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ABSTRACT
On Properties of the Hohmann Transfer
by

Jarret Mathwig

In this work, we present a complete study of the Hohmann transfer maneuver
between two circular coplanar orbits. After revisiting its known properties, we present a
number of supplementary properties which are essential to the qualitative understanding
of the maneuver. Specifically, along a Hohmann transfer trajectory, there exists a point
where the path inclination is maximum: this point occurs at midradius and is such that the
spacecraft velocity equals the local circular velocity. This implies that, in a Hohmann
transfer, the spacecraft velocity is equal to the local circular velocity three times: before
departure, at midradius, and after arrival. In turn, this allows the subdivision of the
Hohmann transfer trajectory into a region where the velocity is subcircular and a region
where the velocity is supercircular, with the transition from one region to another
occurring at midradius.

Also, we present a simple analytical proof of the optimality of the Hohmann
transfer and complement it with a numerical study via the sequential gradient-restoration
algorithm. Finally, as an application, we present a numerical study of the transfer of a
spacecraft from the Earth orbit around the Sun to another planetary orbit around the Sun
for both the case of an ascending transfer (orbits of Mars, Jupiter, Saturn, Uranus,
Neptune, and Pluto) and the case of a descending transfer (orbits of Mercury and Venus).

Key Words. Flight mechanics, astrodynamics, celestial mechanics, Hohmann

transfer maneuver, orbital transfer, ascending transfer, descending transfer.
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1. Introduction

Walter Hohmann was born in 1880 in the town of Hardheim, near Wiirzburg, in
Germany. He studied civil engineering at the Technical University of Munich achieving
the Diploma Degree in 1904. Later on, he continued his studies in civil engineering at
the Technical University of Aachen achieving the Doctor Degree in 1919. His lifetime
work was in civil engineering, culminating with his appointment as City Architect of the
town of Essen in 1912. His lifetime hobby was the study of space maneuvers,
culminating with the publication of the book The Attainability of Celestial Bodies,
published in 1925 (Ref. 1). He died at the end of World War II during a bombing raid on
Essen in 1945.

Walter Hohmann worked alone, independently of the considerable German effort
on missiles and spacecraft. Perhaps, this is a major reason for the great originality of his
work. His most famous study refers to the transfer of a spacecraft from a circular orbit to
another circular orbit in a central gravitational field. He concluded that, energetically
speaking, the most efficient trajectory is the elliptical trajectory bitangent to the terminal
orbits (Ref. 1), which became known as the Hohmann transfer maneuver. With the
advent of the space program in 1947, the Hohmann transfer maneuver became the most
fundamental maneuver in space (Refs. 2-11).

In this paper, we present a comprehensive study of the Hohmann transfer
maneuver. After revisiting its known properties (Sections 2-4), we present a number of
supplementary properties which are essential to the qualitative understanding of the
Hohmann transfer maneuver (Sections 5-6). Next, we present a simple analytical proof

of the optimality of the Hohmann transfer maneuver and we complement it with a



numerical study via the sequential gradient-restoration algorithm for mathematical
programming problems (Section 7). Finally, as an application, we present a numerical
study of the transfer of a spacecraft from the Earth orbit around the Sun to another
planetary orbit around the Sun; we consider both the case of an ascending transfer to the
orbits of Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto and the case of a descending
transfer to the orbits of Mercury and Venus (Section 8). Next, we discuss alternative
modes of transfer such as the biparabolic transfer and bielliptic transfer (Section 9).

Finally, we present the conclusions (Section 10).



2. Equations of Motion

We consider the motion of a spacecraft in a central gravitational field. The
spacecraft position is determined via the pair (r, 8), where r is the radial distance from the
center of attraction and 0 is the phase angle (angle of the radius vector wrt a reference
direction). The spacecraft velocity is determined by the pair (¥, y), where V is the
velocity modulus and 7y is the angle between the velocity vector and the local horizon
(this is perpendicular to the radius vector).

In the absence of acrodynamic and propulsive forces and with reference to the

planar case, the equations of motion are

7 =Vsiny, (la)
6 =(V/r)cosy, (1b)
V =—(u/r?)siny, (1c)
¥ =—(u/r’V)cosy+ (¥ /r)cosy, (1d)

where the dot denotes derivative with respect to the time 7. Let

E=V*/2-ulr (2a)
denote the total energy (kinetic energy plus potential energy) per unit mass of the
spacecraft and let

M =rV cosy (2b)
denote the angular momentum of the spacecraft, namely, the moment of the velocity
vector with respect to the center of attraction. With this understanding, the equations of
motion admit the well-known first integrals

E = const, (3a)

M = const, (3b)



which are essential to the analysis of a Hohmann transfer.



3. Ascending Hohmann Transfer

We consider the ascending transfer of a spacecraft from a low circular orbit to a
high circular orbit under the following assumptions:

(A1) the low orbit and the high orbit are circular and coplanar;

(A2) there is only one source of gravitational attraction along the entire

trajectory;

(A3) circularization of the motion is assumed at both the departure and arrival;

(A4) velocity impulses are applied at only the terminal points of the trajectory

and tangentially to the trajectory.

Let the subscripts 0 and 1 denote the spacecraft conditions before and after the
application of the accelerating velocity impulse at departure. Let the subscripts 2 and 3
denote the spacecraft conditions before and after the application of the accelerating
velocity impulse at arrival. With this understanding, the following relations can be

written at the departure:

Fi = ro, (4a)
V.=V, +AV,, V, =u/r,, (4b)
Yi =% =0, (4¢)

and at the arrival:

¥3 =1, (5a)
V,=V,+AV,, Vy=4nlr, (5b)
Y3 =7, =0. (5¢)

Use of the energy and angular momentum integrals between the points 1 and 2 leads to

the supplementary relations



Vii2—puln =V, 12-plr,,

nV, = nl,.

Equations (4) — (6) admit the following solutions:

I/1'_—1/0 r3/rave’ V0= ],L/I’O,
V, = ViV Fae s V,=yulr,,
in which

Fro =1y +13)/2

(62)

(6b)

(7a)

(7b)

(7c)

denotes the average radius. As a consequence, the velocity impulses at the departure and

arrival are given by

AV, =V, -V, = VO('\/r3/rave -1,

AV, = V=V, = Vs(=ry /1)

ve / *

Also, the values of the energy and angular momentum constants become

E, =—p/2r,, M, =Vr,,
E, =—-p/2r,,, M, =Vr,,
E, =-u/2r,,, M, =V,r,,
E, =—u/2r, M, =Vr,.

(8a)

(8b)

(92)
(9b)
(9¢)

(9d)

3.1. Remark. In polar coordinates, the geometry of the ascending Hohmann

transfer is described by the equation

r=p/(1+ecosb),

(10a)

where p is the parameter, e the eccentricity, and 6 the phase angle. In turn, the values of

the parameter and eccentricity are given by



p =2y [(ry +13), (10b)
e=(r,—1)/(ry +1y). (10c)
Other quantities of interest are the phase angle travel of the spacecraft 6(t) — 6(0), transfer
time t, the characteristic velocity AV, and propellant mass ratio my/myg (ratio of the

propellant mass m, required for transfer to the initial mass of the spacecraft mo). These

quantities are given by the relations

8(7) — 8(0) =, (11a)
t=mrl/p, = +7)/2, (11b)
AV = AV, + AV, (11¢)
m,/m, =1-exp(AV/V,), Ve = gsi Isp, (11d)

where V. is the exit velocity (velocity of the jet exiting the rocket engine relative to the
spacecraft), I, is the specific impulse of the rocket engine, and gs. is a reference

acceleration (acceleration of gravity at sea level on Earth).



4. Descending Hohmann Transfer

We consider the descending transfer of a spacecraft from a high circular orbit to a
low circular orbit under Assumptions (A1) — (A4). Let the subscripts 0 and 1 denote the
spacecraft conditions before and after the application of the braking velocity impulse at
departure. Let the subscripts 2 and 3 denote the spacecraft conditions before and after the
application of the braking velocity impulse at arrival. With this understanding, the

following relations can be written at the departure:

ry="rg, (12&)
V.=V, —AV,, V, =1/r,, (12b)
Y1 =7Y,=0, (12¢)

and at the arrival:

r3=ry, (13a)
V,=V,-AV,, Vv, =Julr,, (13b)
Y; =7, =0. (13c)

Use of the energy and angular momentum integrals between the points 1 and 2 leads to

the supplementary relations
Vii2—uln =V} 12-ulr,, (14a)
nV,=nl,. (14b)

Equations (12) — (14) admit the following solutions:

Vi=Voars I Tpe s Ve =Julr, , (15a)
Vy =Vt [ Fye s V,=yun/r, (15b)
in which



Foe = (Fo +13)/2 (15¢)
denotes the average radius. As a consequence, the velocity impulses at the departure and

arrival are given by

AV, =V, =V, = V,(1=lr, /7., (16a)
AV, =V, =V, = V,(Jr, I e —1). (16b)

Also, the values of the energy and angular momentum constants become

E, =-n/2r,, M, =Vyr,, (17a)
E =—nu/2r,,, M, =Vr,, (17b)
E, =—p/2r,,, M, =V,r,, (17¢)
E, =-u/2r,, M, =Vr;. (17d)

4.1. Remark. In polar coordinates, the geometry of the descending Hohmann
transfer is described by the equation

r=pl/(l-ecosb), (18a)
where p is the parameter, e the eccentricity, and 6 the phase angle. In turn, the values of
the parameter and eccentricity are given by

p=2r,r (1, +1,), (18b)

e=(r,—r)/(ry +1y). (18¢c)
The phase angle travel 6(t) — 0(0), transfer time t, characteristic velocity AV, and
propellant mass ratio m,/my are the same as for ascending transfer and therefore are given

by Egs. (11).



5. Maximum Path Inclination

For the ascending Hohmann transfer, the path inclination y vanishes at the
endpoints and is positive everywhere else. Therefore, there is a point on the Hohmann
transfer trajectory where the path inclination y has a maximum value (Ref. 8).

(1) One way to compute the ymax point is to make use of the energy and
angular momentum integrals, that is, to formulate the following mathematical

programming problem in the (7, V, v) space:

min  cosYy, (19a)
st.  V*/2-u/r-E=0, (19b)
rVcosy-M =0. (19¢)

This problem has three variables, two constraints, and hence one degree of freedom. Let
Ae and Ay denote the Lagrange multipliers associated with the energy and angular
momentum constraints and let

F =cosy + Ay(V2/2—u/r—E) + Ay (rV cosy- M) (20)
denote the augmented function associated with problem (19). The first-order optimality

conditions are

F. = Mgu/r? + L,V cosy = 0, (21a)
F, = AV + hyrcosy = 0, (21b)
F, = —(1+ky,rV)siny = 0. (21c)

For any given triplet (, ¥, v), Egs. (21a) and (21b) are linear and homogeneous in the
multipliers A and Ayv. This subsystem admits nontrivial solutions for the multipliers

providing its Jacobian determinant vanishes,

10



2
v
ulr cosy | _ 0, (224)

vV ¥ cosy

and this occurs precisely when

V=\ulr. (22b)

The meaning of Eq. (22b) is that, at the ymax point, the spacecraft velocity equals the local
circular velocity. Let the subscript 4 denote the Ymax point. Omitting details for the sake
of brevity, use of the energy and angular momentum integrals yields the following values
for the radial distance and corresponding velocity

Py =¥ =(rp +13)/2, (22¢)

V,=p/r. (224)
Therefore, the Ymax point is the midradius point of the Hohmann transfer.

(i)  An alternative way to find the ymax point is to use the differential system

(1), more precisely Eq. (1d). If we set

¥=0 (23a)

in Eq. (1d), we see once more that

V=iulr. (23b)

5.1. Remark. For the descending Hohmann transfer, the path inclination vy
vanishes at the endpoints and is negative everywhere else. Therefore, there is a point on
the Hohmann transfer trajectory where the path inclination y has a minimum value, hence
the negative of the path inclination — v has a maximum value.

Proceeding in analogy with (i) and (ii), we conclude that the ymia point [hence, the

(- ¥)max point] occurs precisely when the relation (22b) or (23b) is satisfied.

11



6. Dimensionless Speed

Let V denote the spacecraft velocity, let 7, denote the local circular velocity

v, =Juir, (242)
and let
u=Vw,=Vyriu, (24b)
denote the ratio of the spacecraft velocity to the local circular velocity (Ref. 8).
Regardless of the value of the path inclination v, the spacecraft velocity is called circular
if u = 1, supercircular if # > 1, and subcircular if ¥ < 1. This terminology allows us to
give a simple and elegant interpretation to the Hohmann transfer results, due to the fact
that the value # = 1 occurs three times: prior to departure (point 0), at midradius (point 4),
and after arrival (point 3).
(1) For an ascending Hohmann transfer from a low orbit of radius r¢ to a high

orbit of radius 3 > ro, the dimensionless speed (24b) takes the following values:

=1, (25a)
w = 1 1. > 1, (25b)
ug=1, (25¢)
wy = 1y [ 7o <1, (25d)
u; = 1. (25¢)

Hence, the velocity is circular prior to the departure [see (25a)]; it becomes supercircular
because of the accelerating velocity impulse at the departure [see (25b)]; as the spacecraft
ascends, the velocity decreases becoming circular again at midradius [see (25¢)]; as the
spacecraft ascends further, the velocity decreases, becoming subcircular and achieving its

lowest value when the spacecraft reaches the high orbit [see (25d)]; at this point, an

12



accelerating velocity impulse is applied and the velocity becomes circular again at the
arrival [see (25¢)].

For an example, see Figures 1-2, which refer to the transfer of a spacecraft from
the Earth orbit around the Sun to the Mars orbit around the Sun.

(i)  For a descending Hohmann transfer from a high orbit of radius r to a low

orbit of radius 3 < ro, the dimensionless speed (24b) takes the following values:

o =1, (26a)
wy = Jry I r. <1, (26b)
us =1, (26¢)
= A1y (7 > 1, (26d)
us=1. (26€)

Hence, the velocity is circular prior to the departure [see (26a)]; it becomes subcircular
because of the braking velocity impulse at the departure [see (26b)]; as the spacecraft
descends, the velocity increases becoming circular again at midradius [see (26¢)]; as the
spacecraft descends further, the velocity increases, becoming supercircular and achieving
its largest value when the spacecraft reaches the low orbit [see (26d)]; at this point, a
braking velocity impulse is applied and the velocity becomes circular again at the arrival
[see (26¢€)].

For an example, see Figures 3-4, which refer to the transfer of a spacecraft from

the Earth orbit around the Sun to the Venus orbit around the Sun.

13



7. Optimality of the Hohmann Transfer

The equations of the ascending Hohmann transfer (Section 3) were obtained
assuming that the velocity impulses at the departure and arrival are applied tangentially to
the terminal orbits, which are circular. In other words, the terminal values of the path
inclinations are yo = y; = ¥ = y3 = 0. This reduces the computation of the velocities (7)
and hence the computation of the velocity impulses (8) to a feasibility problem.

To establish the optimality of the Hohmann transfer, it is necessary to enlarge the
class of trajectories being investigated by assuming that the velocity impulses at the
departure and arrival are not necessarily tangential. This is the same as assuming the
presence of discontinuities in the path inclination at the departure (from yo = 0 to y; # 0)
and at the arrival (from y2 # 0 to y3 = 0).

7.1. Proof of Optimality. Let us decompose the vectorial velocity impulse at the
departure into a transversal component AVyr and radial component AVor. Analogously,
let us decompose the vectorial velocity impulse at the arrival into a transversal
component AV,r and radial component AVyr. These quantities are related to the
spacecraft velocity and path inclination (before and after application of the velocity
impulses) via the expressions

AV, =V, cosy, =V, AVyr =V;siny, -0, (27a)

AV,p =V, =V, cosy,, AV, =0V, siny,. (27b)

As a consequence, the moduli of the velocity impulses AV, and AV are given by

AV, = \/(Vl cosy, —V,)* + (¥ siny,)? (28a)

AV, = |V, =V, cosy,)” + (¥, siny,)” (28b)

14



which can be rewritten as

AV, = (7, V) + 20,V (1=cos,) , (292)

AV, =V, -V,)* + 2V, V(1 -cosy,) (29b)
while the total characteristic velocity (total velocity impulse) is given by

AV=AVy+ AV,. (29¢)

In Egs. (29), the circular velocities ¥ and V3 are known quantities. On the other
hand, the velocities V1, V> and path inclinations v, v, are unknown quantities, which must
be consistent with the energy and angular momentum integrals. If these relations are
exploited, the problem of minimizing the total characteristic velocity (29) can be

formulated as follows:

min  AV=AVy+ AV, (30a)
AV, = (¥, =V})* + 2V, V(1 -cosY,) , (30b)
AV, =V, ~V,)? +2V,V, (1~ cos¥,) (30c)
st. VP =Vi+2()-Vi)=0, (30d)
V2V, cosy, =V, V, cosy, =0, (30e)

where (30d) is an alternative form of the energy relation and (30e) is an alternative form
of the angular momentum relation.

This problem has four variables (¥1, V2, Y1, Y2), two constraints, and hence two
degrees of freedom. Let Ag and Ay denote the Lagrange multipliers associated with the

energy and angular momentum constraints and let

15



F= AV,(V,,v)+AV,(V,,7,)
+hg v - Vz2 +2(Vy - Vil + Ay ViV, cosy, — VoV, cosy,) €)Y
denote the augmented function associated with problem (30). The first - order optimality

conditions are

OF/3y, =0, (32a)
3F/oy, =0, (32b)
OF/oV, =0, (32¢)
OF/0V, = 0. (32d)

In particular, (32a) and (32b) yield the result

siny; =0, (33a)

siny, =0, (33b)
implying that

71=0, (34a)

v2=0. (34b)

To sum up, this simple yet rigorous proof allows us to conclude that, to minimize the
total characteristic velocity (hence to minimize the mass of propellant consumed), the
spacecraft must depart tangentially from the low circular orbit as well as arrive
tangentially to the high circular orbit.

With the terminal values of the path inclination known, solution of the feasibility

equations (30d) - (30e) yields the unknown velocities,

V= Vo2V 075 + V), (352)

V, =V 2V IVE+VE), (35b)

16



which can be converted into (15) via simple transformations. Finally, solution of (32¢) -
(32d) yields the multipliers Ag and Ay. The details are omitted for brevity.

For alternative proofs, albeit more complicated proofs, see Refs. 12-14.

7.2. Remark. While the results (34) have been established for an ascending
transfer, the same results (34) can be established for a descending transfer. The details
are omitted for the sake of brevity.

7.3. Computational Verification. For specific examples, a computational
verification of the optimality of the Hohmann transfer can be made using the sequential
gradient — restoration algorithm for mathematical programming problems (SGRA, Ref.
15). Two examples are considered.

Earth/Mars Transfer. The first example deals with the ascending transfer of a
spacecraft from the Earth orbit (radius ro) around the Sun to the Mars orbit (radius 73)
around the Sun under the assumption that the Sun is the only source of gravitational
attraction. In this example, the Sun gravitational constant is

p=1327 E11 km’/s?, (36a)
the radii of the terminal orbits are

ro = 1.496 E08 km, r3=2.279 E08 km, (36b)
and the corresponding terminal velocities are

Vo =29.78 km/s, V3=24.13 km/s. (36¢)
For the Hohmann transfer, the predicted accelerating velocity impulses are

AV =2.945 km/s, AV, =2.649 km/s, (37a)
so that the total characteristic velocity is

AV =5.594 km/s. (37Db)

17



Earth/Venus Transfer. The second example deals with the descending transfer of
a spacecraft from the Earth orbit (radius #() around the Sun to the Venus orbit (radius r3)
around the Sun under the assumption that the Sun is the only source of gravitational
attraction. In this example, the Sun gravitational constant is

p=1327E11 km’/s*, (382)
the radii of the terminal orbits are

ro = 1.496 E08 km, r3=1.082 E08 km, (38b)
and the corresponding terminal velocities are

Vo=129.78 km/s, V3 =35.02 km/s. (38¢c)
For the Hohmann transfer, the predicted braking velocity impulses are

AVy =2.496 km/s, AV, =2.707 km/s, (39a)
so that the total characteristic velocity is

AV =15.203 km/s. (39b)

Results. Computer runs were made for various starting combinations of the
departing pair (¥}, v)) resulting in the arrival velocity pair (¥, y2). For both Earth/Mars
ascending transfer and Earth/Venus descending transfer, SGRA led to vanishing values of
v1 and v, (hence vanishing values of the radial velocity impulses AVor and AV3r), so that
the terminal velocity impulses AV, and AV, became identical with their tangential
counterpart AVyr and AV,t. Also, the values achieved for the terminal velocity impulses
AV, and AV as well as the total characteristic velocity AV were quite close to the values

(37) for Earth/Mars transfer and the values (39) for Earth/Venus transfer.

18



8. Applications to Interplanetary Transfer

In this section, we present results on the interplanetary transfer of a spacecraft
from the Earth orbit around the Sun to the orbit of any other planet around the Sun. We
include two cases of descending transfer (from Earth orbit to the orbits of Mercury and
Venus) and six cases of ascending transfer (from Earth orbit to the orbits of Mars, Jupiter,
Saturn, Uranus, Neptune, and Pluto).

Planetary Data. Table 1 shows some basic planetary data. These include average
radial distance of planet from Sun r, average velocity V, energy per unit mass E, and
angular momentum M (Table 1la) as well as planet mass m, gravitational constant ,
orbital period T, and angular velocity around the Sun o (Table 1b).

Descending Hohmann Transfer. Tables 2 — 3 refer to the descending Hohmann
transfer from Earth orbit to the orbits of Mercury (Table 2) and Venus (Table 3). Tables
2a and 3a contain general properties, namely: velocity impulse at departure AVy, velocity
impulse at arrival AV,, total characteristic velocity AV, and transfer time t. For

interception problems, another quantity of interest is the phase angle difference at

departure,
AB(0) = 0pm(0) - B5(0) = (1 - OMmT), Earth/Mars transfer, (40a)
AB(0) =0y(0) - 0g(0) ==n(1 - @y 1), Earth/ Venus transfer. (40b)

The above phase angle differences reoccur in time after a synodic period, which is given
by
Teyn = 27/(wg — om) = TeTm/(Tv — Te),  Earth/Mars transfer, (41a)

Ton = 2n/(0y — 0g) = TeTv/(Te - Tv),  Earth/Venus transfer. (41b)

19



Tables 2b and 3b show the values of the spacecraft velocity V, radial distance r, energy

per unit mass E, and angular momentum M at the four critical points of the transfer,

namely:
point 0, departure, condition before velocity impulse,
point 1, departure, condition after velocity impulse,
point 2, arrival, condition before velocity impulse,
point 3, arrival, condition after velocity impulse.

Ascending Hohmann Transfer. Tables 4-9 refer to the ascending Hohmann
transfer from Earth orbit to the orbits of Mars (Table 4), Jupiter (Table 5), Saturn (Table
6), Uranus (Table 7), Neptune (Table 8), and Pluto (Table 9). These tables are
constructed in the same was as  Tables 2-3.

Propellant Consumption. The propellant consumed in a Hohmann transfer can be
computed with the relation

my/my =1 —exp(-AV/Ve), Ve = gst Isp. (42)
Here, m, is the propellant consumed, my is the initial mass of the spacecraft, AV is the
total characteristic velocity, Ve is the velocity of the jet exiting the rocket engine (relative
to the spacecraft), gsi. is a reference acceleration (acceleration of gravity at sea level on
Earth), and I, is the specific impulse of the rocket engine.

The values of the ratio my/my are given in Table 10 for three values of the engine

specific impulse, namely:

I, = 450s, hence V. = 4.414 km/s, (43a)
I, = 3000s, hence Ve = 29.43 km/s, (43b)
I, = 6000s, hence V. = 58.86 km/s. (43¢c)

20



The values (43a) characterize a present-day chemical engine (Space Shuttle). The values
(43b) characterize an existing electrical engine (Deep Space One spacecraft). The values
(43c¢) characterize a future electrical engine, already tested at NASA Glenn Space Center
in Cleveland, Ohio (Project Prometheus).

If instead of circularizing the motion in the target orbit, we are interested in a
planetary flyby, then Eq. (42) must be replaced by

mp/my =1 — exp(-AVo/Ve), Ve = gsL Isp. (44)
The values of the above ratio are given in Table 11 for three values of the engine specific
impulse, namely, the values (43).

From Tables 10-11, it is clear that the degree of difficulty associated with
reaching Mars and Venus (the planets closer to Earth) is much less than that associated
with reaching Mercury and the outer planets (Jupiter, Saturn, Uranus, Neptune, and
Pluto). See also Table 12 (in two parts), which contains a summary of the general

properties.
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9. Alternative Transfer Maneuvers

During the early years of the space program, attention was given to transfer
maneuvers alternative to the Hohmann transfer maneuver (Fig. 5). These include the
biparabolic transfer (Fig. 6) and the bielliptic transfer (Fig. 7).

9.1. Biparabolic Transfer. We refer to the ascending transfer from rq to 73 with
#3 > ro. The biparabolic transfer consists of two branches: (a) a parabolic branch tangent
to the departure orbit and going to infinity; (b) a parabolic branch returning from infinity
and tangent to the arrival orbit. Because of (a), the velocity ¥y must equal the escape
velocity at the radius r; = ro; because of (b), the velocity V> must equal the escape
velocity at the radius r, = r3. Hence, the velocity impulse associated with (a) is
accelerating, while the velocity impulse associated with (b) is braking. Of course, a third
velocity impulse is needed to switch from the parabolic ascending branch to the parabolic
descending branch. This third velocity impulse has zero magnitude if the switch is done
at infinity; it has a finite magnitude if the switch is done at a finite radius.

The analyses made (Ref. 4) have shown that the total characteristic velocity of the
biparabolic transfer is less than that of the Hohmann transfer if r3/rg > 11.94. While this
result has mathematical interest, it has no practical significance, since a biparabolic
transfer requires an infinite time.

9.2. Bielliptic Transfer. Again, we refer to the ascending transfer from rg to 73
with 73 > ro. The bielliptic transfer consists of two branches: (a) an elliptic branch
tangent to the departure orbit; (b) another elliptic branch tangent to the arrival orbit. In

turn, the two elliptic branches are tangent to one another at the point where the switch is
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made. This type of transfer requires three velocity impulses: at departure, at arrival, and
at the switch point from the first ellipse to the second ellipse.

The analyses made (Ref. 4) have shown that the total characteristic velocity of the
bielliptic transfer is less than that of the Hohmann transfer in the range 11.94 < r3/rg <
15.58, providing the switch from the first ellipse to the second ellipse occurs at a radius
sufficiently large. For ri/ry > 15.58, the bielliptic transfer is always more economical
than the Hohmann transfer providing the midcourse impulse occurs outside the arrival
orbit (» > r3). These advantages are obtained at a price: an increase of the transfer time,
which in some cases might be double that of the Hohmann transfer.

9.3. Remark. If we require the spacecraft to move in the region of space
bounded by the terminal orbits, namely if

ro<r<rs, ascending transfer, 47
then the solution of minimum total characteristic velocity is once more the Hohmann
transfer, regardless of the value of the ratio r3/ry. In effect, inequality (47) rules out the
possibility of either a biparabolic solution or a bielliptic solution, since each of these
solutions requires the spacecraft to travel outside the region of space bounded by the

terminal orbits.
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10. Conclusions

We present a complete study of the Hohmann transfer maneuver between two
circular coplanar orbits. Starting from basic orbital mechanics, a complete description of
the maneuver is given for both the case of an ascending transfer and the case of a
descending transfer. We include a number of supplementary properties of the Hohmann
transfer. Specifically, the path inclination is maximum at midradius and at this point the
spacecraft velocity equals the local circular velocity. This implies that the spacecraft
velocity equals the local circular velocity three times along a Hohmann transfer
trajectory: before departure, at midradius, and after arrival. In turn, this allows us to
subdivide the trajectory into a region where the velocity is supercircular and a region
where the velocity is subcircular: for ascending transfer, the supercircular region precedes
the subcircular region; for descending transfer, the opposite occurs.

We present a simple yet rigorous analytical proof of the optimality of the
Hohmann transfer. Rather than using a geometric argument, as previously done, the
proof is done via mathematical programming techniques. We complement the analytical
proof with a numerical study via the sequential gradient-restoration algorithm. Finally, as
an application, we present a numerical study of the transfer of a spacecraft from the Earth
orbit around the Sun to another planetary orbit around the Sun for both the case of an
ascending transfer (orbits of Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto) and the

case of a descending transfer (orbits of Mercury and Venus).
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Table 1a. Planetary data.

r [km] ¥ [knv/s] E [km?%/s%] M [km?/s]

Mercury 0.579x10° 47.873 -1145.90 2.772x10°
Venus 1.082x10® 35.023 -613.30 3.789x10°
Earth 1.496x10° 29.785 -443.58 4.456x10°
Mars 2.279x10° 24.130 -291.12 5.500%10°
Jupiter 7.783x10° 13.058 -85.26 10.164x10°
Saturn 14.294x10° 9.636 -46.42 13.773x10°
Uranus 28.710x10° 6.799 -23.11 19.520x10°
Neptune 45.043x10° 5.428 -14.73 24.450x10°
Pluto 59.135x10° 4.737 -11.22 28.015x10°
Table 1b. Planetary data (continued).

m [kg] u [km®/s%] T [days] o [deg/day]
Mercury 3.303x10% 2.204x10* 87.969 4.092x10°
Venus 4.869x10% 3.249x10° 224.701 1.602x10°
Earth 5.976x10* 3.987x10° 365.256 9.856x10""
Mars 6.421x10% 4.285x10" 686.986 5.240%10"
Jupiter 1.900x10% 1.268x10° 4332.66 8.309x10
Saturn 5.688x10%° 3.795x10’ 10759.4 3.346x107
Uranus 8.686x10% 5.796x10° 30688.9 1.173x107
Neptune 1.024x10% 6.833x10° 60132.3 5.987x107
Pluto 1.290x10% 8.608x10 90467.2 3.979x107
Sun 1.989x10% 1.327x10"

Universal gravitational constant G = 6.67259x 102 [km*/kg s2].
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Table 2a. Earth orbit to Mercury orbit,
descending Hohmann transfer, general properties.

AVy [km/s] AV, [knv/s] AV [km/s] 1 [days] AB(0) [deg] Ty [days]

7.533 9.611 17.144 94.63 -207.24 115.88

Table 2b. Earth orbit to Mercury orbit,
descending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km?/s’] M [km?/s]
0 HSO(-) 1.496x10°  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10° 22252 -639.58 3.329x10°
2 LSO(-) 0.579x10°  57.484 -639.58 3.329x10°
3 LSO(+) 0.579x10®  47.873 -1145.90 2.772x10°

Table 3a. Earth orbit to Venus orbit,
descending Hohmann transfer, general properties.

AVo [km/s] AV, [kmy/s] AV [km/s] T [days] AB(0) [deg]  Teyn [days]

2.496 2.707 5.203 144.17 -51.01 583.96

Table 3b. Earth orbit to Venus orbit,
descending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km?/s’] M [km?%/s]
0 HSO(-) 1.496x10° 29.785 -443.58 4.456%10°
1 HSO(+) 1.496x10%  27.289 -514.81 4.082x10°
2 LSO(-) 1.082x10%  37.730 -514.81 4.082x10°
3 LSO(+) 1.082x10%  35.023 -613.30 3.789x10°
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Table 4a. Earth orbit to Mars orbit,
ascending Hohmann transfer, general properties.

AVy [km/s] AV, [km/s] AV [km/s] 1 [days] AB(0) [deg]  Teyn [days]

2.945 2.649 5.594 253.23 47.30 779.87

Table 4b. Earth orbit to Mars orbit,
ascending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km?/s%] M [km?/s]
0 HSO(-) 1.496x10%  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10°  32.730 -351.53 4.896x10°
2 LSO(-) 2.279x10°  21.481 -351.53 4.896x10°
3 LSO(+) 2.279x10%  24.130 -291.12 5.500x10°

Table 5a. Earth orbit to Jupiter orbit,
ascending Hohmann transfer, general properties.

AVy [km/s] AV, [km/s] AV [km/s] 7 [days] AB(0) [deg]  Teyn [days]

8.793 5.643 14.436 733.60 119.07 398.87

Table 5b. Earth orbit to Jupiter orbit,
ascending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km?/s%] M [km?/s]
0 HSO(-) 1.496x10%  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10°  38.578 -143.03 5.771x10°
2 LSO(-) 7.783x108  7.415 -143.03 5.771x10°
3 LSO(+) 7.783x10°  13.058 -85.26 10.163x10°
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Table 6a. Earth orbit to Saturn orbit,
ascending Hohmann transfer, general properties.

AVy [kmv/s] AV, [km/s] AV [km/s] T [days] A6(0) [deg]  Tsyn [days]
10.292 5.441 15.734 1296.84 136.72 378.08
Table 6b. Earth orbit to Saturn orbit,
ascending Hohmann transfer, detailed properties.
Point Orbit r [km] V [km/s] E [km*/s%] M [km?/s]
0 HSO(-) 1.496x10°  29.785 -443.58 4.456x10°
] HSO(+) 1.496x10%  40.078 -84.05 5.996x10°
2 LSO(-) 14294x108  4.194 -84.05 5.996x10°
3 LSO(+) 14.294x10%  9.636 -46.42 13.773x10°
Table 7a. Earth orbit to Uranus orbit,
ascending Hohmann transfer, general properties.
AVy [km/s] AV, [km/s] AV [km/s] 1 [days] A0(0) [deg]  Tsyn [days]
11.281 4.659 15.940 2542.03 150.20 369.64
Table 7b. Earth orbit to Uranus orbit,
ascending Hohmann transfer, detailed properties.
Point Orbit r [km] V [ko/s] E [km%/s%] M [km?/s]
0 HSO(-) 1.496x10°  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10°  41.066 -43.94 6.143x10°
2 LSO(-) 28.710x10°  2.140 -43.94 6.143x10°
3 LSO(+) 28.710x10°  6.799 -23.11 19.520%10°
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Table 8a. Earth orbit to Neptune orbit,
ascending Hohmann transfer, general properties.

AVy [km/s] AV, [km/s] AV [km/s] 1 [days] AO(0) [deg]  Tsyn [days]

11.655 4.052 15.707 3952.22 156.42 367.47

Table 8b. Earth orbit to Neptune orbit,
ascending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km%/s%] M [km?*/s]
0 HSO(-) 1.496x10°  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10%  41.440 -28.52 6.199x10°
2 LSO(-) 45.043x10°  1.376 -28.52 6.199x10°
3 LSO(+) 45.043x10%  5.428 -14.73 24.451 x10°

Table 9a. Earth orbit to Pluto orbit,
ascending Hohmann transfer, general properties.

AVo[km/s] AV, [km/s] AV [km/s] 1 [days] AB(0) [deg]  Tsyn [days]

11.815 3.685 15.41 5168.81 159.50 366.72

Table 9b. Earth orbit to Pluto orbit,
ascending Hohmann transfer, detailed properties.

Point Orbit r [km] V [km/s] E [km?/s%] M [km?/s]
0 HSO(-) 1.496x10°  29.785 -443.58 4.456x10°
1 HSO(+) 1.496x10%  41.599 -21.89 6.223x10°
2 LSO(-) 59.135x10°  1.052 -21.89 6.223x10°
3 LSO(+) 59.135x10%  4.737 -11.22 28.015x10°
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Table 10. Propellant mass ratio m,/mq for Earth-to-Planet transfer (circularization of
motion).

I, = 450]s] I, = 3000(s] I, = 6000(s]
Mercury 0.9794 0.4415 0.2527
Venus 0.6923 0.1621 0.0846
Earth 0.0000 0.0000 0.0000
Mars 0.7185 0.1731 0.0907
Jupiter 0.9620 0.3877 0.2175
Saturn 0.9717 0.4141 0.2346
Uranus 0.9730 0.4182 0.2372
Neptune 0.9715 0.4136 0.2342
Pluto 0.9701 0.4094 0.2315

Table 11. Propellant mass ratio my/my for Earth-to-Planet flyby.

I, = 450[s] I, = 3000[s] I, = 6000[s]
Mercury 0.8185 0.2258 0.1201
Venus 0.4319 0.0813 0.0415
Earth 0.0000 0.0000 0.0000
Mars 0.4868 0.0952 0.0488
Jupiter 0.8636 0.2583 0.1388
Saturn 0.9029 0.2951 0.1604
Uranus 0.9223 0.3184 0.1744
Neptune 0.9287 0.3270 0.1796
Pluto 0.9312 0.3307 0.1819
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Table 12a. Earth-to-Planet Transfer:

Summary of general properties.

AV, [km/s] AV, [km/s] AV [km/s]
Mercury 7.533 9.611 14.144
Venus 2.496 2.707 5.203
Earth 0.000 0.000 0.000
Mars 2.945 2.649 5.594
Jupiter 8.793 5.634 14.436
Saturn 10.292 5.441 15.734
Uranus 11.281 4.659 15.940
Neptune 11.655 4.052 15.707
Pluto 11.815 3.685 15.410

Table 12b. Earth-to-Planet Transfer:
Summary of general properties.

1 [days] AB(0) [deg] Tsyn [days]
Mercury 94.63 -207.24 115.88
Venus 144.17 -51.01 583.96
Earth 0.00 0.00 0.00
Mars 253.23 47.30 779.87
Jupiter 733.60 119.07 398.87
Saturn 1296.84 136.72 378.08
Uranus 2542.03 150.20 369.64
Neptune 3952.22 156.42 367.47
Pluto 5168.81 159.50 366.72
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Fig. 1. Earth orbit to Mars orbit transfer:
Velocity vs radial distance.
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Fig. 2. Earth orbit to Mars orbit transfer:
Path inclination vs radial distance.
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Fig. 3. Earth orbit to Venus orbit transfer:
Velocity vs radial distance.
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Fig. 4. Earth orbit to Venus orbit transfer:
Path inclination vs radial distance.
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