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Abstract

The Spectrum of the Off-diagonal Fibonacci Operator

by

Janine M. Dahl

The family of off-diagonal Fibonacci operators can be considered as Jacobi ma-
trices acting in ¢2(Z) with diagonal entries zero and off-diagonal entries given by
sequences in the hull of the Fibonacci substitution sequence. The spectrum is inde-
pendent of the sequence chosen and thus the same for all operators in the family.
The spectrum is purely singular continuous and has Lebesgue measure zero. We will
consider the trace map and its relation to the spectrum. Upper and lower bounds
for the Hausdorff and lower box counting dimensions of the spectrum can be found
under certain restrictions of the elements of the Fibonacci substitution sequence, and
results from hyperbolic dynamics can be used to show that equality can be achieved

between the two dimensions.
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Chapter 1

Introduction

The off-diagonal Fibonacci operator is of interest particularly due to its connection
with quasicystals, which will be discussed more in Section 2.1. Let us construct the
off-diagonal model: Following the notation in [7], let a,b € R, with a # b and consider
the Fibonacci substitution S(a) = ab, S(b) = a. Under the substitution, S?(a) = aba,

S3(a) = abaab, S*(a) = abaababa, etc. The substitution has the following property:
S*(a) = S¥71(S(a)) = S*1(ab) = S*1(a)S* 1 (b) = S¥1(a)S*2(a). (1.1)

Note that for k > 1, the sequence S*~!(a) has finite length F}, the kth Fibonacci
number, with Fy = F} = 1, Fy41 = Fi + Fy—1. Beginning with a and iterating this
substitution gives a one-sided infinite sequence u that is invariant under the substi-
tution; u = abaababaabaababaababaabaab.... Beginning with b|a, where | denotes the
origin, and iterating S? gives a bi-infinite sequence, which we will denote w;. If we let
ws(n) denote the nth place in the sequence, we see w,(—2) = a,ws(—1) = a,ws(0) =

b,ws(l) = a,ws(2) = b, etc. Note that the iteration of 52 is necessary, because for



k > 0, the sequence S?:(b) ends in ab and the sequence S?**1(b) ends in ba. The

following property holds:
SQk‘ (b) — S2k-—1 (b) S2k——2 (b)

and thus we see that to the left of the origin, the sequence ends with S2*(b) for every
k > 0.

The hull Q is all two-sided sequences that locally look like w:
Q = Q(w) = {w € {a,b}? | every subword of w is a subword of u}.

In the standard basis the operator of interest can be expressed as the Jacobi matrix

(o \

which acts on ¢%(Z) by

(Hou)(n) =w(n+ Du(n+ 1) + w(n)u(n — 1).

The family of operators { H,,}.eq is called the off-diagonal Fibonacci model.

To consider the spectra o(H,), the following result from [7] is quite useful.

Theorem 1.1. The spectrum of H, is independent of w; o(H,) = Lap for w € S

Moreover, ¥, s a compact set of Lebesgue measure zero.



And thus we now denote the spectrum of H,, as X,p. We will see that the
spectrum X, is related to the so-called trace map, which is the map 7' : R? — R3
given by T'(z,y, z) = (2zy — 2, z,y). We can use the trace map to define the spectrum

. 242 . . . . .
Yop. Given z1 = 2%, To = %, and x_1 = "21’;’ , which we will see in Section 3.1 arise

organically from the operator H,,, we can define a bi-infinite sequence {z,} that

depends on E and a and b from the trace map:
T_l(mn—i—?a Tn41, xn) = (xn—i-l, Tn, xn—l) = T(xna Tn-1, xn—?)-
Then we can make the following statement:

Theorem 1.2. The spectrum X,y s precisely given by the energies E such that the

sequence {z,(E)} is bounded in the forward direction.

Also from [7] comes the next theorem, though in Section 3.2 a slightly different

proof of this statement will be given:
Theorem 1.3. The spectrum X, is purely singular continuous.

Note that while the absence of eigenvalues is shown in [7] for all w € Q, we will
just prove it for the sequence w;.

The zero Lebesgue measure of the spectrum naturally raises the question of the
fractal dimension of the spectrum. Recall the definitions of the box counting and
Hausdorff dimensions:

The lower box counting dimension of a bounded set S C R is defined as

dimp(S) = lim inf —-———logkf;’s%(e)

)



where
Ny(e) =#{j € Z | [je,(j + 1)e) N S # 0}

The upper box counting dimension is defined similarly, with lim sup in place of lim inf.
If the upper and lower box counting dimensions are equal, we say the box counting
dimension dimp(S) exists, and dimp(S) = dimg(S) = dim%(9).

Hausdorff dimension in R is defined as follows: Consider a d-cover of a set S C R;

o0
i.e., a countable union of intervals U I; such that the length of each interval I; is
i=1

bounded above by § > 0 and S C U I;. Then let

i=1

h*(S) = lim inf Z|I|°‘

§—0 d-covers

and the Hausdorff dimension is
dimg(S) = inf{a | h*(S) < oo} = sup{a | h*(S) = oo}.

Note that if for some a we have h*(S) = 0, then A% (S) = 0 for all o/ > a. Also if
for some o we have h*(S) = oo, then h®'(S) = oo for all o/ < a.

To consider the fractal dimension of the spectrum, first we must define the constant

f o 4—-2a2b2 4%

ozpr——, Which is determined by whether a > b

¢ to be the positive square root o
or b > a, and also define f* = log(1+4+/2). Again, it will be seen how these quantities

arise in the later sections. We will find the following bounds on the lower box counting

dimension and the Hausdorff dimension.
Theorem 1.4. If c > 4, then

- f*
Sap) > —2
dim(Zas) 2 log(4c + 14)



Theorem 1.5. If ¢ > 4, then

f*
< .
" log(lc—2+4+ V2 —4c+1)

dimH(Ea,b)
Finally, with the help of hyperbolic dynamics, we will see the following result.

Theorem 1.6. For ¢ > 6, the box counting dimension of the spectrum X, exists and

dimH(Ea,b) = diInB(Ea’b) .

In Chapter 2, we will go into more depth about the discovery of quasicrystals
and their importance, and how the off-diagonal model relates. We will also compare
similar results of the (diagonal) Fibonacci operator, a model closely related to the
off-diagonal model. Finally, we will state some important definitions and results from
hyperbolic dynamics.

In Chapter 3, we start to consider the off-diagonal model in the specific case where
a > b. First, in Section 3.1 we will consider basic properties of the sequence ws and
see how it relates to the operator H,,,. Then in Section 3.2 and Section 3.3, the proofs
of Theorem 1.2 and Theorem 1.3 and the proofs of Theorem 1.4 and Theorem 1.5 will
be given. In Section 3.4, hyperbolicity will be considered, and results from hyperbolic
dynamics will be used to prove Theorem 1.6. Finally, in Section 3.5, the necessary
changes will be made to certain lemmas and proofs to show that the main results all

hold for the case when b > a.



Chapter 2

Background

2.1 Quasicrystals

Quasicrystals are solids whose atomic arrangements have symmetries that are for-
bidden for periodic crystals. The rotational symmetries allowed for crystals are 2,
3, 4, and 6-fold [2]. The discovery of such alloys with sharp diffraction spots not
consistent with crystallographic symmetries was reported in 1984 by Shechtman et al
[23]. According to a 1985 paper by Zia and Dallas [27], a quasi-crystalline structure
may be mathematically represented as a sum of delta functions located at a discrete
set of points in D-dimensional space, distributed neither randomly nor periodically.
With D=2, for example, these points may be located at vertices of a Penrose tiling
pattern. Therefore, aperiodic tilings naturally arise in the study of quasicrystals.
The so-called cut and project method from [11] can be used to construct an almost
periodic tiling of the line, and thus a one-dimensional quasicrystal. The method is

as follows: Start with a square lattice in the plane and choose a line with irrational



slope. Then consider the set of lattice points that lie within a certain distance from
the line, and project them onto the line. Particularly, with the lattice Z? and the
slope %, where 7 = ﬁfﬂ is the golden ratio, and with a strip that coincides with the
unit square shifted along the line, one obtains the Fibonacci substitution sequence w;.
That is, one obtains short and long intervals, and the arrangement of the intervals
follows a Fibonacci substitution sequence. The cut and project method can be used
to “create” a quasicrystal from a periodic pattern in higher dimensions as well [27].
More thoroughly studied has been the (diagonal) Fibonacci operator, going back
to 1983 [16], [24], at first in a context unrelated to quasicrystals. Such Schrédinger
operators with quasiperiodic potentials are used in characterizing the properties of
quasicrystals. Though the diagonal model, which we will look at in the next section,
has been more widely studied, the off-diagonal model is just as relevant in the study
of quasicrystals, and perhaps even more fitting considering the ability to construct

the Fibonacci substitution sequence via the cut and project method.

2.2 The Diagonal Model

In this section we will consider the (diagonal) Fibonacci operator. This operator is
closely related to the off-diagonal operator, not only in construction but with their
spectral properties as well.

The (diagonal) Fibonacci operator is the discrete one-dimensional Schrodinger

operator acting in £2(Z) given by

[Hu](n) = u(n + 1) + u(n — 1) + V(n)u(n). (2.1)



The potential V : Z — R is
V(n) = Axp-¢1(n¢ +60 mod 1),

where A > 0 is the coupling constant, ¢ = @ is the reciprocal of the golden ratio,
and 6 € [0,1) is the phase. This is closely related to the off-diagonal model, mostly
perhaps by its similar relation to the trace map.

The spectrum of H is independent of the phase, but does depend on the coupling
[4]. Therefore the spectrum o(H) will be denoted by X. It was shown by Siité [21]
that for 8 = 0 there are no eigenvalues in X, and that the spectrum is a Cantor
set for A > 4. He later went on the show [22] that for any A # 0 and for § = 0,
the spectrum is a Cantor set of zero Lebeséue measure, and the spectrum is purely
singular continuous. There are further partial results from Hof-Knill-Simon [13] and
Kaminaga [14], and Damanik-Lenz [8] proved the absence of eigenvalues for all phases,
thus implying a purely singular continuous spectrum. Then, of natural interest due
to the zero measure of the spectrum, is the fractal dimension of the spectrum.

Let f* =log(1l + v/2) be defined as in the introduction. From [6], we see that for
A > 4 and A > 8, respectively, the lower box counting dimension and the Hausdorff

dimension of the spectrum have the following bounds:

- J*
> .
dimp (%) 2 log(2A + 22)’

g (Jo -4 VO 1)

Finally, in [6], it was shown, using hyperbolic dynamics and results from [5], that
for A > 16, that the box counting dimension of Xy exists and dimpg(Xy) = dimg(X)).

Thus, as a corollary, /\lim dim(X,) - log A = f*.



2.3 Hyperbolic Dynamics

We will see that the theory of hyperbolic dynamical systems is important for proving
results about the fractal dimension of the spectrum of the off-diagonal Fibonacci
operator. Therefore, provided in this section are pertinent definitions and theorems
from the theory of hyperbolic dynamics. First, we define what it means to be a

hyperbolic set.

Definition 2.1. Suppose M is a manifold and f is a map defined on M. Let A C M
be a compact invariant set; that is, let f(A) = A, on which f is invertible. Then A is

said to be a hyperbolic set if the tangent bundle over A admits a decomposition
TAM = E* @ E°,

invariant under Df and such that | Df"(z) [gu || < ¢k™ and ||Df*(z) [E:

< ck™
for every z € A,n € N and for some ¢ > 0, k € (0,1) . Moreover, if there is an open

neighborhood V' of A such that A = Af, := ﬂ f™(V), then A is said to be locally

neZ
maximal, or basic.

Proving that a set is hyperbolic just from the definition might be tricky, but the
following is a theorem giving a cone criterion that will be useful in proving hyperbol-

icity. From [12]:

Theorem 2.2. A compact f-invariant set A is hyperbolic if and only if there ex-
ist A < 1 < p such that at every x € A there are complementary subspaces S,
and T, (in general, not D f-invariant), a field of horizontal cones Hy O S, and

a family of vertical cones V, D T, associated with that decomposition such that
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Df,H, C IntHyyy, Df; Wiy C IntVy, | DfE > pli€]| foré € H,, and ||Df7E|| >

A1[e]l for € € V.

Next, we want to define the stable and unstable manifolds of a hyperbolic set.

First, we define the stable and unstable sets of a point in the hyperbolic set.

Definition 2.3. For z € A and a small € > 0, define
Wi(z) ={w e U | d(f"(z), f"(w)) <e for all n > 0}

and

Wi(z) ={we U | d(f"(z), f*(w)) <e forall n <0}

to be the local stable and unstable sets. Then the (global) stable and unstable sets

for a point z € A are given by

Wi) = |J Wi (=) and W*(z)= ] FWEF (@)

neZy neZ4

Finally, the stable and unstable manifolds of a hyperbolic set A are given by

we(A) = |JW*(z) and W*(A) =] W*().

TEA €A

Of interest will be certain results relating hyperbolic sets and dimension. But first,
we have the following theorem relating foliations and locally maximal hyperbolic sets.
For A, a stable foliation F* is a foliation of a neighborhood of A such that for each
x € A, the foliation F*(z) is tangent to E2, and f(F*(z)) C F*(f(x)).

The following theorem comes from [19], Appendix 1, theorem 8.

Theorem 2.4. Let u € ¥ and M be an ambient manifold. Let ® : X x M — ¥ x M be

defined by ®(u,z) = (1, pu(x)) where ¢,(z) is a diffeomorphic C* function of (u, ).
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Let A, C M be a basic set of the diffeomorphism and let U be a small neighborhood
of A,. Then if ® is C?, there are transverse invariant foliations Fi(z), Fi(x) defined

on U such that the maps (u,x) — T F;(x) and (u,z) — ToFi(x) are C .
Now let us define the limit capacity of a compact X C R to be

c(X) = limsup —log(C(X, €)
e—0 — log 9

where C(X,¢) denotes the minimal number of e-neighborhoods needed to cover X.
Note that this corresponds to the upper box counting dimension. The next two

theorems relating the Hausdorff dimension and the limit capacity are from [20].

Theorem 2.5. Let f : M — M be a diffeomorphism and A a basic set for f.
Suppose dim E* = 1, where E* is the unstable subspace of the hyperbolic splitting of
A for f. Then dimyg(W*(z) N A), c(W¥(z) N A) are continuous functions of f and

are independent of x € A. Moreover, dimg(W*(z) N A) = c¢(Wk(x) NA).

As the lower box counting dimension is bounded between the upper box counting
dimension and the Hausdorff dimension, this theorem implies that the box counting
dimension exists, and that dimg(W*(z) N A) = dimg(W2(x) N A). Now consider the

same notation and setup as the previous theorem.

Theorem 2.6. Let dim M = 2, and dim E* = dimE°* = 1. Then dimy(A) =
dimg(W¥(z) NA) + dimyg(WE(z) NA) and c(A) = c(W2(z) NA) + c(WE(z)NA) and
dimpy(A) = ¢(A) is a continuous function of f.

Combining these results, it is clear that for a locally maximal hyperbolic set on

a surface, the relations dimy (W2 (z) N A) and dimg(Wg(x) N A) are also continuous



z-independent functions of f, and dimy(WE(z) N A) = dimg(WE(z) N A).

12



Chapter 3

The Off-diagonal Fibonacci

Hamiltonian

3.1 Basic Properties of the Model

In this section we will discuss and derive some basic properties of the off-diagonal
model. Particularly, we will see how the trace map arises in its association to the
spectrum of the model. Ultimately we will derive results for the spectrum X, ; from
these properties. From Theorem 1.1 we know X,; is the spectrum of H, for all
w € €2, so we just wish to consider the sequence w; and the corresponding operator
H,,. Recall that the sequence w, is constructed by iterating the substitution S2,
where S(a) = ab, S(b) = a, on b|a. For ease of notation, let ws = w for the remainder
of this paper.

Recall we have a,b € R, with a 5# b. Let us consider the off-diagonal model with

a > b. All the results for the case b > a will be addressed in Section 3.5.

13
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Also recall from the introduction that in the standard basis the operator can be

expressed as the Jacobi matrix

which acts on £2(Z) by

(Hyu)(n) =w(n + Du(n + 1) + w(n)u(n — 1).

Consider the difference equation

(Hyu)(n) = w(n + Du(n + 1) + w(n)u(n — 1) = Eu(n). (3.1)
u(n) . E -1

If we define U, = and T, (w, E) = o) , then u
w(n)u(n — 1) w(n)? 0

solves (3.1) for every n € Z if and only if U, solves U, = T,(w, E)U,_; for every
n € Z. Then U, = M,(w, E)Uy, where Mp(w,E) = Tp(w,E) X --- x T1(w, E).
Note that det T,,(w, E) = 1 and thus det M,(w, E) = 1. Recall from (1.1) that the
Fibonacci substitution has the property S*(a) = S*71(a)S*2(a). As the sequence
given by S*(a) determines the non-E entries of T (w, E), Ty(w, E), ..., TF,,, (w, E)

and thus of Mg, ,,(w, E), we have

MFk+1 (w’ E) = MF,_, (w’ E)MFk (w’ E) (3'2)



Define z, := zx(E) = $tr Mg, (w, E) for k > 1. So as

then

MF1 (UJ,E)

MF2 (w, E)

]WF3 (w, E)

r =

E
2a

Q|+

1
b

Q| =

bl

(5

\

1
\ @ 0
(E —1\1 E -1 1 (E2—a2
2 a 2 ~ab 2
\ b 0 a 0 \ Eb
(6 ), (- -5
\ @ 0 il R )
E® — Ea®> — Eb® —E? +b?
E2q2 — g* —Ea?
_EP—a®-®  E®—2Ed®— EV
T2 = 2ab BT 2a2b

By taking the trace of the equation

MFk+1 + Mf;kl_z = MFk—lMFk + MFk—le‘:kl’

which follows from (3.2), we see

tr Mp,,, +tr MI,?kl_2

tr (MFk—l (MFk + Ml«:kl))

1
2

~tr Mp,_,tr (Mp, + Mg') = tr Mp,_tr Mp,,

15

with the last two equalities holding because the matrices are 2 x 2 with determinant

1. This gives, for k > 2, the map

Tht1 = 2TpTp_1 — Ti—2-

(3.4)
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This is basically the trace map introduced in Chapter 1. Using the trace map and

induction, we can see that the following quantity is independent of E and k, for k > 2:

) s o a? + b\
Ik =Ty +x, + x5 — 237k+lxlcwlc—l —-1= ( 2ab ) -1 (35)

2

Let ¢ := “22;:2 so that ¢ = (%) — 1 and we can write this as I, = c¢2. First, note
2 2y2

that =2 + 23 + 12 — 223107, — 1 = (“(2—15)2)— — 1= c% Assume that 22, + 2} + z}_; —

2Tk 1TkTh—1 — 1 = c2. Then

2 2 2
¢ = Tig + T+ (2Tep1Tr — Thr2)” — 2Tk 1Tk (2Tk 41Tk — Tieg2) — 1

2 2 2 2., 2 2 2
= Tpyy + T + 4T Th + Tpoyp — 4Tk 1 TeThiz — 4Tp 4 T + 2084 1TkThs2 — 1

2 2 2
= $k+2 + $k+1 + Ty — 2$k+2$k+1$k — 1.

Note that starting with (3.3) and iterating the inverse trace map z,_1 = 22, Tpn+1—

Tni2, WE get
a® + b2 __ Ea
2ab T2 T o

E
Tog = 2—b, r—1 = (36)

and so on, obtaining a bi-infinite sequence {z,}. The invariant (3.5) holds for k < 2

as well. This follows similarly and simply by induction.

0 1/a E/b —1/b
Proposition 3.1. Let V =T;! = and N =Ty =

—a E/a b 0
Then o = %tr N, z_, = %tr (VN), and z_p = %tr (VNN). If we let So = N,

Sy =VN, Sy = VNN and define S by the recurrence Sy := Sk_1Sk_2, then T_ =

str (Sk) for k > 2.

Proof. It can easily be seen from (3.6) that zo = itr N, z_; = str (VN), and

T_g = %tr (VNN). Now we proceed by induction. For the base case, we note that
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Sy = S515. Now assume that z_; = %tr (Sk—1Sk—2), with _41 = %tr Sk—1 and
T gyo = %tr Sk—o. Note that as Sy = Sk_1Sk—2, then Sk__12 = S,:I.S’k_l. Consider

T k1 =2T_pT_gt1 — T_gt2. We have

1 1
Tkl = —2—tr Sptr Sp_1 — §tr Sk_o
1/1 _ 1 _

1 1
= Str ((Sk+ S Sk-1) — 5t St

1 1 1
= 51}1‘ (SkSk_l + S,:lSk_l) — 51’;1‘ 51:_12 = Etr (SkSk_l).

Thus we see that z_,_1 = %tr (Sk+1) = %tr (SkSk-1), as desired. O
Note that we also have z_, = itr (NVN), and so we could also have defined
S, = Si_25k_1 and still have z_; = %tr Sy, for k > 2.

Proposition 3.2. (a) We have

and

w=Fyp+1l)=w(l), n>1 1<I< Fyy.
(b) We have
Uno=Ty - T7'U_y for N >1.

Moreover, if we define L, := Ln(w,E) =T;'---T7" and yi, := }tr Lp,, then we
can write

U—Fk—2 = LFk U—27
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and yx, = x for k> 1.

Proof. (a). To prove w(—n) = w(n — 1), we will proceed by induction.
First recall that at the origin (denoted by |), the sequence w looks like S*(b)|S 2% (a),
or S%*-1(g)|S2%(a). By (1.1) this becomes S?**~1(a)|S%*~!(a)S?*~?(a). Just consider-

ing 5%*~1(a)|S%*~1(a), this amounts to the sequence
w(—Foe +1D)w(=For+2) . .. w(—2)w(=1)w(0)|w(1)w(2) . .. w(For — 2)w(For — 1)w(Fax),

with w(—n) = w(Fox — n) for n < Fy, — 1. This is true for any whole number n; just
choose a large enough k. Thus we want to show that w(n — 1) = w(Fo — n) holds for

n > 2. Just considering the sequence S?**~1(a) to the right of the origin,
w(Dw2)w(3)... .w(Fou — 4)w(Fo — 3)w(For — 2)w(For — 1)w(Fax),

it is clear that w(n — 1) = w(Fy, — n) holds if, once the last two numbers from the

sequence are removed, the new sequence
w()w(2)w(3) ... w(Fo — 4)w(Fox — 3)w(For — 2)

is a palindrome. Therefore we want to show that for n > 2, the sequence S*(a) is
a palindrome once the last two elements of the sequence have been removed. For
the base case, consider S?(a) = aba, S3(a) = abaab and S*(a) = abaababa. Clearly,
all are palindromes once the last two elements have been removed. Now assume
S%*(a), S*~1(a) and S*~2(a) are such that S%*(a) = pba, S*~'(a) = p'ab and

S?%=2(q) = p"ba, where p,p’ and p” are all palindromes. Then
S2k+1 (a) — SQk(a)SQk—l(a) — SQk—l(a)S2k—2 (a)SQIc—l (a)

= plabp”bap’ab,
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which is a palindrome once the last two elements have been removed. Similarly,
S2*+2(g) = 5% (a)S%*~1(a)S*(a) = pbap'abpab.

The relation w(Fy + 1) = w(1) is clear. The relation w(F; + 1) = w(l) for n > 3 and
1 < 1 < F} follows from (1.1). Recall that S*(a) is a sequence of length Fj.;. We

have

S*1l(g) = S*(a)S*(a) =Sk_1(a)Sk_2(a)Sk_l(a)
= 5§*2(a)5*3(a)S**(a)S**(a)S**(a)

= 5% %(a)S*3(a)S*2(a)S**(a)S**(a)S*3(a)

and it is clear that after F}, terms, the sequence repeats those Fj terms. This holds
for all k£ > 4, and to see the case when k = 3, just consider S*(a) = abaababa.

The relation w(—Fy, +1) = w(l) for n > 1,1 < | < Fy,41 is shown in a similar
way. To the left of the origin, the sequence ends with S2*(b), or rather with $%**71(a),
for every k > 0 (setting S~1(a) = b). To the right of the origin the sequence starts
with S*(a) for every k > 0, so it is clear that w(—Fy, + 1) = w(l) for 1 < 1 < Fy,. To
see that it is true for Fy, < [ < Fy,11, note that S*(a) = S%*~2(a)S%*~3(a)S%*~2(a),
and so between Fy, < | < Fy,,; we have that w(—Fj, + [) is given by the leftmost
S%*-2(q) of S%(a), while for Fy, < I < Fy,y41, we have w(l) given by the 5?*~2(a) on
the right.

(b). Using the reflective property from (a), the first relation follows from the
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equation U_o =T 9T 3---T_NT_n_1U_n_3. To see that yx = zi, note that

1 1 1 _
Yk = 5tr Lp, = §tr (T;le;kl_l T = §(T1T2 < Tp)™!

1 1
= §tr Mg! = 5tr Mg, = x4,

using the fact that Mp, is a 2 x 2 matrix with determinant 1. O

3.2 Spectrum and Spectral Properties

Now we will start considering the spectrum ¥,; of H,; specifically we will prove
Theorem 1.2 and Theorem 1.3. Thus we want to consider the sequence {z,}, and
energies where the sequence is bounded.

Define By, := {E € R | {z,}is bounded}, and By is contained in each of the
following sets: B_o := {E € R | {z,} is bounded in the backward direction} and
Biw = {E € R | {z,} is bounded in the forward direction}. Define oy := {F €
R | |zx] < 1} and pr := {F € R | |zx| > 1}. The goal is to see that £, = Bico,

which will prove Theorem 1.2.

Lemma 3.3. The set of energies where the trace map is bounded in the forward
direction is contained in the spectrum of H,; i.e., Biow C X,p, and there is no

eigenvalue in B, .

Proof. Let u # 0 be a solution of (H,u)(n) = Eu(n). By Proposition 3.2, for n > 3
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we have
Usk, = Tor, Tr41TFk, - Tl
= Tp,+r.  Tr.+1MpUo =T, - - - T1 MF,Up
= M Ub.
Also,
U_po2=T-F, 2T p,~1+-T_2r,_1U_2F, 2,
S0

U-sp—2 = Toop 1Toop  Toh _oU_p,—2
= TornT SR T-_(IF,,+2)LFn U_2
= TQ_FI,,TQ—-Fln—l e ‘TIEL1+1LFnU—2
= Tp'Tit - T 'Lp, Uy
= L3 U,
for n > 3. By the Cayley-Hamilton theorem, M? — tr M, - M,, + det M,, = 0, so

M2z —tr M, - Mpx + 2 = 0 for £ € C2 Thus ||M2z — tr M,, - M,z| = ||z|| and

|M2z|| + |tr M,| - ||Mnz|| > ||z||. Therefore
9 1
max{|| Mz, [tr Mal - |[Mnz[|} 2 Sz,

and similarly

1
max{|| Lzl [tr Ln| - [|Laz]} = 5]l

Let E € By, so there exists some C < oo such that |z,| < C if n > 0. Note here

that this actually works for any fixed N € Z; i.e., there exists some C' < oo such that
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|za| < Cif n > N. Let £ = U and n = Fj, and we get max{||MZ U, [tr Mp,]| -

1MpUoll} > 311Usll, or max{||Uzp|l, 122&] - [Ur,[I} > 3[1Uol| for k > 3. Thus
1
max{||Uar, [, 2C||UF, I} = 5|Uoll, (3.7)

and similarly

1
max{||U_zp, -2, 2C|U-p, 2|} = S]|U—2|l (3.8)

for k > 3. Therefore E is not an eigenvalue, as u ¢ ¢2(Z). Now, to show that E € %,
suppose not. Then there is a unique u € ¢%(Z) such that ((H, — E)u)(n) = 8, 1.
Note that for all n # —1, this is just ((H, — F)u)(n) = 0, and thus Uy = ToU_; is the
only transfer matrix relation that no longer holds. Thus (3.7) and (3.8) are true, and
as w(0)u(0) + w(—1)u(—2) — Eu(—1) = 1, then one of u(0),u(—1),u(—2) is nonzero
and thus either Uy or U_, is nonzero. This is a contradiction, for then by (3.7) or

(3.8), it is true that u ¢ ¢2(Z). Therefore E € ¥,4, as desired. O

Now, in order to show the other containment, that ¥,; C B;, we need to con-

sider sequences {z,} that are unbounded in either the forward or backward direction.

Lemma 3.4. A sufficient condition that the sequence {x,} be unbounded in the back-

ward direction s that there exists some N € Z such that
lzn_1| > 1, |zn|>1, and |zni1| < 1 (3.9)

This N is unique, and moreover |Tp_a| > |Tp_1Z,| > 1 for n < N, and there is a

C > 1 such that |z,| > CFN-» forn < N.
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Similarly, a sufficient condition that the sequence {x,} be unbounded in the for-

ward direction s that there exists some N € Z such that
lzn-1]| <1, J|zn|>1, and |zn41| > 1. (3.10)

This N is unique, and moreover |Tpio| > |Tpi1Zn| > 1 for n > N, and there is a

C > 1 such that |z,| > Cf»-N forn > N.

Proof. Suppose that (3.9) is true for some N € Z. Then |zy_2o| = |2ZN-1ZN—ZTN41| >
lzny_1zn| + (Jzv—1ZN] — |ZN41]) > |ZN-12ZNn] > 1. By induction, we can show that
|Zn|, |Tn-1] > 1 and |Tp—1| > |TnZny1| for all n < N. For the base case of n = N,
the inequalities are true by the assumptions and the argument above. Now consider
Tn_p with n < N. From |z,| > 1 it follows that |z2z,,1] > |Tnt1|, and we have
|Zn-2| > [Tn1Zal+(|Tn-1Zn| = |Tn41]) > |Tn-1Zn|+ (|22 Tns1]—[Tns1]) > [€n-12Zn|. The
induction hypothesis was used in the second inequality involving z,_s. Also from the
induction hypothesis we have |z,_1z,| > 1, as |Tn_1]|, |Zn| > 1. Therefore |z,_o| > 1,
as desired. Now, considering the relation |z,_s| > |z,—12,| and taking the log of both
sides, we see that log |z,—2| > log |z,_1|+log|z,| for n < N. Therefore, log |z,| grows
faster in the backwards direction than the Fibonacci sequence (Fio = Fry1 + Fp),
and log |z,| > Fy_nlogC for some C > 1, or |z,| > C¥¥-» for n < N. Therefore,
(3.9) is a sufficient condition for {z,} to be unbounded in the backward direction.
We have
lzni1| S 1< |zn|, 1 < |zn-1]| < |zn—2| < ...,

and clearly |zp41| < 1 < |zp|, 1 < |Tp-1| < |Zn—2| < ... cannot hold for any n # N;

therefore this IV is unique.



24
The same technique is used for the proof in the forward direction. O

Corollary 3.5. A sufficient condition for {z,} to be unbounded in both the backward

and forward direction is that |z,| > 1.

Proof. Let |z;| > 1. Recall that zo = % and 1 = %, so as a > b > 0, we have

|z1| < |xo|. Also note that z_; = ‘IZﬂ:Z > 1. Then |z_;xo| — |z1| > 0, and |z_3| >
|z_120|+ (|z_120| —|Z1]) > |x-1Z0], and by the proof of Lemma 3.4, {z,} is unbounded
in the backward direction.

To see that {z,} is unbounded in the forward direction, note that |z1| > 1 implies

that |zs| > 1. This is true as |z;| > 1 gives |E| > 2a, or E? > 4a®. Then z, =

E2—a? 2 > 3a2-b? 2a2
2ab 2ab 2ab

= ¢ > 1. We want to show that |z3| > |zoz1|. It suffices

E2—_q2_p2 2 . 2_,2_p2
to show that |zoz1| > |zo|. From £55= > 28, = 1 it follows that £5%= > L.

E3_FEa2—Eb?

PSS > |%|, or |zex1| > |zo|, as desired.

Multiplying both sides by |E| gives ‘

Then from the proof of Lemma 3.4, we see that {z,} is unbounded in the forward

direction. O

Therefore we see that if |x,| > 1 for all n, the sequence {z,} is unbounded in

both the forward and backward directions.

Lemma 3.6. A necessary condition for {z,} to be unbounded (in either the forward

or backward direction) is that one of the following holds:

|Zn—1| > 1, |zn| > 1, and |Tn41| <1 for some n € Z,

|Zn—1| <1, |zn| > 1, and |Tp41| >1 for some n € Z,
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or

|T.| > 1 forall ne€Z.

Proof. Suppose that these do not hold. Note that if |z,| < 1 for all n € Z then we are
done, so consider the case where there exists some n € Z such that |z,| > 1. Without
loss of generality, choose n € Z so that |Tn,—1| < 1,|Zn41] £ 1. This can be done,

otherwise one of the conditions in the statement of the lemma is satisfied. From (3.5)

we see that =, = Tp11Tn_1 & \/c2 +(1—22,,)(1—x3_,), and so |z,| < 14 c. Thus,

the sequence {z,} is bounded (by 1+ ¢), as desired. O

Corollary 3.7. The sequence {z,} is bounded in the forward direction if and only if

(8.10) does not hold for all N € N and |z;| < 1.

Proof. Suppose {z,} is bounded in the forward direction. Then Lemma 3.4 and
Corollary 3.5 imply the “only if” direction of the statement.

Now suppose that |z1] < 1 and (3.10) does not hold for all N € N; ie., for
each N € N one of the following inequalities does not hold: |zy_1| < 1,|zn| > 1,
and |zyy41| > 1. If |z,] < 1 for all n € N, the sequence is bounded in the forward
direction. Thus let |z,| > 1 for some n € N. Then |z,11], |Tn—1| < 1, otherwise (3.10)
holds for some N with 2 < N < n. Now the statement follows from the proof of

Lemma 3.6. O

We now have necessary and sufficient conditions for a sequence {z,} to be un-
bounded or bounded in the forward direction. Similar conditions for boundedness
in the backward direction and unboundedness in just one direction can be identified

from the work above, but they are not of particular interest for our purposes. Note
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that E € p, N p,+1 gives rise to a sequence {z,} that is either unbounded in forward
or backward direction (or both), s0 p, N ppt1 C By OF pr N pny1 C B, (or both).
Now we will see more results concerning the boundedness and unboundedness of

the sequence {z,}, particularly their relation to the sets pi and oy.

Proposition 3.8. For any N € Z, we have

Bl C U (Pn N pnt1). (3.11)
n=N
and
n=N
B, C | (pn N png1). (3.12)

Also, if pn N pny1 C By, then pp N ppy1 = ﬂpk for all n € Z. Similarly, if

k=n
k=n+1
Pn N Pnt1 C Biool then Pn N Pnt1 = m Pk fO’f‘ alln € Z.
—00

Proof. From Lemma 3.4 and Lemma 3.6, we see that
Ble = m pn U U(Un—l N pn N Prt1)

and

) oo
Bioo = ﬂpn U U(pn—lnpnnan+1)-
—00

—00

(o]
First, notice that ﬂ Pn C pr N pry1 for any k € Z. By Lemma 34, if £ € 0,1 N

—00

o0
Pn N ppy1, then £ € 0,1 N ﬂ pk. Thus E € pr N pry1 for every k > n, or rather

k=n
o0
E € U (pn N ppy1) for any N € Z. Therefore (3.11) holds. Similarly, if E €
n=N
n n=N
Pr-1 N pPn N Opy1, then E € ﬂpk Nopy1 C U Pn—1 N p,p for any N € Z, so (3.12)
—00 —00

holds.
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(o] o0
Now if £ € p, N ppy1 C BS,, then E € ﬂpk or £ € o,,N ﬂ pr for some

—00 k=m+1

o0 o0 o0
m < n. Either way, E € ﬂ Pky SO Pn N Ppi1 C m Pr- And ﬂ Pk C Pn N Ppy1 1S

k=n k=n k=n
trivial.
o] k=m—1
If E € po Nppy1 C BE, then E € ﬂpk or B € ﬂ pr N o, for some
—00 —00
k=n+1 k=n+1
m>n+1s0o F € ﬂ pr and thus p, N pp41 C ﬂ Px. And the containment
-0 —00
k=n+1
n Pk C Pn N ppyq is trivial. O
—0o0

Corollary 3.9. For n > 1, we have
OnUOnt1 D Opt1 UOnta.

Proof. Either E € o1 or not. By Corollary 3.5, if E ¢ oy then E € BS . In B,
as Pp N Ppy1 = ﬁ Pk, clearly p, N ppt1 C Pny1 N pnye and the statement is true.
Now let F € al.kzéonsider Pn N ppy1 for n > 1. Clearly p, N ppy1 C o1 N py N p3 U
U 0k N pr+1 N Ppr+2, and by the proof of Lemma 3.4, then p, N pry1 C Pnt1 N Pria-

k>1
Therefore o, U 0,41 D 0ny1 U gpgq for all n > 1. To see this when n = 1, note

that o3 = [—3(b+ v8a? + b?), 3 (b — v8a? + b?)] U [—b, b] U [3(—b+ V8a? + b?), 3 (b+
Vv8a? + b?)] C [—2a,2a] = 07. O
Now we construct periodic operators, which are approximations of the operator

H,,. We will then relate the resolvents of the approximations to the resolvent of our

operator, ultimately obtaining more information about the spectrum 3, ;. First, let
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us consider some results about (periodic) Jacobi operators. Let J be a Jacobi matrix

with a(n) € R\ {0} and b(n) € R. Then we have the following lemma from [26]:

Lemma 3.10. Let cx = b(n)x(|a(n)|+|a(n—1)|). Theno(J) C [71LI€1£ c—(n), ilé}z e (n)].

Now consider a periodic Jacobi matrix Jy with period N, so a(n + N) = a(n)

and b(n + N) = b(n) for all n € Z. Define the modified monodromy matrix My (FE)

E-bn-1) -1
by My =Ty X --- x T}, where Tn=a+1) . Then, with U,, =
a(n)? 0
u(n)
, it is true that u € ¢2(Z) solves Jyu = Eu if and only if U, =
a(n)u(n — 1)

TwUn- for every n € Z. Let A(E) = str My(E).

Lemma 3.11. For the periodic Jacobi matriz Jy, the spectrum is given by o(Jy) =

{E | |A(E)| < 1}. Moreover, the spectrum consists of N non-overlapping bands, on

each of which A(E) is monotone increasing or decreasing.

Proof. As My has determinant one, its eigenvalues can be written as w and w~! with
|w| > 1. Then 2A = w + w1, Clearly, if |w| = 1, then w = €% for some 0 € [0, 27),
and w +w™! = 2cosf € [-2,2]. So if |[w| =1, then A € [—1,1]. If |w| # 1, then

w+ w™! ¢ [~2,2]. This is clear, as for w € R, the minimum value w + w™! takes is
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two, at w = +1. If w ¢ R, then w = re' for some r # 1 and 6 € (0,27) with 6 # 7.
Then S(w+w™') = (r—1)sind # 0, so w+w™" is not real, much less in the interval
[—2,2]. Thus |w| =1 if and only if A € [-1,1].

So take A ¢ [—1,1], and then |w| > 1. Therefore My can be diagonalized, and

w 0
A" 1MyA = for some invertible matrix A. Therefore A~'M,,yA =
0 wt
w™ 0
Note that the a(n) in the definition of U, does not affect the
0 w™

boundedness or unboundness of solutions u to Jyu = Fu, as a(n) is bounded away
from zero and infinity, and so we can find solutions u,,u_ that decay exponentially
at +o0, respectively. This allows one to write down explicitly the Green function
G(E,n,m) =< 6, (Jx — E)714,, > (see [26]), and thus E ¢ o(Jy).

Now consider A € (—1,1). We have that |w| = 1, but specifically w # w™!, and

w™ 0
again My is diagonalizable. Then A~'M,,vA = , and now we see

0 w™

that solutions of Jyu = Fu are actually bounded. It can then be shown that F is in
the spectrum of Jy via a Weyl sequence argument.

Finally, because the periodic operator must be bounded, the spectrum is closed,
so o(Jy) also contains the E’s such that A(E) = %1.

It is clear that A is a polynomial of degree N, so it just remains to show that for
z € (—1,1), the roots of A — z are simple. Let A(E) = z. As Jy is a self-adjoint
operator, the spectrum is a subset of R, and thus E € R. If E is not a simple root,
then there is a complex number E near E such that A(E) € (—1,1), but this is a

contradiction, as then E € o(Jy) C R. Therefore roots of A — z are simple, and
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A(FE) is monotone increasing or decreasing as it goes between —1 and 1. O

Proposition 3.12. Define a sequence of operators { Hp}m>1 on €%(Z) by
(Hmu)(n) = wm(n + u(n + 1) + wm(n)u(n — 1),

where

wm(n) =w(n) for 1<n<F,

and

Wm(n+ Fp) = wn(n)  for all n € Z.
Then H, = s- lim H,,, and p(H,,) = pm-

Proof. Let u € ¢2(Z). Then

I(H — Ham)ul? <

< Y wn+1) —wa(n+u(n+ 1) + (Wn) = wm(n))un - 1)

|n|>F2m*1

< Y WhHD) —wnm+ D))+ 1) + (@(n) - wa(n)lu(n - 1)
[n|>F2m—1

< (@=b| D Rke+DPF+ D>, [ur-D1P]| -0

|TL|>F2m—1 |n|>F2m—1

as m — oo. By definition H,, is a periodic operator with period F,, and transfer
matrix Mp,,. Therefore, by Lemma 3.11, we know that E € o(H,,) if and only if
|4tr MF,,| < 1, and this is precisely the definition of E in 6,,. Therefore 0(Hm) = 0m,

and p(Hp,) = pm. O
Note that we can similarly define a sequence of operators { H,, }m<_1 on £2(Z) by

(Hpu)(n) = wn(n+ Du(n + 1) + wn(n)u(n — 1),
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where

wm(n) =w(n) for —F,+1<n<0

and

Wm(n+ Fp) = wp(n) forall neZ.

Then H, =s- lim Hy,, and p(H,,) = pp, as well.

The following lemma is from [21]:

Lemma 3.13. Let A, {A,.} be bounded self-adjoint operators on a Hilbert space such

that A = s-lim A,,,. Then (ﬂ p(Am))o C p(A).
We can now prove Theorem 1.2.

Proof of Theorem 1.2. In Lemma 3.3 we found that Bi. C 3,4, so we want to show
that X,p C Byoo, or rather B  C p(H,). Let E € BS . Then, by Proposition

3.8, there exists an n such that £ € p, N ppy1 = ﬂ pr. From Proposition 3.12
k>n

we have that pp = p(Hy), so npk — ﬂ p(Hg). Thus p, N pny1 = mP(Hk)-

k>n k>n k>n
As the left hand side is an open set then the right hand side must be also, and

ﬂ p(Hy) = (ﬂ p(Hk)) . It is clear that m p(Hy) C ﬂ p(Hzm), and thus E €

k>n k>n k>n m>%
)

(n p(Hk)> C ﬂ p(Ham) | C p(H,), with the last containment following from
k>n mZ%

Lemma 3.13. O
And with the proof of Theorem 1.2 complete, we can prove Theorem 1.3:

Proof of Theorem 1.3. The singularity of the spectrum is clear from the zero Lebesgue

measure statement in Lemma 1.1, and the absence of eigenvalues follows from Theo-

rem 1.2 and Lemma 3.3. d
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We can also show that for a certain set of ¢’s, the spectrum is a Cantor set:
Proposition 3.14. For ¢ > 2, the spectrum X, is a Cantor set.

Proof. To show that the spectrum is a Cantor set, as we already have that ¥,; is a
closed set, we want to show that the set contains no open intervals. For contradiction,
assume that there exists an open interval I C ¥,;. Let E € I C £,,. As E is in the
spectrum it belongs to an infinite intersection of o,,’s and p,’s that locally looks like

either o N pr4+1 N Tks2 N Okt3 N Prta OF Ok N Pry1 N Okro N Pr+3 N Okrq. We can write
o0

this as E € ﬂ(onk_l N P, N Op,+1) for some sequence {n}ren, where n; > 2 and
k=1

Nk+1— Nk is equal to 2 or 3. Note that |z,, (E)| is actually bounded away from 1: From

the invariant (3.5) we see that Tn, = Tn,—1Zp,41E4/c2+ (1 — 22 _)(1—22 ,,), and
as |Tn—1(E)|, |Tn+1(E)| < 1, we get that |z, (FE)| > ¢—1 > 1. Thus, by the

continuity of x,,, every point in I must be contained in the same infinite intersection

fore) o
(for the same sequence {nx}), and I C (ﬂ(ank_l N pn, N On+1) | - It is clear that
k=
) ° 00 ° '
(m(ank_l N Pry N Unk+l)> C (ﬂ pnk) .
k=1 k=1

The sequence {ny} contains either an infinite number of odds or evens. Suppose
it contains an infinite number of evens. Then we can choose a subsequence {my} of

o o0
the even integers such that ﬂ Pn. C ﬂ Pm,, and H, = s-limy, oo Hp,, With Hp,,
k=1 k=1

Io%s) [e]
defined as in Proposition 3.12. Thus from Lemma 3.13 it follows that (m pmk) C
k=1
p(H,) = 55 ,, and I C Xf ,, which is a contradiction.
Now suppose {n;} contains an infinite number of odds. Then we want to consider

the sequence w, € Q formed by iterating S?* on ala, where | denotes the eventual

origin. Then, considering the same set of operators { H,, }m>1, we see that Hopm—1 —
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00 o
H,,, and thus (ﬂ pgm_1> C p(H.,) = X5, So we can find a subsequence s of
m=1
odd integers such that (ﬂ pnk> C (ﬂ psk> C p(H,,), as Hy, — H,,,. Therefore
k=1 k=1
I C ¥, a contradiction. O

In this last proof, we considered the invariant (3.5). From this we saw that for
¢ > 2, it is clear that there cannot exist as pair F,k such that |2y (E)| < 1,

|zr(F)| < 1 and |zx—1(£)| < 1, and thus
Ok+1NOoLNOK—1 = 0. (3.13)

Now let us consider a way to find the spectrum ¥, in terms of the o}’s, which
we saw in Proposition 3.12 are the spectra of periodic approximations of the operator
H,,. The structure of these o}’s will provide information about the fractal dimension

of 3,4, which we will see in the next section.

Lemma 3.15. The spectrum of H,, is given by

Sab = [ (0n U Ons1). (3.14)

n>1
Proof. From Corollary 3.5 we know that if |z;| > 1, then {z,} is unbounded; indeed,

from Lemma 3.10 we have that || H,|| < 2a, so for E € X,p, this implies F € [—2a, 2a]

and |z1| = |£| < 1. From Proposition 3.8 we have BS  C U(Pn N Prt1), SO

2a
n>1

ﬂ (0n U 0nt1) C Bioo = Zap.
n>1
Now, if we restrict to the energies such that |z;| < 1, we still have B, the set

of E’s such that {z,} has bounded forward orbit. The complement of B, under

this restriction, which we’ll call B, o, is the set of all E’s such that |z;| < 1 and
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{z,} has unbounded forward orbit. The claim is that B,s = U (Pn N pnt1), sO by

n>1
taking complements we obtain B, = ﬂ(on U pt1)- It is clear from Corollary 3.7
n>1
that By = (p2 N p3) U (U(on N Pra1 ﬂpn+2)>: Obviously if £ € p, N pyy1 for
n>2

some n > 1, then as |z1]| < 1, it is true that (3.10) holds for some N € N such that
2< N<n,and E € Bio. And if E € B, then again (3.10) holds for some N € N
such that 2 < N, and E € p, N p,y1 for all n > N, so the other containment is also

obvious.

Now we show that (ps N p3) U (U(an N Pnt1 N pn+2)> = U(pn N pny1)- The

n>2 n>1

containment C is obvious, as ps N p3 C U (Pn N pnt1), and for n > 2 it is true that
n>1

On N Pnt1 N Pni2 C LJ(pnrjpn+1)

n>1
For the other containment, consider E' € p,, N ppmy1 wWith m > 1. If m = 2, then

E € psNps3, and the containment is clear. Now, if m > 2, then either F € 0,,,_; or E €

Pm—1. If the former is true, then E € 0,,,_1 N Py N ps1 C (U (0 N ppy1 N pn+2))

n>2
and the containment holds. If the latter is true, that E € p,,_;, then we consider

that either F¥ € ¢,,_5 or E € p,,_5. In general, either F € o}, for some 1 < k < m, or
Ecpforalll <k <m. If E€ oy for some 1 < k <m, then E € o N pr1 N pr2
and the containment is obvious. If F € p; for all 1 < k < m, then E € py N p3, and
the containment is obvious.

Thus B’+oo = U(pn N Pnt1)- S0 Bioo = ﬂ(an U 0nt1), but this is all under the
n>1 n>1
restriction that |z;| < 1, so really we have X, = Byoo = 01N ﬂ (0nU0n41). However,
n>1
it can easily be seen from (3.3) that o2 = [—a—b, —a+b]U[a—b, a+b] C [—2a, 2a] = 01,

so o1 N m(an UbOnt1) = ﬂ(an U 0Ony1), as desired. O

n>1 n>1
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Figure 3.1: Band Structure with a = 12,b = 2.

Now let us look at the structure of these spectra. First note that from Lemma

3.11, we know oy, consists of F}, non-overlapping bands.

Definition 3.16. Define a band By C 0% to be of type A if By C ox_1, and to be a

type B band if By C o_s.

From Corollary 3.9 and (3.13), it is clear that for ¢ > 2, k > 2, each band By is
in exactly one of ox_1,0k—2. Therefore type A and B bands are well-defined. Note
also that for k > 3,¢ > 2, it follows from (3.13) that if By is a type A band then

B N (0,41 U ok—2) = 0, and similarly for a type B band that By Nox—1 = 0.

Lemma 3.17. Let ¢ > 2, and k > 2. Then

(a) Each type A band By C oy, contains exactly one type B band Byio C Ok42 and no
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other bands from or+1 and okyo.

(b) Each type B band By, C oy contains exactly one type A band Biy1 C Ok41 and two

type B bands from oyyo positioned around Byiy, and no other bands from k41

and Ok+2.

Proof. This follows the proof of a similar statement in [15]. (a) Let Bx C ok be a
type A band, so By C 0k—1. Then |zx41| > 1 and By Nok+1 = 0. On By, the function
7 changes monotonically between 1 and -1, so there is a unique value Ej € By such

that z(Ex) = 0. By the trace map, Tx12 = 2Tk41Tk — Tp—1, SO
|Tkr2(Bk)| = |zr-1(Ek)| < 1,

and thus By N oy # 0. Note that when z, = +1 then zxy9 = +2441 — -1 and
|Thra| > 2|Th1| — |THa]| > 1.

Therefore any bands of oo that intersect By lie strictly inside By. Also, in each
band B2, the function zx,o changes continuously between -1 and 1. Let Ey, 4 be
the endpoints of Byt such that zxi2(Fo) = —1 and zx42(E1) = 1. Let zx—1(Fo) = &
and zx_1(F1) = B, so for Brys C 0 C 0x_1, we have —1 < a,8 < 1. Without
loss of generality, assume Ey < FE;. Then zyy9 + Tx_1 iS a continuous function on
[Eo, E1], and we have xxi2(Eo) + zx—1(Fo) = a — 1 and zxio(E1) + xk-1(E1) =
B+1. As0 € [a — 1,8+ 1], by the intermediate value theorem, there exists a value
FEyt2 € Byyo C By such that zxyo(Ex+2) + Tk—1(Fr+2) = 0. Then the trace map gives

2214 1(Fry2)Tk(Ery2) = 0, and as |zx4+1| > 1 on By, it must be true that zx(Ek42) = 0.
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So every band By, C By contains an energy such that z; = 0, and by monotonicity
such an energy is unique, so there exists exactly one band of gj49 in Bk.

(b) Now let By C o be a type B band, so By C ox—2 and |zx—1| > 1 on B.
Again let E, € By be such that z(Ex) = 0, so from 41 = 20xTk—1 — Tx—2 We get
|Zky1(Er)| = |zk—2(Er)| <1 and o1 N By # 0. Similar to above, at zx = £1 we have
|Tkt1] > 2|zk—1] — |Tk—2| > 1, so any band in ok4; that intersects By is contained
strictly inside By. Also similar to above, any such band By,; must contain the unique
energy in By, at which z; = 0, and so there is exactly one band of ox41 in Bx. Now

consider o49. Iterating the trace map and substituting gives
Thio = (4xi — Dy — 22 Tp—2. (3.15)

When z;, = :i:%, then |zgi2| = |zr—2| < 1, so there are at least two bands in ok4o
that intersect By and lie to the right and left of By,1, because By,; contains the
energy where z; = 0, and og42 N ok41 Nox = @. Also, when zp = +1, then |zgio| >
3|zk—1| — 2|zk—2| > 1, so these bands are strictly contained in By. Now to show that

there are exactly two such bands in oy49, first define
Ty := (2zf £ 1)(Thro £ Th_o) = (427 — 1)(Tpy1 £ T_1). (3.16)
The equality holds as the left hand side expands to

2k Thyo & Thyo & 2TpTp—o + Th—g =
— 2 2
= 4:L‘kiL‘k+1 — 2%, 4kak_1 F Tr_1F Q:Ekivk_g + 2Z1T_o + Tk_9

_ 2 2
= 4T, Tpq1 £ 4T Th—1 F Tho1 — Tht1,

which is precisely the expansion of the right hand side. The first equality comes from
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substituting zxio = 2z, 112k — k1 and (3.15), and the second equality follows from
—ZTpt1 = —2TkTr_1 + Tk_o.

Consider a band B2 in Bg. As |Zg41], [Zk—1]| > 1 on Bgo, then 2411 (E), zx—1(E)
have fixed signs for E € Bjy,o. Choose either T, or T_ depending on the signs so
that zx41 & zx—1 # 0 for all energies in By,o. As before, the intermediate value
theorem and monotonicity give that there are unique energies F. € Bj,o at which
Tkto £ Tk—g = 0. By (3.16), we have 422 — 1 = 0 at such an energy, and there are
exactly two energies in By where x, = :t%, so there are at most two bands of ox9 in

By O
Lemma 3.18. For every band I, of ok, we have Iy N X,y # 0.

Proof. Let I be a band of or. By the band structure presented in Lemma 3.17,
we can choose a band Iy in k41 U 049 such that Iy, C I, and a band Ix,s in
Ok+2 U Oky3 such that Iy, s C Iy, etc. Similarly, choose a band I_; in ox_9 U ox_1
such that I} C Ix_; and iterate this procedure, producing a nested sequence of closed
intervals

IgD...DIk_13IkDIk+1D....

It follows that ﬂ I}, is nonempty, and
k>3

ﬂ]k C ﬂO'kUO'k+1 = Ea,b

k>3 k>1

by construction, so there exists a point £ € I such that E € X,,. O

Now armed with information about the structure of the bands of the o’s and

how they relate to the spectrum ¥,;, we move on to the next section to consider
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3.3 Fractal Dimension of the Spectrum.
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In this section we will prove Theorem 1.4 and Theorem 1.5. To this end we will first

consider various lemmas concerning the size and number of the type A and type B

bands defined in the previous section. Recall that ¢ = az;fz.

Lemma 3.19. Define the functions fi(z,y,c) by

f:l:(m,y’ C) =Ty + \/62 + (1 - "EQ)(]' - y2)
For ¢ > 2 and |z|, |y| £ 1, we have

‘8fd:(x,y,c)‘,‘afd: L

= —_ <
ax 8:1/ (CL',y,C) =

Proof. Tt suffices to prove the bound for df,/0z, as fi(z,y,c) =
_f-l—(xa _yac) = f—(xayac)' We have

8f+a: — z(1-9?)
By B9 =Y Ve +(1-a?)(1-y%)

Then as
f B zy[2¢ + (1 — 2?)(1 — ¢?)]
520y 709 = M e a- )1 - )7
> 1 —2¢2 0
> + W >0,
we see that
Of+
» I =1L
max Dty >‘ e |0

(3.17)

(3.18)

f+(y,z,c) and
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Lemma 3.20. Let ¢ > 4 and k > 1. Then, with &, = c—2++v/c? — 4c + 1, we have

the following inequalities.

(a) For any type A band Biy1 C 0ky1, E € Bry1 tmplies

$2+1(E)

o(B) | = 5

(b) For any type B band Byyo C Oxy2, E € By o tmplies

x;c-f-?(E)
zi,(E)

‘ 2 ga,b-

Proof. The proof is by induction. Let ¢ > 4, which is the same as a > (4 + V/17b).

This is important, as then &, ;, > 1 and real. Consider the base case for a type A band

z
!
T

E2?2_a2-b2

2(a—b)
2ab Z '

25
) b

= |%| As F € o, then

<1, and |E| > a — b. Thus

Now the claim is that 2¢=% > o.b- Note that if we write &, in terms of a and b, we
b ’ ,

get
£y = a? — b% — 4ab N Va* + 2a2b? + b4 — 8a3b + 8abd
ab = 2ab 2ab ’
. 2 b2 2 _
and since —8a’b + 8ab® < 0, we see &, < az_gzb_"“b + X (a2:l; Y _a b2b . So &p <
a=2b < 2(“; % as desired.
Similarly, for a type B band we see that ;;:L = ‘W . As E € o3, we
have ‘&%E—a‘-i—_&% < 1. From the roots of the equations 33_3(2‘;2;":2):&2‘% = 0,

one can see that E € [3(—b — v8a2+b2),3(b — v8a?+b%)] U [—b,b] U [3(—b +
V8a? + b?), 2(b++/8a? + b?)]. On the interval [—b, b], the numerator 3£2 —2a* —b* €
[—2a2 — b%, —2a2 +2b?], so i%ﬂ > 2029 _ e > c—2+4+/cZ—4c+ 1. On the interval

[%(—b + v8a? + b?), %(b + v/8a? + b%)], the numerator 3E% — 2a% — b? is increasing
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so the minimum occurs at the left endpoint. At E = 1(—b+ v/8a2 + b2), the quan-

tity Z3 _ 8a2+b2—3bvBaZ1b?

x) 2ab

, and the claim is that this is greater than &,,. We have
€ap < %52, so it suffices to show that 8a2 + b? — 3bv/8aZ + b2 > 2a? — 4ab. The left
hand side is bounded below by 8a2+b%—9ab, and clearly 8a2+b2 > 2a?+5ab, as a > b.
Thus ;f > £ap. The bound for E’s in the interval [2(—b—+/8a% + b2), 1(b—+/8a? + b?))]

follows from symmetry.

’ > &qp hold for the appropriate bands.

(a) Let Byy1 C okt1 be a type A band, and let E € Byy; C 0. Then we have

|Zk+1], [Tk, |Th—2| € 1, and By, is contained in a type B band at level k, so z:k(E) ~ >
€ap- From the invariant (3.5) it follows that
Tk_1 = Tk_oTk £ \/02 +(1—22_,)1 —22) = fr(zk, T—2,0), (3.19)

and thus

|zk—1| > c— 1.
Also z;,_; = %(wk,xk_g, c) - Thyr + azk (zk, Tk—2,C) * T}, where the + means that
either plus or minus can occur, and by Lemma 3.19, as ||, |zk—2| < 1, then

[Tk <[] + |Zhsl- (3-20)

Differentiating (3.4) and dividing by zj, gives

! I /
Trt1 2hy 2TkTy_y Tp_g

7 / 7 *
Ty, Ly, Ty,
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Thus
z) TpXh z)
k;i-l > 2zy| — 2 k ,Ic—l _ kl—2
Ty y Ty
/ .'L.,
> 2(c—1) — 2|z (1+ k-l ) — | =2
Ty T,
.'L.,
> 2(c—1)—2-3|22
T
k
3
> 2c—4— —,
fa,b

where the second inequality follows from (3.20). So if 2¢ — 4 — % > &.p, then

T

> &qp- The inequality holds if c—2—+v/c2 —4dc+ 1 < &up < c—2+4++Vc? —4c+ 1,

/
k+1
Y

k

and this is true by definition.
(b) Let Bgt2 C 042 be atype Bband, and let E € By o C 0. There are two cases

to consider. First, let Biyo Nogk—1 =0, so Byio C 0k_2. Then |Trya|, |2k, |[Zr—2| < 1,

Izi(zgj) > &,5. Note that,

and By, is contained in a type B band at level k, so

similar to part (a), we have
|Tks1] = [f2(Thr2, Tk, )| 2 ¢ — 1 (3.21)

and

+
T = 5‘;}:(%,%—270) Ty + Dors (Tk, Th—2,C) * Th_o- (3.22)

From the invariant (3.5) we get the following equations:
’ - 927 2 ’ ’
Ty = LTpp1Thk + 2Th41Tf — Th1,
/ - 927 9 / /
Tpy1 = 2T4Tk—1 + 2TkTp_1 — Th_g,

4zpxTp—1 = 2Tky1 + 2Tk—2,
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and using these we see that

/

/ /
:Ek+2 2.'L'k+1./L'[c xk_l
— = —— t 2Tk - —
T T T
k k k
/ / / /
_ 2mp(274 k1 + 2Tk Th_ — Th_) 5 Th_q
= ; + 2Tk1 — —
42! 21T, x
kLk—1 kdp_o k—1
= 4$k$k—l + 7 - 7 + 2$k+1 - 7
k Ty, Ty

/

X —
= 4Tpi1 + 2Tk + ;1(495,2—1)—2 .

/
k k

Thus by (3.21), (3.22), Lemma 3.19, the induction assumption and the bounds
|z, |Tk—2| < 1, we have

/ /

Thio Li_1 Ti_o
m—z > 4|zpg] — 2lze| — [42} — 1] || — 2|z o
) z
> 4(c—1)—2—3|2L o] k=2
Ly, Ty
Of+ Of+ Th_o Th_o
> 4c—6 —3|=—(xk,Tr—9,¢)| — 3 |————(zk, Tk—2, C
= ‘axk( kyLk—2, ) 8$k_2( ky Lk—2, ) -/E;c -/E;c
mI
> 4c—9—5|~2
Ty,
5
> 4¢—9— —.
a,b

Solving 0 > £2 4 (9 — 4¢)€ + 5, the inequality holds if € is between %(40 -9 -

V16c2 — 72c + 61) and 3(4c — 9 + v/16¢2 — 72c + 61). It can easily be seen that for
¢ > 4, it is true that ¢ — 2 + v/c2 — 4c + 1 is between these two values.
Now consider the case where Byis C 0k_1, SO Bri2 Nor_2 = 0. Note that (3.21)

still holds, |zk|, |zk—1] < 1, and Bgi2 is contained in a type A band at level k, so

=} (E)
zi_,(E)

’ > &ap- Also

/ Ofx Of+

/ /
x = — Tk, Tk—-1,C) * Tp, + TkyLTk—1,C) * Th_
k+1 amk( ) ) ) k 533k—1( ) ) ) k—1»




SO
! /
Lit1 Tr_1
m/ —_ 1 + xl
k k
Thus
Thio Th1Tk  Thog
— = 2.’17k+1 +2 7 - 7
Ty Ty, Ty
Th_y
> 2(c—1)—2z¢| [ 1+ -
k
T 1
> 2c—4-3|—
Ty,
3
> 2c—4— —.
a,b

The inequality is the same as in part (a).
Lemma 3.21. Letc >4 and k > 2. Then

(a) For any type A band Biy1 C 0ky1, E € Bry1 implies

Thy1(E)
i (E)

}§2c+7.

(b) For any type B band Biio C Okt2, E € By implies

x;c+2(E)

2.(E) ‘ <2(2c+ 7).

)_
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/
Ti_1

!
Ly

Proof. This follows the proof of a similar statement in [9]. (a) Suppose Bx+1 C 0k+1

is a type A band. Then |zxi1l,|zx] < 1. From the invariant (3.5) it follows that

Th_1 = Try1Th £ \/02 + (1 —23,)(1 — 2})= fe(Tr41, 2k, ¢), and

|zk—1] < c+ 1.

From Lemma 3.19 we have

O0f+
OTk—2

aa:k

|‘T;c—1| = ’—i(mk)xk—% C) ' m;c +

(Tk, T—2, €) - Th_o| < |Th| + |2h_al,
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and from Lemma 3.20 we have

Tr_o

21 < 1.
Ly,

Differentiating (3.4) and dividing by z}, gives

) TrTh_ 5 _
kj—lzzmk_1+2 ,k 1 Ic,2,
Ty Ty, Ly
and so
Thet1 Ty}, Th_g
-1 -
—7_ S 2|33k—1| + 2 7 + 7
Ly, k Ly
|5 | + |2 _al Th_o
< 2(c+1)+2 ( V -
|z | Ty
/
A
= 2c+4+3|=2
Ly
< 2c¢+7T.

(b) There are two cases to consider. First, let Byio be a type B band such that

BikiaNogk_1 =0 and so Bgyo C 0k_z. Similar to part (a) we get that
|Zps1| < c+1 (3.23)

and

[Tk | < |2k 4 |2)_sl-
As in Lemma 3.20 we have that

/ / 7
) Th_1,, 2 TkTy_o
= = 4z + 270 + ——(4zj — 1) — 2——,
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and so
Thio Tho1,,.2 9 Tk
x—;c 41| + 2|z—2| + z, (4o — |+ )
x T _
< 4+ 1)+2+3(1+ bt ) +2 |72
x x
k k
:L,I
< 4c+ 945|222
k
< 4c+ 14

Now let Bjy2 be a type B band such that By,s C 04— and 80 B2 Nog—o = 0. Still

(3.23) holds, and now we have
(@] < |2k + [T |

Again, as in Lemma 3.20 we have that

xp Ti 1Tk Th_
1;;'—2 =2£L'k+1+2 ;,1 - xll,
k k k
and so
Thyo Th 1Tk Ti_y
—= < 2zkp| + 2|5 ;
Ty, k T
/ xl
< 2(c+ 1) + 2|zk] (1 + [ ) + 2L
z T
k k
Th_
< 2c+4+3|—
T
k
Finally, in the proof of Lemma 3.20 we saw that z;,‘l <1, so
k
xl
kt2 <2c+7.
T},

d

From the previous two lemmas, we see that the size of a band can be estimated

from the size of the band in which it lies at the previous two levels, so the lengths of
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a band at a certain level roughly depends on how many bands it intersects from lower
levels. We start this process at level two, because that is where our desired structure

begins.

Lemma 3.22. Let ¢ > 2. The following inequalities hold for E € 09, 03, respectively:

Note that these bounds are not optimal; the optimal bounds can be found in the

proof. However, it will really only be useful that they are bounded away from zero.

Proof. First consider |z4| = |£|. The bands in o3 are the intervals [—a — b,b— a] and
[@ — b,a + b], so it’s clear that “a—_bb < |zh| < %:—“59. The bands of o3 are the intervals

[1(—b—+/8aZ +b?), 1(b—+v/BaZ + b2)], [—b, b] and [4(—b++/8a? + b?), 1 (b+V/8a? + 1?)).

| 3E2-2a2—

It is clear that the maximum value of |z}| = o5 2| occurs at either E = 0 or

b2 3b
E = 1(b+ v/8a? + b?), and indeed it is the latter with |z} = 4a2+7;a72b SaTHV < .
Similarly, the minimum value of |z}| occurs at either E = b or E = $(—b +

v8a? + b?). This is true because x4 is symmetric in E, negative on the interval [—b, b]

and positive on the interval [3(—b+/8a2 + b2), 3(b+v/8aZ + b2)]. It can be seen that

N _ /| a?—b? a=b
the minimum occurs at E = b, where |z5| = £5- > 222, O

Definition 3.23. Define
ay := number of type A bands in o9,

b := number of type B bands in o9,
ak,m = number of type A bands b in ox4o wWith #{2 < j < k+2:bNo; # 0} =m,

bk,m := number of type B bands b in oy with #{2 < j < k+2 :bNo; # 0} =m.
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First, let us consider what these definitions actually mean: Starting at oy, we see
that a,, counts the number of type A bands k levels up that lie in exactly m bands
at previous levels. The number by ,,, similarly counts the type B bands.

Note that, based on the definitions of type A and type B bands, we have that
ar = br_1 and by = 2by_o + ar_o for kK > 2, with initial values ag = 2 and b; = 3.
Similarly we have that axm = bk—1,m—1 and bgm = 2bk_2m—1 + Gk—2,m—1 With initial
values apo = 2 and ag;m =0 for m # 0, a;;m =0, by, = 0, b10 = 3 and by, = 0 for

m # 0. It will be useful later to consider the recurrence with only the a’s:
Ak.m = 2bk—3,m—2 + Ak—3m—-2 = 2ak—2,m-—1 + Ak—3,m—2 (324)

for k > 3.

This next result gives the number ay ., explicitly.

Lemma 3.24. If [£] <m < |Z71], then

Akm = bk—l,m—l
_ 92%k-3m-1 k—-m-—1 2k —m
2k — 3m
2m — k
2%l — 1) 2k —m (3.25)
 2m—k)!(2k—3m -1 \2k-3m /)’ '

Otherwise, akm = 0.

Proof. The proof is in two parts, first considering the bands in the middle and then the
bands along either side, and developing a relation with the Chebyshev polynomials.
The bands in the middle are generated by a type B band in o3. Let the number

of these bands be denoted by ay, b}, aj,,, and b}, ,,, corresponding to ax, bk, ax,» and
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bi,m- The recurrence relation in (3.24) still holds, as we are just looking at a subset

of bands:

I _ / /
a’k‘,m - 2ak—Z,m—l + a‘k—3,'m—2'

The claim is that

k—m-—1
Qo = 3 2m —k

0,

\

Note that the initial conditions are

o2k—3m—1 , when[§] <m < |ZAL];

otherwise.

(3.26)

(3.27)

(3.28)

The Chebyshev polynomials of the second kind can be defined by the recurrence

relation

Un+1 (.’L‘) = 2$Un($) - Un_l(a:)

(3.29)

with initial values Up(z) = 1 and U;(z) = 2z. This can be written explicitly as

where

— on—2m (n — m)'

Cm,n

m!(n — 2m)!

(3.30)

for 0 < m < Z; see [1]. The initial conditions are cop = 1 and co; = 2. Take ¢, =0

— 2



for m < 0 and m > . From the recursion it follows that

125+

Un—i-l(x) = Z ('_1)mcm,n+135"n_2m+1
m=0
13) 125
= 2z Z(—l)mcm,nxn_Zm — Z (=)™ cmp_rz™ 2"t
m=0 m=0
L5 125
= ) (-1)2empz" M+ D (1) e gz
m=0 m=0
15 L=
- Z:(—1)"’20,,l,,,:1c"_2"‘+1 + Z (=)™ Cm_1po1z™ 2
m=0 m=1

For n even this gives

m=0

and so obviously
Cmn+l = 2cm,n =+ Cm—1,n—1-

For n odd we get

n—1
5
- n=1

Z(—l)mxn 2T’H_I(Cm,n—i—l - 2cm,n - Cm-l,n—l) = (_1) 2 (C"T‘H,n+1 - C"T_l,n—l)y
m=0

n/2

but note that ¢z , = 2° = 1, so the right hand side is zero and
n/2

Cmn+l = 2cm,n =+ Cm—1,n—1
holds. Define @k m = com—km-1. Then
C~'fk:,m = 202m—k,m—2 + Com—k—1,m—3

= 2Co(m—1)—(k—2);m—2 T C2(m—2)—(k—3),m—3

= 20k—2m—1 + Ak—3,m—2;

50
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compare with (3.26). Consider initial conditions 1 = cpo = dg1 and 2 = ¢p1 = @42,
and compare with (3.28). Thus Qi = Gkjm = Com—km-1, and with (3.30), the
equation (3.27) follows.

Next consider the bands either to the right or the left; they are symmetric. Denote

"
k,m»

the number of bands here by a corresponding to a . The claim is that

’

2k—3m—1_m k= k m 2k—1
2 k—m Whenfg] S S I_ 3 J’
"

a’k,mz S 2m —k

0 otherwise.
\
Note the initial conditions are agy = 1 and a3, = 1. This follows analogously using

T,., the Chebyshev polynomials of the first kind, which have the same recursion from

(3.29) but initial conditions To(z) = 1 and 73 = z. The explicit form (again see [1])

[n/2] n n—m
is Tp(z) = Z (—1)mor—2m=l_____ z""?™. The details can be found in
— n—m
= m
[6]. Adding together 2aj . and aj,,, gives (3.25), as desired. O

Let us now introduce the quantity f* first mentioned in the introduction as part
of Theorem 1.4 and Theorem 1.5. Then we will consider two more needed results con-
cerning the number ay ,,,, and finally the proofs of the theorems on fractal dimension
of the spectrum will be given.

On the interval (1, 2), define

= -31;[(2 —3z)log2+ (1 —z)log(l — z)

f(z)

— (22 — 1) log(2z — 1) — (2 — 3z) log(2 — 3z)].

The function f extends to a continuous function on [4, 2] with f(3) = log2 and
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f(%) = 0 which attains its maximum at z* = —12‘1—3‘5 with f* = f(z*) = log(1 + V2).

Lemma 3.25. If £ <m < 221 then

k=1 exp (mf (%)) S akm S kexp (mf (%)) : (3.31)

Proof. First consider when m = £. From (3.25) it follows that G x =3 251 Also

exp (gf (é)) = 25, so it is clear that (3.31) holds in this case.

Next consider m = 2%_—1 Equation (3.25) gives (o 261 = 4Ll With a little

work we can see that &3‘—1 - f (2—’“3—2—1) = log2 + %log%} — ﬁ;—ﬂog%—f - log%, or

k+1 k—2 k—1 2

that exp (%T_l - f (2’2—;1)) = 2k (%) 3 (%)T = 2k (%)% (%)3 . Clearly the

[ ]

expression holds.
Remark 3.26. The notation a < b means that a < b and a 2 b.

We will use Stirling’s approximation, which says n! = v/27n (3)" (1 + 0 (%)), SO

n

n! < +/n (E)n.
Thus

Qk,m =

22,C_?,m2l~c-—m k—m-—1
2k —3m \ (2m — k)(2k —3m — 1)

(k_m_l)k—m—l
e

_k\2m—k _2.0_1\2k—3m—1"
(2":3 k) m (2](: f‘im l) m

=

Just consider the factors

—m—1\k—m—1
(==

—k\2m—k —3m—1)\2k—3m—1
(Bmt) ™ ()T

(k —m — 1)k—m-1
(2m — k)2m—k(2k — 3m — 1)2F-3m—1'

22k—3m

AQpm =

22k—3m
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Letting = = m/k, we get

o2k—3m (k —m — 1)k—m~1

Fom = (2m — k) F(2k — 3m — 1)Z—9m1
_  o2k-3zk (k — ok —1)F—=+1
(22k — k)2F—F(2k — 3k — [)P—3ak-1
k- 1-z— %)k(l—z—l/k)
k

(2CE _ 1) (21—1)(2 — 37 — %)k(2—3z—l/k)’
S0
log agm = k[(2 —32)log2 + (1—z)log(l—=z—1/k)
— (2z—1)log(2z — 1) — (2 — 3z) log(2 — 3z — 1/k)]

+ log(2 — 3z —1/k) —log(l —z — 1/k).

Thus, for large k, we have

e o1 (2)) (B2

That is,
ok m = exp (mf (%) + k(1 — z)[log(1 — z — 1/k) — log(1 — 2)]
+k(2 — 32)llog(2 - 3z) — log(2 — 8z — 1/k)]) (%)
and
lim k(1 — 2)[log(1 — = — 1/K) — log(1 - =)}
lim (2 — 32)[log(2 - 3v) — log(2 — 3z — 1/k)] = 0.
Thus
o = o (s () o) (s
= e (mf (%)) (k —(jlk—_j;z_kl—)ig;(;g . Pt



Then consider g <m< Lg'l, which gives the following inequalities:

k—2
1<2m—k< ==,

k—2
1< 2k—3m—1< -5,

k
1<2k—3m<§,

k—2 k—2
T<k—m—1<T,

k
4k +1 <2k—m<3?.

Putting the first, third and forth inequalities in a more useful form, we have

These lead to

in & (552 225) B (mr (1)

and

Qkm

4%
=
| |
|
N——
ol
=l )
1SN
oyl
|+
—_
o
"
T
/N
3
~
Y
=3
~—7
N——

vV

SO

as desired.

o4
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Proposition 3.27. Let [£] <m < |257L]. Then

. 1
lim max — log akm = f*
k—oo m m

Proof. From (3.31), for £ <m < 221 we have
m m
Ci—logk+mf (E) <logakm < Co+logk +mf (E)

for some constants C1,Cy € R. The latter inequality, along with

mﬁx% (02+logk+mf (—TkE)) < 2TCQ+%logk+f*,

implies that

1
lim supmax — log axm < f*.
k—o0 m m

As k grows we can take m = m’ such that Z gets arbitrarily close to z*, as £ < ™ <
g % & 2 k

2 _ 1
5~ 3 Thus

1 Cl 1 1 m Cl 1 m
il _ il ) < “t_ - =
ki Jk 2m'/kklogk+f<k>—mﬁx(m 2m10gk+f<k>)’

and so

, 1
f* <liminf max — log ak .
k—o0 m m ’

Now we can prove Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.4. Let my = |3kz*|. Note that 3kz* — 1 < |3kz*| < 3kz* and

lim Skz” = 1 = lim Ska” = z*, so
koo Bk koo 3k TS
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Also, considering my41, we have (3k + 3)z* — 1 < |(3k + 3)z*] < (3k + 3)z" and

. (Bk+3)z* -1 . (3k+3)z*
— lim SX Oy
kh—vngolo 3kx* kll»nolo 3kx* — 1 ) 80
lim &+ (3.32)
k—oo My
Define

fr = mik log ask,m, -

From Lemma 3.25 it follows that

lim fi=f* (3.33)
For a given k, consider Ni := agk m,, the number of bands of type A in 3,0 that lie
in my bands in previous levels. Combining the results of Lemma 3.21 with the fact
that |zj|, |z5| < 5 from Lemma 3.22, and recalling that on each band of g we have
that z; is monotone between *1 to F1, it is clear that each band has length at least
€k =2 (%) (4c+14)~™*k, Let {Agk,j};\ljl be the type A bands of 032, indexed so that
Asp ; is to the immediate left of Asj ;41 for all j. From Lemma 3.18, each band has
nonempty intersection with 3, ;. Therefore there exists an energy Esi ; € Ask ;N Xap
for all j. Consider the {Ejs;;} with j odd; ie., 5 = 2s+ 1 for 0 < s < | Ni]. These
energies are separated by bands Asxos of length at least ei, so they lie in different

e-intervals as long as € < &;. Thus Ng, ,(¢) > %& for € < €. Take € > 0, and choose

k such that €541 < & < &g. Then

log Ni,,(2)  log % mplogNi— 5 log2 fe — L log2
1 = 1= 1 1 =73 9 L m .
log < log e — log v — log & + _:;:1 log(4c + 14)

As £ — 0, we have k, my — oco. Using (3.33) and (3.32), we see

lim — — = ,
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which implies the bound on the dimension. O

Proof of Theorem 1.5. For ease of notation, let ¢ — 2 + V2 —4c+1 = &, as in
Lemma 3.20.

To find a bound for the Hausdorff dimension of the spectrum %,;, first note
that o, U ory1 covers the spectrum as a finite union of compact intervals. Let us
consider oy: There are exactly ax—_om +bk—2m bands in oy that lie in exactly m bands
in previous levels. We know aj_s, is nonzero only for [%42] < m < |%53], and
bk—2,m = Qk—_1,m+1 1S nonzero only for [k—?"l < m< L%B_—QJ So to get every case
where ak_2,, and bx_sm are nonzero, we need [£4523] < m < |25]. Combining the
results of Lemma 3.20 and Lemma 3.22, we see that the length of each band in oy

are bounded above by 3%’; ab - Thus,
1252 %ab
h"‘(Ea,b) < Z (ak——2,m + bk—2,m) <_§;Zn)
a—>b>%
m=[53]
252
2ab
+ > (ak-1m + be—1m) (a—_zgg")
m=[£32]

LZIc-——S

3 [
2ab
—-2,m b——m b
Y " (Gk—nm + br—, )(a_bfa,b)

—r=y

IA

L2k—3

3 a
2ab
+ Z (@k—1,m + bk—1,m) (mfa_,ln) .

m=[£32]

Therefore, if the right hand side is goes to zero as k — oo for some a, then h* (Z,;) =
0 for all o/ > a, and dimy(X,,) < a. Suppose o > Fg%' Note that this gives

f*—alogé&,, < 0. We want to show
1252

2ab . \“
D (Gk-2m + br—om) (a—_zfa,b ) —0

m=[£53]
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and
L 252)

2ab .. \“
> (@r-1m + br-1,m) (a_—bﬁa,b ) —0
Y

as k — oo to get that dimpy(3ap) < = —
12552
. 2 2ab .. \" .
First consider A = Z Ak—2,m £, | - Using (3.31) we get

m=1E521

L2k SJ
A < Z kexp(mf(k 2>) e

m=[432]

| 2555 |
= Z k exp (m (f (%) - alnga,b))

< k <2k—5 - k_2> exp (k—;—2 (f* —alogfa,b))

3 2
2 k *
,S k* exp E(f —'abgfa,b) )

which goes to 0 as £ — 00, due to the bound on a.
L2k GJ

2ab 2ab
Next consider B = Z by_ 2m<%b§ab) = Z Qf— 1m+1( ibfab)

rk 31 rk 3]

Similarly we see

B < Z k exp (m+1)f(%))§;g"a

- Z k exp (m (f (%) —alogéa,b) +f (m +11)>
() (52 )
k% exp (g—(f* —alogfa,b)>

VAN

A

which goes to 0 as £k — oo. O
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3.4 Hyperbolicity of the Set (1,

In this section we will prove Theorem 1.6. To do this we must first consider a surface
Sap, introduced below and related to the trace map, and prove that it contains a

certain hyperbolic set. Recall from Section 2.3 the definition of a hyperbolic set:

Definition 2.1. Suppose M is a manifold and f is a map defined on M. Let A C M
be a compact invariant set; that is, let f(A) = A, on which f is invertible. Then A is

said to be a hyperbolic set if the tangent bundle over A admits a decomposition

T\M = E* @ E*,

invariant under Df and such that |Df"(z) [gx || < c&™ and ||Df™(z) [gs || < c&™

for every x € A,n € N and for some ¢ > 0, k € (0,1) . Moreover, if there is an open

neighborhood V' of A such that A = A{, := m f*(V), then A is said to be locally
n€Z
maximal, or basic.

Also recall the following theorem, which will be useful in proving hyperbolicity:

Theorem 2.2. A compact f-invariant set A is hyperbolic if and only if there ez-
st A < 1 < p such that at every x € A there are complementary subspaces S;
and T, (in general, not D f-invariant), a field of horizontal cones H, O S, and
a family of vertical cones V, D T, associated with that decomposition such that
Df.H, C WtHyy, Dfy Wy C IntVi, [IDAEI| > ulié]lforé € Ha, and |Dfe] >

A€l for € € Vi)

Now let us define S,3, and see how it relates to the spectrum X,;. If E € 3,

and k > 2, Corollary 3.7 and Theorem 1.2 imply if |zx| > 1, then |zg_1], |Zr+1] < 1.
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Figure 3.2: S, for ¢ = 112/15.

Thus, to obtain further results about ¥,;, we want to consider bi-infinite sequences
{z,} generated by the trace map and its inverse such that no two consecutive terms
have modulus greater than unity. First we restrict ourselves to the family of cubic

surfaces
Sap = {(z,y,2) € R® | 2? + y* + 2* — 2zyz — 1 = ¢*}. (3.34)
Each of these surfaces is preserved under the trace map 7' : R® — RS,T(a:,y,z) =

(2£Ey -z, y)
Define property P to be that no two consecutive terms have modulus greater than

unity. Consider the set

Rop = {(z,y,2) € Sap | 22y — 2, 2,9, 2,2yz — = has property P}. (3.35)



61

Figure 3.3: S, for ¢ = 12/5.

Lemma 3.28. For c > 2, the set R, consists of ten disjoint regions defined by:

Ry =xsLtsx Ry = xsL sx
Ry =L"ssLt™s Ry=LTssL™s Rs=sLtssL- Rg=sL ssL"

R;=sL"sLts Rg=sL"sL™s Rg=sL sL s Rjg=sL sLTs,

where L™, s, Lt x respectively denote the intervals (—oo, —c + 1],[—1,1], [¢ — 1, 00),

(—o0, 00).

This notation closely follows that in [5]. For example, if (z,vy,2) € Rj, then

20y —z € (00, —c+ 1],z € [-1,1],y € [-1,1],2 € [c — 1,00), and 2yz — z € [-1, 1].

Proof. From property P we see that LT must have an s before and after it. Also,
the combinations of L*ssL* are not possible: Let 2,y € s and z € L*. Considering
T(z,y,z) = (2zy — z,z,y) we notice that 2zy —z € LF. And the combination of sss
is not possible for ¢ > 2 due to the invariant 22 + y? + 22 — 2zyz — 1 = ¢%. Finally,

we must show that if (z,y,2) € R.p and one of the terms 2zy — z,2,y,2,2yz — z



62

—

0

Figure 3.4: Movement between regions in R, under 7'

has modulus greater than one, then it actually has modulus greater than or equal to

c — 1; i.e., if the term is not in s, then it is in L*. Without loss of generality, let

ly| > 1. From the invariant we get that y = zz & /c2 + (1 — 22)(1 — 22) and thus

ly| > c—1. 0

Let 2,5 be the set of points in S, with bounded full (forward and backward)
orbits under T'. We can see how a point in §2,; can move between the regions in
R, under iterations of 7" in the directed graph in Figure 3.4. The goal is to see that
under the trace map, the set €2, is a locally maximal invariant hyperbolic set. From

there, we will see that Theorem 1.6 follows easily.

Definition 3.29. Define the sets V; for s € S = {17,110, 136, 29, 28, 245} by Vs, =

Rs, NT'R,, and Viys s, = Rsy NT1Rs, NT~2R,,.

We are concerned with these sets for the following reason: Consider a point z €
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Q. C R3. Either z € V, for some s € S, or one of T'(z),T?(z) is in V;. Define ¢ on

T%(z) if £ € Viz U ViU Vag U Vg
Vi by ¢(z) = :
s€sS T3(:U) if x € Vize U Voys
Lemma 3.30. Let u = 3. Consider the cone field St = {(&,n) | |n| < ulé|} defined
over U Vs, where (€,(,n) are the local coordinates for a point in the tangent space

sES
of Sap at (z,y,2). For ¢ > 6 these cones are mapped into themselves by D¢; i.e., for

(z,y,2) € Vs, and for &y, no with |no| < u|éo|, then & and ny defined by (&1,(1,m) =
D¢(&o, Co,mo) are such that 1| < plé1|. Also, the mapping is such that |&;] > %|§0|.
Similarly, the cone field S— = {(&,n) | |n| > %L|§|} is mapped into itself by D¢~

with [m| > &|mo| where (&, ¢, m) = D¢~ (€0, o, M0) for some (€o,70) € S~

Note that, by Theorem 2.2, this lemma proves that the set U Vs under the map ¢
seS
is a hyperbolic set. This will be an important tool in showing that €2, is hyperbolic.

Proof. First note that T~ = p_1Tp,, where p,, is the reflection given by p..(z,y, z) =
(z,y,z). Thus, we just need to show the statement of the lemma holds for S*.
Consider Visg = Ry N T~'R3 N T~2Rg, though note that Visg = Ry N T 2R is
enough. As Rg is represented by sL™ssL™, letting y = 1 and z =t gives z =t — ¢,
and the line {(t — ¢,1,t) |t € [-1,1]} is the right boundary for y in Rs. Then
T72((t—c,1,t)) = (t,t+c, 2t +2ct — 1), and for this to be in R; we need t € [—1, 1],

t+c € [c—1,00), and 2t? + 2ct — 1 € [—1,1]. Combining these we get

te[-1,11Nn[-1,00) N ([-% - 1V +4, - U[0,—£ + 3V +4])
=[0,—¢+ 3V +4].
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Next, consider the left boundary for y in Rg given by {(—t—c, —1,t) | t € [-1,1]}.
We have T~%((—t —c, —1,t)) = (t,c—t, —2t> 4+ 2ct + 1). For this to be in R; we need
te[-1,1,c—tec—1,00) and —2t2 + 2ct + 1 € [—1, 1]. Combining these we get

te[-1,1]N (=00, 1] N([§ — 3V +4,0]U[c, £ + V2 + 4])
= [% _ %\/C2 +4,0]

So in Vigg = Ry N T"2Rg we have z(= t) € (£ — %\/c2+4,——§- + %\/c2+4] and

z € [—1,1]. To get better bounds for y, note that y = zz + 1/c2 + (1 — 22)(1 — 22)

from the invariant z2 + y? + 22 — 2zyz — 1 = 2, and we use interval analysis:

[a,b] + [¢,d] = [a+ ¢,b+d]

[a,b] — [¢,d] = [a—d,b— ]

[a, b] - [¢, d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}]

[a,b]/[c,d] = [a,b] - [1/d,1/c] provided that 0 ¢ [c,d]

With interval analysis we get that y € [ — 1/ +4,-£ + 3V +4+ V2 +1].
The tangent plane at a point (z,y, z), after canceling out a factor of 2, is given by
the equation (z — y2)¢ + (y — 22)¢ + (2 — zy)n = 0 where (&,¢,n) € R? are points on
the plane relative to (z,y, z). Note that in R; and Ry it is true that y—zz # 0, and so
any point on the tangent plane can be given just in terms of £ and n by (£, {(&,1),7n).

Solving the tangent plane equation for ( gives

_ wz—x)¢+ (zy — 2)n
Yy — T2 '

¢
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We want to show that for &, no with |no| < /&, then & and n; defined by (¢4, ¢1,m1) =
D(T®)(&, ¢o,m0) are such that Im| < %Iﬁll and |&;| > 3|&|. By linearity we can set

& = 1 and ny € [—%, %] Then, using interval analysis we see that (yz — )& +

(a:y—z)noe[—%+§\/c2+4+§\/62+1—é\/(c2+4)(c2+1)—§+c—\/02+4—

VEFLE - VI d— VI F 1+ /@ H D@+ D)+ 2—c+VE+A+VET ]

and y —zz € [2c— V2 +4,—c+Vc? 4+ 4++/c? + 1]. This gives (o € [—3, 3] for ¢ > 6.
Computing the differential, we get D(T?) =
24x?y® — 162yz — 2y + 22> — 1 162%y — 8z%2 —dzy+ 2 -8’y + 4wz 4y

2 dxy — z 212 —x

D=

Y T -

Let us first consider &; = 48x2y%—32ryz—4y?+42% — 1+ (o(3223y — 16222 —8xy+22) +
no(—16x2y +8z2 + 2y). We would like to find the minimum modulus for ¢ > 6. Using
Mathematica, for ¢ = 6 and with the aforementioned constraints on z,v, z, &, 7o and
Co, we see that the maximum value of & is quite negative: £ < —46. We will see

that actually & < —33, and the claim now is that as ¢ grows, this bound decreases.

First, substituting y = zz + 1/c2 + (1 — 22)(1 — 22) and setting § := d(c, x,2) =

V2 + (1 —22)(1 — 22), we can break up & as follows: & = A + B, where A =
96x*2% 4 522% — 487 — 882222 — 54 822+ 32(oxtz — 24(or2 2 + 2oz — 16mez3 2 + 10n0 T 2
and B = 96x320 + 48x2c? — 40220 — 4c? + 32(ox38 — 8(oxd — 1619728 + 2m0. Note that
A is ¢ independent, and B is ¢ dependent. Considering A, as the intervals for z, (o
and 7y do not depend on ¢, and because the interval in which x is contained shrinks
as c gets bigger, it is clear that as ¢ grows, the maximum value of A is nonincreasing.

Using Mathematica, one finds that the maximum value of A at ¢ = 6 is less than 6,
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so A < 6 for ¢ > 6.
Now consider B. Just noting that z,2z € [—1, 1], one sees that § € [c, V2 + 1].

For a fixed ¢, we can put a bound on the maximum of B by the sum of the maxima

of each term in B. That is, we have B < 96(—% + %\/62 +4)*Vc2+ 1+ 48(—5 +

VA + 43¢ +40(—§ + 3V +AHOVAE+T1 — 4 + 1B(—£ + 3V + 43V + 1+

B+ IVE+YVE+ T+ B(—£+ V2 + 422 +1+ 22 +1=:C(c) < -39
for ¢ > 6, and this bound is decreasing for ¢ > 0. Thus, it is clear that for ¢ > 6, we
have & < —33, and actually & < C(c) + 6.

Now consider n; = 2y& + 2x{op — 1mo. Using interval analysis one finds n; €

[Be—IVe2+4—3, - %+ 1/ +4+42V/c2+ 1+ 1]. Then we can see that [n;/&| <

_Te T TV @ T L
3t3 CCZ;E s < 1 for ¢ > 6. Finally, it is clear that as |&] > 30 for ¢ > 6,

we have [&| > 3|&| = 3.

Consider Voys = RoNT 1Ry NT 2Ry = R, N T 2R5. Recall R5 is represented
by sL*ssL™, and the right boundary is {(t + ¢,1,t) | t € [-1,1]}. We see T~2((¢t +
¢, 1,t)) = (t,t — ¢, 2t2 — 2tc — 1), and for this to be in Ry we need t € [-1,1],t —c €

(—o00, —c + 1] and 2t? — 2tc — 1 € [-1,1]. Combining these we get

te[-1,1N(-o00, 1N ([ — 3V +4,0]U[c, £ + 3V 2 +4])
=[§ -3V +4,0].

The left boundary is {(—t + ¢,—1,%) | t € [=1,1]}, and for T2((—¢t + ¢,—1,t)) =

(t,—t —c, —2t> —2ct+1) to be in Ry we need t € [—1,1],—t —c € (=00, —c+1], and
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—2t? — 2ct + 1 € [—1,1]; i.e., we need

te[-1,1]N[-1,00) N ([-£ — 3V +4,—]U[0, =% + 1V/c2+ 4])
=[0, -5+ 3V +4]

So in Voys we have z € [§ — 2v/c?+4,—-£+ V2 +4] and 2z € [-1,1]. Asy =

zz — \/c + (1 — z2)(1 — 22), using interval analysis we get y € [$ — 3V/c2+4 —
Ve +1, —3+ %\/m] Again, with (&1, ¢1,m) = D(T*)(&, (o, o), take & = 1 and

Mo € [—3, 3], and we find that the bounds for (yz — )& + (zy — 2)m are as before

from Vigg. Alsoy —zz € [c — V2 +4 — /2 +1,—2c +/c® + 4], and again we find

that (o € [—3, 4] for ¢ > 6. Again, we want to consider & by its ¢ independent and

dependent parts. Substituting iny = zz—+/c2 + (1 — 22)(1 — 22), wesee {; = A'+B’,
where A’ = A from the V3¢ case and B’ = —96x%20 +482%c? +40x26 — 4c* — 32(ox36 +
8(oxd + 16mpx26 — 2n9d. Note that up to some sign changes, these are the same terms
in B. Recall that as ¢ grows, the maximum of A is nonincreasing. We bound the
maximum of B’ by the sum of the maxima of each term, again getting B’ < C(c).

So & < C(c) + 6 for ¢ > 6. Performing interval analysis on 71 = 2y&y + 2x{o — 1o

givessm € [£—IV2+4-2V/2+1—-1, -84+ 1/ + 4+ 1]. Then we can see that

Te 1 /@TA-o0v/ETI-1
|m /& <[22 Cg(i)f(; s < 3 for ¢ > 6. Finally, it is clear that as |£;| > 30 for

¢ > 6, we have |&;| > 3|&| = 3.

Consider Vi7 = RiNT'R; = RiNT2R;. Recall that R; is represented by
xsLtsx. Letting x =1 and z =t gives {(1,c+¢,t) | t € [—1,1]} as the right vertical
boundary of R;. For T7%(1,c+t,t) = (t,2t% + 2ct — 1, 4¢3 + 4ct®> — 3t — ¢) to be in R;

we need that ¢t € [—1,1], 2t2 +2ct — 1 € [c — 1,00), and 4t3 + 4ct? — 3t — c € [-1,1].
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That is, we need

te[-1,1]N ((—oo,—£ — 3V +2c] U [-£ + 2V2 + 2¢, 0))
N(-1-¢-ivVi2—4c+9,1-¢-1 L4 ¥ 4c+9)u
VAE =TT Ul ) - §+ 1VIZ T 4c ¥ )

~ -5+ VAT L)

i
tolr—t
Jklr—t
o
+
=

Similarly, the left vertical boundary is given by {(—1,c¢ — ¢,t) |t € [-1,1]} and
T=%(—1,c—t,t) = (t,—2t% + 2ct + 1, —4¢3 + 4ct?> + 3t — ¢), and for this to be in R;

we need

te[-1,1N[g -3V —2c+4,£+3ivV/c2—2c+4]N
([Fi+¢-31VaZ+4c+9,-3|U[F + £ — 1VacP —4c+9,LU
[+ &4+ 3V/a2+4c+ 9,1 + £+ 1V4c? —4c +9))
— V42 —4c+9,1].

Il
—
P

+
1] [e}

Putting these together we get that ¢t(= z) € [} + £ — 1V42 —4c+9,1 — £+

/vy pan) 111, 1
1 4C2+4C+9]C[§—%,§+%.

Now y = zz++/c? + (1 — 22)(1 — 22), and using = € [ — =, 3+o-] and z € 1, 1],

(o)

wefindy€lc—1—24,/2+8/9+1/3c—1/42+ 1+ L] Cle—3— %, c+ 3+ 4]

These bounds, along with & = 1 and no € [—1/3,1/3], give, for ¢ > 5, that (yz —

c?45c
D)o+ (zy—2)m0 € [~ E— £ -2 -2 &+ i+ e+ andy—zz € [T, A,

Then, for ¢ > 6, we have (o = {z=2otlEy=2)n0 ¢ [_9 9]

y—z2z
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8y —2z 4z’ -1 —2x

Finally, D(T?) is given by % 2 _1 |, and here we have

1 0 0

Sri+d-Bactted o0 5o+ ledl 1-L-3+d
[2c—1—12c+ 3+ 1] [2-11+1 -1
1 ’ 0 0
Let (&1,¢1,m) = D(T?)(&,¢o,M0), and then, for ¢ > 5, we have & € [%9 — 57; +

Z— %, 4c+ 37 _ % +12]. We also have 7; = 1. Thus it can now easily be seen that

for ¢ > 6, we have the desired results of 7, /€, € [-3, 3] and [£;] > 3.

Consider Vog = RyNT 'Ry = Ry, N T 2R,. Recall that R, is represented by
*xsL~sx. Letting x = 1 and z =t gives {(1,t —c,t) | t € [-1,1]} as the right vertical
boundary of Ry. For T2((1,t—e¢,t)) = (¢,2t2 —2ct — 1,43 — 4ct? — 3t +c) to be in Ry
we need that t € [—1,1], 2¢2—2ct—1 € (—o0, —c+1], and 4¢3 —4ct? — 3t +c € [—1, 1].

That is, we need

te[-L1N[E -3V -2c+4,5+ 1V —2c+4]N

[e— 1+ 3Va2+4c+ 9, + 1 + 3V4AP — 4c +97))

=[¢+1-3/42—4c+9,3).

[\e1[eY
N

The left vertical boundary of Ry is {(—1,—t — ¢,t) | t € [—1,1]} and we need
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T-2((=1,—t — ¢, t)) = (t, —2t*> — 2ct + 1, —4t® — 4ct® + 3t + ¢) € Ry. Thus

VEF 2] U [—£ + 2v/2 4+ 2¢,00)) N
([-¢—-1-1 4c2—4c+9,—§-i-%——\/402_+4r]u
(-1, —¢ 1+ LVAZ e+ 9| UL, —§ +  + 1VAP + e+ 9))
=[5 =54+ 5VAE e+ 9]

=~
m
—
—t
p—
—_—
]
—~
—~
Mlﬁ
No=

Sowegetx=t€[§+%—%\/4 4c+9—§+ + \/402—|—4c+ ]C[———c,§+2c]

Asy=zz—+/2+ (1 —22)(1 — 22), using z € [} — o, 3+5] and z € [—1, 1], it follows

thaty € [—v/c2 +8/9+1/3c —1/4c2—1—L —c+i+d]C[-c—3-L —c+i+5]
Then, with & = 1 and 7o € [—3, 3] and ¢ > 6, we have (yz — )& + (zy — z)no €
-tk me - Bt tnetamendy—sze[-c—f- —ctl+i] and

thus (o € [-2,2].

We have D(T?) in

de—2-4-92-%-2-34] [§-4+Hhi+d F1-L-+d
[-2c—3 -1 —2c+1+1] 21141 —1
1 0 0

If (€1, C1,m) = D(T?) (€0, o, M0), we have £ € [—dc— B+ 511, - %+ I 547

and n; /& € [— 3,5] |&1| > 3 for ¢ > 6.

Consider Vi1 = RiNT1Rjo = RiNT2R,. For (t,2t2—2ct—1,4t3—4ct?—3t+c) €
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R; we need

te[-1,1]N((~00, & — 2V +2c U [§ + 5V + 2, o)) N

c e 141 /47 —dc+ 92
¢ 14 L4+ 4c+9, £+ § + 1VAP —dc + 97))

and for (¢, —2t2 — 2ct + 1, —4t3 — 4ct> + 3t + ¢) € Ry we need

te[-L,1N[-£-3ivVZ—2c+4, -5+ 3V —2c+4]N

Then with z € [-1,1] we find y € [c—%—zic,\/c2+8/9+ 1/3c — 1/4c2+%—|—i] C
[c—3—%,c+3+ 4]

Putting these bounds together with £, = 1 and 79 € [—%, %], we find, for ¢ > 5,

that (yz — z)éo + (zy — 2)m0 € [~ 2 — 2 — 1Ly — 25,

old

+ 2+ L+ Llandy—zz €
[c—=1—1c+2+1] and thus for ¢ > 6, we find (o € [-2,2).

Now D(T?) is in

oS- A-T—%¥-2-3+ d+h-32edl B-Liel

[2e-1-52e+5+¢] [F1-%-3+1] -1 :

[

1 0 0
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and for (£1,¢1,m) = D(T?)(&, Co, M) then & € [—4c— £+ 5 - 11, -F+L - 5+ 7]
and 7; = 1, so for ¢ > 6, it follows that n;/¢; € [—1,1] and [&] > 3.
Consider Vag = RyNT'Rg = RoNT2R;. For (t,2t2+2ct—1,4t3+4ct?—3t—c) €

Ry we need

te[-L1N[-¢—iV2—2c+4, -5+ 1V/P—2c+ 4N

2 7171
[3, -5 -1 +3i/42 —4c+ 9 UL, -5+ 1+ 1Vac? + 4c+9))

=[—3,—¢—1+31V42—4c+9
and for (t, —2t2 + 2ct + 1, —4t3 + 4ct? + 3t — ¢) € Ry we need

te[-L1N((—o0,§ —ivVe2+2cJ U+ 1vVeZ+2¢,00)) N
([E-1-3iVac2+4c+9, LU+ 1 -3iV4c2—4c+9, iU
[§—1+3VaP+4c+9, £+ 1+ 1VAE —4c+9))
:[%—i—— 4C2+4C+9 ]

Together these givex =t € [§—1—1V4c® + 4c+ 9, —£—1+3V4? + 4c+ 9] C [

5, —%+ o=|. This, with z € [-1,1], gives y € [-3 — L — /c2 + 8/9 + 1/3c — 1/4c?,
—c+3+5] C[-c—3 -3, —c+3+4] for ¢ > 2. Together with & =1, no € [—3 3.3
and ¢ > 5, we find that (yz—z)&+(zy—z)n0 € [ F -2 — g — 2, L+ 2+ L+ 1]

and y —zz € [—c— % — 1, —c+1+41]. It can then be easily seen that (o € [—2,2] for

¢ > 6. Then D(T?) is in
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(F+at+d-Fac+i+5+9 [+z-5i+al B-ol+e
[~2¢—2 —1,—2c+1+1] [-1-131,-24+ 1] —-1

1 0 0
For (£1,¢1,m) = D(T?)(&o, Co, m0) then & € [% — 3—7c + ;45 — %,4c+ % — c% + 11] and

m =1, so for ¢ > 6 we have n;/&; € [—1,1] and |&] > 3. O
Now we will use this result to show hyperbolicity of the set €2, :

Theorem 3.31. The set Q,; is a locally mazimal invariant hyperbolic set of T :

Sap — Sap for c > 6.

Proof. From Theorem 2.2 and Lemma 3.30 it is clear that the set U V, is a hyperbolic
set of ¢(z). Consider a point z € 2, such that z € V; for ssoerfle se S Ifnis
such that T"(z) € U Vs, then by the definition of a hyperbolic set there exists a
v >0, ke (0,1) sflecil that | DT™(z) Igs || < &7, where T"(z) = ¢’(z). Define
Ery = DT(Ey®) and By = DT?(E*®). Tt is clear that the subspaces Ef
and Et ) and the subspaces E%g(z) and E{;z(z) are complementary, because if not
then E,f,f’;(x) = DT3(E™*) would not be possible. As we are on a compact surface the
differential is bounded; that is, || DT|| < a < co. Let & = x//™ and choose v' > 1 such
that o < 'K. Then | DT™(z) g || < v&™, || DT () 1gs || < ayk™ < yy'F™L, and
| DT™2(z) Igs || < @®yR™ < 49/2&™2. Choose 8 = ¥?y and it is clear we have the
desired relation ||DT*(z) g, || < B&* for all z € U Vs. The same argument can be
made in the unstable direction. ©

Now consider an z € Q,; such that z ¢ V, for any s. Then either T'(z) € V;

or T(z) € V, for some s € S. If T(z) € V, and we have T"*!(z) € U, then

seS
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|DT"*Y(z) T || < ay&™ < 4¥'&™1. Similarly |[DT™2(z) g || < o®y&™ <

yy2&"*? if T%(z) € V,, and the rest follows from above. The same argument can
be made in the unstable direction. Therefore there exists a & € (0,1) and a 8 > 0

such that ||DT™(z) |E

“™x) [pu || < BR™ for all m € N, x € Qqp.

The set , is clearly invariant under T by definition: For z € S,4, it follows that
z € Q,p if its full orbit under T is bounded, so obviously then T"(z) € 2, as well.
Now to show that €, is locally maximal, we want to show that there exists an open

neighborhood V' of €, such that Q,; = ﬂ T™(V). Take V to be the e-neighborhood
nez
of Q4. Then, as 2, is a bounded set, V is also bounded. Let z € ﬂ ™ (V) Suppose
nez
for contradiction that z ¢ Q,,. Then T*(z) is unbounded either as kK — oo or as

k — —oo. Without loss of generality, assume T%(z) is unbounded as k — oco. As
z € T*(V) for all n € Z, we have T*(z n T™(V) for all k. This is true as T is

nez

invertible, so if T*(z) ¢ T™(V) for some k,n € Z, then we would have z ¢ T"*(V).

So T*(z ﬂ T™(V), but this is a contradiction, as m T™(V) is a bounded set
neZ nez
and T*(z) is unbounded as k — o0o. So z € Qg p, and ﬂ T"(V) C Qap. The other
nGZ
containment is obvious, as {2, = ﬂ ™ ( ﬂ ™V O
neZ neZ

Now that we have shown €2, is a locally maximal invariant hyperbolic set of the
trace map, we want to use this to prove Theorem 1.6. To this end recall Theorem

1.2, that the spectrum %, is related to the boundedness of {z,}. Define zg :=

(§EE, %, “221'52) = (21, Z0,Z-1), S0 E € L, if and only if the forward orbit of zx under

T : R® — R® is bounded. The line l,;, = {zg | E € R} interacts with the stable

manifold of 2, in such a way that, using the results given in Section 2.3, the proof
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of Theorem 1.6 is relatively simple. So let us recall from Section 2.3 the definition of

the stable manifold of a hyperbolic set:

Let A be a hyperbolic set under the map f. For x € A and a small € > 0, define
We(z) ={we U |d(f*(z), f"(w)) <e for all n> 0}
to be the local stable set. The the (global) stable set is given by

= |J (@),

n€Z+

and the stable manifold of A is given by

= W)

z€A

Proposition 3.32. If E € ¥, and ¢ > 2, then there exists some k € N such that

Tk(.’L‘E) € R UR,.

Proof. First, recall from Theorem 1.2 and Corollary 3.7 that E € 3,; implies that

|Z| < 1. Also note that z_; = 2+b2 > 1. Now we will break this up into cases. The

first case is when |zo| < 1. By (3.13), this implies that |z2| > 1. As E € X,, the
sequence {z,} is bounded in the forward direction, so Corollary 3.7 implies |z3| < 1.
Thus we see that T%(zg) € R, U Ry.

Now consider the case when |zo| > 1. Either |z3] < 1 or |zo| > 1. Suppose the
former is true, and then |z3] > 1 and |z4] < 1, so T3(zg) € Ry U R,. If |z5| > 1, then

again we see |z3| < 1, and T?(zg) € R; U Ry. O

Lemma 3.33. For ¢ > 2, the line lp = {(£, £, 22) | E € R} intersects the stable

manifold of the hyperbolic set 2, transversally.
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Proof. The set of points with bounded forward orbit is exactly W*(€,;), the stable
manifold. Therefore we only need to Worry about points on the line that are near
points corresponding to energies in the spectrum. We saw in the previous proposition
that if we iterate enough by T" we can consider the line as a curve in R; U Ry, which is
precisely where the cones determining the stable manifold are easily defined. Recall
from Lemma 3.30 that these cones || > 3|¢| were given (in local coordinates) as
projections in the zy plane, so we just need to show that the projections of these
curves into the zy plane intersect the cones transversally.
E

Note that as ¢ > 2, we have a > (2 + \/g)b Recall that zy = 55 L1 = 2%,352 =

% and 3 = %E—H. Let us first look at the case when |zo| < 1. Then

|z2| > 1 and |z3| < 1, and T?(zg) € Ry U Ry. First consider ’%
B8 — 41, we find that E € (—00,—a — b) U (b —a,a — b) U (a + b, 0). Now,
considering I%’ <1, weget E € [-2b,2b|. Thus E € (b—a,a—"b). Finally, considering

‘W‘ <1, we get that E € [—3(b+ v/8a% + %), 1(b— v/8aZ + b%)] U [=b,b] U
[2(—b+ v/8aZ + b2), 1(b+ v/8aZ + b%)]. Thus

E € [-b,b|.

The stable manifold is in the cone || > 3||, so we want |¢|/|n| > 1. That is, if for

E3—E3—2(E—-Ep)a®—(E—Eg)b?
2a2b

a fixed Ey € [—b,b] we have ‘

/|E§f°| > 3 for E € [—b,b],

then the curve (z3, z9, 1) intersects the stable manifold transversally. This simplifies

E?+EEo+E3—2a2—b2

7 , and we can instead consider

to 7‘_22#‘ for z € [—b?, 3b%]. The

. . —_9a2_p2 . . _
minimum value of % occurs at £ = —b? and is given by M < —dc < —3

The maximum value on the interval thus occurs at z = 342 and is %—jf—ﬁ‘”—— = —4ec < —%.
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Therefore the curve intersects the stable manifold transversally.

Now consider the case where |zo| > 1. Suppose |z2| > 1. Then |z3| < 1, and
T%(zg) € R1 U Ry. Combining |zo| > 1,|z1] < 1 and |z3| > 1 we get E € [-2a, —a —
b) U (b—a,—2b) U (2b,a — b) U (a + b,2a]. Finally, considering |zs| < 1, we get E €
[—1(b++/BaZ + b2), 1 (b— v/8aZ + b2)]U[—b, b]U[}(—b+ v/BaZ + b7), 1 (b++/BaZ + B)),

B e[+ VAT ), 5 (b~ VBZ T )| UL (~b+ VBZ T B), 5 (b-+ VEa + ).

This is clear, as a + b < 2(—b + v8a?+b?) as long as a > %—ﬁb, and 1(b+

z—2a2—b?

a
ab

z € [3(3(—b+ V8a% + 1?))%,3(5(b + v/8a2 + b?))?]. The minimum of £/n occurs at

V8a? + b?) < 2a for a > b. Again, we want to consider . Now we have

o242 _ 3b\/BaTF b7 o
z = 3(3(—=b+ V8a? + b))% and is Tty 2: S+ which is greater than 1 when
¢ > 2. Therefore the curve intersects the stable manifold transversally.

Instead, if for |zo| > 1 we have |zo| < 1, then |z3] > 1 and T3(zg) € R; U R,.

Then |zo| > 1, |z1| <1 and |zo| < 1 give
Eec[-a—b—a+bUa—ba+b|.
Now we want to consider |/7]|, or

E° — E§ — (3a® + 2b%)(E3 — E3) + (2a* + 2a%b% + b*)(E — Eo) 2ab

2032 "E2—E?
E*+ E3Ey+ E®E% + EES + E§ — (3a® + 20?)(E? + EEy + E3) + 2a* + 2a%b* + b*
a2b(E + E())

with E, Ey € [-a — b,—a+ b] or E,Ey € [a — b,a + b].
For fixed values of a and b, such as a = 30 and b = 2, it is clear using Mathematica

that the maximum value of £/7 on the interval [a — b, a+ b] occurs at E = Ey = a+b.
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Figure 3.5: Graph of £/n when |zo| > 1, |z2| < 1 and E, Ey € [a — b,a + b] with

a=30,b=2.

With £ = Fy = a + b, we see

£ Bla+b)!—9a%(a+b)?—6b*(a+b)?+ 2a" 4 2a%b* + b*
n a2b(2a + 2b)

_ —2a% +2a*b+ 17ab* + 8

B ab(2a + 2b)

Now we want to show that for ¢ > 2 we have —6a> +4a%b+ 49ab? + 2443 < 0, as then

3(—2a* + 2a%b + 17ab? + 8b®) < —ab(2a + 2b) and thus

—2a® + 2a%b + 17ab? + 8b3 < 1
ab(2a + 2b) 3

We know that if ¢ > 2 it is true that a > 4b, and so

49 24
—6a> + 4a%b + 49ab® + 24b° < (—6 +1+ G + E) a® < —1.50% <0,

as desired. So if this were true, that the maximum value of £&/n on the interval

[a — b,a + b] occurs at £ = Ey = a + b for all a,b with ¢ > 2, then we would have
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% < —%. Now if we can show just that the numerator
E* + E3E, + E*E2 + EE} + EX — (3a® 4+ 2b*)(E* + EE, + EJ) + 2a* + 2a%0° + b

is maximized by E = Ey = a + b, and that the maximum is negative, then the same
holds true. Maximizing the numerator subject to the constraints a,b > 0 and a > 4b,
the latter being clear if ¢ > 2, Mathematica indeed gives that the maximum value
over the interval [a — b,a + b] occurs at E = Ey = a + b, and thus on the interval
[a — b,a + b], the curve intersects the stable manifold transversally.

Similarly, on the interval [—a —b, —a+b], the minimum occurs at E = Ey = —a+b
for given values of a and b like a = 30 and b = 2, and &£/n > % It is important to
note here that now for F, Ey € [—a — b, —a + b], the denominator is negative, so we
are still interested in maximizing the numerator, which is a negative number. Indeed,
with the above constraints, Mathematica gives the maximum value over the interval
[—a — b,—a + b] to be —2a* + 2a3b + 17ab? + 8ab> at E = Ey = —a — b. For a > 4b
this is clearly negative, and so we see that the the minimum value of £/n is given

when the denominator is —a?b(2a + 2b), and the value is

§ 2a% — 2a%b — 17ab? — 8b°
n ab(2a + 2b) ’

which is greater than 1/3 for ¢ > 2. Therefore over the interval [—a — b, —a + b], the
curve intersects the stable manifold transversally.

Thus we see that for each of the cases, in an interval of energies around the

E E a2+4b2

5=, 5%, S5i2-) intersects the stable manifold

spectrum, the pushforward of the line (

transversally. O
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And finally we have all the tools to prove Theorem 1.6.

Proof of Theorem 1.6. Take ¢ > 6, so {2, is a locally maximal hyperbolic set. From
Lemma 3.33 and the fact that the set of points with bounded forward orbits is
W5 (Q4,4), we see that the spectrum is affinely equivalent to W*(Q,4) N l.p. By the
existence of the C'! foliations from Theorem 2.4, we see that W*(Q, ) N, is the C*
image of W*(45) N Q4. Thus we can consider the dimension of W (Q43) N Qg to
get results on the dimension of the spectrum X, .

From the theorems in Section 2.3, we see that
dimH(W:(Qa,b) N Qa,b) = dimB(Wsu(Qa,b) N Qa,b),

and thus

dimH(Ea’b) = dimB(Za,b)a

as desired. O

Corollary 3.34. It is true that

lim dim(X,;) - loge = f*.

c—00

Proof. This follows from Theorem 1.6, Theorem 1.4 and Theorem 1.5. O

3.5 The Case b > a

Up until this section we have just considered the off-diagonal Fibonacci model when
a > b. Now we consider what happens when b > a. We want to show that the main

results all still hold true in this case. Indeed, most of the theorem statements and
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proofs are the same, as they just involve ¢ and certain bounds on ¢. In this section
we will state which results from the case a > b need to be changed, and in situations
where the results do not change but the proofs differ once we consider b > a, we will
provide the altered proof.

First, though, we need to redefine ¢ for this case, as we want it to be a positive

a2_b2
2ab

parameter, which is no longer true of ¢ = for b > a. So instead, we consider the

invariant (3.5) and choose ¢ to be the positive square root of “4;—3‘2‘2}[’4; that is, define

_ b%2—q?
c= 53— 80 that

2 2, ,.2 2
Tpp1 + T+ Ty — 2Tk 1TkTh-1 — 1 = C°.

Thus the same invariant holds with this new definition of c.
Now the first statement to be affected by this new definition of ¢ is Corollary 3.5,

a corollary to Lemma 3.4. Recall Lemma 3.4:
Lemma 3.4. A sufficient condition that the sequence {z,} be unbounded in the back-
ward direction is that there exists some N € Z such that

ley_1| > 1, |zn|>1, and |zn4| < 1

This N is unique, and moreover |Tn_a| > |Tn—1Zn| > 1 for n < N, and there is a
C > 1 such that |z,| > CFN-n forn < N.
Similarly, a sufficient condition that the sequence {zn} be unbounded in the for-

ward direction is that there exists some N € Z such that
lzy_1| <1, |zn|>1, and |zyga| > 1. (3.36)

This N is unique, and moreover |Tnio| > |Tni12Zn| > 1 forn > N, and there is a

C > 1 such that |z,| > CFr-N forn > N.
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The new corollary is:

Corollary 3.35. A sufficient condition for {z,} to be unbounded in the forward

direction is that |zo| > 1.

Proof. Recall zo = £ and z; = £. Therefore for b > a, we have |z;| > |zo| and
22 32 2_ 2 2
|E| > 2b. Thus zo = Z52=0 > 3b=a” 5 2 — 2 5 1 Then |zoz1| — |2o| > O,

and |z3| > |zaz1| + (|zaz1| — |T0|) > |Z2z1|, SO by the proof of Lemma 3.4, {z,} is

unbounded in the forward direction. O

Similarly affected is Corollary 3.7, a corollary of Lemma 3.6. Recall Lemma 3.6

is the following:

Lemma 3.6. A necessary condition for {z,} to be unbounded (in either the forward

or backward direction) is that one of the following holds:
|Zn1] > 1, |zu| > 1, and |T,41| <1 for some n € Z,

|Zn_1| <1, |zu|>1, and |Tpy1| > 1 for some n € Z,

or

|zn| > 1  for all neZ.
Now Corollary 3.7 becomes:

Corollary 3.36. The sequence {z,} is bounded in the forward direction if and only

if (3.36) does not hold for all N € N and |zo| < 1.

The proof is completely analogous to the proof of Corollary 3.7.
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Proof. Suppose {z,} is bounded in the forward direction. Then Lemma 3.4 and
Corollary 3.35 imply the “only if” direction of the statement.

Now suppose that |zo|] < 1 and (3.36) does not hold for all N € N; i.e., for
each N € N one of the following inequalities does not hold: |zy-1| < 1,|zn| > 1,
and |zn41| > 1. If |z,| < 1 for all n € N, the sequence is bounded in the forward
direction. Thus let |z,| > 1 for some n € N. Then |z,11], |Zn-1| < 1, otherwise (3.10)
holds for some N with 1 < N < n. Now the statement follows from the proof of

Lemma 3.6. O
Lemma 3.15 still holds, but now the proof is slightly different. Recall the lemma:

Lemma 3.15. The spectrum of H,, is given by
2a,b = m (Un U Un+1)-
n>1

The new proof is as follows:

Proof. From Corollary 3.35 we know that if |zo| > 1, then {z,} is unbounded; indeed,
from Lemma 3.10 we have that ||H,|| < 2b, so for E € X,, this implies E € [—2b, 2b]

and |zo| = |£| < 1. From Proposition 3.8 we have BS, C U(pn N Pnt1), SO
n>1

ﬂ (O'n U O'n_H) C B+oo = Za,b-
n>1
Now, if we restrict to the energies such that |zo| < 1, we still have B, the set

of E’s such that {z,} has bounded forward orbit. The complement of B,., under
this restriction, which we’ll call l~3+oo, is the set of all E’s such that |zo] < 1 and
{z,} has unbounded forward orbit. The claim is that Bie = U (pn N pps1), so by

n>1

taking complements we obtain B, = ﬂ (0n Uopt1). It is clear from Corollary 3.36
n>1
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that Bieo = (p1 N p2) U (U(an N Png1 N pn+2)>: Obviously if E € p, N p41 for
n>1

some n > 0, then as || < 1, we have that (3.36) holds for some N € N such that
N < n, and E € Bio. And if E € B, then again (3.36) holds for some N € N,

and E € p, N pp41 for all n > N, so the other containment is also obvious.

Now we show that (p; N p2) U (U(U" N Pnp1 N pn+2)> = U(pn N pn+1)- The

n>1 n>1

containment C is obvious, as p; N ps C U (pn N Ppy1), and for n > 1 it is true that
n>1

On N Prg1 N Pny2 C U (Pn N prt1)-

n>1
For the other containment, consider E € p,, N ppmy1 with m > 1. If m = 1, then

E € p1Nps, and the containment is clear. Now, if m > 1, then either £ € 7,,_; or E €

Pm—1. If the former is true, then F € 0,1 N pm N pmy1 C <U (0n N ppt1 N pn+2))

n>1
and the containment holds. If the latter is true, that £ € p,,_;, then we consider

that either £ € ¢,,_9 or E € p,,_3. In general, either £ € o}, for some 0 < k < m, or
Eecpforall0 <k <m. If E € g4 for some 0 < k < m, then E € ox N prr1 N Pryo
and the containment is obvious. If E € p;, for all 0 < k < m, then E € p; N ps, and
the containment is obvious.

Thus Bio = U (PnNpPny1), and By = ﬂ (0nUony1). However, this is all under

n>1 n>1

the restriction that |zo| < 1, so really we have X, = Bio = 09 N ﬂ(an U 0pt1)-
n>1

But as oy = [—2a, 2a] C [—2b,2b] = 09 and 09 = [-b—a,—b+a]U[b—a,b+a] C oy,
and the band structure is the same; i.e., for n > 1, 0, U 0py1 D 0ny1 U ongo, then

oo N n (0nUopy1) = ﬂ (0 U0opns1) and the lemma holds. O

n>1 n>1

So while structure of the bands oy, is unchanged when b > a, the initial bands are
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Figure 3.6: Band Structure with a = 2,b = 12.

different. This affects Lemma 3.20, as induction is used in the proof and thus the
difference in the initial bands affects the base case of the induction argument. Recall

Lemma 3.20:

Lemma 3.20. Letc >4 and k > 1. Then, with &, = c—2+Vc* — 4c+ 1, we have

the following inequalities.

(a) For any type A band By, C 01, E € Biy1 implies

$2+1(E)
i, (E)

‘ Z éa,b'

(b) For any type B band Byyo C 0ri2, E € Birio itmplies

x;c+2(E)
i, (E)

~ Z fa,b~



Figure 3.7: Band structure with b > a, a > b.

87



86

As only the base case of the induction argument is different, only the start to the

proof will be given.

/

T

oy
(4]

Proof. Consider the base case for a type A band, = % We want to see that this

is greater than or equal to &, = ¢ — 2+ v/c? —4c+ 1. In terms of a and b, we see,

analogously to the case when a < b, that &,, < 2=22. Clearly g > bj%.

a

2

!
/
£

Now consider the base case for a type B band, = |%| As E € oy, it follows

that |E| > b — a, and so ;:2 > @ > b‘%, as desired. The remainder of the proof
1
of the lemma is the same as given in Section 3.3. O

The next lemma that changes is Lemma 3.22. We now have the following:

Lemma 3.37. Let ¢ > 2. The following inequalities hold for E € o1, 09, respectively:

Note that these bounds come up in the proofs of Theorem 1.4 and Theorem 1.5,

though the proofs of the theorems work the same with the new bounds.

Proof. First, we see that |z}| = ﬁ Now, considering £ € 0,5, we get that E €
[~b—a,—b+alU[b—a,b+a), so b—a < |E| < b+a. Then as |z5(E)| = | £|, we have
boa < |z4(E)| < 2. Finally, it must be shown that o~ < 22. This can be see by

ab —

observing, as ¢ > 2, that b > 4a, so particularly, 2ab > 2a%+ab, or 2a(b—a) > ab. O

Now, let us consider the differences in initial bands between the a > b case and
the b > a case. Because of symmetry, this can be viewed two ways. The choice is

arbitrary. For the case a > b, there are the bands on the right and on the left, which
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are symmetric, and the bands in the middle. The band structure in the middle is
essentially the same found on the left for the case b > a, just moved down one level.
The band structure on the right side for the case a > b can be found of the right side
for b > a, again moved down one level. See Figure 3.7.

Now, for simplicity, because the bands in the case b > a can easily be related to
the bands in a > b, though moved down a level, we want to redefine how we count

the bands:

Definition 3.38. Define
ay := number of type A bands in o1,

b, := number of type B bands in 041,
ak,m = number of type A bands b in opyy with #{1 <j<k+1:bNo; # 0} =m,
bk,m := number of type B bands b in oy with #{1 <j<k+1 :bNo; # 0} =m.
Again, based on the definitions of type A and type B bands, we have that ay = bx_1
and by = 2by_o + ax_o with initial values ag = 1 and b; = 2. Similarly, it is true that
akm = bk—1,m—1 and bgm = 2bk_2m-1 + Ak—2,m—1 With initial values agp = 1 and

aom =0 form #0, a;;m =0, bom =0, b1g =2 and by, = 0 for m # 0.

Then, we have the following result.



89

Lemma 3.39. If [£] <m < | Z2L], then

Agm = bk—l,m—l

o2k—3m—1 k—m-—1 2k —2m
2k — 3m
2m — k

2%l — 1)l 2k —2m
 2m—k)!(2k—-3m—1)!' \2k—3m /"

Otherwise, akm = 0.

Proof. The proof follows exactly from the proof of Lemma 3.24. The only difference

is in the bands aj ,,. In the case where a > b, there is a factor of 2 for the aj ,, and

for the b > a case, there is only one. O

The next thing to check is that Lemma 3.25 still holds for the case b > a. The

statement of the lemma is that if £ < m < 221 then

k= exp (mf (%)) < akm S kexp (mf (%)) )

which is (3.31). The differences in the proof are minor. First, checking the endpoints,

(S

we see that if m = £, then apk = 22. As exp (5 (%)) = 2%, it is clear that (3.31)

holds in this case.

Next, considering m = %T_l, we get a 261 = %TH We saw before in the proof of
’ 3

the lemma that exp (%52 - f (2%21)) = 2k (52) % ()5 = 2k (52) " (521)3,

so clearly the expression holds.

The final difference is that we have

_ m (2k — 3m — 1)2(2k — 2m)
o0 < exp (mf (7)) (k—m — 1)3(2k — 3m)(2m — k)b




90

2k—1

We get the following inequalities from % <m < ==

3 1
<1
k—2<2m—k_ ’

-2
1§2k—3m—1<kT,
2< 1 <1
k 2k—-3m ’

2 < 1 < 3
k—2 " k-m-1 k-2’
26—3_*———%<2k—2m<k,

and as in the proof of the lemma, (3.31) clearly follows.

Finally, we must redo the proof of Lemma 3.33. We want to show that for ¢ > 2,

the line lop = {(£, £, a;:;’?) | E € R} intersects the stable manifold transversally,
and once again, we just need to show this in a neighborhood around the spectrum.
The first thing to do is to break it up into cases. Either |z1] > 1 or |z1] < 1. We
know that if E € S,, then |zo| = |£] < 1.

Consider first the case where |z1| > 1. For E € ¥,;, this means that |zo| < 1.

Therefore T'(z1, Zo,z-1) € R1 U Ry. We want to show that /9| > 1/3. As |zo| < 1

and |z1| > 1, we get E € [—2b, —2a) U (2a,2b]. And

E?_E2
_5_ — _2ab __ E+ EO
— E-=Ey — ’
n % a

so [€/n| > 4 > 1/3, with the infimum occurring at £ = Ey = +2a.

Now consider the case |z;] < 1. This means, for E € ,;, that |z2] > 1 and
lzs| < 1, so T*(z1,%0,2-1) € R1 U R,. From |z3| < 1 we get that E € [§(—b —
VBZFB), ~b] U [(b — VBZFB), 1(~b + VBT FB)] U [b, 1(b + VB T )], and

from |z:| < 1 we get E € [—2a,2a]. Thus, claiming that £(—b+ v/8a? +b2) < 2a,
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we get E € [2(b— v/8a? + b2), $(—b+/8a? + b%)]. To prove the claim, we must show
that v/8aZ + b2 < 4a + b. This is the same as 8a% + b2 < 16a2 + 8ab + b?, which is
obviously true.

Now,

E? 4+ EEy + E2 —2a® — b?
/7l = = ,

but instead we can just consider 1_22# for z € [—(3(—=b+ V8aZ+2))%,3(3(-b+
v/8a2? + b2))?]. The claim is that on the interval, we have # < —3. The
maximum occurs at the right endpoint of the interval, which gives (4a® + 9; —
3b\/8a2 + b%) /ab. To show that this is less than —3, it suffices to show that 8a? +b? +
%ab < 3bv/8a? + 2. Squaring both sides, we want to show that 64a* + b* + %cﬁba +
3ab® + adb < 9b* + 72a%b%. Note that as ¢ > 2, we have b > 4c, so the left hand side
is bounded above by £2b* + 14842b?, and it is clear that the desired inequality holds.
Thus |¢/n| < 3, and I, intersects the stable manifold transversally.

Thus all the results for the case a > b either hold for the case b > a or are slightly

different, as noted above, but the main theorems still all hold.

In conclusion, in the study of quasicrystals, the off-diagonal Fibonacci operator
is of natural interest. Now we have upper and lower bounds for the Hausdorff and
lower box counting dimensions of the spectrum of the operator, and we have seen
that equality can be achieved between the two dimensions. There are other aspects
of the model to consider, and there is already further interest in this operator among
physicists (e.g. [18]). Thus perhaps more questions about this operator will be

answered in the future.
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