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ABSTRACT.

In this paper, we propose a new framework for
studying joint distributions of variables beyond
tlme—frequency and time-scale. When applica-
ble, our results turn the theory of joint distribu-
tions of arbitrary variables into an easy exercise
of coordinate transformation. While straight-
forward, our method can generate many distri-
butions previously attainable only by the gen-
eral method of Cohen.

1. INTRODUCTION

The successful application of joint time-frequency
distributions to problems in time-varying spectral
a.na.ly51s has stimulated considerable recent inter-
est in distributions of other variables for use when
a strict tlme-frequency analysis is not appropriate.

Joint distributions generalise single variable dis-
tributions that measure the energy content of some
physical quantity in a signal. Given a quantity a
represented by the Hermitian (symmetric) opera-
tor .A, we obtain the density |(IF4s)(a)|? measuring
the “a content” of the signal s simply by squaring
the projection of s onto the eigenfunctions u of

A [1]
/ s(z) (wA(z))” da|

l(Fas)a))* =
Cla,ssxca.l examples of smgle variable densities in-
clude the time density |(F7s)(8)|? = |s(t)|? and
frequency density |[(Frs)(/)? = [(S)S)? ob-
tained by projecting onto the Dirac eigenfunctions
of the time operator (7 s)(z) = z s(z) and the si-
nusoidal eigenfunctions of the frequency operator

(Fs)(=) = 7278(2)-
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Joint distributions attempt to measure the si-
multaneous signal energy content of multiple phys-
ical quantities. Given two quantities a and b, a
joint distribution (P, s)(a, b) measuring the joint
a-b content in the signal s has as marginals the re-
spective A and B energy densities!

[@ass)abyds = [(Fas)a)?
J®assab)de = (Fs)O)

The Wigner distribution from Cohen’s class of
time-frequency distributions [1] supplies a classical
example of a joint distribution that marginalizes
to the time and frequency densities.

Il

Many different constructions have been pro-
posed for generating joint distributions. The var-
ious approaches fall into two broad categories:
general methods (difficult) and coordinate change
methods (easy). General methods can create dis-
tributions for every possible pairing of physical
quantities by working from first principles [1, 4].
Coordinate change methods, on the contrary, sac-
rifice some flexibility for simplicity by bootstrap-
ping existing distributions into new contexts using
signal or axis transformations [5].

While not general purpose, coordinate change
approaches to joint distributions remain attrac-
tive, because they provide a straightforward inter-
pretation of the distributions they construct. In-
dividually, each transformation method has severe
limitations, however, as each technique can gener-
ate distributions for only a very restricted set of
physical quantity pairs. The purpose of this pa-
per is to demonstrate that a novel combination
of two different coordinate change procedures can
manufacture joint distributions for a much larger
number of physical quantity pairs. In particular,

. 1 Alternatively, we can define joint distributions in terms
of their covariance properties under certain unitary trans-
formations. For more details, see [2, 3].
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our new procedure can generate most of the dis-
tributions considered as examples of the general
method of Cohen in {1]. Thus, when applicable,
our results turn the difficult theory of joint distri-
butions of arbitrary variables into an easy exercise
of coordinate transformation.

2. THREE APPROACHES TO JOINT
DISTRIBUTIONS

2.1. Cohen’s general method

Given two operators A and B representing two ar-
bitrary physical quantities a and b, Cohen forms
the joint distribution of @ and b as (see [1, 4] for
more details)

Papsda,)) = [[f @) (er=4+8815) )
x e 92m(aa+0b) 4o gy dg.

Cohen’s construction is general, but it requires
that we solve a sometimes complicated operator
equation to express the exponentiated operator
e/2m(@A+8B)  The time-frequency case is well un-
derstood; using the time and frequency operators
T and F yields Cohen’s class of time-frequency
distributions {1].

2.2. Axis transformation method

‘Joint a-b distributions are easily obtained when we
can relate these variables to time and frequency
by @ = a~!(t) and b = B~1(f). In this special
case, we can derive an a-b distribution simply by
warping the coordinates of a time-frequency dis-
tribution [4]

(Paps)(a,b) = |a(a) BB)| (Puss)lala), BB

It is easily verified that all' P,3s obtained in
this way correctly marginalize to |(IFas)(a)l?
= |a(a)| |(Frs)(a(a))l* = [&(a)] |s((a))|* and
I(lFBs)(b)l2 = 180 1(Fa)(BO)E = 18(3)
|S(B(B))2. ,

Ezample: Distributions Py ,s of time t and “in-
verse frequency” r (represented by the operator
R = é’v) can be constructed from Cohen’s class
time-frequency dlstnbutlons through the change
of variable r = & L [1]. The resulting class of dis-

tributions, obtained as
b eua(nl),
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(P s)t,r) =

- (Fes)(D)? =

’ Baraniuk

marginalizes to time |s(t)|? and inverse frequency

l(FRs)(P)I = & |S(fo/r)I".
2.3. Signal transformation method

Joint a-b distributions are also easily generated
when the quantities a and b are unitarily equivalent
to time and frequency [5], with

A = U'TU, B=U"FU (1)

and U a unitary transformation. In this case,
a joint a-b distribution can be obtained by pre-
processing a time-frequency distribution with the
transformation U

(Pa,s s)(a, b») = (P¢s Us)(a,bd).

The signal transformation U can be interpreted as
“rotating” the coordinates of the time-frequency
distribution to the new variables.

All P,ps obtained in this way correctly
marginalize to [(Fas)(e)? = |(F7Us)(a))®* =
(Us)@) and [(Fas)o)P = [(FsUS)B)® =
|(IFUs)(b)}2, with F = IF x the usual Fourier trans-
form operator [5].

Ezample: Define the logarithmic time opera-
tor (L£s)(z) = log(2)s(z), and define the Mellin
operator H = 3(TF + FT). (Cohen refers to
H as the “scale” operator [1].) These operators
are unitarily equivalent to 7 and F as in (1)
with (Us)(z) = €*/?s(e®). Therefore, we can
construct distributions marginalizing to log time
[€/2 5(e")|? and Mellm transform

(Fms)(m)* =

simply by preprocessing the signal by U before
computing a valid time-frequency distribution [5,
6. , .

. 2
/8(:6) e-j21rmloga: |xrl/2 dz

2.4. Shortcomings = of = transformation

methods

While simple, both the axis and signal transforma-
tion methods place rather severe restrictions on
the pairs of operators for which they can gener-
ate joint distributions. In the axis transformation
method, we require the variables a and b to be
warped versions of time and frequency.? In the sig-
nal transformation method, we require the opera-
tors A and B to be unitarily equivalent to time and

?In fact, it was precisely this shoitcommg that lead
Scully and ‘Cohen to de velop the genera.l approach of Sec-
tion 2.1.
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frequency. Note, for instance, that in warping the
frequency marginal to Mellin transform as above,
we must accept log time for the other marginal.

3. LINKING SIGNAL AND AXIS
- TRANSFORMATIONS

Conventional wisdom has maintained that, owing
to the individual limitations of the axis and sig-
nal transformation methods, only general opera-
tor methods can generate joint distributions for
all possible operator pairs. However, when used in
tandem, the axis and signal transformation meth-
ods yield a powerful method for generating a large
number of joint distributions.

By executing first a unitary preprocessing trans-
formation on the signal and then an axis warping
transformation on the distribution, we can remap
time-frequency distributions to a large class of dif-
ferent joint distributions.

Theorem: Let a and b be two variables whose
Hermitian operator representations 4 and B sat-
isfy the following conditions:

1. A and B can be related to the time and fre-
quency operators as

A=27'TZ, B =UFU, (2

with Z and U unitary transformations.
2. The composition V = ZU~1 is an axis warp-
ing operator of the form

(Vo)=) = [ glo(=)].  (3)

with v a smooth, 1-1 function.

Then a joint a-b distribution (P,4s)(a,b) can
be constructed from a time-frequency distribution
(Pes5)(t, f) through

(Paps)(a,b) = |i(a)] (PrsUs)v(a),b]. (4)

Proof: Direct evaluation shows that each distribution
_ of the form (4) marginalizes to |[(F 45)(a)|? = |(Zs)(a)}?
and |(Fss)(b)|* = |[(FUs)(8)[>.

The transformation U rotates the (i, f) coordi-
nates of the time-frequency distribution to new co-
ordinates (u, ). The transformation V then warps
the rotated time axis u to align it with the quan-
tity a.

In other words, if A and B relate to 7 and
F as in (2) and (3), then we can obtain a large
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class of a-b distributions using a simple three-step
procedure:3

1. transform the signal s s Us:

2. compute a conventional time-frequency distri-
bution of the transformed signal;

3. warp the remapped time axis of the resulting
distribution.

A numerical algorithm for warping time-frequency
distributions suitable for use on a digital computer
is readily programmed.

The advantage of the double transformation
procedure is that it breaks the severe restrictions
placed on the quantities a and b by both the axis
and signal transformation methods described in
Section 2. By allowing the choice of both U and
Z, we can derive a much larger class of distribu-
tions. However, completely free choice is still not
possible, because U and Z must have the struc-
tural property of cancelling modulo the warping
operator V.

Several extensions to the theorem are straight-
forward. Reversing the rdles of time and frequency
moves the warping transformation in (4) into the
second argument. We also do not have to start
from time-frequency distributions. We can map
distributions based on arbitrary operators C, D
to distributions based on A, B so long as all four
operators obey a relation analogous to (2). The
advantage of starting from time-frequency distri-
butions is simply that they are well understood
and therefore aid in understanding the new a-b
distributions.

4. EXAMPLES

Linked signal/axis transformations are especially
useful for transforming time-frequency distribu-
tions to distributions of time versus a “warped
frequency” variable. In this case, we set Z to the
identity operator, choose U to be a warping oper-
ator based around the axis warping function v,
and set V = U~ to warp the rotated time axis
back the time variable. The resulting distributions
marginalize to time and the transform

/(Pt,,, s)(t,b)dt = /s(x) e~ 32 |5( )2 d 2_

3If we define the 2-d transformation V as the area-
preserving change of variables

(VG)(z,9) = [9(=)| Glv(a),b],
then we can write (4) in the standard form Pap = VP, sU

found in {5]. However, whereas [5] emphasized using V
only to warp both axes of P, s back to indicate time and

frequency, in this paper, we exploit a range of different V.
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Each different choice of v results in a different
warped frequency transform matched to a dis-
tinct class of instantaneous frequency character-
istics. The Fourier, Mellin, and chirp transforms
result from the choices v(z) = z, v(z) = log z, and
v(z) = |z|° sgn(z), respectively.

To continue the example of Section 2.3, apply-
ing the warp U~ to the log time axis of the log
time versus Mellin distribution remaps that axis
back to true time. The resulting distributions lie
in Cohen’s class of time-Mellin distributions (time-
scale in his terminology) [1]. This class contains
the Marinovich-Altes (warped Wigner) distribu-
tion [6, 7]. It is important to note that this class
is unattainable by either axis or signal warping
alone. '

In Figure 1 we show two distributions of a sig-
nal consisting of two components concentrated
along composite linear/sinusoidal instantaneous
frequencies. Since the Wigner time-frequency dis-
tribution does not match signals of this type as
well as sinusoids, impulses, and linear chirps, it
exhibits copious cross-components. Prewarping
the signal to account for the form of the signal
yields a postwarped distribution that marginalizes
to time and “composite linear/sinusoidal instan-
taneous frequency” content and therefore better
matches the signal.

Reversing the roles of time and frequency in
the warping procedure will yield frequency ver-
sus warped time distributions that match different
classes of group delay (dispersion) characteristics.

5. CONCLUSIONS

In this paper, we have proposed a new framework
for studying joint distributions of arbitrary vari-
ables. While our method is straightforward and
easy to understand, it can generate many distri-
butions previously attainable only by the (more
complicated) general method of Cohen, includ-
ing time versus frequency, time versus inverse fre-
quency, time versus Mellin transform (scale), and
time versus chirp distributions. In addition to pro-
viding insight into these new signal analysis tools,
our warp-based constructions lead to efficient im-
plementations for use in applications.*

4Thanks to Leon Cohen for suggesting this more in-
depth analysis of warped time-frequency distributions.
Thanks also to Faye Boudreaux-Bartels for valuable dis-
cussions and to Doug Jones for suggesting the use of the
JAM in this context.
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Figure 1. (a) Wigner distribution of test sig-
nal. (b) Distribution with time and “composite lin-
ear/sinusoidal instantaneous frequency” (variable “b”)
marginals. The variable b measures the variation of
the linear/sinuscidal instantaneous frequency path in
time-frequency.
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