similar to Assumptions 3.1, 3.2(a) and 3.3(a),
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for fixed j, the following expansions hold

£ 31 (o (3) < e @)

£ (o () < o 4))

LS )+ 225 (5 )1, (1)

231 (et (B) < s () () < s )

% gl (c2i-1 < njoy, o0 < 2y) + 3'”5}(,‘3 D (7 - o) + o, (—1\/—;)

Thus if Assumption 3.4 holds, 17} (B) can be written as

T (B)

where

5 s 4) 50 () (25202 0) < ()]
;1;2": [7,_ zn: 1(g9i-1 < £9j-1, 62 < €9y)

1 n 1 n
'—('— 1(52i—1<~211>( 215 < &y; )
=1
G

2
+G (Xaj-1, Xojs €2j-1,€2) X V/n (ﬁ - ﬂo) + 0, (ﬁ)]

G (-X‘Zj—le‘zj;E?j—lyS'Zj)
(817112([30) i om (zy,Bo) am(z-)_j_l,ﬁo)>

 —_— e T

0/34 £25-1 B,BI c25 8ﬂl

Using exactly the same method as being used in the proof of Theorem 3.4, we

can prove the following theorem.
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Theorem 3.6. Under similar regularity assumptions as that in Theorem 3.4,

T (B) has the following asymptotic distribution

/[o 22 [B (s,8) + G (X,Y;5,0) ( /m o ¥ (@61)dBz +

(0’1]k+1

2
’¢' (y7 82) dBy)] ds

where

B(s,t) = (Bi(s)~sBi(1))(B2(t) - tB2(1))
dB; = [T dBui(z:)-dBi (1)
dB, = I, dBy (y:) - dBa(e)

dS = dXdYdsdt = (H’l"dx,.dy,-) dsdt

and By, By; Bgi, By, ¢ = 1, -k, are jointly independent standard Brownian
motions on [0, 1].

Remark 3.7. The asymptotic result of Theorem 3.6 is also not feasible. We
still use the bootstrapping procedure specified in Section 3.2. to simulate its critical
values. Our bootstrapping procedure guarantees that the error terms are randomly
drawn, thus serially independent. Using the proof of Theorem 3.5, we can prove
that bootstrapped statistics has the same asymptotic distribution as that stated
in the above theorem. For briefness, we omit the statement of the theorem and its

proof.

3.5 Comparisons of Residual-Based Test with Other Tests

There are already various nonparametric tests for independence available, in-

cluding the most recent ones of Robinson (1991b) and Brock et al. (BDS) (1995).
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We do not consider that our residual-based test for independence generally domi-
nate rival ones. We do believe our test has the following appeals: Robinson’s test is
not justified when one or both of the variables are not observable. Because Brock
et al’s test is based on the difference between the expectation of the product of
variables and the product of the expectations of the variables and this difference
being zero is only a necessary, not a sufficient, condition for independence, BDS
test may not have power in some cases, see Dechert (1988) for examples. And also,
Brock et al’s residual-based asymptotics is justified only under an orthogonality
condition, which is satisfied when the regression error term is additive. In non-
linear regression models, the orthogonality condition can not be justified. On the
contrary, our test is residual-based, consistent for the general nonlinear regression
models. On the other hand, the asymptotics of the tests of Robinson and BDS is
standard, ours is nonstandard. Thus bootstrapped simulation procedure is invoked

to obtain reference quantiles for our test.

BDS test in not really nonparametric in that, contrary to ours, it does not have
an invariant finite sample distribution. Also the finite sample distributions of their
statistics, when samples are drawn from some population distributions, are signif-
icantly different from the asymptotic distribution. The Monte Carlo experiments
of Brock et al. (1991) shows the size of BDS test under some null distributions are
significantly different from each other. Thus, for reference purposes, first, we can
not use the asymptotic critical values, because they are significantly different from

the finite sample critical values; second, we can not use the simulated finite sample
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critical values, because the finite sample distribution will vary significantly under
some different null population assumptions. So when implementing the BDS test,
one simply can not find a accurate critical value to make references on. Bootstrap-
ping, as Brock et al. (1991) suggests, may be a remedy to this problem. On the
contrary, the finite sample distribution of the test we promote is invariant to the

population distributions of the variables under the null.

3.6 Computer Simulations

This Section presents some computer simulation results, power comparisons

with BDS test and size bootstrapping.

3.6.1 Power Comparisons with BDS Test, As we mentioned earlier the test’s

finite sample distribution is invariant to any kind of transformation of the variables
under the null. It is also invariant to monotonic transformations of the variables
under alternatives. Due to the fact that it is variable to non-monotonic transfor-
mations under alternatives, by transforming variables, we may increase the power
of the test. This is exactly the case for testing the ARCH, GARCH and NLMA
models. Table 3.4 presents power comparisons between the BDS test, the test

using the original data (ORD) and the test using the square of the data (SQD).

In Table 3.4, all the simulations are done with sample size equaling to 250.
The number of replications is 1000 and confidence level is 5%. The first three
models are copied from Brock et al. (1995), in which all the innovations are i.i.d.

standard normal. For the last three models, as in Brock et al. (1995), we take



p W; | Wy, | W3 [ ORD | SQD

NLMA |[NA|0.280.35]031]0.08 |0.28

Normal | GARCH | NA | 0.22 | 0.22 | 0.21 { 0.09 | 0.23
ARCH |05 |095|0.89{0.75({0.13 |0.82

T(1) ARCH (0.2 |1.00{098|0.88]|0.45 |{1.00
ARCH 0.5 |1.00(0.99]0.76 096 |1.00

T (2) ARCH 0.2 |0.78|0.66}0.51|0.10 |0.46
ARCH |[0.5 |1.000.9810.92|0.15 |0.91

T(3) ARCH (0.2 |10.93]0.82|0.650.07 |0.18
ARCH 0.5 |1.00 (099|096 |0.10 |0.48

Table 3.4: Power Comparisons with BDS Test

100

[-0.5,0.5] as the characteristic interval and use 5000 replications to simulate the

5% finite sample critical value. The numbers in the table are the percentage the

1000 replicated statistical values being greater than the simulated critical values.

The first model is the nonlinear moving average (NLMA). It has the following

form.

The GARCH and the ARCH models are presented in the following form:

For the second GARCH model,

xy = 0.55_ 1819 + &

Ty~ 1\7 (0, h.t,)

hy=1+4+ 0'1‘17.12.—1 + 0.8N_y



101
For the third ARCH model
he =14 px?_,
The rest of the ARCH models can be presented as follows. The conditional dis-
tribution of z;, given x,_1, is a t-distribution multiplied by 11.2/2, i.e. Ty (n) x h§/2,
where T (n) is i.i.d. and n is the degrees of freedom.

We observe from Table 3.4 the following results:

(a) BDS test is very powerful when innovations are thin-tailed. When the
innovations are fat-tailed, such as the t-distribution with 1 degree of freedom?, the
test we advocate is also very powerful.

(b) Using the square of the data our test is very powerful. Using the raw data
themselves, the test is not powerful, except for the case where the innovations
are t-distribution with freedom of degree 1, in which our test is very powerful
even using the raw data. Thus we suggest practitioners use some non-monotonic
transformations of the data to implement the test and compare the results.

(c) As we mentioned earlier, BDS test needs the ¢ prior information that the
underlying innovations are normally distributed, as is the basis to obtain the finite
sample critical values of the test. But if this assumption is wrong, we are vulnerable
to make significant mistakes. On contrary, the statistics we are using has exact

finite sample distributions.

3.6.2 Bootstrapping Experiments The model we simulate on is

y=x-+e

9 The t-distribution with 1 degree of freedom is a special kind of Cauchy distribution.
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n,p| 0.90 0.95 0.99 0.90 0.95 0.99

25 | 0.9006 0.9435 0.9693 | 0.9114 0.9470 0.9879
50 | 0.9154 0.9555 0.9854 | 0.9094 0.9510 0.9812
100 | 0.9195 0.9581 0.9850 | 0.9082 0.9550 0.9840
200 | 0.9090 0.9552 0.9876 | 0.9067 0.9510 0.9868

400 | 0.9109 0.9594 0.9921 | 0.9050 0.9484 0.9885

Table 3.5: Simulation Results

For different sample size and different distributions of regressor = and error
term e, we get Table 3.5. In Table 3.5, n is the sample size, p the reference
probabilities. The numbers inside the table are the simulated rejection probabilities
corresponding to different sample sizes. The right half of the table corresponds to
the specification that both x and € are independent standard normal distributions.
The left half of the table corresponds to the specification that both = and e are

independent uniform distributions on [0, 1].

Table 3.5 is generated as follows. We bootstrap 1,000,000 times to obtain
the critical values. We then calculate the residual-based statistics 100,000 times.
The numbers inside the table are the percentages that the residual-based statis-
tics are greater than their corresponding bootstrapped critical values. The con-
fidence intervals, calculated with formula (3.4), of the three quantiles 0.9, 0.95
and 0.99 are (0.9 — 0.00588,0.9 + 0.00588), (0.95 — 0.00431,0.95 + 0.00431) and

(0.99 — 0.00196,0.99 + 0.00196) respectively.
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3.7 Conclusions of Chapter 3

Semi- and nonparametric tests of independence of two random variables are
considered. Among the contributions of this paper are the following. First,
the exact finite-sample distributions of Blum et al.’s (1961) discretely distributed
statistics, based on directly observable variables, are calculated for very small sam-
ple sizes, n = 1,2,---, 8. Although, in theory, our approach can be used to compute
the exact distribution of the statistics for any size of sample, the calculation be-
comes prohibitively expensive for n > 10. Second, Monte Carlo simulations are
used to approximate the quantiles for 9 < n < 200. On the basis of these sim-
ulations, we find that even for n = 200, the quantiles of the distribution are still
significantly different from Blum et al’s (1961) asymptotic quantiles. Thus, for
inference purposes our table will be more accurate than that of Blum et al. Third,
we obtain the asymptotic distribution of the statistics which is based on variables
such as residuals or predictions from a regression model that are not directly ob-
servable but must be computed using estimated parameters. This latter test can
be useful in specification testing for a class of models. Fourth, since the resid-
ual based asymptotics depends on regression function, distribution parameters of
the regressors and error term, and the estimator, we prove that the bootstrapped
statistics has the same asymptotic distribution as that of the residual and /or pre-
dicted value based statistics. Fifth, we extend our residual-based independence
test to test serial independence of regression error terms. Sixth, we compare this

test with other sorts of tests for independence and present some simulation results.
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Also Monte Carlo evidence shows that bootstrap works well.

3.8 Proof of the Theorems in Chapter 3

Proof of Theorem 3.1. We prove that there is a 1-1 correspondence between
the consistent sets and the factorials of n, i.e. all the combinations of (1,2, - -, n).

First, for each combination of (1,2, -+, n), there corresponds a consistent set
(12,13, - -,1n; 23,---,2n; - - ;(n — 1)n). ij always denotes y; > y; in the fol-
lowing proof. For clarity we give another example. Assume the combination
is (2,1,3,---,n), then the corresponding consistent set will be (21,23, - -, 2n;
13,- - -,1n; - - +; (n—1)n). The rule for constructing the consistent set is that
if the first number in a combination is k, then ¥, will be the largest in the defi-
nition of the consistent set. From this construction we know there are at least n!
consistent sets.

Second we prove that for any consistent set, the (3;)\_, can be ranked, i.e. there
must be some ¢ such that y; > y; for all j # ¢ and some k such that y; > yx 2> y;
for all j # % and j # k; - - -. We prove this claim using mathematical induction.

If n = 2, all the consistent sets are (12) and (21), y; and ¥, can be ranked for
both sets.

Assume that when the sample size is less than and/or equal to n — 1 our claim
is valid. We prove that when the sample size is n our claim is still valid. Without
loss of generality, let us consider the last n — 1 observations out of a sample of size
n. Suppose its corresponding consistent set is T,y = (23, -,2n; - - +; (n — 1) n).

The ranking from this consistent set is yy > y3 > -+ > ¥



105

We claim that any consistent sets constructed from (y1,%2, - *,¥n) being re-
stricted by T,_; are of the following forms: A; = (21,31,---,k1,1(k + 1), -
SIn; L), K =1,2,---, n. It is easy to see the ranking from these sets are
Yo 2 Y3 2 © 0 2 Y 2 Y1 = Ykl 2 ¢ = Yoo Next, we pick up any set
which is not of the form of A;. Without loss of generality we assume that set
(12,31,14,---,1n;T,_1) is picked. This set is not consistent, because from (y; > y2)
and Y,_; we deduce that y; > ys3, which is a contradiction to y3 > y;. This set
has 0 measure.

Proof of Lemma 3.1. Without loss of generality we assume the consistent
set is (Y1 = Y2, U1 2 Y3, U1 2 Yai Y2 2 Y, Y2 = Yni 0% Yno1 2 Ya). The

measure of it is

1 I lin -2 Yn-1
/ dUl/ dy, - - / dyn—l/ dy,
0 0 0 0
1 n Un -2
= / dyl / d'!/x e / yn——ldyn—l
0 0 0

1 "Y1 "Yn-3 1 9
= /0 d!/l/o dy, - - /0 gyn—'zd’!/n—z
1 1

n—1

/ —_— dy !
= 1 1 = —
o (n- 1)!‘/l ]

Proof of Theorem 3.4. We prove this theorem for k = 1. When k > 1, it can
be proved accordingly. By Blum et al. (1961), Kiefer (1959) and Rosenblatt (1952),

it is enough to prove that for given s, ¢, © and v, the asymptotic covariance of

By (8,t) + G (s,t) ;9 (25, 5:) //n and By, (u,v) + G (w,v) ;¢ (24, €;) /+/n equals

to the covariance of

B(s,t) + G (s,8) /0" /01 ¥ (21,) dB (1) dBale)
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and
B (u,v) + G (u,v) /(;1 /01 Y (21,€) dBy (z1) dBe(e)

where

1 n 1 n 1 n
B, (s,t) = — 1(:vi§s,e,~§t)—-<— 1($i§s)> (— l(sigt))
(=72 Vil n
By Blum et al. (1961) the asymptotic covariance of By (s,t) and B, (u,v)
equals to the covariance of B (s,t) and B (u,v). By the classical result of stochastic

integral (Harrison, 1985)

E[/Ol /01 W (21,¢) dB; (m])st(s)r =A] /01 ) (2, )] dasyde
which is the variance of 3°; ¢ (2;,¢;) /v/n. Thus we need only to prove that for
any given s and ¢, the asymptotic covariance B, (s,t) and Y- ¥ (z;,&:) /+/n equals
to the covariance of B (s,t) and [y fo ¥ (x1,)dB) (z1)dBc(€). In the following
derivation we use the equality: I [y (z,<)] = [} de [} 9 (z,€) dz = 0. The covari-

ance By, (s,t) and 3.0 ¢ (24,5:) //n s

1 n
E | B, (s,t) (—— P (J:,,c,))]
'1 n 1 n
= E|= Z 1(x: < s, < ) (xj,25) — = Z 1(2; < 8,65 < 1) 3 (x,6)
K= N k=1
-1 n n
= E gzl(’“ < s & <)Y (y,g) + —LZl (z: < 5,8 < t) 1 (5,65)
i#j =)
i n 1 T
= S 1z <55 S OP (k) — = Y (@i < 5,65 S )P (Th, )
n? &2y N =gtk
1 & 1 <
- Z L(z: < 8,85 S ) (wn,88) — > 1(m; < 5,65 < b)Y (zk,€4)
n? i N i=kkti
1 n

—— Y (mi < 855 <)Y (g, )

2
P iph ks it
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= -[)tda/:z/)(a:,s)dx— %/Otds‘/(;sl/)(m,s)da:
_r- ltfolds/:w(a:,e)dm— 71;13/0td€/01¢($,€)d93

n
= /Otds/:d)(w,s)dm—t/olds/osw(w,s)dz‘—s[)tds/olv,[)(:c,s)dm+0p(%)

The covariance of B (s,t) and [y fy ¥ (z1,¢)dB) () dB.(€) is

E [(31 (s) = 8By (1)) (Be (t) — B2 (1) (/01 /01 W (@1,) dB, (z1) dB. (e))]

t 8 1 3
= /(;defo w(m,s)dm-—t/o ds/o Y (x,e)dz
t 1 1 1
—3/0 ds/(; Y (z,e) d;v+st/0 ds/() P (x,e)dx

= [)tdgf()sqj;(m,s)dm—t/olds/(;sw(m,s)div—S/Otdi/old’(x,e)dm

The last equation holds because [y ds [y ¥ (x,€)dz = 0. Asymptotically both
covariances are equal.

Proof of Lemma 3.3. We use mathematical induction to prove that we can
construct a transformation such that the claim holds.

If £ = 2, we do the following transformation

81

T
1= (931,332) =/0 S (8,z9) ds and Ty = ms.

The joint density of (%;,T,) is

0 (21, 3y)

g (%1,%2) = f(xy,29)/ m =

The marginal distributions of Z; and #; are the uniform distribution on [0,1]. Thus
(z1,%,) is independently uniformly distributed on [0,1]°. And also the transfor-

mation has unique inverse solution.
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We assume this Lemma holds for (z2,- - -, 2x), i.e. we assume that (z9,- - -, zx)
are independently uniformly distributed on {0, l]k_l. If (z1,22,- -+, zx) are inde-
pendently uniformly distributed on [0, l]k, no transformation is needed. If not, we

do the following transformation

T
jl = fl(mlym2"",$k)=/0 f(S,IEQ,"',.’L‘k)dS

Z; = zjforj=2,--k

Then the joint density of (1, Tz, - -, Tx) is 1 and the marginal density of Z; is also 1.
By the assumption about (Zs,- - -, Zi), we know (&, s, - -, Tx) are independently
uniformly distributed on [0, 1]k. Due to the monotonicity of fi (z1,z2, - -, zx) given
(zg,- - -, k), this transformation is reversible.
Proof of Lemma 3.4: By Taylor’s series expansion
1 n
2 > v (Xiey)
i, j=1

n , \ Op(X;,Y3,0) ,.
= L3 [ty (o (xo1.)- 205D (5 g

where 3 is between 3 and B. The first part of the sum is a V-statistics with mean
zero. It is Op (1/4/n) by V-statistics Central Limit Theorem (see Serfling, 1980).
The second part of the sum is also O, (1/1/n) by Assumption 3 (a) and condition
(3.19).

Proof Lemma 3.5: We only prove the first expansion, the second one can be

proved accordingly.
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By Assumption 3.1, the last 2 lines is 0, (1/4/n). We will prove that the second

line is

om, (:J‘;,,BO) (B ~ ﬂ) o (i)

os vn
By Lemma 3.2, we know

(e () <1 (9))

n om %) , .
SRR e R COR

n

Because (3 is also a \/n-consistent estimator of 3, this expansion still holds for 8,

i.e.

L1 (0(3) 03 )

om, (:; ) ﬁo)

—Zl(uz_~1+——~—'?)—ﬁ—,—(3 ﬂo)+o,,( ) (3.27)

3"

(3.26) - (3.27), we get the results.
Proof Lemma 3.6: By our bootstrapping procedure and the Central Limit

Theorem, for fixed j

31 a) = 13 () + 0, () = 1 () 0 ()

i=1

By assumption F; (t) = ¢, our claim follows.
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The second equality can be proved accordingly using Theorem 1 of Brown and
Newey (1992a).
Proof of Theorem 3.5: By Lemma 3.5 and Lemma 3.6, (3.22), T; (B) can

be written as

56) = S <5 (9) <5 (9)
n n 3 ) 2
(=) (L1 0 < 0)]
LU I R . . \ Omg. (23, B L
- S E a6
1Z . o Ome (5, B)
—(;‘l;l(clSc"J)-F igﬂj' 0) (,6—,3))
1N 1 \T?
X (;; 2 1 (1’: < :1:}‘)) + o, (7)]
-k [%21(“‘”%5?SJJ)—ﬁ(%gl(w:s:v;))
= nop (X et 2
* (%;1 (s < 53)) +G(X5,¢5) L 1/)\(//%, S L, (1)]
Where
a ’;'s ‘:v"aﬁ 0 ; z?,ﬁ
G(X;’E;)z%))'—m;x lb_é_ﬁﬁl__o)

The expression of T, (B) is the same as that of T, (B) except z; is replaced by 27.
We will use the same technique to prove this theorem as that being used by the

proof of Theorem 4. For simplicity we prove the case k = 1.

(i) Given s, t, u and v, the asymptotic covariance of

Tg (2 < 5,80 < 1) - ( Z )(%i‘;l(dﬁt))
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and

1

\/_Zl z} <u,ef <v)— (%il(mfﬁu)) (%il(s{ﬁv))

i=1 i=1
equals the covariance of B (s,t) and B (u,v), {min (u, s) — us} x {min (v,t) — vt}.
(ii) Given s and t, the asymptotic covariance of

1

\/_Zla:<se <t) ( Zlm<s>(%§l(s§§t)>

and Y19 (2, €}) /+/n equals to the covariance of B (s, t) and fy fy ¥ (z1,€) dB1dB..
(iii) The variance of -7 ¢ (2}, £}) /\/n equals asymptotically to the variance of

f3 fd4p (x1,€) dB1dBe, which is [y [ ¥? (21, ¢) dx,de.

We will use heavily the following facts about the conditional expectation:

1
E[l(.’l:;SSH:Bl,m?_,u-,mn] = '—Zl TISS
E[l(fzft)|cl,c2»"',(3n] = ;Zl(etst)
i=1

and Lemma 3.4

1 & 1
E[I/)( 1"-‘1.) |(L‘11' Ty €1, ',cn] - —2 Z d) (x'iaej) = Op (%—)

n® 52
For the purpose of simplicity, the conditional expectation will not be explicitly

denoted. We assume s < v and ¢ < v. The covariance of (i) is
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= —l-zn:E{(l(:n;Ss)—s-l(wzSuv)—u'l(mz-<-3)+3u+01’<%))

xiEi(e?<t)-—t.1(€{§v)—v-1(s;Ss)+tv+0p(%))}
+= go( )
= s(1 —u)t(l —v) +0,(1)

= {min (u,s) — us} - {min (v,t) — vt} + 0, (1)

The covariance in (ii) is

+%E{§: (@ <9)-90E<0-0+0,(3)] [ (3?3@3)]}
= E{[(l(rn:53)—3)(1(8;55)—ﬂ)+0p<71—z)] [w(zz‘,s,’)]}

= E{[l(z} <s,&f <t)—s-1( S t)—t-1(z} <)+ st] [ (25, €])]}

0 )

= lZ:[l (x; <s,e;<t)—s-1(c; < t)—t-1(z; < 8) + st] Y (zi,65) + Op

n 52

= /Ods/o d)(m,s)da:—t./olds (;81/) dl—S/ /1/) z,e)dz + Op <

The last equality is obtained by the Central Limit Theorem of V-statistics (see

QIIH S|

Serfling, 1980).

(iii) The variance of Y-T v (zf,2!) /+/n is

[1/)2 - ‘] 7:2 En:d) (x5, 5) Al/()1¢2(ml,s)dmlde+0p (\/Lﬁ)

)
7
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The last equality is obtained also by the Central Limit Theorem of V-statistics
(see Serfling, 1980).

Thus by the argument of Section 2 of Kiefer (1959)

Ty (B)
- L4 ,;1 2

( fj ) (1 "11(5; < t.))]2dsdt+op 1)

i= i
By Invariance principle, it converges weakly to the distribution of the random
variable specified in Theorem 3.4.

For k > 1, the only difference in the proof of the asymptotic results for the
bootstrapped statistics from that for the residual based statistics is that the boot-
strapped samples X} = (z};,---,2};) are no longer drawn from independent dis-
tributions on [0, l]k but from (1, ,@ki)ie;. Thus they are not independent in
finite samples. But (2y;,---,Zx) is drawn from the independent distribution on

[0, l]k, the arguments in X will become independent asymptotically. The above

proof can also go through.



114

REFERENCES

Ahn, Hyungtaik and James L. Powell (1993): “Semiparametric Estimation of Cen-

sored Selection Models with a Nonparametric Selection Mechanism,” Journal
of Econometrics, 58, 3-29.

Amemiya T. (1977): “The Maximum Likelihood and the Nonlinear Three-Stage
Least Squares Estimator in the General Nonlinear Simultaneous Equation
Model,” Fconomelrica, 45, 955-968.

Andrews, Donald W. K. (1994): “Asymptotics for Semiparametric Econometric
Models via Stochastic Equicontinuity,” Econometrica, 62, 43-72.

Begun, J. M., Hall, W. J., Huang, W. M. and Wellner, J. A. (1983): “Information
and Asymptotic Efficiency in Parametric-Nonparametric Models,” Annals of
Statistics, 11, 432-452.

Billingsley, Patrick (1968): Conwergence of Probabilily Measures, John Wiley &
Sons, New York.

Blum, J. R., J. Kiefer and M. Rosenblatt (1961): “Distribution Free Tests of Inde-
pendence Based on the Sample Distribution Function,” Annals of Mathematical
statistics, 32, 485-498.

Brock, W. A. and W. D. Dechert (1988): “A General Class of Specification Tests:
The Scalar Case,” in Business and [fconomics statistics Section of the Proceed-
ings of the American stalistical Sociely, 77-79.

Brock W. A., W. D. Dechert, J. A. Scheinkman and B. LeBaron (1995): “A Test
for Independence Based on the Correlation Dimension,” Econometric Review
(forthcoming).

Brock W. A., D. A. Hsieh and B. LeBaron (1991): Nonlinear Dynamics, Chaos,
and Instability: Statistical Theory and Iconomic Evidence, MIT Press.

Brown, Bryan W. (1990): “Simulation-Based Semiparametric Estimation and Pre-
diction in Nonlinear Systems,” Discussion paper, University of Rochester.

Brown, Bryan W. (1992): “Optimal Stochastic Instrumental Variables Estimation
in Nonlinear Systems,” memo, Rice University.

Brown, Bryan W. (1993): “Optimal Endogenous Instrumental Variables Estima-
tion in Nonlinear Systems,” memo, Rice University.



115

Brown, Bryan W. and R. Mariano (1984): “Residual-Based Stochastic Prediction
and Estimation in a Nonlinear Simultaneous System,” Fconometrica, 52, 321-

343.

Brown, Bryan W. and Whitney Newey (1992a): “Efficient Semiparametric Esti-
mation of Expectations,” memo, Rice U. and MIT.

Brown, Bryan W. and Whitney Newey (1992b): “Bootstrapping for GMM,” memo,
Rice U. and MIT.

Burguete, J. F., A. R. Gallant, and G. Souza (1982): “On Unification of the
Asymptotic Theory of Nonlinear Econometric Models”, Econometric Reviews,
1, 151-190.

Cameron A. Collin and Pravin K. Trivedi (1993): “Tests of Independence in Para-
metric Models: with Applications and Illustrations,” Journal of Business &
Economic Statistics, 11, 29-43.

Chamberlain, G. (1987): “Asymptotic Efficiency in Estimation with Conditional
Moment Restrictions,” Journal of [Fconometrics, 34, 305-334.

Cosslett, S. R. (1983): “Distribution-Free Maximum Likelihood Estimation of the
Binary Choice Model”, Fconomelrica, 51, 765-782.

Cosslett, S. R. (1987): “Efficiency Bounds for Distribution-Free Estimators of the
Binary Choice and Censored Regression Models”, Fconometrica, 55, 559-586.

Deaton, A. (1985): “Panel Data from Time Series of Cross-Sections,” Journal of
Econometrics 30, 109-126.

Dechert, W. (1988): A Characterization of Independence for a Gaussian Process in
Terms of the Correlation Dimension, SSRI Working Paper #8812, Department
of Economics, University of Wisconsin, Madison.

Devroye, L. and T. J. Wagner (1980): “Distribution-Free Consistency Results in
Nonparametric Discrimination And Function Estimation,” Annals of Statistics,

8, 231-239.

Gallant, A. R.(1987): Nonlinear Statistical Models. New York, John Wiley and
Sons.

Gallant, A. R. and D. W. Nychka (1987): “Semi-NonParametric Maximum Like-
lihood Estimation”, Fconomeltrica, 55, 363-390.

Garen, J. (1984): “The Returns to Schooling: A Selectivity Bias Approach with a
Continuous Choice Variable,” Fconomelrica, 52, 1199-1218.

Gourieroux, G., A. Monfort, E. Renault and A. Trognon (1987): “Generalized
Residuals,” Journal of Econometrics, 34, 5-32.



116

Han, A. K. (1987): “Non-Parametric Analysis of a Generalized Regression Model”,
Journal of Econometrics, 35, 303-316.

Harrison, J. M. (1985): Brownian Motion and Stochastic Flow Systems, John Wiley
& Sons.

Heckman, J. (1978): “Dummy Endogenous Variables in a Simultaneous Equations
System,” Econometrica 46, 931-961.

Heckman, J. (1979): “Sample Selection Bias as a Specification Error,” Economet-
rica, 47, 153-161.

Hoeflding, Wassily (1948): “A Non-Parametric Test of Independence,” Annals of
Mathematical statislics, 19, 546-557.

Horowitz, Joel L. (1992): “A Smoothed Maximum Score Estimator for the Binary
Response Model”, Econometrica, 60, 505-532.

Ichimura, H. (1987): “Consistent Estimation of Index Model Coefficients”, memo,
MIT.

Kiefer, J. (1959): “K Sample Analogues of the Kolmogorov Smirnov and Cramér
von Mises Tests,” Annals of Mathemalical stalistics, 30, 420-447.

Kiefer, J., and J. Wolfowitz (1936): “Consistency of the Maximum Likelihood
Estimator in the Presence of Infinitely Many Incidental Parameters”, Annals
of Mathematical Slatistics, 27, 887-960.

Klein R. W. and R. S. Spady (1993): “An Efficient Semiparametric Estimator for
Binary Response Models,” Econometrica, 61, 387-421.

Lee, L. (1982): “Some Approaches to the Correction of Selectivity Bias,” Review
of Economic Studies, XLIX, 355-372.

Lee, L. (1984): “Tests for the Bivariate Normal Distribution in Econometric Models
with Selectivity,” FEconomelrica, 52, 843-863.

Little, Roderick (1985): “A Note about Models for Selectivity Bias,” Econometrica,
53, 1469-1474.

Maddala, G. S. (1983): Limited-Dependent and Quantilative Variables in Econo-
metrics, Cambridge University Press.

Manski, C. F. (1984): “The Maximum Score Estimator of the Stochastic Utility
Model of Choice”, Journal of Econometrics, 3, 205-228.

Manski, C. F. (1988): “Identification of Binary Response Models”, Journal of
American Statistical Association, 83, 729-738.



117

Manski, C. F. and S. Thompson (1986): “Operational Characteristics of the Max-
imum Score Estimator”, Journal of Economeltrics, 32, 85-108.

Matzkin, Rosa L. (1992): “Nonparametric and Distribution-Free Estimation of the
Binary Threshold Crossing and the Binary Choice Models”, Econometrica, 60,
239-270.

Ming, Xing and F. Vella (1994a): “Semiparametric Estimation of Sample Selec-
tion Models with Multiple Selection Rules,” (in progress), Department of Eco-
nomics, Rice University.

Ming, Xing and F. Vella (1994b): “A Monte Carlo Comparison of Competing
Estimators of the Ordinal Treatment Models,” working paper, Department of
Economics, Rice University.

Newey, W. (1988): “Two-Step Series Estimation of Sample Selection Models,”
unpublished paper, Department of Economics, MIT.

Newey, Whitney K. (1991): “Uniform Convergence in Probability and Stochastic
Equicontinuity,” Fconometrica, 59, 1161-1168.

Newey, Whitney K. (1990): “Semiparametric Efficiency Bounds,” Journal of Ap-
plied Economelrics, 5,

Newey, Whitney K. (1989): “Locally Efficient, Residual-Based Estimation of Non-
linear Simultaneous Equations,” memo, Economics Department, MIT.

Newey W., J. Powell and F. Vella (1994): “Non-Parametric Instrumental Variables
Estimation via Additive Models” working paper.

Olsen, R. (1980): “A Least Squares Correction for Selectivity Bias,” Econometrica,
48, 1815-1820.

Pagan, A. R. and Y. Jung (1993): “Understanding Some Failures of Instrumental
Variable Estimators,” Working Paper, Australian National University.

Pagan, A. and A. Ullah (1992): Non-Parametric Econometrics, manuscript.

Pagan, A. R. and F. Vella (1989): “Diagnostic Tests for Models Based on Individual
Data: A Survey,” Journal of Applicd Lconometrics, 4, s29-s60.

Parzen, E. (1962): “On Estimation of a Probability Density Function and Mode”,
The Annals of Mathemalical Stalistics, 33, 1065-1076.

Phillips, Peter C. B. (1983): “ERA’s: A New Approach to Small Sample Theory”,
FEconometrica, 51, 1505-1527.

Powell, J. L. (1984): “Least Absolute Deviations Estimation for the Censored
Regression Model,” Journal of Economelrics, 25, 303-325.



118

Powell, J. L. (1986): “Symmetrically Trimmed Least Squares Estimation for Tobit
Models,” Economelrica, 53, 1435-1460.

Powell, J. L. (1989): “Semiparametric Estimation of Censored Selection Models,”
manuscript, Department of Economics, University of Wisconsin at Madison.

Powell, J. L., J. H. Stock and T. M. Stoker (1989): “Semiparametric Estimation
of Weighted Average Derivatives,” Econometrica, 57, 1403-1430.

Robinson, Peter J. (1988): “Root-n-Consistent Semiparametric Regression,”
Econometrica, 56, 931-954.

Robinson P. M. (1991a): “Best Nonlinear Three Stage Least Squares Estimation
of Certain Econometric Models,” Iconometrica, 59, 731-754.

Robinson P. M. (1991b): “Consistent Nonparametric Entropy-Based Testing,” Re-
view of Economic Studies, 58, 437-453.

Rosenblatt, M. (1952): “Limit Theorems Associated with Variants of the von Mises
statistics,” Annals of Mathemalical stalistics, 23 617-623.

Ruud, P. A. (1983): “Sufficient Conditions for the consistency of Maximum Like-
lihood Estimation Despite Misspecification of Distribution in Multinomial Dis-
crete Choice Models”, 51, Fconomelrica, 225-228.

Ruud, P. A. (1993): “The Semi-Parametric Maximum Likelihood Estimator of
Discrete Dependent Variable Models”, memo, Department of Economics, UC
Berkeley.

Serfling R. J. (1980): Approzimation Theorems of Mathematical statistics (John
Wiley & Sons, Inc.).

Silverman, B. W. (1978): “Weak and Strong Uniform Consistency of Kernel Esti-
mate of a Density and Its Derivatives,” Annals of Stalislics, 6, 177-184.

Vella, Francis (1993): “A Simple Estimator for Simultaneous Equation Models
with Censored Endogenous Regressors,” Internalional Fconomic Review, 34,
May, 441-457.



