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I. INTRODUCTION

The interest in inelastic collisions between slow atoms has in-
creased in recent years. Some general surveysl’ : have emphasized
the importance of such collisions in interstellar space and in the
earth's atmosphere. In particular, calculations involving the colli-
sions of H atoms with C, C+, O, and Si+ have shown the fine-structure
excitation reactions to have rate coefficients large enough to provide
significant cooling mechanisms for interstellar hydrogen clouds. -
Also, the O(3P) - O(3P) reactions, of importance to the study of the
earth's upper atmosphere, have been shown to have large excitation
cross sections. °

The theoretical formulations presented in each of the investiga-
tions cited above assume that the collisions are elastic, or more pre-
cisely, that the energy differences among fine structure levels are
negligible in comparison with the center-oi-mass energy of motion
of the colliding atoms. This approximation is usually introduced so
that less computation is required to obtain scattering cross sections.
We give in TABLE I-1 the excitation energies in degrees Kelvin
[T(°K) = energy divided by Boltzmann's constant, kB] for C, C+, o,
Si, and Si+. If one considers the atomic collisions occurring in in-
terstellar space, where the temperature is typically 100-200 °K, it

is evident that the above-mentioned approximation is quite severe.

In this thesis we consider the scattering of singly ionized carbon



TABLE I-1. Excitation energies ( °K) for the ground
state fine-structure levels of C, C', O, Si and sit.
The spectral data are from Reference 9.

Atom Level Excitation Energy ( °K)
c *P, 0
C *p, 23
C *p, 62

+
Cr : P 0
C Py, 92
o) P, 0
O ‘P, 228
o) ’P, 326
Si *p, 0
Si ’P, 110
Si P, 321
sit *P,, 0
sit *Py, 411




by slow hydrogen atoms. The earlier calculations of Callaway and
Dugan6 and Smi1:h7 (who corrected the results given by Dalgarno and
Rudges) assume the C+ - H excitation scattering to be elastic and
then assume, respectively, that the collision is dominated by the
long-range polarization interaction, and the spin—change interaction.
Callaway and Dugan compute the excitation cross section using the

4
impact parameter method , and Smith employs an orbiting approxi-

mation to the spin-change formalism for hyperfine transitions. 0
Herein, we consider both the long-range polarization interaction and
the spin-change interaction (interpreted later as principally a short-
range effect). The scattering problem is treated by a close-coupling
formalism which does not neglect the energy difference between the
C+(2P) fine-structure levels.
in the coupled equations in a manner identical to that discussed by
Arthurs and Dalgarno. H The spin-change interaction is included in
a close coupling calculation - for the first time- by a somewhat novel
modification of the elastic spin-change formalism.

-+
The C - H excitation cross section we compute varies from 174:—.1,,2

at 0. 0lev (116 °K) to 1022:\‘,2 at 0.085ev(986 °K), and the maximum of al-

2 o . .
most 2002 cccurs near 0.0158ev{174 "K). At all energieg considered

(T <1000 °K) our excitation cross section is somewhat smaller than

[

hat reported by Smith but larger than that reported by Callaway and

Dugan (see Figure 12).



Additional investigations indicate that most of the excitation cross
section may be attributed to the spin-change interaction.

Studies of the sensitivity of our results to various input parame-
ters and numerical methods suggest that the results reported in this
thesis are accurate to % 20 per cent.

The rest of the thesis is organized as follows. In Chapter II the
close-coupling formalism for atom-atom collisions is developed, and
the coupling matrix elements for the polarization and spin-change in-
teractions evaluated. (These are derived in detail in the Appendices.)
The numerical techniques used to integrate the coupled equations are
described in Chapter III. In Chapter IV, the ¢t - H elastic and fine-
structure excitation cross sections are presented and discussed, and

the cooling rate due to this process caicuiaied.



II. THEORY OF C+ - H COLLISIONS AT LOW ENERGIES

A. General Atom-Atom Scattering Theory; Close Coupling Formalism

We begin our analysis of the interaction of two atoms with a dis-
cussion of the time-independent Schrodinger equation. In a coordin-
ate system fixed in space we write the atom-atom Hamiltonian (atomic

units are used throughout, i.e. m, = e = =1

4 2 1 2 1 , 2 B R.Y) @1
H= -Z.Mavo. —Zmbvb 2 Ei:Vl +V<R‘,Rb,yz)’( )

where —ﬁa and ﬁ.b locate the centers-of-mass of the nuclei of atoms A
and B, M, and My, are the nuclear masses, V is the total interaction
energy of the electrons and nuclei, and the summation is over all elec-
trons. The unperturbed motion of the center-of-mass is not of interest
here, so we procede to transform (2.1) to the relative and center-of-
mass (CM) coordinates of the entire system.

If the number of electrons associated with atom A is n,, and with

B, np, the total mass is

M = Ma+Mb+“a Ny

and the reduced mass of the two-atom system is

r /. . \-1 / \-l.i—i
/L(= L {Mg+n,) + UM, +n,)



Let R be the vector joining the CM of atom A to that of atom B, and
let ?ai designate the coordinates of electron (i) relative to the CM of
nucleus A. The coordinates are illustrated in Figure 1. In terms of
these coordinates the above Hamiltonian is
N Lg? -l gr o4 4L 2
H-= zmvcm Z.}J.VR _;_Z in 2 z Vb'

1 —

2 (Matnd) G b (2. 2)
1 - .
- . -V., + =

The notation Z indicates a summation over all pairs of electrons in
(i, 1i") '

a ctieran atAarn Tha mivo
a giVlii ailllii. 4418 vd

1

(17
Q
b=y

ent terms in these summationg ar

1
- - S -~ & Masdadalew. -

- - 2
order M, (Mbl) relative to the Vii(vbj) terms. By dropping these

terms we may separate the CM motion by writing the total wave func-

tion and energy as

‘ " _ ken
’\}rt=e %) Et—ZM'l'E,

—tp
where k___ is the (constant) momentum of the center-of-mass, located
“

e
1

at E::m: and E is the total energy less the kinetic energy of the CM.

‘ .
It follows that ® , the function describing the relative and internal mo-

tion of the two atoms is a solution of the (approximate) wave equation



Figure 1. Coordinates for the atom-atom collision problem.
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['5'} f -T2V 7 2V

) 3
PV, S - E18 = 0. 2.9

In a manner analogous to the Born-Oppenhelmer treatment of dia-
tomic molecules12 we seek solutions to (2. 3) such that the relative mo-
tion may be considered separately. Let H(A) and H(B), ¢ ‘A and b' B
and EA and EB be the Hamiltonians, antisymmetrized eigenfunctions,
and eigenvalues for the separated atoms A and B, & andg being appro-

priate sets of quantum numbers. Then

H(A e =L o" (2.4

o I

. . . i i A B
with a similar equation holding for atom B. Since the{b" } and <}> ¢
are complete sets we may expand the total wave function in terms of

. A B 1 ae . s
the product functions ¢¢ ¢P , the bar indicating antisymmetrization
with respect to all electrons. Thus an incident plane wave may be

written in terms of the functions

%«(& (-ﬁ, ac, 'bn = (?\ 45 (o) 0‘,): {F:’ (2. 5)

Next we rewrite the Hamiltonian in (2. 3) as

H -2_)!-" V: + H(n +H(B) +N(ﬁ,g::‘.)f—';i), (2. 6)



with nr, the total interaction energy for the system, and make a par-

tial wave expansion of F“P’

(R)

Fa ¥ f W Y,.., (2.7

R denotes the orientation of R in the CM system. Now using Equations
).m,
(2.5) - (2.7) in (2. 3) we find that the radial functions §_ . (R) satisty

the following coupled equations:

at LA(L+1 >~ -
Z [ TRt T —(—R—:—l "ZIU.IU'(R;rﬂt;rbj) + Z/U- (E"E:* E:)]
(d(;lm,)

(2. 8)

* Py +
Premultiplying (2. 8) by a particular Yxm,(ﬁ) 4>¢ 4>; and integrating

over all coordinates but R we obtain

2 L(2+1) L
e T E +de]$ "
(2.9)
= 2u >, {fm, LR i/\?llmo( >]C
Fidemmy s aoF P
where
2 [ — - A - R
Kag = 2p AR "Ea™Eg) (2.10)



and the coupling matrix element

<2m, d¢ | m\l'mi«f’?’)

*

P . N . e (2.11)
= J}i‘a(ﬂraiAle [‘Y;m,_(g)(bd 42' fU.\T;m;(R)‘ﬁ"dyg}-

Formally, the scattering equations (2. 9) may be simplified by ex-
panding the wave function § in a coupled representation. We first
couple ;:. , the total angular momentum of atom A, and :Q., the angu-
lar momentum of relative motion, to yield —q., and then couple -q. and
;; , the total angular momentum of atom B, to yield the total angular
momentum .j'. Then since the entire system is invariant with respect
to spatial rotations, J * commutes with the total Hamiltonian (2. 6) and,
in fact, commutes with each term of this Hamiltonian. As a conse-
quence the matrix elements (2.1l1) are diagonal in the coupled | J M)
representation,

In this coupled representation we may expand the total wave func-

tion § in terms of tlie functions

aéshﬂ

~
»|—
>

R 21

IMm A -
1 ® Ty RRLR), e

where

=10~



M (2.13)
ety = mm’ QM jemy, | TM) Mcrbj)% (%)

=2 (fumjukmy | QM) $2, (o) Y, @), @19

m,mid
and (4,m, 32m, [§m)  isa Clebsch-Gordan coefficient.

Using (2.12), the scattering equations (2. 9) become

4% _ aaen |
[ 3= 557 ] Jf'jg,xg(m

(2.15)
Z <r‘161 lml ;TM"> 'F.:llo s
«de’} 3« te2 <t L
with
k.(; = 2, (E-EJ, E“) . (2.16)

The analysis of scattering problems based upon the solution of the
coupled equations {2.15) is usually referred to as the close coupling
approximation. For brevity we shall indicate the initial state of the
system by the set of quantum numbers,

1, = Yo da ke ‘3°J} ,-

[ 9



and then write the radial functions for specified initial conditions as
f (R
1 11,13
It is well-known that the asymptotic forms of the radial func-

tions f 4y, are related to elements of the unitary and symmetric

scattering matrix 5 by

—i ( k‘(p R ‘11"/1) {k +i( kde R'.D.TT/Z)

f" R © §(13) — Ee\ e Swa).e.m

Now defining the transition matrix

=1- S , (2.18)

11
the cross section for the (%,~7) transition is given by

QUY) = Z,TOLQ: \ T('\‘,’X’.)\z) (2.19)

where @, is the statistical weight of the initial state.

In this paper we are concerned only with transitions between fine
structure levels in one atom, say atom A, atom B not being altered by
the collision. With the coupled representation described above, the

11,14
Cross sectlon for the ('34 —"1«*) transition may be written

Q(‘}«aé«

(23+1) T

2_. , Z_. l
(24«4 1) (24p .+ 1) (392.4.)

N,
Q.
!
[~ 8
®
‘o
ald
[
N -
@k,
o"'
as .
»
k4
-3
™
L 4
NaJ

-12-



In the next section we discuss in detail the interaction between CT
and H, and evaluate the coupling matrix elements needed for the cal-
culation of elastic and fine structure excitation scattering of ct@p)

by H(%S).

-13-



B. ¢T-H Interaction; Evaluation of Coupling Matrix Elements

1. Long Range Interaction; Rotational Coupling Matrix Elements

At large values of the internuclear separation R the dominant
forces between two atoms arise from electrostatic interactions. If
the particles (i) in atom A have charges q; and particles (j) in atom

B, q;, the electrostatic interaction energy is

_ . 7 B R/ (2. 21)
oo ToEEL oz ()

Specifically let ’—‘::1 be the vector from electron (i) on C+ (atom A)
+
to electron (1) on H (atom B), and define the vectors from the C nu-
clear CM to electron (1) and from the H nuclear CM to electron (i) as

- - . ' +
}:1=R+ ?51 and Y; = Y, -7 , respectively. Then the C -

1l

electrostatic interaction

6
1 i Lo _1_)
voe(d-d) S (E-8)
1=
To simplify the calculation of a coupling matrix element ,“ 1 13 l
x N I r g d , we make the following approximation: at large

+
separations R, where the C - H interaction is dominated by the elec-

consequently exchange terms may be neglected. Then, since we do

-14-



not consider excitation of the C* core electrons, the integration over

the spherical (1s2 282) c™ orbitals may be performed easily, giving

™M IM 2.23
CGoory |0 iy ? %29

= > [ (qMygamygd TM) (4 g [T M)
mm'
m“m" X (3-( Maia Im, ,97’7) (?i m;; I'ml' , Q'WI’)

Tﬂa‘ m"‘

m ‘ ct —_ - A
L M, X <¢3‘m3l(r""") ¢N,ma@(r"1) YIMICR)l

b 3 m ' ¢ad, ma,‘ (rdl) ¢ 'FMa'p (rbl )\G:mzr (R) >
where

i .
R

s»ﬂ |I—"~

»

o =2 ( (2. 24)

S’
+

—

il
|

n I,..a.

S’

is just the electrostatic interaction of the C-"(ls2 2s2) core, charge +2
and the C+ valence electron with the hydrogen atom.

Now the full solution of the scattering equations (2.15) requires the
evaluation of an infinite number of the integrals (2. 23). To make the
problem tractable it is common to restrict the product functions (2. 5)
to some finite number of atomic states, 4>:*and ¢: . K we retain only

those states that are energetically accessible ( k,zpb O ), i.e. keep only
just the states arising from the ground configurations c’ (ZP) and H(2S).

-15-



However, the interaction Ar averaged with respect to the spherical
H(ls) orbital (the first order energy correction for the H atom) van-
ishes;9 thus there is no long-range first order electrostatic interac-
tion energy between C+ and H if exchange is neglected.

For transitions between the fine-structure levels of C+(2P) to re-
sult from the electrostatic interaction (2. 24), if we neglect exchange
evidently we must consider closed channels. We choose to include the
entire spectrum of hydrogen states {@;\} but only the C+(2P) states in
the expansion of the total wave function. This selection is now shown
to be consistent with the C+ - H collision being viewed as a carbon ion

6

being scattered by the potential field of a polarized hydrogen atom.

Using the Hamiltonian (2. 6) with & instead of Ar , neglecting ex-

(2. 25)

~Ng=D = =D -4 ct H
= 2}1. % N(R,rm.,rbt) Felf(R) q)ac ¢(3

where the summations are over all hydrogen states and all C+(2P)

n ¥
states. Multiplying (2. 25) by ‘;b,_, . the ground state hydrogen wave

-
function, and integrating with respect to Ty ,

Z(v;»,k;) F @) ¢S = 2p er Fop Fop 45 | 220

-16-



where

~ —— - *_. ~ 7> - -
Vog (R, T0) = (c\ﬁ1[¢:(fu)n5(&*‘u,fu) 4>:(ru)] (2.27)

~ 2
We noted earlier that A¥,, vanishes so that, for k.‘@<0 when g#0,
the sum on the right hand side of (2. 26) includes only closed channels.
16
Following the argument of Castillejo, et.al, it may be shown that the

quantity

~ 2
2. R Fap (B) 22, { l“ ce | ; Fao (R) . (2.28)
exo R=>e 4

|
m
ez
S
-

The bracketed term in (2. 28) is readily identified as the second order
energy correction W for a ground state hydrogen atom perturbed by
the potential Ay .
Returning to (2. 26), if we substitute the result (2. 28), multiplying
X .

by a particular cb: and integrating with respect to the coordinates

-

Yaz we find

( A z ) -
Ve * ko ) Fuo (R)

(2. 29)

[ A

~
~

N
-~
X

2 Y Lot | \WI(E
dI



With the expansion of F( %) given by (2. 7), in the representation des-

cribed by (2.12) - (2.14), Equation (2. 29) reduces to

d? 2(2+1) h
= T /5 + k
AR R 1 ] ﬁlglﬂ°joso(R)

(2. 30)
m ‘m’
—op S Y iyt £ R)
., 2 ‘A J
(frpm) 1‘/7 yt 12y, 1.990
where ; is the total angular momentum of the carbon ion. The coupled
equations (2. 30) describe the scattering of C+ by an orientation-depen-
dent potential W ( E, Taz) produced by the polarized hydrogen atom,

and they have the same form as those discussed by Arthurs and Dal-
11 14
garno , and Lane and Geltman.

The details of the calculation of W are presented in Appendix A;

-6
therein we show that through terms of the order R

-

W@ e = -2 {14 B @R (R ]2

(2.31)

—4 B (@)} - ke + SR,

where &, L is the 2L-pole polarizability of hydrogen, K denotes the

+ >
coordinates of the C (2p) electron, and .% ( e -\r) is the Q) th order

-18-



expression is identical to that used by Callaway and Dugan.

Employing the spherical harmonic addition theorem,

P (R¥#) = (2“1) Z Y (R) Y (?‘) ) (2.32)

we can rewrite the interaction W in the general form
2A+1 *
w—_y ... en - \ A ~
(R,¢) Z W, (R,r) \ 4w ) (}}‘ (R)YU*(") . (2.33)
/A

Then the coupling matrix elements in (2. 30) may be reduced by Racah
11
algebra techniques to give

< 14%? fwl ’Lj 11’
= 34(q,90) § (m,m) L (22+1)(24+1) (2;;+1)(2;'+1)]Vz

A;yz_e‘ fl 1 l\/k 'Aﬁl\
x > (=) Wy (R) Lo o0o/lo oo

N E

% Wi (R) G2 (444,424¢4) , say,

(2.34)

iél jz ‘5; -‘) 17 i 1| 'jg ’33 3
where \ ™ M. M3/ ig a 3-j symbol, 4 4 35} is a 6-j
17
- » averaged with respect to the

C+(2p) orbital. The details of this reduction are given in Appendix B.

-19-



Now, the utility of our particular coupling scheme is apparent: the
coupling matrix elements g4 are diagonal in % and M and indepen-
dent of M , and also independent of J .

It is obvious from the terms appearing in 9+ that at large nuclear
separations changes in the internal angular momentum 4 of C+ are
possible because 4 is coupled to the rotational angular momentum of
relative motion A by the non-spherical part of the interaction poten-
tial. (Note that q.(y24,y4 %’) =d (1.3’)5(2,9_')5@,3').) Subsequently,
then, we shall refer to this situation as rotational coupling.

In Part 2 we discuss the spin-change coupling mechanism which is
of particular importance at small nuclear separations and in Section C

we modify the scattering equations (2. 30) to include this effect.

-920-



2. Short-Range Interaction; Spin-Change Coupling Matrix Elements

In a spin-change collision the internal angular momenta of colliding
systems change as a result of the exchange of electrons with different
spin orientations. This process is important only when the internu-
clear separation is small enough to allow significant overlap of the
atomic orbitals. The quantal formulation of a spin-change process

10
has been given by Dalgarno and applied by several authors to the
3,5,7,18,19
study of various atom-atom interactions.

As presented by Dalgarno this process is elastic. We now review

the essential concepts of his formulation. In terms of initial product

atomic states Lpﬂzma o 3:’“19 quantized along R , the total wave

function for the colliding atoms has the asymptotic form

- oy

‘R A
’\If(‘}dmad 35"‘3@) — € : \P‘}amrz

R->®

8
1M

o~

9 9K\
e vy

4 kR Z A (LB R
TRE L P q)??"'a'f ’C(i*'“a‘#ﬂ'"zm?*mme'";mﬂ) 3
Cgamg tamy,)
N - -y
where, as before, R denotes the angles between R and k and the bar

denotes antisymmetrization with respect to all electrons.

-

Now let the quantum numbers /A, O , and

-
v
by

s descrive a sia-
tionary state X of the molecule AB |, and represent the total projected

1

7 3 RN a2k - - — . o
{onto R ) orbital ar gu}.a’.i? T10INiEivuing,

-21~



and its projection (onto R ), respectively. Then if spin-orbit and
spin-spin interactions in the molecule are neglected, in this repre-

5,18
sentation the total wave function behaves asymptotically as

’\I’(#d M’g 4}’”13) ;\:cn §M5<j¢ m?" ?' "'15 ’ ASM;) kASMs
(2. 36)

i k-R 1 ikR .
x[e' tR e )f(/\sm,,/\sms;z)]

where < 4aMyn 48 My |\S Ms) is a coupling coefficient.
Equating (2. 35) and (2. 36) it can be shown that the scattering am-

plitude for the transition (44 Myq 48 m3@}='> {1§ ma’ y »}; m,’,} is given by

LA M remis Aume 4o mae® B)
R A A L A A Ll | SR { 4P SRR

(2.37)
= ‘Z_‘ <%:l M;:t ff ma'F [ASMsY 'F(ASMs,/\SMs;ﬁ) </\SM5|3., me 4p M3P> .

Equation (2. 37) provides a simple physical interpretation of the spin-
change process: the atoms initially in states (ﬁd mga) and (s '”aa)
approach each other with their angular momenta coupling to form a
particular molecular stationary state ')(,ASM! ; then after scattering

elastically, the atoms separate and the (same) molecular state is

- k) o % 3 ~e PR D R R I '_....’\ - '
"uncoupled, " yielding final aiomic siaies ( t« Mja ) and (is l"?g\;

cu
N

We emphasize that we do not use Equation (2.37). It has been given

~29-



only to illustrate the nature of the spin-change process.

To incorporate the concept of the spin-change interaction in the
close coupling formalism developed in Section A, we begin with the
coupled equations (2.15). Including only the terms arising from the
ground state configurations C+(2P) and H(ZS), we may drop the con-
stant total angular momentum 1 s =N of the hydrogen atom from

the notation and write

4* L(2+1) 2 3
- = +k
4R’ R ] 1(324;,1,9,9. (r)
(2. 38)
M
= R)
zﬂa‘zfs' Gy Lo > ‘Cais pge ® s
where the coupling matrix element
IM IM
<r_;19 ‘Nl r'arx'g'>
=2, [ Gmamlgm)(gmue]am)
—mm
:"iml X (3'\1\'& k’mi ] 9’71!,')(9'771’ hao'lT M) (2. 39)
T o)

<Y,,,,<)¢ ¢ N ,.za)cp;j; b,

-23-



The antisymmetrized atomic wave functions in (2. 39) are quan-
tized with respect to the CM coordinate system. These wave func-
tions are related to the wave functions W ;' :n \P,/H quantized
with respect to the body axis [ by

4% ¢! 2 D’ <%,«s.,,o>D L (3e8e,0) Prs i

he
4

(2. 40)

Z D, (mD~ (R) ¥

W

The coefficients D are elements of the rotation matrices, discussed
20
at length by Rose.

ct "
Further, the wave functions q)ﬁ"'a Y, o may be related to
stationary states of the CH+ molecule AT A t large nuclear

separations R by a straight foreward recoupling of angular momenta,

Wnsmg o Z \‘Pd '/« <3-maa-\l\SMs>, (2. 41)

where the coupling coefficient

(gmyae I ASMSD

(2. 42)
=(1m00 1A (1m e melgm)(Yam bl SMs) .

For the sake of simplicity we now assume that the recoupling

-24-



transformation is valid at all nuclear separations.

If we neglect spin-orbit and spin-spin interactions - in keeping with
the spin-change formalism discussed above - we observe that Ay is
diagonal in the (A SMg) representation, and that, for a specific A and
S, the diagonal matrix element £ Xasm, || ¥asm,y is independent of M.
Further, neglecting at this point the C+(2P) fine-structure energy de-

fect, we may approximate the matrix element

l

Wps (R) =  Ynsm, |0 | Nasmy 7
Eas(R) + &ARQ-Q - <'¥A5M, \H(C’) +H(H))¥ASM>(2'433‘)

‘-'—"E,\s(a)’rf&:ﬁ. ~ (ES + EV) (2. 43b)
where Eas (R is the electronic energy of the molecular state Xps
and % is the nuclear charge. Equation (2. 43b) is correct asy}nptoti-
cally (for a given C+(2PJ-) level), and should be reasonably accurate
at small nuclear separations since the quantity <Xasm, | HC(C?) + HMW [ Kasms>
is not strongly K -dependent. For simplicity we use E;:./zthroughout,
and allow for the energy defect by using the correct k* in the scatter-
ing equations (2. 38), This scheme does of course affect the accuracy
of our calculations when \<: S Akz, but we may anticipate our results
and note that the approximation AK*=0 isnot very severe even at low

energies.

Upon combining the results (2.40), (2.41), and (2. 43) it follows that

the coupling matrix element
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Y o |01 T
=Z Mps (RY (gmylmg [4M) (QM Ao | TM)
<(ym 2wy 1 gm)(gm o TM) (2. 44)
« (g & LASMY KASMs Ly ag &)
4 % ) 4
X <\{xm, Dﬁijmj &o ‘ \ft'm; D,;;,‘ "'J' Da"-'r’> y

In Appendix C we show that this expression can be reduced by Racah

algebra techniques to yield

<P Mfl 31%> Z PASQJZ% 119)/;;“(@ (2. 45)

where the coupling coefficient

pas (124,549
= (254 1>[<23+1><24'+1)<zx+1>(zz'+n(zg+1)<zgf+,)]"z
Y(_)\—J-S'%'&' Z (2a+1)(2b+1) (c O%\ (2. 46)
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Because here S = 0 or 1, the summations indices (a, b, c) are restricted

to the values 0, 1, and 2.

Upon substituting (2. 45) into (2. 38) we find

&* AR+ 2 |
[ dR* R* “4] J;,xg,g,xoq.(")
(2.47)

J
— J. e §Ipl
=2u ;S U5 (R) % Pas (jxg;?}-g) fJng','j-oﬂoﬁo(R) .

We may interpret the coupling terms on the RHS of (2. 47) as providing
an extension of the long-range coupling matrix elements

WA (r) G N ( 4 14}, 3’ 1’4') to small nuclear separations. More-

over, these coupling terms provide for the possibility of exchange in

formalism characteristic of spin-change processes.
In the next section we give a prescription for modifying the scatter-
ing equations (2. 30), valid at large nuclear separations, so that at

small R-values the equations take the form (2. 47).
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+
C. The C - H Scattering Equations

To incorporate the spin-change coupling mechanism in the scatter-

ing equations (2. 30), we take advantage of the fact that all ,s '( R)

tend asymptotically to the value W, (R) , the dominant term of the

long-range interaction. Thus, from (2. 45),

<I"“% 3“)“-’ W(R)ZF (424,129 . (2. 48)

The summation over A and S may be performed by noting that the
quantity

TS e G me)

A ml=A

I

Z (__)m _1 1 c)

m mo
m

P
(V]
o>

AT d

- -—'\/_g-, c;(CJo)

17
vanishes unless ¢ = 0 . Then using the relationships

{3' e } o S Sty )P R
33 ’8'4 35 [(2%."1\(2’}3{’1)]’/2_ (2.50)

and

40 42 X 1[4 o] _ § (45, 4¢)
Zx,(?.x{-l) {}3 4n 15‘} $v 4 16}_ (‘2154.1) ) (2.51)
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summing over S and then o we obtain

AZS Pas (424, 2°4¢) = 5(3,3')4(1,1')4(9,3')_ (2.52)

Consequently, as the differences between the molecular curves M, g (R)

vanish, the coupling matrix elements

Ty 1w oz M s dnsig)
(2.53)

= W.(R) g, (344, §2) .

Our prescription for including both spin-change and rotational
- - - s /..+ - PR I L =42 2
coupling in the C” - H scatlering equations is as follows: at some

intermediate value R =Rwm where W, <¢W, and where all Mg %W,

we match the A.. and W, , requiring

s (RY = w, (R) , -K:or al R2R,, . (2.54)

For R 2 R,, there is no spin-change coupling. For R< Ry , W, (R)
apidly cut off since, in this inner region, the "effective’ W is
contained in the Mpag{(R) . By explicitly retaining the (small) W,
term beyond Rm we allow for rotational coupling at large nuclear

separations. The scattering equations now take the form
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[ij luﬂii) J ] ﬂlg 3.29 R)

=24 % {[Zs Pas (414, 24 Wy ()

+W, (R) 9, (323, 3',2’9’)} ﬂ'l'i}':ioﬂ.go (R) )

(2.55)

T

where C,s/,_ (R) indicates that W, (R) is modified as indicated
above.

Inspection of the coupling terms in (2.55) reveals that, for each
of the total angular momentum J , there are 12 coupled differential
equations. Fortunately, each set of 12 separates into two sets of 6
coupled equations, one containing channels with only even partial
waves A , the other, only odd partial waves. These will subsequently
be referred to as even and odd parity channels, respectively.

In Chapter III we describe the numerical methods used to solve ihe
coupled equations (2. 55) on high speed computers. The CH+ curves

aArns (RY  used in our calculations are also discussed.
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III. NUMERICAL TECHNIQUES

A, C+ - H Potential Energy Curves

To determine the spin-change contribution to the cross sections for
ct(2p) and H(ZS) collisions, detailed knowledge of the potential energy
curves for CH+ states arising from the ground configurations of the
separated atoms is required.

st 3‘”‘ .
For the 32 and curves, we have used values given by

21
+
Moore; for the *2" and 1T|' curves, the more recent calculations
22
of Browne were used., All of these data are given in TABLE III-1.

Briefly, their calculations were made as follows,

35°%: 5 term expansion of Slater-type orbitals, with

optimization of some orbital exponents.

37(: 5 term expansion of Slater-type orbitals, with
no optimization of orbital exponents.

120, 19 term expansion of Slater-type orbitals with
optimization of some orbital exponents.

1T 15 term expansion of Slater-type orbitals, with
the orbital exponents optimized at each R-value.

Additional details may be obtained from the research reported by
23
Moore, Browne, and Matsen.
For our purposes, each of the four curves is ‘appropriately in-

creased or decreased a constant amount for all R so that asymptoti-

, )
cally the curves yield the energy of the separated C"'(ZP) and H("S)
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TABLE II-1. The CH' potential energy curves

5:2*

t

377, *S* , and *TT . The data are from References

21 and 22.

R(a) 3 Z+( aw) >TM(aw)y 3 *a.w) 1 M(euw)
1.0 -37.046 -36.907
1.5 -37. 767 -37.612
1.7 -37.855 -37.701
1.9 -37.284 -37.1793 -37.898 -37.474
2.0 -37.337

2.1 -37.815

2.2 -37.4217 -37.916 -37.778
2.3 -37.821 -37.916 -37.782
2.4 -37.499 -37.913 -37.785
2.5 -37.819 -37.909 -37.'785
2.7 -37.580

2.8 -37.891 -37.785
3.0 -37.636 -37.805 -37.8178 -37.782
3.5 -37.692 -37.846 -37.775
4.0 -37. 781 -37.823 -37.769
5.0 -37.1743 -37.803 ~-37.760
6.0 ~-37.748 -37.770

7.0 -37.1797 -37.754
10.0 -37.769 -37.797%7 -37.753
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atoms, given by'Clementiz‘l as -37.792(a.u.). f_ The experimental
value9 is -37.933(a.u. ).] Figure 2 displays the CH+ curves after
these adjustments are made, and after the separated-atom energy
has been subtracted.

24
+
Using Clementi's radial wave function for C (2p) we calculate

{r}) =2.689q7, (3.1)
16
in agreement with Callaway and Dugan. The spherical term of the
long-range potential W, , obtained with (3. 1), is also shown in
Figure 2 for comparison.
In the numerical computations the CH+ potentials are matched at
Rm= 6.0, viz.

ny. (50) E\Al__.rﬂ.G\ = —0.0021i6 o.u. 5 (3.2)

for all A and S . To do this, a linear fit is provided for each poten-
tial between its adjusted value at R =5.0 and the match point. For

R £S5.0 a numerical interpolation scheme involving Lagrange's in-

each integration point. The values at a few points are given in TABLE
Ii1-2.

The sensitivity of the computed cross sections to the choice of Ry,
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Figure 2. The cH' potential energy curves 'Y, 33"
"TU,2T (from Refs. 21 and 22). The theoretical value
of the separated-atom energy,-37. 792 a.u., has been
subtractéd so that all curves asymptotically approach
zero at infinite separation. The spherical part of the
long-range electrostatic interaction, W, is shown for

comparison.
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TABLE III- 2.

ca’ potentials matched at R = 6 to the
spherical part of the long-range electrostatlc inter-

action WO .
'I' ; +.
Re) . TEw | CTw e ST ew
- —ne e e e L .
1,4 0.12300 0,72800 '0,20400 _ 0.18300
1.5 0.05372 0068521 0.136638 0.11240
1.6 ~=0.00114 0463323 0.08610 0,05949
L7 "0+04309 0457562 0.04886 002067
. TT*0,0738% 0+51725 0.02198 *0.00710
149 =0.09525 0.86116 0400302 “0.02632
R ~0:1T0900 0450900 ~0.01000 003960
2 ~0+11671 0436152 =0401865 =0.08679
2,2 ~0.,11977 0.3i887 “0+02416 *=0.05099
__ 2.3 _"0.11939 0426083 ~0:02746 ~0.05261
2.4 *0,1165% 0¢24703 “0¢0292% *0.05241
245 . =0.11200 0,21700 ~0.03000 “0.05100
246 . "0.10637 0,19030 *0.03007 “0.04879
— 2.7 ®0,10009 0416655 “0.02969 ~0,08611
2.8 ~0.09347 04 14541 =0:.02900 E0.08315
2.9 “0,08673 012663 =0.02809 “0,04008
3,0 *0.08000 0,11000 =0,02700 -o.osrod“‘"
3.1 ___"0.07338 0.09536 ©0.02578 “0,03397
3.2 “0.06693 0.06253 =0.02448 — ~ %0,03102"
3,3 ~0.06069 0407152 ~0.02301 =0,02820
3.4 ~“0.05470 0.06204 “0+02152 <0.02552 "
3.5 ___=0,02900 0405500 ~3.02000 ~0,02300
3.6 ~0,04362 - 0404722 *0.,018438 50.02064
3.7 _=_0.03860 _0.04153 ~0¢01699 0401846
3.8 “0.03397 0,03672 “0.01557 T T0,01686
349 ~0.02977 0,03261 “0.01823 *0,01864
20 =2, 02808 $: 02550 ~5.01300 <0,01300
31 __T0.02267 _  0.02573 =0401187 “0,01153
R XY “0.01975 00022656 " T =0,010683 77T T+0,01021 ~
____5_£ *0.01720 0.01?__71 *0,00985 *0.00904
4.4 *0.01497 0.01482 "0.00892 " T wg.00797 "
4.5 _._"0.,01300 001800~ =0.00800_ *0,00700
8,6 "0.01121 001128 “0s00705 T0.00610
87 __"0,00954 0,00873 =0400607 *0.00525
. 8.8 “0,00795 0.00645 “0.00504 T Tw0,00884
8.9 -=0+00643 0:00452 *0.00400 =0,00369
—2eY —=0.00500 0:00300 __=0.00300 -
3.1 *0.00472 0.00248 TTT=0.002927 “‘-‘a%-ggggg
5.2 *0.00423 0,00197 =0+00283 =0,00283
5.3 ®*0.00415 0.0014% 0. 00575 S5.56275
__3+8 . 70.0038¢6 0.00094 “0.00246% ~0.00266
gei *0. 00258 0,00042 =0,00258 T TTTTS0.00256
; --0.00330 *0400010 “0.00250 - o
D T=0.00301 S6.00061 wp. 00241 ;3:882%?-——~
5.8 __"0400273 ~0,00113 “0.00233 ~0.00233
5.9 *0.00284 “0.00164 *0.00224 *0,00224
__ 6.0 __70.00216 _._70.00216 ~0,00216 ~0.00216
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is discussed later. However, we expect it to be small since the b ZT ,

*T and 3]—[ curves are altered very slightly and the repulsive BZ.+ .
curve is changed only from the adjusted value of 0.00 at R=6.0 to
the (attractive value -.00216. Because all four potentials must be
attractive in the asymptotic region, this modification of the 37
curve is not unreasonable. In Chapter IV the sensitivity of the com-
puted cross sections to a particular choice for R is considered.

As discussed earlier, the W, (R) term in the long range inter-

action must be modified in such a way that it rapidly approaches zero
for R<R, . To accomplish this we multiply W, by the expression

{ 1~ e.fo_'- (r/ e,,)r ]} ; then in the notation of Chapter II,

r~
a 2 1 N

—(Rip T
“ a2 P oan = ~
WzLK) = W, (K)

4 -
1. < o .

(3.3)

—

The value P=16 , chosen arbitrarily, is used throughout. The sen-
sitivity of the cross sections to difference choices of @. in the range

64 (',_ £10 is considered later.
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B. Numerical Integration of C* - H Scattering Equations

The scattering equations (2.55) have the general form

d® A4+ z _
AR‘L _R—;'L-)--‘.l(i']-ﬁ-}_ ;Uik Fk} -

(3.4)

A numerical algorithm particularly suitable for the solution of the

equations (3. 4) due to Numerov is described in detail by Hartree.

It employs the finite difference relation

8 £, (R =RY [ (R + L5 (8w

where
AR. = Q‘“.‘.,— .Q.ﬂ 2
gy
S:ij T AR &3 )
and

6=(¥‘](Rv\)‘) = ;ji,}('P\n#i-) - 2¥\.3 (Rn) + ;i’l(Rﬂ-i‘) y

R, and R,,, being successive integration points.
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Recasting the equations (3. 4) in matrix form we put

f” = Gf (3.9)

with
Giy = Uy +8G,p[ 202 1 (8. 10)
Then using (3. 5) - (3.8) it follows that
f.=[1-56RG,,]
(L BURGIE, -[1-56%°G,JF)

(3.11)

where the subscripts on f and G denote particular integration
points. Our computer program uses this algorithm to integrate the
ct-m scattering equations. We observe from (3. 11) that specifying
the solution matrix G‘ at the first two integration points R, and Ra.
allows -r to be determined at any subsequent point R,\ by iteration.

Because the CH+ potentials are highly repulsive at small nuclear

2
k'., are both small. This may be seen from the argument given by
10
Allison and Burke.

2;(2;+1)

£
Neglecting the energy and centrifugal barrier term -k + =T
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for small R the equations (3. 4) can be written in the approximate

form

le i 2 Uik fos (3.12)

Following Allison and Burke, we diagonalize these equations by the

orthogonal transformation

£7-cf . U°-CUC™, G

which gives

0.

z [v]
f = 1)° [°

K 3 it 1t .

Q.
PrN
[~ ]
bt
A
hT g

An approximate solution to (3. 14) is

\ )
fo = Ay, exe [~ (USR] * By exp|+ (V)R] . @19
It is evident from this result that if the Ui: are large, by starting
t or near R =0, upon integrating outward
the positive exponential term may become quite large. Then, at least

numerically, the negative term may be so small that the solutions

D
£: . become linearly dependent.

(4
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To avoid this numerical difficulty, the solutions -r i} must be
started at some R -value large enough such that, during the integra-
tion, the quantity Q= [Ui'z. ¥ %-‘—(T-‘Qz———‘:i) - l:,_] becomes negative -
causing the solutions to become oscillatory - before linear indepen-
dence is lost.

Various schemes were devised for starting the solutions as close
to the origin as possible. However, another problem was encountered
because of large differences in the diagonal terms Uiiv  at small in-

ternuclear separations. A typical case, J = 10, even parity channels,

is illustrated in Figure 3; shown are the six '"effective' potentials

Ui = U, +L(L+1)/R? (3. 16)

For energies of interest in this paper k:' ~1 , resulting in signifi-
cantly different classical turning points for the scattering channels.
Thus, for example, if all solutions are started at R,=2Z , ﬁ'} and

¥f& soon dominate the coupling terms on the R. H. S. of (3. 4) and
the overall accuracy of the solutions decreases drastically.

Both of the problems discussed above are minimized by starting

each solution f{ ;4 separately at R, (i) when the diagonal term
becomes less than some prescribed value, coded as USTART. For

- %3 L] e P . R R LI & Ny, N ) A P 2 m mmn
consisiency the solutions f, ; generated ihrough the oii-diagonal

-

coupling terms are re-set to zero at each integration point as long as
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Figure 3. The effective potentials (a.u.) U, =

Uiy + 4 1;+1)/r* for the scattering channels

(0 =14:4%37 ):

117 = |3£,12,%% 10> 12> =|3% 10, 10> ,
137 = '~ ,10,%%,10) , |47 =%, 10,'%:, 107,
15 = 1%, 8, "% 16) | 167 =| %, 10,'% ,10),

Note the large differences in the classical

turning points for incident energies Ko ~ i.
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U, > USTART.

It is found that for £; 48 and ki~1 USTART can be chosen as
large as 50. For higher partial waves smaller values of USTART are
used. This is because these U; are dominated by the slowly changing
centrifugal terms X (2;+1) /R* , which again allow the solutions
to become too large before they begin oscillating. The sensitivity of
our results to specific choices for USTART is examined in Chapter IV.

Once the starting point for each channel is determined, the first

values assigned each solution are

ﬁ‘ii ( on(i)) =0 )
(3.17)

%y (Ryw) =cd,}),

where C is some constant and the Kronecker delta function is used to
insure, ab initio , N linearly independent solutions - one for each
possible set of initial quantum numbers. 2 We use the notation

X; i to indicate that solutions obtained by starting the integration
in the manner described do not have the same asymptotic form as the

-Fi (see Equation (2. 17). In the next section we show how the R-
matrix may be obtained from the matrix of solutions X.

The numerical integrations were performed with several different

choices of step-sizes. It was found that the scheme

\'E] ..?(
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dR=0.01, -For L4 < R<£6.4,
SR =0.02 , for 6.4<4R&26.4,
SR=0.16, for 26.4<R< Rmax,

produced satisfactory results at all energies considered. These step
sizes corresponded to approximately 1/20 of the average effective de

Broglie wave length in each region,

eff _ 2% :
Yoo T T - wil}®

. (3.18)

The use of smaller step sizes did not change the cross sections signi-

ficanily, and only increased both computation time and numerical

[
T
)

error. The integrations were carried out to Rmax For the
lowest energies considered, Rmax™ 125 was sufficient to provide

convergence of the results.
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C. Evaluation of the R- Matrix

The asymptotic form of the solutions '?‘3 is given in terms of the
scattering 9 - matrix elements by Equation (2.17). In practice it is

26
more convenient to deal with real solutions, in which case we put

R-»>00

1ti}(R) ~ &(1,3) sin (k-tR ~2at/2)
(3. 19)

+ (ké/ka)vz (‘R\j cos (kR -2.m/2) .

The R -matrix elements defined by (3. 19) are related to the ® -ma-

trix elements by

N =(1l.+iR)(1[-i[R)_i. (3. 20)

13
Further, the R -matrix may be shown to be real and symmetric.

The asymptotic form of the solutions ¥ may be used to calculate
the R -matrix. The procedure given here is due to Lane and
14

Geltman.

For large internuclear separations we may write

=A, J® + A, N@® (3.21)
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where

(J(R))dP = & («,8) Lk R] 42, (kaR) , (3.22)

and

(‘N(R))"‘P = -—6(4,@)[!@{2] -nld(de) . (3.23)

The functions 4 g, and M g are spherical Bessel functions of the
first and second kind, respectively, and /A1 and /Az are constant
matrices. By matching the solution matrix X to the asymptotic form

(3.21) at two large R -values, say Ra and R, , we find

A, = B N(RIX(RY-NRI X (RY], .20

and )
A, = B—L{_J(Rl,) X (R~ j(Ra)X(R,,)] , (.29
where
B - [NRIJ(R) - NRIJRY] . wo
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Then, defining the momentum matrix ]K with elements

(IK),LP = §(o,p) ku (3.27)

it follows that the WR-matrix is given by

-h

R = K*(A.A7)K . G.29)

Once the R -matrix has been obtained for a particular set of
coupled equations, i.e. specific J , k: and parity, the 8- and T-
matrices may be computed and the partial cross sections then calcu-
lated in a straight foreward manner from the relations given in Chap-

ter II, Section B.
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D. General Description of the Computer Code

The main program utilizes several subroutines which:
1. read in the initial data containing the energies, parities
and angular momenta J to be considered, the values
assigned to USTART and @z , the parameters specify-
ing the long range potentials W, and the coupling terms
to be considered (i.e. spin-change only, rotational only,
or both);
2. read in the integration step sizes and number of steps
and then determine all integration points Ra 3
3. determine sets of boundary matching points (R., RQ 5
4. calculate the molecular curves Mg for all R, < Ry,
5. assign values of 1> X, and % to each channel; and
6. calculate the coupling matrices g, apd F,{, if required.
Next the main program begins ine iniegraiion algorithin,whici is
then iterated in another subroutine. As solutions are obtained at sets
of boundary matching points, an additional subroutine is called to cal-
culate the R- , 9~ , and T- matrices, compute partial cross sections
for each channel and then sum these to obtain the partial cross sec-
tions Q (%2, %) ) Q (7,31, Q (%, Y2) , Q (%, %) for a given
J ., k: and parity.

The 3-j and 6-j symbols necessar

~
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coupling coefficients, and the spherical Bessel functions used in the
calculation of the R -matrix are generated by the program. These
subroutines were checked extensively against existing tables. A
All computations were performed on the University of Texas
(Austin) Control Data Corporation 6600 computer. Typically, the
time required to obtain the C+ - H partial cross sections for a given
J. k: and parity was 40 seconds; after the potentials had been cal-

culated, subsequent integrations of the coupled equations required

approximately 35 seconds.
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IV. RESULTS AND CONCLUSIONS

A, C+ - H Elastic and Fine-Structure Excitation Cross Sections

The C+ - H scattering equations were solved for seven center-of-
mass energies E, ranging from .0100 ev to .0850 ev. These values
and the corresponding values of k: (a.u.) and the effective tempera-
ture T(°KY=E./Kg , are listed in TABLE IV.1. The C'(8,)~C'Ch,,)
excitation threshold is also given for reference.

Because the numerical integrations require considerable computa-
tion time, at each energy considered the scattering equations are
solved for channels of both parities but only even J € 30(denoted

J = 0(2)30), and J = 35, 40, 45, 50 (denoted J = 35(5)50). Now
for J= O, there are just two channels for a given parity, for J=1,
five channels, and forJ22, six channels. Consequently, the pre-
scription we use to estimate the total cross sections for the énb 1
transition is

Qy = QyloM + Qo) +2 Z.wso[Qij (3%)

(4.1)

+ ng(l')] + S Z [Q.'j (3*) + Qy (I-)] )

J:=35(5)S0

/ =¥\
P

- ~
where WiJ hiec sum

~ 4+l o ~
VU LT DUl

RN Y
and &

sections of, respectively, even and odd parity channels having the
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TABLE IV-1. Center-of-mass energies for Cct - H Collisions

E, (ev) .k (aw) T (°K)
(k= .0079) (ak? = .9961)  ( AT=92.1)
. 0100 1. 255 116.0
. 0125 1.569 145.0
. 0150 1.882 174. 1
. 0175 2.196 203.1
. 0275 3. 451 319.1
. 0500 6.275 580.0
. 0850 10.67 986. 4
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total angular momentum J.

To determine the accuracy of this procedure for k:' = 1.255 we
also solve the scattering equations for T* - 1(2)19, and appropri-
ately modify Equation (4. 1) to obtain the total cross sections.

The total cross sections at each energy, as calculated by the
(correct) Equation (4.1), are given in TABLE IV-2. The notation

(4,4) represents the C+(2P1 ) = C+(21:5, ) cross section. We find

that for W; = 1.255, the excitation cross sections

{even )
Qa/z,'/:. = Z ‘-Q'S/L"/z_ (I*) +Q‘/z;'/z,(3-)] = 33.4 a: »
J=2Q)20
and
Cdn _ N T ' N .
Q%:/t J?—‘I(msl- Q%""(]. ) + Q’/z,'/;(:] )J = ¥MIa],

The difference between these two values is a measure of the error
introduced by estimating the total cross sections using the prescrip-
tion described above.

All of the partial cross section computed to be greater than .01 a
are listed in TABLES IV-3 to IV-9. We have also plotted in Figures
4-10 both even {+) and odd (-) parity partial cross sections for the

Lt
4

excitation process (%2,%z2) ai each energy considered. As X, in-

creases we see that more partial waves contribute to the total cross
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TABLE IV-2. CT - H total cross sections (a})
k= (‘') (‘f,?2) (%, %) r, %)
1. 255 2478. 417. 2 174.0 3989.
1.569 2271, 268.4 196.0 3174.
1.882 2138. 210.2 198.4 2571,
2.196 2055. 165. 8 181.1 2462,
3.451 1623. 110.5 157.0 1986.
6.275 1305. 68. 7 115.6 1442.
0.67 1177. 56.5 102. 4 1392.
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TABLE IV-3. Ct-H partial cross sections(a)) at \4:'= 1. 255,

J (‘2,'2) . (‘R,3%) (%, %) (%, %)

o * . 5943 . 8227 . 3395 2. 110

- 1.807 . 7553 .3116 3.968
1 4.003 7. 794 3.217 23.56

- 4,573 6. 368 2.628 17.58

, 5.926 9.401 3.880 57. 52

- 10. 09 8. 186 3.383 23. 88

z + 19. 24 8. 602 3.572 89. 76

- 5. 799 13,19 5. 444 67. 52

g * 21.15 19. 68 8.120 92. 95

- 11.72 11. 178 4.870 94. 07

g + 23. 36 16. 63 6. 868 81.48
- 19. 20 25. 67 10. 59 117.1
6 * 21.79 30. 00 12, 38 110.4
- 33.06 22. 45 9.378 113, 2
7 o+ 37.31 27.16 11, 84 136. 9
- 30. 28 31.68 13.08 222. 4
8 * 36. 57 27. 74 12. 44 174. 9
- 38. 72 23. 10 9. 547 272, 2
+ 44.16 27. 74 15. 17 211.5
9 . 25. 28 24. 15 9.971 283. 6
+ 29. 90 30. 30 12. 50 193, 2
10 . 38.84 28. 10 12. 64 268. 1
+ 91. 14 1.964 .8183 210.8
11 . 77.176 4.169 1. 720 235, 0
PR 63.94 L7114 . 2948 151, 7
i . 76. 63 ¢10°* ¢ 107* 129.4
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TABLE IV-3 (continued)

J (l/‘l-,‘/l) ( ‘/l ) 3/2) (3/2, ./l\ (-Vl) 3/7—)
3 100. 8 82. 28
1 23. 64 95. 20
121.5 61. 75
14 80. 66 54. 62
125. 6 38. 59
15 158. 2 41.75
1€ 121. 4 29. 24
126. 4 26. 98
92. 96 19. 89
17 94. 08 21. 08
72. 04 15. 53
18 78. 28 14. 55
57.51 10. 9
1S 55. 35 11. 89
42. 92 8. 904
20 40. 42 8. 452
26. 46 5. 408
22 27. 93 5.172
17.13 3.512
24 17.175 3.387
11. 39 2. 326
26 11.75 2. 254
- 7. 754 1.588
~0 7. 980 1. 544
2N 5.451 1.111
SV 5. 586 1.085
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TABLE IV-3 (continued)

J %) (h%h) (%,%) (%, %)
R ¥ e
OB ¢ 1
4s 0 =
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TABLE IV-4. ct-m partial cross sections (a}) at k: = 1,569 ,

J (‘k, Y2 C/'-) %) (3/": ) (¥ s, ¥ =)
o 1. 423 . 3604 . 2632 . 067
. 4089 .3070 . 2261 1.850
> 11. 56 4.033 2. 946 17. 80
1. 744 3. 662 2. 670 27. 89
4 7. 540 8. 496 6. 206 40. 52
17. 86 5. 059 3.678 34. 94
¢ 16. 55 13. 84 10. 10 39. 83
21. 71 9,836 7.168 76. 64
5 28. 82 15. 04 10. 98 90. 71
33. 28 13. 68 9. 977 93. 38
30. 98 14. 04 10. 25 94. 88
10 23. 55 23. 48 17.15 124. 2
12 75. 08 6. 559 4. 790 171.2
31. 82 16. 12 11.78 163. 8
4 9.014 _0510 L0478 140. 2
1 g, 1§ 2107 2107 128 5
128. 2 69. 52
16 93. 36 87. 55
87. 10 36. 57
18 89. 04 32. 15
53. 54 20. 64
20 55. 94 19. 50
33. 45 12. 45
22 34. 88 12. 90
. 21. 61 7.971
24 29. 44 7. 684
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TABLE IV-4 (continued)

J (t,h) (', 3) (3~ /) (%, %)
26 1190 2 108
28 10,20 3 526
30 iy > 103
35 3 116 166
40 1 657 5831
4s o115 3234
50 2444 Tong
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TABLE IV-5. CT-H partial cross sections (a;) at k: = 1.882.

J (2, %) (', %) (*f2,'l) (f,32)
O * .6752 . 2262 . 2130 1.280
- .1188 . 1806 .1701 . 1560
2 + 7.114 2.577 2.332 20. 56
- 6.810 2. 349 2.215 11.59
I + 4.053 5.211 4. 906 23. 39
- 17.11 3.099 2.918 37.30
A + 14.63 9.047 8.518 32.25
- 21.04 6.093 5.762 24,37
8 + 23.65 9,922 9. 341 52, 27
- 21.41 8.610 8.109 43,18
10 + 32.37 11. 47 10. 79 22,12
- 24.39 14. 35 13.08 49. 31
2 + 49,52 13.08 12.32 74. 56
1 - 44,02 11,24 11.05 128.2
14 + 14,12 7.171 6.751 109. 7
- 87,70 8.081 7.2341 150 4
16 + 48.172 .1282 . 1791 104. 4
- 86.35 ¢10°? ¢10-* 98. 63
18 + 97.28 07.89
- 97.02 54. 36
+ 63. 15 33,18
20 . 65.59 31. 46
22 + 40. 15 20. 00
- 41.74 19.12
-+ 26.14 12. 63
[ 27.08 12. 15
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TABLE IV-5 (continued)

J (') (1,30 (R,'R) (%,%-)
17.51 8.295
26 18. 04 8.031
12.04 5.665
28 . 12. 37 5.515
30 8.502 3.988
- 8.701 3.896
35 3.931 1,798
3.858 1.828
1o 1.974 . 9312
- 2, 000 . 9195
45 1.113 . 5082
1.102 .5133
cn . 6542 . 3006
Jv . 6509 . 2983
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TABLE IV-6. C' - H partial cross sections (a2) at k:= 2.196.

J (‘f2,') (‘/2,3/7.) (3/2,'/2) (%4, %)
o+ . 0466 . 1625 . 1776 . 1372
- .8122 .1192 . 1302 . 6613
5+ 1.1752 1.739 1. 902 5. 470
- 9.496 1.724 1.886 18. 64
mn 10. 40 3.634 3.972 23. 68
- 8.331 2.189 2.393 14. 19
6 + 10. 76 6.672 7.291 30. 02
- 11.91 4.354 4,742 33. 00
8 + 17.22 7.398 8. 085 32. 20
- 10.09 6.314 6.895 39.24
10 * 29. 73 8. 956 9. 788 38. 92
- 20. 18 10. 06 11. 00 35. 28
12 + 40. 35 8.975 9. 808 84. 24
- 35. 52 10. 54 11,51 29. 46
+ 35. 54 3. 485 3.809 126. 3
14 22,12 g, 389 . 083 85. 85
16 * 74. 65 . 2567 . 2804 116.2
- 48,12 . 0409 . 0447 121.5
1g " 100. 1 <107 (10"t 76. 84
- 92. 35 73. 04
+ 71.27 . 45. 36
20 _ 73.03 : 43.12
+ 46.51 27. 62
22 ° 48. 16 26. 44
o F 20 57 17 rA
lu (&2 v w0 -~ ¢ [P AV]
L 31. 62 16. 93
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TABLE IV-6 (continued)

J (,'h) (Y2,32) ( %z, 'R) (3/2,32)
+ 20. 56 11,55
26 - 21.18 11,18
+ 14,18 7.815
28 14.56 7. 509
30 * 10.02 5.457
- 10.25 5.325
+ 4.678 2. 452
35 4.600 2. 494
+ 2.322 1.274
40 _ 2.354 1.257
45 + 1.309 . 6970
- 1.296 . 7042
+ . 7706 .4143
50 - . 7789 . 4108
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TABLE IV-7. CT-H partial cross sections (a)) at k: = 3.451.

J Ch ') ('%2,%) (%2, ) (3%,%)
0 .5109 .07351 . 1046 . 3332
. 0093 . 0313 . 0446 . 4415

2 5.439 . 7072 1.006 2.109

2.436 .8329 1.186 9.278
m 1.194 1.428 2.032 11. 91

11.26 1.024 1.457 6. 221
6 10. 84 2.974 4.232 11.82
6. 690 1.894 2. 694 15. 59
3 7.544 3. 722 5.295 17. 55
13. 68 3. 102 4.412 14. 01
10 8.537 4.306 6.126 27. 32
13.88 4.343 6. 180 20. 18
12 10. 42 4.930 7.014 30. 63
16. 92 5.027 7. 150 22. 38
14 17. 39 4,718 6. 712 47. 80
923, 62 g.024 8. 568 37. 40
1¢ 2.226 3. 882 5. 522 41,34
20. 60 3. 229 4.595 31.78
18 32. 76 . 9209 1.310 79. 47
26. 74 2. 263 3. 375 67. 23
20 74.53 . 0294 . 0418 76. 22
64. 00 . 0104 . 0472 77. 00
2 84. 45 - ¢107? <1072 54,42
2 64.37 52. 96
atl 46. 26 36. 37
£ 47.26 35, 25
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TABLE IV-7 (continued)

J (‘1,'%) (%2, %) (%, 72) (2, ™2)
26 3506 23,76
287 % 16, 36
30 16,50 1154
35 7507 5 374
40 3.860 3. 663
45 2 148 I 438
50} 1276 a8
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k3
TABLE IV-8. CT - H partial cross sections (a?) at K, = 6. 275.

J (‘, 2) (*4,%2) (3%, ') (%, %2)
o+ . 2297 .0252 .0423 . 1442
- . 0331 <10°* <107 . 2086
2 + . 2867 .1938 .3308 3.503
- 1.535 .3538 .5955 1.851
y + . 4562 . 4364 7342 7.241
- 5.868 . 6296 1.057 2.569
6 + 6.623 .9991 1. 681 4,902
- 2. 648 1.029 1.734 9. 100
8 + 9,102 1.552 2.610 8.896
- 3.159 1.616 2.717 8.957
10 * 5.054 1.699 2.858 12.15
- 7.434 1. 692 2.846 16. 70
12 ° §.311 2.016 3.392 11,64
6. 996 2.845 4,787 15. 48
14 + 11. 66 2.874 4.835 5.722
- 5,273 2.988 5,027 7.545
16 + 9.612 2.861 4.814 10. 76
- 4,372 4,005 6. 739 9,715
18 + 10. 13 1.422 2.392 6. 850
- 15. 67 . 7362 1. 236 21, 33
20 + 30. 34 2.208 3.715 24,48
- 12. 36 1.624 2. 1729 24. 39
29 + 12. 74 .3133 .5271 37. 47
- 25, 45 . 1576 . 2662 36.59
an t 48, 30 . 0489 . 0824 50. 94
L 43.64 . 0270 . 0454 53. 35
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TABLE IV-8 (continued)

J (‘/2- )‘/l) ('/7') 3/2-) (3/1., l/Z-) (3/1., 3/2)
26 * 47.21 .0130 . 0219 45, 04
- 46. 56 <10°* .0138 44, 94
28 * 37. 74 ¢<107% 34. 42
- 38.05 33.92
+ 28. 64 25. 45
30 _ 29.06 25. 00
+ 14.37 11.96
35 _ 14,15 12.15
+ 7.458 6.283
40 _ 7.548 6. 204
+ 4,272 3. 480
H5 _ 4,232 3.514
2.558 2.096
50 . 2.579 2.080
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T
TABLE IV-9. C% - H partial cross sections (a2} at K, = 10. 67.

J (%bfh) (Vz{%ﬁ) (3&,Vi) (ﬁﬁ,;h)
o * . 7265 ¢10°% (10”° . 1495
- . 0440 .0158 .0287 ¢10~*
2 ¥ 1.024 . 0745 . 1404 2. 704
- 1.006 . 1802 . 3268 . 7292
y .3267 . 1500 . 2720 2. 717
- 2.496 . 4843 .8784 2. 447
g * 4.545 . 2802 . 5080 2.586
- 1.762 . 7496 1.358 4.082
g 3.813 . 6827 1.238 5. 766
- 3.528 1.108 2. 050 4.797
10 * 5. 089 1.312 2.378 5. 302
- 4.215 1.446 2.623 4.064
+ 5.223 1.569 2. 845 3.138
12 . 2.432 1.360 2. 467 3. 711
w 3.842 1. 200 2. 175 5.178
- 3.274 1. 840 2. 975 4.186
16 * 5. 824 1.938  3.515 8. 433
- 8.553 2.024 3. 674 8. 953
gt 15. 04 1.589 2.881 16.57
- 13.01 1.760 3. 189 16. 05
14. 18 1.994 3.615 18. 38
20 _ 13. 88 1.844 3.338 15. 40
5t 23. 14 .5618 1.019 19. 50
22 _ 11. 14 3.233 5. 860 15. 98
. 13.12 . 2408 . 4366 14, 49
L% 13. 10 L4617 .8364 14.84
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TABLE IV-9 (continued)

J (7%, %) ('/z, 34) (3/2,'/2) (1/";3/’-) '
26 8.028 .1164 L2111 19. 03
- 10. 43 .0917 . 1638 18. 36
28 * 30. 38 . 0539 .0977 32.73
- 27.72 .0384 . 0697 64. 171
30 + 35. 28 .0207 . 0375 35, 24
- 34. 40 10-? {10°* 35. 75
+ 24. 50 22.57
35 _ 24. 33 35.76
+ 14.43 13.09
4O _ 14.56 22.78
45 + 8.943 7.807
- 8.875 7.874
5.1785 5.037
50_ 5.826 5.003
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Figure 4. The partial excitation cross sections (ag)
for even (+) and odd (-) parity scattering channels,
Q 3y, (3% and Qs ,y (J7), are plotted vs. J for the

incident energy k: = 1.255 (.01 ev).

Figure 5. As for Figure 4 for k. = 1.569 (. 0125 ev),

but with only even J-values being plotted.
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Figures 6 and 7. As for Figure 5 for Kk, = 1.882

(.015 ev) and k= 2. 196 (.0175 ev).
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Figures 8 and 9. As for Figure 5 for ks = 3.451

(.0275 ev) and k. = 6.275 (.05 ev).
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Figure 10. As for Figure 5 for k, = 10.67 (. 085 ev).
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section, and further that the relative contribution from any given Q(J)
decreases.
The first observation may be understood by realizing that the

classical turning points Ry (i) for the scattering channels (1), de-

fined by
L (1i+d)
k:- = U-‘_'L(R.g(i)) ¥ Y ) (4.2)
R

decrease as k: increases. This fact is accounted for in the numeri-
cal procedure by using larger values of USTART for higher energies.
Now as we show below, the spin-change process provides most of the
coupling between the c* fine-structure levels, and in the formalism
we have used this coupling occurs only for R < Rm , the match point.
Hence, at higher energies scattering channels with larger L's (and
larger J 's) can have classical turning points measurably less than
Rw , enabling these channels to contribute significantly to the inelas-
tic cross sections.

The second observation reflects the fact that at higher energies

the terms

f .8, 14N S
XylAi7Ta) zJ
)

Gy = LR +86)| ~g=— ~ ki

(3.10)

appearing in Equation (3. 9), are relatively less sensitive to the
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detailed shapes of the coupling quantities U;'] in the region beyond
the classical turning points R,(i). The % 's for scattering channels
of a given parity and J are %:3-2,3,3+2, Consequently, for larger
k* the functions -FI and ;3*1 , say, are solutions of approximately

the same scattering equations, and so the partial cross sections Q (3)
and Q(J+1) are approximately equal.

As a typical example of a C' - H elastic cross section we show
in Figure 11 the even and odd parity partial cross sections for the
elastic scattering process (‘A ,'% ) at k: = 1.255. The oscillations
in Q(3) are similar to those described by Allison and Burke8 for
elastic scattering of O(SP) by O(3P).

In Figure 12 we compare our results (w) for the ct - H excita-

7

tion cross section ( 3/» ., 2~ ) to those reported by Smith, and Call-
6

away and Dugan. We recall that Smith's results (S) are obtained

10
from an orbiting approximation of the elastic spin-change formalism,

and do not include the specific forms of the CH+ potential energy curves.
The results of Callaway and Dugan (CD) are obtained from an impact
parameter me'chod4 by considering only the long-range polarization
interaction, neglecting the true elastic scatterings, and assuming the
excitation collision to be elastic (Ak*=0). And in addition, both

Smith and Callaway and Dugan have multiplied their cross sections

by the ratio of the final and initial relaiive velocities to take approxi-

mate account of the inelastic effects.
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Figure 11. The partial elastic cross sections (ag)
for even (+) and odd (-) parity scattering channels,
Ry, (J +) and Qa,y, (J "), are plotted vs. J for the

incident energy ke = 1.255 (.01 ev).
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Figure 12. Comparison of the total excitation cross
section Q, 4 V. calculated in this paper (W) with the
results of Smith (S), Ref. 7, and Callaway and Dugan

(CD), Ref. 6.
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In an attempt to understand the differences among these cross
section calculations we first repeated our computations at k: = 10.67
for several even parity channels, including only the (short-range)
spin-change coupling terms. In Figure 13 these re-sults (SC) are
shown in comparison with results taken from TABLE IV-9, which
include both rotational and spin-change coupling terms (RSC). At
least at this energy it is apparent that in our close-coupling formu-
lation,

1. the spin-change coupling is much more important than
the rotational coupling, and

2. the two coupling mechanisms tend to unpredictably
interfere with each other.

We have also recomputed the total excitation cross section at

L 3

Ly
1}
ad
[¢=]

= 0) and assuming

differs by only © percent from the value reported in TABLE IV-2 |
(and is about 18 percent lower than that calculated by Smith). Thus,
at k: = 10, 87 the approximations W.= 0 and Ak* =0, inherent in
Smith's calculation of the C+ - H excitation cross section, do not
significantly change the results of our close coupling calculations.

Of course, at lower energies the approximation Ak™ = 0 pecomes
worse. And further, as k: decreases, we expect the relative impor-

tance of the rotational coupling to increase: since fewer scattering

-76-



Figure 13. Comparison of the partial excitation cross
sections Q, e 1" for k.= 10.67 computed including

both rotational and spin-change coupling (RSC) terms

(SC) terms.
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channels have classical turning points significantly smaller than the
match point R, the spin-change coupling process contributes less to
thé total coupling between the C+(2P) levels. We note finally that the
orbiting approximation used by Smith assumes that all four CH+ poten-
tials are dominated by the polarization interaction, having essentially
the form "f‘%-'o , so that all four potentials possess deep wells. This,
of course, is not the case for the kA potential (see Figure 2). More-
over, as Smith reported in his investigations5 of O - H spin-change
collisions, the assumption that all four OH potentials are attractive

-c
and are dominated by the "ge van der Waals term provides an upper

limit at low energies to the O - H excitation cross sections. Evidently

this is also true for the c" - H excitation cross section.

In addition to the above-mentioned compuiations, we calculated the
excitation cross section for k: = 10, 67 after omitting the spin-change
coupling terms. As in our full calculations, at small R the spherical

+
term W, is transformed to the admixture of CH potential energy curves

— 3 .
el —— % Prs (0 489) wps (D 49

The result we obtained was
Q‘%,‘/; (rotational coupling only) = 3. 13 ag,

more than an order of magnitude smaller than the value given by

Callaway and Dugan.
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It is difficult to give specific reasons for this large discrepency,
but one point in particular should be made. In the impact-parameter
approximation employed by Callaway and Dugan, the interaction po-
tential actually used in the cross section calculation is just the non-
spherical part of the long-range interaction potential, w; (R). The
spherical part w,(R) , which does not couple the C+(2P) fine-structure
levels but which dominates the trajectories of the atoms at large se-
parations, is neglected. We do not pursue this point further, but it
would be interesting to modify the coupled scattering equations by
putting W, = 0 and then calculate the excitation cross section.

In the next section we discuss the sensitivity of our resulis to

several of the parameters and approximations introduced into our
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B. Sensitivity of the Results

Because of the numerous approximations made in the development
of the scattering equations, and the difficulties associated with the
numerical solution of these equations, several input parameters were
varied to indicate the sensitivity of our results to specific choices of
these parameters. The results discussed below indicate to some ex-
tent the uncertainty in the ct - H cross sections due to computational
techniques and interaction potentials used in our close coupling calcu-
lations.

We note first that a general check of the accuracy of the numeri-
cal integrations is provided by the symmetry of the computed R -

matrices. A direct consequence of this symmetry is the principle

z8
of detailed balance,
Qi;  — Qn
— = ———]—: b) (4. 4)

where «wj=2{+L is the statistical weight of level (} ). We show in
TABLE IV-10 the ratios {(Qu,% /@544 ) predicted by Equation (4. 4)
and calculated from the results given in TABLE IV-9, The agreement
is quite good considering the large number (~2000) of integration
steps and accompanying inversions of 6 x 6 matrices involved.

We emphasize, however, that R -matrix symmetry is only a
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TABLE IV-10. R -matrix symmetry as indicated by the
principle of detailed balance(08), and as computed from
the numerical results (N).

kj-:'h. ( Q h¥e / Q'/‘l,'h-) 08 (Q'Ih‘ L /Q ’/l,'/;)N

1.255 2.424 2. 400
1.569 1.369 1.369
1.882 1.062 1,059
2.196 . 9150 . 9152
3.451 . 7029 . 7038
6.275 . 5943 . 5945
10.67 .5515 .5518
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measure of the numerical accuracy of the solutions g i it does
not provide a check on the correctness of the cross section calcu-
lations.

The single factor most strongly affecting the R -matrix symme-
try is the starting points of the numerical integrations. We men-
tioned earlier the problem of linear dependence among the solutions;
if solutions become linearly dependent the R -matrix becomes asym-
metric. To illustrate this point we give in TABLE IV-11 results of
starting the numerical integrations with USTART = 50 and USTART
- 10, for the case K- =1.255, 3 =1, 3, 5, 7, 9. Listed are the
magnitudes of the average deviation of the R -matrix elements from

perfect symmetry,

N
P D W ERICYLN| P “.5)

i>§

and the excitation cross sections Q%‘y‘_.

As J increases we observe that smaller values of USTART must
be used to maintain good symmetry but also that the cross sections
become less sensitive to the specific value of USTART. These points
are substantiated by the information given in TABLE IV-12. For the

2 4+ .
case K, =2.510, J " = 20, the cross sections QY;,'I;;Q‘AFI:- ) Q%,’/:.
are listed for the four values USTART = 10, 25, 50, 100. For the

three larger values of USTART the -matrix is very asymmetric,
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TABLE IV-11. Dependence of R -matrix symmetry and excita-

tion cross sections with respect to USTART. ke =1.255.
J + USTART = 50 USTART = 10
& - (A,7) | é (%, %)
1 . 0012 3.217 . 0006 2.271
3 . 0296 3.572 .0012 4.635
5 .0172 6.868 .0018 7.678
7 . 0470 11.84 . 0072 10. 92
9 . 2912 14, 28 . 0076 15, 17

USTART (%,'h) ("2,%) (%, %)
10 77.25 .00114 55.68
25 76.85 .00115 b5, T2
50 717.56 .00113 57.31

100 77.54 .00114 57,22
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3
d210, because some of the solutions - all corresponding to the
. . +,2 +.9
excitation process C ("R, ) % C (“F, ) - become swamped by the
positive exponential terms previously mentioned (c.f. Equation 3. 15),
After extensive testing of the IR -matrix symmetry for various
circumstances we picked the values of USTART = 10, 25 and 50 for
certain ranges of J and k: . The specific choices used to obtain

the results of the preceding section are

USTART = 50: Jeag, all K,
T>8, k>0,

USTART = 25: J >8, 5>k =l0;

USTART = 10: I >8, k'<FS.

These choices yield symmetric R -matrices, and from data
such as given in TABLES IV. i1 and IV. 12 we estimaie that this pro-
cedure introduces errors in the total cross sections of less than 10%.

We have also investigated the sensitivity of our results to a par-
ticular choice of the point Rm at which the molecular potential energy
curves are matched. All of our results in the preceding section were
computed with R. =6.0. At k:’= 2. 196, near the excitation cross
section maximum, our computations were repeated for J*- 0(2)22
Again a linear fit was provided for
each Was between R =5.0 and R=Rm.

For J* 218 the resulis are identical, indicating that the numeri-

cal integrations for these channels are started near or beyond Rm = 8.0.
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The total cross sections for k: = 2. 196 obtained with Km = 8.0 are

Qy,,y, = 1970. a7,
Qu,y = 178.4 0y
Q,,%, = 194.94),

Qw,% = 2759. a,,

Comparing these values with those given in TABLE IV-9 we see that
the differences are of the order of 10 percent.

These small differences provide a posteriori justification for our

matching the CH+ potential energy curves to the long-range potential
W,(R) at some intermediate value of the internuclear separation. We
should also add that there seems to be little reason to extend the
match point beyond Rw= 8 since it is evident from TABLE Iii-1 that
there are only negligible changes in the CH+ curves for R>8 .

Our three other investigations regarding the sensitivity of the
results given in TABLES IV-3 to IV-9 involve changes in the inter-
action potentials. The calculations discussed below were done for

ko = 2.196.

+
Now the second order interaction energy €, for C and H atoms
29




where S indicates both a summation over discrete states and an in-
tegration over continuum states. We see that averaging W (¥,7)
with respect to the C+(2p) orbital and orientations R , denoted {W?>
does not yield this expression (4.6): we have neglected the C+ states
od#0 that correspond to closed channels in our scattering problem.
Consequently we might expect the energy term (\:.i*- E :’v) , wWhich
is approximately the same size as the term (E; - E: ) to decrease
{W? by some 50 percent.

We recomputed the ¢t - H cross section (for k:’ = 2. 196) decreas-
ing for simplicity, only W, by one-half. Since the correct asymp-
totic form of €2 is ~ 'i%-i , this modification is not unreasonable.
The elastic cross sections are changed by less than 5 percent and the
ion is increased by less than 1 percent. This
reaffirms our earlier conclusion that the long-range interaction
does not affect the scattering cross sections significantly.

Further, increasing the value of the long-range cut-off parameter

0 [c.f. Equation (3. 3)] from 6, to 10a, increases the excita-
tion cross section for the sample case \4: = 2,196, 3% =10 by less
than one-half percent, indicating that our results are not sensitive to
reasonable variations of Q2 either.

And finally, to measure the sensitivity of our results to the pre-
cise shape of the (only) repulsive potential curve 32+ , we decreased

o ®T) by one-half for all R<S . The resulting total cross sections
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(again for k, = 2.196),

Qv,n = 2041. a,,
Q Y, 3 = 159.0 a,,
Qu,vy = 173.8a,
Qs v, = 2602. a,,

differ by less than 6 percent from those listed in TABLE IV-6; more-
over, only partial cross sections Q(3) for J * £16 differ from those

listed in that table.
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C. Cooling of Interstellar -Hydrogen

As we mentioned in the INTRODUCTION the principal application
of this investigation is astrophysical in nature. Collisions of slow
hydrogen atoms With the positive ions C+ and Sit and with neutral
oxygen atoms are thought to be important cooling mechanisms for
interstellar hydrogen clouds (HI regions). In this brief section we
discuss only the concepts essential to the calculation of cooling rates
due to CT - H excitation scattering.

If the radiative lifetime of an excited C+(2P,h_) ion is significantly
shorter than the time between C+(2P,,‘) - H collisions, then excited
carbon ions will lose energy almost exclusively by radiative decay.
Assuming the density of an interstellar cloud to be 10 hydrogen atoms/ cm®
and the n(H)/n(C+) number density ratio to be 104 (c.f. Gould and Sal-

30

+
peter ), at a temperature of 125 °K the time between C - H de-exci-

tation collisions is approximately

-1 8
'kc. = [V\(H) Qy"z/; ﬂro] ‘z 1 x10" sec, (4.7)

where the initial relative velocity A, = (Zks T/x)". The probability
+ +
of the forbidden C (ZP.h_ )= C (2P.,2_ ) transition, as calculated by

31
- -1 2 .
Naqui is A = 2.4x10 6 sec ~, and so the radiative lifetime of C+(“P%)
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is
1 ~ 4
~ = /A o X110 sec. (4.8)

Comparing these two lifetimes we see that most C+(2P,h_ ) ions de-
excite radiatively.
Now if the interstellar medium does not absorb this radiation the

gas is effectively cooled at a rate

A= (AE)n(HIn () {Qy,y, v, (4. 9)

where AR is the excitation energy of the C+(2P,,z_ ) level and the in-

tegral

< Q!I;,‘/; Uo) = SA'\T, [ Pw,) v, Q';/!;/L(-Nog_\' (4. 10)

is a reaction rate averaged with respect to the distribution of relative

initial velocities P(a) .

We obtained a polynomial fit to the total cross section Qg/“'/‘ ()
5,6
and then taking P(m,) to be a Maxwellian distribution, computed

. + . . .
the cooling rates /A (C” - H) given in TABLE IV-13. Approximate
5
cooling rates /A {O - H), estimaied from Smith's resulis with

n(H)/n(0O) = 2x103, are also listed in TABLE IV-13.
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TABLE IV-13. Rate of cooling of interstellar matter by ct-H
and O - H fine-structure de-excitation. f_ n(H) = 2x103 n(O) =
104 n(C+) =10 cm™3

T(K) AlC-H(S52) AWl (530)
100 6.53x10” 26 1.8x107 25
125 7.78x10™ 26  3.2x10°25
150 8. 74x10"26 4.0x10"25
200 1.01x10™ 2% 5. 0x10™ 25
300 1.17x10725 5. 6x10"25
500 1.38x10" 2 7.9x10725
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We see that at temperatures characteristic of interstellar hydro-
gen clouds the C+ - H excitation collisions provide a significant me-

chanism for cooling these clouds.
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D. Concluding Remarks

It is unfortunate that there are no experimental results with which
to compare the cross sections we have computed. S’cebbings32 has
indicated that at present there is little hope of measuring the cf-u
excitation cross section even with a merged beam apparatus since the
excitation energy (. 0079 ev) is so small. The lack of experimental
data concerning this and other, similar fine-structure excitation
processes in atom-atom collisions, however, emphasizes the need
for precise theoretical computations.

There are various ways in which the calculations we have re-
ported may be improved. It would be very desirable to ascertain
what effect a transformation similar to (2. 44) but R -dependent
would have on the cross section calculations. In addition, it would
be preferable to devise within the computer code a better method of
starting the numerical integrations. This method would determine
if a given solution were becoming too large - resulting in linear de-
pendence - and then restart the integration closer to the classical
turning point.

It would also be desirable to compute the cross sections for higher
center-of-mass energies to determine when, or if, the semi-classical

orbiting and impact-parameter approximations give results in agree-

ment with those obtained by a close coupling formaiism.
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Finally, we mention some related problems of interest: 1) close
coupling calculations of the fine-structure excitation scattering of sit
and O by H; 2) inclusion of the spin-change mechanism in collisions
such as O(3P) on O(3P) where a first-order electrostatic interaction
exists; and 3) excitation of upper levels of the ground state configura-
tion of various atoms and ions in collisions with slow hydrogen atoms.
Reactions in this third category might prove important in the deter-
mination of the statistical equilibria of atoms and ions in HI regions
with temperatures ~ 104 °k.

To calculate any of these cross sections within the framework we
have presented requires, of course, detailed knowledge of the rele-
vant molecular potential energy curves. It is encouraging to note

nes, such as the pseudopotential

method, are now being developed for the calculation of such poten-

tial curves.
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APPENDIX A

We wish to derive the second order energy correction W for a

hydrogen atom perturbed by a carbon ion. The notation is that of

Chapter II.

+
Averaging over the C (132232) core, the effective interaction

4
potential for C and H may be written as

n“§=2('1é'_71;) +(%1“%;;). (A.1)

Using standard perturbation techniques (see, for example, Pauling

and Wilson, Chapter VI.) we obtain

_ S J<ol 718> 1°
W = E:‘ "E: ’ (A. 2)

g*o
where lp) is the @ th state of hydrogen, with energy E: , and S
indicates both a summation over disciete states and an integration
over continuum states, the initial state |6) being omitted.

35
To calculate W , following Rose we expand the interparticle

distance
— ¥
L - /7 bs{ v "'T_S'l-t, A /r.S-\‘t,,’\'\ {A 9\
\ I A4S sty l ﬁ/ { ‘.1,}) “_;:\ (AR \a, O)
ve Sl-tgo L 2 "
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2
where Cf, is a component of the irreducible spherical tensor C( ),

the tensor component
s+t .. _ ' ) A t,A
T, 4 = % (sut» st 2) vl vs Gle) G, a9

and the coefficient

(2s+28)! ] :

b = (-)° (25! (zv)! (A. 5)
With this notation we may write the ct - H interaction as
=2[ Z.é(s O)Rsi--htz'—r (0.1) d:a (R)]
st=o
(A. 6)

) sat¥ st ¥
+ Z Rsa-ti [T (7-,1) C; (R) - 5(5 O)Ts(b,z) Cs;t(ﬁ)] .

st=o

It is most convenient to choose a coordinate system with the quantiza-
- A
tion axis along R , for in this system R= O and (A.6) canibe reduced

to the simpler expression

o b t s+t %
Sy = -ZZ 5(S O) st)t&‘l To (h;i) (A.7)

5,131

bsk

¥t ¥ s+t ¥
e [T - s T b))

- L]

o M

-98-



For the hydrogenic state

IP) =\nLM) = Rnérbi) \/I.M (?51) °

a matrix element of (A.2) may now be calculated,

<(Blii'rlo>= {nLMI|& | 100y

bet
= -2 E:i =5 S0 <aLint |10y <LMI ¢t TR oo)
@ be R
+ j[:_. "R—s;{;'l Z‘(S,-Plf,v‘&!t,o) \":,_ C_i*(rm) (A. 8)

*
X <nL‘f’b§_llD> (LM Q: (ﬁ.i) ‘°°>

> - bat
2, iy Z (5-», I st,000s €2%@,) <nlM|100) .

t=o »

In (A. 8) the radial and angular integrals are

{nL)r*|10) = TAT[(‘" R (Y r¥ Ry, (r)] ; (A.9)
)
and
Lemied (eylooy =< LMl €L (wg)lood
. PR AT y P
(A. 10)
n w
_("] (_i Ir .\/*t- nl:a .\/ oy 1 \-l
- Jui? )u"vLSQ'?" !LM %,4) q__’“(.q)go) "00(\1")!10‘; o
¢ °
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Because |g> =]100) is excluded from the summation (A, 2), the
last term of (A. 8) vanishes.

Reducing the remaining terms it follows
that

<alLinil10d
{anLMIFILo0) = )" (1!.:1)'/1

(A.11)
by *a
X :L; ‘;55171 {1-25(%03] (sML-mlsst o)l €] (R

With the above result we may immediately write down the second

order energy correction,

_ {allni10)” }“" _ ]
W = (.\Cl;m {(zun(eg-c_‘,‘,) Y [L-2860)[1-25(t0)]

st=o
L., St
it 1 S L T

" . (A.12)
ST . € .
Ritt+2L+2 CM (*) CM (*) (SML-M\s-rL)D)

X (tML-M\{HL,O),

X

the subscripts on the carbon electron coordinates having been dropped

The bracketed term in (A. 12) is related to the 2" -pole polarizability
36
of hydrogen,

N
r
+
'—)
30N
l

ro
rm
=
1}
my
x
~ e’
~7
o
2
[Ry
(4]
a’

so that expanding (A. 12) through terms of the order R -e,
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- t
W = °“ [Z L1-286G,00]1-28(4,00] Bsa by ¥7

syt €2 RSt

X 2. (sM1-M|s+1,0)(EM1-Mlt+1,0) (I'_f,\*(ﬂ d‘,:,\(’r‘)] (A.14)
M

_ ody
2R®

+ @(RT7)

T
Evaluating the coupling coefficients and noting that [C: (¢ )]
=sl2e:®)+1]

, the second order energy correction

W = ‘;[:q{ C (%) + = [2 -4 € (F )]} . (A.15)

Since C‘: (44) is the Legendre polynomial Py (cos¥), we see that
the angular dependence of W is determined only by the angle between
the C+(2p) electron coordinate * and the internuclear axis R ., We
can express W in the CM system where [ and ¥ have spherical
polar angles R and ¥ by rotating the quantity (A. 15) through the
angles R . By straight foreward application of the rotation oper-

20
ators, each angular term transforms as

2
Z D’ (¢ 4. 0) c? (s, @, ). (A. 16)
2 o i~ i S i
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2 - ¥
But D}O (¢g,1’g,0) is just 0:,, (19‘, q’,g) , so that upon
using the familiar spherical harmonic addition theorem we find
O(g L -
W—- ZRq{i q'R Pi(r.R)
o (A.17)
b
2R®

?

" LR;.[Z —491(;'.?2)]7] ~

where the argument of the Legendre polynomials is the cosine of the

—ry -
angle between ¢ and R .
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APPENDIX B

In this section we reduce the coupling matrix element

] [ m . ‘.
< ’%331: | w | '[43‘? , where '%331 is given by (2. 14),

14%7;( = Z (1m31mllﬂ,m)¢;’t(?)\Gm‘(ﬁ), (B. 1)

™M, My

and the interacticn potential W is given by (2. 36),

—p 2“'” £
w(R,r) = [ ). (B.2)
: §W,(R,r)( ) Yy (Y, ()

We first introduce the more symmetrical coupling coefficient, the
17
3-j symbol of Wigner,

('J' 'k }3)._. (_)-w:vm,

m, o, -ms (2 43 1»/)7z [;,m, Ja s Ifs -#; ).(B. 3)

and the spherical tensor component,

Y
2= (20 Y, ). @9

-103-



CYIT W T

S .
Z ) [(zgm(zg’u)(zjn)(z;'+1 )]/‘\,\/A (R)
EF:
"

ﬁ} x(l % 3 (1 g (319) (B. 5)

m My "Ma m V“p ’W‘t mt my -m

’

x ('”a mg -%n) 8 (mg,m?) CAm L [ 2m )
X <1ml C;f_im'> ,

where

Q= —(1+Ma+m&+1+3l-l-£’+m+m') (B. 6)

and Wy (R) is W, (R ) averaged with respect to the ct (zp)

orbital.

The angular integrals are evaluated to be

e (22 E)(225)
Cmgl €2 umd> = "™ Lo o o/\m o m/ BD

x [<u+1)(u’+1>]'/‘,

and

s A

r 4 A
L A 4 + A
<Lm|(t}|im’) = =) 3 \o oo)(w',u

3'-~

) (B. 8)
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Upon substituting (B. 7) and (B. 8) into (B. 5) we find

n .
T Iwlydz>

LyR'-4-4-M-M'-1
=

3 l’_(zm)(zz'+1)(25+1)(2;'+1)

x(29+1)(29+1)]/" ZW;(R) (o ::o) f: ’Aog)

e’ epi-m-m (1 % \ 1 % 3\ (B.9)
X Z (...)"‘3 3 4™ (M m, 3"3)("" :n,-ama')

my m,’

My Wy ’ ’

e x(;le)(a'xg)(“r)
M B my my -m M; Mxl. - “my M,f

(+ 2 1)
™ouom/,

X

We now make use of a relationship involving the 6-j symbol of

Wigner, 3‘ g' ,33’ } , namely,
v 3r 3

(3t ay (a0t
(B. 10)

) ? 8,48u sln, 4m, 0, {1. 2, R; yf 4a 23)(,0 L2 4:\

\ .
— ’ v My n;l Ny —iiy Maj*
nn

{—
\

Q
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In (B.9), summing first over (m ,m' , mq ), and then over

(}; , my mi_ ), we obtain

m ‘m’
o wlysho

-m-m'-¥;
= ) “3 ngu)(lé’+1)(?.£+1)(2L'+1)(‘L%i1)

x(zc}'n)]'/"z’}(-)"\ W, (R) (—)-{” (B. 11)
Gl
"Z, (ﬁ,gm’m,ﬂi, 7§ i,)

M. M.
&“a

which reduces easily to the result

<Cydriwlyle)

= S(Q,g;) 8(7’1,191*)3[(11*1) (2[-”1)(Zj1’1)(2é'+1)}/t (B. 12)

i a A ““' ’-2‘1"’5
’

x ;(_)g%-a Wa(R) (: ;c:)( i ) {

b amad.

P
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by use of the orthogonality relation

S (bl (rE b

M M

= 6(4:,45)8 (my,mi)

(24:+1)
We note that since
(1‘:', 'L‘ 23 =0 unless (1. td VJ;) = even integer

only even values of 1 contribute non-vanishing coupling matrix

elements.
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APPENDIX C

In this section we reduce the spin-change coupling matrix ele~-

ments appearing in Equation (2. 44). We define

<Tyay gl I 1) = % Was(R) P (404524, Y
where
Prs (1454 4°¢)
= 20 (ymydmg 1) (o Lo ) g 0)
x(%’m‘lz«l IM) (§M %o’ ] TM) (C. 2)

« {4, & | ASMS> (ASM [ #7)

Y AN ~ 1 A AV ~1T n% \
* | U ~ o ) oy
\ Amg ™ U‘r‘a" ! 'xm,; U;g&'ma’ Urq’

and where the summation is over the quantities

{’MW.' m, m, m2m3 e iy ”’,’ r v’ Ms} .

Pad
We first evaluate the integration over the orientation angles R
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‘/z ) % ‘/‘L +* ’)
22 +1 ) _ (2__1&)
Yx}‘ (ﬁ) = ( —4?——) D o (?&,1’“,0) = 4T D/‘ 0 (ﬁ)’ (C. 3)
D:, being an element of the rotation matrix, and also

\ SN AV N 2,
Dﬂ;(ﬁ) D':/" (i\ = hzv (7.1*1) (M m' n )(lu. }4,’ Q)D:V(R)- (C. 4)

Applying the relation (C. 4) three times we calculate

4 % 3' Y,
<(\&Nh t%%m I)Ft" \Lh[ E%; [)~' '>

na' To
¢ l/?. -
(4‘“')2' Q ol
b Lo d
By
s a 8l AN 71 17 - ’ [V PN c LN/ A L\
X X C© 3110& a,n..w ?n-c Jriv
IR E
/l . C;\ (C;‘/D:FDQ (i) ﬁb ray ~nC rAN
x \owp oy ) 77 LMaat™ Ygp (i) Uy (K]

— (_\"‘1 \i(z}.;i)(llfhl)]vz Z (Za-il) (2b+1)(2c41) - )(3-@
f'adzz

(C.5)
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Now substituting the result (C. 5) into (C. 2) and using 3-j symbols

throughout we obtain

pas (424,444

= @34) (2sr1) Ll (2 940) (2042 (20 +2) (244 1) (24 +1)] %

feaea’_ 4.0’ -8 -, -ﬁ;'--m"m'
“(_)ul +3-4-% ZQ‘ e +8-8 7y "y (Za+1)(2btl)

oy (P2 )4 3Y(E L)1)

mym-/\m o -M/\my my -/ m ¢’-M

”

(C.6)

(:l e 4 )(tl Yo 1f ) ( 12 Y2 § )("Vz Y. S )

X m my ~mg m'm;.-ma' m, & -M;/\m;g & -M
(1 2 c) Qx’c) 4,%‘1)(4 % a)

“\o o o -, m ¥ iy * d m, 0 o

( ;
;"/Lb) 4'7:.5)(0.bc)(abc)
;”,3: ;Iﬁ ma, a;(g o4 —ﬁ ¥ L - 0 )

where the summation is over a , b , and ¢ and all projection quan-

»

tum numbers

{mlm&'mémé o o’ Wy Wy FE My mmwmom oAl %"},

ming first over (Ma"' , 0 ,'m’ ) and ( my ¢ , M ), then over
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(;35’, F',m,’)and(ﬂfz , ® , mg ), and then over ( Mg , & ,"(s' )

and (M, « ,8 ), dividing by (2 J + 1), we may reduce (C. 6) to

PRs (424, 4 4¢)
=(2S+1) [(13*1’(23'*1)(2“1) (7.}.’41)(zg+1)(23'+1)'] &

N TIEE DT T O™ 2L (2 (2641) (20 00)

mimg Imi=p  (obed) (C.7)
(ﬁ. L'c)(lﬂ‘c)(iic) ll'c) 11 ¢
*x\o o o/\mein/ &/ \-m/m &/\-mm o o.bs{
{J‘ lu}{J’l’b}{iaS}{i ;,s}{rlc}
Lyl lyngflanifllnegyflaeT].

And finally, by employing the orthogonality relation (B. 13), we may

reduce the spin-change coupling matrix element to the desired form,

Prs (424, 4 24)

= (25+0) L (2440 (25%0) (2 30) (207+4) (242) ( zg’ﬂ)T"

e tw 2 e (C.8)
x(-)l I-s 3% :L:c)('z.an)(zhl) (o oo)

T I PRI

A L ()
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