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ABSTRACT

FAILURE THEORY FOR RED BLOOD
CELLS IN COUETTE FLOW

by
Jack A, Jones

In this analysis, the red blood cell is idealized as
a spherical 1liquid drop, encapsulated by a thin membrane.
By transforming G. I. Taylor's equations for the surface
loading on a liquid drop with no membrane in cCouette flow,
spherical loading components are calculated for a drop with
a membrane. A solution developed by Flugge for unsymmetri-
cal loading of spherical shells is then used to derive the
complete membrane stress pattern for spherical, membrane-
encapsulated, liquid drops in couette flow. The maximum
distortion energy is calculated for any given shear rate,
and using the relation, a critical shear stress for short
duration failure is found as a function of the critical dis-
tortion energy.

Viscoelastic solutions based on the maximum normal
strain failure theory and the maximum stress failure theory
are then developed in order to predict the entire critical
shear stress vs. time curve for hemolysis. Using data sup-

plied by Rand's micropipette experiments on red cell membrane



strength, the theories are then shown to roughly predict the
entire couette flow hemolysis curve for times up to 102
seconds.

Thus, the theory in this analysis provides a much
greater understanding of the mechanism causing red blood
cell damage in artificial heart valves, heart-lung machines,
artificial kidneys, etc. In addition, due to the model

cell's physical generality, the theory is applicable to other

biological and non-biological systems.
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NOMENCLATURE

English Letters

N Ne,N

¢’ $6
P

S
px’py
Pr,P¢,Pe
P1’P2’ql9q2

»P,

qoﬂ , q1" R q2"

Radius of sphere

Function defined by Equation (15)

Function defined by Equation (16)

Young's Modulus in Figures 2-A and 2-B
Normal force on membfane

Membrane thickness

Coefficient of Fourier series expansion
Surface Tensions

Internal static pressure

Rectangular loading components

Spherical loading components

Viscoelastic constants defined by Equation
(121)

Young's modulus and dashpot viscosities in
Figures 2-A and 2-B

Membrane distortion energy

Spherical radius coordinate

Time

Velocity components in x and y directions

respectively

iv



X,Y,Z

x',y'

" Subscripts

Functions defined by Equations (44) and (45)
Membrane distortion energy per volume X
(3E/1+v)

Rectangular coordinates for couette flow

Rectangular coordinates for hyperbolic flow

Shear rate

Functions defined by Equations (14) and (13)
Strain

Spherical angular coordinates defined by
Equations (7,8,9)

External fluid viscosity

Internal fluid viscosity

Poisson's ratio

Membrane stress

Membrane stress defined by Equation (102)
Fluid shear stress

Angular velocity of sphere

Hyperbolic flow potential

Critical, i.e. denoting hemolysis
Coefficient of Fourier series expansion

Normal



Refers to time = 0
Static

Arbitrary time
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I. INTRODUCTION

Red blood cell damage and destruction has been as-
sociated with the flow of blood through artificial heart
valves, heart-lung machines, and artificial kidneys. Sig-
nificant hemolysis has been observed in vivo from prosthetic

devices!™# 5-9

and in vitro from a variety of other methods.
It has been shown that at shearing rates near and above the
destruction threshold level of 1500 dynes/cm2 the most impor-
tant factors in red blood cell hemolysis are the magnitude
of the fluid shear stress and the length of exposure time.10

In order to present a theoretical study of the mech-
anism of hemolysis in red blood cells, a model of the red
blood cell is chosen so that its physical properties conform
closely to that of the erythrocyte under high shear stress.
It has been observed11 that while under shear, red blood
cells become prolate ellipsoids with their long axis aligned
parallel to the flow direction. The red cell membrane ro-
tates around the liquid hemoglobin interior like a tread of
a tank. From microscopic and viscometric results, it has

11-14

been postulated by several authors that mammalian red

cells are capable of assuming properties of a fluid drop

under shear. The membtane is known to have a high exten-

15

sional rigidity, but a low bending rigidity, thus allowing

for the neglection of bending stress.
1
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As a result of the above observations, the model red
blood cell chosen for this analysis is a fluid drop encapsu-
lated by a thin membrane, and the ellipsoid shape is approxi-
mated as a sphere. Thus, the tank tread membrane rotation
of the ellipsoid is approximated as a solid body rotation
of a sphere, i.e. the internal circulation of the hemoglobin
is ignored.

Due to the generality of this spherical model, the
applications of the failure theory in this thesis extend
beyond just the red blood cell. The theory may also be used
to predict industrial, liquid-filled, microcapsule failure.
These sméll, spherical microcapsules, which are encapsulated
by a thin membrane, are currently being used for a variety
of purposes: removal of body urea,16 blood flow modeling,17
encapsulation of vile-tasting medicines and corrosive indus-

18 19

trial liquids, image reproduction, etc. The theory may

also be used to predict the failure of other specific bio-
logical systems such as the small, spherical, liquid-filled

eggs described by Mitchison and Swann.20



II. BACKGROUND

The failure theory chosen to predict short duration
hemolysis is known as the distortion energy failure theory,
which is the most widely accepted and accurate theory for

21 It is based

predicting failure of a ductile material.
upon the concept that any elastic material when deformed
acquires a certain elastic energy associated with the load-
ing and the resulting strain. Failure occurs when the elas-
tic energy reaches some critical value.

For time durations of stress exceeding a few secohds,
the red cell membrane is not completely elastic, but also
possesses a liquid-like viscous characteristic similar to

Figure Z-B.22

The failure theory chosen for arbitrary
critical time durations, then, cannot be the distortion
energy theory. Two other failure criteria, the maximum
stress failure theory and the maximum normal strain failure
theory are discussed. The maximum stress failure theory,
although more commonly used for brittle failure, provides a
simple solution to the viscoelastic problem. The maximum
normal strain theory, which has been postulated from empiri-

cal observations,22

yields a somewhat more complicated solu-
tion,
Other attempts to predict red cell membrane failure

3
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have been done by Ultman, and Bernstein

25

Blackshear,
et al. Ultman uses a distortion energy failure theory
based on a three parameter viscoelastic membrane model
(Figure 2-A). His theory is used only in predicting red
blood cell micropipette loading failure. On the other hand,
Blackshear's theory, which relies on a maximum stress cri-
teria, is actually used for predicting couette flow hemoly-
sis. His theory, however, does not predict a zero time
critical fluid shear stress and is applied only for turbu-
lent flow.

Bernstein25 implies that G. I. Taylor's failure

theory26

for liquid drops in couette flow can be used di-
rectly to predict a critical turbulent flow membrane tension,
which compares closely with Rand's critical membrane tension
of Tco = 28.6 dynes/cm. Bernstein, however, does not dis-
tinguish between the 1% hemolysis of Blackshear's experi-
ments and the implied 50% hemolysis of Rand's experiments,
nor does he note a difference between Blackshear's turbulent
jet shear and Taylor's laminar flow shear. 1In addition, it
will be shown that when a membrane encapsulates a liquid
drop, the internal pressure is always larger than the exter-
nal pressure for couette flow, Thus, G. I. Taylor's failure
theory, which is based upon equalization of internal and

external pressures at high shear, is invalid for direct ap-

plication to the red blood cell.



III. MEMBRANE SURFACE TENSION SOLUTION

................

In this section, the couette flow spherical loading
components on the model sphere will be calculated as a func-
tion of both the position on the membrane's surface and the
magnitude of the fluid shear stress, au.

27

Einstein's theoretical treatment of the viscosity

of a suspension of rigid spherical particles in a liquid was

26 to the case of small immiscible fluid

extended by Taylor
spheres. As part of his solution, Taylor calculated the
external'loading on a fluid sphere due to hyperbolic flow.

He further stated that hyperbolic flow is .identical to that
of couette flow except for a rotation of the whole field
(Appendix). Thus, the dynamic forces involved are identical.

Taylor calculates the rectangular surface stress com-

ponents on a sphere in couette flow as

ap x

" = vx - L’>a-2 x(xz-yz) (1)

-y - 82"l yxy?) (2)

= L%’
]

—Z =-pa"% z(x 'YZ) (3)



Elementary trigonometric consideration shows that

these rectangular components may be expressed in spherical

form by means of the following transformation:28

sin ¢ cos 6 p, + sin ¢ sin 6 p, + cos ¢ p, (4)

Cos ¢ ¢os 6 p, + COS ¢ sin o py + sin ¢ P, (5)

Py

P -sin 6 p_ + cos 6 p (6)
] X y

where the spherical coordinates, Figure 1, for the above

transformation are defined by

X = a sin ¢ cos o (7)
y = a sin ¢ sin o (8)
zZ = a cos ¢ (9)

Substituting Pys Dy and P, into Equations (4+6) and trans-

y
forming x, y, and z into spherical coordinates by means of

Equations (7-9),

P, = u(y-8) sin2 ¢ cos 26 (10)
p¢ = 1/2 pyy sin 2 ¢ cos .28 (11)
Pg = -uy sin ¢ sin 26 . (12)

Taylor26 defines y and B as follows:



y =A_5 - 16B_; + a (13)
B = 4A_5 - 40B_ (14)
where
2
1 3 2
-5 1 u
Ay =t () (15)
and
- |
B.s =7 Ty - (16)

Because a membrane is assumed to completely inhibit internal
circulation, the red blood cell model will act as a solid

sphere in couette flow, i.e.
u' > (17)

Substituting Equation (17) into Equations (15) and (16) re-

spectively,

lim _ -5a

p'sw -3 - 72 (18)

lim . "o
p' e Bz = 4 (19)

Thus, Equations (13) and (14) become

Y = 5 (20)

and
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B =0 (21)

for a liquid drop encapsulated by a membrane. Substituting

these values of y and 8 into Equations (10-12),

P, = % ap sinz ¢ cos 260 (22)
= 9 :

p¢ = 7 ou sin 2¢ cos 26 (23)
- =5 . .

Py = —3 ou sin ¢ sin 20 (24)

B. General Flugge Shell Solution

Fliigge29 has developed a general solution for stresses
in spherical shells loaded unsymmetrically. The basic system

to be solved consists of three equations in three unknowns .

(N¢, Ne’ N¢e):
3 aNe .
2% (rN¢) + a —351 - aNy cos ¢ + P, T2 = 0 (25)
) 3Ny
3% (rN¢e) ta o aNe¢ cos ¢ + p, ra = 0 (26)
N N
3] .
Ei YT TP (27)

Flugges general solution is summarized as follows. Equation

(27) may be used to eliminate Ne from equations (25) and (26):
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3N 3N

ggi sin ¢ + 2N, cos ¢ + —3%9 = -a(p, sin ¢-p, cos ¢)
(28)

N . N ap

_3%2 sin ¢ + IN,, cos ¢ - ggg = -a(p, sin ¢ + 531 .
(29)

The load components p¢, Py> and p, are arbitrary functions

of ¢ and o and may thus be represented in the form:

P, = g Pyp COS M6 + % Py Sin ne (30)
Py = § Py, Sin ne+ g Pg, COS MO (31)
P, = g P, COs ne + g P, sin ne (32)

where p¢n"'5}n are functions of ¢ only. The first(of the
two sums in every line is the load which is symmetric with
respect to the meridian 6 = 0, and the second sum is the
antimetric load.

For each fixed but arbitrary integer n, the solution
to Equations (28) and (29) is found by picking out one of

the symmetric terms,

p¢ p¢n Cos nd (33)

Py = Pgp sin ne (34)
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pr = -prn COs nd (35)

The solution may be written in the form

N¢ = N¢n cos noé (36)

Ne = Nen cos no (37)

N‘»e = N¢en sin ne (38)
whgre N¢n’ Nen’ and N¢en are functions of ¢ only. Thus, the

general solution for a load which is symmetric with respect

to the meridian is

N¢ = g N¢n cos no (39)
Ny = g Ny, cos ne (40)
N¢e- % N¢en sin ne (41)

and the antimetric solution is found in a similar way.
Substituting Equations (30-32) and Equations (36-38)

into Equations (28) and (29) respectively,

dN
_H%E +2cot ¢ v N+ s?n¢ Nyon = 2(-Pyp*cot ¢ * pop)
(42)
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dN

¢en . n - - _n——
To v 2ot ¢ - Noon * 5img Nen = 2(Pon * Simg Prn?-
(43)
Let us define
U = N¢n + N¢en , (44)
VENG - Noon s (45)

and substitute Equations (44) and (45) into the sum and dif-

ference of Equations (42) and (43) respectively:

dU

To+ (2 cot o+ U = alpyyp,, + 2522 p )
(46)

av _ _n - . - D-cos¢

T + (2 cot ¢ sing JV = a(Pen P¢n sing ™I
(47)

Equation (46) may be thought-bf as

S+ P T U+ a(#) =0 (48

29

with a similar expression for Equation (47). From Flugge

the general solution of Equation (48) is

U= [C - fq exp(fpd¢)de] - exp(-[pd¢) (49)

Applying Equation (49) to Equations (46) and (47), the ex-

plicit solution is
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n
cot ¢/2
U = [A_ - af (p, . *p
sin2s n én *en

- 1220%0 ) sin® ¢ tan"( § )d¢] (50)

- tanﬁ¢/2

[B. - af (p, -p
sinZ¢ n én Fon

+ D-cos¢

Bgost p ) sin® ¢ cot™( £ )4 (51)

The constants Al and B may be determined from the boundary

conditions.

C. Dynamic Surface Tension Solution

In order to solve for the surface tensions due to the
dynamic load, it is first necessary to express P> p¢, and
Py from Equations (22-24) in component series form as in

Equations (30-32). This is done by the following equations.

P, = Pyy COS 20 (52)
. 2

Py = 5;“ sin” ¢ (53)

Py ==p¢% cos 26 (54)

Py 2% sin 24 (55)
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Py = Pgy2 sin 26 (56)
-S5ap .
Pg, = —7  sin ¢ (57)

Since the load is symmetric with respect to the plane with
meridian 6 = 0, there are no terms containing §¢n’ Fen’ ﬁkn
from Equations (30-32).

From Equations (52-57), all indices, n, other than
n = 2 are zero for dynamic loads. Thus, substituting Equa-
tions (53), (55), and (57) into Equations (50) and (51) with

n = 2 yields

cot2¢/2 [A S5oua

U = + (3 cos ¢
sin“¢ 2 2
- % cos 2¢ + cos3 4)] (58)
' tan2¢/2 Saupa
V= [B2 + 5 (3 cos ¢
sin™¢
+ % cos 2¢ + cos3 $) 1] (59)

Adding and subtracting_ Equations (44) and (45) for n = 2,

N,g = 1w ‘ (60)
N, .= 1 (u-v | : 61
so2™ ¥ (U-V) (61)



14
Furthermore, from Equations (39) and (41), the dynamic mem-

brane tensions are seen to be

N %(U+V) cos 26 (62)
¢dyn

1 .
N (U-V) sin 2@ (63)
¢edyn z

Substituting Equations (58) and (59) into Equations (62) and
(63),

_ cos 29'{A

i}

N = + 15apa
¢dyn 2sin’ ¢

+ B2 > cos 2¢

2

3

+ 2 cos ¢[A2-B2-5aua(3 cos ¢+cos” ¢)]
+ cos? $[A,+B,+ 15;ua cos 241} (64)
N¢e = §-i-g--%i{AZ-BZ-Soma(IS cos ¢+cos3 ¢)
dyn 2sin’¢
+ 2 15aua ?
cos ¢[A2+B2+ 7 cos 2¢
+ cos2 ¢[A2-B2-5aua(3 cos ¢+cos3 ¢)]1} (65)
29

From Flugge,“” the two constants, A2 and B,, may be
determined from the condition that the stress resultants
assume finite values at ¢ = 0. Therefore, since the denomin-

ator, 2 sin4 ¢, in Equations (64) and (65) approaches zero



15
as ¢ approaches zero, the numerators must also approach zero

as ¢ approaches zero. Thus,

b2 sin® ¢ N, )=(4A,-25aua)cos 26 = 0 (66)
dyn
lim . 4 .
(2 sin” ¢ N )=(4A,-250pa)sin 26 = 0 (67)
-0 $94yn 2

It is readily seen that for any arbitrary 6, the solution of

either Equation (66) or Equation (67) yields

Ay = 22 oya (68)

Similarly, for finite values of the stress resultants at

¢ =7,
1im(2 sin4 ¢ N ) = (4B -25apa)cos 26 = 0 (69)
o> <"dyn 2
lime, <in? o N ) = (-4B,+25aua)sin 26 = 0 (70)
¢ ¢edyn 2

For any arbitrary 6, the solution of Equation (69) or (70)

is seen to be

B2 = %2 opa (71)

Substituting the above values of A, and B, into Equa-

tions (64) and (65) yields, after simplification,
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= apa cos 29 (72)

vt

N
‘ ¢dyn

N 0 = - % epa sin 26 cos ¢ (73)
¢ dyn

Substituting N¢ from Equation (72) and P, from Equation
dyn
(22) into Equation (27) yields

N = - % aua cos 26 cos? ¢ (74)

edyn

D. Static Surface Tension Solution

The static surface tension is the tension resulting
from the internal pressure of the model sphere. Due to sym-

metry,
and

N¢es =0 (76)

The normal loading component, o J is simply the internal

static pressure, i.e.

=P (77)
rstatic S

Substituting Equations (75) and (77) into Equation (27),
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N, =N, =2 (78)

E. Combined Surface Tension Solution

Adding the dynamic solution, Equations (72-74), to

the static solution, Equations (76) and (78), the total solu-

tion is
5 aPs
N¢ . =7 apa cos 26 + 7 (79)
N. = - 2 gua sin 26 cos s (80)
8 z ¥ v
aP
Ny = - % apa cos 26 cos? ¢ + 25 (81)

Since membranes are incapable of sustaining compres-
sive stresses, the internal pressure, Ps, must increase in
order to keep'N¢ > 0 and Ny > 0 for large rates of shear.
Thus, if N = 0 and Ne = 0, then

¢min min

P = Sau (82)

Substitution of Equation (82) into Equations (79) and (81)

yields

N, =.% apa(l+cos 26) (83)



2

N = % aﬁa(l-cos 206 cos” ¢),

]

both of which are seen to be always non-negative.

18

(84)



IV. ELASTIC THEORY (Short Time Duration of Stress)

Rand?? has shown that the viscous elements (Figure
2-B) in the red blood cell membrane are associated with times
exceeding a few seconds. Thus, for short time duratioms,
the model membrane may be considered to be completely elas-
tic, and a distortion energy failure theory is applicable.

According to Juvinall,21

Given a knowledge of only the tensile yield strength
of a material, [the distortion energy theory] . . .
predicts ductile yielding under combined loading with
greater accuracy than any other recognized theory.

22 on red

Since information is available in the literature
blood cell tensile yield strength, the distortion energy
theory is us€d hereon to predict short duration erythrocyte
failure in couette flow.

The membrane stresses resulting from couette flow are
obtained by dividing the membrane surface tensions by the

membrane thickness, 2. Therefore, from Equations (83), (80),

and (84) respectively,

o, = 2 aua(l+cos 26) (85)
-5 . :
040~ 725 ¥Ha sin 26 cos ¢ (86)

19



20

= 2 - 2
0y = 37 opa(l-cos 26 cos

0 ¢) (87)

From Juvinall,21

the potential energy per volume
stored in an elastic material due to distortion may be repre-

sented by

- dQ _ 1+v 2 2 2
H_%ET = I (oe-o¢oe+c¢+30¢e) .

When the potential energy per volume feaches some critical
value for a particular material, the material is theorized
to fail. Since the model red blood cell membrane is as-
sumed to consist of the same material as the real red blood
cell membrane, Young's modulus, E, and Poisson's ratio, v,
may be dropped from the above equation. The resulting

critical parameter may then be represented by

2
0 $°0 ¢ 40 (88)

Substituting Equations (85-87) into Equation (95) yields

2.2 2
w2 = 259788 [14c05 26 sin? ¢+cos? 26(1+cos? ¢rcost )
43
.2 2
+ sin“ 20(3 cos” ¢)] (89)

Note that



21

2 4

cos2 20(1l+cos” ¢+cos ¢) + sin2

2

20(3 cos” ¢)

2 4

cos2 26(1+cos2 ¢+cos4 $-3 cos

+ cos2 20(3 cos2 2 2

¢) + sin® 26(3 cos” ¢)

2 2

cos2 29(1-cos2 $)° + 3 cos” ¢

Thus Equation (89) may be rewritten as

2. 2.2
w2 250"y a [1+cos 26 sin

= 2
44

o+3 Eos? ¢

+ cos? 26(1-cos2 ¢)Z] (90)

Since we want to calculate the maximum distortion energy for
any given shear rate, it is necessary to maximize w? with
respect to any given ¢ and 6. When cos 26 = 1, all terms in

Equation (90) are maximized for any arbitrary ¢. Thus

2.2 2

2 2
Wigye = 2202 (3 4+ cos* o) (91)
44
4 _ 2
Clearly, cos ¢ =1 for Wmax’ Thus
w2 o 250%u%a?
max
2
or
W = 2% (92)
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Furthermore, recalling Newton's law of viscosity, the fluid

shear stress is

-
(]

uo (93)
then,
W " Sta

max L

(94)

The distortion energy for symmetric biaxial plane

stress, i.e.

= =N
°¢ =04 =7
(95)
She = 0
may be found by using Equation (88). Thus.
_ N
Ww== (96)

If the critical membrane tension, Nc’ is known for short dura-

tion stress, then the critical membrane energy may be written

W, =2 97)

In considering the failure of the model sphere used
to represent the red blood cell, the critical fluid shear
stress is that shear stress at which the maximum distortion

energy due to couette flow is equal to the statically-



determined critical distortion energy.

Equations (94) and (97),

Thus by equating

23

(98)



V. VISCOELASTIC THEORY (Arbitrary Time Duration of Stress)

As can be seen from EQuations (85-87), the membrane

stress is a function of position. For any ¢, the membrane

stress in either the ¢ or the 6 direction can be seen to

vary as a function of the sphere's spin rate, w, in couette

flow.

where

of the

Letting ot = ©

o4 = 01[1 + cos(2wt)] (99)
946~ ~91 sin(2uwt)cos ¢ (100)
oy = oql1 - cos (2ut) cos? ¢] (101)
g, = 2 apa (102)
1 27 %

From Taylor,26 the sphere's spin rateg, w, is one-half
couette flow shear rate, a.

Several possible failure theories for the time depen-

dent viscoelastic solution include the maximum shear stress

theory, the maximum stress theory, and the maximum normal

strain

theory. The maximum shear stress theory is the most

accurate of these for predicting ductile yielding. Since no

data is available in the literature on time-dependent maxi-

mum red cell membrane shear stress, however, this theory is

24
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not hereon considered.
. As can be seen from Equations (99) and (101), the

maximum stress for couette flow loading is
Onax = 2971 (103)

" If a loading configuration of

(104)

is considered, the maximum couette flow membrane stress is
the same as the symmetric biaxial plane loading in Equation
(104) if
N
t

(o
_2, = 20'1 (105)

Substituting Equations (93) and (102) into Equation (105)

yields a critical couette flow shear stress of

=z

Ce '
Tct = S_a— (106)

For t

0, Equation (106) is seen to yield the same
. critical fluid shear stress, Equation (98), as predicted by

the distortion energy theory.



26 .

The maximum normal strain theory assumes failure
occurs when some critical normal strain is reached. If one
considers the viscoelastic models represented in Figure 2,
the maximum normal membrane strain due to couette flow load-
ing, Equations (99-102), may be compared to the maximum nor-
mal membrane strain due to symmetric biaxial plane stress,
Equation (104). Since the viscous elements, labeled Q"
and q2" in Figure 2-B, are associated with times exceeding

a few seconds,22

they are not appreciably affected by rapid
sinuosoidal loads characteristic of the spin rates encoun-
tered in couette flow. The elastic element, labeled E,
however, is affected by rapid sinusoidal loads since there
is no viscous damping associated with it. The normal strain
for couette flow:loading is then the sum of the viscoelastic
=0

strain resulting from ¢ plus the elastic strain

¢ o - %1

resulting from a particular o, and Tgs i.e.

¢

(Couette eN) = (Viscoel eN)o =0 =0,

¢ O

+ (Elastic ey) .
N c¢,oe

If a particular normal strain is chosen, e.g., SN , then

(Elastic ey ) = %[0¢'v(09)]

$ "¢’ 6

Clearly, the maximum normal strain in thet¢ direction

occurs for
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o = 20, and ¢ = 0. Thus
Smax 1 ®nin ’
. 204
(Elastic EN)max =5 (107)
and
201
(Couette eN)max = (Viscoel £)°¢=°e=°1 t (108)

The normal strain for symmetric biaxial plane loading, Equa-

tion (104), is

(Viscoel ¢

(Sym lodd e,) ) oo =
N N °¢‘°e‘°1

+ (Elastic e,)_ __ _
N o¢-ce-ol

(Viscoel eN)O¢=Oe=01 + Flog-v(oy)]

(109)
= (Viscoel e) _ . _. +o; (3% (110)
¢ 6 1
Comparing Equations (108) and (110),
(Couette eN)max = (Sym load eN) + °1( 1%1 ) (111)

If the maximum normal strain resulting from couette flow is
critical, then Equation (111) may be rewritten for arbitrary

time. The quantity 01 represents the critical couette 01
t



Equation (102), for some time t. Thus,

1+v
€ = _  _ + g, ( )
Nc °¢'°e—°1t 1t E
or
1+v
e _ + 0, (=)
°¢'°e‘Q1tA 1., E
1 =
€
NC
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(112)

(113)

Since there is no viscous strain at time = 0, Equation (107)

then represents the critical normal strain with O

€ = 10
NC E
Therefore,
1+v
g. ( o
1t E ) _ 1+v 1t
€ = ( 2 ) o
N 1
C (o}
and from Equation (93),
1+v
o, ( =) T
’ lt E. 1+vy €t
€ =( 2 ) T
N c
C (o]

Substituting Equation (116) into Equation (113),

01 »
10

(114)

(115)

(116)
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0,=0 =0 T

¢61 . C
L1 Byt (117)

N . C

c 0

Thus
o) (FF) (e,
€ : VT ‘(1+V§T (118)
°¢=°e=°1t Cq Cy

0_1 ( IE\) )

€ = + [ t le (119)
N €6 =0 =0 € _ _ _ o,=0,=0
ol ¢ 6 1t o¢_°6_°1t ¢ 6 1t
[ s ] (120)
= € 120
0, ,=0_ =0 2t . - (1+v) ~
¢ 86 1t <o C¢

For symmetric loading, the total biaxial strain may be as-
sumed to be proportional to the load o for any given time.

Thus from Equation (120),

e = e _ _ (121)
Nc 49692

where

%o 1. (122)

If
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th
g, = —= (123)
2, "7
and
oy =:%I T.a (124)
t Ct

then Equation (122) becomes

NC Te
Tt _ 5 0
[} Tcta[ Zrc -T1+v)tc ] (125)
(o} t
or
. ZthTco
= 126
Tct 5a1c°+th(1+v) (126)

For t = 0, Equation (125) yields

. = ( %él ) N

c (127)

0 c0

which is somewhat different than the shear stress predicted
by the distortion energy and maximum stress theories. Sub-

stituting Equation (127) into Equation (126) yields

NC Nc (1-v)

- 2 . t
fey - (5l Nco(lov)gNCt(l+v) . (1%8)




VI. SUBSTITUTION OF EXPERIMENTAL RESULTS

Rand22 was able to measure the stress required to
rupture the red cell membrane. By means of sucking a red
cell partially into a micropipette, he was able to calculate
the membrane tension corresponding to any known pressure
difference across the membrane. The loading resulting from
the micropipette suction was symmetric biaxial plane loading,
thus similar to Equations (95). By means of numerous such

"micropipette experiments, Rand determined that the red blood

~cell of average strength fails when

1 -2 -2,. -8t
C
t
+ 1.5 x 1074 (129)

Thus, depending on which failure criteria,is used, Equation
(106) or Equation (128) together with Equation (129) repre-
sent the average critical couette flow shear rate for hemoly-
sis of the red blood cell of average strength, i.e. 50%
hemolysis.

NC may be calculated from Equation (129) with t = 0;
o

N, =.28,6‘§%%Ei (130)
, -2

31
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15

According to Fung, the surface area of a red blood

cell is

Surf. Area = 163 uz

Using the surface area equation for a sphere, i.e.

Surf. Area = 4na2,

the equivalent radius for the model red cell is
a= 3.60u ‘ (131)

Using Fung's red blood cell volume of 87 us, however,
yields a somewhat lower equivalent volume radius of 2.75 u.
Since we are primarily interested in membrane surface ef-
fects, the equivalent radius resulting from the red blood
cell surface area will be used in this analysis, but results
will also be discussed for the equivalent volume radius.

Mitchison and Swann20 used v = 0.5 for sea urchin egg
membranes, as this is the approximate value of Poisson's
ratio for rubbery materials. In the absence of other infor-
mation, v = 0.5 will hereon be assumed for red blood cell
membranes. Thus, substituting Equations (130) and (131)
into Equations (106) and (128), the couette flow shear stress
for 50% hemolysis is found to be respectively

1. = 556 N (132)
Ct o Ct
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for the maximum stress failure theory, and

N

e = 3.18 x 10% o i 3
t * Ce

(133)

for the maximum normal strain failure theory. Both Equations
(132) and (133) are graphed in Figure 3 and are tabulated
with th from Equation (129) in Table 2.

If one uses a = 2.75 p instead of a = 3.60 p, then
both Equations (132) and (133) would be 30.9% larger. Or,

if the approximation for v is incorrect by as much as + 10%,

then Equation (132) is unaffected, but Equation (133) becomes

N
. = 3.18 x 10% "t
Ce : 28.6+3.44N
“t
orTr
NC
_ 4 t
e, T 318 x 107 gxTevrTeaN
Cc
t
respectively.

Variations of Rand's empirically determined Nc
t

would also cause changes in the predicted critical shear
stress. A variation of * 10% in N_ would cause a * 10%

t
- change in both Equations (132) and (133).



VII. DISCUSSION

As can be seen from Figure 3 and Tables 1 and 2, the
theoretical critical couette flow shear stresses for 50%
hemolysis are somewhat larger than the empirical critical
shear stress for 1% hemolysis. Although very little data
has been obtained for 50% hemolysis critical shear stresses,
Nevaril'gg‘gl.zo have shown that the average critical shear
rate for 50% hemolysis during a two minute run is actually
3 times the critical shear rate for 1% hemolysis. Thus Te
for 50% hemolysis with t = 2 minutes is 4500 dynes/cmz,
which compares with the theoretical value of 6000 dynes/cm2
using the maximum stress failure theory and 5630 dynes/cm2
using the maximum normal strain failure theory.

Champion et gl.sl have also done some experiments on
red blood cell 50% hemolysis. They added thickening agents,
Dextran and Methocel, to produce 5 minute critical shear
stresses of 2,200 and 10,000 dynes/cm2 respectively. These
values compare with 4670 and 4960 dynes/cm2 predicted by the
maximum stress failure theory and the maximum normal strain
failure theory, respectively, for no additive agents. It
is possible that Champion's thickening agents not only in-
creased the blood viscosity, but also changed the membrane
properties.

34
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The two dips in the theoretical curves in Figure 3
may be ekplained by looking at Equation (129) which is im-
plicit to both curves. The first of the two dips corres-
ponds to the stretching of the spring dashpot couple repre-
sented by qo" and q;" in Figure 2-B. The second dip cor-
responds to the stretching of the dashpot element labeled
q,". Both theoretical curves dip sharply after about 300
seconds. Unfortunately, no comparable empirical data is
presently available in this time range.

Possibly the major cause for any discrepancy between
theory and fact may be due to the non-sphericity of the red
blood cell. 1In fact, at rest, the red cell assumes the shape
of a biconcave discoid. At high shear rates, however, the
red blood cell actually becomes a prolate ellipsoid, thus
approaching more closely the shape of a sphere. At very low
shear rates, however, the red blood cell membrane does not
rotate about the hemoglobin in an ellipsoid shape, but rather
the entire blood cell tumbles about in a somewhat random

motion.32

Thus, this theory is not applicable in low shear
stress ranges.

Another potential cause for discrepancy between theo-
retical and experimental results may be fatigue. It is quite
possible that for long durations, fatigue may be an important
part of the red cell membrane failure mechanism. Since no

data is available on red cell membrane fatigue however, this

factor has been ignored in this analysis. In addition, the
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accuracy of Rand's. curve for N Equation (129), is not

>
Ct

ekactly known.
The one point in Table 1 which does not correlate
with any of the curves in Figure 3 is that of Forstrom and

33

Blackshear's turbulent jet experiments. The critical

2

shear stress between 10~ and110-4 seconds remains relatively

constant for both human and canine blood, the properties of

1.3% Then at 1079 seconds, the

which are almost identica
critical shear stress for Forstrom's experiments appears to
jump a full order of magnitude. The probable explanation
for Forstrom and Blackshear's high critical shear stress
value, however, is that forces on a red blood cell in turbu-
lent flow are much different than that in laminar flow. Also,
the eXtremely high acceleration resulting from a time duration
of 10'6 seconds may add to a different type of failure theory.
It is interesting to note that if one uses G. I.
Taylor's liquid drop failure theory26 directly to predict the

entire viscoelastic hemolysis curve, then if internal circu-

lation is assumed to be inhibited, i.e. p'»e,

Thus the critical couette flow shear stress is slightly more
than twice as large as that predicted by the maximum stress
theory, Equation (106). As mentioned in the Background,

however, Taylor's theory is based upon equalization of internal
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and external pressures at high shear. Since it has been
shown that the internal pressure is always larger than the
external pressure when an encapsulating membrane is present,
Taylor's failure theory is not directly applicable to the
model red blood cell in this analysis.

In summary, the failure theories presented in this
thesis provide a much greater understanding of the mechanism
causing red blood cell couette flow hemolysis. The theories
are shown to roughly predict the entire critical fluid stress
vs. time curve for times up to about 102 seconds and possibly
beyond. In addition, due to the generality of the chosen
red blood cell model, the theory is applicable in predicting
thelfailure of ‘other systems including microcapsules or bio-

logical systems such as eggss
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TABLE 2
THEORETICAL CURVE POINTS FOR EQUATIONS (132,133)
CORRESPONDING TO 50% HEMOLYSIS

Exposure Time (Sec) N ( -d%mris' )
t

dynes
T°1( 'ﬁﬁ?‘ )

dmes
T ( )
c,y 2

0 28.6 1.59 x 10 7.94 x 10°
1074 28.6 1.59 x 10 7.94 x 10°
1073 28.6 1.59 x 10* 7.94 x 10°
1072 26.3 1.46 x 10° 7.77 x 10°
1071 17.7 9.83 x 10° 6.88 x 10°

1 13.5 7.50 x 10° 6.21 x 10°
10 13.2 7.33 x 10° 6.15 x 10°
102 11.2 6.22 x 10° 5.72 x 10°

1.2 x 10 10.8 6.00 x 10° 5.63 x 10°
3.0 x 10° 8.40 4.67 x 10° 4.96 x 10°
103 4.46 2.48 x 10° 3.38 x 10°

t. 1is from maximum stress failure theory.

1

Te is from maximum normal strain failure theory.

2
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APPENDIX - Comparison of Hyperbolic Flow

to Couette Flow

The velocity potential for hyperbolic flow (Figure 4)

is

©
]

¢ 1n? - ¢rh] (A-1)

The flow velocity field may be represented by

<l
i

Ve (A-2)
= ax'1l - ay'J (A-3)

Thus the velocity components are
u' = ax' (A-4)
v' =-ay' (A-5)

When the entire field is rotated by an angular velocity of

a, then the corresponding additional velocity components are
su’ = ay’ (A-6)
Av' =-oXx' (A-7)
Thus, the new velocity components are

A-1



A-2
u' + Au' = a(x'+y') A(A-8)

v' + AV ~a(x'"+y") (A-9)

These components may be expressed in terms of the rotated

couette flow coordinate system by means of the following

transformation:
x' = 1 (x+y) (A-10)

Y2
y' = L y-x) (A-11)

Y2

Substituting Equations (A-10) and (A-11) into Equations (A-8)

and (A-9), the hyperbolic velocity components are

u' + Au' = /2 y (A-12)

V' + AV' = -a/2 y (A-13)

Or, in terms of velocity components in the x'-y' coordinate

system,
u = ay (A-14)
v =0  (A-15)

Since Equations (A-14) and (A-15) also represent the velocity
field for couette flow, then it is shown that the rotating
hyperbolic flow velocity components are identical to the

couette flow velocity components.



