


ABSTRACT

Improving the Efficiency of Map-Reduce Task Engine

by

Mehul Chadha

Map-Reduce is a popular distributed programming framework for parallelizing

computation on huge datasets over a large number of compute nodes. This year

completes a decade since it was invented by Google in 2004. Hadoop, a popular

open source implementation of Map-Reduce was introduced by Yahoo in 2005. Over

these years many researchers have worked on various problems related to Map-Reduce

and similar distributed programming models. Hadoop itself has been the subject of

various research projects. The prior work in this field is focussed on making Map-

Reduce more efficient for iterative processing, or making it more pipelined across

different jobs. This has resulted in an improvement of performance for iterative

applications. However, little focus was given to the task engine which carries out

the Map-Reduce computation itself. Our analysis of applications running on Hadoop

shows that more than 50% of the time is spent in the framework in doing tasks such

as sorting, serialization and deserialization . We solve this problem introducing an

extension to the Map-Reduce programming model. This extension allows us to use

more efficient data structures like hash tables. It also allows us to lower the cost of

serialization and deserialization of the key value pairs. With these efforts we have

been able to lower the overheads of the framework, and the performance of certain

important applications such as Pagerank and Join has improved by 1.5 to 2.5 times.
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Chapter 1

Introduction

This dissertation focuses on improving the performance of the applications written

in a distributed programming model such as Map-Reduce[1]. We redesign the task

engine, the heart of a Map-Reduce platform to make it more efficient while providing

a minimal interface change to the programming model. We use Hadoop, an open

source implementation of Map-Reduce to demonstrate our ideas. Nonetheless, the

ideas in this thesis are not limited to Hadoop, and can be applied to other platforms

which use Map-Reduce or a similar higher level programming interface.

The popularity of Hadoop and Map-Reduce in general can be attributed to the

simple interface provided to the programmers. This interface abstracts out the com-

plex details of parallelization, message passing and fault tolerance. This leaves the

programmer to design and implement their algorithm with map and reduce functions,

which are able to implement any distributed computation[2]. The final program can

be a single Map-Reduce job or a series of Map-Reduce jobs where the output of one

job becomes the input to another job, and the output of the last job is the final output

of the program.

The ease of programmability and reduced human effort has led to wide scale

adoption of Map-Reduce and Hadoop. Google processes 20 PB of data in a day with

MapReduce [1]. Facebook stores 15PB of data in their Hadoop cluster [3]. Hadoop’s

adoption is not limited to the high tech industries. According to the Hortonworks

survey, Hadoop today is deployed by many large organizations across many industries
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including Healthcare, Retail, Financial Services, Government and Manufacturing [4]

eg. JP Morgan [5], Visa [6], and New York Times [7].

This year completes a decade since the Map-Reduce model was first published by

Google in 2004. Since then, many researchers have worked on various problems re-

lated to Map-Reduce and similar distributed programming models. Hadoop itself has

been the subject of various research projects. Many researchers have studied ways of

improving the job response times by improving the scheduling of new tasks and strag-

gler tasks[8, 9]. Machine learning and graph processing algorithms are implemented

in Hadoop. As these algorithms happen to be iterative in nature, there has been

work to optimize iterative Map-Reduce jobs [10]. Map-Reduce online[11] redesigned

Map-Reduce to become more pipelined. The pipelining works from the mappers to

the reducers, and also from one job to another. This improved the efficiency of the

framework, and also allowed new capabilities like online aggregation and continuous

queries.

However, little focus has been given to the task engine which carries out the com-

putations in map and reduce functions. In many applications that we investigated,

we found that more than half of the time was being spent in sorting, serialization

and deserialization of objects. We re-designed Hadoop to solve these problems. We

propose an interface change to the Map-Reduce programming model. This interface

change allows us to use data structures which are more efficient. Our Hadoop can now

speed up applications up to 2 to 2.5 times. Verma et al. solves a subset of the prob-

lems listed above[12]. We adopt different techniques to solve these problems. The key

difference is an intuitive extension to the Map-Reduce interface. This interface helps

us in also avoiding the expensive serialization and deserilization, a problem which is

not solved by Yang et al. Our interface provides opportunities for an asynchronous
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reduce model, which removes the need to have sorting anywhere in the entire pipeline.

This interface is also designed to be backward compatible, and thus can support a

reduce model which is synchronous as well. We provide an option for either the asyn-

chronous or synchronous model through this new interface. We leave the decision of

its use to the programmer. As the programming interface change is mechanical in

nature, it can be automated in the future.

Native Task [13] proposes a more cache oblivious sorting algorithm in Hadoop and

proposes to move the compute intensive tasks to JNI. JNI brings added complexity

to the framework, as it makes the entire system unportable.

1.1 Hadoop: Map - Reduce

Hadoop is largely composed of two different components, the data store or the

HDFS(Hadoop Distributed File System) and the computation engine which imple-

ments Map-Reduce which is responsible for scheduling the jobs and their respective

tasks on the cluster.

Map-Reduce is a data centric programming model. Programmers have to express

their computation in the form of map and reduce functions. The map function is

executed locally on every node. After an all-to-all communication has taken place,

the reduce is called for every key and all the values associated with that key.

Data in Hadoop is stored as a file. It also gives a block level interface, which the

Map-Reduce framework uses to launch mappers on the nodes.

Abstractly the Map-Reduce framework does the following:

• Schedule mappers and reducers on available nodes.

• Allocate input blocks to the mappers.
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Figure 1.1 : Figure showing how the data from Map phase is sorted and then collected

by the reducer where it is merged before the reduce function gets to process the key

value pairs.

• Read the block and call map for every input record in the block.

• Launch the number of reducers as given by the programmer.

• On the reducer, the framework should be able to collect all the key-value pairs

emitted by all the mappers that belong to its partition.

• The reducer should then call the programmer defined reduce for every key and

all the associated values for that key.

• The emitted key-value pairs from the reduce phase are considered as the final

output of the job. This is written in the persistent store as a file in the HDFS.

Each reducer creates its own file in the output directory given by the user.
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The above model defined can be used to implement many data centric programs on

a large cluster. The performance of Map-Reduce applications will be highly dependent

on how the above model is implemented. To describe the contributions made in this

thesis we describe only the relevant implementation in Hadoop below. A detailed

description is provided in section 2.2.

To maintain conciseness the following details assume the memory is infinite.

• The emitted key value pairs from the mapper are buffered in memory. A seper-

ate data structure stores the offsets of every key value pair in the buffer and

also the partition which the key belongs to. To collect all the key value pairs

belonging to the same partition, the framework uses sorting where the key is

the partition number. This description here is incomplete. The next point gives

further motivation and also completes the description of the map phase.

• The reducer is expected to call the reduce function for every key and all the

values associated with the key. Thus, every reducer should collect all the values

together that have the same key. Naively, this can be implemented by collecting

all the key value pairs from all the mappers and then sorting them by the key.

This will collect all the values for the same key together. Since the number of

mappers are more than the number of reducers in general, instead of sorting

taking place both at mappers and reducers, sorting is moved to the mappers

and the reducer just does the merging of the sorted lists. To complete the

description we left above in the map phase, the map sorts the key value pairs

by the partition number when they belong to different partitions and sorts them

by the key when they belong to the same partition.

• The reducer merges the sorted key value pairs that it has received from the
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mappers. The framework then iterates over the merged list, calling reduce for

every key, with the list of values associated with the key.

One of the side effects of the implementation above is that the output from all

reducers is sorted by the key. Since the keys are partitioned, the output is not

fully ordered. It is difficult to argue whether a sorted output was a desired effect.

Nonetheless, in this work we argue that by relaxing the constraint of having a sorted

output, we can improve the performance of applications in general. Since most of the

times the output of the Map-Reduce applications is consumed by other applications,

we believe we can do away the need to have a sorted output.

1.2 Thesis Statement

The efficiency of any Map-Reduce implementation is directly related to the mecha-

nisms involved in processing the data. These mechanisms are directly related to the

programming interface that is provided to the programmers. This thesis shows that

a change in the programming interface allows us to improve the internal mechanisms.

The new interface is simple and intuitive. With the use of efficient data structures,

the overheads are lowered. In the applications that we evaluated, our results show an

improvement up to 2.5 times.

1.3 Contributions

At a high level this thesis presents a more efficient task-engine for Map-Reduce. The

higher efficiency is achieved by removing or reducing the current overheads like sort-

ing, serialization and deserialization. An efficient task engine results in an improved

performance for Map-Reduce applications. Our evaluation show a speedup from 1.5
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to 2.5 times.

• We introduce two different models for computation in a Map-Reduce based

system. Both our models do not require sorting of the key value pairs. The

first scheme adds the capability to make the reducer asynchronous with respect

to the map phase. Our second model is designed for certain special class of

applications such as joins. In this model of Map-Reduce, we retain the existing

property where the reducer is synchronous with respect to the map phase. In

chapter 4 we give a detailed description of both the models.

• We change the programming interface for Map-Reduce. This interface change

adds the capability to make the reducer asynchronous, and removes the need to

have sorting anywhere in the pipeline. This interface is backward compatible

with the older interface, and thus our second scheme of synchronous reducer

works with this new interface as well.

• In the asynchronous reduce model, the computation of key value pairs can start

as soon as the first output is available from the mapper unlike the synchronous

model where the reducer can start the actual computation only when all the

key-value pairs are collected together. The framework also makes the combiner

an in memory operation. This requires no change at the programming interface.

The application performance improves, as the expensive overheads of sorting,

serialization and deserialization are removed.

• The second model for the Map-Reduce engine is specially designed for appli-

cations like Join. This model is based on a hash join based approach used in

parallel databases. We use a novel approach in collecting the key value pairs

through the use of hashing. Instead of partitioning data on the key and sending
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data across, we create hashmaps in the map phase, shuffle the hashmaps and

then join keys across these hashmaps in the reducer. Building hashtables on the

mappers is less expensive than creating them on the reducers. This is because

the mappers are usually more in number than the reducers in the cluster. The

key idea here is based on the observation that the insertions are more expensive

than the lookups.

• Java hashmaps are known to exhibit poor performance and are not designed to

be shared across nodes in a cluster or within different applications in the same

node. We implement a high performance hashmap based on cuckoo hashing

[14]. The construction of this hashmap is based on MemC3 [15]. We construct

this hashmap on an mmap interface in java. This allows the hashmap to remain

in memory, and yet be shared across different services.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2 we describe in

greater details the current Hadoop Map-Reduce system. We explain the internals

with the help of a few Map-Reduce applications. Chapter 3 covers the related work.

Chapter 4 covers the design of our faster Map-Reduce models. In chapter 5 we present

the results and an evaluation study for our faster Map-Reduce design. In Chapter 6

we present the conclusions along with the future work.
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Chapter 2

Background

This chapter presents the design and implementation details of the Hadoop Map-

Reduce based system with the focus being on the task engine. This chapter first

presents an overview of Hadoop’s data storage system and the Map-Reduce pro-

gramming model. It then delves into the task internals in both the map and reduce

phases. This chapter then explains Word-Count, Pagerank and Join which are pop-

ular Map-Reduce applications. These applications are used as examples throughout

the remainder of this thesis.

In this chapter we understand the overheads associated with the Map-Reduce task

engine. We also look at these applications from the programming point of view, to

understand how the programming interface can be extended.

2.1 Data Storage and Programming model

Any Map-Reduce based system like Hadoop can be divided into two components - the

storage layer and the computation layer. In hadoop the storage layer is the Hadoop

Distributed File System. HDFS provides a file based interface like a traditional Unix

file system to store data. As HDFS is a distributed file system, data is distributed

across the nodes in the cluster. The granularity at which each node stores data is

a block. These blocks are replicated across the cluster for fault tolerance and can

also be used for I/O parallelism when two or more jobs are using the same input file.
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Figure 2.1 : Figure showing flow of information from JobTracker to namenode, and

finally into the available map slots

Hadoop uses a concept of input split which can take a value less than or equal to the

size of the block. The number of mappers launched is equal to (Input Size/Split Size).

Having a small input split size affects the performance as it makes poor utilization

of the available disk bandwidth. A large input split size however can reduce the

available CPU parallelism in the cluster. Input split size ranges from 4MB to 128MB

depending upon the type of application. Input split size if chosen by the Map-Reduce

programmer. Figure 2.1 shows the interaction of the system with the hdfs.

The programming model is inspired by the lisp functions map and reduce. At

an abstract level the programming interface requires the programmer to implement

two functions map and reduce. The map function runs locally on every node. It

emits intermediate data in the form of a key and a value. The reduce function then

aggregates all the values for every key. The aggregation here refers to the computation
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that is performed on all the values. At the implementation level, Hadoop and other

similar Map-Reduce systems which are implemented in an object-oriented language,

there exist a mapper and a reducer classes which are extensible. The programmer

overrides the map function in the mapper class and the reduce function in reducer

class to implement the map-reduce logic. Both the classes have setup and cleanup

functions which can be overridden. The Function “setup” is typically used to create

data structures for later use by the map and reduce functions. The Function “cleanup”

is used to do any post processing after all keys have been processed.

2.2 MapReduce Layer

Map-Reduce is the layer responsible for the computations. This layer implements the

programming model discussed above. It is also responsible for scheduling the mappers

and the reducers. setting up the inputs for both the map and reduce functions is done

by this layer. To begin with, this layer obtains the block locations for the input files

and then schedules the mappers. The scheduler takes into account the proximity

of the data block to the node where it can be scheduled. Highest priority is given

when the data block can be scheduled locally. This plays an important role in the

performance of the overall application as the aggregated disk bandwidth at the nodes

is much larger than the bisection bandwidth of the network.

The programmer specifies the path of the input files which are to be used as an

input to the Map-Reduce program. It is also the responsiblity of the programmer to

specify the program which will read the raw data in the file, and convert it into a key

value pair. It is this key vlaue pair which is given as an input to the map function. In

Hadoop this is called as a record reader. So, for example in the text input file every

new line is considered as a record. The input key to the map in such a case is the
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Figure 2.2 : Output files of a mapper, where index file has pointers inside the data

file.

offset in the file, and the value is the entire line encoded as a String object.

The key value pairs that are emitted by the mapper are then partitioned and sent

to their respective reducers. Every emitted key and all its associated values are given

as an input to the reducer. It is the responsiblity of the framework to collect all the

values of the key and call the reduce function. We explain the internal working both

in the map task and the reduce task in the next section.

2.2.1 Map Side Execution

As explained previously the map function is called for every input record in the input

split or the block allocated to the mapper. The emitted key value pairs from the map

function are serialized into a buffer. The memory for this buffer is allocated during the

initialization of the mapper. The size of this buffer is controlled by the configuration

parameter io.map.buffer. While serializing the emitted key values pairs, the key is
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also hashed to find the partition that the key belongs to. This information along with

the key and value offsets are maintained in a seperate data structure. As hadoop uses

the technique of sort-merge-join to collect all values of the same key, the final output

of the map task needs to be sorted. As the buffer size is limited, everytime it is

filled up, this buffer is sorted and spilled to disk. Hadoop uses quick sort to sort the

buffer. The comparator for the sorting algorithm first checks the partition number of

the two keys being compared. If they belong to different partitions then the partiton

numbers are compared. If the keys belong to the same partition, then the keys are

compared together. Thus at the end of the sort phase each partition will be collected

together, and keys inside each partition will be sorted by key. This brings all the

keys which are the same together, which is what is required for the reduce operation.

This operation of sort and spill creates two files, a data file and an index file as shown

in figure 2.2. The data file contains the serialized key-value pairs, and the index file

contains pointers or offsets for every partition in the data file. At the end of the map

phase there are two possible scenarios. If the buffer size was large, no sorting and

spilling would have taken place. In this case the aforementioned sorting is carried

out. If the buffer size is small, we will end up with multiple sorted buffers which

now need to be merged into one single buffer with all the partitions and all partitions

individually sorted. This is done using a standard priority queue implemented as a

heap. For every partition a priority queue is constructed. The elements of the heap

are the sorted buffers for that partition. Key values pairs are extracted from this

heap data structure, which will be in sorted order as that is the property of this data

structure. Assuming there are m sorted buffers in this tree and n keys in all, the cost

of merging these sorted segments will be O(n log m). To reduce m, hadoop uses a

parameter called the maximum merge factor. If there are more than m segments to



CHAPTER 2. BACKGROUND 14

be merged, then m of them are first merged into a sorted buffer and then that sorted

segment is added as an element in the priority queue. This operation reduces the

elements in the heap by (m-1). At the end of the merging operation, a data file and

an index file are the expected output as explained previously.

After all the records have been exhausted by the mapper, the next stage in the

pipeline is a combiner which is also a local reduce operation. This is an optional phase

in the entire execution. Section 2.2.3 explains the internal working of the combiner

and its use case after explaining the reducer since the idea of a combiner is the same

as a reducer.

After the map phase is completed, it is communicated to the resource manager

in the new version of Hadoop, or the job tracker in the older version of Hadoop.

It is then the responsibility of the node manager or the job tracker to notify the

reducer to fetch the map output. The JVM responsible for the mapper now retires,

and the fetch operations from the reducer are fulfilled by the task tracker or the

nodemanager(YARN), which is local to every node. When a particular reducer sends

the request for fetching map output, the index file is used to index into the data file,

and then the data for that partition is sent to the particular reducer.

2.2.2 Reduce-Side Execution

The reducers are scheduled with respect to completion of mappers. This is dependent

upon the configuration parameter called slow start. When the slow start value is 0,

the reducers will be scheduled at the earliest. The scheduler does not schedule all the

reducers in the begining because the reducers are waiting for the mappers to finish.

If all the slots are allotted to the reducers, it will lead to a deadlock. When the value

is 1, all the reducers will be scheduled only after the map phase is completed. The
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Figure 2.3 : The iterator fetches key value pairs from the Heap, and hands them over

to the reduce operation

reducer starts by fetching the map outputs as and when the mappers have completed.

As the map outputs are already sorted by keys, a merge needs to take place. This is

similar to the one that we explained in the mapper phase. It uses the same logic of

using a priority queue as explained previously. The same merge factor is used here,

and an iterator is created for the heap. The only key difference between merging

in the map phase and in the reduce phase is that we don’t need to create a finally

merged sorted buffer. This is because the reduce function fetches the key value pairs

from an iterator, and we can always create an iterator over the heap data structure.

The step-by-step procedure is as follows:

• Create an iterator over all the sorted buffers if the number of sorted buffers is

less than the merge factor. Otherwise, as the number of received map outputs

reaches the merge factor, merge them into a single sorted buffer and add this

element in the heap tree.

• Retrieve the first key from the iterator, deserialize it and call the reduce func-
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Figure 2.4 : Figure showing the operations that happen when a combiner is being

used in an application

tion, passing the deserialized key and an iterator on the values as the second

argument.

• Inside the reduce function, for every new value that is asked by the iterator,

the framework compares the key with the previous key. If they are equal, then

the value is deserialized and returned by the iterator. Otherwise the reduce

function returns as the iterator returns null.

• The framework picks the next key and the whole procedure repeats till all the

key value pairs are exhausted.

The above procedure is also explained more clearly in the figure 2.3.

2.2.3 Combiner

We now explain the use and the implementation details of the combiner in detail.

There are many advantages of doing a combine or a local reduce operation before

sending data to different reducers. First, it greatly reduces the communication over-
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head. Since all the key value buffers are sorted in one pass, duplicate keys exist as

many times their value exists. If the application is such that all the values for the key

can be reduced to a single value, the combiner not only reduces the space occupied

by the values but also by the keys. However the combiner can not be used in all the

applications. For example in the next section we explain the Word-Count which uses

a combiner. On the other hand the Join application does not benefit from having a

combiner. Having a local reduce also reduces the computation time at the reducer,

since this computation is being done in parallel by all the mappers. The combiner

uses the index and the data file created after the map phase to do the local reduce.

For every partition, an iterator is created which iterates over the sorted buffer re-

turning keys and values to the iterator in the reduce function. This works similar to

the design as explained in the reducer. The only difference is the underlying iterator

which in this case is implemented over the sorted buffer, while in the case of the re-

duce phase it was over the heap data structure. For combiner the framework applies

deserializer to all the keys and values, and the output of combiner undergoes sorting

again. To summarize the combiner improves the performance by reducing I/O and

introducing more parallelism. This is shown clearly in figure 2.4.

2.3 Applications

We now explain how Word-Count and Joins are implemented in hadoop.

2.3.1 Word-Count

Word-Count is one of the simplest programs implemented in a mapreduce program-

ming model. Input to the Word-Count program are a group of text files stored in the

HDFS. The record reader for a text file reads a line as a record, and calls the map
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function on it. As shown in code listing 2.1 the map function uses StringTokenizer

to break this line into words. Every word is then emitted as the key, with the key

of type Text and value of type Intwritable. Here Text and IntWritable are wrappers

over String and Integer respectively. These classes implement functions for serializing

and deserializing their respective values. The value of integer is set to 1 for all keys.

By virtue of the design of the Map-Reduce framework, all keys will be sorted and

partitoned. Every reducer will fetch the mapper output belonging to its partition,

merge the outputs and call the reduce function for every word and all its values.

Inside the reduce function, all values are summed up and the final sum is the number

of occurrences of that word in the input data. The combiner also vastly improves

the performance of the Word-Count application by reducing the I/O overheads. The

code listings 2.1 and 2.2 shows the code for the mapper and reducer class respectively.

Listing 2.1: Mapper Class implementation in Hadoop for the application Word-Count

1class Map extends Mapper {

2Text word = new Text();

3

4public void map (LongWritable k, Text v, Context C) {

5String s = v.toString (); // Deserialize

6StringTokenizer t = new StringTokenizer(s);

7

8while(t.hasMoreTokens ()) {

9word.set(t.token()); // Serialize

10C.write(word , 1);

11}

12}
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13}

Listing 2.2: Reducer Class implementation in Hadoop for the application Word-Count

1Class Reduce extends Reducer {

2public void reduce (Text k, Int[] v, Context C) {

3int sum;

4While (val:v) {

5sum += val;

6}

7C.write(k, sum);

8}

2.3.2 Relational Join

Joins is a popular application where data from differenct sources are combined. It

is typically used in many data analytic operations. The most common type of joins

supported by hadoop mapreduce is an equi-join. In a typical one-to-many equi-join

operation, a key(primary key) which uniquely identifies a row from one source, is

combined with the same key in a different source where this key(foreign key) identifies

multiple rows. There are primarily two ways to do joins in a map-reduce environment,

namely map-side join and a reduce-side join. Map side join is a restrictive technique

where one of the tables must be able to fit in memory for the join to take place. The

larger table is already partitioned as it is stored in the HDFS.

A more general technique is a reduce side join where the key to be joined is

emitted in the map phase with the value being the attributes which need to be joined

from both the tables. Since all the keys are mapped to the same partition, a join
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can be implemented in the reduce function. The framework will ensure that the

reduce function receives all the values associated with the key. However, since we

need to join the key from one table to another we need to know explicitly which

values belong to which table. This information can be encoded in the value itself, in

which case before the join operation takes place, all the values have to be retrieved

from the value iterator, stored in memory as a deserialized java object, and then in

another pass the join will be done which will be written to the hdfs. This operation

is expensive since it starts to consume more memory in the form of java objects, and

increases the cost of garbage collection [16]. If however, the values can be retrieved

in an order, where the first value received from the iterator belonged to the primary

table, and all the following values belonged to the other table, then the costs can be

reduced. This is because only the value for the primary key will remain in memory,

while all the following values fetched would be joined with this value from primary

table, and the output will be written to the HDFS. Once the join has taken place,

and the output emitted, this value can be garbage collected. This technique improves

the performance of joins as shown by blanas et al. [16] The second technique uses

less memory, since deserialized java objects occupy much larger memory than the

serialized objects stored in memory. This is implemented in map-reduce using a

simple idea. Instead of the the key being emitted out by the mappers, a composite

key is used. The actual key is appended by a tag. When the table for this key is a

primary table, the tag value is 0. On the other hand it is 1, when it belongs to the

other table. This simple idea ensures that when the keys are merged in the reducer,

the key with tag 0 comes before the keys with tag 1. The first value retrieved in the

reduce will belong to the primary table, and all the values following will be from the

other table. However, a small change is required while partitioning the keys. Since
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we need to find the partition only on the actual key and not on the tag, we extend

the partitioner class and extract the key from the composite key, find the partition

number and return it as a result. This will ensure that all the composite keys with

the same join key reaches the same reducer.
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Chapter 3

Related Work

The main contribution of this work are the optimizations applied to the Hadoop Map-

Reduce based systems. This work presents at a higher level, two different models for

Map-Reduce computation, namely the asynchronous reduce, and synchronous reduce

model. As part of these models, we propose a novel extended interface, which is

intuitive and requires minimal programming effort over the existing model. In the

asynchronous reduce model this interface removes the need to have sorting anywhere

in the entire pipeline. This interface facilitates an asynchronous reducer and also an

in-memory combiner. Our synchronous reduce model is designed for a particular set

of applications like joins. Our contributions for this work are faster hashmaps based

on cuckoo hashing and the novel ways in which the joins happens.

Map-Reduce is not the only distributed programming model. Dryad [17] and

DryadLINQ [18], like map-reduce is a data parallel programming model and runtime

that supports a model of acyclic dataflow graphs. These programming paradigms

help write distributed programs as a graph computation. Our work solely focuses on

improving the performance of the Map-Reduce engine. The ideas used are not specific

to Map-Reduce environment, and can be used in other distributed programming

models as well. The earliest work in mapreduce based systems which advocated

changes to the application interface was map-reduce-merge[19]. The work proposed an

additional merge step which merges the data from heterogenous datasets. The writes

done in the reduce step are sent for merge. Our work provides interface changes which
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help optimize the map-reduce programs, and do not provide additional functionality

like the work done in map-reduce-merge.

The following related work falls in the area of applications running on a cluster,

and which are iterative in nature. It was soon realized in the research community that

for large scale iterative jobs, none of the existing high level distributed programming

models such as map-reduce or Dryad could perform well. One of the reasons for this

behaviour was the materialization of the output to the disk. Most of the data inte-

sive machine learning based applications such as Pagerank [20], HITS[21], recursive

relational queries[22], clustering, neural network analysis happen to be iterative in

nature. Haloop, [10] was the first step of modifying hadoop to use it for iterative pro-

cessing. It proposes a new programming interface to express iterative processing. It

modifies haloop’s task scheduling engine to be aware of iterative jobs such that data

can be reused across iterations. It also implements caching of loop invariant data

across iterations, which further optimizes the performance. Spark [2] was designed

from grounds up to solve the problems of poor performance for distributed applica-

tions which are iterative in nature. Spark provides much broader interfaces to the

programmers and thus can be used for a variety of applications, and not just map-

reduce style applications. Spark proposed a novel abstraction of RDD’s(Resillient

Distributed Datasets). These are fault-tolerant, parallel data structures which can

be shared. There are a rich set of operators that can be applied on RDD’s. Fault

tolerance is provided by tracking the lineage of a RDD. This is tracked by logging the

operations that were done to construct the RDD instead of materializing the RDD’s

to disk. Thus in scenarios where failures do not occur more often, spark can provide

much higher performance. As these RDD’s are designed to be shared across itera-

tions, data often does not need to be serialized and then deserialized to reconstruct
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objects.

The following related work is in the area of scheduling. Scheduling of tasks and

jobs affects data locality and thus has a considerable effect on performance. Matei et

al. [23] address the performance problems in heterogenous environments like Amazon

EC2. The work shows how the scheduler in hadoop can cause severe performance

degradation in virtualized environments. They propose LATE(Longest Approximate

Time to End), which is highly robust to heterogeneity. The key idea is to use a

heurestic to speculate the task which will take the longest to finish, and then execute

that task speculatively. Matei et al [24] then address the problem of sharing of the

hadoop cluster between multiple users. They designed a fair scheduler for hadoop.

The techniques developed has two key contributions which are delay scheduling and

copy-compute splitting. Delay scheduling tries to optimize for data locality by de-

laying the task, while also not letting the job to starve for too long. It uses a relax

queuing policy to make jobs wait for a limited time if they can not launch local tasks.

The paper also proposes to split the I/O intensive(Fetching Map Outputs) operations

from the CPU intensive reduce operations By splitting the two operations, throughput

of the system improves as I/O and CPU can now be overlapped.

Condie et al. [11] designed and proposed Hadoop Online Prototype(HOP), an

alternative map-reduce architecture in which intermediate data is pipelined between

operators. This new architecture allows online aggregation[25], where initial estimates

of the results can be provided several order of magnitudes faster than the final result.

The new architecture also allows to use continuous queries, where new data is analyzed

as it arrives. Pipelining, instead of materializing data on the disk also improves the

performance of the application as it increases opportunities for parallelism, improve

utilization, and reduce response time. Our work unlike HOP does not provide any
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new functionality like online aggregation or continuous queries. The focus of our

work is to reduce the task completion time. Our work on asynchronous reducer,

is orthogonal to the online aggregation work, as we are able to maintain the state

of the previous computation providing an interface change which is intuitive to the

programmer. Online aggregation, although applies the reduce operation early, but it

only applies to the data when it reaches a certain size. This size is provided by the

programmer which is called as a snapshot. These snapshots are then written to the

hdfs. The intermediate states between these snapshots is not preserved, and every

snapshot creates its own state. Our work can be applied in this work, such that every

snapshot builds from the state left from the previous snapshot. Thus the last result

of the hdfs snapshot, will contain the result as if online aggregation did not exist. As

explained previously, we do it using an intuitive interface change to the map-reduce

programs.

Verma et al. [12], like our work also propose the asynchronous reducer model.

This work also solves the same problem which is addressed in our work, which is to

start the reduce operation on the data as it becomes available. The key difference

between the two work is the approach taken to solve the problem. To be able to run

reduce on the same key multiple times with a different set of values requires stateful

computations, ie the state from the previous computation should be stored and be

retrieved when processing the same key again in the future. In this work this problem

is solved by the programmer explicitly saving the state in a tree map data structure,

and then retrieving it later. This requires the programmer to create explicit objects

of the state, and then storing them in the tree map. Our approach makes the state

implicit at the programming interface itself. We use the fact that java is an object

oriented language, where code and data can exist together. In our approach the
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programmer has to move the variables from the reduce function to class members.

The programmer also splits the reduce function. One function is responsible for the

computation, while the other is responsible for the final write operation into the hdfs.

We claim that because of the mechanical transformation from the original interface

to the new interface, in future this step can be automated by the compiler. This new

interface also facilitates an in-memory combiner. The internal framework creates

new objects of this class for every new key it observes, and for the keys which have

already been observed, reduce operation is run on the object. In applications like

joins where asynchronous reduce model is not suitable because of the need to have

large intermediate state, we propose to solve this problem differently. We propose

to use the existing concept of synchronous reduce, but we still get improvements in

performance, by avoiding sorting in various phases of the map-reduce computation

by developing a high performance hashmap which can be shared trivially between

nodes, and between the processes of the same node.

Native Task [13] studies the task engine, and proposes sorting algorithm based

on a cache oblivious model. It also proposes JNI for much of the compute intensive

tasks in hadoop. Although JNI does help in improving the performance, but it brings

along other drawbacks associated with JNI in general, and its use in hadoop makes

the entire solution unportable.

We also study joins in this work, and optimize the reduce side join. Joins has been

well studied in the map-reduce framework. [16, 26]. Sopranos et al. optimizes the

joins at the application level, exploiting the Map-Reduce framework. By changing

the internal Map-Reduce task engine, we can engineer joins for higher performance.

This does not require our new interface desgined for asynchronous reducer, but since

our interface is backward compatible, it can be used for joins too.
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Chapter 4

Map-Reduce computation models

Many Map-Reduce programs spend significant time in sorting, serialization and de-

serialization of data. We solve this problem by creating a novel interface which is an

extension to the original Map-Reduce programming model. This chapter shows how

this new interface supports map reduce style computations without the need to have

sorting, serialization and deserialization of data.

If we look closely at the different type of reduce functions in Map-Reduce appli-

cations, they can be divided into two categories. Typically in a reduce function, we

have an accumulator whose state is updated with every value passed into the reduce

function. Our division of reduce functions into two categories is based on the size of

this state variable. We refer to this two categories as large and small. As Pagerank

aggregates or folds multiple value types into a single value type, the size of the state

is small when compared to a Join application where multiple values of a key are not

folded into a single value. Here every value of a key is part of the state. For appli-

cations where the size of this state is small, we use an asynchronous model, on the

other hand when the state consumes a large amount of memory we use synchronous.

We first delve into the details of the asynchronous model for Map-Reduce. We

then explain the problem with applications with large state with this design taking

the application Join as an example. Finally we explain the design of our synchronous

model. For both the models, an explanation is given at an abstracted level first

to develop an intuition, and then we give the implementation details where specific
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optimizations are also explained that help us in achieving a better performance.

4.1 Asynchronous Design

Our asynchronous implementation spans across both the mappers and the reducers.

As combiners are based on the reducers themselves, we first explain our changes to

mappers when the combiner is not present. We then go on to explain our reducer

and finally the mapper with a combiner.

4.1.1 Mapper - No Combiner

Let us first look at a Map-Reduce application without a combiner. Since there is no

computation required on any key and value after it has been emitted from the map

function and before it enters the reduce function, we can place them directly where

they will be fetched by the reducer. As reducers fetch their respective partition from

every mapper, we create these partitions in the form of buffers in the initialization

phase of every mapper. On every write done in the map function, the partition number

of the key is found, and the key and the value are serialized and appended into their

appropriate buffer. This process keeps happening until all the data is exhausted for

the mapper. In the end we have buffers which belong to every partition, which can

now be fetched by the reducers.

The key difference here with respect with the existing hadoop design to the is

that we serialize the keys and values directly into their respective partition, whereas

in the original design all the keys and values are serialized into a single buffer. Since

the original design requires all the same keys to be together, there is no advantage to

creating a different buffer for each partition. Since each individual buffer will have

to be sorted, hadoop uses a single buffer which is sorted using the partition number
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as the sort key when the keys belong to different partitions and uses the key itself as

the sorting key when comparing the keys from the same partition. In the end there

exists a single buffer and the indices act as pointers to the individual partitions.

Since, no sorting takes place in our design, the performance of the applications

which are not compute intensive in the map phase improves siginificantly.

4.1.2 Reducer

The input to the reducer is the key and the list of all values associated with this

key. Hence the reducer has to fetch all the map outputs, and then merge them.

Merging here refers to the collection of all the values for every key together. This

is required since the reduce function processes all the values for every key at once.

We explain in detail how this merging happens in section 2.2.1. A reduce function

is inspired by the higher-order function “fold” in functional programming. A typical

reduce function looks as shown in code listing 2.2. The beginning of the function is

where the initialization of the variables happens. Then comes the loop wherein the

iterator keeps fetching the next value. Inside the loop computations are performed.

These computations update the state of the accumulator variable. For example, in

word count this happens to be an integer which is initialized to 0 and then every value

is added to it. The loop ends when the iterator has exhausted all the values from the

particular key. The next step is where some other computation on the accumulator

can be performed. This step is optional, and might not be there in all applications.

The next step is where the final output is emitted from the reduce function in the

form of a key and a value. This is a write into the Hadoop Distributed File System,

and is considered as an output of the job. Since the reduce function operates on all

the values of the key at once, the reducer has to wait until it receives the output
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from all the mappers. Thus the slowest mapper determines when the reduce function

can be invocated on the keys and their values. After all the keys and values have

been collected and merged, the framework performs the reduce operation one key at a

time. We break this rigidity in the model by extending the Map-Reduce programming

interface. The novel interface allows the keys and values coming in any order to be

given as an input to the reduce function. This computation happens on only the

particular value. This computation is the same which happens in the loop above.

The computation changes the state of the accumulator associated with the key, to

which this value belongs. We explain in the implementation how this state is stored

and retrieved for every input. When all the values are exhausted for all the keys, the

optional computation is performed for every key, along with the final write into the

Hadoop Distributed File System.

4.1.3 Mapper - With Combiner

As explained in 2.2.3, a combiner is a local reduce operation that is executed on every

mapper. Combiners use the same programming interface as reducers. Every key and

all its associated values are passed as arguments to this function. We first review the

operations performed in the current system, and then explain the problems that we

solve.

• The mapper emitted keys and values are serialized into a buffer.

• Sorting is used to collect the keys together.

• At the end of the mapper, an index file and a data file are created.

• If the combiner is present, then for every key and its associated values, the

function combine is called.
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Figure 4.1 : Figure showing how the processing in combiner gets affected with the

new interface

• After the computation is performed on all the values in the loop, a write will

be done. The write takes place locally in an in-memory file. These local writes

will then be fetched by the reducers.

There are two problems here. First, sorting is an expensive operation which is

used to collect all instances of the same keys together. The second problem is the

serialization and deserialization that has to take place. Serialization takes place when

the writes from the map function are done into the buffer, and deserialization happens

for every key and value passed to the combiner. The second problem is a hard problem

to solve for the following reasons.

• Instead of serializing the keys and values, it is possible to keep them as objects

in the heap. However, since these objects tend to be large in number, the cost

of garbage collection goes up, and hence leads to poor performance.

• The second problem is not very evident, but can be clearly explained from the
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snippet of map code for WordCount in code listing 2.1. In the map function, the

writes are done using the same object as the value parameter in context.write.

Since the object is being reused, the older values will be lost if they are not

serialized. The object can not be cloned by the bottom layers responsible for

maintaining these objects, as Java supports only shallow copy for cloning. For

a deep copy, the programmer has to implement the appropriate interfaces. The

only solution therefore is for the programmer to create a new object everytime

if it needs to be emitted. Mutating objects will therefore not be allowed. As

this constraint can lead to bugs in the applications, this problem needs to be

solved in a different way.

We utilize the same interface that we developed for an asynchronous reducer. On

every write from the map function, the key and value objects are passed directly into

the combine function. A state is maintained for every key, which is updated when a

new value for that key is emitted by the map function, and hence is input into the

combine function to change the state. This step is shown in figure 4.1.

4.1.4 Implementation Details

In the mapper without the combiner, all the writes happen into a file. This file is

backed by memory itself, instead of the disk. We use a tmpfs file system as a mount

point for this file system. Thus, for every partition there exists a file in the tmpfs, and

the key-value pairs are serialized into this file. When the mapper communicates to

the central node of the completion of the map phase, these in-memory files are copied

to the disk. The files in memory need to be written to the disk, as Map-Reduce

follows the design where the reducers fetch the results from the mappers. Since

multiple jobs are being scheduled, every node can be asked to schedule mappers
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without the reducers being scheduled. This constraint requires that the mapper’s

outputs are written to disk. By writing into memory for every write performed in

the map function, we ensure high write throughput is maintained. In the end, when

writes are done to the disk, this is handled by the operating system kernel as a file

is being copied from one file system to another. Java provides a wrapper over the

system call sendfile, where a file can be copied without reading its pages into user

space. This optimization is analogous to batching, as the writes to the disk take place

only once during the entire operation.

4.1.4.1 New Reducer Interface

Our new reducer interface exploits the nuances in the object-oriented style of pro-

gramming. Although the reduce function is inspired from the higher-order function

“fold” in functional programming, it is implemented in Hadoop in an object-oriented

manner. In the current Map-Reduce systems, there exists a reducer class, in which a

reduce function is overridden by the Map-Reduce programmer. Since all the values

of the keys are provided at once, and the output in the form of writes is done in the

reduce function itself, there is no side-effect on the state from one key to another.

On every reduce function, state is created and outputs are performed. If we want to

provide values to the keys, as and when they come we need a way to create state,

store it, retrieve the appropriate state belonging to the input key, and then perform

operations on this state. To do this efficiently and elegantly, we exploit the fact that

code and data are integrated in an object-oriented programming platform. We cre-

ate an object of class type reducer, for every new key seen. This makes side-effects

across keys impossible. If the algorithm requires some global state independent of

the keys to be updated, the interface allows the global variable to be used as a static
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member of the class which can be updated on every value seen independent of the

key it belongs to. Since the final output can only be emitted after all the values

have been processed, we break the reduce function into 3 different functions. The

first function “init” is called when the key is seen for the first time, and this is where

the initialization takes place. The second function “compute” is the compute only

function where the state is updated. The last function “write” is where any compu-

tation required on the final state is performed, followed by the write operation. We

use a high performance hashmap to find the object of type reducer for every input

key. For the first appearance of the key, an object is created and the init function is

called on it. This object is stored in an array, and its index is used as a value in the

hashmap. For every next value associated with this key, the object is retrieved from

the array, and only the compute function on this object is called. When all the keys

and values are exhausted, for every key the “write” function is called. Code Listing

4.1 demonstrates how the WordCount is used in our new interface. We explain the

construction of this high performance hashmap later in this chapter in section 4.2.4.

Listing 4.1: Reducer Class implementation for WordCount with the new interface

1public class Reduce extends Reducer {

2int sum = �;

3public void compute (Text k, IntWritable [] v,

Context C) {

4for (IntWritable val : v) {

5sum += val.get();

6}

7}

8
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9public void write(Text k, Context C) {

10C.write(k, sum);

11}

12}

Thus, the programmer has to modify the reducer class for their Map-Reduce

application. Since the original reduce function has the state variables declared in

the reduce function itself, we need to move them outside and make them as instance

variables such that their state is preserved for every computation that is performed

on them. Moving all the variables outside would cause high memory consumption,

since the objects will be created for every key. Thus, only the variables which are

required to maintain state should be used as instance variables. Since most of the

operations performed are mechanical in nature, we claim this program translation

can be automated using a compiler.

To summarize, in the reducer, for every mapper output that is fetched, we iterate

over all the keys and the values, creating a new reducer object if the key is seen for

the first time, or else retrieving the object from an array and calling the compute

function with the new value as the argument. Finally the write function is called on

every object in the array. Once the writes are done, the references to the objects are

lost, and hence memory is freed through garbage collection.

4.1.4.2 Combiner

The combiner also uses the same idea as used above in the reducer. We create the

combiner object everytime we see a new key. Our implementation of combiner, where

the value is consumed by the combine function as soon as it is created, removes the

need to serialize and deserialize the object. However, there needs to be an object
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associated with every key that will have its state updated. Since in real applications

there are more values associated with every key, in a block of 64MB-128MB the

number of keys will be a fraction of the number of values. Thus, this solves the

problem of creation of too many objects as stated above in As every object created

is immediately consumed by the combiner, and used to update the local state of the

combiner object, it also solves the other problem where objects being reused in map

no longer is a problem. Thus, no expensive serialization and deserialization of objects

takes place, and with a minimal interface change, we are able to efficiently do the

combiner.

4.1.5 Intuition

There exists a fundamental reason why the asynchronous model is scalable and

achieves good performance. When data grows, the rate of growth of number of values

is greater than the growth of the number of keys. As the state associated is pro-

portional to the number of keys, processing data on large number of nodes becomes

possible. For instance, the amount of data Facebook collects over a year will be much

larger than the data collected in a month. However, the difference is because of the

number of values, as the growth of keys slows down for big data.

4.1.6 Limitations

The asynchronous design is able to solve problems at different levels for a Map-Reduce

application. For example it removes the unnecessary serialization and deserialization

required when data is produced and consumed on the same node. It also removes

sorting and uses hashing to collect all the values belonging to the same key. How-

ever, there exists a problem with applications like Join. We stated in the begining
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of this chapter, that we have divided applications into two categories. Since, in Join,

every value is concatenated with the accumulator, the reasons stated in the previous

paragraph do not hold any more. The size of the intermediate state now becomes

proportional to the number of values that exist. This causes high memory consump-

tion over the entire lifetime of the reducer until the end when “write” function is

invoked for every object. Garbage collection causes the program execution to stop

which leads to poor performance for applications like Join. We solve this problem in

our synchronous design.

4.2 Synchronous Design

In our synchronous design, we use the original design of Hadoop’s reducer, where the

reducer waits for the outputs from all the mappers. We merge these outputs from all

the mappers to collect all the keys and their values together. Every key and all the

associated values will be used in the reduce function. Since all the values of the given

key are consumed at once by the reducer, we do not need to have intermediate state

for every key. This is how Hadoop normally works. We are, however, different in the

techniques used to merge these key value pairs. Our objective of not requiring a sort

to take place still holds in the synchronous design. The new programming interface

is backward compatible, and hence can be used in the Join application too.

We first give a detailed overview of our design. We then present the implementa-

tion details.

4.2.1 Overview - Abstract Design

The design decisions for this work are motivated from the application Join, which

happens to be one of the most important applications for analytics. Unlike the asyn-
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chronous work which can improve performance of many Map-Reduce applications,

this design is specific for Join. Since Join is, and will remain one of the most impor-

tant applications on Hadoop Map-Reduce, we believe it is worth the efforts to have

special support for Join in hadoop. These changes co-exist with the asynchronous

design, the programmer chooses the API.

Before going into our design we briefly review the Join application in hadoop which

is described in the background section 2.3.2. In the map function, the key on which

the equi-join takes place is emitted with the values being the fields in the table which

have to be joined. As the framework collects all the keys together on the reducers, a

join operation takes place in the reduce function. To reduce the memory consumption

in the reduce function, the program exploits Hadoop’s Map-Reduce design. The key

is appended with a tag value, such that while sorting the key belonging to the primary

table comes first, followed by the key from the other table. This design allows the

values associated with the primary key to be in memory, while the iterator keeps

fetching values associated with this key, belonging to the other table. Since only the

value from primary key remains in memory, while the other values are short lived

objects, this design gives better performance. This is true because JVM’s garbage

collection algorithms are optimized for short lived objects.

We are able to solve the following problems in the above stated design.

• First, there is enough redundancy while transmitting information. As the input

split of the HDFS file will belong to either the primary table or the foreign key

table, tagging every key with the same value leads to more data being shuffled

across. It is hard to remove this step, since sorting in the reducer will require

the tag information.
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• Since Join does not need a combine operation, the key is serialized as many

times as the values appear for this key in the input split.

• Sorting is just as expensive in Join as it was in the earlier applications that we

discussed.

We use a novel scheme which uses hashing to collect the key value pairs together, while

also solving the above problems of redundancy. Instead of serializing the key-value

pairs, we construct hashmaps in the mappers for every partition. These partitions

are distributed to the reducers. The reducers then collect the same keys in these

hashmaps. We explain how this collection happens in the next section. Since the

number of mappers tends to be more than the number of reducers, construction of

the hashmaps is moved to the mappers, while only merging or collection of keys

happens in the reducers.

4.2.2 Implementation Details

In the initialization phase of the mappers, we create in memory files for every parti-

tion. We create hashmaps in these files. These hashmaps are agnostic to the particular

programming language or environment and can be used anywhere with appropriate

handles. This hashmap supports multiple values for a key. All the keys and values

emitted from the map function are serialized in this hashmap. As explained in the

asynchronous design, these files are also written to the disk at the end of the map

phase. The reducers fetch these hashmaps and starts merging them.

At the time of fetching these hashmaps, no intermediate merging is done. Hence,

the CPU utilization is expected to be low for the reducers, until all the hashmaps

have been fetched. After receiving all the outputs, the iterator picks up the first key
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from the first hashtable, and passes it to the reducer along with the iterator which

will be used to fetch the values. In the reducer, for every fetch of the value in the

iterator, this key is looked up in the hashmaps until it is found. After the key has

been looked up in the last hashmap, it will return null signalling the end of values for

this key. The reduce function will return, and the framework will now pick the next

key from the first hash map and repeat the procedure. We then delete the file backing

this hashmap, once all the keys from this hashmap are exhausted. We now pick the

key which has not been looked up in the next hashmap, and this procedure repeats

till we reach the last unlooked up key in the last hashmap. Since the performance of

joins in the reduce phase will be affected by the design and implementation of this

phase, we do various optimizations to improve the performance. We also show next

that in case of Join, we do not need to find unlooked up keys in all hashmaps.

4.2.3 Join specific optimizations

As explained in the background section on Join, the values in the reduce function

need to be ordered to reduce the consumption of memory. To have the ordering in

values, without having to sort the keys, we use a small signature in our hashmaps.

This signature contains the priority allotted to the hashmap. While fetching the

hashmaps, the reducer checks its priority, and adds it in the appropriate priority list.

In the Map-Reduce join application, the programmer will set “0” as the priority if

this mapper is responsible for an input split belonging to the primary table, and set

a priority of “1” if the input split belongs to the other table. After all the outputs

have been fetched, the reducer will have two lists of hashmaps. The first list will have

hashmaps belonging to the primary table, while the second list will have hashmaps

belonging to the other table. The iterator picks the first key from the first hashtable,
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and does a lookup in all the tables following it in both the lists. Since the join

operation takes place between the keys from one table to another, we need to iterate

for keys in the hashmaps which belong in the first list only. This invariant holds for

both the join operations, i.e. one-to-many and many-to-many. For a one-to-many

join, the keys and values can be directly serialized into buffers like in the asynchronous

design with no combiners. This is so because, as the first list of hashmaps will have

only one copy of every key, a lookup will not be required. The buffer just needs to

support an iterator over it. However, for a many-to-many join, we still need hashmaps

in the first list.

We now explain the construction of the hashmap which is based on the original

work from MemC3[15]. We then explain our optimizations on top of this hashmap.

4.2.4 Hashmap Construction

Our hashmap uses cuckoo hashing as a hashing technique [14]. It supports the usual

GET and PUT operations. It also supports an iterator, which enumerates over all

the keys in the hashmap. In cuckoo hashing keys can be hashed to two locations or

buckets. On a collision with another key, this other key is displaced to its alternate

location. This can cause recursive displacements. Specifically, displacements will

repeat until a vacant slot is found or the maximum number of displacements have

taken place. If all the keys have not been placed in vacant positions till the maximum

number of displacements, the hash table is doubled. However, the space utilization

is around 50% which is very low. We use the same techniques from the prior work,

where the set associativity of the bucket is set to 4. This improves the space utlization

to 95%, with the maximum number of displacement set to 250.

Now we explain the construction of this hashmap. Every hashmap is constituted



CHAPTER 4. MAP-REDUCE COMPUTATION MODELS 42

of two files. Since the keys are of variable length, we store the keys and values

seperately from the hash table. The hashtable stores the pointers to the keys. To

reduce the memory references while doing a lookup, a small summary(1-byte tag)

is stored along with the pointers. This tag value is the least significant byte of the

hash value. Since tags can collide we need to compare the keys, to ensure it is the

correct key. Hence, a negative lookup makes 8/28 = 0.03 pointer dereferences on

average. With the pointer size being 4 bytes, every bucket uses 20 bytes in all. As

this fits into the CPU cacheline(usually 64 bytes), on average each lookup requires

two cacheline reads. These tags are also used to find the alternate locations for the

key. This optimization avoids a fetch of the key to calculate alternate locations.

4.2.4.1 Optimization

Our optimization in the construction of hashmaps is based on the following observa-

tion. In the reducer, for every key picked up by the iterator, we do a lookup for the

key in all the hashmaps which follow it. Since all the hashmaps are constructed from

the same input split size and assuming the data is distributed identically in a cluster,

we will be fetching the same bucket from all hashmaps. Since our hashmaps are page

aligned(side effect of memory mapping the files), these buckets will fall in the same

cacheline. This can cause conflict misses, as the set associativity in CPU caches is

limited(usually 16 for L3 cache). If the next key picked up by the iterator belongs to

the same bucket, it will need to be fetched from memory, since all the previous cache

fetches from the hashmaps would have evicted it from the cache.

To fix the above problem, we make use of the mapper id. Mapper-id’s are sequen-

tial numbers from 0 onwards. Every bucket obtained after applying the hash to the

key is offset by the mapper-id. This ensures that identical keys do not all fall in the
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same bucket for every hashmap. In the reducer while doing a lookup, this offset is

added appropriately, as the mapper-id is part of the hashmap signature.
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Chapter 5

Analysis and Evaluation

This chapter presents the experimental evaluation of our work. Since this work

presents two different models for Map-Reduce computation, we evaluate Hadoop on

WordCount, Pagerank for our asynchronous design, and reduce side Join for our

synchronous design. We compare the run time performance of the applications in

original Hadoop with our modified Hadoop, while also presenting some interesting

observations from these benchmarks.

The analysis present in this work reflects the various ineffeciencies present in

Hadoop. We observe high overheads in the task engine in activities such as sorting,

serialization and deserialization. As state previously that these problems stem from

the stateless nature of Map-Reduce functions. We fix this problem by introducing a

new interface which allows map and reduce to have side effects. Our new interface

remains simple and intuitive to the programmers. Our evaluation of the benchmarks

yields that we gain performance improvement from 1.5 to 2.5 times.

5.1 Experimental Setup

We run our experiments on a cluster of 20 m3.xlarge servers on Amazon EC2. The

master node or the resource manager is located on a different machine. We use

Hadoop 2.2.0 with Java 7 for our results and analysis. Each server has 4 cores of an

Intel 8 core Xeon E5-2670 CPU(2.60 GHz) and 15 GB’s of RAM. We use a 128MB
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block size by default for our experiments.

We have configured Hadoop to use a maximum of two concurrent running tasks

on every machine at a time. With YARN, the application master is scheduled on

one of the nodes belonging to the cluster. Thus, we get a maximum of 39 slots for

execution of mappers and reducers at a given time.

5.2 Workload Generation

For our applications, we obtain our data from the following sources. For Word Count,

we use Hadoop’s random text writer application to generate data. This application

allows use to set the number of mappers per node, and the amount of data written

from each mapper. For Pagerank, we use real data collected from crawling the web.

This data is made available from ClueWeb09 [27]. This data contains the first 50

million English pages with 450 million outlinks. For the application Join, data is

generated from a Zipfian distribution. The size of the record in the small table is x,

while the size of the record in the large table is y.

5.3 Word Count

We evaluate word count with the following different configurations.

• In this benchmark we use more data that can be processed by our Hadoop

cluster at an instant of time. Since we have 40 slots with a 128MB block size,

we can process a maximum of 5 GB of data in parallel. We use 15 GB of input

data for the word count program. Hadoop has a configuration parameter named

“mapred.reduce.slowstart.completed.maps”, which is responsible for scheduling

reducers depending upon how many mappers have finished their execution. A
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Figure 5.1 : Word-Count performance with increasing number of reducers

value of 0 will start scheduling the reducers immediately, while a value of 1 will

wait for all mappers to finish, before the reducers can be scheduled. A value

of 0 does not guarantee all the reducers will be scheduled, as that can cause a

deadlock. Reducers can not finish before the mappers, and if reducers occupy

all the slots, the mappers will starve forever. This value is important because

reducers in our modified Hadoop start to process mapper’s outputs as soon as

they are available.

Let us first compare the results between our modified Hadoop and the original

Hadoop for both the values of this configuration parameter. When the slow start

is 0, word count on our hadoop cluster is 1.54 to 1.76 times faster, depending

upon the number of reducers. We also see that as the number of reducers

increases, the time taken to complete the job also increases. This is because,

as the number of reducers increase, they occupy a few slots in the cluster, and

the new mappers can be scheduled only when the earlier mappers have finished

their execution. Word Count is not compute intensive in the reducers, and the
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loss of parallelism owing to the slots occupied by the reducers causes the map

phase to take more time. This results in poor performance despite having a

larger number of reducers. However, this is not true when the slow start is 1.

As the number of reducers increases, the performance improves as a result of

increased I/O and CPU parallelism. This behaviour can be observed in both the

baseline version and our optimized Hadoop. Another interesting observation is

the performance with 5 reducers. In the case of original Hadoop, the slow start

values does not affect the performance. However with our version of Hadoop

slow start 0 gives better performance than slow start 1. This is because of our

asynchronous computation in the reducers. With slow start 0, by the time the

last mapper finishes, the reducers have also progressed enough in their task. In

original Hadoop however the actual computation in the reduce function starts

only when the last mapper has finished its task.

• In this benchmark we configure the number of mappers and reducers such that

they all can fit in the cluster at the same time. We use this benchmark to

mitigate any scheduling overheads, and dependency issues which arise when

scheduling the mappers and reducers. However, Hadoop will still not schedule

all the reducers in the begining. This is because the scheduler is conservative

before using all the resources in the cluster. It will launch a few reducers, and

then wait for the mappers to make enough progress before scheduling the rest of

the reducers. This benchmark consists of 30 mappers and 9 reducers, making a

total of 39 slots. Since the application master, which is responsible for managing

the application, occupies one slot in the cluster, we are left with 39 slots for the

mappers and reducers. Figure 5.2 shows the difference in their performance.

Word count on our version of hadoop takes 30% less time to complete.



CHAPTER 5. ANALYSIS AND EVALUATION 48

  
  

Figure 5.2 : Word count performance with 30 mappers and 9 reducers

  

Figure 5.3 : Map Phase Execution time for word-count with 128MB block size

We now present the breakdowns of the word count application. The performance

gains that we obtain are mostly or entirely due to the faster execution in the map

phase.

Figure 5.3 presents the execution time in the map phase. The map phase in our

design outperforms original Hadoop by 2.8 times. The execution time of the mapper

depends only on the input split size, which is 128MB in our case. In our design the

execution time in the map phase is also dependent upon the number of unique keys.

As we introduce the concept of an asynchronous combiner, there exists a live state for
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Figure 5.4 : Word-Count performance break down in Map Phase for baseline Hadoop

every key. For pathological cases where the number of unique keys is very large, the

garbage collection time can dominate the overall execution time. With a fixed block

size, the average number of values per key will determine the number of unique keys.

5.3.1 Application Breakdown

We obtain the break down of the application performance in Hadoop using the stan-

dard technique of sampling the program counter.

Figure 5.4 shows the break down in the map phase. Majority of the time in map

phase is being spent in sorting. Deserialization takes 13% of the execution time.

Deserialization happens when the combiner phase is invocated. This is the phase

where key value pairs are fetched from an iterator. As the key value pairs are serialized

in memory, the iterator needs to compare every key with the next contiguous key to

find where the new key begins. The iterator returns null when a new key is seen. This

is done so that the reduce can finish and emit its output, and a new invocation of

reduce can be done. The second cost associated with deserialization is the creation of

the object from the serialized data. 6.88% of the time spent in map phase is spent in
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Figure 5.5 : Word-Count performance break down in Map Phase for our modified

Hadoop

serializing the String object into a byte stream. This is different from writes, which

only account for the time taken when emitting the output of mapper and combiner.

Creation of tokens takes 6% of the execution time. Since new objects are created

from every line read, StringTokenizer becomes an expensive operation overall.

Figure 5.5 shows the breakdown in our modified Hadoop version. As the execution

time is much lower than the original Hadoop, the fraction of time taken by the

category other has gone up. Since every write from the map is causing a write into

the hash table, we have combined the writes and the cost of hashing into a single

entry. 21% of time is spent in writes, and in hash table operations like lookups and

insertions. Serialization accounts for 19.8% of the execution time in our modified

Hadoop.
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5.4 Pagerank

Figure 5.6 : Pagerank performance with increasing reducers and block size

In this benchmark we use real data obtained from crawling the web. The results

show that we are 2 times faster as compared with original Hadoop. We present a few

interesting observations, along with the conclusions that we can make from the data.

The first interesting observation that we see in this data is that the performance

is good for small reducers and large reducers. However, it is not so good for reducers

in between. This happens because of poor load balancing between the nodes when

computing the reduce phase. Since the maximum available CPU parallelism is 39

slots, the best performance can be obtained only when the reducers are set to a

multiple of 39. This will ensure that all the CPU’s are involved at all times when

computing reduce. It can be clearly seen that if we use 39 reducers, and assuming

the data is not skewed, the time taken for the reduce phase will be (t/39). Here we

assume that it will take t time for one node to compute reduce for the entire data. If
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we use 40 reducers instead, then the time taken in the reduce phase will be (t/40 +

t/40 = t/20). This effect is what we observe in the benchmark figure 5.6.

5.4.1 Size Invariant Performance

Our benchmarks show that in original Hadoop, the performance is slightly better with

a block size of 64MB. While the performance of Hadoop in our version deteriorates a

little with 64MB of block. This is because with small block sizes the cost of sorting is

less. In other words, sorting two 64MB blocks is faster than sorting a single 128MB

block. However, since our design engenders the performance to be linear in the size

of the data, the performance is invariant with respect to block size. With 64MB

blocks, a larger number of reducers needs to be launched, and the extra overhead of

launching these tasks causes the performance to deteriorate a little. However, this

does not allow us to use as large a block as possible, since that would cause the

intermediate data to overflow on to the disk. With this information, we introduce a

simple model for calculating the optimum size of the input split. Suppose the input

size of the data is x, the total number of slots in the cluster is y, and the maximum

block size for which data does not overflow into disk is z. Then, the optimum input

split size can be defined as

Optimal input split = Min(x/y, z)

This will give us the optimum input split size, where we use a minimum number of

slots, while making the best use of available parallelism. The weakness of this model

however is that it assumes all the slots in the cluster will be available to it in a single

pass. Since the cluster is usally shared, getting all the slots at the same time is not

a good assumption. In this thesis we do not solve this problem, and leave this as an
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open problem. The above model for deciding the optimal number of mappers is also

applicable for finding the optimal number of reducers as well.

We also claim that this model can not work for the original Hadoop design. This

is because on one hand selecting a smaller size block is favourable for sorting, however

when it comes to I/O bandwidth, a larger block size is preferred. With our design,

all the factors require the block size to be as large as possible, limited by the split

size that still allows the intermediate data to fit in memory.

If we apply the ideas to the current data we have, a block of 175MB will be

required for only one pass by all the mappers. We get a trivial improvement of 6%

from the block size of 128MB. We do not run this benchmark on original Hadoop as

that will perform much worse than with 128MB blocks.

Although Pagerank performance in original Hadoop is better with 64MB block

size, it uses twice as many mappers to achieve that performance. Since a Hadoop

cluster is shared amongst many users, more number of mappers can cause longer wait

times for the job. This happens because Hadoop guarantees some kind of fairness

amongst the jobs. Since there will be contention amongst the tasks from various jobs,

having more map tasks can take longer to complete.

5.5 Join

We use an entirely different model of MapReduce computation for Join because of the

amount of intermediate state that is created. Our asynchronous reducer can generate

upto 6 times more data in the heap before a write is done as compared to the serialized

data received from all the mappers. This is because every value is occupying space,

whereas in the previous two applications all the values were folded or reduced to a

single value which was occupying state.
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Figure 5.7 : Reduce side Join performance with increasing size of reference table

This benchmark is adapted from the join benchmark described in Pavlo et al. [28].

Our benchmark consists of two tables, a ranking table and a uservisits table. The

ranking table contains the primary key, and so each key appears only once in this

table. Each record is 15 bytes long, where the first 9 bytes consists of the primary

key followed by the value. On the other hand the record in the uservisits table is

40 bytes in length. Within the record the value occupies 30 bytes, 9 bytes for the

join key, and one byte exists for the delimitter. The value here is a composite of two

things, and the join operation filters out the first 15 bytes, and the next 15 bytes are

used for the join. The number of times the given key appears in the uservisits table

is determined using a zipfian distribution.

In figure 5.7 we show how the performance is affected by keeping the large table

as constant, while increasing the size of the small table. In this benchmark we are

trying to simulate the effect when the number of unique keys keep growing while the

size of the data is same. Thus the average number of values per key is reducing as
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Figure 5.8 : Reduce side Join performance with increasing size of reference table

we keep on increasing the size of small table. Our version of Hadoop outperforms the

original Hadoop by a factor of 2.

In figure 5.8 we show how increasing the large table affects the performance.

In this benchmark we simulate the effect when the average number of values per

key increases. As the large table size increases, the cost of I/O and the amount

of work to be done by the reducers increases. Our performance improvement over

original Hadoop begins at 2.5 times for the smallest table, and decreases as the table

size increases. Nonethelessr, for the largest table size of 30GB, our performance

improvement is still 1.5 times.

Since the application join is not itself compute intensive, the computational over-

heads of the framework constitue the dominant part of the overall execution time.

On the reducers, our performance is comparable to what original Hadoop achieves.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a more efficient task engine for Map-Reduce. The higher efficiency

is achieved by removing or reducing the current overheads of sorting, serialization and

deserialization.

This thesis then provides a new interface for Map-Reduce programs which pro-

vides better performance. The interface is designed to be simple and intuitive for

programmers. This interface removes sorting altogether from the entire pipeline of

Map-Reduce programs. Secondly the interface also provides the ability to do asyn-

chronous computation in the reducer. We use popular applications like Word-Count

and Pagerank on this interface.

However, for applications like Join this interface is designed to do synchronous

computation as well similar to the original Map-Reduce design. This is because

Join applications is fundamentally different from applications like Word-Count. We

evaluate these applications on this new interface, and with the modified Hadoop task

engine. Our evaluations show up to 2.5 times better performance on some of these

applications.

Hadoop and Map-Reduce have become the de facto standard for large scale data

processing. The work in thesis allows to improve the performance of many Map-

Reduce applications on Hadoop. As Hadoop is used on large clusters, improvement
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of efficiency on such a large scale helps reduce the cost both in terms of time and

money.

6.2 Future Work

There are many directions where the work in this thesis can be extended to.

One of the assumptions that this work makes is that there is enough memory for

doing the Map-Reduce style computation. On the mappers this can be made certain

by deciding the input split size such that the intermediate data does not flow into the

disk. However, on the reducers we can never be certain as data can get skewed, and

adding more reducers will not be of much help. In such cases where the reducers have

more data to process can enter the state where it uses the original design of sorting.

Sorting is one of the best known techniques to collect data when it is too big to fit in

memory.

Map-Reduce online [11] discussed a possible solution where the mappers output

is pushed to the reducers instead of the reducers fetching the output. Pushing the

mappers output as soon as the internal buffers are filled, can cause the reducers to

do more work, as they need to do the sorting instead of merging. This is not a good

idea. Since the mappers tend to be more than the number of reducers, we lose on

parallelism if reducers have to do the complete sorting. The paper discusses possible

strategies to counter this effect. However, our work is complementary to this design,

as there is no need to perform sorting on the key value pairs. In case of asynchronous

design, since the order does not matter to the reducers, pushing partial outputs can

increase the effective pipelining in the Map-Reducer framework. For our synchronous

design, since we use two files for every hashmap, the second file, which contains the

data and not the actual hash table can be pushed partially. The hashtable file however
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will be pushed only at the end of the map phase.

As also stated in our thesis, the Map-Reduce program written in the original pro-

gramming model can be translated automatically to use our extended programming

interface. We believe this is possible because of the mechanical changes needed to be

applied to reach our extended interface.

We can also think of a hybrid model of computation here. Since our asynchronous

model can bloat the internal JVM heap and cause garbage collections, a hybrid model

can solve this problem. If the asynchronous reducer causes memory to cross a par-

ticular threshold, the system can automatically move to a state, where it will now

wait for all the mappers output to be fetched first, and then process all the values for

every key, do a write and free the state or the memory in the heap associated with

this key. This is possible because our extended interface is backward compatible.
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