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ABSTRACT 

FAILURE THEORY FOR RED BLOOD 

CELLS IN COUETTE FLOW 

by 

Jack A. Jones 

In this analysis, the red blood cell is idealized as 

a spherical liquid drop, encapsulated by a thin membrane. 

By transforming G. I. Taylor's equations for the surface 

loading on a liquid drop with no membrane in Couette flow, 

spherical loading components are calculated for a drop with 

a membrane. A solution developed by Fliigge for unsymmetri- 

cal loading of spherical shells is then used to derive the 

complete membrane stress pattern for spherical, membrane- 

encapsulated, liquid drops in couette flow. The maximum 

distortion energy is calculated for any given shear rate, 

and using the relation, a critical shear stress for short 

duration failure is found as a function of the critical dis¬ 

tortion energy. 

Viscoelastic solutions based on the maximum normal 

strain failure theory and the maximum stress failure theory 

are then developed in order to predict the entire critical 

shear stress vs. time curve for hemolysis. Using data sup¬ 

plied by Rand's micropipette experiments on red cell membrane 



strength, the theories are then shown to roughly predict the 
2 

entire couette flow hemolysis curve for times up to 10 

seconds. 

Thus, the theory in this analysis provides a much 

greater understanding of the mechanism causing red blood 

cell damage in artificial heart valves, heart-lung machines, 

artificial kidneys, etc. In addition, due to the model 

cell's physical generality, the theory is applicable to other 

biological and non-biological systems. 
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NOMENCLATURE 

English Letters 

a Radius of sphere 

A-3 
Function defined by Equation (15) 

B-3 Function defined by Equation (16) 

E Young's Modulus in Figures 2-A and 2-B 

F Normal force on membrane 

a Membrane thickness 

n Coefficient of Fourier series expansion 

vw 

Ps 

Surface Tensions 

Internal static pressure 

PX»Py»PZ Rectangular loading components 

pr»Vpe Spherical loading components 

pl,p2,ql,cl2 
Viscoelastic constants defined by Equation 

(121) 

V’VW Young's modulus and dashpot viscosities in 

Figures 2-A and 2-B 

Q Membrane distortion energy 

r Spherical radius coordinate 

t Time 

u,v Velocity components in x and y directions 

respectively 

- 

iv 



U,V Functions defined by Equations (44) and (45) 

W Membrane distortion energy per volume x 

(3E/l+v) 

x,y,z Rectangular coordinates for couette flow 

x’ ,y' Rectangular coordinates for hyperbolic flow 

Greek Letters 

a 

e»Y 

e 

e,+ 

y 

y ' 

v 

a 

al 
T 

fa) 

$ 

Subscripts 

c Critical, i.e. denoting hemolysis 

n Coefficient of Fourier series expansion 

N Normal 

Shear rate 

Functions defined by Equations (14) and (13) 

Strain 

Spherical angular coordinates defined by 

Equations (7,8,9) 

External fluid viscosity 

Internal fluid viscosity 

Poisson's ratio 

Membrane stress 

Membrane stress defined by Equation (102) 

Fluid shear stress 

Angular velocity of sphere 

Hyperbolic flow potential 

v 



O Refers to time = 0 

s Static 

t Arbitrary time 

vi 



I. INTRODUCTION 

Red blood cell damage and destruction has been as¬ 

sociated with the flow of blood through artificial heart 

valves, heart-lung machines, and artificial kidneys. Sig¬ 

nificant hemolysis has been observed in vivo from prosthetic 

devices'*--^ and in vitro from a variety of other methods. 

It has been shown that at shearing rates near and above the 

destruction threshold level of 1500 dynes/cm the most impor¬ 

tant factors in red blood cell hemolysis are the magnitude 

of the fluid shear stress and the length of exposure time."*"** 

In order to present a theoretical study of the mech¬ 

anism of hemolysis in red blood cells, a model of the red 

blood cell is chosen so that its physical properties conform 

closely to that of the erythrocyte under high shear stress. 

11 
It has been observed that while under shear, red blood 

cells become prolate ellipsoids with their long axis aligned 

parallel to the flow direction. The red cell membrane ro¬ 

tates around the liquid hemoglobin interior like a tread of 

a tank. From microscopic and viscometric results, it has 

been postulated by several authors'*''*'that mammalian red 

cells are capable of assuming properties of a fluid drop 

under shear. The membrane is known to have a high exten- 

sional rigidity, but a low bending rigidity,*** thus allowing 

for the neglection of bending stress. 

1 
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As a result of the above observations, the model red 

blood cell chosen for this analysis is a fluid drop encapsu¬ 

lated by a thin membrane, and the ellipsoid shape is approxi¬ 

mated as a sphere. Thus, the tank tread membrane rotation 

of the ellipsoid is approximated as a solid body rotation 

of a sphere, i.e. the internal circulation of the hemoglobin 

is ignored. 

Due to the generality of this spherical model, the 

applications of the failure theory in this thesis extend 

beyond just the red blood cell. The theory may also be used 

to predict industrial, liquid-filled, microcapsule failure. 

These small, spherical microcapsules, which are encapsulated 

by a thin membrane, are currently being used for a variety 
1 i »7 

of purposes: removal of body urea, blood flow modeling, 

encapsulation of vile-tasting medicines and corrosive indus- 

18 19 
trial liquids, image reproduction, etc. The theory may 

also be used to predict the failure of other specific bio¬ 

logical systems such as the small, spherical, liquid-filled 

20 
eggs described by Mitchison and Swann. 



II. BACKGROUND 

The failure theory chosen to predict short duration 

hemolysis is known as the distortion energy failure theory, 

which is the most widely accepted and accurate theory for 

21 predicting failure of a ductile material. It is based 

upon the concept that any elastic material when deformed 

acquires a certain elastic energy associated with the load¬ 

ing and the resulting strain. Failure occurs when the elas 

tic energy reaches some critical value. 

For time durations of stress exceeding a few seconds 

the red cell membrane is not completely elastic, but also 

possesses a liquid-like viscous characteristic similar to 

22 
Figure 2-B. The failure theory chosen for arbitrary 

critical time durations, then, cannot be the distortion 

energy theory. Two other failure criteria, the maximum 

stress failure theory and the maximum normal strain failure 

theory are discussed. The maximum stress failure theory, 

although more commonly used for brittle failure, provides a 

simple solution to the viscoelastic problem. The maximum 

normal strain theory, which has been postulated from empiri 

22 cal observations, yields a somewhat more complicated solu 

tion. 

Other attempts to predict red cell membrane failure 

3 
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23 24 
have been done by Ultman, Blackshear, and Bernstein 

25 et al. Ultman uses a distortion energy failure theory 

based on a three parameter viscoelastic membrane model 

(Figure 2-A). His theory is used only in predicting red 

blood cell micropipette loading failure. On the other hand, 

Blackshear's theory, which relies on a maximum stress cri¬ 

teria, is actually used for predicting couette flow hemoly¬ 

sis. His theory, however, does not predict a zero time 

critical fluid shear stress and is applied only for turbu¬ 

lent flow. 

25 
Bernstein implies that G. I. Taylor’s failure 

2 6 
theory for liquid drops in couette flow can be used di¬ 

rectly to predict a critical turbulent flow membrane tension, 

which compares closely with Rand's critical membrane tension 

of T =28.6 dynes/cm. Bernstein, however, does not dis- 
co 

tinguish between the 1% hemolysis of Blackshear's experi¬ 

ments and the implied 501 hemolysis of Rand's experiments, 

nor does he note a difference between Blackshear's turbulent 

jet shear and Taylor's laminar flow shear. In addition, it 

will be shown that when a membrane encapsulates a liquid 

drop, the internal pressure is always larger than the exter¬ 

nal pressure for couette flow, Thus, G. I. Taylor's failure 

theory, which is based upon equalization of internal and 

external pressures at high shear, is invalid for direct ap¬ 

plication to the red blood cell. 



III. MEMBRANE SURFACE TENSION SOLUTION 

A. Spherical Loading Components 

In this section, the couette flow spherical loading 

components on the model sphere will be calculated as a func¬ 

tion of both the position on the membrane's surface and the 

magnitude of the fluid shear stress, ay. 

of a suspension of rigid spherical particles in a liquid was 

spheres. As part of his solution, Taylor calculated the 

external loading on a fluid sphere due to hyperbolic flow. 

He further stated that hyperbolic flow is identical to that 

of couette flow except for a rotation of the whole field 

(Appendix). Thus, the dynamic forces involved are identical. 

Taylor calculates the rectangular surface stress com¬ 

ponents on a sphere in couette flow as 

27 
Einstein's theoretical treatment of the viscosity 

9 
extended by Taylor to the case of small immiscible fluid 

y Yx - 3a"2 x(x2-y2) (1) 

(2) 

(3) 

5 
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Elementary trigonometric consideration shows that 

these rectangular components may be expressed in spherical 

28 
form by means of the following transformation: 

p = sin <|> cos 6 p + sin <|> sin 0 p + cos <j> p (4) x x y z 

p^ = cos cos 0 px + cos <f> sin 0 p^. *- sin 4» pz (5) 

p0 - 'Sin 0 px + cos 0 py (6) 

where the spherical coordinates, Figure 1, for the above 

transformation are defined by 

x = a sin <l> cos 0 (7) 

y = a sin 4 sin 0 (8) 

z = a cos <J> (9) 

Substituting p , p , and p into Equations (4f-6) and trans- x y z 

forming x, y, and z into spherical coordinates by means of 

Equations (7-9), 

2 
Pr = y(y-B) sin <f> cos 20 (10) 

p^ = 1/2 UY sin 2 <|> cos ^ 2$ (11) 

pQ = -yy sin <ji sin 20 . (12) 

2 
Taylor defines y and 0 as follows: 
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Y = A_j ■ 16B_2 + a (13) 

B = 4A_3 - 40B 

where 

A -3 

(14) 

(15) 

and 

B 
-3 

_ “<* 
■ T~ (16) 

Because a membrane is assumed to completely inhibit internal 
t 

circulation, the red blood cell model will act as a solid 

sphere in couette flow, i.e. 

y' + ~ (17) 

Substituting Equation (17) into Equations (15) and (16) re¬ 

spectively, 

lim . _ -5a 
y ’-H» -3 T~ 

(18) 

lim n * a 
y » ->-oo - 3 4 

Thus, Equations (13) and (14) become 

Y 
5 ot 
2 

(19) 

and 

(20) 



8 

B = 0 (21) 

for a liquid drop encapsulated by a membrane. Substituting 

these values of y and 8 into Equations (10-12), 

5 2 
Pr = 2 sin <)> cos 28 (22) 

p^ s | OIJ sin 24> cos 26 (23) 

pQ = —j ay sin <(> sin 20 (24) 

B. General Flugge Shell Solution 

♦. 29 
Flugge has developed a general solution for stresses 

in spherical shells loaded unsymmetrically. The basic system 

to be solved consists of three equations in three unknowns 

<v v V: 

3N. 
IT (rV + a 

30 
- aN. cos 

u 
p. ra = 0 

9 
(25) 

3 3N0 -— (rN ) + a —— 
3 <f> 1 (f,6J 30 

aNQ^ cos <|) + pQ ra = 0 (26) 

(27) 

Fliigges general solution is summarized as follows. Equation 

(27) may be used to eliminate NQ from equations (25) and (26) 0 
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3N, 3N, 
-çj?- sin <(> + 2N^ cos + -y*— - -a(p+ sin $-pr cos ♦) 

(28) 

3N 3N, 3P. 

— sin * ♦ 2N*e cos * - 3/ = ‘afPe sln * + si2, >• 
(29) 

The load components p^, p0, and pr are arbitrary functions 

of <j> and 6 and may thus be represented in the form: 

P* = l P^n cos n0 + l sin ne 
4>n 

(30) 

Pe 
= Ï Pen sin n6+ l Pen cos ne (31) 

p^ = T p„„ cos ne + T p„„ sin ne 
*r g rrn k rn 

(32) 

where p .. *Prn are functions of $ only. The first'of the 

two sums in every line is the load which is symmetric with 

respect to the meridian 0=0, and the second sum is the 

antimetric load. 

For each fixed but arbitrary integer n, the solution 

to Equations (28) and (29) is found by picking out one of 

the symmetric terms, 

P, = P*n cos ne (33) 

p$ - Pen sin n0 (34) 
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Pr 
= Prn 

cos n0 (35) 

The solution may be written in the form 

N. = N. cos ne 
<)> <pn 

N0 = NSn cos ne 

(36) 

(37) 

N*e * N*en sin ne (38) 

where N^n, N0n, and N^0n are functions of <j> only. Thus, the 

general solution for a load which is symmetric with respect 

to the meridian is 

N, = 7 N. cos ne 
♦ g <j»n 

(39) 

Ne = l Nen cos ne (40) 

N*e" E sin n9 <f>6n (41) 

and the antimetric solution is found in a similar way. 

Substituting Equations (30-32) and Equations (36-38) 

into Equations (28) and (29) respectively, 

dN 

dj> ̂
 + 2 cot * • N._ + -rj—T N. <|>n sxiicf) <{>en aC-P*ntcot ♦ ’ PriP 

(42) 
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dN 
-jtM * 2 cot * N+en + HH? V = a('P 

n 
en sirnj) 

(43) 

Let us define 

U = NA + NAû <(>n <t>6n 

V s= N - N " <|>n ^en » 

(44) 

(45) 

and substitute Equations (44) and (45) into the sum and dif¬ 

ference of Equations (42) and (43) respectively: 

+ (2 cot <J> + -?-A- )U sm<)» a(.p _p + n±cosl ) p0n p(j>n smi FrnJ 

dV + (2 cot 4> - —?—— )V = a(p. -p - ——^ p v Ÿ sm<l> J VFen F<j>n sin| Frn 

(46) 

(47) 

Equation (46) may be thought: Jof nas 

dU 
<1$ + p C<l>) * u + q(4>) = 0 (48) 

with a similar expression for Equation (47). From Flugge 

the general solution of Equation (48) is 

29 

U = [C - /q exp(/pdif))d<J>] • exp(-/pd<|>) (49) 

Applying Equation (49) to Equations (46) and (47) , the ex¬ 

plicit solution is 
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U 
cotn<|>/2 

sin2* 
a/ (P*n+Pen 

n*C0|i j 
sin<{> ^rn' sm <l> tann( )d<(>] 

V = 
tanfl<f>/2 = —^TT sin <(» 

[B n a/ (P*n'Pen 

(50) 

♦ !
4îH|

A Prn> sin2 * cotn( 2 W 

The constants An and Bn may be determined from the boundary 

conditions. 

C. Dynamic Surface Tension Solution 

In order to solve for the surface tensions due to the 

dynamic load, it is first necessary to express pr, p^, and 

p0 from Equations (22-24) in component series form as in 

Equations (30-32). This is done by the following equations. 

pr = Pr2 cos 20 (52) 

pr2 = sin2 * (53) 

P* "P*2, cos 26 

_ 5ay 
P4>2 = 4 Sin 2* 

(54) 

(55) 
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PQ = P02 Sin 20 (56) 

02 
-5ay • . —sin 4> (57) 

Since the load is symmetric with respect to the plane with 

meridian 6 = 0, there are no terms containing p , pen, Pm 

from Equations (30-32). 

From Equations (52-57), all indices, n, other than 

n = 2 are zero for dynamic loads. Thus, substituting Equa¬ 

tions (53), (55), and (57) into Equations (50) and (51) with 

n = 2 yields 

U - cot |/2 [A2 . (3 cos « 
sin <|> 

Y cos 2$ + cos^ <>)] (58) 

V = ■t.an. */-2. [B + (3 
sin <j> 

cos <j> 

3 3 
+ Y cos 2^> + cos 4>) 3 (59) 

Adding and subtracting Equations (44) and (45) for n = 2, 

N^2 - \ (U+V) (60) 

N 4> e 2= 7 (U-V) (61) 
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Furthermore, from Equations (39) and (41), the dynamic mem¬ 

brane tensions are seen to be 

N - i(U+V) cos 29 (62) 
Myn L 

N
d>e = T(U-V) sin 26 (63) w dyn 

Substituting Equations (58) and (59) into Equations (62) and 

(63), 

N. - <A9 + cos u 
♦dyn 2sin4* 2 2 2 

+ 2 cos 4>[A2-B2-5aiia(3 cos 4+cos*5 4>) ] 

+ cos2 <|)[A2+B2+ ---“y-a- cos 2<f>3 ) (64) 

N “ ~^n~ v9 {A2-B2-5aya(3 cos <j>+cos^ <J>) 
“•ayn 2sin% 

+ 2 cos <j>[A2+B2+ 
15“ya- cos^2<j> 

2 3 
+ cos <ft[A2-B2_5aya(3 cos <j>+cos <j>)]} (65) 

29 
From Flugge, the two constants, A2 and B2, may be 

determined from the condition that the stress resultants 

assume finite values at 4 = 0. Therefore, since the denomin¬ 

ator, 2 sin4 <|>, in Equations (64) and (65) approaches zero 
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as 4> approaches zero, the numerators must also approach zero 

as <|> approaches zero. Thus, 

J^Q(2 sin4 ÿ N )=(4A2-25aya)cos 20 = 0 (66) 
^ ^dyn 

liS(2 sin4 * N.0 )=(4A,-25aya)sin 26 = 0 (67) 
41 0 4>0dyn 2 

It is readily seen that for any arbitrary 0, the solution of 

either Equation (66) or Equation (67) yields 

A2 “ • aya (68) 

Similarly, for finite values of the stress resultants at 

lim(2 sin4 4> NA ) = (4B_-25aya)cos 26 = 0 (69) 
*dyn 2 

Üm(2 sin4 4» N ) » (-4B9 + 25aya)sin 26 = 0 (70) 
4)71 4>edyn 2 

For any arbitrary 0, the solution of Equation (69) or (70) 

is seen to be 

B2 = “ aya (71) 

Substituting the above values of A2 and B2 into Equa¬ 

tions (64) and (65) yields, after simplification, 
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N. = -y au a cos 26 (72) 
*dyn L 

N 0 
= " T aua s^-n 29 cos ♦ (73) 

^dyn ù 

Substituting N. from Equation (72) and p from Equation 
^dyn 

(22) into Equation (27) yields 

S 2 
N0 “ " T a^a cos 2e cos <j> (74) 
°dyn 

D. Static Surface Tension Solution 

The static surface tension is the tension resulting 

from the internal pressure of the model sphere. Due to sym¬ 

metry, 

N - N (75) 
Ÿs s 

and 

N
4,9S - 

0
 <

76
> 

The normal loading component, pr, is simply the internal 

static pressure, i.e. 

Pr * P xstatic 
(77) 

Substituting Equations (75) and (77) into Equation (27), 
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N (78) 

E. Combined Surface Tension Solution 

Adding the dynamic solution, Equations (72-74), to 

the static solution, Equations (76) and (78), the total solu¬ 

tion is 

ap 
= J aya cos 20 + —(79) 

N<j>e = " T aya s*n 20 C0S ^ (80) 

aP 
N0 = - Y “Via COS 20 cos2 4 + (81) 

Since membranes are incapable of sustaining compres¬ 

sive stresses, the internal pressure, Pg, must increase in 

order to keep >_ 0 and N0 >_ 0 for large rates of shear. 

Thus, if N. =0 and N0 =0, then 
Mnin °min 

Ps = 5ay (82) 

Substitution of Equation (82) into Equations (79) and (81) 

yields 

N 
♦ 

5 
2 aya(1+cos 20) (83) 
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5 2 
NQ - 2 aya(l-cos 29 cos <j>) , 

both o£ which are seen to be always non-negative. 

C84) 



IV. ELASTIC THEORY (Short Time Duration of Stress) 

22 Rand has shown that the viscous elements (Figure 

2-B) in the red blood cell membrane are associated with times 

exceeding a few seconds. Thus, for short time durations, 

the model membrane may be considered to be completely elas¬ 

tic, and a distortion energy failure theory is applicable. 
21 According to Juvinall, 

Given a knowledge of only the tensile yield strength 
of a material, [the distortion energy theory] . . . 
predicts ductile yielding under combined loading with 
greater accuracy than any other recognized theory. 

22 Since information is available in the literature on red 

blood cell tensile yield strength, the distortion energy 

theory is usdd hereon to predict short duration erythrocyte 

failure in couette flow. 

The membrane stresses resulting from couette flow are 

obtained by dividing the membrane surface tensions by the 

membrane thickness, 4. Therefore, from Equations (83), (80), 

and (84) respectively, 

% = YÏ «^aCl+cos 20) (85) 

<(>6 
zS 
•24 apa sin 2e cos <j> (86) 

19 
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5 2 
o g = 2 j au a (1-cos 20 cos 4») (87) 

21 
From Juvinall, the potential energy per volume 

stored in an elastic material due to distortion may be repre¬ 

sented by 

When the potential energy per volume reaches some critical 

value for a particular material, the material is theorized 

to fail. Since the model red blood cell membrane is as¬ 

sumed to consist of the same material as the real red blood 

cell membrane, Young's modulus, E, and Poisson's ratio, v, 

may be dropped from the above equation. The resulting 

critical parameter may then be represented by 

Substituting Equations (85-87) into Equation (95) yields 

W 
2 2 2 4 

[l+cos 29 sin <|>+cos 20(l+cos <j>+cos <f>) 

(89) 

Note that 
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cos2 20(1+cos2 <f>+cos4 <f>) + sin2 20(3 cos2 <j>) 

2 2 4 2 
= cos 2e(1+cos <|)+cos <(>-3 cos <j>) 

2 2 2 2 
+ cos 26(3 cos (j>) + sin 20(3 cos 4>) 

= cos2 20(1-cos2 4>)2 + 3 cos2 <j> 

Thus Equation (89) may be rewritten as 

~ ~r 2 2 2 - 7 
[1+cos 20 sin'5 <(.+ 3 ôosz ÿ 

4JT 

+ cos2 20(l-cos2 <j>)2) (90) 

Since we want to calculate the maximum distortion energy for 
2 

any given shear rate, it is necessary to maximize W with 

respect to any given $ and 0. When cos 20 = 1, all terms in 

Equation (90) are maximized for any arbitrary <|>. Thus 

W. 
7 or 2 22 2 _ Z5a y a 
max 

4l 
2— [3 + cos <|>] (91) 

4 2 
Clearly, cos <|> = 1 for wmax* Thus 

O OK 2 2*2 
T^H _ Z 5 0( p E 
max ~ ~2 

X/ 

or 

VL - Say a 
max (92) 
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Furthermore, recalling Newton's law of viscosity, the fluid 

shear stress is 

T = u a (93) 

then, 

W 
max 

5ta 
z (94) 

The distortion energy for symmetric biaxial plane 

stress, i.e. 

a 
$ 

°(f>e 0 
(95) 

may be found by using Equation (88). Thus 

W N 
Z 

(96) 

If the critical membrane tension, N , is known for short dura- 
’ c 

tion stress, then the critical membrane energy may be written 

In considering the failure of the model sphere used 

to represent the red blood cell, the critical fluid shear 

stress is that shear stress at which the maximum distortion 

energy due to couette flow is equal to the statically- 



determined critical distortion energy. Thus by equating 

Equations (94) and (97) , 



V. VISCOELASTIC THEORY (Arbitrary Time Duration of Stress) 

As can be seen from Equations (85-87), the membrane 

stress is a function of position. For any <1>, the membrane 

stress in either the <J> or the 9 direction can be seen to 

vary as a function of the sphere's spin rate, to, in couette 

flow. Letting tot = 0 

= o^[l + cos (2o)t) ] (99) 

%e= ~°1 sin(2<*>t)cos <j> 

2 
O Q * 0^[1 - cos(2(ot)cos <j>] 

where 

(100) 

(101) 

(102) 

7 ft 
From Taylor, the sphered spin râtç, w, is one-half 

of the couette flow shear rate, a. 

Several possible failure theories for the time depen¬ 

dent viscoelastic solution include the maximum shear stress 

theory, the maximum stress theory, and the maximum: normal 

strain theory. The maximum shear stress theory is the most 

accurate of these for predicting ductile yielding. Since no 

data is available in the literature on time-dependent maxi¬ 

mum red cell membrane shear stress, however, this theory is 

24 



not hereon considered. 

As can be seen from Equations (99) and (101), the 

maximum stress for couette flow loading is 

a max (103) 

If a loading configuration of 

a 
♦ 

(104) 

is considered, the maximum couette flow membrane stress is 

the same as the symmetric biaxial plane loading in Equation 

(104) if 

(105) 

Substituting Equations (93) and (102) into Equation (105) 

yields a critical couette flow shear stress of 

T (106) 

For t = 0, Equation (106) is seen to yield the same 

critical fluid shear stress, Equation (98), as predicted by 

the distortion energy theory. 
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The maximum normal strain theory assumes failure 

occurs when some critical normal strain is reached. If one 

considers the viscoelastic models represented in Figure 2, 

the maximum normal membrane strain due to couette flow load¬ 

ing, Equations (99-102), may be compared to the maximum nor¬ 

mal membrane strain due to symmetric biaxial plane stress, 

Equation (104). Since the viscous elements, labeled q^" 

and q2U in Figure 2-B, are associated with times exceeding 

a few seconds, they are not appreciably affected by rapid 

sinuosoidal loads characteristic of the spin rates encoun¬ 

tered in couette flow. The elastic element, labeled E, 

however, is affected by rapid sinusoidal loads since there 

is no viscous damping associated with it. The normal strain 

for couette flow»loading is then the sum of the viscoelastic 

strain resulting from a. = a. = a. plus the elastic strain 
<p 0 J. 

resulting from a particular and aQ, i.e. 

(Couette eN) = (Viscoel eN)a^=a^=a^ 

+ (Elastic eXT) „ . 
N V°e 

If a particular normal strain is chosen, e.g., eU , then 
♦ 

(Elastic eN )a.,a = i[%'v(ae^ 
<p 9 0 

Clearly, the maximum normal strain in thet$ direction 

occurs for 
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a. = 2a, and a =0. Thus, 
^max °min 

(Elastic eM) 
2a. 

N'max E (107) 

and 

2a, 
(Couette eN)max = (Viscoel e)0 * -g1 (108) 

é 6 1 

The normal strain for symmetric biaxial plane loading, Equa¬ 

tion (104), is 

(Sym lodd eN) = (Viscoel eN)a mg =ff 
4> 9 1 

+ (Elastic eN) 

■ (Viscoel _0 
4 

= (Viscoel e) 

V°e 

Comparing Equations (108) and (110) , 

(Couette EN)max ■ (Sym load eN) 

%“°e=0l 

e-0l 
+ 

a. /-1-VN 

=o1 
+ °1^—5 

e” 

(109) 

(HO) 

(111) 

If the maximum normal strain resulting from couette flow is 

critical, then Equation (111) may be rewritten for arbitrary 

time. The quantity cl represents the critical couette a., 
t 
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Equation (102), for some time t. Thus, 

eN 
c e=alJ 

+ (112) 

or 

1 

a<(.=a9 = 0lt 

1+V X 

E J 

eN 
c 

(113) 

Since there is no viscous strain at time = 0, Equation (107) 

then represents the critical normal strain with ac 
= » 

o 
i.e. 

2a. 

'N E 
c 

Therefore, 

f 1 + V N 
al "IT J At h _ , 1+v 

Ex, 1 2 'N. 

and from Equation (93) , 

r 1+v 
"it TT > .l4. 
t 1 + V 

= 1 2 
'N. 

(114) 

(115) 

(116) 

Substituting Equation (116) into Equation (113), 
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aA=ao=al Tn 4 9 . ! . ( l^L ) _ft 
'N 

CH7) 

Thus 

(1+V)T _ ( 1 + V x 
°1. ( "B" } t  =  X. 
e„ __ __ ~ 2T -(1+V)T_ 

% 0 CFlt 
co Ct 

(118) 

Rewriting Equation (112), 

f 1+V 

°lt
(- E ^ 

eN ea=a =a1 
+ ^ ë ^ £a =a =a1 c ♦ 6 It 

a4>= e=ai. * 8 h 
(119) 

2x 

= e 
♦ 

r   O   I 
=a.=a1 

L 2T-TT+VTT 
J 

0 1^ c_ v 
(120) 

For symmetric loading, the total biaxial strain may be as¬ 

sumed to be proportional to the load a for any given time. 

Thus from Equation (120) , 

Ext = E 

N_ a =a c $02 
(121) 

where 

2x 
= P-, [ 
V 2:Tè -(1+V).T( 

(122) 

If 
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%= \ ■ » C123> 

and 

■ tr Tcta (124) 

then Equation (122) becomes 

N 
Ct . 
£ 

T 

* TCt
a[ 2 T c -(1+V)T 

] (125) 

0 t 

or 

S' 

2NC Tc 

5axc +Nc (1+v) 
(126;> 

0 t 

For t = 0, Equation (125) yields 

Tc 
0 

= c 5aV 5 Nc C127> 0 

which is somewhat different than the shear stress predicted 

by the distortion energy and maximum stress theories. Sub¬ 

stituting Equation (127) into Equation (126) yields 

S' 

Nc Nc (1-v) 

5a ^ N (l-v)+N (1+v) ^ ^128^ 
co ct 



VI. SUBSTITUTION OF EXPERIMENTAL RESULTS 

22 Rand was able to measure the stress required to 

rupture the red cell membrane. By means of sucking a red 

cell partially into a micropipette, he was able to calculate 

the membrane tension corresponding to any known pressure 

difference across the membrane. The loading resulting from 

the micropipette suction was symmetric biaxial plane loading 

thus similar to Equations (95) . By means of numerous such 

micropipette experiments, Rand determined that the red blood 

cell of average strength fails when 

Thus, depending on which failure criteria,is used, Equation 

(106) or Equation (128) together with Equation (129) repre¬ 

sent the average critical couette flow shear rate for hemoly 

sis of the red blood cell of average strength, i.e. 50% 

hemolysis. 

Nc may be calculated from Equation (129) with t = 0; 

- 3.5 x 10'2 + 3.9 x 10'2(l-e'8t) 

+ 1.5 x 10"4t (129) 

o 

N c o 
(130) 

31 
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15 According to Fung, the surface area of a red blood 

cell is 

Surf. Area = 163 v? 

Using the surface area equation for a sphere, i.e. 

? 
Surf. Area = 4na , 

the equivalent radius for the model red cell is 

a = 3.60 y (131) 

Using Fung's red blood cell volume of 87 y , however, 

yields a somewhat lower equivalent volume radius of 2.75 y. 

Since we are primarily interested in membrane surface ef¬ 

fects, the equivalent radius resulting from the red blood 

cell surface area will be used in this analysis, but results 

will also be discussed for the equivalent volume radius. 
20 Mitchison and Swann used v = 0.5 for sea urchin egg 

membranes, as this is the approximate value of Poisson's 

ratio for rubbery materials. In the absence of other infor¬ 

mation, v = 0.5 will hereon be assumed for red blood cell 

membranes. Thus, substituting Equations (130) and (131) 

into Equations (106) and (128), the couette flow shear stress 

for 501 hemolysis is found to be respectively 

(132) 
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for the maximum stress failure theory, and 

T 3.18 x 104 

N 

(28.6+3N 
(133) 

for the maximum normal strain failure theory. Both Equations 

(132) and (133) are graphed in Figure 3 and are tabulated 

with N from Equation (129) in Table 2. 
ct 
If one uses a = 2.75 y instead of a = 3.60 y, then 

both Equations (132) and (133) would be 30.9% larger. Or, 

if the approximation for v is incorrect by as much as ;+ 10%, 

then Equation (132) is unaffected, but Equation (133) becomes 

N. 

= 3.18 x 10 
28.6+3.44N 

or 

N 

T = 3.18 x 10 
ct 

28.6+2.64N. 

respectively. 

Variations of Rand's empirically determined Nc 

would also cause changes in the predicted critical shear 

stress. A variation of + 10% in N would cause a + 10% 
- ct 

change in both Equations (132) and (133). 



VII. DISCUSSION 

As can be seen from Figure 3 and Tables 1 and 2, the 

theoretical critical couette flow shear stresses for 501 

hemolysis are somewhat larger than the empirical critical 

shear stress for 1% hemolysis. Although very little data 

has been obtained for 50% hemolysis critical shear stresses, 
30 Nevaril et al. have shown that the average critical shear 

rate for 50% hemolysis during a two minute run is actually 

3 times the critical shear rate for 1% hemolysis. Thus TC 

? 
for 50% hemolysis with t = 2 minutes is 4500 dynes/cm , 

2 
which compares with the theoretical value of 6000 dynes/cm 

2 
using the maximum stress failure theory and 5630 dynes/cm 

using the maximum normal strain failure theory. 
31 Champion et^ al. have also done some experiments on 

red blood cell 50% hemolysis. They added thickening agents, 

Dextran and Methocel, t:o produce 5 minute critical shear 
2 

stresses of 2,200 and 10,000 dynes/cm respectively. These 
2 

values compare with 4670 and 4960 dynes/cm predicted by the 

maximum stress failure theory and the maximum normal strain 

failure theory, respectively, for no additive agents. It 

is possible that Champion's thickening agents not only in¬ 

creased the blood viscosity, but also changed the membrane 

properties. 

34 
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The two dips in the theoretical curves in Figure 3 

may be explained by looking at Equation (129) which is im¬ 

plicit to both curves. The first of the two dips corres¬ 

ponds to the stretching of the spring dashpot couple repre¬ 

sented by q " and q^" in Figure 2-B. The second dip cor¬ 

responds to the stretching of the dashpot element labeled 

q2M. Both theoretical curves dip sharply after about 300 

seconds. Unfortunately, no comparable empirical data is 

presently available in this time range. 

Possibly the major cause for any discrepancy between 

theory and fact may be due to the non-sphericity of the red 

blood cell. In fact, at rest, the red cell assumes the shape 

of a biconcave discoid. At high shear rates, however, the 

red blood cell actually becomes a prolate ellipsoid, thus 

approaching more closely the shape of a sphere. At very low 

shear rates, however, the red blood cell membrane does not 

rotate about the hemoglobin in an ellipsoid shape, but rather 

the entire blood cell tumbles about in a somewhat random 
32 motion. Thus, this theory is not applicable in low shear 

stress ranges. 

Another potential cause for discrepancy between theo¬ 

retical and experimental results may be fatigue. It is quite 

possible that for long durations, fatigue may be an important 

part of the red cell membrane failure mechanism. Since no 

data is available on red cell membrane fatigue however, this 

factor has been ignored in this analysis. In addition, the 
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accuracy of Rand's curve for N , Equation (129) , is not 
ct 

exactly known. 

The one point in Table 1 which does not correlate 

with any of the curves in Figure 3 is that of Forstrom and 
33 Blackshear's turbulent jet experiments. The critical 

shear stress between 10 ^ andl10 ^ seconds remains relatively 

constant for both human and canine blood, the properties of 

which are almost identical.^ Then at 10”^ seconds, the 

critical shear stress for Forstrom's experiments appears to 

jump a full order of magnitude. The probable explanation 

for Forstrom and Blackshear's high critical shear stress 

value, however, is that forces on a red blood cell in turbu¬ 

lent flow are much different than that in laminar flow. Also, 

the extremely high acceleration resulting from a time duration 

of 10 ^ seconds may add to a different type of failure theory. 

It is interesting to note that if one uses G. I. 

Taylor's liquid drop failure theory directly to predict the 

entire viscoelastic hemolysis curve, then if internal circu¬ 

lation is assumed to be inhibited, i.e. y 

Thus the critical couette flow shear stress is slightly more 

than twice as large as that predicted by the maximum stress 

theory, Equation (106). As mentioned in the Background, 

however, Taylor's theory is based upon equalization of internal 
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and external pressures at high shear. Since it has been 

shown that the internal pressure is always larger than the 

external pressure when an encapsulating membrane is present, 

Taylor's failure theory is not directly applicable to the 

model red blood cell in this analysis. 

In summary, the failure theories presented in this 

thesis provide a much greater understanding of the mechanism 

causing red blood cell couette flow hemolysis. The theories 

are shown to roughly predict the entire critical fluid stress 
2 

vs. time curve for times up to about 10 seconds and possibly 

beyond. In addition, due to the generality of the chosen 

red blood cell model, the theory is applicable in predicting 

thelfailure of other systems including microcapsules or bio¬ 

logical systems such as eggs* 
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TABLE 2 

THEORETICAL CURVE POINTS FOR EQUATIONS (132,133) 

CORRESPONDING TO 50% HEMOLYSIS 

Exposure Time (Sec) N ( ^ ) 
cm ' 

(djses, 

1 cm 

( dynes , 
Tc,1 } 

2 cm 

0 28.6 1.59 x 104 7.94 x 103 

10-4 28.6 1.59 x 104 7.94 x 103 

O
 l CM

 

28.6 1.59 x 104 7.94 x 103 

CM
 

1 o
 

iH
 26.3 1.46 x 104 7.77 x 103 

10_1 17.7 9.83 x 103 6.88 x 103 

1 13.5 7.50 x 103 6.21 x 103 

10 13.2 7.33 x 103 6.15 x 103 

102 11.2 6.22 x 103 5.72 x 103 

1.2 x 102 10.8 6.00 x 103 5.63 x 103 

3.0 x 102 8.40 4.67 x 103 4.96 x 103 

103 4.46 2.48 x 103 3.38 x 103 

T is from maximum stress failure theory. 
C1 

T is from maximum normal strain failure theory. 
c2 
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FIGURE I - SPHERICAL 
COORDINATE SYSTEM 
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FIGURE 2-A 
THREE PARAMETER 

VISCOELASTIC MODEL 

FIGURE 2-B 
FOUR PARAMETER 

VISCOELASTIC MODEL 
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APPENDIX - Comparison of Hyperbolic Flow 

to Couette Flow 

The velocity potential for hyperbolic flow (Figure 4) 

is 

♦ - f K*')2 - Cy'2)] (A-i) 

The flow velocity field may be represented by 

v = V3> (A-2) 

= ax'T - ay’J (A-3) 

Thus the velocity components are 

u* = ax' (A-4) 

v* =-ay' (A-5) 

When the entire field is rotated by an angular velocity of 

a, then the corresponding additional velocity components are 

Au’ = ay' (A-6) 

Av* = -ax ' (A-7) 

Thus, the new velocity components are 

A-l 



A-2 

u* + Au* ® a(x'+y') (A-8) 

v* + Av’ = -a(x'+y’) (A-9) 

These components may be expressed in terms of the rotated 

couette flow coordinate system by means of the following 

transformation: 

x. = i_ (x+y) 

Jl 
(A-10) 

yt = (y-X) 
/2 

(A-11) 

Substituting Equations (A-10) and (A-11) into 

and (A-9), the hyperbolic velocity components 

Equations (A-8) 

are 

u* + Au * = a/2 y CA-12) 

< + >
 

<
 11 1 P
 

to
) 

X
 

(A-13) 

Or, in terms of velocity components in the x'-y* coordinate 

system, 

u = ay (A-14) 

v = 0 (A-15) 

Since Equations (A-14) and (A-15) also represent the velocity 

field for couette flow, then it is shown that the rotating 

hyperbolic flow velocity components are identical to the 

couette flow velocity components. 


