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ABSTRACT

Preconditioner Schemes for Elliptic Saddle-point Matrices
Based Upon Jacobi Multi-band Polynomial Matrices.
by

Victor J. Parr

Simulation of flow in porous media requires the numerical
approximation of elliptic partial differential equations. Mixed finite element
methods are frequently employed, because of local mass conservation and
accurate approximation of both pressure and velocity. Mixed methods give
rise to "elliptic” saddle-point ( ESP ) matrices, which are difficult to solve
numerically. In addition, the problems to be modelled in ground water flow
require that the hydraulic conductivity or absolute permeability be a tensor,

which adds additional complexity to the resulting saddle-point matrices.

This research develops several preconditioners for restarted GMRES
solution of the ESP linear systems. These preconditioners are based on a new
class of polynomial matrices, which we refer to as Multi-band Jacobi
Polynomial ( JMP ) matrices. Applications of these preconditioners to the
numerical solution of two and three spatial dimensional flow equations with
tensor coefficients using rectangular lowest order Raviart-Thomas spaces are

presented.
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Chapter 1. Introduction.

Simulation of flow in porous media requires the solution of mass
balance equations in which the phase velocities are described by Darcy's Law
[4,18]. Here the phase velocities are proportional to the gradient of the phase
pressures. Mixed finite element methods or cell centered finite difference
methods are frequently employed to model these equations [9,37]. These
methods are locally conservative and pressure and velocity can both be

approximated to the same degree of accuracy.

In this Thesis we shall restrict our attention to incompressible single
phase flow. Here we must solve an elliptic partial differential equation with
highly varying discontinuous tensor coefficients, the hydraulic conductivity,
and/or absolute permeability. We further restrict our attention to the lowest
order Raviart Thomas approximating space for the mixed finite element

method. This space is the one most frequently used in practice.

The major computational difficulty in applying the mixed finite
element procedure to the Darcy flow problem is that the solution of the linear

system which arises involves solving an saddle-point system (SP), which has

A Bt u f
1.
B -C p g

Here A is a symmetric positive definite submatrix, C is a positive semi-

the form

definite submatrix, and B is a rectangular submatrix, and the solution vector

is a pair (u,p) in which u represents the Darcy velocity and p a pressure.



When C = 0, we call the saddle-point system an elliptic saddle-point
system. On rectangular grids, if the conductivity is a diagonal tensor, the
submatrix A is block diagonal. In this case the saddle-point system (1.1) can

be reduced to an equation for the scalar variable p:

BAlBl+C)p = Balf-g. (1.2)
If the conductivity is a full tensor, then the block diagonal structure of A is

lost, and one is forced to solve the unreduced system (1.1).

The main objective of this Thesis is the development of efficient and
robust proconditioners for the system (1.1) with emphasis on the Darcy flow
problem. As a basic preconditioning tool we construct a new class of
polynomial matrices, which generalize the polynomial matrices described in
[24]. We call this new class Jacobi Multi-band Polynomial ( JMP ) matrices,
because they are based locally on the classical Jacobi polynomials. These
polynomial matrices can be used to precondition any matrix with a real
spectrum. Specifically, we formulate a JMP matrix p(A) to precondition A,
a JMP matrix p(BBt) to precondition BB!, and a JMP matrix p(S) to
precondition the full ESP matrix S. With these flexible tools we construct
preconditioners for ESP matrices and use them in restarted preconditioned

GMRES solution of Darcy flow problems with highly varying coefficients.

This thesis is organized as follows. In Chapter 2, we develop a theory
of JMP matrix preconditioners. In Chapter 3, we establish bounds for the
spectrum of an ESP matrix, and construct several preconditioners using the
JMP matrix tools mentioned above. Computational results arising from
modeling Darcy flow are described in Chapter 4. These calculations were

performed on a Cray C-90. In Chapter 5 concluding remarks are made.



Chapter 2. Jacobi Multi-band Polynomial
Matrix Preconditioners.

2.1 Introduction.

In [24] Saad developed a theory for polynomial matrix preconditioners,
which are used to accelerate the Richardson iteration for symmetric indefinite
matrices. The preconditioner polynomials are expanded in a basis of
polynomials, which are orthogonal on the union of two intervals. The
inner-product employed by Saad, which defines the orthogonality on the
union of two intervals is the sum of two inner-products, each defining
orthogonality locally on one of the intervals. The local inner-products are
chosen such that an orthogonal basis consists of scaled and shifted Chebyshev
polynomials of the first kind. The preconditioner polynomial p(x) is then

constructed such that the polynomial

qx) = x p(x)
is the least squares approximation with respect to the global inner-product of

the constant function f(x) = 1.

In this chapter Saad's construction is generalized as follows:
(1) the number of intervals is not restricted,

(2) the local basis polynomials are extended to Jacobi polynomials p((x’B )(x),

(3) x p(x) approximates a piecewise polynomial on the set of intervals.



We shall refer to these new polynomial preconditioners as Jacobi
multi-band polynomials ( JMP ) , and the corresponding polynomial matrices

as JMP matrices.

This Chapter is organized as follows. In Section 2.2 the JMP
approximation spaces and inner-product are defined. In Section 2.3 a Gram-
Schmidt orthogonalization procedure ( which we refer to as the JMP Stieltjes
procedure ) is outlined for construction of an orthonormal basis. In Section
2.4, quadrature rules for the JMP inner-product calculations are defined. In
Section 2.5 we employ orthogonal expansions to define several types of

preconditioners, which are used as tools to solve ESP linear systems.

2.2 JMP Approximation.
Before defining the JMP inner-product, we establish some notation.

Definition 2.2.1 Let A be a real symmetric matrix and A(A) its non-zero

b
eigenvalue spectrum. A sequence X(A) = { [ay,by] }2=1 of non-overlapping

closed intervals is a spectral cover for A if 0 is not interior to any interval of

nb
¥(A),and AT(A) ¢ U lag,bil. Theinterval [ay,by]is called an eigenband

k=1

nb
of A. The set theoretic union E*(A) = U lagby] is called a spectral support
k=1

for A. The spectral cover X(A) is minimal if each endpoint of an eigenband is

an eigenvalue of A.

As examples, if {c,d} are the extreme eigenvalues of the SPD matrix A,

then { [c,d] } is a minimal spectral cover for A. If {a,b} are the extreme
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negative and {c,d} the extreme positive eigenvalues of the real symmetric

indefinite matrix A, then { [a,b], [c,d] } is a minimal spectral cover for A.

Definition 2.2.2 Let X(A) denote a spectral cover for A. Let Pn(Z*(A))

denote the vector space of polynomials restricted to %*(A) of degree < n, and

let Qp( T*(A) ) denote the vector subspace of polynomials of the form

qx) = x px) (2.2.1)

such that p(x) e Pp,_1( »*(A)). Then Qp( 2*(A)) is called the space of
preconditioned polynomials, and P,,_1( T*(A)) the space of preconditioner

polynomials.

We now define the JMP inner-product.

Definition 2.2.3 For each eigenband [ay,by], let w{eoBK). [ak,bk] ---> %!

be the non-negative real-valued Jacobi weight function defined by

w®Pg = [ (x-a PR (b -x)%,  x e [ by, (222)

by
(L8 ) (B = aj £ gx) wHoP(x) dx., (2.2.3)
k

Definition 2.2.4 Let the vectors o = (ocl,..,ocnb)t and B} = (Bl,..,Bnb)t be given.

(a,B)
If the JMP weight function w =~ = with respect to the spectral cover X(A) is

(o, )

givenby w—— (x) = w®PB(x), for x e [ag,bi], then the




JMP-inner-product is defined by
nb

(£, 8)@p = k§1< f, 8 ) (oue,Blo) (2.2.4)

s__sge (aIB) ((XIB) . .
Definition 2.2.5 LetP~~ and Q —~ denote the Hilbert spaces defined by
n n

the pairs { P,(Z"(A)), (* *) (o, B) - and { Qp( =AM, (%) @B

o,
respectively. Then P — = is the space of JMP precondtioner polynomials
p y n-1 p p poly

o,
and Q =~ the space of JMP preconditioned polynomials.
n

In the polynomial preconditioner literature [2,3,17,24,25,27,30,31] the
ideal preconditioned function f(x) is assumed to be the constant one restricted
to a spectral cover of the matrix to be preconditioned. Here we generalize

f(x) to be a piecewise-polynomial with respect to the spectral cover as follows.

Definition 2.2.6 (Ideal Preconditioned Functions ) If n is a positive integer,

and Z(A) a spectral cover for A, then PP, (Z*(A)) denotes the set of
p 2*n+1

functions f(x) such that f(x) restricted to each eigenband of X(A) is a

polynomial of degree < 2*n+1.

It is clear that the set PP, (Z*(A)) is a vector space.
2*n+1 P

We next define several linear maps, which pertain to JMP

approximation of functions in PPy 4 (=*(A)).

(.B)
Definition 2.2.7 If {pj" B (x)}jt 0 is an orthonormal basis for the Hilbert

(o, B) (a,B) (o, B)
space P — B ,thenlet ™~ b t PPoepnyq (£*A) > P~ B be the linear map
n n n

defined by
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n
n(g'ﬁ)(f) x) = 3 (f p.(g’Ié
n =0 7]

(o,B) (

)
) (@.B) P, x). (2.2.5)

P(g,_lé) (o, )

Definition 2.2.8 Let the vector space isomorphism @y : - Q

n-1
be defined by
On(px)) = x px. (2.2.6)

Note that @ associates to each preconditioner polynomial a preconditioned

polynomial.

Definition 2.2.9 Let 1;: Q(a'w) - P(Q'B-)) denote the linear inclusion
n n

(a,B)
map , which maps the n-dimensional subspace Q =~ into the n+1-
n
_ , (o,B)
dimensional space P~ ~ .
n

Using the three linear maps @, ,,, and 1,,, we get the following JMP

approximation diagram.

PPy

(pn 1n J’ nn

P(gc,g) . Q(g,ﬁ) . P(gc,ﬁ)
n-1 n n

JMP Approximation Diagram




JMP polynomial preconditioners are constructed as least-squares

. . . N (G’IB) (a/B)
approximations of polynomials in P =~ from the subspace Q =~ . The
n n

following facts are immediate from least-squares approximation theory.

(1)  The least-squares approximation problem

(,B)

H)x) = min || ®
n

(o,B)
qu;@

P ® -q I (o, B) (2.2.7)

has a unique solution.

(@.B) a,B)

) qn (£)(x) is the orthogonal projection of ‘mi" b

(f) onto Q(g'
n

o . (@,B)
and the approximation error is orthogonal to Q .
n

(@f) n (a,B)

?3) If {qj_ (x)}j=1 is an orthonormal basis for Qn_"‘ , then the finite

expansion

(@B

n (o,B) (a,B) (e,B)
f = —=f =
qn ) (x) j=z1 <7tn (f)

9 a, B) ! (x) (2.2.8)

is unique.
2.3 JMP Stieltjes Procedure.

We now define a Gram-Schmidt process for constructing an

(o,8)
orthonormal basis for the polynomial space Q ~ B . From the theory of
n

orthogonal polynomials, it is known that every system of orthogonal

polynomials satisfies a recurrence of the form
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Qi ) = (X- ;) *q;() - ’Ej*qj_1 (X) (2.3.1)

such that the recurrence coefficients Oj and 7j are real constants with Y > 0.

One classical algorithm for generating the recursion coefficients of
orthogonal polynomials is the Stieltjes procedure [14,32]. The Classical

Stieltjes Procedure can be described as follows:

1. (Start) él\O(x) =1, qy = ‘{I\O(X)/ I C/I\O I, 79 =0, and q_1(x) = 0.

2. (Iterate) For n =0 to maxits set
Op ={xqy gy )
dns1%) = (x-0n) gn() - T qn-109
1 = | Qa0 |

dn+1() = (l/1n+1) C/I\n+1(x).

The numerical stability of the Stieltjes procedure depends on the
accuracy of the parameters op, and 1. Our method generalizes a procedure
given in [24]. It consists of constructing an orthogonal expansion of each JMP
basis polynomial in the local basis of scaled and shifted Jacobi polynomials,

which allows exact computation of op and 1T using classical Gauss-Jacobi

quadratures.

Our modification of the clasical Stieltjes procedure leads to the
formulation of effective polynomial matrix preconditioners. In particular, an
ideal preconditioned function f(x) is first expanded in the local Jacobi
polynomial bases. Using a formula developed in the next section, we then
obtain expansion coefficients of f(x) with repect to the global JMP polynomial

basis constructed by our Stieltjes procedure.
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To establish notation, we include here a characterization of the

classical Jacobi polynomials defined on [-1,1] [33].

Lemma 2.3.1 ( Classical Jacobi Polynomials ) If o >-1,and § >-1, and m is

a positive integer, then let P;Q’B) denote the classical Jacobi polynomial of

degree not exeeding m on the interval [-1,1]. Then if n £ m, the three-term
linear recurrence

PO = (anx+y POP Loy PP s

with PPog = 1, PP = siaprraie 5,
_ (n+o+B-1)(2n+o+p)

) (2.3.5)

n 2n(n+o+f)
B = (az-Bz)(2n+o¢+B-1) (23.6)
7 on(n+oa+B)@n+oa+B-2) "
(n+o-1)(n+B-1)2n+a+f)
= 23.7
Cn 2n(n+a+B)(2n+o+p-2) (23.7)
holds.
Using standard notation for Jacobi polynomials [33] , our basis
polynomials on the eigenband [a),bk] are denoted by
PP o) (2.3.8)
X - Ck
where Zk = 3. (2.3.9)
ck = (ag+by)/2, (2.3.10)

and di = (bg-ak)/2. (2.3.11)
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An orthornormal set of Jacobi polynomials is derived from the basis set

{PI(:)"B )} using the scaling

Pf‘ak’ﬁk) 00 = ZpP,, (2.3.12)

Nd n
where the scale factors are defined forn >0 as

s = 2n+oa+B+1 I'(n+1) M(n+o+p+1)
" 20HLBH I'(n+o+1) F(n+f+1)

Rearranging the recurrence (2.3.4) for piak’ﬁ %) (x) and setting

k Sj k  -Bj+l k _ Cj+1§j
5 =&vagec § =aqe1 G = Aaga (2.3.13)
we obtain the expansion-recurrence formulas.
(0, B) ko (o Br) ok (o, Br)
Zk P, = Fop, +Ey p; (2.3.14)
k k

kP i1 Pjq RS j Pit1

Using (2.3.14) and (2.3.15) in Lemma 2.3.1 gives the expansion-recurrence

coefficients:
& k+1(Bk R - Preox (23.16)
o+Pi+2 O +Pi+3 et Pic+2
Ek ) G+ (+ok+ D (+Br+1) G+ +B+1) (2.3.17)
I 2j+oc+By+2 @Qjroge+ B DQroge+fie+3) h

2 2
X (By-oye )
I Qjray+Bi) (Qj+ay+Br+2)

(2.3.18)
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To start the JMP Stieltjes procedure for constructing an orthonormal

(o,B)
basis for Qn— B » we must expand x in the local Jacobi polynomial basis on each

eigenband. To expand x with respect to the local basis on the eigenband [a),by ]

plokBR) _ S0 p{PI) sL HctBir2 o okeB

-+
o TVd Va2 kT

use the inverse of the linear map (2.3.9) to obtain

},

¢ +dzy =§,\(l)< p0 +§\i< pl
Ak sO Ak sl ok-Px Ak sl okH+Br+2

= Y0 \[5+Y1:/:d' 2 +Y1§/’§ 2 Zk -

X
i

Thus we obtain

3/2
Ak {c +W}ﬂ and JX __ 2 ) Vd (2.3.19)
Y0 = o+Br+2 ° SO T =0 apiPrsn’ sl "
We next state the basic JMP expansion Theorem.
. (0.,8)
Lemma 2.3.1: (JMP Expansion Theorem ) Suppose q(x) € Qn , and
for each eigenband [aj,bg] assume the existence of the orthonormal
expansion
nk
900 = % ¥ p P (2.3.20)
j=0 7 'n
Nk
Set sk= Sg 2, (2.3.21)
j=0
Nk kp M1 g k
and tk = X Fj %+ Y 2*E. Y Y1 (2.3.22)

j=1 =1
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nb

Then (4,9 Xa,B) = k§1 Sk (2.3.23)
nb

and (xq, q)(,p) = kz_‘,lck sk + dk tk. (2.3.24)

Proof: From Parseval's Theorem s - (q, q Xok,pk) on each eigenband.

Formula (2.3.23) follows from summing over the eigenbands. The expansion
(2.3.20) for q(x) implies that

n x
A0 = T A g0,

Using the expansion recurrence (2.2.34) with the above equation yields
e = {2 q0 @) oy, By).

Finally, the equationx = d z; + ¢, and the equation

(xq, q) (0y,8y) =k (Zkq. D2 (o Br) * k€ 97 9 )0y By)
imply (2.324).  []

Immediately, we have a method for computing the JMP Stieltjes recurrence

cooefficients.

Theorem 2.3.1: ( JMP Stieltjes Recurrence Coefficients ) If, for the n-th step

of the JMP Stieltjes procedure, one has the expansions
(a,B) nox ,
j0 17" n

NCES) n+l (ot B
w1 ¥ j=zo ¥j (n+1) Py &),

it

n
then setting é\ k= 2 %.k(nﬂ) 2, the JMP Stieltjes Procedure recurrence
j=0

coefficients may be calculated by
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nb nb,
Op = l<Elck s +dpt and T, .4 = Zsk (2.3.25)

We next give a recurrence, which provides orthogonal expansions for

NC2 ﬁ) (@ E)
the JMP polynomials q . (x) given orthogonal expansions for q.
@b
and q . The proof is obvious, but tedious.
Ih-1

Theorem 2.3.2 ( Expansion Coefficient Recurrence ) Suppose, for each

[ak,bk], we have the expansions

n-1

(o,B) " k
and “E © = T 7@ pj(“k'ﬁk)( )
2
A@,B) n+l (o, Br)
Then q . x) = j=20 vj (n+1) pj (),
where

\/(\(1)<(H+1) = (ck - op) YI(;(R) +dy (Yl(;(n) Fl(; + Ylf(n) Elg ) -1 yl(; (n-1), (2.3.26)
and for 1< j £ n-l,
%k(ml) = (ck - op) yf(n)

+d ( Y;fl(n) Ejlfl + Y}<(n) ij + Yﬁ.l(n) E;()- Tn y;((n-l) (2.3.27)
?rlt(nﬂ) = (ck - op) Yﬁ(n) + d ( yﬁ_l(n) E::-l + yﬁ(n) Fl;) (2.3.28)

k k k
Yas1 D) = di (@ E ). (2.3.29)



Our Stieltjes procedure is constructed as follows.
JMP Stieltjes Procedure
Inputs:

b
(1)  aspectral cover { [ay,bk] }E=1

(2)  the vectors o = (oq,..,()tﬂb)t and B = ([31,..,[3nb)t which

define the Jacobi polynomials used on [ay,by]

(a,8)

(3)  n = dimension of the JMP approximation space Qn

Output:

-1 -1
(1) the recurrence coefficients { Gj }jn=0 A }jn=1

k
(2)  expansion coefficients Y (m) for each orthonormal JMP basis

o.B)
polynomial q(" b (x) , and for each eigenband [a,by]
m

(o, B) m+1 k
o,B 6) = TS p'(Otk,Bk) 0.
j=0 j
Initialization:

(1)  Calculate eigenband centers and half-bandwiths
Ck =.5(ak+bk)and dk =,5(bk'ak);

k k
(2)  Calculate expansion-recurrence coefficients Ej , and Fj ;

(3)  Calculate expansion coefficients of x in each band

dg (Br-ok)  d and o0 -
oxiBraz } 50 and y1(0) = {

ak
0) = {Ck+ —_———
YO( ) { k OCk+Bk+2 } sl

2
2 Vd

15
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nb .
(4)  Calculate (x, x a.B) = Z Sk with Sk" E 71(0)

()] Calculate expansion coefficients of normalized x
k ak k ak
00 = 15(0) / (x, x }o,p) and Y10 =y1(0) / (x, x oL B)

(6)  Calculate ti = (zkqp, 0 oy By using (2.3.35) ;
(7)  Setop = 1./ Il x ”(g,ﬁ)'

Iteration: Forn = 0 to maxits ( = degree of preconditioned polynomial )

(1)  Compute Stieltjes recurrence coefficient on+1 Using

nb
One1 = 2k Skt it
. . . Ak /\( B)
(2)  Compute expansion coefficients Y; (n), j=0,n+1 for q.. ;

A
(3)  Compute new s for each eigenband ;

(4)  Compute Stieltjes recurrence coefficient Theq USINgG

nb ,
The1 = Z Sk

k (o,B)
(5) Compute expansion coefficients y. (n), j=0, n+1 for q — B (x) usin
p p j ) (In +1 g

k ak 2
) = Y@/ Tt
(6)  Compute sy for each band using sj = 4 k/7 2

n+l
(7)  Compute t, for each eigenband using

b= v ES 2 S 2*Ek <
k = JEOJYJ ]§ VU
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2.4 JMP Orthogonal Expansions.

Having constructed an orthonormal basis for the JMP approximation

(o)
n

space Q , we now wish to construct an orthogonal expansion for an ideal

preconditioned function f(x) € PPy, 4 (Z*(A)). This necessitates defining

a method for computing the local inner-products (2.4.1).
bk

6 p P oy = Jf(x) p P WP ax )
ak

These inner-products are defined by classical Gauss-Jacobi quadrature, which

is summarized in the following theorem [33].

Theorem 2.4.1 (Gauss-Jacobi Quadrature) If f(x) restricted to [a,b] is a
n

polynomial of degree < 2n+1, and { xf‘ak’B k) }j=1 denotes the n real-zeroes

( the Gauss-points ) of the polynomial pflak'Bk)(x), then there exists a real

number sequence { ¢j }in= 1 ( the Christoffel numbers ) such that the Gauss-

Jacobi quadrature formula
b

n
ka(x> qx) p(ak'ﬁk)(x)dx = '21 G p(ak'Bk)(x(ak'Bk)) (2.4.2)
1=

n n n
a

is exact, and the Christoffel numbers are positive and are computed by
1.

G = . (2.4.3)
p;ak,Bk) (xi(ock,ﬁk) )2
=0

)
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We use the method of Golub-Welsch [16] for computing the Gauss-

points {xl(lock’[3 k) }jnzl and the Christoffel numbers { ¢j }in= 1 This method

expresses the expansion recurrence (2.3.14)-(2.3.15) as a matrix equation,

which we illustrate for the case n = 3 :

_ - _
p APy p Py ;
FO EO 0 0
!EO F1 El} piak’B KDy |- pgak'Bk)(t) b (2.4.4)
0 BIR2J| B P, R0
_pzak'Bk ® | |p kP 1

(o, Br)

3 , then the scalar t and the vector (2.4.5) are

If the number t is a zero of p

an eigenpair of the symmetric tridiagonal matrix in (2.4.4). Therefore,

computing the eigenvalues and eigenvectors of this matrix, and using the fact

that péak'B k)(t) = s , permits scaling the eigenvector (vo,vl,vz)t to have the
p(()ak,l?)k)(t)

form pgak’ﬁk)(t) . (2.4.5)
p;ak'Bk)(t)

Using the scale factor s;/Vv,, which yields the formula

1.
G = T (2.4.6)
2
Sy 2
V02 ]=0 ]

for computing the Christoffel-number ¢;j .
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With the Golub-Welsch method for computing the Gauss-points and

Christoffel numbers, we can now outline a four-step JMP approximation

procedure for a function f(x) € PPy .4 (Z¥(A)) from the JMP approximation
(o, )

n

space Q

JMP-approximation Algorithm:

(1) Use JMP Stieltjes procedure to obtain the expansions, m = 0, maxits
for each eigenband [a,bi]

( , m+l |
o,B) ) = 'zo y m) pj(ock,Bk) 0 ;
J:

(2)  Use Golub-Welsch method to compute the Gauss-points

k
{ x,( *lesBic) })-n=1 and Christoffel-numbers { G }in=1for each [ay,bk] ;

(3)  Use Gauss-Jacobi quadrature formula to obtain the expansion

coefficients for the polynomial n,,(f(x)), for each eigenband [a),by]
n k

B = 3 ) pj(“k'Bk’(x> ;
]:

(4)  Compute expansion coefficients for the JMP polynomial

(o) noo (o,8) (o, B) (o, B)
B = 3 (m 2 )a,B) ! (),

j=1

using the formula

nb j+1
n(g,ﬁ) ® (o,B) )

k. k
, q, = 1 G) vy (£0x)).
( ! o, B) 2 2 0w

n
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2.5 JMP Preconditioner Matrices.

We now give the ingredients for constructing JMP preconditioner
matrices.
Definition 2.5.1 A JMP preconditioner-scheme for a real symmetric matrix
A consists of the 6-tuple
(2Z(A), nb, f(x), & B ,n) (2.5.1)
such that

(1) Z(A) is a spectral cover for A consisting of nb intervals,

(2) f(x) € PPy, q (Z*(A)) is the ideal preconditioned function to be

approximated,
(3)  the vectors o = (oq,..,ocnb)t and f§ = ([31,..,[5,“,)t which

define the Jacobi polynomials used on [a},by]

(4)  nis the degree of the preconditioned polynomial

(0.B) )
q B x =x P (£ ).

(., B)

o .
The polynomial matrix p ~_ (f) (A) is called a JMP preconditioner
poly pn-l p

(o, B)
matrix for A, and the polynomial matrix qn_ . (F) (A) is called a JMP

preconditioned matrix for A. We next describe three JMP preconditioner
schemes, which are used to solve ESP linear sytems. The first scheme
constructs an approximation to the inverse of a SPD matrix, the second
scheme constructs an approximation to the inverse of a Choleski factor of a
SPD matrix, and the third scheme constructs an approximation to the inverse
of an indefinite matrix on its positive eigenspace and to minus its inverse on

its negative eigenspace.
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The Single-Function Scheme for the SPD Matrix A

This Scheme consists of the following:

(1)  {l[abl}is a spectral cover for the SPD matrix A

2 () =1, x e[ab]

(3) o and P based upon the desired kind of JMP approximation to f(x).

This polynomial preconditioner has been discussed by a variety of authors [3],
[17,25,31].  We include the graphs of two JMP preconditioned polynomials
for the spectral cover { [.001,1] } to illustrate a biased approximation of the

function f(x) =1.

The first polynomial is based on Jacobi polynomials p(oc,B ) (x) with

a =-5and B = -.5, and the second polynomial uses o = -.95, and B =-5.

S
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The JMP Choleski Scheme for the SPD Matrix A consists of the

following:

(1) {[ab]}is a spectral cover for the SPD matrix A ;

@ ) = Vx , x € [a)bl;
(3)  aand P based upon the desired kind of approximation to f(x).

a,B)
The JMP preconditioned polynomial q:l" b (f) (x) approximates the
(e.B)

n-1

function y/x on [a,b], and the J]MP preconditioner polynomial p (f) ()

1
approximates T on [a,b].
X
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(o,B)

1 (f) (A) is used for split

This JMP Choleski preconditioner matrix p

preconditioning of an SPD matrix A, and is applied symmetrically to the

matrix as

(@p) (B)
g B@ A p DA (2.5.2)

To our knowledge the Choleski polynomial preconditioner has not
appeared in the polynomial preconditioner literature. We include a graph of
the JMP Choleski symmetrically preconditioned polynomial with o = 0. and
B = 0. Notice that the oscillations are much damped compared to the single
function preconditioned polynomial. This is due to the well studied
phenomena associated with approximating a function near a simple

discontinuity.
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The Two-Function Scheme for the Symmetric Indefinite Matrix A
consists of the following:
(1)  Z(A)={[ab], [cd] }is a spectral cover for A ;
(2) f(x) = -1, x e [a,b], and f(x) =1,x e [c,d];

(3) o and B based upon the desired kind of approximation to f(x).

This scheme approximates -1 on the negative eigenbands and +1 on
the positive eigenbands. The JMP preconditioner polynomial matrix is SPD,
but the JMP preconditioned polynomial matrix is indefinite just as the un-
preconditioned matrix. ~To our knowledge the Two-Function polynomial
preconditioner has not been discussed in the literature. Here is a graph of a
JMP Two-Function preconditioned polynomial defined on the spectral cover

{ [-1.~.01], [.01,1] } using Legendre polynomials on both eigenbands.
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Chapter 3. Preconditioned GMRES Algorithms
for ESP Matrices.

In this Chapter we develop several preconditioners for elliptic saddle-
point (ESP) matrices. Each preconditioner, ultimately based upon the
polynomial matrices described in Chapter 2, requires an estimate for a spectral

cover for the submatrix A and the matrix BBt

In Section 3.1 we develop a formula for computing a spectral cover for
the general saddle-point matrix (1.1) using spectral covers for A, C, and BB'.
In Section 3.2 we describe an efficient method for estimation of spectral covers
for A, C, and BB', using an Arnoldi iteration. In Section 3.3, we describe
preconditioners for A, C, and BB' based upon JMP polynomial matrices. In
Section 3.4 we describe three preconditioners for the Schur complements of
ESP matrices, which shall refer to as sandwich matrices. In Section 3.5 we

describe three preconditioners for ESP matrices.

3.1 Spectra of ESP Matrices.

We now define more precisely the linear systems we shall investigate.
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Definition 3.1.1 The 2 x 2 block-partitioned symmetric (n+m) x (n+m)

A B!
S =

matrix

(3.1.1)
B C

is a saddle-point ( SP) matrix if
(1) Aisan nxn symmetric positive-definite ( SPD ) matrix,

(2) Cisanmx m symmetric positive-semi-definite matrix.

We shall focus on the special case (C = 0) of elliptic saddle-point ( ESP )

matrices with the form

A B
. (3.1.2)
B 0
It is well known [13] that for an ESP system
A B u f
= (3.1.3)
B 0 P &

there exits a unique vector u € R and unique p e K™ such that if
z e null(BY), then the pair (u,p+z) is a solution of the system. Moreover,

(u,p) is the unique solution iff rank(B) = m.

For an ESP matrix S with Schur complement B AT B, let

k = dim null(B"). Then applying Sylvester's Law of Inertia Theorem [15],
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and the block L—D-Lt matrix factorization

{A Bt} AO} Al o
B O

(1) Shas exactly n positive eigenvalues ( since A does ),

A B!
(3.1.8)

B I 0 I

0 -BA'B!

we obtain

(2) S has exactly k zero eigenvalues ( since B' does ),

(3) Shas exactly m-k negative eigenvalues ( since -B A1 B does ).

An ESP matrix is, therefore, a symmetric indefinite matrix, whose

+m-k
non-zero eigenvalue spectrum can be bounded as {K-}S m < [a,b]l U [cd]
g P Pj=1

where {a,b,c,d} denote the four extreme eigenvalues.

We now estimate a spectral cover for a general SP matrix, which

generalizes a result in [21,22] for ESP matrices.

Theorem 3.1 ( Saddle-Point Matrix Spectral Cover Theorem ) If the

intervals [ An A1l, [Ym ,y1], and [ Grzn ,c%], are spectral covers for the matrices

A, C,and BBt, respectively, of the non-singular saddle-point matrix S, then

2

a= 1/2 [ (M-v1) -\ (An+ 71)2+4 012 ], (3.1.92)
2

b= 1/2 [ (A-¥m) -V (M + ym)2+4 om2 1, (3.1.9b)

¢ = Ap, (3.1.9¢)
2

d= 1/2 [ (M-1m) + N (M + 1m)2+4 012 1. (3.1.9d)

Proof: (See Appendix A ).
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Immediately, we have the result described in [21].

Corollary 3.1 (ESP Spectral Cover ) If Sis an ESP matrix, then

2
a= 1/2 [Ay -\ Mp2+4042 ], (3.1.10a)
2
b= 1/2 [A - Y M2+40p2 ], (3.1.10b)
c= An, (3.1.100)
2
d= 1/2 [ A + M2+4012 1 (3.1.10d)

Since ky(A) = Aq /A, and ky(B) = 01 /0, , the formulas in Corollary 3.1 imply

that the interval [a,b] converges to a point and the length of the interval [c,d]

converges to 61 as kp(A) and ky(B) converge to 1.

3.3 Spectral Covers for ESP Matrices.

Corollary 3.1 implies that a spectral cover for an ESP matrix S can be
constructed using spectral covers for the SPD matrix A, and the positive

semi-definite matrix BBt.

To estimate a spectral cover for an arbitrary positive semi-definite
matrix M, we apply an Arnoldi iterative method to find the matrix's extreme
eigenvalues [a,b]. First, we estimate the largest eigenvalue b of M using an
Arnoldi iteration. To estimate a is more complicated. First, we construct a
low degree ( 3-5 ) JMP preconditioner polynomial p(x) defined on the interval

[0,b]. Then we apply Arnoldi's iteration to the JMP matrix p(M).
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Here the Arnoldi iteration converges to a dominant eigen-vector of p(M).

Using Raleigh quotients with respect to M instead of p(M), we estimate the
smallest eigenvalue of M.

Experimentation with the matrices in our numerical work in Chapter
4, shows that this method converges in 20 to 30 Arnoldi iterations.

If the matrix M is singular, it is necessary to start with a vector
orthogonal to null(M), and to orthogonalize the vector Mv with respect to
a basis of null vectors after each matrix-vector multiply, because the J]MP

polynomial p(x) has large values for x less than or equal to zero.

A practical concern is that if Arnoldi's iteration requires a significant
number of iterations for convergence for a large matrix, it will require
excessive storage. It is preferable, when solving large systems, to use a
scheme such as the Implicitly Restarted Arnoldi algorithm [28,29]. This
scheme maintains a fixed sized Arnoldi matrix, and a fixed number of
Arnoldi vectors, which conserves central memory, and accelerates

convergence, by implicitly applying polynomials to the Arnoldi iteration.

3.3. Preconditioners for Definite Matrices.

Let M denote a symmetric positive semi-definite matrix, and assume
an orthonomal basis for null(M) is given. Let £(M) denote a minimal
spectral cover for M, and let p(x) be a JMP preconditioner polynomial defined
on X(M). We now define two preconditioners for M. The first

preconditioner is the JMP matrix p(M).
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The second precondtioner for M is to iteratively solve M x = b using

the algebraic splitting
M = p! - (paw! - M), (3.3.1)

This splitting produces the linear stationary iteration

D rapo M) X®™ 4 pM) b (3.3.2)

whose iteration matrix is

rM) = I -pM) M. (3.3.3)
We shall use the basic iteration (3.3.2), or Chebyshev acceleration of (3.3.2),
if the spectral radius of r(A) is large. In practice reducing the residual to some

prescribed tolerance requires only a few iterations.
3.4 Preconditioners for Sandwich Matrices.
A sandwich matrix is defined as follows.

Definition 3.4.1 A matrix with the form
B M B! (3.4.1)

is called a sandwich matrix if the matrix M is an SPD matrix, and a simple
sandwich matrix if M is an identity matrix.

It is easily seen that a sandwich matrix is symmetric positive semi-
definite.

We shall have interest in three types of sandwich matrix:

(Type-1) M = diag(A); ,

(Type-2) M = A, ie, Mis the inverse of a known matrix ;

(Type-3) M = p(A)z, i.e., M is the square of a polynomial matrix.
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Each of these preconditioners for sandwich matrices relies on the fact

that the matrix "inside the sandwich" is not terribly ill-conditioned: the ill-
conditioning of the sandwich matrix is due to the ill-conditioning of the

matrix B Bt

Definition 3.4.2 ( Type-1 Sandwich preconditioner ) Let & > 0. Assume that D
is a diagonal matrix, that BDBis a type-1 sandwich matrix. Let p(x) denote a
JMP polynomial defined on a spectral cover Y(BDBY) such that p(BDBt) isa
Choleski JMP matrix preconditioner. Then a preconditioner for the sandwich
matrix BDB! consists of using GMRES to reduce the residual of the split
preconditioned equation

p(BDBY) BDB! p(BDBY) x = p(BDBY b (3.4.4)

less than the tolerance €.

We next define a preconditioner for sandwich matrices of type-2,
which is useful if the matrix M = A™ is not ill-conditioned. This method
successively approximately solves two linear systems analogous to the

solution of a non-singular square matrix using its LU factorization.

Definition 3.4.3 ( Type-2 Sandwich precondtioner ) Let &1 > 0, and gy > 0.

Then a preconditioner for the sandwich matrix BA™'B! consists of the

following 2-step algorithm, which solves the linear systems
M BAlv =g (3.4.52)

@ B'p = w (3.4.5b)

by reducing their residuals to €7 and €y respectively.
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An efficient method for solving (3.4.5a) and (3.4.5b) is to construct a

JMP precondtioner matrix p+(B Bt), and use GMRES to solve equations
p P1 q

1 B'p,BBYBAT v = Bp,BBYg (3.4.50)

2 BB'pBBYp = Bw (3.4.5d)

to the tolerances £1 and gy respectively.

Finally, we define a preconditioner for sandwich matrices of type-3.
This method is a 3-step method, which successively approximately solves
three linear systems analogous to the solution of a non-singular square

symmetric matrix using its LDL' factorization.

Definition 3.4.4 ( Type-3 Sandwich preconditioner ) Let €1>0,e1>0,and

€3 > 0. Then a preconditioner for the sandwich matrix Bp(A)zBt consists of

the following 3-step algorithm, which solves the linears systems

(1) BpA)v = g, (3.4.6a)
@ pA)z = v, (3.4.6b)
@ pAaBp = =z (3.4.6¢)

by reducing their residuals to €1, €, and €3, respectively.

An efficient method for solving (3.4.6d)-(3.4.6f) is to construct a JMP

precondtioner matrix p,(B BY), and use GMRES to solve equations

(1 pA) B p;BBYBp(A) v = p(a) Bl p,(BBYH g (3.4.6d)
2 pA)z =v (3.4.6e)
3 BB'pBBYp = Bz (3.4.60)

to the tolerances €1, &y, and €3, respectively.
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If orthogonality is maintained in the Krylov space built in the solution

of the vector v in the first step of the 2-step ( 3-step ) sandwich matrix
preconditioner, the vector v will be of the form

v=8B'p (v =pasp) (3.4.7)
Consequently, the solution of the final step will approximate the vector p

of equation (3.4.7).

We note that the coefficient matrix in the first step of the 2-step
sandwich preconditioner is not symmetric, but is symmetric for the3-step
preconditioner. If Householder orthogonalization is used in implementing
the GMRES algorithm [36], we have more control on enforcing (3.4.7).
Experimentation has shown that a robust preconditioner results from solving

each step with modest accuracy.

3.5 Preconditioners for ESP Matrices.

We describe here three preconditioners for ESP matrices. Before formulating
these preconditioners, we make the following remark, which was observed

computationally.

Remark 3.5.1 (Property-D ) For the lowest order Raviart-Thomas spaces [19],

if D denotes the diagonal matrix with entries D; =1./ sqrt(A;;), then the

symmetric Jacobi scaled matrix DAD has a significantly reduced condition

number.
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The three preconditioners we now define take advantage of this

property. Each ESP matrix preconditioner uses a diagonal matrix to
symmetricaly precondition the block A, and a Choleski JMP matrix

preconditioner for BB,

In Method-I we precondition the resulting ESP matrix with a 2-band
JMP preconditioner. In Method-II and Method-III we use a block-LU
factorization of the resulting ESP matrix, and handle the sandwich matrix,
which corresponds to the Schur complement of the ESP matrix. In Method-II
we use the Type-1 or Type-2 preconditioner, and in Method-III we use the

Type-1 or Type-3 preconditioner.

3.5.1 Method-1.

1.
A

1

Let Dy denote the diagonal matrix such that Dy =

In this method we begin by pre-multiplying and post-multiplying the ESP

matrix by a block diagonal matrix to produce the preconditioned ESP matrix

A B D, 0 A B Dy 0
= (3.5.1.2)
B8 o o 1J]B o 01
where
A = D,A D,
A
B=B D,
Bt =p, B!
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The second step is to define a JMP preconditioner polynomial p(x) for

the type-1 sandwich matrix B B!, and to pre-multiply and post-multiply the
ESP matrix (3.5.1.2) by a block diagonal matrix to produce the preconditioned

ESP matrix
A B'p@B8HY] [1 o As][r o
= . (3.5.1.3)
pBBHE o opBBY ] LB o | Lop )
Thus we obtain the preconditioned ESP linear system
a A Bp@8YHY] 4 £
S| |= = (3.5.1.4)
P pB8HB o P 8
where
u = Da GI
p = pB8") p,
A
f = Dqif,
g = pBE) g

Let p,(x) denote a 2-band JMP preconditioner polynomial as defined in
Chapter 2 with respect to the matrix §. Then the Method-1 preconditioner
uses the polynomial matrix p2(§ ) as either a left or right preconditioner of
the ESP linear system (3.5.1.4). The solution to the original problem (3.5.1.1) is
found with the subsitutions:

A
u = Da u,
A

2
p = p(BDaBt) p.
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3.5.2 Method II.

In this method we begin by pre-multiplying and post-multiplying the

ESP matrix by a block diagonal matrix to produce the preconditioned ESP

matrix
A B D, 0 A B! D, 0
= (3.5.2.1)
B 0 0 I1J|B 0 0 I
The result is the preconditioned ESP linear system
&84y e
= (3.5.2.2)
B o | lpl Ls
where
A = DA D,
A
B =B D,,
Bt =D, B!,
A
u = Da u,
f - Dif.

In this method we assume that an efficient method for solving the
A
linear system A x = b exists, such as the iterative method outlined in Section

3.3.

Block LU-factorization of (3.5.2.2) gives the equation

A At A A-lAt
A B A 0 I A'B

= . (3.5.2.3)
A A

8 -BAlgt 0 I

o>
o
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In Method-2 the factorization (3.5.2.3) is employed in the following

algorithm.

Step-1: Approximately solve (3.5.2.2) as follows:
A 0 w] [f

= (3.5.2.4)
8 -BATst Jlp) L8

A

(Step-1b) approximately solve sandwich system BAlB! p = B w -g

(Step-1a) w = A

by applying type-1 (type-2) sandwich preconditioner to Bw -g .

St . . A _ A /\_‘l t
ep-2: Solve (3.5.2.3) using u = w-A" B p.
IATBY | 4] [w
= , (3.5.2.5)
0 I P p
3.5.3 Method-3.

In Method-3 we construct a preconditioner for the preconditioned ESP

matrix (3.5.2.2) with the same definitions as in Section 3.5.2.

Let p(x) denote a Choleski JMP precondtion polynomial as described in

Chapter 2 with respect to the SPD matrix A. Then we approximately solve
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(3.5.3.1)
A
B 0
as a preconditioner for (3.5.2.2), using the block-LU factorization
p(A)? p(A)? 0 1 p(A) Bt
= (3.5.3.2)
B o B -8 p(A)? B! 0 I

In Method-3 we apply the factorization (3.5.3.2) in the following algorithm.

Step-1: Approximately solve (3.5.3.3) as follows:

p(A)? 0 w1l [t
= (3.5.3.3)
B -B p(l‘\x)2 Bt P g

(Step-1a) w = p(:‘i)2 f,

(Step-1b) approximately solve sandwich system B p(fA\x)2 Btﬁ =B w-
by applying typel (type-3) sandwich preconditioner to B w

o> 9>

Step-2: Solve (3.5.2.5) using u = w - p(A) B! p.
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Chapter 4.

ESP Matrices in Flow in Porous Media.

The purpose of this chapter is to formulate and solve 2-d and 3-d
elliptic boundary value problems which arise in flow in porous media. The
elliptic equations and the mixed finite element approximations are described
in Section 4.1, and 4.2, respectively. The conductvitiy tensor is described in
Section 4.3. Test problems and numerical results are discussed in Sections 4.4

and 4.5, respectively.
4.1 The Elliptic Flow Equation.

Let Q denote be the unit-square in %xd ,d=2,3, withT =dQ the
boundary of €. Let I'; denote the set of edges ( or faces ) of I" with Neumann

boundary conditions, and let l"z denote the set of edges ( or faces ) of I" with

Dirichlet boundary conditions. Assume that" = T 1w I'y, andletn

denote the unit outward normal vector along T.

Definition 4.1.1 Let f(x) e LAQ), g(x ¢ HY?(),h(x ¢ H¥4T), and
assume that the symmetric tensor k(x) is uniformly-bounded in the sense

that
(k¥v, Wy 2alv |3 (4.1.1)

holds for ve R% (orve ®° ) and xa.e. in Q.
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Then the elliptic flow equation is given by

Ve{-k(x)VpX®} = f( on Q (4.1.2a)
{-k(® Vp(¥}en = g(x on T (4.1.2b)
px = h(¥» on T,. (4.1.20)

For the pure Neumann boundary conditions (I, = @), we require

the compatibility condition (4.1.3) in order for (4.1.2) to have a unique
solution modulo the subspace of constant functions.

Jfdx + [gdx = 0 (4.1.3)
Q r

Following Raviart-Thomas [19], define the velocity space V and

pressure space W as follows.

Definition 4.1.2 Let H(L2; div ) denote the linear space of vector functions
ve (L2(Q))d such that Ve ve LZ(Q), and let V denote the linear subspace

of vectors v such that ve n= Qon r;.

Set the pressure space W be the space L2(Q). We introduce velocity as
a new variable defined by (4.1.4), which is called Darcy's Law, and rewrite

(4.1.2a) as (4.1.5).

u(x) = -k(» Vpx (4.1.4)
Ve ux) = f(x (4.1.5)

If a(x) denotes the tensor k'l( X), we obtain

Vp» = -a(x ux (4.1.6)
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Multiplying (4.1.6) by v € V, and integrating, and integrating by parts,

we get a weak form of Darcy's Law:

(2 u® , v®¥) = (-V px® , v(x) ) =( p(x¥, Ve v(x) ) =— [gvendx
Iy

Multiplying (4.1.5) by w € W and integrating, we get a weak form of the
conservation of mass equation:
(Voeu(®, wx) = ( f(x), w(x) ).
A weak formulation of the elliptic flow equation (4.1.2) is to solve the

first order system

(a(@ u(® ,v¥) = ( p(x), Ve v(x) ) = - _[g ve n dx (4.1.7a)
I

(Veu®,w®@) = ( f(x,wx®) . (4.1.7b)

We next describe the finite element spaces used by Raviart-Thomas [19]

to discretize this mixed variational formulation.

4.2 The Mixed Finite Element Equations.

Definition 4.2.1 Let Ay = {x'}-n__X , Ay ={ '}-n_y ,(A, ={z }nf ), denote
X Ui=0 y = V] j=0 Z kik=0

partitions of the interval I, Iy (and 1, ) for the domain Q. Let {dxj }inle,
{ dy; }Jn=yl ,and { dzy }E:l denote the lengths of the subintervals of A, Ay,
and Az, respectively. Let { xm; }in= xl , Lymy }]n=yl ,and { zmy }lr:zl denote

the midpoints, and { dmx; }in=xl , {dmy; }Jn=yl , and { dmzy }Ezl the lengths of

the intervals [xmj,xm; 1], [ymj,ymj+1], and [zmy,zmy 1], respectively.
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r
Definition 4.2.2 If A= {xi}in= 0 is a partition of the interval [0,1], define Mq(A)

to be the linear space of piecewise polynomial functions v(x) e CI([0,1]) such
thatfor0 < i < nx, v(x)]| [xi,Xis1] is a polynomial of degree <r ( ifq=-1,

the function v(x) may be discontinuous at the end-points of each interval ).

Definition 4.2.3 For the partitions Ay, Ay, (Az), define the discretization

parameter h with the formula
h = max {dx;, dyj, dzk }. (4.2.1)

1<i<nx
1<j<ny

1<k<nz

Definition 4.2.4 The Raviart-Thomas ( KT ) pressure space is the tensor-

product space (4.2.5) for 2-d and (4.2.6) for 3-d.

r
w q(h)

il

r r
Mq(Ax) ® Mq(Ay) (4.2.5)

r T r r
W ) My(Ax) ® Mg(ay) ® M (A,). (4.2.6)

Definition 4.2.5 The Raviart-Thomas ( RT ) velocity space is (in 2-d )

r r r
Vq(h) = Vq(h) x X Vq(h)y (4.2.7a)
r r+1 r
r r r+1
Vq(h) y = Mq(AX) ® Mq+1(Ay) 4.2.7¢)
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and (in 3-d )
i](h) = Vr(h) x Vr(h) X Vr(h) (4.2.82)
Vgt = q+1(Ax) ® M. (Ay)®M (Ap) (4.2.8b)
V) = M) ®M3(ay) ® My(ay) (42.80)
El(h) MEI(AX) ® M;(Ay) ® Mgill(AZ). (4.28d)

We compute with the "lowest-order" Raviart-Thomas spaces, such

0
thatr = 0, and q = -1, and simplify the notation such that Wy, =W _;(h) is
0
the pressure space, V;(I = (V_q(h)) is the x-component velocity space, Vﬁ
0 0
= (V_1(h) )y is the y-component velocity space, and Vﬁ = (V_1(h)), isthe

z-component velocity space.

For i=1, nx, the functions w>i<(x) =1 for x € [x;.1,x;] form a basis for the
spaces M?l(Ax). For j=1, ny, the functions wJY(x) =1, form a basis for the
spaces M?l(Ay). For k=1, nz, the functions wjz(x) =1 forze [zK.1,2K],
form a basis for the spaces M?l (Az). For i=1, nx, the functions V;((X) denote the
standard basis for the space M(l)(Ax). VJY(Ym) and vi(zm) = 81r<n are defined
similarly.

z
Therefore, for i=1, nx, j=1, ny, (k=1,nz), the functions { w;( wjy (W )

form a basis of the pressure space Wy, { v w (Wk )} form a basis of the
x-velocity space Vh { wx vj (Wk )} form a basis of the y-velocity space V¥1'

z
(and { w;( wjy v} form a basis of the z-velocity space Vh ).
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With the Raviart-Thomas pressure and velocity finite element spaces

defined, we seek the solution pair

(Up, Pp) € Vh xWp (4.2.12)
for the system
(aUp,vh) =(Ph, Vevy) = =—J-gv-nd3<, Vh € Vh (4.2.13a)
I
(-VeUp,wp) = (=f, wp), Wh € Wh. (4.2.13b)

We have negated equation (4.2.13b) so that the resulting stiffness
matrix becomes symmetric. Assembling the blocks of the mixed finite

element stiffness matrix S, we get an ESP matrix, since A is SPD.

If we illustrate the block structure of A, B, and Bt, we get the ESP linear

system
AXX XY X X rhsx
AYX AYY Yt oy _{ rhsy} (4.2.14)
B* BY o P T
for 2-d, and
AXX AXY pAXZ pxt UX rhsx
AYX AYY AYZ gYt uY rhsy
zX z =1 rhsz (4.2.15)
AZX AZY pAZZpZU | y?
B* BY B o0 P T

for 3-d.
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4.3 The Conductivity Tensor.

Let k(x,y) (k(x,y,2)) be a scalar function, which measures an absolute
permeability at the center of each cell of the domain 2. We shall call such a
function a pmap. We have used the program RFG [34,35] to generate random

pmaps for both 2-d and 3-d rectangular domains.

A conductivity tensor for a 2-d domain € is constructed using the

following 3-step algorithm.
(step 1) Construct a cell-centered pmap k(x,y) for €.

(step 2) Interpolate the pmap from the cell-centered grid to the cell

corners to construct a diagonal (kq; ky,), using harmonic averaging in the

direction of flow and arithmetic averaging in the orthogonal direction to

transfer the pmap to the component velocity grids.

Introduce the notation

pl = k(xmi,ymj), p2 k(xmi+1,ymj),

p3 = klxmjymy, 1), p4 = k(xmj,1,ymjq),

havg(py,p;) = the harmonic average of p; and p,.

h
Then KOy = avg(Pl,PZ);havg(p3,p4) ’

!
and Xy (Xi’Yj) _ 1avg(p1,p3);havg(p2,p4)
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(step3) Rotate each cell of the grid by 6 radians in the xy-plane.

The diagonal tensor (kq; ky,) is rotated with respect to the Cartesian

axes by an angle 0 using the similarity transformation;
k]](xly) k]z(X/}’)

ko1(x,y) kon(x,y)

cosO sinb ki1(xy) 0 cos® -sind
- (4.3.1)
-sin6 cosf 0 kyplxy) sin® cosB
cosze*k“(x,y) + sinze*kzz(x,y) sinB*cos*(kq4(x,y)-ky(x,y )
= , (43.2)

sinB*cos*(kq1(x,y)-kyp(x,y ) sin0+ kqq (x,y)+cosze*k22(x,y)

which results in a full tensor.

A conductivity tensor for a 3-d domain  is constructed using the

following 3-step algorithm.
(step 1) Construct a cell-centered pmap k(x,y,z) for Q.

(step 2) Interpolate the pmap from the cell-centered grid to the cell
corners to construct a diagonal tensor (kq;,ky,k34), using harmonic averaging
. in the direction of flow and arithmetic averaging in the orthogonal directions
to transfer the pmap to the component velocity grids.

Introduce the notation

i

pl = k(xmj,ym;zmy), k2 p(xmi+1,ymj,zmk),

p3 = k(xmi,ymj+1,zn1k), kd = p(xmy +1/Y10 +1,2my),

p5
p7 = kxmjymy,q,zmy 1), k8 = plxmjy1,ym;,q,zmyyq).

1<(xmi,ymj,zm1< +1) k6 = p(xmi+1,ymj,zmk+1),
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Then
havg(pl,p2)+havg(p3,p4)+havg(p5,p6)+havg(p7,p8)
k(g yyz) = 4.
havg(pl,p4)+havg(p2,p3)+havg(p5,p8)+havg(pé,p7)
kop(Xiyjzg) = 4.
havg(p1,p5)+havg(p2,pé)+havg(p3,p4)+havg(p4,p8)
kaa(xjyjzi0) = 4.
(step3) Rotate each cell of the grid by 6 radians in the xz-plane.

The diagonal tensor (kqq,kp ks3) is rotated with respect to the Cartesian

axes by an angle 0 using the similarity transformation;

k‘l'l (XIYIZ) k‘l 2(XIYIZ) k'l3(x/y;z)
k2](XIYIZ) k22(XIY/Z) k23(xly12)
ks'l(xlylz) k32(XIYIZ) k33(xlylz)

cos8 0 cosd [ k11(x,y.2) 0 0 cosO 0 sinb
sin® 0-sin® 0 0 kgs(xy,2) cos6 0 -sin®

cosze*kl 1 (x,y,z)+sin29* k35(x,y,2) 0 sinB*cos*(ka3(x,y,2)-kq1(x,y,2))
0 kyy(x,y,2) 0

sinB*cosB*(ky3(x,y,2)-k{1(x,y,2 ) 0 sinze*k1 1(x,y,z)+c0329>r-k:,,:,;(x,y,z)

’

which is also a tensor.

4.4 The Flow Problems Solved.

In this Section we describe the porous media problems, which are used
for the numerical work in Section 4.5. For 2-d we solve two series of models.
Series-1 tests the robustness of the ESP solvers, such that the model is kept the

same, but the grid is refined by a factor of 2 in xand y . Pure Neumann
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boundary conditions are used. The conductivity tensor is constructed as

described in Section 4.3 from the following pmap:

perm(x,y) =
perm(x,y) =
perm(x,y) =
perm(x,y) =
perm(x,y) =
perm(x,y) =
perm(x,y) =
perm(x,y) =

Here is a summary of the 2-d models of Series-1

numbers of the ESP stiffness matrices.

Model Pmap
s2d-20pn s2d-20
s2d-40pn s2d-40
s2d-80pn s2d-80

s2d-160pn s2d-160

160
100
550
160

60

Grid Size
20 x 20
40 x 40
80 x 80
160 x 160

0. <

J125<
250 <
375 <
500 <
625 <
750 <
975 <

y <
y €

<
<
<
<

<

T S T T S

<

125
250
375
500
625
750
975
1.000

Matrix Size

1,160
4,720
19,040
76,480

including the condition

Condition Num.

31,111.
62,230.
126,300.
248,980.

The Series-2 2-d models use a 295 x 295 grid. The program RFG [34,35]

is used to generate random 2-d pmaps, and the algorithm described in Section

4.3 is used to construct a 2-d conductivity tensor.

Two models are constructed. The first 2-d pmap ( s2d_01 ) has a

coefficient of variation ¢ = 1.0, and the second pmap (s2d_02 ) has ¢ = 2.3.

Each model assumes no-flow boundary conditions with an injection

well with unit flow rate at (0,0) and a production well with unit flow rate at
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(1,1). Since pure Neumann boundary conditions are assumed, each ESP

stiffness matrix is singular.

Here is a summary of the 2-d models of Series-2 including condition

numbers for the ESP stiffness matrices.

Model Pmap Grid Size Matrix Size Condition Num.
s2d-01pn s2d-01 295 x 295 260,485 11,894.
s2d-02pn s2d-02 295 x 295 260,485 1,369,210.

The Series-3 consists of four 3-d models, which use a 80 x 40 x 20 grid,
chosen to produce an ESP matrix with approximately the same size as the
Series-2 matrices for comparison purposes. The program RFG [34,35] is used
to generate two random 3-d pmaps. The first 3-d pmap (s3d_01) has a
coefficient of variation ¢ = 2.3, and the second (s3d_02) has ¢ =1.0. The
third 3-d pmap ( s3d_03 ), which has moderate ( constant 1. milli-darcy )
permeability throughout the model, except for a narrow high ( 100. milli-

darcy ) permeability strip, which is defined as
{(xy2z) | 0.<x<1., 54Ay <y < 5+4Ay, z =5}

The algorithm described in Section 4.3 is used to construct a 3-d conductivity
tensor using the pmaps. Each model has an injection well with unit flow

rate at (0,0,1), and a production well with unit flow rate at (1,1,1).




50
The first two models use pmaps s3d_01 and s3d_02, respectively, and

pure Neumann ( no-flow ) boundary conditions are assumed. The third
model uses the striped permeability map s3d_03, and no-flow boundary
conditions are assumed. The fourth model uses pmap s3d_01, and assumes
no-flow boundary conditions of the front, back, left, and right, but assumes a
constant pressure of 1. on the bottom and a constant pressure of .01 on the top

of the model.

Here is a summary of the 3-d models of Series-3 including condition

numbers for the ESP stiffness matrices.

Model . Pmap Grid Size Matrix Size Condition Num.
s3d-01pn s3d-01 80 x 40 x 20 250,400 1,209,443.
s3d-02pn s3d-02 80x40x 20 250,400 3,937.
s3d-03pn s3d-03 80x40x 20 250,400 9,285.
s3d-04mix  s3d-01 80 x40 x 20 256,800 1,242,709.

4.5 Summary of Computer Runs.

Each problem is solved such that the final residual is less than 107, To
estimate the computational complexity of each iterative ESP solver, we have
recorded the number of matrix-vector multiplies which occur during the

solution process. This is recorded as three sums:

(1) matvecs = the number of matrix-vector multiplies of S,

(2) matveca

the number of matrix-vector multiplies of A,

(3)  matvecb = the number of matrix-vector multiplies of B Bt.
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Each ESP matrix is scaled symmetrically as in (4.5.1) such that the

diagonal matrix D;; = 1./sqrt(A;;). In each problem the scaled matrix DAD

has condition number less than 10.
Dol[aBY[Do
(4.5.1)
01 B O 01
This symmetric scaling has the consequence of shifting the spectrum of
BB' from a range typically [107,10°%] such that the matrix BD?B' has a
spectrum typically with range [107, 10°%], which using the formulas in

Corollary 3.1 for the spectrum of the scaled ESP matrix, is better balanced

for solution.

Single cpu times on a Cray C-90 are provided as a check that things are
in order, but the principal criterion of comparision of the methods used is the
computational complexity measured by total number of matvecs required for

solution.

Parallelization of the solvers was not a design goal, but rather to
establish the effectiveness of the preconditioners for ESP matrices described in

Chapter 3.

Arnoldi iteration applied to a JMP polynomial in the matrices A and
BD?B! , as described in Section 3.2, are used to estimate spectral covers for the
matrices A and BD’B! , respectively. However, all of these estimates were
quite similar, and the JMP preconditioners were not noticeably sensitive to
the estimate for the inner-most eigenvalue, but the computation diverged

if the upper eigenvalue estimate was not large enough.
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For all the JMP preconditioners for SPD matrices, it was found

experimentally that using a =-95, B = -.5 provided effective preconditioners.

For all the JMP Choleski preconditioners, it was found experimentally

that using o« =-.99 , B = -.5 provided effective preconditioners.

For the 2-band JMP preconditioners used by Method-I, it was found
experimentally that using oo =-.95, 3 = -5 on both eigenbands, provided
effective preconditioners.  Since the matrices BD?B! had condition numbers
in the range 10%-10°, it was found experimentally that the degree of the J]MP
preconditioners for the matrix BD?B' could be increased to about 20, resulting
in reducing the computational complexity of the solution of the ESP system

as well as reducing the runtime.

Here are the runtime characteristics on a Cray C-90 using the

preconditioners of Chapter 3 for the Series-1 model problems.

Method-1
model gmres its __matveca matvecb matvecs  cpu ( secs )
s2d_20pn 6 36 756 36 1627
s2d_40pn 11 66 726 66 4542
s2d_80pn 9 54 1134 54 3.062

s2d_160pn 8 48 1008 48 17.420
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Method-2
model gmres its ___matveca matvecb matvecs _ cpu ( secs )
s2d_20pn 3 226 223 3 .0448
s2d_40pn 3 274 303 3 1389
s2d_80pn 2 291 362 2 5601
s2d_160pn 1 92 101 1 9178
Method-3
model _gmres its ___matveca matvecb matvecs  cpu ( secs )
s2d_20pn 2 123 182 2 0294
s2d_40pn 3 214 333 3 1324
s2d_80pn 1 72 221 1 2659
s2d_160pn 1 72 111 1 9327

Here are the runtime characteristics on a Cray C-90 using the

preconditioners of Chapter 3 for the Series-2 model problems.

Method-1
model gmres its _matveca matvecb matvecs _cpu ( secs )
s2d_0lpn 11 66 726 66 16.0998

s2d_02pn 7 42 252 42 5.6085
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Method-2
model gmres its _ matveca matvecb matvecs  cpu (secs )
s2d_0lpn 1 56 61 1 1.0981
s2d_02pn 2 249 242 2 4.3480
Method-3
model _gmres its __matveca matvecb matvecs  cpu ( secs )
s2d_0lpn 1 72 111 1 1.0981
s2d_02pn 1 42 51 1 8866

Here are the runtime characteristics on a Cray C-90 using the

preconditioners of Chapter 3 for the Series-3 model problems.

Method-1
model gmres its _matveca matvecb matvecs cpu ( secs )
s3d_01pn 14 168 924 84 21.132
s3d_02pn 8 96 528 48 12.042
s3d_03pn 10 120 660 60 15.012

s3d_04mix 20 121 4880 121 54.676
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Method-2
model __gmres its matveca matvecb matvecs cpu ( secs )
s3d_0lpn 1 128 111 1 3.277
s3d_02pn 1 128 111 1 3.289
s3d_03pn 1 110 101 1 2.895
s3d_04mix 2 345 642 2 12.570
Method-3
model gmres its __matveca matvecb matvecs _cpu ( secs )
s3d_0l1pn 1 72 111 1 2.445
s3d_02pn 1 72 111 1 2.455
s3d_03pn 1 52 71 1 1.685

s3d_04mix 3 214 663 3 10.706
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Chapter 5. Concluding Remarks.

5.1 Which Methods Performed Best?

The preconditioners Method-2 and Method-3, based on block-LU
factorization of an approximation of the ESP matrix S, proved to be more
efficient than Method-1, because Method-1 requires evaluating the
composition of the polynomial which preconditions the whole matrix S

with the polynomial which preconditions the BB,

Symmetric scaling the matrix A of the ESP stiffness matrix by its
diagonal ( as described in Remark 3.5.1 ) has the effect that the resulting
sandwich matrices, which arise in the three ESP preconditioners are well

conditioned by a split preconditioner.

In the numerical work in Chapter 4 we applied each of the three
sandwich preconditioners to porous media problems. The type-1 sandwich
preconditioner was found to be the most efficient in all cases. The reason
for this is that the type-2 requires approximate solution of two linear systems,
and type-3 requires approximate solution of three linear systems. The type-1

method requires only the approximate solution of a single linear system.
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5.2 Choosing Effective Parameters.

Experimentation with the degree of the JMP preconditioners for the
SPD matrix A showed that since A was so well preconditioned by symmetric
scaling with the diagonal matrix diag(A), that each of the Darcy flow problems

was efficiently solved with a JMP polynomial with degree 3 to 5.

The JMP Choleski polynomials used to precondition the blocks B Bt
required larger degree since the condition number of the matrix BB! ( which
is a discretization of the Laplacian ) is known to be proprotional to h2,
Experimentation indicated that using a JMP polynomial of degree of about

10 minimized the total work of the solvers.

The 2-band preconditioner used in Method-1 was most efficient with

degree in the range 5-10 in all the Darcy flow problems.

Experimentation showed that effective parameters to use for defining
the Jacobi polynomials were o = -.95 and B = -.5 for the single-function J]MP

preconditioners of definite matrices.

The effective parameters used for the JMP Choleski preconditioners
were found experimentally to be o = -.995 and B=-.5 ( this value for o
produced numerical instabilty in construction of the single-function JMP

preconditioner ).

The effective parameters used for the 2-band preconditioners for the
ESP stiffness matrices from the Darcy flow problems were found to be o =-.5
and P=-.95 on the negative eigenband and o = -.95 and B= -.5 on the positive

eigenband.
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5.3 Summary.

In this Thesis we have developed a general theory of polynomial
matrix preconditioners. Of particular interest is the use of functions other
than the function f(x) = 1 as ideal functions to be approximated. For example,
we have demonstated that approximations to the square-root function
f(x) = Vx can lead to effective split preconditioners of positive definite linear
systems. Moreover, we have also demonstrated that polynomial matrices
using approximations to the piecewise constant function, which is -1 on the
negative part of the spectrum and +1 on the positive part of the spectrum of

an symmetric indefinite matrix can also provide effective preconditioners.

We have described efficient methods based upon Arnoldi's iteration
for estimating spectral covers for saddle-point matrices, which are necessary

for defining the domain of definition of the polynomials.

We have demonstrated computationally that these polynomial
matrices can be used quite effectively in the solution of saddle-point problems
which arise in mixed finite element solution of flow in porous media

problems.

In order to solve ESP linear systems we have developed several
effective methods for solving Schur complements of ESP matrices ( sandwich

matrices ), which arise in block factorization of ESP matrices.

Finally, through experimentation we have found parameters, which
produce effective preconditioners, but we were unable to provide a theorem,

which predicts optimality.
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Appendix A:  Proof of Spectral Cover Theorem.

To prove the Spectral Cover Theorem for a general saddle-point matrix

!A B
B -C
we shall use the following well known formulas
%" = Im@BY @ null(B) (A1)
An ||xl|23 (Ax,x) £ N ||x”2 forx e R} (A2)
2 2 m
Ym ”Y“ < (Cy,y) < 11 ||y]| fory e R (A3)
om lyll < | Bty I < oy llyll fory e ®™ (A4)
Om IxlIl < IBxl < o1 | x| forx e null(B)‘L . (A5)

Theorem 3.1 ( Spectral Cover for saddle-point matrices ) If Sis a non-
singular saddle-point matrix, then { [a,b], [c,d] } is a spectral cover for S

provided the formulas

2

a= 1/2 [ (My-11) -\ (An+ 71)2+4 ;2 ] (A6)
2

b= 1/2[(A1- ¥m) -V (M + 1m)2+4 om2 | (A7)

C = ?\.n (A8)
2

d= 1/2[(7&1-ym)+\/(11+ym)2+4 012 1] (A9)

hold.
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Proof: Let A e A(S) and (x,y) be a corresponding eigenvector. Then
Ax+Bt y = A x (A10)
Bx-Cy = Ay. (A11)

Assume x = 0. Since Bl is is injective, (A10) implies that y = 0, which is
impossible; therefore, x # 0. To establish the lower bound c for the positive
eigenband of S, assume A > 0 and take the inner-product of (A10) with x and
(A11) with y. Then we get formulas (A12) and (A13).

(Ax,x)+ (Bty,x)= 2 [ x|? (A12)

(Bx,y) = (Bly,x)= ((+Q) y,y) (A13)
Therefore, (A x,x) + ((A+C) v, y)=2A Il x ”2 , which implies using (A1)
and (A2) that (Ap—A) I x ||2 < —(A+ym) | y ||2 < 0. Hence, A = oan.

To establish the positive upper bound d in (A9), we use (A11) and
(A12) to get
(Ax,x)+((l+C)_le,Bx)=7L”x 12 (A14)

and using (A2) and (A5) we get

2
c

Allx 2 (A + ) I x |12

AYm

2
which implies that A (A+7vy) < A Aym)+ ¢, . By the quadratic

2
formula A < 1/2 [ ( A1-vp) + \/ (A -1m)?+4 (612+ Mvm) ),

2
and after simplification A< 1/2 [ ( A1 -vm ) + \/ (M +Ym)2+4 012 ],

which establishes the bound d.
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To establish the negative bounds, first observe that if A <0, then

Al x ||2 <0, and (A x,x) > 0, so (Al14) implies (A15).
(0+O) I Bx, Bx) <0. (A15)

To establish the bound a in (A6). Since (A15) holds, formulas (A2), (A4), and
(A14) imply that

An Il x ||2.<_ (Ax,x) =All x ||2—((7»+C)—1Bx,Bx)

2

%

2
< (M- ,

and by the quadratic formula and simplification

2
A< 12 (dp-v1) -\ (Ap+711)2+4 012 ],

which establishes the bound a.

To establish the negative upper bound b in (A7), assume that A < 0,
that x =v+w, wherewe null(B)and v € null(B)J', and take the inner-

product of (A10) with v and use (A11) to get

(AW+w),v) + (O IBv,Bv) = A llv I3
and thus

(Aw,v) = A llvi?=(Av,v) = (0O I Bv,BV),
and using (A2) and (A4) we get (A16).

2
c

1 v 112, (A16)

> - Al =
(Aw,v) =2 [ A -2l Y

We find an upper bound for (A w, v) by taking the inner-product of (A10)

with w and use (A2). Since w e null(B) and A — Ap <0, we get

(Aw,v) € (A=A llw 12 < 0. (A17)
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Then (A16) and (A17) and the symmetry of A imply (A18).

0 < IA2+(vm - ADA - (ym +sg) 1 Iv 12 (ats)

To show that v # 0, suppose, for the sake of contradiction, that v = 0. Then
since Bx = Bv =0 = (I-C) y, we deduce from (A15) that y = 0, and so (A10)
implies that Aw = A w, which is a contradiction, because A is positive-

definite and A is negative. By the quadratic formula, and simplification,

2
weget & < 1/2 [ (M- ¥m) - \ (M+ ym)2+4 om2 1. []
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