
\ 
\ 

\ 
S 

Department of Electrical and Computer Engineering 
Rice University 

Houston, T X  77005, USA \ 
'\ 

\\I'\ 
"a 

\ 
*. 

Tn this paper, we propose a 

ble, our results 

1. IMT 

The successful application of joint t~me-frequency 
distributions to problems in time-varying spectral 

alysis has stimulated considerable recent inter- 
est in distributions of other variables for use when 
a strict time-frequency analysis is not appropriate. 

tr~but~ons that measure the energy content of some 
physical quantity in a 
represented by the He 
tor A, we obtain the d 
the ""a content" of the 

e projection of s on 
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lassical examples of sin 
dude the time density ( (1b- 
frequency density l(~~s)(~)12 = I(S)(f)12 ob- 
tained by projecting onto the birac ~ ~ e n f u ~ c t ~ o n s  
of the time operator ( I s ) ( z )  = 2 s(2) and the si- 
nusoidal eigenfunctions of the frequency operator 
(Fs ) ( z )  F hi(%). 
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Joint distributions attempt to measure the si- 
al energy content of multiple phys- 
Given two quantities a and b, a 
(pa$ s)(a,  b) measuring the joint 
signal s has as marginals the re- 

spect~ve .A and B energy densities' 

er di~trjbution from Cohen's class of 
distributions [I] supplies a classical 
oint distribution that m ~ ~ n ~ z e s  

frequency den~~ties. 
ent const~uct~ons have been pro- 

ting joint distributions. The var- 
fall into two broad categories: 

cult) and ~ ~ ~ ~ . ~ e  change 
ral methods can create &s- 

tributions for every possible 

t coordinate change procedures can 

- ' A l ~ e r ~ ~ ~ ~ v ~ ~ y ,  we can define joint distributions in terms 
of their covariance properties under certain unitary trans- 
formations. For more details, see [2, 31. 
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our new procedure can generate most of the dis- 
tributions considered as examples of the general 
method of Cohen in 111. Thus, when applicable, 
our results turn the difficult theory of joint distri- 
butions of arbitrary variables into an easy exercise 
of coordinate transformation. 

2. THREE APPROACHES TO JOINT 
DISTRIBUTIONS 

2.1. Cohen's general method 

Given two operators A and B representing two ar- 
bitrary physical quantities a and b, Cohen forms 
the joint distribution of a and b as (see [l, 41 for 
more details) 

s)(% b, = JJ/ s*(2) (d2+A+%) (z) 

x e-jWaa+Pb) ,jz da dp. 

Cohen's construction is general, but it requires 
that we solve a sometimes complicated operator 
equation to express the exponentiated operator 
d2*(aA+PB). The time-frequency case is well un- 
derstood; using the time and frequency operators 
7 and T yields Cohen's class of time-frequency 
distributions [l]. 

2.2. Axis transformation method 

Joint a-b distributions are easily .obt&ned when we 
can relate these variables to trme'and frequency 
by a = a-'(t) and b = P"(f). In this special 
case, we can derive an a-b distribution simply by 
warping the coordinates of a time-frequency dis- 
tribution [4] 

(Pa,b*)(%b) = I &(a) &b) I (PtJ s) b(a), P(b)l - 
It is easily verified that all Pa,bS obtained in 
this way correctly marginalize to l(lFAs)(a)I2 
= 1Wl l(lFr4(a(4)I2 = I W I  I s (a (4 )12  and 
l ( h 4 ( b ) I 2  = Im l  I(W(P(b))12 = IP(b)l  
lS(P(b))I2. 

Ezample; Distributions Pt,?s of time t and "in- 
verse frequency" T (represented by the operator 
'R = $) can be constructed from Cohen's class 
time-frequency distributions through the change 
of variable T = 9 [l]. The resulting class of dis- 
tributions, obtained as 
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marginalizes to time ls(t)I2 and inverse frequency 
l ( l F R 4 ( 4 2  = 9 lS(fO/T)l2. 

2.3. Signal transformation method 

Joint U-b distributions are also easily generated 
when the quantities a and b are unitarily equivalent 
to time and frequency [5], with 

A = U-'7'U, B =  U-'FU (1) 

and U a unitary tiransformation. In this case, 
a joint U-b distribution can be obtained by pre- 
processing a time-frequency distribution with the 
transformation U 

(Po,b s)(% a') = (PtJ us)(% b)- 

The signal transformation U can be interpreted as 
"rotating" the coordinates of the time-frequency 
distribution to the new variables. 
All Pa,@ obtained in this way correctly 

marginalize to ((IF,4s)(a)12 = I(lF~Us)(a)l' = 
I(Us)(a)12 and I(Fes)(b)I2 = I(WJs)(b)12 = 
I(IFUs)(b)12, with IF s IF3 the usual Fourier trans- 
form operator [5]. 

Example: Define: the logarithmic time opera- 
tor (Cs)(z) = log(a:)s(z), and define the Mellin 
operator H = i(77 t F7). (Cohen refers to 
H as the "scale" operator [l].) These operators 
are unitarily equivalent to I and F as in (1) 
with (Us)(%) = ea'/2s(ez). Therefore, we can 
construct distributions marginalizing to log time 
I(IF,y)(l)12 = le'j2s(e'>l2 and Mellin transform 

l ( IF~s)(m)l~ = I /t(z)e-jznmbgc 1 ~ 1 - ' / ~ d s  

simply by preprocessing the signal by U before 
computing a valid time-frequency distribution [5, 

P 
61. 

2.4. Shortcomings of transformation 

While simple, both the axis and signal transforma- 
tion methods place rather severe restrictions on 
the pairs of operators for which they can gener- 
ate joint distributions. In the axis transformation 
method, we require! the variables a and b to be 
warped versions of time and frequency? In the sig- 
nal transformation imethod, we require the opera- 
tors A and B to be unitarily equivalent to time and 

methods 

Scully and Cohen to 
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frequency. Note, for instance, that in warping the 
ncy marginal to haellin transform as above, 
st accept log time for the other marginal. 

XIS 

Proot Direct e v ~ ~ a t i o n  shows that 

396 

class of a-6 distributions using a simple three-step 
pr~cedure:~ 

1. transform the signal 9 I-+ 

2. compute a conventional t~me-fre~uency distri- 

3. warp the remapped time 
bution of the transformed signal; 

distribution. 
A numerical algorithm for warp~n 
distributions suitable for use on a 
is readily programmed. 

The advantage of the double t r ~ s f o r ~ a ~ ~ o n  
procedure is that it breaks the severe ~ ~ t ~ c t i o n $  

possible, because U an 
turd property of c 
operator V. 

Several extensions to the 
forward. Reversing the &le 
moves the warping 

to distributions based on 

and therefore aid in ~ n d e r s ~ a n  

31f y e  define the 2-a transfor~at~on v as the area- 
preservmg channe of vmables 

then we can write (4) in the stan~ard dorm 
found in [5]. However, whexeas [5] emphasized using V 
only to warp both axes of Pa,b s back to indicate t h e  and 
drequency, in this paper, we exploit a range of different fT. 

(VG)(GY) E? lqzll G[v(a),q 9 - 
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Each different choice of 2) results in a different 
warped frequency transform matched to a dis- 
tinct class of instantaneous frequency character- 
istics. The Fourier, Mellin, and.chirp transforms 
result from the choices w(x) = x, U(.) = log 2,  and 
w(z) = Jzlc sgn(x), respectively. 

To continue the example of Section 2,3, apply- 
ing the warp U-’ to the log time axis of the log 
time versus Mellin distribution remaps that axis 
back to true time. The resulting distributions lie 
in Cohen’s class of time-Mellin distributions (time- 
scale in his terminology) [1]. This class contains 
the Marinovich-Altes (warped Wigner) distribu- 
tion [6, 71. It is important to note that this class 
is unattainable by either axis or signal warping 
done. 

In Figure 1 we show two distributions of a sig- 
nal consisting of two components concentrated 
dong composite linear/sinusoidal instantaneous 
fiequencies. Since the Wigner time-frequency dis- 
tribution does not match signals of this type as 
well as sinusoids, impulses, and linear chirps, it 
exhibits copious cross-components. Prewarping 
the signd to account for the form of the signal 
yields a postwarped distribution that marginalizes 
to time and “composite linear/sinusoidal instan- 
taneous frequency” content and therefore better 
matches the signal. 

Reversing the r6es of time and frequency in 
the warping procedure will yield frequency ver- 
sus warped time distributions that match different 
classes of group delay (dispersion) characteristics. 

In this paper, we have proposed a new framework 
for studying joint distributions of arbitrary mi- 
ables. While our method is straightforward and 
easy to understand, it can generate many distri- 
butions previously attainable only by the (more 
complicated) general method of Cohen, includ- 
ing time versus frequency, time versus inverse fre- 
quency, time versus Mellin transform (scale), and 
time versus chirp distributions. In addition to pro- 
viding insight into these new signal analysis tools, 
our warp-based constructions lead to efficient im- 
plementations for use in  application^.^ 

‘Thanks to Leon Cohen for suggesting this more in- 
depth analysis of warped time-frequency distributions. 
Thanks also to Faye Boudreaux-Bartels for valuable dis- 
cussions and to Doug Jones for suggesting the use of the 
JAM in this context. 

(b) 
Figure 1. (a,) Wigner distribution of test sig- 
nal. (b) Distribution with time and “composite lin- 
ear/sinusoidal instantaneous frequency (variable ‘0”) 
margilaals. The variable b measures tbe variation of 
the l j ~ e ~ / s i l a u ~ i d ~  i n s t ~ t ~ e o ~  
time-frequency. 
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