
Resolving Degeneracy

in Combinatorial Linear Programs:

Steepest Edge, Steepest Ascent, and Closest Ascent

E. Andrew Boyd1

July, 1991

TR91-21

1 This work was sponsored in part by the National Science Foundation and the Of­
fice of Naval Research under NSF grant number DDM-9101578. The author gratefully
acknowledges the support of IMSL, Inc.

Abstract

While variants of the steepest edge pivoting rule are commonly used in linear programming

codes they are not known to have the theoretically attractive property of avoiding an in­

finite sequence of pivots at points of degeneracy. A natural extension of the steepest edge

pivoting rule based on steepest ascent is developed and shown to be provably finite. An

alternative finite pivoting procedure that is computationally more attractive than steepest

ascent is then introduced and it is argued that with probability 1 the procedure has the

same computational requirements as steepest edge independent of the linear program being

solved. Both procedures have the unique advantage that they choose the pivot element

without explicit knowledge of the set of all active constraints at a point of degeneracy,

thus making them attractive in combinatorial settings where the linear program is never

explicitly written out.

1 Introduction

Degeneracy in simplex algorithms for solving linear programs has long been recognized as

both a theoretical and practical problem. From a theoretical perspective the problem was

resolved early in the history of linear programming. The perturbation/lexicographic method

(Charnes, 1953; Dantzig, Orden, and Wolfe, 1955; Wolfe, 1963) avoids cycling by dictating

the leaving variable while allowing complete freedom in the choice of entering variable

(among variables with a reduced cost of correct sign). Eland's combinatorial rule (1977)

dictates the choice of both entering and leaving variable. More recently, Magnanti and

Orlin (1988) proposed a rule for the parametric simplex algorithm that avoids degeneracy

using a lexicographic method that dictates the entering variable while maintaining complete

freedom in the choice of leaving variable (among variables that would drive the solution

infeasible).

The practical difficulties associated with degeneracy have come to be fully appreciated

far more slowly. To this day many texts on linear programming, having resolved the problem

of degeneracy theoretically, routinely pronounce that degeneracy is not a practical problem

based on the observation that cycling rarely occurs. Yet, even if cycling does not occur, it is

nonetheless possible to encounter a very long sequence of degenerate pivots. Cunningham

(1979) discussed the possibility of encountering an exponential number of such pivots with­

out cycling in the context of the network simplex algorithm and introduced the term stalling

for this phenomenon. While all linear programs arising in practice are degenerate to some

degree, the number of degenerate pivots encountered by a simplex algorithm is profoundly

influenced by the pivot selection rule. Ryan and Osborne (1988) reported that due to de­

generacy they were unable to solve an airline crew scheduling problem after approximately

1

2000 iterations when using a pivot rule based solely on reduced cost information, but that

they solved the problem in 436 iterations using Wolfe's rule (1963). The author (Boyd,

1990) was able to solve some extremely degenerate combinatorial linear programs only af­

ter employing the steepest edge pivot rule. For linear programs demonstrating significant

degeneracy - such as linear programs arising in combinatorial contexts - the choice of

pivot rule can mean the difference between solving or not solving a linear program.

One pivot rule of particular importance is steepest edge. The steepest edge pivot rule

consists of choosing the edge of ascent relative to a given basis that gives the greatest change

in the objective function per unit of movement along that edge. Steepest edge and its vari­

ants have been known and used for decades in the solution of large-scale linear programs

and many papers have been written on the subject, including Crowder and Hattingh (1974),

Dickson and Frederick (1960), Goldfarb and Reid (1977), Harris (1973), Kuhn and Quandt

(1963), and Wolfe and Cutler (1963). The major conclusion reached by these studies is that

steepest edge often dramatically reduces the number of pivots required by the simplex algo­

rithm. Recent extensive computational results supporting this claim have been obtained by

Bixby (1991) and by Forrest and Goldfarb (1991). In spite of the additional computational

work required at each iteration over simpler pivot rules, steepest edge often proves to be the

pivot rule of choice due to the increased speed attained by a smaller number of iterations.

Hoffman and Padberg (1991) have reported marked improvement in the solution times of

airline crew scheduling problems with the use of steepest edge. Commercial codes such as

IBM's MPSX and OSL both have options for DEVEX pricing (an approximate steepest

edge procedure) and CPLEX makes use of primal and dual steepest edge pricing.

Beyond the overall effectiveness of steepest edge, a common belief within the linear

2

programming community is that steepest edge generates relatively few pivots at points of

degeneracy. The author became interested in the steepest edge pivot rule when it was

suggested as a way to overcome degeneracy encountered in his own applications. However,

while steepest edge works well in practice it remains an open question as to whether or

not steepest edge is a true degeneracy resolution procedure; that is, a procedure that is

guaranteed to determine an edge of ascent or a proof that no such edge exists after a finite

number of pivots.

In this paper we propose two simplex pivot rules closely related to steepest edge that are

degeneracy resolution procedures. The first is a very natural extension of the steepest edge

rule based on steepest ascent. The second procedure is computationally far more attractive

than steepest ascent and it is argued that with probability 1 the procedure has the same

computational requirements as steepest edge independent of the linear program being solved.

The procedures are different than all previous degeneracy resolution procedures in that

they rely neither on lexicography nor ordering arguments such as those found in Eland's

rule. They share some simlilarity with the procedure of Magnanti and Orlin in that there

are no restrictions placed on the leaving variable, and the steepest ascent procedure actu­

ally provides some freedom in the choice of entering variable. However, the most important

theoretical advantage unique to the procedures is that the pivot element is chosen without

explicit knowledge of the set of all active constraints at a point of degeneracy. This ad­

vantage is particularly useful in combinatorial settings where the linear program is never

explicitly written out.

3

2 Background

In order to make the combinatorial implications of the proposed degeneracy resolution

procedures explicit, we consider a linear program of the form

max ex

(P) s.t. Ax ::; b

where A is m x n and is assumed to have rank n (the problem is, of course, trivial to solve

if the rank is less than n). It is important to emphasize that while the form (P) will be

used for expository purposes the procedures to be described can be applied just as easily

to problems in a more standard form for simplex algorithms, i.e., equality constraints and

bounded variables. In the context of (P), a primal simplex algorithm operates as follows.

Algorithm Simplex

Given: A linearly independent collection a1 , ... , an of rows of A such that the intersection

x of the corresponding constraints is feasible for (P).

Purpose: Solve (P).

1. For each of the n sets of points Sk = { a1 , ... , an} - { ak} let ,ka ::; 0 be the unique

direction satisfying ,kai = 0 for all ai E Sk and ,kak < 0. Let d = ,s where ,s
satisfies qs > 0. If no such direction exists, stop; the present solution x is optimal.

2. Find the largest Osuch that A(x + Od)::; band a row r of A such that ar(x + Od) > br

for 0 > 0. If O = oo, stop; (P) is unbounded.

3. Let the new set of constraints consist of {a1, ... , an} U {ar}- {a 8
} and return to step 1.

4

In the standard form for simplex algorithms the leaving constraint a8 would correspond

to an entering variable and the entering constraint ar would correspond to a leaving variable.

An important point can be made with respect to step 2 of algorithm Simplex. When the

constraints Ax ~ b are explicitly written out step 2 can be carried out enumeratively; that

is, for each constraint aix ~ bi the value 0i can be determined such that ai(x + 0id) =

bi and 0, ar, and br determined by the minimum non-negative value of 0i. In standard

implementations of the simplex algorithm this is what actually occurs. However, to actually

apply algorithm Simplex all that is necessary is an oracle for solving the following problem.

Problem STEP: Given a point x satisfying Ax ~ b and a direction d, find the largest 0

such that A(x + 0d) ~band a row r of A such that ar(x + 0d) > br for 0 > 0.

For linear programs (P) arising in combinatorial contexts it is often the case that m > > n

so that explicitly writing the set of constraints is neither desirable nor practically feasible.

However, in many such instances an oracle for solving problem STEP does exist. Motiva­

tion for the present work stemmed from degeneracy encountered in the solution of knapsack

separation problems (Boyd, 1990) where the linear programs that arise have an exponen­

tial number of constraints but an efficient oracle for problem STEP. Algorithms for finding

violated subtour elimination constraints of the traveling salesman polytope can be modi­

fied to serve as oracles for problem STEP, allowing the simplex algorithm to be used to

optimize over the subtour polytope as defined in Boyd and Pulleyblank (1990) in spite of

an exponential number of constraints. The problem of finding a direction of ascent on the

cone defined by simple cycle inequalities arises in the solution of the maximum weight cut

problem (Barahona and Titan, 1990; Bixby and Saigal, 1991), and again while there are an

exponential number of such constraints there exists an efficient oracle for problem STEP.

5

Yet, while oracles often exist for problem STEP, most degeneracy resolution procedures

must place requirements on the entering constraint (exiting variable in standard simplex) in

order to guarantee resolution of degeneracy. A notable exception is the parametric algorithm

of Magnanti and Orlin (1988), although as a parametric algorithm it requires more than an

oracle for problem STEP in order to be implemented.

In addition, all degeneracy resolution procedures proposed to date require global infor­

mation on the set of active constraints at a point of degeneracy in order to make a pivot

selection. To elaborate, algorithm Simplex operates by successively choosing not only a

feasible point x but a set of n constraints with linearly independent gradients. In the con­

text of degenerate pivots, it is the choice of constraints that is particularly relevant since by

definition the feasible point remains unchanged. Eland's rule and rules that use lexicogra­

phy require information on more than the chosen set of active constraints to make a pivot

selection. However, the procedures described here require only knowledge of the chosen set

of n constraints at any given iteration to choose a pivot.

Throughout this paper we let JI · II denote the euclidean norm. We use cone(a1 , ... , an)

to denote {a E rn,n: a= w1a1 + ... + Wnan, w1, .. . ,wn ~ O}.

3 Steepest Edge

The steepest edge pivot rule defines the way in which the direction d is chosen in step 1 of

algorithm Simplex. Specifically, d is chosen as the direction 7 8 with the largest increase in

objective function value per unit of movement along 7 8
; that is, the steepest edge of the

polyhedron defined by the chosen collection a1 , ... , an of active constraints. We formally

6

define the algorithm in the context of (P) for comparison with algorithms presented in the

following sections.

Algorithm Steep

Given: A linearly independent collection a1 , ••• , an of rows of A such that the intersection

x of the corresponding constraints is feasible for (P).

Purpose: Determine a direction of ascent at x or prove that no such direction exists.

1. For each of then sets of points Sk = {a1 , .. . ,an} - {ak} let ,ka::; 0 be the unique

direction satisfying ,kai = 0 for all ai E Sk and ,kak < 0.

2. Let ,s maximize v = (1 ic)2/ll,ill 2 for all 11, ... ,,n. If v::; 0, stop; no ascent direction

exists.

3.Letd= 1
8

•

4. Let O and ar be the values returned by the oracle for problem STEP with d as defined

in step 3. If 0 =p 0, stop; d is an ascent direction.

5. Replace a 8 with ar and return to step 1.

4 Steepest Ascent

While the status of steepest edge as a theoretical procedure for resolving degeneracy remains

unresolved, it turns out that a close variant of this algorithm based on steepest ascent is

provably a degeneracy resolution procedure. Specifically, if the direction d sent to the oracle

for solving problem STEP is a direction of steepest ascent relative to the active constraints

7

(as opposed to a steepest edge) then algorithm Simplex cannot cycle. Formally, we introduce

the following algorithm which, given a vertex of the feasible region of (P), finds a direction

of ascent or proves that no such direction exists after a finite number of iterations.

Algorithm Ascent

Given: A linearly independent collection a 1 , ... , an of rows of A such that the intersection

x of the corresponding constraints is feasible for (P).

Purpose: Determine a direction of ascent at x or prove that no such direction exists.

1. Find a0 such that lie - a0 11 ~ lie - all for all a E eone(a1, ... ,an) and let w1, .. . ,wn ~ 0

be the unique values such that a0 = w1a1 + · · · + wnan. If a0 = e, stop; no ascent

direction exists. Otherwise, let Io be the nonempty set of indices for which Wi = 0.

2. Let 0 and ar be the values returned by the oracle for problem STEP with d = e - a0 • If

0 f. 0, stop; e - a0 is an ascent direction.

3. Let as be such that s E I0 and { a 1 , ... , an} U { ar}- { as} is linearly independent. Replace

ai with ar and return to step 1.

Algorithm Ascent is a steepest ascent algorithm because e-a0 is the direction of steepest

ascent relative to e and the active constraint set defined by a1 , ... , an. This follows from

strong duality results on separation found in the convexity theory literature. The following

proofs actually require only the weaker results captured in the following lemma.

Lemma 1 Let a1 , ... , an E IR n be a collection of linearly independent points, let c E IR n

be such that c (j_ eone(a1, ... ,an), and let a0 be such that lie - a0 11 ~ lie - all for all

8

a E cone(a1, ... ,an). Finally, let w1, .. ,,wn 2". 0 be the unique values such that a0 =

w1a1 + · · · + wnan with Io the set of indices for which Wi = 0 and If? the complement of Io.

Then

1. (c - a0)a $ 0 for all a E cone(a1, ... , an),

2. (c - a0)ai = 0 for all ai with i E If?, and

3. (c - a0)c > 0.

Geometrically, Lemma 1 is obvious and we omit the proof as it is easily established and

one of many standard results in convexity theory.

Theorem 1 Algorithm Ascent terminates after a finite number of iterations with a direc­

tion of ascent for (P) or a proof that no such direction exists.

Proof . We begin by showing that when the algorithm terminates in step 1 no ascent

direction exists and when it terminates in step 2 an ascent direction has been found. The

constraints a1, ... , an are initially linearly independent and the algorithm proceeds beyond

step 2 only if the value iJ returned by the oracle for solving problem STEP is 0. By the

definition of problem STEP this means the constraint ar x $ br returned by the oracle

satisfies arx = br, and so throughout the algorithm all constraints aix $ bi that are en­

countered are satisfied at equality by x. If the algorithm terminates in step 1 with c = a0

then c = w1a1 + · · · + Wnan with Wi 2". 0 and thus by Farkas' lemma no ascent direction in

(P) exists at x. If c -:/ a0 then c - a0 is clearly a direction of increasing objective function

value by Lemma 1, and if the value 0 returned by the oracle for solving problem STEP is

9

nonzero, as is the case when the algorithm terminates in step 2, then by the definition of

problem STEP c - a0 is a feasible direction for (P) at x.

We next show that in step 1 if c f:. a0 then Io f:. 0. If Io = 0 then a0 resides in the

strict interior of cone(a1 , .•• ,an). By the operation of the algorithm cf:. a0 and so the line

segment connecting a0 and c contains points other than c, and since II· II is a norm any point

a f:. a0 on this line segment satisfies lie - all < lie - a0 11· However, since a0 is contained in

the strict interior of cone(a 1 , ... , an) some point a f:. a0 on this line segment also must be

contained in cone(a1, ... , an), contradicting the definition of a0 •

To see that a vector a8 E Io with the properties assumed in step 3 exists, note that

the algorithm only proceeds to step 3 if 0 = 0, and by the definition of problem STEP it

follows that ar satisfies (c - a0)ar > 0. Since (c - a0)ar f:. 0 the set of vectors { ai : i E I{?},

which satisfy (c - a0)ai = 0 by Lemma 1, together with ar are linearly independent. As the

vectors a 1 , ... , an are linearly independent it is thus possible to find a vector as with s E Io

such that { a1, ... , an} U { ar} - { as} is linearly independent.

We conclude by demonstrating that the algorithm is finite by showing that lie - a0 11

strictly decreases in each successive iteration of the algorithm. Since each possible set of

constraints a1 , ... , an defines a unique point a0 (a0 represents the minimum of a strictly

convex function on a cone) no set a1 , ... , an can ever be repeated and finite termination of

the algorithm follows. Let a1 , ... , a" be the new set of vectors constructed in step 3 of the

algorithm. The vector ar E cone(a1, ... , a") since ar = ak for some k by choice, and clearly

a0 E cone(a1, ... , a") since a0 can be written as a non-negative linear combination of the

vectors { ai : i E If?} and { ai : i E If?} ~ {a1, ... , a"}. The square of the distance between

10

c and points on the line segment a0 + 0(ar - a0), () E [O, 1], connecting a0 and ar is

lie - (a0 + 0(ar - a0))112

((c - a0) - 0(ar - a0))((c - a0) - 0(ar - a0))

(c - a0)(c - a0) - 20(c - a0)(ar - a0) + 02(ar - a0)(ar - a0)

lie - aoll2 - 20[(c - ao)ar - (c - ao)ao] + 02llar - aoll2.

Since (c- a0)ar > 0 and (c- a0)a0 = 0 it follows that lie- (a0 + 0(ar - a0))11 < lie- a0 11 for

() sufficiently small but positive. This in turn implies that the point ""ifJ satisfying lie - ""ifJII ~

lie - all for all a0 E cone(a-1, ... , a'1) satisfies lie- ""ifJII < lie- a0 11, completing the proof. D

It is possible that algorithm Ascent will terminate in step 2 with a direction of ascent

that is not an edge. Practically this poses no difficulty as an extreme point of (P) with a

better objective function value than x can be trivially constructed given an ascent direction

at x, and finding an edge of ascent at x is not significantly more difficult.

The choice of the constraint ar returned by the oracle for solving problem STEP is

irrelevant in guaranteeing the finiteness of algorithm Ascent. However, it will have an

important effect on the speed with which degeneracy is resolved in practice. In particular,

if an ar is generated that greatly decreases the distance from c to the associated cone at

each iteration then rapid resolution of degeneracy should follow.

While Theorem 1 does not prove that steepest edge is a degeneracy resolution procedure

it does shed some light on why steepest edge is an effective degeneracy resolution procedure

in practice. Often the closest point to c in cone(a1 , ••• , an) may well be a facet of this cone

or, equivalently, the direction of steepest ascent may well be the steepest edge. Ewn if the

direction of steepest ascent is not the steepest edge, the steepest edge may be a sufficiently

good approximation to the direction of steepest ascent so that llc-a0II decreases nonetheless.

11

5 Closest Ascent

While steepest ascent is theoretically sound it relies upon finding a point a0 minimizing

lie - a0 11 on an n-dimensional cone with n extreme rays. While this problem can be solved

finitely using an active set strategy it nonetheless remains a non-trivial subproblem that

should be avoided if at all possible.

In this section we present a degeneracy resolution procedure that depends only upon the

existence of an oracle for solving problem STEP but finds an a0 minimizing lie - a0 11 only

as a last resort. In fact, following the discussion of the algorithm it will be argued that the

probability of having to solve such a subproblem is 0 independent of the given degenerate

point.

Algorithm Close

Given: A linearly independent collection a1 , ... , an of rows of A such that the intersection

x of the corresponding constraints is feasible for (P).

Purpose: Determine a direction of ascent at x or prove that no such direction exists.

0. Let a0 be any point in the interior of cone(a 1 , ... , an).

1. For each of the n sets of points Sk = { a1, ... , an} - { ak} let "/a ~ 0 be the unique

constraint satisfying ,kai = 0 for all ai E Sk and ,kak < 0.

2. Let & 2: 0 be the maximum value of a such that -yk(a0 + a(c - a0)) ~ 0 for all 1 1 , ... , ,n
and let K be the set of indices k such that ,k(a0 + &(c - a0)) = 0.

12

3. if JKI = 1

Let Io=](, let d = ,yk where k E J(, and let a0 = a0 + &(c - a0). If & ~ 1, stop; no

ascent direction exists.

else

Let a0 be such that Jlc-a0 JI :S lie-all for all a E cone(a1
, .•. , an) and let W1, ... , Wn ~ 0

be the unique values such that a0 = w1a1 + · · · + wnan. If a0 = c, stop; no ascent

direction exists. Otherwise, let Io be the nonempty set of indices for which Wi = 0

and let d = c - a0 .

4. Let 0 and ar be the values returned by the oracle for problem STEP with d as defined

in step 3. If O =/- 0, stop; d is an ascent direction.

5. Let as be such that s E I0 and { a1 , ... , an} U { ar}- { a8
} is linearly independent. Replace

as with ar and return to step 1.

The key difference between algorithm Ascent and algorithm Close lies in how a0 is

chosen from iteration to iteration. In algorithm Ascent strict monotonicity of Jlc - a0 11 is

guaranteed by choosing a0 as the closest point to c in cone(a1 , ... , an). In algorithm Close

strict monotonicity is maintained by first checking to determine if a there exists a simple

pivot that will yield a new value "a° which is closer to c on the line segment connecting a0

and c at the next iteration. Only if such a pivot does not exist is "a° chosen as the closest

point to c in cone(a1, ... ,an). Computationally, this latter option is far more attractive.

Theorem 2 Algorithm Close terminates after a finite number of iterations with a direction

of ascent for (P) or a proof that no such direction exists.

13

Proof. For notational convenience we let afJ be the new value of a0 determined in step 3

of the algorithm and let a1 , ... , a"' be the new values of a 1 , ... , an determined in step 5 of

the algorithm.

We begin by showing that after each iteration of the algorithm afJ E cone(a1 , •• . , a"').

Initially, a0 E cone(a1, ... ,an) by choice. If IKI > 1 in step 3 then afJ E cone(a1, ... ,a"')

using the same arguments as those found in the proof of Theorem 1. If IKI = 1 then since

afJ E cone(a1, ... , an) and ,-./afJ = 0 it follows that afJ can be written as a non-negative

combination of the set of vectors { ai : i E If}. Since { ai : i E Jf} ~ {a1 , ... , a"'} by the

operation of the algorithm in step 5, afJ E cone(a1 , ••• , a"').

Next, we show that when the algorithm terminates in step 3 no ascent direction exists

and when it terminates in step 4 an ascent direction has been found. Using the same

arguments as in the proof of Theorem 1 all constraints aix ~ bi encountered in the course

of the algorithm satisfy aix = bi and if the algorithm terminates in step 3 with IKI > 1 then

no ascent direction exists. Since a0 E cone(a1, ... , an) at each iteration it follows by the

definition of & in step 2 that if & ~ 1 then c E cone(a1, ... ,an). Thus, c = w1 a 1 +·. ·+wnan

for some collection of Wi ~ 0 and so by Farkas' lemma no ascent direction in (P) exists

at x upon termination in step 3. If IKI > 1 then using the same arguments as in the

proof of Theorem 1 it follows that if the algorithm terminates in step 4 then d is an ascent

direction. Thus, consider the case IKI = 1. By the choice of d and & it is true that

d"ifJ = d(a0 +a(c-a0)) = 0 and d(a0 +(&+e)(c-a0)) > 0 for any e > 0. Further, since the

algorithm terminates in step 2 if & ~ 1 it must be that & < 1, and since a:D = a0 + &(c - a0)

14

it follows that e - a0 = (1- &)-1 (e - a<>). Thus,

d(a0 +(a+ c)(e - a0)) > O

-¢:::=;> d(a0 + a(e - a0
)) + cd(e - a0

) > 0

-¢:::=;> cd(e - a0) > 0

-¢::::::;> (1-&)-1cd(e-a<>)>O

-¢:::=;> de> da<> = 0

which implies that dis a direction of increasing objective function value. When the algo­

rithm terminates in step 4 the value 0 returned by the oracle for solving problem STEP is

nonzero, implying d is a feasible direction of movement for (P) at x and therefore a true

direction of ascent.

We continue by demonstrating that a vector as with the properties assumed in step 5

exists. If IKI > 1 in step 3 then an as with the desired properties can be shown to exist

using the same arguments as those found in the proof of Theorem 1, so consider the case

IKI = 1. Step 5 of the algorithm is reached only if a value of 0 = 0 is returned by the

oracle for solving problem STEP, and by the definition of problem STEP it follows that

dar > O. As the set of points { a1 , ••. , an}- { as} with s the unique element in J(are linearly

independent and satisfy dai = 0, it follows that the points { a1 , ... , an} U { ar} - { a8
} are

linearly independent as required.

We conclude by demonstrating that the algorithm is finite. To this end we first show

that if IKI = 1 at some iteration then lie - a0 ii strictly decreases in the following iteration.

To see this, let k be the unique index in J(and let a1 , ... , ~ be indexed so that ak = ar

and ai = ai for i > k. Further, let "?, Si, and J(denote the values of ,i, Si, and J(in

the next iteration of the algorithm. When IKI = 1 the point a<> is in the strict relative

15

interior of the facet cone(a1 , ••• , ak-I, ak+l, ... , an) of cone(a1 , ••• , an) and is therefore in

th t . t 1 t· . t . f th f t (-1 -k-l -k+l =i) f (-1 =i) e s nc re a 1ve 1n enor o e ace cone a , ... , a , a , ... , a o cone a , ... , a .

Since dar = -ykak > 0 it must be that 7yk = --yk in order for 7yka} = 0 for all i E Sk and

7ykak ~ 0, and with 7fJ in the strict relative interior of this facet it follows that 7fJ + aw E

cone(a1, ... , a,n) for any w satisfying 7ykw :::; 0 and a > 0 sufficiently small. We show that

7yk(c - rfJ) :::; 0 as this will be sufficient to prove the strict decrease claim. Note that ,..,/ must

satisfy -yk(c - a0
) > 0, for if not then since IKI = 1, -yk(a0 + a(c - a0)) ~ 0 for all 1

1, ... , ,n

for some a > &, which contradicts the choice of&. Further, with IKI = 1 by assumption,

-,k(l - a)(e - a0) ~ 0, implying that 7fJ + a(e - rfJ) E cone(a1, ... , a,n) for some sufficiently

small a > 0. If IKI = 1 at the following iteration then the new value of a0 is 7fJ + a(e - rfJ)

with a > 0, while if IKI > 1 then the new value of a0 is defined as the closest point toe in

eone(a1, ... , a,n). In either case, since 7fJ + a(e - rfJ) E eone(a1, ... , a,n) for some a > 0 it

follows that lie - a0 11 strictly decreases at the following iteration as claimed.

Thus, consider a sequence of iterations in which IKI = 1 and let a be the initial value

of a0 in this sequence of iterations. At each iteration a0 lies on the line segment connecting

a and e, is strictly closer to e than in the previous iteration, and satisfies ,a0 = 0 for some

new constraint 1a = 0 uniquely defined by n - l points ai that are rows of A. As there are

a finite number of constraints 1 a = 0 defined in this way, such a sequence of iterations must

terminate either by finding a direction of ascent, proving that no such direction exists, or

by entering an iteration in which IKI > 1. In an iteration in which IKI > 1, a0 is redefined

so that lie - a0
11 ~ lie - all for all a E eone(a1, ... , an) so that lie - a0 11 does not increase.

Further, in the following iteration lie- a011 strictly decreases using arguments from the proof

16

of Theorem 1 in the case JKI > 1 and arguments similar to those made above in the case

JKI = 1. Since lie - a0 JI never increases it is never possible for a0 to again be contained in

cone(a1 , .•• , an). As there are a finite number of cones defined by subsets of n rows of A,

it follows that the algorithm is finite. D

It is of interest to compare the computational work required at each iteration of algo­

rithm Close and algorithm Steep. When IKI = 1 in algorithm Close it can be seen that

the algorithms are all but identical except in step 2, and the computational burden in both

algorithms lies almost entirely in step 1. Indeed, for all practical purposes the algorithms

are identical in the amount of work required per iteration if IKI = 1. As an aside, one

intuitively pleasing aspect of closest ascent is that it provides an easily calculated measure

of progress toward resolution of degeneracy, namely, the decreasing values of 1Jc-a0 JI, which

steepest edge does not.

The question remains as to the likelihood that IKI = 1 in algorithm Close. From the

definition of algorithm Close it can be seen that at any iteration of the algorithm the

probability that IKI f= 1 is the probability that when the ray a0 + a(c - a0) first intersects

one of n planes ,ka ~ 0 it simultaneously intersects at least one other plane. Over the

course of the algorithm, the probability of finding IKI f= 1 at some iteration is bounded

above by the probability that the line segment connecting c and the initial a0 chosen in

step O never intersects more than one of a finite number of planes at a time. The finiteness of

the number of planes under consideration follows from the fact that the planes encountered

in algorithm Close are defined so as to contain the origin and n - 1 linearly independent

rows of A. As the following theorem formalizes, the flexibility in the initial choice of a0

guarantees that with probability 1 each iteration of the algorithm will encounter JJ(j = 1

17

independent of the given linear program.

Theorem 3 Let "/a = 0, i = 1, ... , N, be a finite collection of planes in JRn, let c be

a distinguished point, and let a0 be a point chosen at random from any full dimensional

ball B ~ JR n. The probability that any point a on the line segment connecting a0 and c

simultaneously satisfies two or more planes at equality is O.

Proof . Let Uij denote the set of points determined by the intersection of the planes

,yia = 0 and ,i a = 0 (including the possibility of 0) and let U = LJ Uij. If c E Uij or U;j = 0

let Yij = U;j and if c (/_ Uij let Yij denote the unique n - 1 dimensional affine set of points

containing U;j and c. Let V = LJ Yij. If the line segment connecting a0 and c satisfies

two or more planes at equality at some point a then since a E Yij for some Yij E V and

c E ¼j it must be that a0 E Yij· Since V represents the set of points in a finite collection of

affine sets of dimension n - 1 or less, the probability that a point chosen at random in any

n dimensional ball B will lie in V n B is therefore 0, completing the proof. D

It cannot be overemphasized that the probability in the previous theorem is very different

from most other probabilities arising in the discussion of degeneracy. For example, the

probability of degeneracy occurring in a linear program is 0 in most natural probabilistic

models for generating a random linear program, yet degeneracy is pervasive in most real

linear programs. The probability calculated in the previous theorem, however, hypothesizes

a given linear program and demonstrates that the freedom in choosing the initial value a0

is what leads to the desired probability of 0.

The implication of the previous theorem is that in practice the need to find a0 closest to c

in cone(a1 , ... , an) should occur very rarely, with a finite probability arising due to numerical

18

issues associated with finite precision arithmetic. In these instances, rather than find such

a point a0 it is preferable to find a new point a0 closer to c through local adjustments to

a0 • Properly developed, such an algorithm maintains finiteness while allowing for the extra

freedom to locally adjust a0 •

Magnanti and Orlin (1988) observe that in recent probabilistic studies of objective func­

tion parametric linear programming algorithms "the probability distribution of a parametric

linear program is chosen so that the problem almost always satisfies a condition [that en­

sures finite convergence of] the parametric algorithm ... even if it is degenerate." From their

work it appears that a stronger claim similar to the result found in Theorem 3 can be made.

When solving a linear program using a parametric programming algorithm there is usually

some flexibility in the choice of initial objective function. Choosing this objective function

randomly from the set of potential choices should ensure that degeneracy is not encountered

in the parametric algorithm independent of the underlying linear program.

6 Conclusions

Two procedures have been presented for resolving degeneracy in linear programs. The

steepest ascent procedure, while not computationally attractive, shed some light on the

practical efficiency of the steepest edge procedure commonly used in practice to solve large

and highly degenerate linear programs. Ideas found in the steepest ascent procedure were

then used to develop a closest ascent procedure that with probability 1 had nearly identical

computational requirements per iteration as steepest edge but was guaranteed to finitely

terminate. All of the procedures discussed had the unique advantage that the pivot element

is chosen without knowledge of the set of all active constraints at a point of degeneracy.

19

A number of interesting questions remain. While the author suspects that there exist

examples in which steepest edge leads to an infinite number of pivots, the question of

whether or not steepest edge is a degeneracy resolution procedure remains unresolved.

The relative number of iterations required in practice by steepest edge, steepest ascent, and

closest ascent also remains an interesting question. Steepest ascent, while probably requiring

the fewest iterations, is likely to be too expensive per iteration to warrant consideration in

linear programming codes. However, the number of iterations required by closest ascent

should be similar to the number required by steepest edge, in which case closest ascent

should prove to be an effective practical procedure for degeneracy resolution.

7 Acknowledgements

I gratefully acknowledge Don Goldfarb who first suggested steepest edge to me as a practical

method for resolving degeneracy and for sharing his thoughts on steepest edge. I am also

grateful to Steve Cox for a discussion which led to the argument presented in Theorem 3.

20

References

[1] F. Barahona and H. Titan, "Max mean cuts and max cuts," IBM research report,

Yorktown Heights (1990).

[2] R. E. Bixby, unpublished computational results (1991).

[3] R. E. Bixby and S. Saigal, "Optimizing over the cut cone: a new polyhedral algorithm

for the maximum-weight cut problem," Doctoral thesis, Department of Mathematical

Sciences, Rice University (1991).

[4] R. G. Bland, "New finite rules for the simplex method," Mathematics of Operations

Research 2 (1977) 103-107.

[5] E. A. Boyd, "Fenchel cutting planes for linear integer programming problems," TR90-

20, Department of Mathematical Sciences, Rice University (1990).

[6] S. C. Boyd and W. R. Pulleyblank, "Optimizing over the subtour polytope of the

travelling salesman problem," Mathematical Programming 49 (1990/91) 163-187.

[7] A. Charnes, "Optimality and degeneracy in linear programming," Econometrica 20

(1952) 160-170.

[8] W. H. Cunningham, "Theoretical properties of the network simplex algorithm," Math­

ematics of Operations Research 4 (1979) 196-208.

[9] H. Crowder and J. M. Hattingh, "Partially normalized pivot selection in linear pro­

gramming," IBM research report RC 4918, Yorktown Heights (1974).

21

[10) G. B. Dantzig, A. Orden, and P. Wolfe, "The generalized simplex method for minimiz­

ing a linear form under linear inequality restraints," Pacific Journal of Mathematics 5

(1955) 183-195.

[11] J. C. Dickson and F. P. Frederick, "A decision rule for improved efficiency in solving

linear programming problems with the simplex method," Communications of the ACM

3 (1960) 509-512.

[12) J. Forrest and D. Goldfarb, "Steepest edge simplex algorithms for linear programming,"

IBM research report, Yorktown Heights (1991).

[13] D. Goldfarb and J. K. Reid, "A practicable steepest-edge simplex algorithm," Mathe­

matical Programming 12 (1977) 361-371.

[14) P. M. J. Harris, "Pivot selection rules of the Devex LP code," Mathematical Program-

ming 5 (1973) 1-28.

[15] K. L. Hoffman and M. Padberg, "Solving large set partitioning problems arising in the

airline industry," TIMS/ORSA meeting presentation, Nashville (1991).

[16) H. W. Kuhn and R. E. Quandt, "An experimental study of the simplex algorithm,"

in Metropolis et. al., eds., Proceedings of symposia in applied mathematics, vol. XV

(American Mathematical Society, Providence, RI, 1963).

[17) T. L. Magnanti and J. B. Orlin, "Parametric linear programming and anti-cycling

pivoting rules," Mathematical Programming 41 (1988) 317-325.

[18] D. M. Ryan and M. R. Osborne, "On the solution of highly degenerate linear programs,"

Mathematical Programming 41 (1988) 385-392.

22

0

[19) P. Wolfe, "A Technique for resolving degeneracy in linear programming," Journal of

SIAM 11 (1963) 205-211.

[20) P. Wolfe and L. Cutler, "Experiments in linear programming," in Graves and Wolfe,

eds., Recent advances in mathematical programming (McGraw-Hill, New York, 1963).

23

