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Abstract

Independence Systems and Stable Set Relaxations
by

Benjamin McClosky

Many fundamental combinatorial optimization problems involve the search for subsets
of graph elements which satisfy some notion of independence. This thesis develops
techniques for optimizing over a class of independence systems and focuses on systems
having the vertex set of a finite graph as a ground set. The search for maximum stable
sets in a graph offers a well-studied example of such a problem. More generally, for
any integer k£ > 1, the maximum co-k-plex problem fits into this framework as well.
Co-k-plexes are defined as a relaxation of stable sets.

This thesis studies co-k-plexes from polyhedral, algorithmic, and enumerative per-
spectives. The polyhedral analysis explores the relationship between the stable set
polytope and co-k-plex polyhedra. Results include generalizations of odd holes, webs,
wheels, and the claw. Sufficient conditions for the integrality of some related linear
systems and results on the composition of stable set polyhedra are also given. The
algorithmic analysis involves the development of heuristic and exact algorithms for
finding maximum k-plexes. This problem is closely related to the search for co-k-
plexes. The final chapter includes results on the enumerative structure of co-k-plexes

in certain graphs.
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Chapter 1

Introduction

Graphs are often used to model relationships among elements of a system. For
example, suppose a retail company desires to open a large number of outlets in a
developing area. If research indicates that the market can sustain at most one outlet
per five-mile radius, how should the company choose from a set of potential locations
in order to maximize the total number of new outlets? This problem can be solved
by analyzing a related graph.

To see the connection, let V' = {vy,...v,,} denote the (finite) set of potential outlet
locations. Let E be the set of unordered pairs v;v; such that location v; is within five

miles of location v;. Notice that S C V represents a feasible set of locations whenever
vv; € B for all v;,v; € S.

In other words, the elements of S are pairwise nonadjacent in the graph G = (V| E).
The set S defines a stable set in G, and the company’s problem is solved by finding
a maximum cardinality stable set in G.

A natural extension of this location problem would be to allow at most k outlets



per five-mile radius for some integer £ > 1. Note that the stable sets of G remain
feasible. In general, though, the company will have the option of opening more outlets.
Define the neighbor set of v; as Ng(v;) := {v; |v;v; € E}. Ng(v;) denotes the set of
locations within five miles of v;. The problem now requires a feasible solution S C V

to satisfy the following:

INag(v;))N S| <k—-1 foralv €S8S.

In other words, each element of S has at most k£ — 1 neighbors in S. The set S
defines a co-k-plez in GG, and the company’s problem is solved by finding a maximum
cardinality co-k-plex in G.

The abstract notions of finding maximum stable sets and co-k-plexes in a graph
are thus seen to have a useful application. Unfortunately, the ability to phrase a
problem in graph-theoretic terms does not imply that an efficient solution method
exists. Indeed, the decision versions of the Maximum Stable Set Problem (MSSP) and
the Maximum Co-k-plex Problem (MCPP-£) belong to the class of NP-hard problems.
This suggests that any exact solution method for MSSP or MCPP-k probably requires
exponential, with respect to the size of the input parameters, time to identify an
optimal solution in a general graph. Garey and Johnson (31) and Papadimitriou and
Steiglitz (57) offer precise treatments of these complexity issues.

The complexity results on MSSP and MCPP-k may seem discouraging, but they

do not indicate that all problem instances of practical size are intractable. In fact,



an extensive body of research has lead to the solution of challenging MSSP instances
on graphs with hundreds of vertices (68; 73; 18; 4; 54). Much of this research was
conducted in response to an implementation challenge coordinated by the center for
Discrete Mathematics and Theoretical Computer Science (DIMACS) in 1992.

Since 1992, algorithms for solving MSSP are primarily tested on the well-known
DIMACS (26) benchmark graphs, many of which have industrial applications. A
survey of methods as of 1999 is given by Bomze et al.(10). More recent research
(65; 60) has improved the running time for solutions on the DIMACS graphs and
found solutions for random graphs on the order of 15,000 vertices. MCPP-% is far
less studied (6; 49), but one purpose of this thesis is to analyze MCPP-k on graphs
of comparable size.

This thesis shows that many results first discovered in the context of stable sets
have analogues in the context of co-k-plexes. The new co-k-plex analogues reveal that
certain properties of stable sets do not strictly depend on the definition of a stable set.
Instead, it turns out that an arbitrary, but fixed, level of degree-boundedness suffices
to obtain much of the structure associated with stable sets. The analysis focuses on
finding co-k-plex analogues for polyhedral, algorithmic, and enumerative properties
of stable sets.

The polyhedral analysis deals with linear systems of inequalities. In principle,
polyhedral results facilitate the use of linear programming techniques to solve co-k-

plex optimization problems. Chapter 4 introduces four new classes of facets for the



co-k-plex polytope. Chapter 4 also shows that the exclusion of certain subgraphs
causes the co-2-plex polytope to have a relatively simple facial structure. This result
characterizes a class of graphs for which co-2-plex optimization is tractable. In ad-
dition, the polyhedral analysis includes a generalized notion of graph perfection and
results on composition of co-1-plex polyhedra.

Combinatorial algorithms provide another solution method for co-k-plex optimiza-
tion problems. Rather than mapping the problem into a polyhedron, combinatorial
algorithms operate directly on the graph elements. Chapter 5 describes various new
combinatorial algorithms related to co-k-plex optimization. The heuristics general-
ize well-known algorithms by Brelaz (11) and Balas and Xue (5). The exact algo-
rithms generalize well-known algorithms by Applegate and Johnson (1), Carraghan
and Pardalos (18), and Ostergérd (54).

The co-k-plex polynomials in Chapter 6 carry information on the combinatorial
structure of co-k-plexes in a graph. Although tractable co-k-plex optimization and
nice combinatorial structure often coincide, the study of co-k-plex polynomials has
other benefits including visualization. For example, the problem of counting and char-
acterizing binary strings with no consecutive triplet of ones is equivalent to computing
the co-2-plex polynomial of the path P™. Chapter 6 introduces co-k-plex polynomials
and obtains recursive formulas for structured graphs such as paths and cycles.

This thesis is organized as follows. Chapter 2 introduces notation and definitions

used throughout the thesis. Chapter 3 discusses composition of stable set polyhe-



dra. Chapter 4 studies the co-k-plex polytope. Chapter 5 contains heuristic and
exact algorithms for detecting cohesive subgraphs, a problem intimately related to
the search for co-k-plexes. All algorithms were implemented and run on a 2.2 GHz
Dual-Core AMD Opteron processor with 3 GB of memory. Chapter 6 introduces co-
k-plex polynomials. Chapter 7 offers some concluding remarks and discusses future

research.



Chapter 2

Notation and Definitions

This section discusses notation and definitions relating to graphs, polyhedra, inde-
pendence systems, and generating functions. An in-depth treatment of graph theory
is given by Diestel (25). Polyhedral theory is discussed in Cook et al. (23). Stanley’s
book (64) develops the theory of generating functions. Most of what follows can be
found in these references. The remainder of this thesis will make extensive use of the

material in this chapter.

2.1 Graph Preliminaries

Let G = (V, E) be a graph with vertices V(G) := V and edges E(G) := E. All
graphs considered will be finite, simple, and undirected. The vertices v,u € V are
said to be adjacent if uv € E. A stable set consists of pairwise nonadjacent vertices.
The cardinality of a largest stable set in G is denoted a(G). A complete graph consists
of pairwise adjacent vertices. Maximal complete subgraphs are called cliques. The
cardinality of a largest clique in G is denoted by w(G). Let G = (V, E) denote the

complement graph of G, where ¢ € E < e ¢ E. Notice that the complement of a



stable set is a complete graph.

A path P* in G is a subgraph with vertex set {v;,..,v:} C V and edge set
{v10y, ..., V410 } C E where the v; are all distinct. A cycle C* in G is a subgraph
with vertex set {v1,...,vx} C V and edge set {viv, ..., vp—10k, vgv1 } C E where the
v; are all distinct. The length of a path (cycle) is defined to be |E(P*)| (|E(C*)|).
An edge e € E\ E(C*) which joins two vertices in C* is a chord. Chordless cycles of
length at least four are called induced cycles or holes.

For all v € V, let Ng(v) := {u € V | wv € E} be the neighbor set of v, and let
dege(v) = |Ng(v)| be the degree of v in G. Define the closed neighbor set as Ng[v] :=
Ng(v) U {v}. Define A(G) := mazyeyv{dege(v)} and §(G) := minyey{dege(v)}. Let
V' C Vand E(V') :== {w € E | u,v € V'}. The subgraph induced by V' is
GVl .= (V' E(V")).

Fix an integer k > 1. A subset S C V induces a co-k-plex if A(G[S]) < k- 1. The
term co-k-plex refers to both the graph G[S] and the set S. Notice that co-1-plexes
are stable sets. A subset K C V induces a k-plex whenever §(G[K]) > |K| — k. The
term k-plex refers to both the graph G[K] and the set K. Notice that 1-plexes are
complete graphs. The set S is a co-k-plex in G if and only if S is a k-plex in G.
Consequently, the Maximum co-k-plex and Maximum k-plex problems are intimately
related. This is analogous to the relationship between stable sets in G and complete

graphs in G.



2.2 Polyhedral Preliminaries

Given vectors zy, ..., zx € R" and nonnegative scalars Ay, ..., \x € R, the vector
Ele A\iZ; is a convexr combination of the x;’s if ZLI X; = 1. The convex hull of a
finite set S C R" is the set of all convex combinations of S. The convex hull of S is
the smallest convex set containing S.

The vectors 1, ...,z € R" are said to be affinely independent if ZLI Az = 0
and Zle A; = 0 imply that A\; = 0 for all <. The more familiar concept of linear
independence implies affine independence. The dimension of K C R", i.e. dim K,
is one less than the maximum cardinality of an affinely independent set contained in
K.

A polyhedron is the solution set to a finite system of linear inequalities. In other
words, for any polyhedron P, there exists some (A, b) such that P = {z | Az < b}. A
polyhedron P C R" is full-dimensional if dim P = n. A vector v € P is a vertez if and
only if v is not the convex combination of vectors in P\ {v}. Bounded polyhedra are
called polytopes. A polytope can be characterized as the convex hull of its vertices.

An inequality cfz < d is wvalid for P if P C {z | ¢'z < d}. The inequality is
supporting if PN {z | ¢’z = d} # 0. The set F = PN {z | Tz = d} is called
a face of P. More generally, any subsystem A’z < b of Az < b induces the face
F=Pn{z | Az =V}, and every face of P is defined by some subsystem of valid
inequalities. If F # 0 and F # P, then F is a proper face of P.

A polyhedron is integral if every nonempty face contains an integral vector. The



set of faces, F, of the polyhedron P and the set inclusion relation define a partially
ordered set (F,C). The maximal elements of (F,C) are called facets. If P is a
polytope, then the minimal elements of (F, C) are exactly the vertices of P. Thus, a
polytope is integral if its vertices are integral vectors.

For the remainder of this section, let P be a full-dimensional polytope. All facets
F of P satisfy dim F' = n — 1. Consequently, F' is a facet whenever it contains n
affinely independent points. Any facet F' of P also satisfies the following: if F' € F
is a proper face and F' C F’, then F = F".

Any defining linear system for P must contain a distinct facet-inducing inequality
for each facet. A defining system of inequalites is minimal if there exists a bijection
between the set of inequalities and the facets of P. P always has a unique (up to
positive scalar multiple) minimal defining system. The word facet will often be used

to refer to both the face itself and the inequality which induces it.

2.3 Independence Systems

Let S be a finite ground set and Z a family of subsets which are closed under
set inclusion. More precisely, J' C J € Z implies that J' € Z. The pair (S,7)
defines an independence system. The elements in Z are known as independent sets.
Each element J € Z has an associated incidence vector z7 € RIS, where 27 = 1 if
v € J and z] = 0 otherwise. The convex hull of all such incidence vectors defines an

independence system polytope.



A normal independence system has the property that all singletons v € S are
independent, i.e. v € S implies {v} € Z. The polyhedra associated with normal
independence systems are full-dimensional subsets of the unit hypercube in R!S!. In-
dependence systems are well-studied (22; 29; 53).

Finding an independent set of maximum cardinality is an NP-hard problem in
general. One notable exception occurs when all maximal independent sets have the
same cardinality. An independence system with this property is called a matroid.
Matriods and the associated greedy algorithm have been well-studied (27; 28; 45; 55;
59; 67).

It is possible to define many independence systems over a finite graph G. This
thesis studies a family of independence systems defined over V. In particular, for any
integer k > 1, let Z; denote the set of co-k-plexes in G. Notice that if S is a co-k-plex
and S’ C S, then S’ is also a co-k-plex. In other words, any induced subgraph of a
degree-bounded graph is also degree-bounded. Thus, Z is closed under set inclusion,
and (V,Z) defines an independence system. The associated independence system
polytope is studied in Chapter 4. The enumerative structure of (V,Zy) is analyzed in

Chapter 6.

2.4 Independence Polynomials and Enumeration

In enumerative combinatorics, a sequence of integers (a;);>o is often represented

as the coefficients of a formal power series. The reason for this is best explained

10



through an example. Let S be a set of n objects and suppose a; denotes the number
of subsets T C S such that |T'| = 4. Following the convention that (7}) = 0 for ¢ > n,
the elements of the sequence satisfy a; = (’;) for all ¢ > 0.

The sequence (a;);>0 can be stored as the coefficients of the following power series:

A =Y ad' =" (’Z) '

i>0 >0

Observe that a; is the coefficient of z* in the polynomial A(z). In this context, A(z) is
called a generating function. This construction is a form of book-keeping, and there is
no claim made on the convergence properties of A(z). Moreover, the analysis of A(x)
will focus on its properties as an object subject to operations such as multiplication
and addition. Although A(1) happens to give the total number of subsets of S, the
evaluation of A(z) need not have combinatorial significance in general.

Notice that the Binomial Theorem allows for an elegant representation of this

sequence. A(z) can be described as follows:

A) =Y @):p - Z (TDI =(1+z)"

i>0

Thus, the value of g; is stored as the coefficient of ' in the polynomial (1+z)". One
purpose of this representation is that performing an operation on A(x) can correspond
to an operation on the set S. For example, let S’ be a set of m objects such that

S NS = @. Define (b;);>0 accordingly. The sequence (b;);>o can be represented as

11



the polynomial B(z) = (1 + z)™. Consider the product of generating functions:

O(z) = Alz)B(z) = (1 +2)"(1 + &)™ = (1 + z)"*™.

The coefficient ¢; of z* in C(z) now represents the number of subsets T C SU S’
such that |T'| = 4. Therefore, taking the product of generating functions corresponded
to taking the union of the underlying sets. Generating functions are also useful for
developing recursive relationships and analyzing asymptotic behavior. It would have
been easy to derive these results directly for this particular sequence, but generating
functions are powerful tools for gaining insight into the behavior of more complicated
combinatorial structures.

Given a graph G = (V, E), let Z¢ denote the set of stable sets in G. Gutman and

Harary (33) associated the following polynomial with G:

This is the independence polynomial of G. Now the coefficient a; of z* is the number
of stable sets of cardinality ¢ in G. The independence polynomial has been studied in
a number of papers (2; 12; 13; 14; 20; 34; 35; 37; 40; 41; 42). Levit and Mandrescu
offer a survey (43). Chapter 6 introduces the co-k-plez polynomial and generalizes
some properties of the independence polynomial.

The definitions and notation discussed in this chapter will be used throughout this

12



thesis. In-depth treatments of these concepts can be found in the references listed at

the beginning of this chapter.
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Chapter 3

Composition of Stable Set Polyhedra

Barahona and Mahjoub found a defining system of the stable set polytope for a
graph with a cut-set of cardinality 2. This chapter extends this result to cut-sets
composed of a complete graph minus an edge and uses the new theorem to derive a

class of facets.

3.1 Introduction

Let G = (V,E) be a simple undirected graph. Let S := {S C V | S is a
stable set}. Each S € S has an incidence vector 5 € RV!, where z5(v) = 1 if
v € S and z°(v) = 0 otherwise. Let P(G) be the convex hull of all 5 such that
S € S. P(G) is a full-dimensional polytope and has a unique (up to positive scalar
multiples) minimal defining system. A vertex set K C V is complete whenever G[K]|
is a complete subgraph. A maximal complete subgraph defines a clique. A vertex
v €V is simplicial if G[N(v)] is complete.

A cut-set C C V decomposes G into a pair of proper subgraphs (Gy, G) such that

C = V(G;) NV (Gy) and all paths from G; to Gy intersect C. Chvétal (21) showed

14



that the union of defining systems of P(G;) and P(Gs) defines P(G) when G[C] is a
clique. Barahona and Mahjoub (8) defined P(G) based on systems related to P(G;)
and P(G,) when |C| < 2. We extend this result to the case where G[C] is a complete
graph minus an edge.

Section 3.2 contains results necessary to extend Barahona and Mahjoub’s theorem.
Section 3.3 generalizes their theorem. Section 3.3 refers to results from (8). Section 3.4
applies the new theorem to derive a class of facets for the stable set polytope called
diamonds. Section 3.5 uses techniques similar to Barahona and Mahjoub’s method

to prove a theorem of Chvatal. Section 3.6 summarizes the results.

3.2 Support Graphs

Suppose G has a cut-set C' consisting of a nonadjacent pair of vertices. To obtain
a defining system for P(G), Barahona and Mahjoub (8) attach to C a new set of
vertices {w;}. This augmentation defines a graph G. P(G) has a facet which projects
along the subspace of {w;} variables to define P(G). We generalize this method to
the case where G[C] is a complete graph minus an edge. Section 3.3 analyzes the
decomposition of G into the pair (él,ég). Here, we determine how the support
graphs of facets for P(G) interact with the {w;} vertices.

Let aTz < b be a nontrivial facet of P(G). Nontriviality implies b > 0 and a, > 0
for all v € V. In this section, all facets are assumed to be nontrivial. Define the

following sets:

15



Voi={veV |a,>0}and F,:={S €S| a2z’ =b}.

The support graph of aTx < b is defined as G, := G[V,], the subgraph induced by V.
Remark 1. Given a facet a¥z < b, F, consists of mazimal stable sets in G,.

In Section 3.3, we partition inequalities based on their intersection with the set
{w;}. Lemma 1 reduces the number of partition sets. Recall that since P(G) is
full-dimensional, the sets S € F, collectively satisfy no equations other than scalar

multiples of aTz = b.
Lemma 1. If a¥z < b is a non-clique facet, then G, contains no simplicial vertez.

Proof. Suppose v € V, is simplicial in G,. Then K := Ng, (v) is a clique and there
exists an S € F, such that SN K = 0. Otherwise, 3_ ;2% (v) =1 for all &' € F,,
a contradiction because a’z < b is not a clique inequality. Observe that S is not
a maximal stable set in G,, since S U {v} is a feasible stable set. This contradicts

Remark 1. O

Suppose G = (G, Go) has a cut-set C where G[C] is a complete graph minus an
edge. Notice G[C] has a stable set {u,v}. For k € {1,2}, add the {w;} vertices to Gy
such that Ng (w1) = {w2} U (C\ {u}), Ng, (w2) = {w1,u}, and Ng, (w3) = C. See
Figure 3.1 for the augmented graph Gj . The heavy edges denote joins (see (71)).
For example, the edge between u and C \ {u, v} indicates that u is adjacent to every

vertex in C'\ {u,v}.

16



Figure 3.1: The augmented graph Gj.

1 07 100
0 iT 01 0
0 07 110
1 07 00 1
§ ric-uxic-n § § 1,

Figure 3.2: The matrix A.

Lemma 2. Let u,v € C' be nonadjacent and C = C U {wy, we,w3}. Fork € {1,2},

Fo={z e P(Gy) | > z(z) =2}

zeC

is a facet for P(Gy). Moreover, no other facet contains all the vertices of C in its

support.

Proof. We show that Fy is a facet for P(G[C]) by building a full-rank |C| x|C| matrix
whose columns are incidence vectors of all stable sets which lie on Fy. See Figure
3.2. The first three rows correspond to wi, wy, and wz. The last rows correspond to
u and C \ {u}, respectively. Let I, be the (|C|-1)-dimensional column vector with a
1 in row v and 0’s elsewhere.

We now lift the inequality 3", s z(2) < 2 to a facet of P(G}). Since all maximal

stable sets J in Gy, satisfy |JNC| = 2, the lifting coefficients for vertices in V(Gy)\ C

17



are zero. Thus, the inequality is a facet of P(@k) Suppose another facet a’z < b
contains all vertices of C in its support. By Remark 1, > e @ (z) = 2 for all

S" € F,. It follows that F}, coincides with the face induced by aTz < b. O

Given a defining system for a polytope, the process of projecting along a subspace
of variables, say w; and ws, is less complicated if the coefficients of w; and wy are
binary. The following lemma allows the defining systems encountered in Section 3.3

to be put in this form.

Lemma 3 (Mahjoub (47)). Given a faceta®z < b, let wy, wq € V, be adjacent vertices

in Gq. If wy is simplicial in G, — we and wq is simplicial in G, — wy, then ay, = ay,.

Lemma 3 implies that a,, = a, in any nontrivial facet containing both w; and
wy in its support. As a result, scaling these inequalities by (1/ay,) = (1/ay,) will

produce inequalities where both variables have binary coefficients.

3.3 Composition of Stable Set Polyhedra

This section offers a straightforward extension of techniques developed by Bara-
hona and Mahjoub. We will refer to results from (8). Let G = (G4, Gq) have a cut-set
C where G[C] is a complete graph minus an edge. Construct the augmented graph

G by adding a new set of vertices {w;} to C, as in Section 3.2. Define C := C' U {w;}.
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P(G) has a facet F = {z € P(G) | 3,z 2(2) = 2} such that

P(G) = proju,ww{F} = {z € RI°! | 3w e R® sit. (z,w) € F}.

The set C' decomposes G into the pair (él, ég) In Section 3.2, it was shown that

P(Gy) has a facet Fj, for k € {1,2}.

Lemma 4 (Barahona and Mahjoub (8)). The facet F is defined by the union of the

systems that define Fy and F,.

Lemma 4 relies on the existence of a full-rank, square matrix of all incidence
vectors for stable sets on F', Fi, and F,;. The matrix A constructed in the proof of
Lemma 2 (see Figure 3.2) implies that this lemma holds for the class of cut-sets C we
are analyzing. In order to find a defining system for F', consider the defining system
for P(Gy) (other than clique inequalities involving the {w;} variables). Recall from
Section 3.2 that the support of a’x < b is denoted by V,. Lemma 1 and Lemma 2
imply that the facet-defining inequalities can be partitioned into three sets IF, I¥, I¥

defined as follows:

It = {aTz < b; | V, 0 {w, we, ws} = 0}

I§ = {alz <b; | Vo, N {wy, wo, ws} = {wr, wa}}
I§ = {CllTLE < bz l Vai M {wl,wg,wg} = {’LU3}}
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Let Vi, = V(Gg). Lemma 3 and Lemma 4 imply that the defining system of F' can be
written as follows, &k € {1,2}:

Ysev, aba(f) < bF, for all i € If

Y sev, 5x(F) + 2(wi) + x(wy) < VY, for all i € I§

> ey, a5z () + z(ws) < bf, for all ¢ € I}

Yjecvu ) +x(wy) <1

2jecn @d) + 2(ws) <1

> jecvw (J) + z(ws) < 1

z(u) + z(wy) <1

z{wy) + z(w) <1

> jecz(d) =2

z(§) > 0, for all j € V.

The projection of this system along the subspace of the {w;} variables is the

polytope P(G). To define P(G), we proceed exactly as in (8).

Theorem 1. The polytope P(G) is defined by the union of defining systems for P(G)
and P(G3), the non-negativity constraints, and the following facet-defining mized in-

equalities:

Z afjx(j)—i-z aijm(j)—z z(j) <B4+ -2 fork=1,2;1=1,2;k# ;i€ Ifre Il

€V JEVS jeC
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Figure 3.3: A diamond of size 6.

Proof. See Theorem 3.5 and Corollary 3.7 in (8). O

3.4 Diamonds

This section uses Theorem 1 to derive a class of facets for P(G). Let Kj, ..., Kg be
sets of vertices such that each K; is nonempty and complete. The graph G shown in
Figure 3.3 is a member of a class of graphs which we call diamonds. The heavy edges
denote joins. For example, an edge between K; and K indicates that G[K; U Kj] is
complete. The size of the diamond is equal to the number of sets K;. The diamond in
Figure 3.3 has size 6, and > .., z(2) < 3 induces a facet for P(G). In general, facet-
inducing diamonds have size 2n (where n > 1), a vertex u such that Ng(u) = U, K;,

and a path P = pi1ps...pan—2 attached to the sets K;, ..., Ky, as shown in Figure 3.3.

Theorem 2. Let n > 1. If a diamond G has size 2n, then ), .., z(2) < n induces a

facet for P(G).

Proof. The proof is by induction on n.
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Figure 3.4: Subgraphs of Gy and Gs.

Base case (n = 2): Choose v € K; and w € K4. The diamond of size 4 has
a 5-hole on the vertex set {p1, p2, w,u,v}. Moreover, the odd-hole inequality can be
lifted to include all vertices in U?=1 K;. This implies that ) . z(2) < 2 induces a
facet for P(G) as claimed.

Induction step (n > 2): Suppose the theorem holds for all diamonds of even
size less than 2n. The diamond of size 2n has a cut-set C' = Ko,—3 U {u,pon—s}
which can be constructed by removing an edge from a complete graph. Therefore,
we apply Theorem 1. Figure 3.4 shows subgraphs of the pair (él,ég). Let V] =
V(G \ {w1,ws} and V§ = V(G,) \ {ws}. The graph on the left is a diamond of size

2n — 2. By induction,

> z(z)<n-1 (3.1)

zeV{

is a facet for P(G,). G, has an odd-hole inequality which lifts to obtain that

> a(z) <3 (3.2)

zeVy

is a facet for P(Gs).
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Figure 3.5: Diamonds with odd size.

Notice that inequality (3.1) € I3 and inequality (3.2) € I2. Theorem 1 gives the

following facet-defining mixed inequality for P(G) :

Yoo+ D w(zx)-) w(z)<n—1+3-2

2eV(G1) zeV(Gyz) zeC

Upon simplifying, we obtain that ) .., 2(2) < n is a facet for P(G) as claimed.

O

Theorem 2 fails when the diamond has size that is odd and at least three. To see
this, let G be the diamond of size 3 shown in Figure 3.5. G is perfect and not a clique,
so G is not a support graph for any facet of P(G). Now let G be the diamond of
size 5 also shown in Figure 3.5. If G is the support graph of a facet, then there must
exist 4+ E?:l | K;| affinely independent maximal stable sets satisfying some equation.
However, no such set exists. It follows by induction that a diamond of odd size is not

a support graph for any facet of P(G).

23



3.5 A Theorem of Chvatal

This section uses techniques from the previous sections to obtain a theorem of
Chvétal. Let G = (G1, Gy) be a graph with cut-set C, where C is a clique. Define
G by adding a new vertex w such that Ns(w) = C. The maximal clique inequality
> jec () + z(w) < 1 is a facet F for P(G) and a facet F, for P(G)). Moreover,
P(G) is the projection of F' along the w variable. Partition the defining system for
P(Gy) into the sets IF = {oTz < 8| w ¢ Vo} and IF := {oTz < B | w € V,}.

Lemma 1 implies I5 = {3 ., z(j) +z(w) < 1} since w is simplicial. Therefore, F is

defined by the following system k € {1, 2}:
L3 iew afx(j) < BF, for all i € If
2 ¥jeonli) +a(w) = 1
3. z(§) >0, for all j € V,

The projection of which is simply the union of defining systems for P(G;) and

P(Gy).

3.6 Conclusions

This chapter generalizes a theorem of Barahona and Mahjoub concerning the com-
position of stable set polyhedra. The main theorem extends Barahona and Mahjoub’s
theorem to the case where the separating set consists of a complete graph minus an
edge. The new result is applied to derive a class of facets called diamonds. It is also
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shown that similar techniques can be used to prove Chvétal’s theorem on complete

separating sets.
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Chapter 4

The Co-k-plex Polyhedra and Integral Systems

k-plexes are cohesive subgraphs which were introduced to relax the structure of
cliques. A co-k-plex is the complement of a k-plex and is therefore similar to a stable
set. This chapter derives the co-2-plex analogue for certain properties of the stable
set polytope. We also describe a class of 0-1 matrices A for which the polytope
{z € Rl | Az < 2,z < 1} is integral. This characterization leads to the concept of

k-plex perfection.

4.1 Introduction

Given a graph G = (V| E), the problem of finding a maximum cardinality stable
set in GG is a fundamental topic in combinatorial optimization. The Maximum Stable
Set Problem (MSSP) has been the subject of extensive research, much of which has
focused on analyzing the convex hull of stable set incidence vectors P(G). If a system
of linear inequalities which define P(G) is at hand, MSSP can be solved using linear

programming methods. However, such defining systems can be difficult to obtain

because MSSP is NP-hard in general.
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The Maximum Clique Problem (MCP) is intimately related to MSSP. The search
for cohesive subgraphs has applications in ad hoc wireless networks (19), data mining
(69), social network analysis (70), and biochemistry and genomics (16). For a dis-
cussion of these applications, the reader is referred to Balasundaram et al.(6). Using
MCP to detect cohesive subgraphs can be overly restrictive. MCP will find only ex-
tremely cohesive subgraphs. This approach can fail to detect much of the structure
present in a graph. Seidman and Foster (62) introduced k-plexes to address this issue.

Recall that a co-k-plex is the complement of a k-plex. This chapter focuses on the
co-2-plex polytope and a related class of matrices. We derive the co-2-plex analogue
for certain properties of the stable set polytope.

This chapter is organized as follows. Section 4.2 discusses some preliminary def-
initions. Section 4.3 derives four classes of facets for the co-2-plex polytope and a
class of facets for the general co-k-plex polytope. The facets are related to 2-plexes,
cycles, wheels, webs, and the claw. Section 4.4 analyzes the clutter of maximal 2-
plexes in 2-plexes, paths, cycles, and co-2-plexes. Note, Section 4.4 uses definitions
and theorems found in Cornuéjols (24). Section 4.5 characterizes 2-claw-free graphs
(2-claws are defined in Section 4.3). The results of Section 4.4 and Section 4.5 al-
low us to characterize the maximal 2-plex clutter matrices for which the polytope
{z € R} | Az < 2,2 < 1} is integral. This characterization leads to the concept of

k-plex perfection, which is the topic of Section 4.6.
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4.2 Preliminaries

Let G = (V, E) be a finite, simple graph. Fix k > 1, recall that a subset K C V

induces a k-plex if the following condition holds:

degoix)(v) 2 |K| -k VYvekK.

Notice that 1-plexes are cliques. k-plexes were introduced by Seidman and Fos-
ter (62) in the context of social network analysis. Balasundaram et al.(6) provided an
integer programming formulation for the maximum k-plex problem and established
the NP-hardness of the k-plex decision problem.

A co-k-plex is the complement of a k-plex. Each vertex in a co-k-plex S has at
most (k—1) neighbors in S. Notice that co-1-plexes are stable sets. The NP-hardness
of the co-k-plex decision problem follows directly from the result for k-plexes.

Define ox(G) as the size of a largest co-k-plex in G and refer to ax(G) as the
co-k-plex number of G. Let Z := {I C V | I induces a co-k-plex}. Each co-k-plex
I € T has an associated incidence vector z/ € RIV! where 2! = 1 if v € I and
z! = 0 otherwise. Let P,(G) denote the convex hull of all z’ such that I € T.
P,(G) is a full-dimensional polytope and therefore has a unique (up to positive scalar
multiples) minimal defining system of inequalities. The maximal faces of P,(G) and
their corresponding inequalities are both called facets. A positive scalar multiple of

every facet must appear in any defining system for Py (G).
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4.3 Facets of the co-2-plex polytope

Co-2-plexes and stable sets are both induced subgraphs of low maximum degree.
Stable sets are induced subgraphs consisting of isolated vertices. Co-2-plexes are
induced subgraphs consisting of isolated vertices and matched pairs. In this section,
we shall see that the associated polytopes share similar properties.

We will first determine when a 2-plex inequality induces a facet for Po(G). The
result is analogous to the maximal clique facets of the stable set polytope. The search
for facets then continues with four familiar classes of graphs: cycles, wheels, webs,
and the claw. It is well-known that the presence of these subgraphs can complicate
the facial structure of the stable set polytope (50; 52; 56; 66). It turns out that
similar graphs affect the structure of the co-2-plex polytope as well.

Our first result gives a useful equivalent characterization of 2-plexes. Define the

neighbor set of v as follows:

N@):={ueV | (u,v) € E}.

Lemma 5. G = (V, E) is a 2-plezx if and only if as(G) = min{2,|V|}.

Proof. To show necessity, let G be a 2-plex. |V| = 1 clearly implies that as(G) = 1.
Otherwise, we have ap(G) > 2 since any pair of vertices induce a co-2-plex. Suppose
a2(G) > 2. Then there exists an S C V such that G[S] is a co-2-plex of cardinality 3,

and we must have degg;s)(v) = 0 for some v € S. G[S] is a vertex-induced subgraph
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of G which is not a 2-plex. However, Seidman and Foster (62) showed that if G is
a 2-plex, then any vertex-induced subgraph of G is also a 2-plex. This contradiction
implies the result.

To show sufficiency, let as(G) = min{2,|V|}. If ao(G) = 1, then |V| = 1 and
hence G is a 2-plex. Suppose as(G) = 2. All graphs on 2 vertices are 2-plexes, so
we may assume |V| > 3. If G is not a 2-plex, then there exists v € V such that
degg(v) < |V| — 3. Let w,u € V' \ N(v). The set {v,u, w} induces a co-2-plex and

a3(G) > 3, a contradiction. O

Lemma 5 fails for general k. For example, let k¥ = 3 and consider the chordless

cycle on five vertices. Cycles are 2-regular, so C® is both a co-3-plex and a 3-plex.
Thus

az(C°) = 5 # min{3, |V|}.
4.3.1 2-plexes

This subsection offers the co-2-plex analogue of the maximal clique inequalities

for the stable set polytope. Let G = (V| E) and |V| = n. Given a 2-plex K, define

va < QQ(K)

veEK

to be the associated 2-plex inequality.

We first examine the case when K = {v}. By Lemma 5, the 2-plex inequality
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becomes z, < 1. Consider the vectors

x{’u}, m{ulav}7 ey x{un—lvv}

where {u1, ...,un_1} = V \ v. These n affinely independent vectors satisfy the 2-plex
inequality at equality. Moreover, they are the incidence vectors of co-2-plexes in G.
Therefore, z, < 1 is a facet for P»(G).

Notice that if |K| > 1, then the right hand side of the 2-plex inequality increases.
Consequently, any 2-plex properly containing {v} will not induce z, < 1. In other
words, =, < 1 is a facet regardless of whether or not {v} is maximal.

Consider the case where K = {w, u}. The 2-plex inequality z,, + z, < 2 does not
induce a facet. This is because x,, + z, < 2 is a linear combination of the inequalities

Ty < 1 and z, < 1. In contrast, when |K| > 2, we have the following result.

Theorem 3. If K is mazimal and |K| > 2, then the 2-plex inequality induces a facet

for Pa(G).

Proof. Lemma, 5 implies that ap(K) = 2, so the 2-plex inequality becomes Y, . Zo <

2. Let vTx < o be a valid inequality for P,(G) and define the following sets:

F={ze k(G| va =2}, E,={z€ P(G) | ¥z = v}

veK

Suppose that F' C F,, and that F, is a proper face (i.e. v nonzero). We will show
that F' = F,,. This implies that F'is maximal and that the 2-plex inequality is a facet
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for P;(G). Notice that we may assume v has nonnegative components. For if ~y, < 0,
then F., is contained in the face induced by z, > 0, and vTz < 7 can be replaced by
x, > 0 without loss of generality.

Let u,w, z € K and note that z{vw} o{wzt 1wzt ¢ B Since F C F,, we have

Yot Yo =VutV2="TwTV:=2=Y = Yu="7="Yw

u,w, and z were arbitrary, so there exists a scalar ¢ > 0 such that ~, = t for all
w € K. It also follows that vq = 2¢.
Suppose there exists s ¢ K. By the maximality of K, there exists u,z € K\ N(s).

Moreover, ziw#} glswzt ¢ F C F,. Hence

Vst VutVe=Tt+V=% = =0

Thus s = 0 for all s ¢ K. We have shown that v7'z < ~, represents an inequality of

the form ¢ ), . 2, < 2t. It follows that F' = F,. O

An independent proof of Theorem 3 appears in Balasundaram et al.(6).

4.3.2 Paths, cycles, and wheels

Let P™ denote the path with n vertices and C™ the chordless cycle on n vertices.
The following lemmas will be useful as we determine which cycles and wheels induce

facets for the co-2-plex polytope.
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Lemma 6. op(P") = [2], Vn>1

Proof. Given a path P™, label V(P") with {1,...,n} such that:
N1)={2}, Nn)={n-1}, NG ={i—1,i+1} 2<i<n-—L1.

Define S C V(P"), where i € S <« 4 # 0Omod (3). S is a co-2-plex, and
15| =n—|2] = [2]. Any larger set S’ C V(P") must have a subset of the form

{¢,i+1,i+ 2} and is thus not a co-2-plex. The result follows. O
Lemma 7. ay(C™) = L%”J , VYn>3.
Proof. C? is a 2-plex, so Lemma 5 implies that as(C®) =2 = |Z2|. Suppose n > 4.

Given a cycle C", label V/(C™) with {1,...,n} such that:
N(1)={n,2}, Nn)={n-1,1}, NG ={i—-1,i+1} 2<i<n-—-1

Forall j € V(C™) define K; = {j,j+1,7+2} CV (written mod n). K is a 2-plex
for 1 < j < n. Therefore, Lemma 5 implies that >_, _ K, Tv < 2 is a valid inequality
for 1 < j < n. In addition, since n > 4, each vertex belongs to exactly three of the

K sets. We now sum these n inequalities and derive a Chvétal-Gomory cut.

> Z
j=1veK;

Z 3z, < 2n
vevV{Cn)
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This valid inequality implies that as(C™) < [%“J :
Define S C V, where i € S < 4% 0mod (3) and i # n— 1. S is a co-2-plex, and

|S| = |2| . Thus as(C™) > | 2] and the result follows. O

An edge e € E(G) is co-k-plex critical if ax(G — €) = ax(G) + 1. The following is

a variation of a theorem and proof originally given by Chvétal (21).

Theorem 4. Let G = (V, E) be a graph and E* C E the set of co-k-plex critical

edges. If G* = (V, E*) is connected then the inequality

>z < a(G)

veV
is a facet of Py(G).

Proof. Let G satisfy the hypothesis and let Py(G) = {z € R'X’ | Dy Gy <
b;,1 € I}, where I is the index set of facets other than the nonnegativity constraints.

Consider the dual linear programs given by

max{va | z > O,Z@w% < b,iel}

veV veV

min{ Y Nibi [ A2 0,> Aiagw > 1Lv eV}

iel iel
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An optimal dual solution \* satisfies >, ; Afb; = ax(G). Let s € V, and notice by
dual feasibility, there exists j € I such that A}, a;s > 0.

Choose (u,w) € E*. There exist co-k-plex incidence vectors y and z such that

D= z=aG) (4.1)

veV VeV
Yu=2w=1 Yp=2,=0, yy=2, YveV\{uyw} (4.2)
It follows that

Zaﬂ,yv = Zajvzv =b;. (4.3)

veV veV

For if not, then without loss of generality, we have > i, a;u2, < b; and hence

sz < Z(Z A Qiy) 2y = Z )\:‘(Z Ain2y) < Z)\Ibi = ap(G),

veV veV iel iel veV iel

thus contradicting (4.1). Now (4.2) and (4.3) imply a;,, = a,,. Recall that (u, w) € E*

was arbitrary and G* is connected, so we have

ajv=ajs>0 YveV.

Therefore, (4.1) and (4.3) imply

b; = Z Qjp2y = Gjs Z 2y = a;505(G).

veV veEV
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The facet indexed by j was a positive scalar multiple of >, i, z, < aw(G). O
As a corollary we obtain the co-2-plex analogue of odd holes and wheels.

Corollary 1. Let n > 4. If n # 0 mod (3), then the inequality

is a facet of Po(C™).

Proof. Lemmas 6 and 7 imply that every edge in C™ is co-2-plex critical whenever

n # 0 mod (3). The result follows from Theorem 4. O

It seems possible that for larger values of k, a certain class of cycles might induce
facets for P,(C™) However, for k > 3, C™ is a co-k-plex and ay(C™) = n. Therefore,

any cycle inequality would be implied by summing the x; < 1 constraints.

A wheel W, is the cycle C™ with an additional vertex u such that N(u) = V(C™).

Corollary 2. Let n > 4. If n 3 0 mod (3), then the inequality

is a facet of Po(W,).

Proof. Corollary 1 implies that >,y (gn) Zv < | 2] is a facet for P,(C™). Therefore,

we can lift the cycle inequality to a facet of Po(W,,). We need only calculate the lifting
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coefficient 3, of z,.

By = maz{ {%nJ = > x|z =1z RW,)}= f?nJ —1.

veV(Ccn)

4.3.3 Webs

Trotter (66) showed that a class of graphs called webs can induce facets for the
stable set polytope. We now show that webs can induce facets for the co-2-plex
polytope as well. In this section, all sums are written mod n. For integers n > 2 and

p, 1 <p< %, let W(n,p) denote the graph on vertices V = {1,...,n} and edges
E={(G,j)]|j=i+p,..,i+n—p, VieV}

The web W (n, p) is regular of degree n — 2p + 1 and has independence number p. In
particular, any set of p pairwise nonadjacent vertices must form a dominating set in
W{n,p), and every vertex i satisfies [N(i) " N(j)| =n —2p for j € {i — 1,7+ 1}.
We refer to such a pair i, as consecutive. Notice that degw (np) (v) >23VwveV

whenever p < [2].
Lemma 8. Ifp < |2]|, then as(W(n,p)) =p+1.

Proof. ag(W(n,p)) > p+ 1 follows from the fact that {3,741, ..., +p} is a co-2-plex

of size p + 1 for all i € V. We show that no larger co-2-plex exists. Since W(n,p)
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has independence number p, any subset S of p + 2 vertices satisfies |E(G[S])| > 2.
Suppose for contradiction that S is a co-2-plex of cardinality p+2 such that |E(G[S])|
is minimum. Let (e1,eq), (v1,u1) € E(G[S]).

Define us, ...up11 € V such that us € N(v1) \ {u1} and w;, u;41 are consecutive for
1 < ¢ <p. Observe uy ¢ S since S is a co-2-plex and (vi,u;) € E(G[S]). In addition,
|N(ui+1) \ N(u;)| = 1 because u;, u;+1 are consecutive. Define v;11 = N(uzr1) \ V().

By construction, we have that

Uiy Wit1, Uit € N(Uz) 2<1<p—-1. (44)

The set {uy, ..., up} is a maximum independent set and hence dominating. There-
fore e; = v; for some 2 < j < p. Let 5’ be the smallest index such that either v ¢ S
or vy € S is not isolated in G[S]. We have vj;_; € S is isolated in G[S], and (4.4)
implies that {ug, ..., 441} CV\S. Ifvy ¢ S,1let S = (S\{v1, ..., vy—1})U{ug, ..., uj}.
If vy € S is not isolated in G[S], let S" = (S'\ {v1, ..., v5}) U {ua, ..., uy41}. In either

case, S’ is a p + 2 co-2-plex with |E(G[S'])| < |E(G[S])|, a contradiction. O

Consider the case where p = L%J . If n is even, then W (n, p) is a perfect matching
and (W (n,p)) = n. If n is odd, then W (n,p) is a cycle and as(W(n,p)) = [ %] by

Lemma 7.
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Theorem 5. Let p < I_%J . When n and p+ 1 are relatively prime, the inequality

ZIvSp+1

veV

is a facet of Py(W(n,p)).

Proof. Lemma 8 implies that the inequality is valid. For n > 1 and 1 < p < n define
A(n,p) as the n x n binary matrix where a;; =1if j € {4,i+1,...,s+p} and a;; =0
otherwise.

In Trotter (66), it was shown that A(n, p) is nonsingular whenever n and p+1 are
relatively prime. Notice that A(n,p) is an incidence matrix of n maximum co-2-plexes
given by {i,7+ 1, ...,% + p} for all i € V. These maximum co-2-plexes satisfy the web

inequality at equality. Thus, the web inequality induces a facet of Po(W(n,p)). 0O

For completeness, we mention that W (2s + 1, s) is facet-inducing by Corollary 1
whenever 2s+1 # 0 mod (3). We also obtain the co-2-plex analogue to odd antiholes.

An antihole C” is the complement of the chordless cycle C™.
Corollary 3. Let n > 4. If n # 0 mod (3), then the inequality

Z T, <3

eV (Cn)

is a facet of Py(C™).

Proof. The antihole C™ is the web W (n, 2). By Theorem 5, Y vev(cny To < 3 is a facet
whenever n and 3 are relatively prime. O
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4.3.4 k-claws

Our next goal is to show that a class of graphs similar to the claw can induce
facets for the co-k-plex polytope. This motivates the definition of a k-claw. Given an
integer £ > 1, the graph H is a k-claw if there exists a vertex v € V(H) such that
V(H)\u= N(u), N(u) is a co-k-plex, and |N(u)| > maz{3, k}. We refer to u as the

center of the k-claw.

Theorem 6. Fiz k > 2. Let H = (V, E) be a k-claw with center u and |V| = n. The
inequality

(n—Fk)x, + Z z, <n-—1
vEN (u)

is a facet of Py(H).

Proof. Let S be a co-k-plex in H. If u € S, then |[N(u) N S| < k — 1 by definition
of co-k-plex. If u ¢ S, then |[N(u) N S| < |N(u)] =n — 1. In either case, the k-claw
inequality is valid. Let vTz < ~, be a valid inequality for P(H) and define the

following sets:

Fp={z € F(H)| (n—k)x,+ Z T, =n—1}, E,={z € P(H) |7 s =}
vEN (u)

Suppose that F;, C F,, and that F, is a proper face. We will show that Fj = F.,.
This implies that F} is maximal and the k-claw inequality is a facet for P,(H). As in

the proof of Theorem 3, we assume that v has nonnegative components.
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Given a subset of vertices I, let 2! be the associated incidence vector. Define

S={uuS|SC N, |S|=k-1}.

Notice that Fr = {z° | S € S} U{2¥®}. Now choose 4,5 € N(u) and observe that

there exist S;, S; € S such that

i€S;, jES;, ¢S, j¢S, [SinS=k-1.

Since Fy C E,, we have v7z% = 4Tz = ~4. It follows that v; = ~;. So for some
constant t > 0, v, =y, =t Vi,5 € N(u).

Moreover, we know that v72V® = ~;. This implies that vy = t(n — 1). Finally,
take S € S. Notice that 7T2° = v = t(n — 1). We can now deduce that v, =

t(n—1)—t(k—1) = t(n — k). Therefore, the inequality v7z° < o can be written as

tn—kz,+ Y to, Stn-1).
veN (u)

Thus it was a scalar multiple of the k-claw inequality and Fj, = F,. O

A k-claw subgraph can properly contain other k-claws which give rise to distinct
facet-inducing inequalities. In other words, a k-claw need not be maximal to produce
a facet. For our purposes, 2-claws will be of special interest in Section 4.5. See Figure

4.1 for examples of 2-claws.
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Figure 4.1: Three examples of 2-claws.

4.4 P»(G) for 2-plexes, paths, cycles, and co-2-plexes

The purpose of this section is to show that the 2-plex inequalities suffice to
describe the co-2-plex polytope of 2-plexes, paths, certain cycles, and co-2-plexes.
This is analogous to a property of perfect graphs. These results provide a class of
0-1 matrices A for which the polytope {z € R} | Az < 2,2 < 1} is integral. We will
analyze the clutter of maximal 2-plexes. The definitions and theorems used in this
section can be found in Cornuéjols (24).

A clutter is a pair C = (V, F) where V is a finite set and E is a family of subsets
of V none of which is included in another. We refer to elements of V' as vertices and
elements of £ as edges. Given a graph G = (V, E), let C be the clutter whose vertices
are V and whose edges are the maximal 2-plexes of GG. Denote by Mg the edge-vertex
incidence matrix of C.

The clutter matrix Mg is totally unimodular (TU) if every square submatrix has
determinant 0, 1. Hoffman and Kruskal (38) showed that Mg is TU if and only if
the polyhedron

{z e R} | Mgz < w}
is integral for all integral vectors w.
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Suppose K is a 2-plex. The clutter matrix My of maximal 2-plexes in K consists
of a single row of 1’s. In this case, M is clearly TU. It is well known that appending
the identity matrix to Mg preserves total unimodularity. Therefore, Lemma 5 implies
that the set

{zeR} | Mgz <2,z <1}

is in fact the co-2-plex polytope of K. Thus, the 2-plex inequalities suffice to describe
the co-2-plex polytope of any 2-plex.

A matrix is minimally nontotally unimodular (mntu) if it is not totally unimodu-
lar, but every submatrix satisfies total unimodularity. If a matrix is not TU, then it
must contain an mntu submatrix. Camion (17) and Gomory (cited in (17)) showed
that an mntu matrix has determinant equal to £2, and each row and column of an

mntu matrix has an even number of nonzeros. Let P™ be the path on n vertices.
Theorem 7. Let n > 1. The clutter matrix Mpn of maximal 2-plexes in P™ is TU.

Proof. We show by induction that Mp» contains no mntu submatrix. For n < 3,
Pm™ is a 2-plex and Mpn is TU. Let n > 4 and suppose Mp. is TU for all n’ < n.
Label the vertices of P" as in Lemma 6. The maximal 2-plexes in P" are of the form
K;={j,j+1,7+2}for 1 <j<n—2 We can permute the rows of Mpr so that
row j corresponds to Kj. It follows that there are three 1's in every row of Mp». In
addition, Mp» has a single 1 in columns 1 and n and exactly two 1’s in columns 2
and n — 1. See Figure 4.2 for an example.

We attempt to construct an mntu submatrix M’ by examining which elements
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Figure 4.2: Mpr.

from the first row can contribute to M’. If we are able to show that no element from
the first row contributes, it follows by a symmetric argument that no element from
the last row contributes. Removing the first and last rows from Mpnr creates an Mpn-2
which contains no mntu submatrix by induction.

The first and last columns of Mp» have an odd number of nonzero entries, so we
restrict the search to columns 2 through n — 1. Denote by m;; the element in the 7%
row and j column of M. Let m;; € M’ denote that m;; contributes a nonzero entry
to the mntu submatrix M’. Suppose miy € M'. Notice that miy € M’ if and only if
mi3 € M’ since these are the only nonzero candidates from the first row. Moreover, if
mio € M', we also know mas € M’ as it is the only other nonzero entry in the second
column. It follows that ma3 € M’ as well. Now mgy ¢ M’ since the corresponding row
in M’ would have three nonzeros. Thus M’ has two identical rows and det(M’') = 0,
a contradiction. Therefore, M’ contains no elements from the first or last rows, and

Mpr is TU by the induction hypothesis. O

Once again, we can append the identity matrix and preserve total unimodularity.
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Consequently, Theorem 7 and Lemma 5 imply that the set

{zx e R} | Mprz < 2,2 <1}

is the co-2-plex polytope of P". In other words, the 2-plex inequalities suffice to
describe the co-2-plex polytope of any path.

We now turn our attention to the clutter of 2-plexes in chordless cycles. C™ is a
2-plex when n < 4. Let n > 5. Corollary 1 implies that the 2-plex inequalities will
not suffice to describe Po(C™) for n # 0 mod (3). Even when n = 0 mod (3), the
2-plex clutter matrix Mgn is not TU since it contains an odd-hole submatrix. We
deal with this case directly by showing that P(C"™) has no facets other than the 2-plex

inequalities.

Given an inequality ofz < 3, define supp, = {v € V | a, > 0} and G, =
Glsuppa).
Lemma 9. If oTz < 3 is a facet for Py(G), then G, is connected.

Proof. Let F, = {z € P(G) |aTz = 8}, and suppose for contradiction that G, has

distinct components H; and H,. Since oT2 < 3 is a valid inequality, we must have

ma:c{z Ty | T € Pp(G)} +max{z Ty | T € P(G)} = 01+ G2 = 0.

vEH vEH,

In addition, every x € Fy, satisfies ) 5 ot = B1. Otherwise, > ., w2y < B
and ).y, 0Ty > Bo, & contradiction. Let F, = {z € Pu(G) | X ,cq, T = Bi}.
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We have that F, C F,,. This is a contradiction since F, must be maximal whenever

afz < (3 is a facet. O

Theorem 8. Ifn > 5 and n = 0 mod (3), then P(C™) = {z € R} | Mcnz £ 2,2 <

1}.

Proof. Suppose Po(C") # {z € R} | Menz < 2,2 < 1}. Then there exists a facet
aTz < 8 of P(C™) such that G, is not a 2-plex. We know that C™ does not induce
a facet, so G, C G. Lemma 9 implies that G is connected, so G, must be a path
P™ with at least four vertices. Since o’z < 3 is a facet, there exist m co-2-plexes
S1, ..., Sy in P™ such that 21, ..., 25" are affinely independent and satisfy the facet
at equality. Thus oz < £ also induces a facet of the co-2-plex polytope for P™. This
contradicts the fact that {x € R} | Mpnz < 2,2 < 1} defines the co-2-plex polytope

for P™. O

Thus far, we have shown that the 2-plex inequalities suffice to define the co-2-plex
polytope of 2-plexes, paths, and chordless cycles of length n = 0 mod (3). We also
have that co-2-plexes satisfy this property. This is because the associated polytope
is the entire n-dimensional hypercube which is defined by the system of 0 < z; < 1
inequalities. As a result, the polytope {z € R’} | Az < 2,z < 1} is integral whenever
A is the maximal 2-plex clutter matrix of a 2-plex, co-2-plex, path, or chordless cycle

of length n = 0 mod (3).

46



4.5 2-claw-free graphs and integral systems

The purpose of this section is to show that each component of a 2-claw-free graph
must be a co-2-plex, 2-plex, path, or chordless cycle. We use this result to completely
characterize the 2-plex clutter matrices A for which the polytope {z € RT | Az <

2,z < 1} is integral.

Theorem 9. Let G = (V, E). If G contains a component other than a path, chordless

cycle, co-2-plex, or 2-plex, then G contains an induced 2-claw.

Proof. If GG is not connected, simply apply the proof to each component. Hence, we
may assume G is connected. Suppose G is not a path, chordless cycle, co-2-plex, or
2-plex. We will find an induced 2-claw subgraph. Every graph on 3 or less vertices is
a co-2-plex or a 2-plex. Thus, we may assume |V| > 4.

If G is acyclic, then 3 v € V such that deg(v) > 3 since G is connected and not
a path. The set v U N(v) induces a 2-claw with v as the center vertex. If G is not
acyclic, let C™ C G be a largest induced cycle. Label V(C™) using {1,2,..,m} as in

Lemma 7. G is connected and not a cycle, so

Neg:={ueV\V(C™) | 3veV(C™) st. (u,v) € E} #0.

Suppose m > 4 and let u € Ng satisfy V(C™) € N(u). Then there exists i €

V(C™) such that i € N(u),2+ 1 ¢ N(u). The set {u,i— 1,4,7+ 1} induces a 2-claw
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with i as the center vertex. Therefore, whenever m > 4, we assume that

V(C™) C N(u) VY ue Ne.

Notice that if m > 5, then this implies that the set {u, 1, 3,4} induces a 2-claw with
center vertex u for any u € Ng. We now have m < 4 left to consider. When m = 3,
we exclude the case where u € Ng and V(C?)NN(u) = {i}. This is because uUV (C?)
induces a 2-claw with ¢ as the center vertex.

Furthermore, if No U V(C™) # V, then there exist u € Ng and v € V \ {Ng U
V(C™)} such that (u,v) € E. For any ¢, 7 € V(C™)NN(u), the set {u,v,4, 7} induces

a 2-claw with u as the center vertex. Thus, for both of the following cases, we assume

NeUV(C™) =V.

Notice that this implies |V| = |Ng| + [V (C™)].

Case 1 (m = 4). Recall that we may assume V(C*) C N(u) V u € Ng. If G[N¢]

is a 2-plex, then deggng(u) = |Ne| —2 ¥V u € Neg. Hence

degg(u) > [V(CH)| + (INc| =2) = V| -2 Yue Ne.

Moreover, degg(v) = |Ng|+2 = |V| -2V v € V(C*). This implies that G is a 2-plex,

a contradiction. Thus G[N¢] is not a 2-plex, so Lemma 5 implies that there exists a
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co-2-plex S C Ng such that |S| = 3. The set iU S is a 2-claw for any i € V(C*).

Case 2 (m = 3). Recall that we may assume |N(u) NV (C®)| >2Vu e Ng. If
G[Nc¢] is not a 2-plex, then Lemma 5 implies that there exists a co-2-plex S C Ng¢
such that |S| = 3. If 34 € [),.g N(v), then the set 1 U S induces a 2-claw with center
vertex <.

Now suppose [,cg N(v) = 0. Observe that deggn,)(w) = 0 for some vertex w in
S. Let {v,2} = S\ wand i € N(w)N N(v) N V(C?). The latter set is nonempty
since |[N(u) NV(C?)| > 2V u € Ng. For either j € V(C?®) N N(z), the set {w,v,1,5}
induces a 2-claw with ¢ as the center vertex.

Suppose G[N¢] is a 2-plex. Recall that G is not a 2-plex, so there exists a co-2-plex
S C V such that |S| = 3 by Lemma 5. All vertices in Ng have at least two neighbors
in V(C?) and ay(G[N¢]) = 2, so we must have SNV (C?) = {i}. Let SNNg = {u,v}
and j € N(u) N N(v) NV (C?). The set {j,4,u,v} induces a 2-claw with center vertex

j. This completes the proof. O

Define ‘H to be the set of all graphs whose components are co-2-plexes, 2-plexes,
paths, or chordless cycles C™ such that n = 0 mod (3). We refer to any chordless
cycle C" ¢ H as an odd-mod 3-hole. Let A be the 2-plex clutter matrix for a graph

G. Consider the polytope

P(G)={zeR} | Az <2,z < 1}.
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Theorem 10. P'(G) is integral if and only if G € H.

Proof. The results of Section 4.4 imply that P'(G) is integral whenever G € H. For
the converse, suppose G ¢ H. If G contains an induced 2-claw H = (u U N(u), E'),
then Theorem 6 implies that the 2-claw inequality can be lifted to a facet of P»(G).
Since H is not a 2-plex, the defining system for P'(G) is missing the lifted 2-claw
inequality. We can deduce that P'(G) # P»(G). In particular, the optimal solution

to

maz{(n — 2)z, + Z z, | z € P'(G)}

vEN (1)
is a fractional vertex of P'(G).
If G ¢ H is 2-claw-free, then Theorem 9 implies that G has a component which
is an odd-mod 3-hole. In this case, the defining system for P'(G) is missing the cycle
inequality which is a facet by Corollary 1. If C" is an odd-mod 3-hole component of

G, then the optimal solution to

maz{ Z z,| x € P'(G)}

veV(Cn)
is a fractional vertex of P'(G). O

Theorem 10 implies that G is 2-claw-free for all G € H, otherwise the defining
system for P'(G) would be missing the 2-claw facet from Theorem 6.

We have shown that when A is the 2-plex clutter matrix of a graph G, the polytope

P'(@G) is integral if and only if G € H. When G ¢ H, then either G contains an induced
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2-claw or G has an odd-mod 3-hole component. Whenever GG contains an induced 2-
claw of any size, it must contain an induced 2-claw H = (uvUS, E') such that |\S| = 3.
In this case, A contains the submatrix shown in Figure 4.3. If G has an odd-mod
3-hole component, we mention that A contains the circulant clutter matrix C2. The
matrix C3 has vertex set {1,...,n} and edges {i,i + 1,4 + 2} for 1 < i < n (written

mod n).

Corollary 4. Given a 2-plex clutter matriz A, there exists a polynomial-time algo-

rithm to determine if the polytope {z € R.} | Az < 2,z < 1} is integral.

Proof. A is a 2-plex clutter matrix for some graph G = (V, E). By Theorem 10, it
suffices to test if G € H. We first test A for the submatrix in Figure 4.3. This can
be done in polynomial time since we check every triplet of rows. If A contains no
Ms_gaw submatrix, then G € H unless there exists a component of G which is an
odd-mod 3-hole. However, if G has an odd-mod 3-hole component, then the optimal

solution to the linear program maz{> . _-z,| Az < 2,0 < z < 1} will be fractional

velC

by Corollary 1 for some component C. O
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4.6 k-plex Perfection

Chvétal (21) showed that the maximal clique inequalities suffice to describe the
stable set polytope of any perfect graph. Section 4.4 characterizes the graphs for which
the 2-plex inequalities suffice to describe the co-2-plex polytope. This characterization
can be seen as a generalization of Chvatal’s theorem on perfect matrices. In other
words, Theorem 10 can be interpreted as a polyhedral characterization of 2-plex
perfection. It is natural to ask for a combinatorial characterization of k-plex perfection
in general. The purpose of this section is to develop a characterization in analogy
with graph perfection.

The first step is to find an upper bound on wi(G). The bound will generalize the
concept of graph coloring. A coloring of G is a function ¢, : 'V — {1,...,m} such
that cpm(u) # cm(v) whenever uv € E. The chromatic number, x(G), of G is the
smallest m for which there exists a valid coloring ¢,,. Notice that ¢,,(u) # cn(v) for
all u,v € K whenever K induces a clique in G. It follows that the chromatic number
is an upper bound for w(G). Hence,

w(@) < X(Q). (4.5)

A graph G is perfect if every vertex induced subgraph of G satisfies (4.5) at
equality. We are interested in generalizing (4.5) to bound wg(G). To that end,

suppose the vertex set V' partitions into co-k-plexes Cy, ..., Cp,. Let K be a maximum
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k-plex in G. We have

wp(G) = |K| = |KNV|= 2|fm04<zwk (4.6)

where the inequality follows from the fact that k-plexes are closed under set inclu-
sion (62). Now let II be the set of all partitions of V' into co-k-plexes and define the

graph invariant

G) :=min{>_wp(G[C]) : CeT}. (4.7)

cec
The elements of II are co-k-plex colorings, and xx(G) is the co-k-plex chromatic
number of G. Section 5.2 discusses heuristics for computing xx(G). Notice that (4.6)
reduces to (4.5) when k = 1 and C4, ..., C,, are the color classes of an optimal coloring.

It follows that x1(G) = x(G). Moreover, (4.6) and (4.7) together imply the bound

wi(G) < xx(G). (4.8)

Definition. A k-plex perfect graph G satisfies wx(G') = xx(G’) for all vertex induced

subgraphs G’ C G.

Graphs which satisfy this definition have some nice algorithmic properties. Mainly,
Xx(G) can provide tight bounds on w(G) in a branch and bound scheme. However,
many properties of perfect graphs do not generalize to k-plex perfect graphs. The

next section provides some examples of k-plex perfect graphs.

Lemma 10. IfG has at least k vertices, then there exists an optimal co-k-plex coloring
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S1, .o, Sm of G such that |S;| > k for some j.

Proof. Suppose the lemma is false. Choose an optimal coloring S, ..., S;, with S|
maximum. Notice that m > 2 since (V| > k and |S;| < k for all . Moreover, |S;| < &k
implies that wg(G[S;]) = |Si]. Choose v € Sy. Define S; := S;U{v} and S} := Sp\{v}.

Notice that

m

xk(G) = Zwk(G[Si]) =Y ISl =[S +18]+ > _ISil,

i=1 i=3

s0 S1, 5%, ...5m, is an optimal co-k-plex coloring such that |S7| > |S;|. This contradicts
the maximality of ;. O
4.6.1 Examples

This subsection contains examples of k-plex perfect graphs. It is clear that any
co-k-plex S is k-plex perfect since xx(S) = wi(S) by definition. Therefore, k-plex
perfection follows from the fact that every vertex-induced subgraph of a co-k-plex is
also a co-k-plex (62). Recall that a finite set X and a family 7 of subsets of X define

a matroid if the following axioms hold:

1. el
2. I'CIeZimpliesl' €T

3. Every maximal set in Z has the same cardinality
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Given a graph G = (V| E), define

K={KCV : §(GIK)) 2 |K| - k.

K is the set of k-plexes in G, and (V, K) satisfies the first two matroid axioms for any

graph.
Theorem 11. If M := (V,K) defines a matroid, then G is k-plex perfect.

Proof. Given any vertex-induced subgraph G' = (V| E'), define D := V' \ V'’ and

K'={K CV' : §G[K]) > |K| — k}. Observe that

(V/,K')=(V\D,K) = M\ D

is again a matroid known as a deletion matroid, so it suffices to show xx(G) = wi(G).
Define z(A) = > ,c4%a, S={SCV : AG[S]) <k—-1},and S, ={S €S :

v € S}. Consider the following dual pair of linear programs:

maz{z(V) : >0, z(S) < wi(G[S]) for all S € S} (4.9)
mm{z we(G[SDys : ¥y =0, y(S,) > 1forallveV}. (4.10)

Since M is a matroid, a theorem of Edmonds (27) implies that optimal solutions
for (4.9) and (4.10) are integral. Observe that wi(G) and xx(G) are the optimal
objective values for (4.9) and (4.10), respectively. Moreover, wi(G) = xx(G) by
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strong duality. O
Corollary 5. If G is a k-plez, then G is k-plex perfect.

Proof. Given any K/ C V and v € V \ K’, K’ U {v} defines a k-plex. It follows
that all maximal k-plexes have cardinality wip(G) = |V, so G is k-plex perfect by

Theorem 11. O

Recall that an r-partite graph is r-colorable. The complete r-partite graphs have

all possible edges between distinct color classes.
Theorem 12. If G is the complete r-partite graph Ky, .. n., then G is k-plex perfect.

Proof. Let K be a maximal k-plex in G and S; the ¥ partition class. Clearly,
|K N S;] <18i] = n;. In addition, |K N S;| < k. For if not, let v € K N S;, and notice

that Ng(v) N S; = & implies

deggix)(v) = |K| = |[K N S| < |K| =k,

which contradicts that K is a k-plex. Therefore, |K N S;| < min{k,n;} for each S;.
Suppose for contradiction that |K| = Y7 | |[K N S;| < >0, min{k,n;}. Then

there exists a 7 such that |K NS;| < min{k,n;}, and |KNS;| < n; implies that there

exists a vertex v € S; \ K. Consider the set K’ := K U{v} and a vertex u € K"\ S;.

Since uv € E,

degaix(u) = degeiry(u) +1 2 (|K| — k) +1 = |K'| — k.
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Now suppose u € K N S;. Observe that deggx(u) = degoir)(u) = | K| — |K N .S;| >

|K| — k since uv € E and |K NS;| < k. It follows that

degapen(u) > |K| - k+1=|K'| — k.

Thus, since deggix(u) = deger(v), K' is a k-plex in G, which contradicts the maxi-
mality of K. It follows that all maximal k-plexes in G have cardinality > ;_, min{k, n;},

so G is k-plex perfect by Theorem 11. a
The final two examples are classes of 2-plex perfect graphs.
Theorem 13. The complement of a path P" is 2-plex perfect.

Proof. This theorem follows from Theorem 7 and the fact that wy(P") = ay(P™).

More precisely, since the clutter matrix Mp- is totally unimodular, we know that

wa( P") = ap(P") = max{ Z Ty | Mpnx <2, 0 <z <1}
veV (Pm)

Let K; ={j,7 +1,j +2}. Notice that the dual linear program

n—2 n

min{> 2k, + > A | yME.+ A2 1, y, A >0}

also has an integral optimal solution. Letting S denote the set of all co-k-plexes in P"

57



and performing a change of variables allows us to rewrite the previous LP as follows:

min{ Y _wy(C)zc | Y zc > 1forallv, z > 0} = xo P").

CeS§ Cwel

Now xa(P™) = wy(P") follows from LP duality. Moreover, this same proof holds for
any vertex induced subgraph of P™ because all submatrices of Mpn are also totally

unimodular. O

Recall that for integers n > 2 and p, 1 < p < %, W(n,p) denotes the graph on

vertices V = {1, ...,n} and edges

E={(,5)|j=i+p,..,i+n—p, YVieV}

Theorem 14. Let m > 2. The web W (3m, 2) is 2-plex perfect.

Proof. Notice that W (3m, 2) is the complement of the cycle C*™. Any proper induced
subgraph of W (3m, 2) is also an induced subgraph of P3™ and hence 2-plex perfect by
Theorem 13. Therefore, it suffices to show x2(W(3m,2)) = wy(W(3m,2)). Observe
that {vy, va,us}, ..., {V3m—2, Usm—1, V3m } is & co-2-plex coloring of W (3m, 2), so we can

deduce

x2(W(3m, 2)) <wa({v1,v9,v3}) + ... + wo({V3m-2, V3m—1,V3m}) =2+ ... + 2 = 2m.

Consider the set K = {v; € V : i # 0 mod (3)}. First observe that |K| = |V|—m =
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2m. We claim that K is a 2-plex. This is because every vertex v; has exactly two
non-neighbors v;_;,v;41 € V. However, the definition of K implies that for each v;

exactly one of the non-neighbors is also in K. In other words,
degw(sm2)k)(v) = |K| -2 forallveV,
and K is a k-plex. Finally,
X2(W(3m, 2)) < 2m = |K| < wa(W(3m, 2)) < x2(W(3m, 2)),

and equality holds throughout. O

4.6.2 Graph Perfection and k-plex Perfection

It turns out that many properties of perfect graphs do not have k-plex analogues.
Consider the complement K., of a complete bipartite graph. Both components H;

and H, of Fm are complete subgraphs.
Lemma 11. Let k > 1. If r = 2k — 1, then ax(K,,) = 2k and wi(K,,) = 2k — 1.

Proof. In the proof of Theorem 12, it was shown that

2
we(Kyp) = me{kz, r} = 2k.
i=1

Thus, ax(K,,) = wp(K,,) = 2k.
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Now wy (K, ) > 2k—1 because each component, H; is complete and hence a k-plex

of cardinality 2k — 1. Suppose for contradiction that wg(K,,) > 2k — 1. Then there

exists a k-plex K C V such that |K| = 2k. If |[K N H;| <k, then
degz, () S k—1<k=|K|-k forall ve KNH,.

This contradicts the definition of A-plex. Therefore, |K N H;| > k and |K N Hy| > k,

which contradicts | K| = 2k. O
Theorem 15. Let k > 1. Ifr = 2k — 1, then K, is not k-plex perfect.

Proof. By Lemma 11, it suffices to show that xz(K,,) > 2k. Clearly, x4x(K,,) >
wi(K,,) = 2k — 1. Suppose for contradiction that xx(Krr) = 2k — 1. Lemma 10
implies the existence of an optimal co-k-plex coloring Sy, ..., S,, of Fm such that

|S1| > k. Therefore, wy(K,.[S1]) > k. Furthermore, xx(K,,) < 2k implies that all

other sets S; satisfy |S;| < k. Notice that

2k —1=xp(Kpr) = > (B[] 2 b+ > wnEop[S)) =k + > |Si].
i=1 =2 =2

Consequently, £ —1 > >""",[S;]. Now since the sets S; partition V and |V| =
4k — 2,

S = VI~ 30152 3k - L

1=2

Therefore, £ > 1 implies that |S1| > 3k —1 > 2k. This contradicts Lemma 11 because
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S, is a co-k-plex and oy (K, ,) = 2k. O

Lovész’s (46) replication lemma is a well-known result from the theory of per-
fect graphs. Replication of a vertex v € V' corresponds to the following operation:
create a new vertex v’ and join it to v and all the neighbors of v. The replication
lemma states that replication of a vertex in a perfect graph produces another perfect
graph. However, for k£ > 2, replication of a vertex in a k-plex perfect graph does not
necessarily produce another k-plex perfect graph.

Fix k > 1. Consider the edgeless graph G on two vertices v; and vy. G is a co-k-
plex since A(G) = 0. It follows that G is k-plex perfect. Construct G’ by performing
2k — 2 replication operations on each of v; and v;. This construction implies that
G’ = K., which is not k-plex perfect by Theorem 15. Therefore, vertex replication
does not preserve k-plex perfection.

Theorem 15 also illustrates the following interesting property: G might not be
k-plex perfect even if all components of G are k-plex perfect. This statement follows
from Corollary 5 and Theorem 15.

The final topic of this section is a k-plex version of the Weak Perfect Graph
Theorem (46). The Weak Perfect Graph Theorem states that G is perfect if and
only if G is perfect. Theorems 12 and 15 together provide counterexamples for k-plex
analogues of the Weak Perfect Graph Theorem for any k& > 2.

We now show that k-plex perfection does not imply that the co-k-plex polytope is

described by the k-plex inequalities. To see this, fix integers k > 2 and n > min{3, k}.
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Consider the complete bipartite graph K;,. Theorem 12 implies that K, is k-
plex perfect. Observe that K;, is also a k-claw. Theorem 6 states that the k-
claw inequality is a facet and hence necessary for any linear description of the co-k-
plex polytope Py(K) ). However, the k-claw inequality is not implied by the k-plex
inequalities. Therefore, the k-plex inequalities do not suffice to describe the co-k-plex
polytope of the k-plex perfect graph Kj,. Thus, the polyhedral characterization of

k-plex perfection differs from the combinatorial characterization whenever k > 2.

4.7 Conclusions

This chapter derives four classes of facets for the co-2-plex polytope and a class of
facets for the co-k-plex polytope. The facets are related to 2-plexes, cycles, wheels,
webs, and the claw. Two sections of this chapter are devoted to a characterization
of 2-plex clutter matrices A for which the polytope {z € R} | Az < 2,z < 1} is
integral. We show that 2-plex clutter matrices can be tested for this property in
polynomial time. The final section of this chapter is devoted to the development of a
combinatorial concept of k-plex perfection. We give examples of k-plex perfect graphs

and discussed some difficulties in generalizing certain properties of graph perfection.
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Chapter 5

Detecting Cohesive Subgraphs

The Maximum Clique Problem provides a classic framework for detecting cohesive
subgraphs. However, this approach can fail to detect much of the cohesive structure in
a graph. To address this issue, Seidman and Foster introduced k-plexes by relaxing
the definition of graph completeness. This chapter describes methods for finding

maximum k-plexes.

5.1 Introduction

The problem of finding maximum cardinality cliques is a classic NP-complete
problem and is of fundamental importance in combinatorial optimization. The Max-
imum Clique Problem (MCP) has applications in ad hoc wireless networks (19),
data mining (69), social network analysis (70), and biochemistry and genomics (16).
MCP is also related to the derivation of a class of inequalities for general integer
programs (3).

Cliques provide a useful framework for detecting cohesion, or mutual adjacency

among a set of vertices, but they can be overly restrictive. For example, consider the
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Figure 5.1: A graph G such that w(G)=3.

graph G in Figure 5.1. A maximum cardinality clique in G has three vertices, denoted
by w(G) = 3. However, G has multiple subgraphs which are one edge short of defin-
ing a larger clique. Furthermore, G itself consists of two fairly cohesive subgraphs.
The maximum clique approach fails to detect this cohesive structure because MCP
can only detect subgraphs with the highest possible level of cohesion. Seidman and

Foster (62) introduced k-plexes to address this issue. Recall the following definitions.

Definition (Seidman and Foster (62)). K C V induces a k-plex if §(G[K]) > |K|—k.

The term k-plex refers to both the set K and the subgraph G[K]. The definition
of k-plex formalizes a general notion of cohesion. Let wy(G) denote the cardinality of
a largest k-plex in G. Consider the graph G in Figure 5.1. The set {1,2,3,4,5} is a
maximum 2-plex. The set {8,9,10,11, 12,13} is a maximum 3-plex. In this example,

wa(G) =5 and w3(G) = 6.

Definition (Seidman and Foster (62)). C C V induces a co-k-plex if A(G[C]) < k—1.

Seidman and Foster (62) introduced k-plexes and analyzed them from a graph-
theoretic perspective. More recently, Balasundaram et al. (6) provided an integer

programming formulation for the Maximum k-plex Problem, derived inequalities for
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the k-plex polytope, and established the NP-completeness of the k-plex decision prob-
lem.

The purpose of this chapter is to develop algorithms for finding maximum k-plexes.
Sections 5.2 and 5.3 describe heuristics for bounding the size of k-plexes in a graph.
Section 5.2 contains upper bounds. Section 5.3 contains a lower bound. Section 5.4
develops the exact k-plex algorithms. The exact algorithms are based either on a
standard clique algorithm (1; 18) or an algorithm of Ostergérd (54). Section 5.5
summarizes the results. The algorithms in Sections 5.2, 5.3, and 5.4 were tested
on the DIMACS benchmark graphs. All implementations were run on a 2.2 GHz

Dual-Core AMD Opteron processor with 3 GB of memory.

5.2 Co-k-plex Coloring

This section contains heuristics for finding an upper bound on wy(G). The heuris-
tics are based on the concept of co-k-plex coloring developed in Section 4.6. Let II
be the set of all co-k-plex colorings of V, and recall the definition of the co-k-plex

coloring number

Xi(G) = min{ Y " wi(G[C)) : C €I}, (5.1)

In Section 4.6, it was shown that

wi(G) < xk(G). (5.2)
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In practice, determining the exact value of x4(G) can be computationally pro-
hibitive, so we must approximate xx(G). Our co-k-plex coloring heuristics fall into
two categories: integral and fractional. To see the distinction, let S be the set of
all co-k-plexes in GG, and let S, denote the set of co-k-plexes containing v. Define

z(A) := )4 To- Consider the following dual pair of integer programs:

maz{z(V) : z €{0,1}, z(S) < wp(G[9)) for all S € S} (5.3)
mm{z we(G[S)ys : y€{0,1}, y(Sy) > 1 forall v e V}. (5.4)

Notice that the optimal objective value for (5.3) is wx(G) and the optimal objective
value for (5.4) is xx(G). Moreover, by strong duality, the optimal objective values for
the respective linear relaxations are equal. We can deduce that any feasible solution
to the linear relaxation of (5.4) produces an upper bound on the optimal objective
value for (5.3).

Integer Co-k-plex Coloring Heuristics (ICCH) find feasible solutions to (5.4). Frac-
tional Co-k-plex Coloring Heuristics (FCCH) find feasible solutions to the linear re-
laxation of (5.4). In either case, the result is an upper bound on w(G). Before
presenting these heuristics, we begin with three results bounding the k-plex number

of a graph.

Lemma 12. Every graph G satisfies wp(G) < A(G) + k.

Proof. Suppose that there exists a k-plex K in G such that |K| > A(G) + k. Choose
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a vertex v € K. Observe that deggx)(v) > |K| — k by the definition of k-plex.

Therefore, deggix)(v) > |K| —k > A(G), a contradiction since G[K] C G. O

Lemma 13. Giwen a graph G and an integer m > 0, let a,, denote the number of

vertices v € V' such that degg(v) > m. If j := maz{m : a, >k +m}, then

wk(G) <k+4j.

Proof. Suppose for contradiction that G contains a k-plex K such that |K| > k+j+1.

By definition of k-plex,

deger)(v) > |[K|—k>j+1 forallveK.

In other words, K contains at least k + j + 1 vertices v such that degg(v) > j +1. It

follows that a;1; > k4 7 + 1, contradicting the definition of j. O

Lemma 14 (Balasundaram et al. (6)). Every co-k-plex C satisfies

wp(G[C)) < 2k — 2+ k mod 2,

and this bound is tight for all k > 1.

The co-k-plex coloring heuristics in this section apply Lemmas 12, 13, and 14 to
bound the k-plex number of a co-k-plex. Notice that a; = 0 for all ¢ > & whenever
Lemma 13 is applied to a co-k-plex. Therefore, j < k — 1 and Lemma 13 gives the
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Figure 5.2: Lemmas 12-14 are not exact.

bound w(G[C]) < 2k — 1 for any co-k-plex C. Thus, Lemma 13 implies Lemma 14
when k is odd. For k even, Lemma 14 can give a better for co-k-plexes. However, in
practice, one would expect Lemma 13 to outperform Lemma 14 because the latter is
valid for all co-k-plexes while the former is derived for a given co-k-plex.

The co-3-plex C' shown in Figure 5.2 shows that these bounds are not exact.

Notice that w3(C) = 4. However, each bound implies w3(C) < 5.

5.2.1 Integer Co-k-plex Coloring Heuristics

This subsection contains two Integer Co-k-plex Coloring Heuristics for approx-
imating xx(G). Figure 5.3 shows the first: ICCHL. Lines 1-5 produce a valid
co-k-plex coloring C of G. Line 7 uses Lemmas 12, 13, and 14 to bound wi(G[C]).
The result is an upper bound on wi(G). Each execution of Line 4 can be used to
store the degree of every vertex in C,,. Lines 3, 4, 6, and 7 can each be accomplished
in linear time using an adjacency matrix. It follows that ICCHL1 is an O(|V]?) algo-
rithm. Table 5.1 contains computational results obtained by running ICCH1 on the
DIMACS benchmark graphs with an arbitrary initial vertex ordering.

We can alter ICCH1 by adding a feature modeled after the DSATUR graph

coloring heuristic (11). Define the saturation degree of a vertex v to be the number
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Table 5.1: ICCH]1 Results

G x2(G) seconds x3(G) seconds x4(G) seconds
brock200-1 93 0.0 151 0.0 169 0.0
brock200-2 55 0.0 95 0.0 118 0.0
brock200-4 78 0.0 131 0.0 151 0.0
brock400-2 172 0.1 285 0.1 332 0.1
brock400-4 168 0.1 286 0.1 330 0.1
brock800-2 248 0.3 442 0.3 570 0.3
brock800-4 247 0.3 440 0.3 557 0.3
c-fat200-1 18 0.0 20 0.0 21 0.0
c-fat200-2 34 0.0 37 0.0 38 0.0
c-fat200-5 82 0.0 89 0.0 90 0.0
¢-fat500-1 19 0.0 23 0.0 24 0.0
c-fat500-2 36 0.0 41 0.0 42 0.0
c-fat500-5 85 0.1 98 0.0 99 0.0
¢-fat500-10 172 0.1 191 0.1 192 0.1
C125.9 95 0.0 122 0.0 123 0.0
250.9 176 0.0 230 0.0 240 0.0
C1000.9 525 0.7 897 0.7 929 0.7
gend00-p0.9-55 242 0.1 365 0.1 379 0.1
gend00-p0.9-65 243 0.1 369 0.1 382 0.1
gend00-p0.9-75 235 0.1 368 0.1 384 0.1
hamming6-2 32 0.0 48 0.0 56 0.0
hamming6-4 8 0.0 12 0.0 16 0.0
hamming8-2 128* 0.0 192 0.0 224 0.0
hamming8-4 32 0.0 48 0.0 64 0.0
hamming10-2 512~ 0.7 768 0.7 896 0.7
hamming10-4 128 0.5 192 0.5 256 0.5
johnson8-2-4 12 0.0 16 0.0 19 0.0
johnson8-4-4 28 0.0 42 0.0 48 0.0
johnson16-2-4 30 0.0 63 0.0 73 0.0
johnson32-2-4 72 0.1 122 0.1 171 0.1
kellerd 54 0.0 100 0.0 128 0.0
keller 235 0.3 450 0.3 554 0.3
MANN-a9 38 0.0 44 0.0 45 0.0
MANN-a27 324 0.1 369 0.1 378 0.1
MANN-a45 833 1.0 1032 0.8 1035 0.8
p-hat300-1 39 0.0 69 0.0 90 0.0
p-hat300-2 76 0.0 135 0.0 173 0.0
p-hat300-3 129 0.0 210 0.0 245 0.0
p-hat700-1 76 0.1 135 0.1 184 0.1
p-hat700-2 165 0.2 289 0.1 375 0.2
p-hat700-3 267 0.3 451 0.2 556 0.2
p-hat1500-1 136 0.5 251 0.6 349 0.6
p-hat1500-2 302 0.9 553 1.0 758 1.0
p-hat1500-3 508 1.5 908 1.5 1100 1.6
san200-0.7-2 105 0.0 147 0.0 159 0.0
san200-0.9-1 133 0.0 184 0.0 193 0.0
san200-0.9-2 136 0.0 189 0.0 192 0.0
san200-0.9-3 140 0.0 189 0.0 191 0.0
san400-0.9-1 249 0.1 374 0.1 378 0.1
sanr200-0.9 130 0.0 192 0.0 193 0.0
* optimal
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function ICCH1(V)
Ci=@for 1<i<|V|
forallueV
m = min{i : C; U {u} is a co-k-plex in G}
Cp = Cp U{u}
end
Compute 7; := maz{m : amn > k+ m} for each C;
bound = ZLZ'I min{ 2k — 2+ k mod 2, k+ j;, AG[Cy]) +k, |Ci|}
return bound

X NSOk

Figure 5.3: Co-k-plex Coloring Heuristic ICCH1

of distinct partition sets C' such that C U {v} is not a co-k-plex. At each step in
the algorithm, color the vertex with the largest saturation degree. The resulting
algorithm is shown in Figure 5.4. Lines 4-8 can all be accomplished in linear time,
so ICCH2 is another O(]V|?) algorithm. Table 5.2 contains computational results
obtained by running ICCH2 on the DIMACS benchmark graphs with an arbitrary
initial vertex ordering.

The results show that ICCH1 and ICCH2 give similar estimations of x(G) on
the DIMACS graphs and that no significant gain is realized by considering saturation

degrees. Both heuristics tend to run in under a second.

5.2.2 Fractional Co-k-plex Coloring Heuristics

This subsection adapts the fractional coloring procedure of Balas and Xue (5) in
order to obtain a bound on wy(G). The resulting FCCH defines a set of co-k-plexes
Ci,...,C, C V with the property that after p iterations, each vertex v € V belongs to

exactly p distinct co-k-plex sets. We can then construct a feasible solution y to the
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Table 5.2: ICCH?2 Results

G x2(G) seconds x3(G) seconds x4(G) seconds
brock200-1 94 0.0 148 0.0 169 0.0
brock200-2 55 0.0 96 0.0 118 0.0
brock200-4 80 0.0 129 0.0 151 0.0
brock400-2 172 0.1 284 0.1 332 0.1
brock400-4 169 0.1 288 0.1 330 0.1
brock800-2 250 0.5 436 0.3 563 0.3
brock800-4 249 0.8 440 0.3 569 04
c-fat200-1 18 0.0 20 0.0 21 0.0
c-fat200-2 33 0.0 37 0.0 38 0.0
c-fat200-5 82 0.0 89 0.0 90 0.0
c-fat500-1 22 0.1 23 0.0 24 0.0
c-fat500-2 37 0.1 41 0.0 42 0.0
c-fat500-5 90 0.1 98 0.0 99 0.1
c-fat500-10 173 0.2 191 0.1 192 0.1
C125.9 96 0.0 119 0.0 123 0.0
C250.9 168 0.1 237 0.0 240 0.0
C1000.9 527 1.1 872 0.9 929 0.9
gend00-p0.9-55 238 0.1 371 0.1 379 0.1
gend00-p0.9-65 238 0.1 364 0.1 382 0.1
gend00-p0.9-75 230 0.1 372 0.1 384 0.1
hamming6-2 32* 0.0 59 0.0 61 0.0
hamming6-4 10 0.0 25 0.0 26 0.0
hamming8-2 128* 0.0 235 0.0 251 0.0
hamming8-4 49 0.0 116 0.0 154 0.0
hamming10-2 512* 1.0 939 0.9 1017 0.9
hammingl0-4 260 0.7 556 0.8 755 0.8
johnson8-2-4 12 0.0 18 0.0 19 0.0
johnson8-4-4 38 0.0 55 0.0 57 0.0
johnson16-2-4 48 0.0 81 0.0 95 0.0
johnson32-2-4 133 0.1 236 0.1 332 0.1
keller4 57 0.0 101 0.0 115 0.0
keller5 220 04 430 0.3 576 0.3
MANN-a9 37 0.0 42 0.0 45 0.0
MANN-a27 306 0.1 351 0.1 378 0.1
MANN-a45 814 1.1 990 0.9 1035 0.9
p-hat300-1 38 0.0 69 0.0 89 0.0
p-hat300-2 76 0.0 138 0.0 169 0.0
p-hat300-3 125 0.1 203 0.0 237 0.0
p-hat700-1 77 0.1 136 0.1 178 0.1
p-hat700-2 158 0.2 290 0.2 373 0.2
p-hat700-3 263 0.3 449 0.3 554 0.3
p-hat1500-1 140 0.9 251 0.9 352 0.9
p-hat1500-2 302 1.6 555 1.7 764 1.7
p-hat1500-3 503 2.3 905 24 1113 2.4
san200-0.7-2 66 0.0 113 0.0 155 0.0
8an200-0.9-1 131 0.0 183 0.0 194 0.0
8an200-0.9-2 134 0.0 185 0.0 192 0.0
san200-0.9-3 135 0.0 190 0.0 191 0.0
$an400-0.9-1 229 0.1 346 0.1 378 0.1
sanr200-0.9 131 0.0 188 0.0 193 0.0
* optimal
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function ICCH2(V)
Ci=oforl1 <i<|V]
sat(v) =0forallv eV
while V # o
Let ue {veV : sat(v) > sat(w) for all w € V}
V=V\{u}
m = min{i: C; U{u} is a co-k-plex in G}
Cm = Cn U {u}
Update sat(v) for all uncolored v € N(u)
end
10. Compute j; := maz{m : an > k+ m} for each C;
11. bound = YW min{ 2k — 2+ k mod 2, k+ ji;, AGICI]) +k, |C[}
12. return bound

©CEAPOA WS

Figure 5.4: Co-k-plex Coloring Heuristic ICCH2

linear relaxation of (5.4) as follows:

From this solution, we deduce

h
w(G) < %Zwk(a[@nya.

Figure 5.5 contains the FCCH. The set C consists of the co-k-plexes C1 U ... UC},.
At each iteration, a vertex is either added to an existing C; € C in Line 7 or to a new
partition set in Line 10. When the algorithm reaches Line 12, every vertex belongs
to exactly p partition sets, so ¢, is a valid upper bound on wi(G).

The FCCH can be run using either ICCH1 or ICCH2. Tables 5.3 and 5.4

contain computational results obtained by running FCCH1 and FCCH2, which use
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function FCCH(V)

1. told =0 p= 1

2. tpew =ICCH(V); store the partition sets in C

3. while trnew < told

4. U=V, tog=thew; p=p+1

5. forallveU

6. if 3 C; € C such that v € C; and C; U {v} is a co-k-plex
7. Ci=CiU{U}; U=U\{U}

8. end

9. end

10. ICCH(U); append new partition sets in C

11. Compute j; := maz{m : an > k+ m} for each C; € C

12, tpew = % - Yoee min{ 2k =24k mod 2, k+j;, A(G[C)]) +k, |Cil}
13. end

14. return ¢,y

Figure 5.5: Fractional Co-k-plex Coloring Heuristic FCCH
ICCH1 and ICCH2, respectively. The FCCH shown in Figure 5.5 has an ill-defined
termination condition. To bound the runtime, we bound the number iterations and
the number of partition sets in C to be O(|V]). For these runs, the bound was set at

5-V].

Theorem 16. If the number of iterations and the number of partition sets are O(|V]),

then FCCH can be executed in O(|V|*) time.

Proof. At every iteration, for each vertex v € V, we must test if C; U {v} is a co-
k-plex. This can be done by counting the number of u € N(v) N C;, which requires
O(min{dege(v), ax(G)}) = O(|V]) time. Since there are O(|V]) partition sets, there
can be O(|V|?) possible pairs (C;,v). Thus, after O(]V|) iterations, this step has
complexity O(]V]*). Lines 2 and 10 execute a O(|V]?) ICCH algorithm. Since

there are at most O(|V|) iterations, these steps have complexity O(]V|?). All other
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operations contribute O(|V|?) to the complexity. Therefore, the overall complexity

of FCCH is O(|V[*). O

Clearly, the FCCH algorithms offer a better approximation of x(G) than the
ICCH algorithms. FCCH2 appears to be slightly slower FCCH1, but both heuristics

tend to run in under five seconds.

5.3 A k-plex Heuristic

For a lower bound on wy(G), we search for feasible k-plexes. Recall from Sec-
tion 5.1 that the Maximum k-plex Problem is NP-complete. Consequently, the worst-
case runtime of any algorithm which finds an optimal solution is most likely expo-
nential with respect to the size of the input parameters. The guarantee of an optimal
solution comes at the price of a potentially enormous runtime. Heuristics, on the other
hand, sacrifice all guarantees on solution quality in order to obtain efficient runtimes.
We will now describe a heuristic for finding k-plexes. The heuristic indirectly searches
for cohesive subgraphs in G and extends them to maximal k-plexes.

There has been extensive research on heuristics for finding large complete sub-
graph (15; 30; 32; 48). We are interested in designing a combinatorial heuristic for
finding k-plexes. A typical combinatorial heuristic systematically searches a set of
neighborhoods in the feasible solution space for local optima (36). When a local
optimum is obtained, we compare it to the incumbent solution, store its value if

necessary, and continue searching in other neighborhoods. Obviously, the solution
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Table 5.3: FCCH1 Results

G x2(G) seconds x3(G) seconds x4(G) seconds
brock200-1 82 0.0 139 0.1 164 0.0
brock200-2 48 0.0 89 0.0 118 0.0
brock200-4 68 0.0 122 0.0 151 0.0
brock400-2 151 0.2 267 0.2 320 0.2
brock400-4 151 0.2 265 0.3 320 0.1
brock800-2 221 1.4 401 1.7 535 1.3
brock800-4 223 24 410 0.8 537 1.2
c-fat200-1 16 0.0 20 0.0 21 0.0
c-fat200-2 30 0.0 37 0.0 38 0.0
c-fat200-5 76 0.0 89 0.0 90 0.0
c-fat500-1 18 0.1 23 0.0 24 0.0
c-fat500-2 33 0.1 41 0.0 42 0.0
c-fat500-5 82 0.2 98 0.1 99 0.1
¢-fat500-10 166 04 191 0.1 192 0.2
C125.9 83 0.0 120 0.0 123 0.0
C250.9 146 0.1 230 0.0 240 0.1
C1000.9 491 3.3 826 5.8 929 3.0
gend00-p0.9-55 216 0.3 357 0.2 379 0.2
gend00-p0.9-65 210 0.6 362 0.1 382 0.1
gend00-p0.9-75 213 04 353 0.3 384 0.3
hamming6-2 32* 0.0 48 0.0 56 0.0
hamming6-4 8 0.0 12 0.0 16 0.0
hamming8-2 128* 0.0 192 0.0 224 0.1
hamming8-4 32 0.0 48 0.0 64 0.0
hamming10-2 512* 1.3 768 1.3 896 2.0
hamming10-4 128 0.7 192 0.6 256 0.6
johnson8-2-4 10 0.0 16 0.0 18 0.0
johnson8-4-4 28 0.0 42 0.0 46 0.0
johnson16-2-4 27 0.0 63 0.0 73 0.0
johnson32-2-4 68 0.1 118 0.2 152 0.2
keller4 45 0.0 88 0.0 113 0.0
kellerb 172 0.9 376 1.0 517 1.7
MANN-a9 36 0.0 44 0.0 45 0.0
MANN-a27 321 0.2 366 0.1 378 0.1
MANN-a45 803 5.9 1028 1.8 1035 1.1
p-hat300-1 34 0.0 62 0.0 85 0.0
p-hat300-2 71 0.1 129 0.0 161 0.1
p-hat300-3 115 0.2 201 0.1 240 0.1
p-hat700-1 68 0.3 123 0.3 168 0.3
p-hat700-2 146 0.7 272 0.3 349 0.5
p-hat700-3 243 1.4 428 0.8 532 0.6
p-hat1500-1 126 2.6 233 1.9 323 4.3
p-hat1500-2 282 4.8 518 3.9 705 3.5
p-hat1500-3 472 10.4 849 19.0 1071 7.4
8an200-0.7-2 79 0.0 140 0.0 159 0.0
san200-0.9-1 127 0.0 177 0.1 191 0.1
san200-0.9-2 123 0.1 183 0.0 192 0.0
san200-0.9-3 121 0.0 186 0.0 191 0.1
san400-0.9-1 231 0.2 360 0.2 378 0.2
sanr200-0.9 119 0.0 187 0.0 193 0.0
* optimal
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Table 5.4: FCCH2 Results

G x2(G) seconds x3(G) seconds x4(G) seconds
brock200-1 83 0.1 139 0.1 167 0.0
brock200-2 48 0.1 87 0.0 115 0.0
brock200-4 68 0.1 121 0.0 151 0.0
brock400-2 152 0.7 272 0.1 320 0.2
brock400-4 150 0.7 269 0.3 319 0.3
brock800-2 224 1.7 400 2.6 535 1.6
brock800-4 220 3.1 402 1.0 544 1.2
c-fat200-1 15 0.0 20 0.0 21 0.0
c-fat200-2 30 0.0 37 0.0 38 0.0
c-fat200-5 75 0.1 89 0.0 90 0.0
c-fat500-1 22 0.1 23 0.0 24 0.0
c-fat500-2 34 0.1 41 0.1 42 0.1
c-fat500-5 81 0.1 98 0.1 99 0.1
c-fat500-10 164 0.3 191 0.2 192 0.3
C125.9 84 0.0 116 0.0 122 0.0
C250.9 143 0.1 230 0.1 240 0.1
C1000.9 489 4.6 828 4.3 929 2.8
gend00-p0.9-35 209 0.6 350 0.3 379 0.2
gen400-p0.9-65 207 0.4 352 0.2 382 0.4
gend00-p0.9-75 208 0.6 353 0.4 384 0.2
hamming6-2 32 0.0 59 0.0 61 0.0
hamming6-4 8 0.0 20 0.0 26 0.0
hamming8-2 128* 0.1 231 0.1 251 0.1
hamming8-4 47 0.0 105 0.0 145 0.0
hamming10-2 512* 2.1 939 23.4 1017 2.4
hamming10-4 212 2.0 449 3.3 673 8.8
johnson8-2-4 10 0.0 18 0.0 19 0.0
johnson8-4-4 28 0.0 51 0.0 57 0.0
johnson16-2-4 34 0.0 76 0.0 95 0.0
johnson32-2-4 75 1.0 224 0.5 299 0.3
kellerd 44 0.1 90 0.0 111 0.0
keller5 174 2.3 378 2.1 536 1.5
MANN-a9 37 0.0 42 0.0 45 0.0
MANN-a27 301 0.4 351 0.2 378 0.1
MANN-a45 755 7.2 990 2.6 1035 1.3
p-hat300-1 35 0.0 63 0.0 89 0.0
p-hat300-2 72 0.1 126 0.1 162 0.1
p-hat300-3 118 0.1 200 0.1 237 0.1
p-hat700-1 68 0.4 124 0.3 169 0.5
p-hat700-2 149 0.5 267 0.6 348 0.6
p-hat700-3 243 1.2 422 2.0 528 1.5
p-hat1500-1 125 4.0 230 6.3 326 4.4
p-hat1500-2 277 9.3 515 7.6 700 7.5
p-hat1500-3 470 14.5 854 12.0 1074 12.1
san200-0.7-2 57 0.0 113 0.0 144 0.1
san200-0.9-1 125 0.1 170 0.1 190 0.1
san200-0.9-2 113 0.1 173 0.1 192 0.1
san200-0.9-3 119 0.1 181 0.1 191 0.0
san400-0.9-1 208 0.4 315 0.5 378 0.2
sanr200-0.9 115 0.1 183 0.1 193 0.0
* optimal
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quality heavily depends on both the choice of neighborhoods and the local search
method.

Recall that if Zg denotes the set of all complete subgraphs in G, then Zg also
denotes the set of all stable sets in G. The remainder of this section focuses on
finding stable sets in G which we extend to maximal k-plexes in G. This approach
is valid because every element in Zg is extendible to a maximal k-plex in G. To find
stable sets in G, we will construct sets K & Zg and alter them to obtain elements
K' € Tg. Without loss of generality, assume G is connected. For if not, simply run
the heuristic on each component.

For u,v € V, let d(u,v) be the length of a shortest path from v to v in G. Our
concept of neighborhood is based on the parity of shortest path lengths from some

root node s. Given a root s € V, define the following sets:

Ko:={veV |d(s,v) even} and K;:={veV|d(s, v)odd}.

For example, suppose that we are searching for k-plexes in some graph H and
that H is shown in Figure 5.6. The vertex set V(H) partitions into the sets Ky =
{s,5,6,7,8,12,13} and K; ={1,2,3,4,9,10,11}. Fori € {0, 1}, notice that u,v € K;

and uwv € E(H) together imply d(u, s) = d(v, s). Otherwise, d(u, s) and d(v, s) would

have different parities. Therefore, for every v € K,

Ng()n{u e K;\ {v}:d(u,s) #d(v,s)} = @.
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Figure 5.6: H with root s.

We hope this property causes K; to contain large stable sets.

Now K; ¢ Ty in general, but there will typically exist many subsets K| C K such
that K] € Ty. In order to examine a variety of these subsets, we construct elements
in Ty from K; by removing one end of every edge in H[K;]. To summarize, we have
two sets K and Kj such that H[K;] and H[K},] can have edges. For i = 1,2, we will
scan F(H[K;]) and remove one end of each edge. We construct four sets from K;.

Each set is defined by applying only one of the following rules to every edge:

Rule 1. If deggx,(v) < deggk,(u), remove u. Otherwise, remove v.
Rule 2. If deggz(v) < degg(u), remove u. Otherwise, remove v.
Rule 3. Always remove v.

Rule 4. Always remove u.

Let Kf be the subset obtained from K; be applying only Rule j to every edge in
E(H[K;]). Rules 1 and 2 are greedy metrics. Rules 3 and 4 are included to diversify
the search space.

We can now extend each set Kf to a maximal k-plex in H. All k-plexes that

can be constructed from a set K; in this way constitute a neighborhood. Therefore,
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function Ibound(R)
forallse R
define Ky and K with respect to root s
construct sets Kf C K;
extend sets K to maximal k-plexes in H
for all j and 4
kick(K7)
end
update incumbent I if necessary
end

© XN oA W

Figure 5.7: k-plex Heuristic lbound.

function kick(K)

1. construct set S:={veV\K : |[Ng(v)nK| <1}
2. let K=KUS

3. construct sets K C K

4. extend sets K’ to maximal k-plexes in H

Figure 5.8: The kick function.
the search space is essentially a function of the root nodes, and specifying a set of
neighborhoods is equivalent to specifying a set of root nodes R. The k-plex heuristic
Ibound is shown in Figure 5.7. The incumbent solution [ is initially empty and
stored as a global variable.

To find a k-plex in H, we arbitrarily choose a set of vertices to define R. Line 2
builds a breadth-first-search tree in A rooted at s to determine d(v, s) for all v € V.
The breadth-first-search tree is also used to define deggx,;(v) for all v. Line 3 applies
Rules 1-4, and Line 4 uses a greedy heuristic. Line 6 passes the sets Kij to the new
function kick. The function kick is shown in Figure 5.8. Its purpose is to help the
heuristic escape local optima. Figure 5.7 is our basic k-plex heuristic.

Line 3 in the function kick scans the edges of G[K;|, so the function requires
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O(|E|) time. The function lbound makes O(|R]) calls to kick. It follows that
Ibound is an O(|E| - |R|) algorithm. Table 5.5 contains computational results ob-
tained by running Ibound on the DIMACS benchmark graphs. LB1 corresponds
to choosing an arbitrary set of %—l vertices to define R. LB2 corresponds to setting
R=V.

This section described a heuristic for finding k-plexes in a graph G. The results

of this section will serve as a lower bound in an exact k-plex algorithm described in

Section 5.4.

5.4 Exact k-plex Algorithms

This section describes exact algorithms for finding maximum k-plexes in a graph
G = (V,E). The first type is based on a standard clique algorithm (1; 18). The

second type adapts an algorithm of Ostergard (54).

5.4.1 Algorithm Type 1

Our first type of k-plex algorithms are an adaptation of the basic clique algorithm
shown in Figure 5.9. At any point in the basic clique algorithm, we are constructing
a complete graph K. The candidate set, U C V' \ K, contains all vertices v such that
K U {v} is complete. In other words, U := [,cx N(v). The global variable maz
stores the cardinality of the largest clique found. To find a maximum clique in G, we

initialize maz = 0 and make the function call basicClique(V, @).
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Table 5.5: 1bound Results
LB1 LB2 LB1 LB2 LB1 LB2

G wa(G) sec. wa(@)  sec. w3(G) sec. ws(G) sec wa(G) sec. wy4(G)  sec.
brock200-1 25 1 25 3 27 1 28 3 31 1 32 3
brock200-2 12 1 13* 5 15 1 15 6 17 1 17 5
brock200-4 18 1 19 4 22 1 23 4 24 1 25 4
brock400-2 27 2 28 23 31 2 32 23 35 2 36 23
brock400-4 33 2 33 23 33 2 33 23 36 2 37 23
brock800-2 22 15 23 299 26 15 26 208 29 15 30 299
brock800-4 22 15 23 301 25 15 26 301 29 15 30 301
c-fat200-1 12* 2 12* 10 12* 2 12* 10 12* 2 12* 10
c-fat200-2 24* 2 24* 9 24* 2 24~ 9 24* 2 24 10
c-fat200-5 58* 2 58* 7 58* 2 58* 7 58* 2 58* 7
c-fat500-1 14* 20 14* 225 14* 19 14* 226 14* 19 14* 226
c-fat500-2 26* 19 26™ 210 26™ 18 26* 210 26™ 19 26* 212
c-fat500-5 64* 16 64* 191 64* 16 64* 185 64* 16 64* 194
c-fat500-10 126 13 126* 146 126* 13 126* 150 126> 13 126* 152
C125.9 42 0 42 0 47 0 48 0 54 0 54 0
C250.9 50 0 50 3 58 0 59 3 66 1 67 3
C1000.9 69 7 74 165 80 7 83 168 91 7 92 173
gen400-p0.9-55 59 2 61 12 71 1 72 11 80 1 81 12
gend00-p0.9-65 66 1 67 11 78 1 87 11 86 1 86 12
gend00-p0.9-75 75 1 75 11 84 1 91 11 91 1 98 12
hamming6-2 32* 0 32* 0 32* 0 32* 0 32 0 32 0
hamming6-4 4 0 4 0 8* 0 8* 0 8 0 8 0
hamming8-2 128* 0 128> 2 128* 0 128* 2 128 0 128 2
hamming8-4 16* 1 16* 8 16 1 16 8 16 1 16 8
hamming10-2 512* 3 512* 65 512 3 512 67 512 3 512 74
hamming10-4 43 12 43 281 64 12 64 288 63 12 64 297
johnson8-2-4 4 0 4 0 8* 0 8* 0 9* 0 9* 0
johnson8-4-4 14 0 14 0 14 0 14 0 14 0 14 0
johnson16-2-4 8 0 8 1 16 0 16 1 18 0 18 1
johnson32-2-4 16 2 16 21 32 2 32 25 36 2 36 26
kellerd 15* 1 15* 3 18 1 18 2 20 1 20 2
keller5 31 10 31 176 37 9 39 176 42 10 42 180
MANN-a9 22 0 22 0 30 0 30 0 36* 0 36> 0
MANN-a27 218 2 218 14 258 3 260 29 250 2 257 17
MANN-a45 646 35 646 859 762 76 762 1748 756 21 756 540
p-hat300-1 9 4 9 28 11 4 11 28 12 4 13 28
p-hat300-2 30 3 30 20 34 3 34 19 39 3 39 20
p-hat300-3 42 1 43 10 49 1 49 10 53 2 55 11
p-hat700-1 10 33 12 537 13 33 14 555 16 32 16 529
p-hat700-2 50 19 51 316 58 19 58 320 65 19 66 321
p-hat700-3 70 8 71 140 82 9 84 140 92 9 95 141
p-hat1500-1 13 202 13 7318 14 204 16 7320 16 204 18 7414
p-hat1500-2 73 124 75 4516 86 120 89 4504 98 121 99 4433
p-hat1500-3 107 48 108 1716 122 48 124 1719 137 48 139 1723
san200-0.7-2 26 1 26 3 36 1 36 4 48 1 48 4
san200-0.9-1 90 0 90 2 125* 0 125% 2 125 0 125 2
san200-0.9-2 71 0 71 2 105 0 105 2 105 0 105 2
san200-0.9-3 50 0 52 1 62 0 67 2 65 0 65 2
san400-0.9-1 102 2 102 15 150 2 150 18 200 2 200 16
sanr200-0.9 48 0 48 1 56 0 56 2 63 0 64 2
* optimal
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function basicClique(U, K)
while U # @
if | K|+ |U| < maz
return
end
U=U\{v} for some v e U
basicClique(U N N(v), K U {v})
end
if |K| > max
maz = |K|
end
return

HE O ®No oA e N

= o

Figure 5.9: Basic Clique Algorithm

The basic clique algorithm can be generalized to find maximum k-plexes. The
main difference is that given a k-plex K, the candidate set U can no longer be defined

as (yex IV (v). The candidate set is now defined as

U={veV\K : KU{v} is ak-plex}.

The basic k-plex algorithm is shown in Figure 5.10. To find a maximum k-plex in G,
we initialize max = 0 and make the function call basicPlex(V, &). Table 5.6 contains
computational results obtained by running basicPlex on the DIMACS benchmark
graphs.

Without Lines 2-4, the function basicClique examines every clique in G. Recall
that G can contain an exponential, with respect to |V|, number of cliques (Moon and
Moser 1965). Lines 2-4 are an attempt to avoid total enumeration of an exponential

number of subgraphs. This is known as pruning the search tree. Unfortunately, there
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Table 5.6: basicPlex Results

G w2(G)  seconds BBN w3(G)  seconds BBN wa(G)  seconds BBN
brock200-1 25 >3600 172822699 28 >3600 182056437 31 >3600 180633250
brock200-2 13* 166 9759381 15 >3600 199178608 17 23600 102281927
brock200-4 20 >3600 193074734 22 >3600 199289654 25 >3600 193677120
brock400-2 27 >3600 169761253 31 >3600 162264447 34 >3600 155153487
brock400-4 27 >3600 160979618 32 >3600 146807899 36 >3600 145283598
brock800-2 23 >3600 134201916 25 >3600 139748190 28 >3600 124918468
brock800-4 23 >3600 133857528 24 >3600 144247348 27 >3600 127834010
c-fat200-1 12* 0 975 12* 4 58324 12* 170 2025883
c-fat200-2 24* 0 7308 24* 5 115832 24* 226 3827925
c-fat200-5 58* 3112 86024721 58 >3600 104935293 58 >3600 108945815
c-fat500-1 14* 1 2712 14* 115 364617 14 >3600 6098258
c-fat500-2 26* 1 31068 26* 126 818322 26 >3600 14272751
c-fat500-5 64 >3600 84968699 64 >3600 94102915 64 >3600 92359122
c-fat500-10 126 >3600 39813170 126 >3600 45937780 126 >3600 45046647
C125.9 40 >3600 165580704 49 >3600 159562046 56 >3600 172499878
C250.9 49 >3600 131071734 59 23600 121221452 67 >3600 118891127
C1000.9 63 >3600 86340711 73 >3600 95156344 81 >3600 89623119
gen400-p0.9-55 57 >3600 107671535 66 >3600 104998011 7 >3600 104332374
gend00-p0.9-65 57 >3600 123654827 65 >3600 105148691 75 >3600 100728355
gen400-p0.9-75 56 >3600 115238978 69 >3600 92913241 79 >3600 109864417
hamming6-2 32* 506 26461612 32 >3600 244753572 37 >3600 261840105
hamming6-4 6* 0 4709 8* 1 71069 10* 9 849851
hamming8-2 128 >3600 39716014 128 >3600 43138327 128 >3600 50079738
hamming8-4 16 >3600 237558610 18 >3600 222683938 22 >3600 230542048
hammingl0-2 512 >3600 3595516 512 >3600 3790553 512 >3600 3877853
hamming10-4 32 >3600 146893539 43 >3600 132802297 64 >3600 54961531
johnson8-2-4 5* 0 1666 8* 0 12837 9* 0 104984
johnson8-4-4 14* 110 11542436 18 >3600 350491163 22 >3600 342248079
johnson16-2-4 10 >3600 625712305 15 >3600 480893056 17 23600 497459524
johnson32-2-4 21 >3600 318645985 27 >3600 270404308 32 >3600 267621112
keller4 15 >3600 247583422 20 >3600 207711375 22 >3600 258859895
keller5 29 >3600 122027776 39 >3600 95885696 46 >3600 89880382
MANN-a9 26* 66 5585820 36* 2 106834 36* 278 25470013
MANN-a27 234 >3600 79044110 351 >3600 7146812 351 >3600 10158168
MANN-ad5 660 >3600 19339018 990 >3600 1022834 990 >3600 1283088
p-hat300-1 10* 14 665249 12* 1111 40704167 14 >3600 128042727
p-hat300-2 29 >3600 167764775 35 >3600 162883168 41 >3600 154569677
p-hat300-3 42 >3600 145501695 51 >3600 145528614 57 >3600 139965092
p-hat700-1 13* 1887 55769755 14 >3600 110462323 16 >3600 98797915
p-hat700-2 49 >3600 116066244 58 >3600 116785628 65 >3600 117405227
p-hat700-3 69 >3600 105454118 81 >3600 105553105 93 >3600 97553599
p-hat1500-1 14 >3600 83137273 16 >3600 77843491 17 >3600 71616718
p-hat1500-2 74 >3600 82521849 86 >3600 83606200 96 >3600 80774894
p-hat1500-3 98 >3600 81882477 119 >3600 77654872 133 >3600 72234293
5an200-0.7-2 24 >3600 441219398 36 >3600 395072520 48 >3600 330336652
san200-0.9-1 90 >3600 107493877 125 >3600 35590748 125 >3600 39843163
san200-0.9-2 62 >3600 101186509 73 >3600 95434310 70 >3600 118663294
san200-0.9-3 49 >3600 151525669 54 >3600 135610532 63 >3600 136277860
san400-0.9-1 59 >3600 82032873 62 >3600 98221391 71 >3600 106470241
sanr200-0.9 47 >3600 138079311 54 >3600 145898461 60 >3600 132831001
* optimal
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function basicPlex(U, K)
while U # @
if |[K|+|U| < maz
return
end
K=KU{v}; U=U\{v} for some v € U
U:={ueU : KU{u}is ak-plex}
basicPlex(U’, K)
end
9. if |K|> max
10. maz = |K|
11. end
12. return

S o ol

Figure 5.10: Basic k-plex Algorithm

may exist graphs which require the algorithm to examine an exponential number of
cliques. In practice, though, pruning can dramatically reduce the runtime.

The basic clique algorithm has many variants (60; 63; 65; 72). Many researchers
have focused on improving the pruning strategy using the coloring bound. In particu-
lar, a coloring heuristic provides an upper bound on w(G[U]). The coloring bound has
the potential to prune a larger portion of the search tree because x(G[U]) < |U|. This
approach generalizes to improve basicPlex by using the heuristics in Sections 5.2 to
bound wy(G[U]). Figure 5.11 shows a function which uses co-k-plex coloring to prune
the search tree.

In Section 5.2.1 we described two Integer Co-k-plex Coloring Heuristics, ICCH1
and ICCH2, for approximating xx(G[U]). Let k-plexla denote the function ob-
tained by using ICCH1 to execute Line 2 of k-plexl. The function ICCH1 is
shown in Figure 5.3. Let k-plex1b denote the function obtained by using ICCH2

to execute Line 2 of k-plex1. The function ICCHZ2 is shown in Figure 5.4.
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function k-plex1(U, K)

while U # &
Compute xx(G[U]) > xx(G[U])
if |K| + %x(G[U]) £ max
return
end

K=KU{v}; U=U\{v} for somev e U
U:={uelU : KU{u} is ak-plex}
k-plex1(U’, K)

end

10. if |K| > mazx

11.  maz = |K]|

12. end

13. return

OO W

Figure 5.11: k-plex Algorithm

In Section 5.2.2 we described two Fractional Co-k-plex Coloring Heuristics, FCCH1
and FCCH2, for approximating xx(G[U]). Let k-plexlc denote the function ob-
tained by using FCCHI1 to execute Line 2 of k-plexl. Let k-plex1ld denote the
function obtained by using FCCH2 to execute Line 2 of k-plex1.

To find a maximum k-plex in G, we run the LB1 heuristic on G to obtain an initial
value for the global variable maxz. Next we make the function call to k-plexla(V, @),
k-plex1b(V, @), k-plex1c(V, @), or k-plex1d(V, @). Tables 5.7 - 5.10 contain com-
putational results obtained by running these algorithms on the DIMACS benchmark

graphs. Each algorithm was run for one hour.

5.4.2 Algorithm Type 2

This subsection describes a second type of exact algorithm for finding maximum

k-plexes. The algorithm is based on the following idea of Ostergard (54). Let V =
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Table 5.7: k-plexla Results

G wz(G)  seconds BBN w3(G)  seconds BBN w4(G)  seconds BBN
brock200-1 25 23600 86030174 28 23600 95147581 31 >3600 97664910
brock200-2 13* 289 8663613 15 >3600 100542983 17 >3600 90143057
brock200-4 19 23600 102282008 22 >3600 106907189 25 >3600 98966956
brock400-2 27 >3600 95110220 31 >3600 88619566 35 >3600 81344425
brock400-4 33 23600 51472394 33 >3600 74724985 36 >3600 80938337
brock800-2 23 >3600 94857693 26 23600 81559009 29 >3600 71154628
brock800-4 23 >3600 96369941 25 >3600 90097273 29 >3600 72735746
c-fat200-1 12* 2 873 12* 27 57730 12* 922 1960167
c-fat200-2 24> 3 5269 24> 28 109070 24* 909 3385277
c-fat200-5 58 >3600 19298000 58 >3600 24247513 58 23600 28799458
c-fat500-1 14* 32 2293 14> 1580 357420 14 23600 545917
c-fat500-2 26* 33 20601 26* 1617 787649 26 >3600 1224327
c-fat500-5 64 >3600 14631858 64 >3600 21078075 64 >3600 24930408
c-fat500-10 126 >3600 5104395 126 23600 7643111 126 >3600 9068983
C125.9 42 >3600 63076397 49 >3600 79939042 56 >3600 86375809
C250.9 50 >3600 55392820 59 >3600 60836513 67 >3600 62347611
C1000.9 69 23600 31155586 80 >3600 30906202 91 >3600 25238173
gen400-p0.9-55 59 >3600 49418395 71 >3600 36435391 80 >3600 46290499
gen400-p0.9-65 66 23600 26145966 78 >3600 25302636 86 23600 28527938
gen400-p0.9-75 75 >3600 16646961 84 >3600 24505892 91 >3600 27923471
hamming6-2 32 0 0 32 >3600 92535097 37 >3600 119263227
hamming6-4 6™ 0 3668 8* 1 59533 10* 15 701425
hamming8-2 128* 0 0 128 >3600 14422543 128 >3600 20007766
hamming8-4 16 >3600 158903409 18 23600 149846604 22 >3600 157055208
hammingl0-2 512* 1 0 512 >3600 434296 512 >3600 456014
hammingl0-4 43 >3600 44661342 64 >3600 21254123 64 >3600 33084666
johnson8-2-4 5% 0 1585 8* 0 12378 9* 1 104804
johnson8-4-4 14* 138 7755953 18 >3600 191111049 22 >3600 172931195
johnsonl6-2-4 10 >3600 418302911 16 >3600 275029061 18 >3600 280703595
johnson32-2-4 21 >3600 323578720 32 >3600 127870041 36 23600 139455728
kellerd 15 >3600 147002319 20 >3600 128108327 22 >3600 169102280
kellers 31 >3600 86174831 39 >3600 98084379 46 >3600 03468119
MANN-a9 26* 123 4111457 36* 6 102896 36™ 739 25470013
MANN-a27 234 >3600 78820556 351 >3600 383569 351 >3600 781334
MANN-a45 660 >3600 18866263 990 >3600 18029 990 >3600 53068
p-hat300-1 10* 33 562727 12* 2827 39631513 14 >3600 54618899
p-hat300-2 30 >3600 77146967 35 >3600 84162645 41 >3600 84779804
p-hat300-3 42 >3600 73906134 50 >3600 70787196 57 >3600 70408792
p-hat700-1 13* 3186 46290951 14 >3600 56967864 16 >3600 43437614
p-hat700-2 50 >3600 51487369 58 >3600 56760785 65 >3600 61159187
p-hat700-3 70 >3600 42921661 82 >3600 46670755 92 >3600 48056462
p-hat1500-1 14 >3600 64200197 16 >3600 54760864 17 >3600 46539732
p-hat1500-2 74 >3600 40645458 86 >3600 47106186 98 >3600 37702129
p-hat1500-3 107 >3600 16720124 122 >3600 30607204 137 >3600 25319618
5an200-0.7-2 26 >3600 247380139 36 >3600 368232192 48 >3600 301494773
san200-0.9-1 90 >3600 64534714 125 >3600 5514998 125 >3600 6899702
san200-0.9-2 71 >3600 28455841 105 >3600 7916622 105 >3600 9512515
san200-0.9-3 50 >3600 60230554 62 >3600 36447308 65 >3600 52422167
san400-0.9-1 102 >3600 5427342 150 >3600 2818053 200 >3600 1606559
sanr200-0.9 48 >3600 57674935 56 23600 62350486 63 23600 48460533
* optimal
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Table 5.8: k-plex1lb Results

G wz(G)  seconds BBN w3(G) seconds BBN w4(G)  seconds BBN
brock200-1 25 = 3600 69161245 28 > 3600 74047699 31 > 3600 76443907
brock200-2 13* 347 8655872 15 > 3600 78758942 17 > 3600 77611816
brock200-4 19 > 3600 83379665 22 > 3600 84435853 25 2> 3600 81410084
brock400-2 27 > 3600 79503226 31 > 3600 72526576 35 > 3600 67993634
brock400-4 33 2> 3600 41435291 33 2> 3600 63082448 36 > 3600 68610667
brock800-2 23 > 3600 76380258 26 > 3600 62187146 29 > 3600 59527523
brock800-4 23 > 3600 77313428 25 > 3600 70818151 29 > 3600 60106034
c-fat200-1 12* 3 865 12* 30 57730 12* 1020 1960167
c-fat200-2 24* 3 5029 24* 32 109143 24* 1050 3385287
c-fat200-5 58 > 3600 14304248 58 > 3600 17982184 58 > 3600 21121009
c-fat500-1 14* 33 2308 14* 1701 357500 14 2> 3600 522142
c-fat500-2 26* 34 20682 26* 1781 783956 26 > 3600 1162013
c-fat500-5 64 > 3600 10796547 64 > 3600 15457652 64 > 3600 18009810
c-fat500-10 126 2> 3600 3977561 126 2> 3600 5712426 126 > 3600 6343703
C125.9 42 > 3600 48114789 49 > 3600 62425904 56 > 3600 67231585
C250.9 50 > 3600 44235096 59 > 3600 47320128 67 > 3600 47691224
C1000.9 69 > 3600 26979405 80 2> 3600 24032891 91 > 3600 19359650
gen400-p0.9-55 59 > 3600 41787235 71 > 3600 29644490 80 2> 3600 40201337
gen400-p0.9-65 66 > 3600 21715889 78 > 3600 20199799 86 > 3600 23625879
gen400-p0.9-75 75 2> 3600 13498174 84 > 3600 19004764 91 > 3600 22944583
hamming6-2 32* 0 0 32 > 3600 73053164 36 > 3600 96335439
hamming6-4 6* 0 3650 8* 2 59787 10* 17 699306
hamming8-2 128> 0 0 128 > 3600 6833516 128 > 3600 13907811
hamming8-4 16 > 3600 124321999 18 > 3600 119121603 22 > 3600 129103474
hammingl0-2 512* 1 0 512 2> 3600 145167 512 > 3600 348239
hammingl0-4 43 > 3600 35220491 64 > 3600 15056227 64 > 3600 27378559
johnson8-2-4 5% 0 1584 8* 0 12385 9 1 104810
johnson8-4-4 14* 176 8018473 18 > 3600 150199235 22 > 3600 151926832
johnsonl6-2-4 10 > 3600 382064672 16 > 3600 231091629 18 > 3600 239417405
johnson32-2-4 21 > 3600 293812276 32 > 3600 104729724 36 > 3600 113914581
keller4 15 > 3600 119019307 20 > 3600 100734057 22 > 3600 138097548
kellerb 31 > 3600 69020984 39 > 3600 84262597 46 > 3600 84210063
MANN-a9 26* 156 3935491 36* 4 46660 36* 915 25470013
MANN-a27 234 > 3600 70015613 351 > 3600 219473 351 > 3600 524874
MANN-a45 660 > 3600 21797551 990 > 3600 12475 990 > 3600 35814
p-hat300-1 10* 41 562708 12* 3238 39638895 14 > 3600 46803014
p-hat300-2 30 > 3600 61132951 35 > 3600 68747655 41 > 3600 68314947
p-hat300-3 42 2 3600 58400176 50 > 3600 55985983 57 > 3600 54496873
p-hat700-1 13 > 3600 44795502 14 > 3600 48920440 16 > 3600 37009440
p-hat700-2 50 > 3600 43620842 58 > 3600 48534119 65 > 3600 52567570
p-hat700-3 70 > 3600 37660188 82 2> 3600 41443956 92 > 3600 41606985
p-hat1500-1 14 > 3600 46650067 16 > 3600 43939635 17 > 3600 36602990
p-hat1500-2 74 > 3600 39134197 86 > 3600 35705377 98 > 3600 29410335
p-hat1500-3 107 > 3600 11583397 122 > 3600 22363784 137 > 3600 17768382
san200-0.7-2 26 > 3600 212477345 36 > 3600 309410312 48 > 3600 288909214
5an200-0.9-1 90 > 3600 54941877 125 > 3600 3496383 125 > 3600 4838807
san200-0.9-2 71 > 3600 22006508 105 > 3600 5041182 105 > 3600 6842531
san200-0.9-3 50 > 3600 46924868 62 > 3600 26131072 65 > 3600 43126175
san400-0.9-1 102 > 3600 3922872 150 2> 3600 1909788 200 > 3600 1085227
sanr200-0.9 48 > 3600 46925391 56 > 3600 48282533 63 > 3600 39527458
* optimal
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Table 5.9: k-plexlc Results

G w2(G)  seconds BBN w3(G)  seconds BBN w4(G)  seconds BBN
brock200-1 25 >3600 10054924 28 >3600 9610060 31 >3600 11595841
brock200-2 13* 1778 7722362 15 >3600 15728716 17 >3600 15883075
brock200-4 19 >3600 12056663 22 >3600 11842251 24 >3600 13308843
brock400-2 27 >3600 3298972 31 >3600 2506819 35 >3600 3084792
brock400-4 33 >3600 2879018 33 >3600 2769768 36 >3600 3339363
brock800-2 22 >3600 847946 26 >3600 687075 29 >3600 719475
brock800-4 22 >3600 846155 25 >3600 708185 29 >3600 771036
c-fat200-1 12* 3 802 12* 41 57612 12* 1397 1958425
c-fat200-2 24* 3 2050 24* 60 96754 24 >3600 1586893
c-fat200-5 58* 836 444241 58 >3600 3960477 58 >3600 5319030
c-fat500-1 14* 34 2060 14* 1796 356744 14 >3600 427000
c-fat500-2 26* 39 10177 26* 2368 754350 26 >3600 797974
c-fat500-5 64* 1579 557081 64 >3600 2800459 64 >3600 3453142
c-fat500-10 126 >3600 327032 126 >3600 974543 126 >3600 1193712
C125.9 42 >3600 10708047 49 >3600 17227347 56 >3600 18474262
C250.9 50 >3600 4488455 59 >3600 6659440 67 >3600 6746445
C1000.9 69 >3600 208746 80 >3600 159248 91 >3600 378692
gen400-p0.9-55 59 >3600 2474705 71 >3600 1657601 80 >3600 2755943
gend(00-p0.9-65 66 >3600 1909277 78 >3600 2027657 86 >3600 2433789
gend00-p0.9-75 75 >3600 1438210 84 >3600 1214538 91 >3600 2274896
hamming6-2 32* 0 0 32 >3600 6160422 36 >3600 44987310
hamming6-4 6* 0 3380 8* 3 58663 10* 33 693982
hammingg8-2 128* 0 0 128 >3600 636791 128 >3600 2835717
hamming8-4 16 23600 9945892 18 >3600 9748498 18 >3600 10199713
hammingl0-2 512* 1 0 512 >3600 7508 512 >3600 29602
hammingl0-4 43 >3600 323816 64 >3600 370717 64 >3600 236250
johnson8-2-4 5* 0 1585 8* 0 12337 9* 2 104679
johnson8-4-4 14* 475 6389736 18 >3600 48544486 22 >3600 52307238
johnsonl6-2-4 10 >3600 37768568 16 >3600 34069665 18 >3600 34721894
johnson32-2-4 21 >3600 1976217 32 >3600 1911159 36 >3600 1913056
keller4 15 >3600 18263136 20 >3600 17714412 22 >3600 20281149
kellerb 31 >3600 766363 37 >3600 741184 45 >3600 818500
MANN-2a9 26* 395 3240597 36* 15 100969 36* 1733 25470013
MANN-a27 234 >3600 3053292 351 >3600 78758 351 >3600 253074
MANN-a45 660 >3600 28446 990 23600 7035 990 >3600 20406
p-hat300-1 10* 139 500766 12 >3600 12816637 14 >3600 12577276
p-hat300-2 30 >3600 7335988 35 >3600 6439794 40 >3600 8083792
p-hat300-3 42 >3600 5279160 50 23600 5693325 57 >3600 5957872
p-hat700-1 12 >3600 2617164 13 >3600 2557821 16 >3600 2516929
p-hat700-2 50 >3600 1176955 58 >3600 1407568 65 23600 1459008
p-hat700-3 70 >3600 750652 82 >3600 1007772 92 >3600 1001573
p-hat1500-1 13 >3600 418932 14 >3600 407346 16 >3600 418855
p-hat1500-2 73 >3600 198544 86 >3600 246326 98 >3600 245532
p-hat1500-3 107 >3600 127330 122 >3600 169405 137 >3600 167369
san200-0.7-2 26 >3600 12473403 36 >3600 16047112 48 >3600 16009322
san200-0.9-1 90 23600 9748246 125 >3600 970390 125 >3600 1705032
san200-0.9-2 71 >3600 4524615 105 >3600 1196715 105 >3600 2153725
5an200-0.9-3 50 >3600 7414271 62 >3600 5709518 65 >3600 8130115
8an400-0.9-1 102 23600 440889 150 >3600 398976 200 >3600 231849
sanr200-0.9 48 >3600 6400789 56 >3600 7604646 63 >3600 8343819
* optimal

88



Table 5.10: k-plexld Results

G w2{G) seconds BBN w3(G) seconds BBN ws(G) seconds BBN
brock200-1 25 >3600 22042601 28 >3600 29648861 31 >3600 34480695
brock200-2 13* 724 7713075 15 >3600 37753625 17 >3600 37853872
brock200-4 19 >3600 31441620 22 >3600 32118801 25 >3600 37191920
brock400-2 27 >3600 26906867 31 >3600 11381556 35 >3600 18660437
brock400-4 33 >3600 10569863 33 >3600 15191176 36 >3600 22886705
brock800-2 23 >3600 27085224 26 >3600 13448585 29 >3600 20637652
brock800-4 22 >3600 26435168 25 >3600 18628602 29 >3600 20654583
c-fat200-1 12* 3 795 12* 42 57612 12* 1526 1958425
c-fat200-2 24* 3 1950 24* 66 96819 24 >3600 1625686
c-fat200-5 58* 952 451391 58 >3600 3673990 58 >3600 5526134
c-fat500-1 14* 36 2055 14* 2032 356784 14 >3600 386900
c-fat500-2 26* 41 10065 26* 2673 750513 26 >3600 763007
c-fat500-5 64* 1390 541520 64 >3600 3591629 64 >3600 4671016
c-fat500-10 126 >3600 299492 126 >3600 1170531 126 23600 1526963
C125.9 42 >3600 12766210 49 >3600 28041660 56 >3600 33598258
C250.9 50 >3600 13726640 59 >3600 20668136 67 >3600 25607644
C1000.9 69 >3600 5633304 80 >3600 8642487 91 >3600 7890577
gen400-p0.9-55 59 >3600 12130553 71 >3600 10851682 80 >3600 19362117
£end00-p0.9-65 66 >3600 4687226 78 >3600 6320575 86 >3600 10058105
gend00-p0.9-75 75 >3600 2190827 84 >3600 5679756 91 >3600 9510820
hamming6-2 32* 0 0 32 >3600 19260671 36 >3600 51079990
hamming6-4 6 0 3318 8* 3 58844 10* 31 691944
hamming8-2 128* 0 0 128 >3600 1406306 128 >3600 3980741
hammingg8-4 16 >3600 58435201 18 >3600 56389907 18 23600 66294428
hammingl0-2 512* 2 0 512 >3600 17456 512 >3600 42844
hamming10-4 43 >3600 10111165 64 >3600 3458007 64 >3600 1400994
johnson8-2-4 5% 0 1584 8* 0 12327 9* 2 104809
johnson8-4-4 14%* 358 6615020 18 >3600 66381658 22 >3600 68509972
johnsonl6-2-4 10 >3600 206213634 16 >3600 118169547 18 >3600 132917128
johnson32-2-4 21 >3600 160322819 32 >3600 41091745 36 >3600 58056738
keller4 15 >3600 53809489 20 >3600 42595921 22 >3600 69265197
keller5 31 >3600 21190863 38 23600 28178139 46 >3600 43147077
MANN-a9 26* 395 3069378 36* 8 32661 36* 1795 25470013
MANN-a27 234 >3600 38989932 351* 1122 13811 351 >3600 207346
MANN-a45 660 >3600 6919084 990 >3600 3340 990 >3600 16406
p-hat300-1 10* 61 500713 12 >3600 27407867 14 >3600 27853654
p-hat300-2 30 >3600 20482503 35 >3600 19834902 40 >3600 28555545
p-hat300-3 42 >3600 21195393 50 >3600 23081981 57 >3600 26938876
p-hat700-1 13 >3600 25801496 14 >3600 27416647 16 >3600 22091696
p-hat700-2 50 >3600 12855694 58 >3600 19662734 65 >3600 27101622
p-hat700-3 70 >3600 10431068 82 >3600 19707826 92 >3600 20137759
p-hat1500-1 14 >3600 24034286 15 >3600 22434996 17 >3600 18534805
p-hat1500-2 74 >3600 9391184 86 >3600 12608953 98 >3600 13499197
p-hat1500-3 107 >3600 2577031 122 >3600 9936541 137 >3600 9480218
san200-0.7-2 26 >3600 103258863 36 >3600 187794647 48 >3600 180647265
s5an200-0.9-1 90 >3600 31677870 125 >3600 745219 125 >3600 1320173
san200-0.9-2 71 >3600 6274707 105 >3600 929194 105 >3600 1840564
san200-0.9-3 50 >3600 13959883 62 23600 8019546 65 >3600 17277391
san400-0.9-1 102 >3600 396823 150 >3600 302872 200 >3600 187270
sanr200-0.9 48 >3600 15017490 56 >3600 17695417 63 >3600 16797344
* optimal

89



{v1,...,v,} and S; = {v;, ..., v, }. The basic clique algorithm in Figure 5.9 first searches
for the largest clique in S; which contains v;. It then finds the largest clique in S5
containing v, and so on. Ostergard suggests reversing this order. In other words,
first search S, for the largest clique containing v,. Then search for the largest clique
in S,-1 containing v,_;, and so on. Let c(i) be the size of the largest clique in S;.

Clearly, c(n) = 1 and c¢(1) = w(G). Moreover, c(i) € {c(i + 1),c(i + 1) + 1} for

Figure 5.12 shows Ostergard’s maximum clique algorithm. The search order allows
for the following new pruning strategy. Let U be the candidate set for an arbitrary
iteration, and define ¢ = min{j : v; € U}. We can deduce that U C S; and hence
wir(G[U]) < ¢(i). This new bound is used in Line 10 in Figure 5.12.

Ostergard’s algorithm adapts to find maximum k-plexes with two modifications.
First, let ¢(i) denote the cardinality of a largest k-plex in S;. Second, define the

candidate set associated with the k-plex K to be

U={veV\K : KU/{v} is ak-plex}.

Figure 5.13 shows the resulting k-plex algorithm k-plex2. Table 5.11 contains com-

putational results obtained by running k-plex2 on the DIMACS benchmark graphs.
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function OsterClique(U, K)
if |U|=0
if |[K| > max
maz = |K|
found=true
end
return
end
while U # &
if |[K|+|U| < mazx
10. return
11. end
12. i=min{j : v; €U}
13. if | K| + () < max
14. return
15. end
16. U=U\{v}
17.  OsterClique(U N N(v;), K U {v;})
18. if found=true

© NSO W=

19. return
20. end
21. end

22. return

function findClique

23. mazx =0

24. for 1 =n down to 1

25. found = false

26. OsterClique(S; N N(v;), {vi})
27. end

28. c¢(i) = max

29. return

Figure 5.12: Ostergard’s Clique Algorithm
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function OsterPlex(U, K)

NI O wN

if U =0
if | K| > max
maz = | K|
found=true
end
return
end
while U # &
if |K|+ |U| < maz
return
end
i=min{j : v; € U}
if | K| + k(i) < maz
return
end
K=KU{v};U=U\{uv}
U:={uelU : KU{u} is ak-plex}
OsterPlex(U’, K)
if found=true
return
end
end
return

function k-plex2

24.
25.
26.
27.
28.
29.
30.

maz = 0

for 1 =n down to 1
found = false
OsterPlex(S;, {v;})

end

cr(i) = max

return

Figure 5.13: Ostergard’s Algorithm Adapted for k-plexes
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Table 5.11: k-plex2 Results

G w2(G)  seconds BBN w3{G) seconds BBN w4(G)  seconds BBN
brock200-1 23 >3600 791928771 24 >3600 806817406 26 >3600 833090023
brock200-2 13* 64 19636411 15 23600 1075870150 16 >3600 1065615731
brock200-4 19 >3600 881361988 20 23600 931846630 21 >3600 943179921
brock400-2 22 >3600 759862798 23 >3600 804857686 23 >3600 781885801
brock400-4 22 >3600 758652153 22 23600 794063906 24 >3600 771681337
brock800-2 18 >3600 702311556 20 >3600 721916977 21 >3600 714624762
brock800-4 19 >3600 719342183 20 >3600 709513722 21 >3600 715586808
c-fat200-1 12* 0 3758 12* 0 124483 12* 18 4463378
c-fat200-2 24* 0 2222 24* 0 32128 24* 3 792394
c-fat200-5 58* 0 2566 58* 0 11320 58* 1 137141
c-fat500-1 14> 0 19845 14* 8 1185321 14> 1234 134916615
c-fat500-2 26* 0 10463 26* 2 270561 26* 92 12897124
c-fat500-5 64* 0 6382 64* 1 59959 64* 8 1050683
c-fat500-10 126* 0 10373 126* 0 34033 126> 4 344858
C125.9 34 >3600 601019873 37 >3600 607049688 39 >3600 647773425
C250.9 36 23600 571490135 37 >3600 643968505 38 >3600 662112226
C1000.9 33 >3600 491059839 37 >3600 495615493 41 >3600 495436467
gen400-p0.9-55 34 >3600 565601499 36 >3600 599925462 39 >3600 617236444
gen400-p0.9-65 36 >3600 557748615 38 >3600 587965932 40 23600 614450751
gen400-p0.9-75 34 >3600 578953836 37 >3600 599770569 42 >3600 562373641
hamming6-2 32* 0 1161 32" 1 203776 40* 951 226269962
hamming6-4 6* 0 4533 8* 0 37119 10* 1 395739
hamming8-2 128* 1 23244 102 23600 203665707 44 >3600 556953372
hamming8-4 16* 58 7996453 16 >3600 1129944679 18 >3600 1014983524
hamming10-2 512* 95 461740 100 >3600 193939903 44 >3600 471073063
hamming10-4 22 >3600 527683421 16 >3600 778357773 18 >3600 746764413
johnson8-2-4 5% 0 2628 8* 0 10489 9* 0 151051
johnsong-4-4 14* 0 40913 18* 35 14015342 21 >3600 1246612573
johnson16-2-4 10 >3600 1892276637 15 23600 1256161458 18 >3600 1379453092
johnson32-2-4 21 >3600 843926109 24 >3600 766290563 25 >3600 875412190
kellerd 15* 913 284120627 21 >3600 886421569 16 >3600 1088296129
kellerb 15 23600 835222972 22 23600 662317050 16 >3600 809663179
MANN-a9 26* 0 53402 36* 2 376168 36* 141 36511981
MANN-a27 235 >3600 27043381 351 >3600 24808187 351 >3600 55749297
MANN-a45 661 >3600 4140618 990 >3600 3661523 990 >3600 18719092
p-hat300-1 10* 5 1561134 12* 416 128854671 13 >3600 1152133728
p-hat300-2 29 >3600 673936016 27 >3600 696210402 27 >3600 752178202
p-hat300-3 31 >3600 621034466 32 23600 663097551 31 >3600 720400620
p-hat700-1 13* 383 90762293 13 >3600 890061519 13 >3600 931592519
p-hat700-2 31 >3600 537122370 30 >3600 618173686 29 >3600 666390060
p-hat700-3 31 >3600 532975341 29 23600 601725177 29 >3600 636046239
p-hat1500-1 12 >3600 639194212 14 >3600 637343144 13 >3600 666758477
p-hat1500-2 27 >3600 460519275 29 >3600 477421254 31 >3600 474585487
p-hat1500-3 33 >3600 431618259 33 >3600 459920187 33 >3600 473209365
san200-0.7-2 24 >3600 874307781 34 >3600 722461564 46 >3600 607532865
san200-0.9-1 67 >3600 335935223 125* 964 121912591 39 >3600 621612154
san200-0.9-2 42 >3600 433667092 47 >3600 468417446 43 >3600 566888709
san200-0.9-3 42 >3600 490907696 36 >3600 655264592 38 >3600 645037070
san400-0.9-1 64 >3600 285116552 48 >3600 439741324 36 >3600 614651437
sanr200-0.9 33 >3600 590788142 37 >3600 617210758 40 >3600 629276404
* optimal
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Table 5.12: Results Summary
Algorithm k=2 k=3 k=4 Total
basicPlex 13 8 5 26

k-plexla 14 8 5 27
k-plexlb 13 8 5 26
k-plexlc 15 7 4 26
k-plexld 15 8 4 27
k-plex2 19 14 11 44

5.5 Conclusions

This chapter describes combinatorial algorithms for finding maximum k-plexes
in a graph. Section 5.2 focuses on co-k-plex coloring heuristics which are used as
an upper bound on the k-plex number. Section 5.2 contains four co-k-plex coloring
heuristics, two integral and two fractional. Section 5.3 discusses a heuristic for finding
maximum k-plexes. This heuristic provides a lower bound on the k-plex number.

Section 5.4 describes exact algorithms for finding maximum k-plexes. Table 5.12
summarizes the number of instances solved to optimality by each exact algorithm.
The first five are based on a basic clique algorithm. These algorithms perform sim-
ilarly within the hour time limit, though this type of algorithm appears to benefit
from the upper and lower bound heuristics.

The final exact algorithm adapts Ostergérd’s clique algorithm. Clearly, k-plex2
dominates all other algorithms with respect to number of optimal solutions found.
Moreover, k-plex2 appears to converge quickly, when it converges at all. On the other
hand, when k-plex2 does not converge, the final solution can be far from optimal.

k-plex2’s superior performance might be a consequence of the difficulties asso-

ciated with approximating xx(G). While Type 1 algorithms are improved by using
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heuristics, the algorithms spend time at each branch and bound node to approximate
Xk (G[U]) for the candidate set U. Unfortunately, xx(G) could be an inaccurate bound
on wg(G) in general. The k-plex2 algorithm spends no time estimating xx(G) but

benefits from the bound obtained using the ¢, array.
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Chapter 6

Co-k-plex Polynomials

This chapter generalizes the independence polynomial. The resulting family of
polynomials carries combinatorial information on a class of independence systems

defined over the vertex set of a finite graph.

6.1 Introduction

The graphs discussed in this chapter are finite and simple. Refer to Diestel (25)
for standard graph terminology. For a graph G = (V, E) and S C V, let G[S] be
the subgraph induced by S. Given v € V, define Ng(v) = {u € V : vu € E}
and Ng[v] = Ng(v) U {v}. Let A(G) = maz{|Ng(v)| : v € V}. A set of pairwise
nonadjacent vertices in G defines an independent set. Let ZC denote the set of all

independent sets in G. Gutman and Harary (33) associated the following polynomial

with G:

I(G;z) = z !,

IezC
This independence polynomial carries information about the enumerative structure

of independent sets in G. More precisely, the coefficient of z* in I(G; x) is exactly the
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number of independent sets of cardinality ¢ in G. The independence polynomial has
been studied in a number of papers (2; 12; 13; 14; 20; 34; 35; 37; 40; 41; 42). Levit
and Mandrescu offer a survey (43).

Recall that an independence system defined over V' is a nonempty collection of
subsets of V which is closed under set inclusion. Fix an integer ¥ > 1 and let S CV
satisfy

|INglv]N S| <k forallves.

The set S is known as a co-k-plex in G. Let I denote the set of co-k-plexes in
G. Notice that Z€ = Z¢ and that Z¢ defines an independence system on V for all
integers £ > 1. The graph G is associated with the family of co-k-plex polynomials
defined as follows:

Ii(G;z) = Z 2 k=1,2,3,..

Iezf

Let s¥ be the coefficient of z' in I;(G;x); that is, s* denotes the number of co-
k-plexes of cardinality ¢ in G. Clearly, s¥ = 0 for all i > ax(G), where a.(G)
denotes the size of a largest co-k-plex in G. Notice also that S € ZF = S € IZ,,.
Consequently, sf < s¥™ for any k and I,(G; z) = L141(G; z) whenever k > A(G). In
fact, I(G;z) = (1 + )V for all k > A(G) because every subset of vertices is a
co-k-plex in this situation.

This chapter is organized as follows. Section 6.2 explores the effect certain graph
operations have on the corresponding polynomials and derives recursive relationships

for the co-2-plex polynomial. Section 6.3 computes the co-2-plex polynomials for
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various structured graphs. Section 6.4 summarizes the results and suggests some

future research directions.

6.2 Graph Operations and Recursive Relationships

This section investigates the effect certain graph operations have on the corre-
sponding polynomials and derives recursive relationships for the co-2-plex polyno-
mial. The first operation we study is graph union. The graph G; U G5 has vertex
set V(G1) UV(G2) and edge set E(G1) U E(Gz). The graph G = |Ji_, G; is defined

inductively.
Lemma 15. Fiz an integer k > 1. If G = J;_; G, then I(G;z) = [[i_; It(Gi; x).

Proof. The result is trivial for r = 1, so we first analyze the case where r = 2. Notice
that, given co-k-plexes S; C G and Sy C G, the set S = S; U S, is a co-k-plex in
G1UG,. Moreover, every co-k-plex in G; UG5 can be constructed this way. It follows
that the coefficient of z° in the polynomial I,(G1UGs; x) equals the sum of the product
of all coefficients of pairs ¢ in I;(G1;y) and 2™ in I;(Gs; 2) such that [ +m = i. In
other words, Ix(G1 U Go; z) is the product of I(Gy;x) and Ix(Ga;x). Now if r > 2,

repeat this argument using graphs Uf;ll G and G for each j =3, ..., 7, O

The join of graphs G, G is the graph G = G+ Gy, where V(G) = V(G1)UV(G2)
and E(G) = E(G1) U E(G2) U {vvz : vy € V(G1),v2 € V(G2)}. It is well-known
(2; 33; 37) that I, (G;z) = I;(G1;x) + I;(Go; ) — 1. The following result generalizes
this formula to the case where k = 2.
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Theorem 17. Let G; and G2 be graphs with ny and ny vertices, respectively. If

G= Gl + Gg, then

L(G:2) = (G 7) + I(Gas 7) + 22: K”l jm) - <7;1> _ (’;2)} ),

J=0

Proof. The sum I;(Gq;z) 4+ I3(Ge; x) accounts for all co-2-plexes entirely contained
in either G; or G3. However, this sum fails to count any co-2-plex S which intersects
both G and Gs. Observe that | S| < 2 for any such co-2-plex. For if not, then without
loss of generality, choose v, w € SNG; and z € SNG,. We deduce that v, w € Ng(z)
from the definition of graph join. Therefore, |[Ng[z] N S| > 2, which contradicts that
S is a co-2-plex.

Now observe that every set of two or less vertices defines a co-2-plex. G contains
S22 o (M1 such sets, 3.2 [(")+ (732)] of which are entirely contained in either G; or

J=0\ §=01\ j
()],

We mention that the final term in the formula for I5(G; x) adjusts for double counting

Go. It follows that I(G;x) = Iy(Gr; x) + Ir(Ga; ) +Z?=O [(mfnz) ~ (™) -

J J

the empty set as a co-2-plex. ]

Given graphs Gy, Gy with vertices v; € Gy, 1 = 1,2, the edge join graph G =

(G1,v1) © (Gg,v5) is formed by adding an edge joining v; and vs.

Theorem 18. If G = (Gy, v1)©(Ga, va), then I,(G; z) satisfies the following recursive

formula
IQ(G;Z') = 1132 . Ig(Gl - N[vl];x) . IQ(GQ — N[Ug];x) -+ IQ(Gl,I) . IQ(GQ — ’Ug;.T)+
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L(Gy;x) - I3(Gy — vy 2) — I(G1 — vy 2) - Io(Gy — vg; 7).

Proof. We consider three classes of co-2-plexes in G and determine the cardinality of
each class seperately. Let S be a co-2-plex in G, and suppose v, v, € S. Since v;v5
is an edge in G, we know that Ng,(v;) NS = @ for 4 = 1,2. Therefore, this class
contributes

7% I)(G -~ {N[v;] U N[v,]}; z)

to the total. Notice that G — {N[v1]U N[vy]} = {G1 — N[v1]} U{G2 — N[vs]} so that
Lemma 15 implies 22 - I;(G — {N[v1] U N[wo]}; z) = 2% I,(G1 — N[vi];z) - Io(Go —
Nlvyl; ).

The class where v, & S contributes I;(G — ve;x) to the total, and Lemma 15
implies that Io(G —vq; ) = Io(G1; ) - Io(Gy —v; x). Similarly, the class where v; € S
contributes I;(G — vy; ) to the total, and Lemma 15 implies that I,(G — vy;z) =
I,(Gq; ) - I;(Gy —v1; x). Observe that the last two classes both include the case where

v1,v2 € S. We adjust by subtracting I5(G1 — v1;x) - Io(Gy — vo; x) from the total. O

In Section 6.3, we use recursive relationships to compute the co-2-plex polyno-
mials of certain families of graphs. The following result is an example of one such

relationship.

Theorem 19. If K C G is complete, i.e. consists of pairwise adjacent vertices, then
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I(G; x) satisfies the following recursion:

I(G;z) = 22: 7' I(G~KUNI[S]; z)+ Z 2% I,(G—KUN[]UN[w]; z).

=0 SCK,|8|=i veK,weNw)\K

Proof. We consider four classes of co-2-plexes in G and determine the cardinality
of each class seperately. The first class consists of those co-2-plexes S such that

SN K = &. This class contributes
IQ(G — K, LE)

to the total. The second class satisfies |S N K| = 2. In this case, there exists a pair
u,v € SNK. Since uv € E(G), we deduce that N(u)NS = {v} and N(v)NS = {u}.

It follows that this class contributes

27+ > L(G - {Nu]UNp]};z)

u,vEK

to the total.
Since | SN K| < 2, it remains to consider those co-2-plexes satisfying [SN K| = 1.
Let {v} = SN K. Notice that either SN N(v) = & or SN N(v) = {w} for some

w € V(G)\ K. There are

z- Y L(G - N[v];z)

veK
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of the former and

z? - Z I,(G - {N[]UN[uw]}; z)

veEK , weN(v)\K
of the latter. We obtain the given formula by collecting and rearranging terms. O

Corollary 6. Given v € V(G), I1(G; ) satisfies the following recursion

L(G;z) = (G —v;z) + - I,(G — N];z) + 22 - Z I,(G — N[v]U N[w]; z).

WEN(v)

Proof. Let K = {v} and apply the previous result. d

6.3 Examples

This section computes the co-k-plex polynomials for various structured graphs.
Most of the results deal with co-2-plex polynomials. First notice that an edgeless
graph G on n vertices satisfies I(G;z) = (1 4+ )™ for all ¥ > 1. A complete graph
K on n vertices satisfies I;(G;z) = 3.5, ()a? for all k > 1.

Given an integer k > 1, the graph H is a k-claw if there exists a vertex u € V(H)

such that V(H) \ u= N(u), N(u) is a co-k-plex, and |N(u)| > maz{3, k}.

Example 1. If H be a k-claw on n vertices, then

E

—1
-1\ .
L(Hyz)=(1+z)" 1+ <n _ )x“’l.

]

1l
o

i
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Proof. The term (1 + z)"! counts all co-k-plexes which exclude the center vertex w.

The term )¢~} ("71)z**! counts all those co-k-plexes which include u. O

An r-partite graph can be partitioned into r independent sets. The complete -
partite graph Ky, . .. has all possible edges between distinct partition classes, where

ni,..., N, are the cardinalities of the partition classes.

Example 2.

B SR

J

Proof. The proof is by induction on the number of partition classes . When r = 1,
the formula reduces to the correct value of (1 4+ z)™. Now let r > 1 and assume that
the formula holds for all (r — 1)-partite graphs. We will show that it holds for the

r-partite graph K, .. The induction hypothesis implies that

r—1 r—2

IQ(Km,...,nr—ﬁ z) = Z(1+x)ni+i Z

Kz;;:l n, +) _ (2;21 ) _ <>} i
i=1 i=1 =0 J J J

Notice that K, .., can be constructed by performing a graph join between

Kn,,..n,_, and an independent set of cardinality n,. Theorem 17 implies that
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Z; K np+nr> B (ZJ’%} np> _ (vm |

2
Upon simplifying, we obtain the desired formula. O

Notice that if n; = n for all 7, then we obtain

=i (7)) ()

J

Our next example is the path. The path P" has vertex set {v1, ..., v,} and edge

set {vivipr | 1 <i<n—1}. It is easy to see that
L(P%z)=1, I©L(PYz)=14+z, and Li(P%z)=(1+x)%

By convention, Io(P";z) = 0 for all n < 0.

Example 3. Forn > 3, I,(P"; z) satisfies the following recursion
3
L(P"z) = in_llg(P"“i; ).
i=1

Proof. Notice that P* — v, = P"! P" — Nv,] = P* — {vn,vn_1} = P2, and
— {Nw,]UN[w,_1]} = P* —{vn, Un_1,Vn_2} = P"3. Applying Corollary 1 using

v, gives the following
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Ig(Pn,ZL') = IQ(Pn_l;ﬁC) +x- Ig(Pn—2;CU) + 1'2 . Ig(Pn—B;CL').

U

The coefficients of I3(P";z) have some additional interpretations. For example,
given an integer j > 1, define K; = {j,7 + 1,7 + 2}, written mod n. The polytope
P={zeR": Z;:f z(K;) < 2,0 <z <1} is the convex hull of incidence vectors for
co-2-plexes in P". Therefore, the coefficient of z* in I,(P"; x) is the number of vertices
of the polytope P indexed by vectors with 7 nonzero components. The coefficients of
I,(P"; z) have also been studied in the context of binary strings with no triplet of 1’s.

Our next example is the chordless cycle. The cycle C", where n > 3, has vertex set
{v1, ..., v, } and edge set {v1v, }U{vsv;41 | 1 < i < n—1}. By convention, I,(C™;z) =0

for all n < 0.

Example 4. Forn > 3, Io(C";z) satisfies the following recursion

L(C™ z) = L(P" Y 2) + 2LL,(P"3; ) + 222 [,(P"™4; z).

Proof. Notice that C"—wv, = P"~!, C" = N[v,] = P2, and C"~{Nv,|UN[v,_1]} =

C™ — {N[v,) U N[v1]} = P"*. Applying Corollary 1 using v, gives the following

L(CYz)=L(P"Y2)+x- L(P" 3 x) + 22 L(P" % 2) + 22 L(P" 4 1)
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O

It has also been shown that the polytope P’ = {z € R": 37, z(K;) < 2,0 <
x < 1} is the convex hull of incidence vectors of co-2-plexes in C™. Therefore, the
coefficient of z* in I,(C™; z) is the number of vertices of P’ indexed by vectors with 4
nonzero components.

A connected and acyclic graph defines a tree. A spider, S,, is a tree with exactly

one vertex v of degree greater than or equal to three.

Example 5. Let S, be a spider such that v has degree d. The graph S — v consists

of disjoint paths P™, ..., P™ and I3(S,; ) satisfies the following recursion

d

: » L(P - -
L(Syia) = [[ L(P™;2) + 2 1+x.zlz§7j_% T B )
i=1 j=1 )

i=1

Proof. The first part of the claim follows from the fact that A[S —v] < 2. To obtain

the recursive formula, we apply Corollary 1. By Lemma 15,
T
L(S, —viz) = HIQ(P”";Q:).
i=1
Lemma 15 also implies that
L(S, — N[vlz) = [ [ (P™ ;).
i=1

It remains to calculate } ¢ v, [2(Sy —{N[v]UN[w]}). Each neighbor of v belongs
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Figure 6.1: The centipede W,,.

to exactly one of the paths P™, ..., P". Therefore, Lemma 15 implies that

: Pnj_z - 7 —1
Z I2 z PnJ—l U P '

wWEN (v j=1

The desired formula is now obtained by plugging these values into the formula from

Corollary 1. O

A centipede, W, is a tree with vertex set AU B = {a1,...,a,} U {b1,...,b,} and
edge set {a;b; : 1 <i<n}U{bbis1:1<i<n-—1} See Figure 6.1. It is easy to see

that
L(Wo;z) =1, L(Wyz)=(1+2)% and L(Wy ) =1+ 4z + 622 + 22°.

By convention, Iy(W,;z) = 0 for all n < 0.

Example 6. Forn > 3, Iy(W,;z) satisfies the following recursion
L(Wy; ) = (1+3) [z (Wi —3; )+ (142)* Lo (Wi _o; 2)+ Lo(Wy_1; 2) = (143)- Iy (Wh_s; 7).
Proof. Consider the centipede shown in Figure 6.1. Let W, [a,, b,] denote the sub-
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graph induced by {an,b,}. Notice that W, = (Wy[an, bn], bn) © (Wn_1,bn-1). There-
fore, applying Theorem 18, first compute Io(Wy[an, bn] — N, g 6n][0n); 2) - (W ~
Nw,_[bu-1]; ). Observe that Io(Whlan, bn] — Nw, g, b01[0n); T) = I(2;2) = 1. Now

since Wi—1 — Nw,_, [br—1] = Why—ala,—o] UW,,_3, Lemma 15 implies

Iy(Wnor — Nw,_y [bna]s 2) = L(Whog[an—2]; @) - L(Wh3;7) = (1 + ) - L(W,_g; z).

Now compute Io(Wp[an, by] —bn; ) and Io(W,_1 —b,_1; x). Clearly, Io(W,[a,, by)—
bn;x) = L(Walaa];2) = (1 + ). Since Wye1 — by = Wy_ilan_1] U W,_s, apply
Lemma 15 to obtain Io(W,_1 — by_1;2) = (1 +2) - Iy(W,—9; 7). In addition, we know

that Io(Wy[an, bu); 2) = (1 + )2, so the formula from Theorem 18 gives
L(Wesz) =22 (1+12) - L(Wye3;2) + (1 4+ 2)* - (1 + 1) - L(Wyoo; 2)+
L(Wn-y;2) - (1+2) = (1+2)* L(Wh_z;2).

Upon simplifying, we obtain the desired formula. O

6.4 Conclusions

This chapter introduces a generalization of the independence polynomial. The
resulting family of polynomials carries combinatorial information on co-k-plexes in a
finite graph. The results in this chapter include theorems relating graph operations
and co-k-plex polynomials and examples computing the co-2-plex polynomials for

various structured graphs.
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Chapter 7

Conclusions and Future Work

This thesis analyzes the polyhedral, algorithmic, and enumerative properties of co-
k-plexes. Co-k-plexes are degree-bounded, vertex-induced subgraphs of a finite graph
G = (V,E), and they form a family of independence systems over V. Co-k-plexes
arise naturally as stable set relaxations. Many results in this thesis are generalized
theorems and algorithms from the stable set literature.

Chapter 3 focuses on composition of stable set polyhedra, or co-1-plex polyhedra,
by generalizing a theorem of Barahona and Mahjoub concerning the composition of
stable set polyhedra. Barahona and Mahjoub’s theorem extends to the case where
the separating set consists of a complete graph minus an edge. A further extension
of Theorem 1 to more general cut-sets would be beneficial since composition can be
applied recursively.

In other words, G can be decomposed into subgraphs Gy, ..., G,, such that the
defining system for each P(G;) is known. For example, decompose G into a set
of perfect graphs. The defining systems for each P(G;) can then be composed to

define P(G). Another idea is to construct P(G) starting from the leaves of a tree or
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branch decomposition. These approaches have the potential to characterize the stable
set polytope for graphs which admit a structured decomposition, but they require a
more general form of Theorem 1.

Generalizing Theorem 1 might require techniques different from the lift and project
method of Barahona and Mahjoub. Finding a Gy and F, with the correct structure
appears to be difficult. A subtle requirement is that Gx[C] has to have exactly |C|
affinely independent maximum stable sets. Otherwise, the matrix A is not invertible
and Lemma 4 fails. Without this restriction, Theorem 1 would have held for any
cut-set which partitions into two cliques. While there exist many graphs Gy [C’] with
exactly lé’ | affinely independent maximum stable sets, the inequalities which define
F, must also involve the w; vertices in a structured way. This structure would most
likely involve extending the results of Section 3.2 to prevent the projection step from
becoming too complicated.

Chapter 4 contains a polyhedral study of the co-k-plex polytope, including the
derivation of five facet classes. The facets are related to 2-plexes, cycles, wheels, webs,
and the claw. In addition, Chapter 4 presents a characterization of 2-plex clutter ma-
trices A for which the polytope {z € R} | Az < 2,z < 1} is integral. It turns out
that 2-plex clutter matrices can be tested for this property in polynomial time. The
final section of the chapter introduces co-k-plex coloring and attempts a combinato-
rial concept of k-plex perfection. It contains examples of k-plex perfect graphs and

discusses some difficulties in generalizing certain properties of graph perfection.
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Future work includes finding additional co-k-plex analogues for results on stable
set polyhedra. For example, it seems likely that webs induce facets for general co-k-
plex polyhedra. However, proving the validity of any such inequality can be difficult.
In particular, generalizing Lemma 8 appears to be an interesting and challenging
combinatorial problem. If the form and validity of general web inequalities can be
shown, the matrix constructed in Theorem 5 would most likely verify the dimension
of the corresponding faces.

Another avenue of research is a computational study on the strength and efficiency
of the facets introduced in Section 4.3. It would especially be interesting to study
the k-claw facets because the structure of k-claws is quite simple. Given a vertex v,
finding a k-claw amounts to searching N(v) for any co-k-plex on at least min{3, k}
vertices. This structure might lead to straightforward separation algorithms.

A third possibility for future research is to explore alternative notions of k-plex
perfection. Chapter 4 introduces two types of k-plex perfection: polyhedral and
combinatorial. These definitions do not always coincide, and both characterizations
fail to generalize many properties of graph perfection. It would be interesting to see
if any k-plex perfection characterization has both nice polyhedral and combinatorial
properties.

Chapter 5 describes combinatorial algorithms for finding maximum k-plexes in a
graph. This problem is computationally equivalent to finding maximum co-k-plexes

in the complement graph. Section 5.2 focuses on co-k-plex coloring heuristics. Co-5-
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plex colorings provide an upper bound on the k-plex number. Section 5.3 discusses a
heuristic for finding maximum k-plexes. This heuristic provides a lower bound on the
k-plex number. Section 5.4 develops exact algorithms for finding maximum k-plexes.

The material in Chapter 5 suggests many avenues for future research. For exam-
ple, the exact value for the co-k-plex chromatic number remains unknown for many
of the DIMACS graphs, so future work includes designing an exact co-k-plex coloring
algorithm. It would also be interesting to see how much the co-k-plex coloring heuris-
tics could be improved. Another possibility is to design other heuristics for finding
k-plexes in a graph.

Chapter 6 introduces a generalization of the independence polynomial. The result-
ing family of polynomials carries combinatorial information on co-k-plexes in a finite
graph. The results in this chapter include theorems relating graph operations and
co-k-plex polynomials and examples computing the co-2-plex polynomials for various
structured graphs. Future research can involve further theorems and computations
on the co-k-plex polynomial of structured graphs.

In addition, researchers (44; 61) study the first derivative of graph polynomials,
e.g. the matching polynomial, independence polynomial, and characteristic polyno-
mial. For example, it is well-known that L1,(G;z) = > weve) [1(G = Nvf;z). An
example of a result dealing with first derivatives of co-k-plex polynomials is the follow-

ing. Given integers k,n > 1, recall from Section 6.3 that I, (K,;) = Zf:é (’;)x]
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Therefore,

d bl n k n—1
. _ ; i—1 __ j __ .
_d$Ik+I(Km5’7) = E j- (j)xﬁ =n. E ( j )3:7 =n- I (K,-1;2),

j=0 j=0

and this simplifies to

d
£Ik+1(Kn, .CU) =7n- Ik(Kn—h ‘T)

It would be interesting to obtain additional results relating the first derivatives of
co-k-plex polynomials.

Overall, attempting to generalize stable set properties can both succeed and fail.
For instance, the co-k-plex facets offer nice examples of successful analogues for stable
set facets, and small changes to Ostergird’s algorithm produce a fast exact co-k-plex
algorithm. On the other hand, the difficulties encountered concerning combinato-
rial perfection and the validity of the web inequalities for general k show that this
approach can also fail.

On a higher level, this thesis demonstrates the benefit of unifying constructs such
as independence systems. In the end, many results in the stable set literature follow
from the axioms of an independence system. With this in mind, it is worth the effort to
determine if any new results hold for a larger class of set systems. This approach can
reduce the fragmentation of knowledge in the combinatorial optimization community,
and researchers might then avoid the time-consuming demands of rediscovery each

time a new constraint is added to a well-studied problem.
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This view suggests the possibility of studying relaxations of other independence
systems. In general, one could study the family of subsets containing a bounded
number of circuits with bounded intersection. As in this thesis, these families of

independence systems can be analyzed from polyhedral, algorithmic, and enumerative

perspectives.
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