
Resolving Degeneracy 

in Combinatorial Linear Programs: 

Steepest Edge, Steepest Ascent, and Closest Ascent 

E. Andrew Boyd1 

July, 1991 

TR91-21 

1 This work was sponsored in part by the National Science Foundation and the Of­
fice of Naval Research under NSF grant number DDM-9101578. The author gratefully 
acknowledges the support of IMSL, Inc. 





Abstract 

While variants of the steepest edge pivoting rule are commonly used in linear programming 

codes they are not known to have the theoretically attractive property of avoiding an in­

finite sequence of pivots at points of degeneracy. A natural extension of the steepest edge 

pivoting rule based on steepest ascent is developed and shown to be provably finite. An 

alternative finite pivoting procedure that is computationally more attractive than steepest 

ascent is then introduced and it is argued that with probability 1 the procedure has the 

same computational requirements as steepest edge independent of the linear program being 

solved. Both procedures have the unique advantage that they choose the pivot element 

without explicit knowledge of the set of all active constraints at a point of degeneracy, 

thus making them attractive in combinatorial settings where the linear program is never 

explicitly written out. 





1 Introduction 

Degeneracy in simplex algorithms for solving linear programs has long been recognized as 

both a theoretical and practical problem. From a theoretical perspective the problem was 

resolved early in the history of linear programming. The perturbation/lexicographic method 

(Charnes, 1953; Dantzig, Orden, and Wolfe, 1955; Wolfe, 1963) avoids cycling by dictating 

the leaving variable while allowing complete freedom in the choice of entering variable 

(among variables with a reduced cost of correct sign). Eland's combinatorial rule (1977) 

dictates the choice of both entering and leaving variable. More recently, Magnanti and 

Orlin (1988) proposed a rule for the parametric simplex algorithm that avoids degeneracy 

using a lexicographic method that dictates the entering variable while maintaining complete 

freedom in the choice of leaving variable ( among variables that would drive the solution 

infeasible). 

The practical difficulties associated with degeneracy have come to be fully appreciated 

far more slowly. To this day many texts on linear programming, having resolved the problem 

of degeneracy theoretically, routinely pronounce that degeneracy is not a practical problem 

based on the observation that cycling rarely occurs. Yet, even if cycling does not occur, it is 

nonetheless possible to encounter a very long sequence of degenerate pivots. Cunningham 

(1979) discussed the possibility of encountering an exponential number of such pivots with­

out cycling in the context of the network simplex algorithm and introduced the term stalling 

for this phenomenon. While all linear programs arising in practice are degenerate to some 

degree, the number of degenerate pivots encountered by a simplex algorithm is profoundly 

influenced by the pivot selection rule. Ryan and Osborne (1988) reported that due to de­

generacy they were unable to solve an airline crew scheduling problem after approximately 
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2000 iterations when using a pivot rule based solely on reduced cost information, but that 

they solved the problem in 436 iterations using Wolfe's rule (1963). The author (Boyd, 

1990) was able to solve some extremely degenerate combinatorial linear programs only af­

ter employing the steepest edge pivot rule. For linear programs demonstrating significant 

degeneracy - such as linear programs arising in combinatorial contexts - the choice of 

pivot rule can mean the difference between solving or not solving a linear program. 

One pivot rule of particular importance is steepest edge. The steepest edge pivot rule 

consists of choosing the edge of ascent relative to a given basis that gives the greatest change 

in the objective function per unit of movement along that edge. Steepest edge and its vari­

ants have been known and used for decades in the solution of large-scale linear programs 

and many papers have been written on the subject, including Crowder and Hattingh (1974), 

Dickson and Frederick (1960), Goldfarb and Reid (1977), Harris (1973), Kuhn and Quandt 

(1963), and Wolfe and Cutler (1963). The major conclusion reached by these studies is that 

steepest edge often dramatically reduces the number of pivots required by the simplex algo­

rithm. Recent extensive computational results supporting this claim have been obtained by 

Bixby (1991) and by Forrest and Goldfarb (1991). In spite of the additional computational 

work required at each iteration over simpler pivot rules, steepest edge often proves to be the 

pivot rule of choice due to the increased speed attained by a smaller number of iterations. 

Hoffman and Padberg (1991) have reported marked improvement in the solution times of 

airline crew scheduling problems with the use of steepest edge. Commercial codes such as 

IBM's MPSX and OSL both have options for DEVEX pricing (an approximate steepest 

edge procedure) and CPLEX makes use of primal and dual steepest edge pricing. 

Beyond the overall effectiveness of steepest edge, a common belief within the linear 
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programming community is that steepest edge generates relatively few pivots at points of 

degeneracy. The author became interested in the steepest edge pivot rule when it was 

suggested as a way to overcome degeneracy encountered in his own applications. However, 

while steepest edge works well in practice it remains an open question as to whether or 

not steepest edge is a true degeneracy resolution procedure; that is, a procedure that is 

guaranteed to determine an edge of ascent or a proof that no such edge exists after a finite 

number of pivots. 

In this paper we propose two simplex pivot rules closely related to steepest edge that are 

degeneracy resolution procedures. The first is a very natural extension of the steepest edge 

rule based on steepest ascent. The second procedure is computationally far more attractive 

than steepest ascent and it is argued that with probability 1 the procedure has the same 

computational requirements as steepest edge independent of the linear program being solved. 

The procedures are different than all previous degeneracy resolution procedures in that 

they rely neither on lexicography nor ordering arguments such as those found in Eland's 

rule. They share some simlilarity with the procedure of Magnanti and Orlin in that there 

are no restrictions placed on the leaving variable, and the steepest ascent procedure actu­

ally provides some freedom in the choice of entering variable. However, the most important 

theoretical advantage unique to the procedures is that the pivot element is chosen without 

explicit knowledge of the set of all active constraints at a point of degeneracy. This ad­

vantage is particularly useful in combinatorial settings where the linear program is never 

explicitly written out. 
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2 Background 

In order to make the combinatorial implications of the proposed degeneracy resolution 

procedures explicit, we consider a linear program of the form 

max ex 

(P) s.t. Ax ::; b 

where A is m x n and is assumed to have rank n (the problem is, of course, trivial to solve 

if the rank is less than n ). It is important to emphasize that while the form (P) will be 

used for expository purposes the procedures to be described can be applied just as easily 

to problems in a more standard form for simplex algorithms, i.e., equality constraints and 

bounded variables. In the context of (P), a primal simplex algorithm operates as follows. 

Algorithm Simplex 

Given: A linearly independent collection a1 , ... , an of rows of A such that the intersection 

x of the corresponding constraints is feasible for (P). 

Purpose: Solve (P). 

1. For each of the n sets of points Sk = { a1 , ... , an} - { ak} let ,ka ::; 0 be the unique 

direction satisfying ,kai = 0 for all ai E Sk and ,kak < 0. Let d = ,s where ,s 
satisfies qs > 0. If no such direction exists, stop; the present solution x is optimal. 

2. Find the largest Osuch that A(x + Od)::; band a row r of A such that ar(x + Od) > br 

for 0 > 0. If O = oo, stop; (P) is unbounded. 

3. Let the new set of constraints consist of {a1, ... , an} U {ar}- {a 8
} and return to step 1. 
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In the standard form for simplex algorithms the leaving constraint a8 would correspond 

to an entering variable and the entering constraint ar would correspond to a leaving variable. 

An important point can be made with respect to step 2 of algorithm Simplex. When the 

constraints Ax ~ b are explicitly written out step 2 can be carried out enumeratively; that 

is, for each constraint aix ~ bi the value 0i can be determined such that ai(x + 0id) = 

bi and 0, ar, and br determined by the minimum non-negative value of 0i. In standard 

implementations of the simplex algorithm this is what actually occurs. However, to actually 

apply algorithm Simplex all that is necessary is an oracle for solving the following problem. 

Problem STEP: Given a point x satisfying Ax ~ b and a direction d, find the largest 0 

such that A(x + 0d) ~band a row r of A such that ar(x + 0d) > br for 0 > 0. 

For linear programs (P) arising in combinatorial contexts it is often the case that m > > n 

so that explicitly writing the set of constraints is neither desirable nor practically feasible. 

However, in many such instances an oracle for solving problem STEP does exist. Motiva­

tion for the present work stemmed from degeneracy encountered in the solution of knapsack 

separation problems (Boyd, 1990) where the linear programs that arise have an exponen­

tial number of constraints but an efficient oracle for problem STEP. Algorithms for finding 

violated subtour elimination constraints of the traveling salesman polytope can be modi­

fied to serve as oracles for problem STEP, allowing the simplex algorithm to be used to 

optimize over the subtour polytope as defined in Boyd and Pulleyblank (1990) in spite of 

an exponential number of constraints. The problem of finding a direction of ascent on the 

cone defined by simple cycle inequalities arises in the solution of the maximum weight cut 

problem (Barahona and Titan, 1990; Bixby and Saigal, 1991), and again while there are an 

exponential number of such constraints there exists an efficient oracle for problem STEP. 
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Yet, while oracles often exist for problem STEP, most degeneracy resolution procedures 

must place requirements on the entering constraint ( exiting variable in standard simplex) in 

order to guarantee resolution of degeneracy. A notable exception is the parametric algorithm 

of Magnanti and Orlin (1988), although as a parametric algorithm it requires more than an 

oracle for problem STEP in order to be implemented. 

In addition, all degeneracy resolution procedures proposed to date require global infor­

mation on the set of active constraints at a point of degeneracy in order to make a pivot 

selection. To elaborate, algorithm Simplex operates by successively choosing not only a 

feasible point x but a set of n constraints with linearly independent gradients. In the con­

text of degenerate pivots, it is the choice of constraints that is particularly relevant since by 

definition the feasible point remains unchanged. Eland's rule and rules that use lexicogra­

phy require information on more than the chosen set of active constraints to make a pivot 

selection. However, the procedures described here require only knowledge of the chosen set 

of n constraints at any given iteration to choose a pivot. 

Throughout this paper we let JI · II denote the euclidean norm. We use cone( a1 , ... , an) 

to denote {a E rn,n: a= w1a1 + ... + Wnan, w1, .. . ,wn ~ O}. 

3 Steepest Edge 

The steepest edge pivot rule defines the way in which the direction d is chosen in step 1 of 

algorithm Simplex. Specifically, d is chosen as the direction 7 8 with the largest increase in 

objective function value per unit of movement along 7 8
; that is, the steepest edge of the 

polyhedron defined by the chosen collection a1 , ... , an of active constraints. We formally 
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define the algorithm in the context of (P) for comparison with algorithms presented in the 

following sections. 

Algorithm Steep 

Given: A linearly independent collection a1 , ••• , an of rows of A such that the intersection 

x of the corresponding constraints is feasible for (P). 

Purpose: Determine a direction of ascent at x or prove that no such direction exists. 

1. For each of then sets of points Sk = {a1 , .. . ,an} - {ak} let ,ka::; 0 be the unique 

direction satisfying ,kai = 0 for all ai E Sk and ,kak < 0. 

2. Let ,s maximize v = (1 ic)2/ll,ill 2 for all 11, ... ,,n. If v::; 0, stop; no ascent direction 

exists. 

3.Letd= 1
8

• 

4. Let O and ar be the values returned by the oracle for problem STEP with d as defined 

in step 3. If 0 =p 0, stop; d is an ascent direction. 

5. Replace a 8 with ar and return to step 1. 

4 Steepest Ascent 

While the status of steepest edge as a theoretical procedure for resolving degeneracy remains 

unresolved, it turns out that a close variant of this algorithm based on steepest ascent is 

provably a degeneracy resolution procedure. Specifically, if the direction d sent to the oracle 

for solving problem STEP is a direction of steepest ascent relative to the active constraints 
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( as opposed to a steepest edge) then algorithm Simplex cannot cycle. Formally, we introduce 

the following algorithm which, given a vertex of the feasible region of (P), finds a direction 

of ascent or proves that no such direction exists after a finite number of iterations. 

Algorithm Ascent 

Given: A linearly independent collection a 1 , ... , an of rows of A such that the intersection 

x of the corresponding constraints is feasible for (P). 

Purpose: Determine a direction of ascent at x or prove that no such direction exists. 

1. Find a0 such that lie - a0 11 ~ lie - all for all a E eone(a1, ... ,an) and let w1, .. . ,wn ~ 0 

be the unique values such that a0 = w1a1 + · · · + wnan. If a0 = e, stop; no ascent 

direction exists. Otherwise, let Io be the nonempty set of indices for which Wi = 0. 

2. Let 0 and ar be the values returned by the oracle for problem STEP with d = e - a0 • If 

0 f. 0, stop; e - a0 is an ascent direction. 

3. Let as be such that s E I0 and { a 1 , ... , an} U { ar}- { as} is linearly independent. Replace 

ai with ar and return to step 1. 

Algorithm Ascent is a steepest ascent algorithm because e-a0 is the direction of steepest 

ascent relative to e and the active constraint set defined by a1 , ... , an. This follows from 

strong duality results on separation found in the convexity theory literature. The following 

proofs actually require only the weaker results captured in the following lemma. 

Lemma 1 Let a1 , ... , an E IR n be a collection of linearly independent points, let c E IR n 

be such that c (j_ eone(a1, ... ,an), and let a0 be such that lie - a0 11 ~ lie - all for all 
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a E cone(a1, ... ,an). Finally, let w1, .. ,,wn 2". 0 be the unique values such that a0 = 

w1a1 + · · · + wnan with Io the set of indices for which Wi = 0 and If? the complement of Io. 

Then 

1. (c - a0 )a $ 0 for all a E cone(a1, ... , an), 

2. ( c - a0 )ai = 0 for all ai with i E If?, and 

3. ( c - a0 )c > 0. 

Geometrically, Lemma 1 is obvious and we omit the proof as it is easily established and 

one of many standard results in convexity theory. 

Theorem 1 Algorithm Ascent terminates after a finite number of iterations with a direc­

tion of ascent for (P) or a proof that no such direction exists. 

Proof . We begin by showing that when the algorithm terminates in step 1 no ascent 

direction exists and when it terminates in step 2 an ascent direction has been found. The 

constraints a1, ... , an are initially linearly independent and the algorithm proceeds beyond 

step 2 only if the value iJ returned by the oracle for solving problem STEP is 0. By the 

definition of problem STEP this means the constraint ar x $ br returned by the oracle 

satisfies arx = br, and so throughout the algorithm all constraints aix $ bi that are en­

countered are satisfied at equality by x. If the algorithm terminates in step 1 with c = a0 

then c = w1a1 + · · · + Wnan with Wi 2". 0 and thus by Farkas' lemma no ascent direction in 

(P) exists at x. If c -:/ a0 then c - a0 is clearly a direction of increasing objective function 

value by Lemma 1, and if the value 0 returned by the oracle for solving problem STEP is 
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nonzero, as is the case when the algorithm terminates in step 2, then by the definition of 

problem STEP c - a0 is a feasible direction for (P) at x. 

We next show that in step 1 if c f:. a0 then Io f:. 0. If Io = 0 then a0 resides in the 

strict interior of cone(a1 , .•• ,an). By the operation of the algorithm cf:. a0 and so the line 

segment connecting a0 and c contains points other than c, and since II· II is a norm any point 

a f:. a0 on this line segment satisfies lie - all < lie - a0 11· However, since a0 is contained in 

the strict interior of cone( a 1 , ... , an) some point a f:. a0 on this line segment also must be 

contained in cone( a1, ... , an), contradicting the definition of a0 • 

To see that a vector a8 E Io with the properties assumed in step 3 exists, note that 

the algorithm only proceeds to step 3 if 0 = 0, and by the definition of problem STEP it 

follows that ar satisfies ( c - a0 )ar > 0. Since ( c - a0 )ar f:. 0 the set of vectors { ai : i E I{?}, 

which satisfy ( c - a0 )ai = 0 by Lemma 1, together with ar are linearly independent. As the 

vectors a 1 , ... , an are linearly independent it is thus possible to find a vector as with s E Io 

such that { a1, ... , an} U { ar} - { as} is linearly independent. 

We conclude by demonstrating that the algorithm is finite by showing that lie - a0 11 

strictly decreases in each successive iteration of the algorithm. Since each possible set of 

constraints a1 , ... , an defines a unique point a0 ( a0 represents the minimum of a strictly 

convex function on a cone) no set a1 , ... , an can ever be repeated and finite termination of 

the algorithm follows. Let a1 , ... , a" be the new set of vectors constructed in step 3 of the 

algorithm. The vector ar E cone(a1, ... , a") since ar = ak for some k by choice, and clearly 

a0 E cone(a1, ... , a") since a0 can be written as a non-negative linear combination of the 

vectors { ai : i E If?} and { ai : i E If?} ~ {a1, ... , a"}. The square of the distance between 
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c and points on the line segment a0 + 0(ar - a0 ), () E [O, 1], connecting a0 and ar is 

lie - (a0 + 0(ar - a0 ))112 

((c - a0 ) - 0(ar - a0 ))((c - a0 ) - 0(ar - a0 )) 

(c - a0 )(c - a0 ) - 20(c - a0 )(ar - a0 ) + 02(ar - a0 )(ar - a0 ) 

lie - aoll2 - 20[( c - ao)ar - ( c - ao)ao] + 02llar - aoll2. 

Since (c- a0 )ar > 0 and (c- a0 )a0 = 0 it follows that lie- (a0 + 0(ar - a0 ))11 < lie- a0 11 for 

() sufficiently small but positive. This in turn implies that the point ""ifJ satisfying lie - ""ifJII ~ 

lie - all for all a0 E cone(a-1, ... , a'1) satisfies lie- ""ifJII < lie- a0 11, completing the proof. D 

It is possible that algorithm Ascent will terminate in step 2 with a direction of ascent 

that is not an edge. Practically this poses no difficulty as an extreme point of (P) with a 

better objective function value than x can be trivially constructed given an ascent direction 

at x, and finding an edge of ascent at x is not significantly more difficult. 

The choice of the constraint ar returned by the oracle for solving problem STEP is 

irrelevant in guaranteeing the finiteness of algorithm Ascent. However, it will have an 

important effect on the speed with which degeneracy is resolved in practice. In particular, 

if an ar is generated that greatly decreases the distance from c to the associated cone at 

each iteration then rapid resolution of degeneracy should follow. 

While Theorem 1 does not prove that steepest edge is a degeneracy resolution procedure 

it does shed some light on why steepest edge is an effective degeneracy resolution procedure 

in practice. Often the closest point to c in cone( a1 , ••• , an) may well be a facet of this cone 

or, equivalently, the direction of steepest ascent may well be the steepest edge. Ewn if the 

direction of steepest ascent is not the steepest edge, the steepest edge may be a sufficiently 

good approximation to the direction of steepest ascent so that llc-a0II decreases nonetheless. 
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5 Closest Ascent 

While steepest ascent is theoretically sound it relies upon finding a point a0 minimizing 

lie - a0 11 on an n-dimensional cone with n extreme rays. While this problem can be solved 

finitely using an active set strategy it nonetheless remains a non-trivial subproblem that 

should be avoided if at all possible. 

In this section we present a degeneracy resolution procedure that depends only upon the 

existence of an oracle for solving problem STEP but finds an a0 minimizing lie - a0 11 only 

as a last resort. In fact, following the discussion of the algorithm it will be argued that the 

probability of having to solve such a subproblem is 0 independent of the given degenerate 

point. 

Algorithm Close 

Given: A linearly independent collection a1 , ... , an of rows of A such that the intersection 

x of the corresponding constraints is feasible for (P). 

Purpose: Determine a direction of ascent at x or prove that no such direction exists. 

0. Let a0 be any point in the interior of cone( a 1 , ... , an). 

1. For each of the n sets of points Sk = { a1, ... , an} - { ak} let "/a ~ 0 be the unique 

constraint satisfying ,kai = 0 for all ai E Sk and ,kak < 0. 

2. Let & 2: 0 be the maximum value of a such that -yk( a0 + a( c - a0 )) ~ 0 for all 1 1 , ... , ,n 
and let K be the set of indices k such that ,k( a0 + &( c - a0)) = 0. 
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3. if JKI = 1 

Let Io=](, let d = ,yk where k E J(, and let a0 = a0 + &(c - a0 ). If & ~ 1, stop; no 

ascent direction exists. 

else 

Let a0 be such that Jlc-a0 JI :S lie-all for all a E cone( a1
, .•. , an) and let W1, ... , Wn ~ 0 

be the unique values such that a0 = w1a1 + · · · + wnan. If a0 = c, stop; no ascent 

direction exists. Otherwise, let Io be the nonempty set of indices for which Wi = 0 

and let d = c - a0 . 

4. Let 0 and ar be the values returned by the oracle for problem STEP with d as defined 

in step 3. If O =/- 0, stop; d is an ascent direction. 

5. Let as be such that s E I0 and { a1 , ... , an} U { ar}- { a8
} is linearly independent. Replace 

as with ar and return to step 1. 

The key difference between algorithm Ascent and algorithm Close lies in how a0 is 

chosen from iteration to iteration. In algorithm Ascent strict monotonicity of Jlc - a0 11 is 

guaranteed by choosing a0 as the closest point to c in cone( a1 , ... , an). In algorithm Close 

strict monotonicity is maintained by first checking to determine if a there exists a simple 

pivot that will yield a new value "a° which is closer to c on the line segment connecting a0 

and c at the next iteration. Only if such a pivot does not exist is "a° chosen as the closest 

point to c in cone(a1, ... ,an). Computationally, this latter option is far more attractive. 

Theorem 2 Algorithm Close terminates after a finite number of iterations with a direction 

of ascent for (P) or a proof that no such direction exists. 
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Proof. For notational convenience we let afJ be the new value of a0 determined in step 3 

of the algorithm and let a1 , ... , a"' be the new values of a 1 , ... , an determined in step 5 of 

the algorithm. 

We begin by showing that after each iteration of the algorithm afJ E cone(a1 , •• . , a"'). 

Initially, a0 E cone(a1, ... ,an) by choice. If IKI > 1 in step 3 then afJ E cone(a1, ... ,a"') 

using the same arguments as those found in the proof of Theorem 1. If IKI = 1 then since 

afJ E cone( a1, ... , an) and ,-./afJ = 0 it follows that afJ can be written as a non-negative 

combination of the set of vectors { ai : i E If}. Since { ai : i E Jf} ~ {a1 , ... , a"'} by the 

operation of the algorithm in step 5, afJ E cone(a1 , ••• , a"'). 

Next, we show that when the algorithm terminates in step 3 no ascent direction exists 

and when it terminates in step 4 an ascent direction has been found. Using the same 

arguments as in the proof of Theorem 1 all constraints aix ~ bi encountered in the course 

of the algorithm satisfy aix = bi and if the algorithm terminates in step 3 with IKI > 1 then 

no ascent direction exists. Since a0 E cone(a1, ... , an) at each iteration it follows by the 

definition of & in step 2 that if & ~ 1 then c E cone(a1, ... ,an). Thus, c = w1 a 1 +·. ·+wnan 

for some collection of Wi ~ 0 and so by Farkas' lemma no ascent direction in (P) exists 

at x upon termination in step 3. If IKI > 1 then using the same arguments as in the 

proof of Theorem 1 it follows that if the algorithm terminates in step 4 then d is an ascent 

direction. Thus, consider the case IKI = 1. By the choice of d and & it is true that 

d"ifJ = d(a0 +a(c-a0 )) = 0 and d(a0 +(&+e)(c-a0 )) > 0 for any e > 0. Further, since the 

algorithm terminates in step 2 if & ~ 1 it must be that & < 1, and since a:D = a0 + &( c - a0 ) 
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it follows that e - a0 = (1- &)-1 (e - a<>). Thus, 

d(a0 +(a+ c)(e - a0 )) > O 

-¢:::=;> d(a0 + a(e - a0
)) + cd(e - a0

) > 0 

-¢:::=;> cd( e - a0 ) > 0 

-¢::::::;> (1-&)-1cd(e-a<>)>O 

-¢:::=;> de> da<> = 0 

which implies that dis a direction of increasing objective function value. When the algo­

rithm terminates in step 4 the value 0 returned by the oracle for solving problem STEP is 

nonzero, implying d is a feasible direction of movement for (P) at x and therefore a true 

direction of ascent. 

We continue by demonstrating that a vector as with the properties assumed in step 5 

exists. If IKI > 1 in step 3 then an as with the desired properties can be shown to exist 

using the same arguments as those found in the proof of Theorem 1, so consider the case 

IKI = 1. Step 5 of the algorithm is reached only if a value of 0 = 0 is returned by the 

oracle for solving problem STEP, and by the definition of problem STEP it follows that 

dar > O. As the set of points { a1 , ••. , an}- { as} with s the unique element in J( are linearly 

independent and satisfy dai = 0, it follows that the points { a1 , ... , an} U { ar} - { a8
} are 

linearly independent as required. 

We conclude by demonstrating that the algorithm is finite. To this end we first show 

that if IKI = 1 at some iteration then lie - a0 ii strictly decreases in the following iteration. 

To see this, let k be the unique index in J( and let a1 , ... , ~ be indexed so that ak = ar 

and ai = ai for i > k. Further, let "?, Si, and J( denote the values of ,i, Si, and J( in 

the next iteration of the algorithm. When IKI = 1 the point a<> is in the strict relative 
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interior of the facet cone( a1 , ••• , ak-I, ak+l, ... , an) of cone( a1 , ••• , an) and is therefore in 

th t . t 1 t· . t . f th f t (-1 -k-l -k+l =i) f (-1 =i) e s nc re a 1ve 1n enor o e ace cone a , ... , a , a , ... , a o cone a , ... , a . 

Since dar = -ykak > 0 it must be that 7yk = --yk in order for 7yka} = 0 for all i E Sk and 

7ykak ~ 0, and with 7fJ in the strict relative interior of this facet it follows that 7fJ + aw E 

cone(a1, ... , a,n) for any w satisfying 7ykw :::; 0 and a > 0 sufficiently small. We show that 

7yk( c - rfJ) :::; 0 as this will be sufficient to prove the strict decrease claim. Note that ,..,/ must 

satisfy -yk( c - a0
) > 0, for if not then since IKI = 1, -yk( a0 + a( c - a0 )) ~ 0 for all 1

1, ... , ,n 

for some a > &, which contradicts the choice of&. Further, with IKI = 1 by assumption, 

-,k(l - a)( e - a0) ~ 0, implying that 7fJ + a( e - rfJ) E cone(a1, ... , a,n) for some sufficiently 

small a > 0. If IKI = 1 at the following iteration then the new value of a0 is 7fJ + a( e - rfJ) 

with a > 0, while if IKI > 1 then the new value of a0 is defined as the closest point toe in 

eone(a1, ... , a,n ). In either case, since 7fJ + a( e - rfJ) E eone(a1, ... , a,n) for some a > 0 it 

follows that lie - a0 11 strictly decreases at the following iteration as claimed. 

Thus, consider a sequence of iterations in which IKI = 1 and let a be the initial value 

of a0 in this sequence of iterations. At each iteration a0 lies on the line segment connecting 

a and e, is strictly closer to e than in the previous iteration, and satisfies ,a0 = 0 for some 

new constraint 1a = 0 uniquely defined by n - l points ai that are rows of A. As there are 

a finite number of constraints 1 a = 0 defined in this way, such a sequence of iterations must 

terminate either by finding a direction of ascent, proving that no such direction exists, or 

by entering an iteration in which IKI > 1. In an iteration in which IKI > 1, a0 is redefined 

so that lie - a0
11 ~ lie - all for all a E eone(a1, ... , an) so that lie - a0 11 does not increase. 

Further, in the following iteration lie- a011 strictly decreases using arguments from the proof 
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of Theorem 1 in the case JKI > 1 and arguments similar to those made above in the case 

JKI = 1. Since lie - a0 JI never increases it is never possible for a0 to again be contained in 

cone( a1 , .•• , an). As there are a finite number of cones defined by subsets of n rows of A, 

it follows that the algorithm is finite. D 

It is of interest to compare the computational work required at each iteration of algo­

rithm Close and algorithm Steep. When IKI = 1 in algorithm Close it can be seen that 

the algorithms are all but identical except in step 2, and the computational burden in both 

algorithms lies almost entirely in step 1. Indeed, for all practical purposes the algorithms 

are identical in the amount of work required per iteration if IKI = 1. As an aside, one 

intuitively pleasing aspect of closest ascent is that it provides an easily calculated measure 

of progress toward resolution of degeneracy, namely, the decreasing values of 1Jc-a0 JI, which 

steepest edge does not. 

The question remains as to the likelihood that IKI = 1 in algorithm Close. From the 

definition of algorithm Close it can be seen that at any iteration of the algorithm the 

probability that IKI f= 1 is the probability that when the ray a0 + a( c - a0 ) first intersects 

one of n planes ,ka ~ 0 it simultaneously intersects at least one other plane. Over the 

course of the algorithm, the probability of finding IKI f= 1 at some iteration is bounded 

above by the probability that the line segment connecting c and the initial a0 chosen in 

step O never intersects more than one of a finite number of planes at a time. The finiteness of 

the number of planes under consideration follows from the fact that the planes encountered 

in algorithm Close are defined so as to contain the origin and n - 1 linearly independent 

rows of A. As the following theorem formalizes, the flexibility in the initial choice of a0 

guarantees that with probability 1 each iteration of the algorithm will encounter JJ(j = 1 
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independent of the given linear program. 

Theorem 3 Let "/a = 0, i = 1, ... , N, be a finite collection of planes in JRn, let c be 

a distinguished point, and let a0 be a point chosen at random from any full dimensional 

ball B ~ JR n. The probability that any point a on the line segment connecting a0 and c 

simultaneously satisfies two or more planes at equality is O. 

Proof . Let Uij denote the set of points determined by the intersection of the planes 

,yia = 0 and ,i a = 0 (including the possibility of 0) and let U = LJ Uij. If c E Uij or U;j = 0 

let Yij = U;j and if c (/_ Uij let Yij denote the unique n - 1 dimensional affine set of points 

containing U;j and c. Let V = LJ Yij. If the line segment connecting a0 and c satisfies 

two or more planes at equality at some point a then since a E Yij for some Yij E V and 

c E ¼j it must be that a0 E Yij· Since V represents the set of points in a finite collection of 

affine sets of dimension n - 1 or less, the probability that a point chosen at random in any 

n dimensional ball B will lie in V n B is therefore 0, completing the proof. D 

It cannot be overemphasized that the probability in the previous theorem is very different 

from most other probabilities arising in the discussion of degeneracy. For example, the 

probability of degeneracy occurring in a linear program is 0 in most natural probabilistic 

models for generating a random linear program, yet degeneracy is pervasive in most real 

linear programs. The probability calculated in the previous theorem, however, hypothesizes 

a given linear program and demonstrates that the freedom in choosing the initial value a0 

is what leads to the desired probability of 0. 

The implication of the previous theorem is that in practice the need to find a0 closest to c 

in cone( a1 , ... , an) should occur very rarely, with a finite probability arising due to numerical 
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issues associated with finite precision arithmetic. In these instances, rather than find such 

a point a0 it is preferable to find a new point a0 closer to c through local adjustments to 

a0 • Properly developed, such an algorithm maintains finiteness while allowing for the extra 

freedom to locally adjust a0 • 

Magnanti and Orlin (1988) observe that in recent probabilistic studies of objective func­

tion parametric linear programming algorithms "the probability distribution of a parametric 

linear program is chosen so that the problem almost always satisfies a condition [that en­

sures finite convergence of] the parametric algorithm ... even if it is degenerate." From their 

work it appears that a stronger claim similar to the result found in Theorem 3 can be made. 

When solving a linear program using a parametric programming algorithm there is usually 

some flexibility in the choice of initial objective function. Choosing this objective function 

randomly from the set of potential choices should ensure that degeneracy is not encountered 

in the parametric algorithm independent of the underlying linear program. 

6 Conclusions 

Two procedures have been presented for resolving degeneracy in linear programs. The 

steepest ascent procedure, while not computationally attractive, shed some light on the 

practical efficiency of the steepest edge procedure commonly used in practice to solve large 

and highly degenerate linear programs. Ideas found in the steepest ascent procedure were 

then used to develop a closest ascent procedure that with probability 1 had nearly identical 

computational requirements per iteration as steepest edge but was guaranteed to finitely 

terminate. All of the procedures discussed had the unique advantage that the pivot element 

is chosen without knowledge of the set of all active constraints at a point of degeneracy. 
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A number of interesting questions remain. While the author suspects that there exist 

examples in which steepest edge leads to an infinite number of pivots, the question of 

whether or not steepest edge is a degeneracy resolution procedure remains unresolved. 

The relative number of iterations required in practice by steepest edge, steepest ascent, and 

closest ascent also remains an interesting question. Steepest ascent, while probably requiring 

the fewest iterations, is likely to be too expensive per iteration to warrant consideration in 

linear programming codes. However, the number of iterations required by closest ascent 

should be similar to the number required by steepest edge, in which case closest ascent 

should prove to be an effective practical procedure for degeneracy resolution. 
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