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ABSTRACT 

The high noise sensitivity of the Wigner distribution makes 
smoothing a necessity for producing readable time-frequency 
images of noise corrupted signals. Since linear smoothing 
suppresses noise at the expense of considerable smearing 
of the signal components, we explore two nonlinear denois- 
ing techniques based on soft-thresholding in an orthonor- 
mal basis representation. Soft-thresholding provides consid- 
erable noise reduction without greatly impairing the t ime 
frequency resolution of the denoised distribution. 

1. INTRODUCTION 
Time-frequency representations (TFRs), which map one- 
dimensional signals into tw-dimensional images indicating 
their joint time-frequency energy content [l], have proven in- 
dispensable in a wide range of applications, including speech, 
music, acoustics, biology, radar, sonar, and geophysics. The 
most popular TFR is undoubtably the short-time Fourier 
transform 

which computes a local Fourier analysis by sliding a window 
function w along the signal s. (Here, t and f represent time 
and frequency, respectively.) The squared magnitude of this 
transform is known as the spectrogram. 

While the spectrogram is a powerful time-frequency anal- 
ysis tool, the window function w limits its resolution in t ime 
frequency. Since good time resolution requires a narrow win- 
dow but good frequency resolution requires a wide window, 
high resolution simultaneously in both directions is unattain- 
able with this transform. Figure 1 shows a spectrogram TFR 
of a test signal composed of two Gaussian components mod- 
ulated to different center frequencies. 

This major limitation of the spectrogram prompted the 
development of bilinear TFRs that attempt to match the 
window function to the signal. A primary example is the 
Wigner distribution 

which can be interpreted as a scaled short-time Fourier 
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transform computed using the time-reversed signal as win- 
dow. Because of this window matching, the Wigner distri- 
bution possesses excellent time-frequency resolution. Figure 
2 illustrates the Wigner TFR of the same test signal.' 

Unfortunately, the bilinear nature of the Wigner distribu- 
tion results in a high noise sensitivity, limiting its application 
to only virtually noise-free signals. Figure 3, for example, 
shows the Wigner distribution of the test signal immersed 
in 6dB SNR additive white Gaussian noise. For applications 
involving noise corrupted signals, some amount of smoothing 
must be applied to the Wigner distribution in order to obtain 
readable timefrequency images. Current methods smooth 
via a linear convolution with a kernel function 4. The re- 
sulting TFRs belong to Cohen's class of bilinear TFRs [l] 
and can be written as 

C,(t, f) = // W,(U, U) 4(t - U, f - U) dudv. (3) 

While lowpass kernels smooth and suppress noise in the 
Wigner distribution, they also smear the signal components 
that we wish to view at full resolution. For example, Figures 
4 and 5 illustrate the spectrogram (4 = the Wigner distri- 
bution of the analysis window w) and the Choi-Williams 
distribution (4 = the Fourier transform in 8, r of the func- 
tion exp(-O2r2/u) [l]) of the noisy test signal. While the 
noise has been largely suppressed in both images, the two 
Gaussian components have been blurred. 

Taking the Fourier transform of (3) yields an alternate 
interpretation of Cohen's class TFRs as weighting the nar- 
rowband ambiguity function A, of the signal by a smoothing 
function @ 

(4) 
2-d FT-' 2--d FT A , W ~ '  @As - c,. w.3 - 

The functions A ,  and @ correspond to the Fourier trans- 
forms (FTs) of the Wigner distribution and smoothing ker- 
nel 4, respectively. 

Since all linearly smoothed TFRs share a common noise 
reduction vs. smearing tradeoff, in this paper we will explore 
two nonlinear denoising techniques. The soft-thresholding 
algorithms we will consider can provide considerable noise 
reduction without greatly impairing the timefrequency res- 
olution of the TFR. Wavelet soft-thresholding algorithms 
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'Besides increasing the time-frequency resolution of the 
Wigner distribution, its nonlinearity also introduces artifacts 
called cross-components [l] that appear midway between each pair 
of true signal components. 



- multiresolution denoising techniques applicable to a wide 
range of signals and images - construct nonlinear esti- 
mates of signals or images embedded in additive white Gaus- 
sian noise using a simple three-step procedure [2]: (1) com- 
pute the wavelet transform of the data; ( 2 )  translate (“soft- 
threshold”) the wavelet coefficients towards zero by a set 
threshold value; (3) invert the modified wavelet coefficients 
to obtain the final estimate. 

When applied to the WGner distribution (which can 
be interpreted as a two-dimensional image), wavelet soft- 
thresholding corresponds to nonlinear, scalar processing of 
the coefficients of this distribution in a wavelet basis repre- 
sentation 

2-d WT threshold 2-d WT-’ w, - B, - r7(Bs) - D,. (5) 

Here B, represents the wavelet transform (WT) coefficients 
of W,, represents soft-thresholding with threshold 7, and 
D, represents the denoised TFR. In contrast, Cohen’s class 
TFRs result from linear scalar processing of the coefficients 
of the Wigner distribution in the sinusoidal Fourier basis 
representation (see (4)). Figure 6 illustrates a wavelet soft- 
thresholded TFR for the same noisy test signal utilized for 
Figures 3-5. Unlike the spectrogram and Choi-Williams dis- 
tribution, this TFR offers reduced noise levels without de- 
graded resolution. 

After a brief review of wavelet soft-thresholding in Sec- 
tion 2, we discuss its application to TFFb in Section 3. Since 
wavelet processing of the Wigner distribution sacrifices some 
of its desirable properties, in Section 4, we introduce soft- 
thresholding of the ambiguity function representation from 
(4). We close in Section 5 with some preliminary conclu- 
sions. While tantalizing, we will find that since the Wigner 
distribution of a noisy signal does not conform to the stan- 
dard additive white Gaussian noise model, the application 
(or misapplication!) of soft-thresholding techniques to t ime 
frequency analysis remains as ad hoc as previous nonlinear 
schemes such as Wigner distribution thresholding, median 
filtering, and so on [3]. 

2. WAVELET SOFT-THRESHOLDING 

The wavelet transform of a one-dimensional continuous-time 
signal s is defined as 

When the dilates and translates of the wavelet function $ 
form an orthonormal basis, we have the signal representa- 
tion, or inverse wavelet transform 

s ( t )  = Bs(m, k )  2 - k / 2 * ( 2 - k t  - m). ( 7 )  
m,k 

Roughly speaking, the wavelet transform of a smooth signal 
is concentrated in a relatively small number of wavelet coef- 
ficients. On the other hand, the transform of a white noise 
signal spreads out over all coefficients. 

The wavelet thresholding concept arose from combining 
these two observations with the conventional wisdom that 
simple thresholding performs well as a data recovery tech- 
nique whenever the data lies above the noise floor. Wavelet 

thresholding addresses the following data recovery prob- 
lem (stated in one dimension for simplicity): Recover the 
smooth, discrete-time signal s ( i ) ,  i = 1 , .  .. , N, given the 
corrupted observations s(i) + n( i ) ,  where n( i )  is a white 
Gaussian sequence of zero mean and variance u2. The al- 
gorithm of Donoho and Johnstone [2] runs as follows: 

Compute the wavelet transform of s+n using a discrete- 
time, finite-data analog to (6) (an interval adapted fil- 
terbank) . 

Translate all wavelet coefficients B,+,,(m, k) towards 
zero by the amount y = d v  U. 

Invert the thresholded coefficients using the discrete- 
time, finite-data analog to (7). 

A multidimensional wavelet transform [4] extends this pro- 
cedure to image and other data in higher dimensions. 

3. WAVELET SOFT-THRESHOLDING THE 
WIGNER DISTRIBUTION 

In addition to being straightforward and intuitively rea- 
sonable, wavelet soft-thresholding possesses two remarkable 
properties [2], both potentially useful for TFR denoising. 
First, with high probability, the data estimate is at least 
as smooth as the desired noise-free data. Thus, given a 
smooth set of Wigner distribution signal components em- 
bedded in noise, wavelet denoising should not introduce arti- 
facts that could be interpreted as new components. Second, 
the estimate achieves almost the minimax mean-square er- 
ror over every one of a wide variety of smoothness measures, 
including many where linear estimators do not and cannot 
achieve the minimax value. Thus, nonlinear denoising of the 
Wigner distribution should offer higher performance than 
linear smoothing. Simulations support this intuition; Figure 
6 illustrates a wavelet soft-thresholded Wigner distribution 
for the same noisy test signal utilized for Figures 3-5. 

Unfortunately, it appears difficult to go beyond simula- 
tions for justifying wavelet soft-thresholding in this con- 
text, because our data recovery model does not match that 
for which the algorithm was developed. In particular, the 
Wigner distribution of the signal s + n, given by 

Ws+n = Ws + W n  + 2ReWs,n ( 8 )  

where the last term involves the cross-Wigner distribution 

corresponds to data W, plus interference W, + 2 Re Ws,n. 
This interference is anything but Gaussian and white: Ws,n 
is Gaussian, yet h & l y  correlated and signal-dependent, 
while W,, is neither Gaussian nor uncorrelated. Further 
complicating matters, note that since W,,,, has variance pro- 
portional to Hsl12 U’ and w,, has variance proportional to u4, 
one term will dominate depending on the particular value of 
SNR. 

Nevertheless, as very little is known about the probability 
density of W,,, ad hoc methods such as thresholding must 
suffice until a more complete theory for Wigner distribution 



estimation can be derived.’ Some progress has been made 
with the stationary power spectrum [6]; a similar approach 
might prove useful here and result in an explicit formula for 
the threshold y. At present, we take y either as a free pa- 
rameter or adjust it automatically to optimize some measure 
of TFR performance as in [7, 8].3 

The denoising provided by wavelet soft-thresholding 
comes at some expense in terms of the desirable mathemat- 
ical properties of the Wigner distribution [l]. First, due 
to the nonlinearity of the processing, the energy preserva- 
tion and marginal properties fail to hold true. Second, the 
time-frequency shift covariance property is lost: Because the 
discrete wavelet transform is not covariant to shifts, a time- 
frequency shift in the Wigner distribution will result in a 
different thresholding pattern and thus a shghtly different 
denoised TFR.4 Third, with separable wavelet processing, 
the rotation covariance property of the Wigner distribution 
abandons us as well (although it should be noted that non- 
adaptive linear smoothing cannot retain rotation covariance 
either). 

4. SOFT-THRESHOLDING THE 
AMBIGUITY FUNCTION 

The wavelet transform proves so useful as a soft-thresholding 
basis transformation, because wavelets form unconditional 
bases for an incredible variety of signal spaces, including 
most of those related to smoothness [2]. Sinusoids are more 
limited in their utility for soft-thresholding, because they 
do not form unconditional bases for most of these spaces. 
Nevertheless, in light of the loss of desirable TFR proper- 
ties mentioned in the previous section, it appears reasonable 
to consider also the Fourier basis for soft-thresholding the 
Wigner distribution. 

The resulting scheme fits in the framework of (4), but 
with a now signal-dependent kernel a, that soft-thresholds 
the ambiguity function of the signal 

2-d FT threshold 2-d FT-’ W, --* A, --t r-,(As) --t E, .  (10) 

Note that E ,  belongs to Cohen’s class and is timefrequency 
shift covariant; additional constraints can be imposed on 
the thresholding to ensure that it satisfies other properties 
such as energy preservation and margin&, if desired. Fur- 
thermore, the R6nyi information measures [lo] can be uti- 
lized to optimize the threshold value. Figure 8 illustrates 
a TFR arising from soft-thresholding the ambiguity func- 
tion of the noisy test signal; it closely resembles the wavelet- 
denoised TFR of Figure 6. Less ad hoc approaches to signal- 

20bviously, denoising the signal and then computing the 
Wigner distribution of the result avoids any problems with the 
additive white Gaussian noise requirement. However, signal com- 
ponents modulated to lower frequencies are “smoother” than their 
counterparts at higher frequencies, and hence they are preferen- 
tially treated by the wavelet transform before thresholding. This 
favoritismis demonstratedin Figure 7, where we show the Wigner 
distribution of the denoised test signal. For modulated signals, 
the Wilson bases [5] probably represent a better alternative to 
wavelets for soft-thresholding. 

3Even when the additive white Gaussian noise model is valid, 
determination of the noise power Q can be difficult in practice, 
usually requiring some experimentation or optimization. 

Fortunately, the new shift-invariant soft-thresholding method 
of Coifman and Donoho [Q] should restore this important property. 

dependent kernel design are detailed in [7, 111.’ 

5. CONCLUSIONS 

While our results are preliminary and admittedly somewhat 
ad hoc, nonlinear smoothing techniques have potential for 
providing time-frequency analyses with Wigner-like res* 
lution down to low SNRs. The hallmarks of the wavelet 
soft-thresholding technique - simplicity, use of information 
across scales, smoothness preservation, and near optimality 
for additive white Gaussian noise - remain tantalizing, but 
more work is required in order to justify its application to 
TFRs. It is likely that a detailed analysis of the correlated, 
nonGaussian interference will inspire modifications to the 
algorithm, with a corresponding performance increase. 

Finally, we note that soft-thresholded representations 
of time t and scale a (related to the continuous wavelet 
transform and the scalogram [4]) can be obtained sim- 
ply by processing the reparameterized Wigner distribution 
WS(t, f o la ) .  
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Fig. 1: Spectrogram of the test signal. 
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Fig. 3: Wigner distribution of noisy test signal. 
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Fig. 5: Choi-Williams distribution. 

0.45 

0.4 

0.35 

0.45. 

0.4 - 
0.35 - 

- 

- 
- 

.. . 
0.05 

0 
20 4 w 80 1w 120 

tms 

Fig. 7: Wigner distribution of wavelet soft- 
thresholded noisy test signal. 
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Fig. 2: Wigner distribution of the test signal. 
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Fig. 4: Spectrogram of noisy test signal. 
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Fig. 6: Wavelet soft-thresholded TFR. 
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Fig. 8: TFR from soft-thresholded ambiguity 
function. 
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