INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

RICE UNIVERSITY

Compiler Support for Software Prefetching
by
Nathaniel McIntosh

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Voo o Jr,

Ken Kennedy, Noah Harding Prjessor
Department of Computer Science
Rice Upiversity

¢ J (o

Keith Cooper, Associate Professor
Department of Computer Science
Rice University

S

Sa.ri\ta. Adve, Assistant Professor
Department of Electrical and Computer
Engineering

Rice University

Houston, Texas

May, 1998

UMI Number: 9827422

UMI Microform 9827422
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Compiler Support for Software Prefetching

Nathaniel McIntosh

Abstract

Due to the growing disparity between processor speed and main memory speed, tech-
niques that improve cache utilization and hide memory latency are often needed to
help applications achieve peak performance. Compiler-directed software prefetching
is a hybrid software/hardware strategy that addresses this need. In this form of
prefetching, the compiler inserts cache prefetch instructions into a program during
the compilation process. During the program’s execution, the hardware executes the
prefetch instructions in parallel with other operations, bringing data items into the
cache prior to the point where they are actually used, eliminating processor stalls due
to cache misses.

In this dissertation, we focus on the compiler’s role in software prefetching. In a set
of experimental studies, we evaluate the performance of current software prefetching
strategies, first for sequential benchmark programs running on a simulated unipro-
cessor machine. and then for a set of parallel benchmarks on a simulated distributed
shared memory (DSM) multiprocessor. In these experiments, we employ a variety of
enhanced efficiency metrics that allow us to focus on the compiler-related aspects of
software prefetching. Based on the results of our experiments, we propose and exper-
imentally evaluate a series of new compiler techniques for software prefetching. Our
contributions include more powerful forms of compile-time reuse analysis, to reduce
the frequency of useless prefetches, and new strategies for scheduling prefetches that
reduce penalties incurred due to late prefetches. In the area of prefetching for DSM
multiprocessors, we present a novel data-flow framework for analyzing communication
patterns within parallel programs. We show how a compiler can use the information
generated by this framework to provide better prefetching for long-latency coherence

misses.

Acknowledgments

[would like to acknowledge the generous support of DARPA, the NSF, and IBM
Corporation, whose financial assistance made my graduate studies possible. In addi-

tion, I would like to particularly thank the following people:

e my thesis committee, Ken Kennedy, Keith Cooper, and Sarita Adve, for their

constant support for my research efforts
o Kathi Fletcher, for making her simulator available for my experiments

e Paul Havlak, for developing the CFG, SSA, and Value Numbering packages in
the D system software

o Seema Hiranandani, for helping me obtain a collection of compiler-parallelized

benchmark programs

e Kathi Fisler and Moshe Vardi, for unselfishly donating CPU cycles on their

UltraSparc machine for overnight simulations

e my fellow students Kathryn McKinley, Chau-Wen Tseng, Jerry Roth, Taylor
Simpson, Nenad Nedeljkovié, Dejan Mirgevski, Phil Schielke, and others, for

their inspiration, help, and advice along the way

e Don Baker, Tasshi Dennis, Reinhard von Hanxleden, and Mike Paleczny, my
bicycling partners, for accompanying me on countless grueling 7:30 AM rides

e Amy Pullen, my wife, for her patience and encouragement during my many

years of graduate study

My thanks to all the people above, and many others, for making my time at Rice a

productive and enjoyable one.

Contents

Abstract
Acknowledgments
List of Illustrations

Introduction

Related Work

2.1 Cachedesign
2.2 Prior work on software prefetching
2.2.1 Uniprocessor architectures
2.2.2 Multiprocessor architectures
2.2.3 Mowry, Lam, and Gupta’s prefetching algorithms
2.3 Relatedareas
2.3.1 Hardware prefetching
2.3.2 Comparisons of hardware and software prefetching.
2.3.3 Multi-threaded architectures
2.3.4 Instruction scheduling
2.3.5 Compiler management of cache
2.4 Summary e
Compiler Overview
3.1 Prefetch implementation
3.1.1 Avresearcher’sdilemma
3.1.2 Shadow array implementation of prefetches
3.1.3 Shadow regions for Fortran programs
3.1.4 Tradeoffs involved in the use of shadow arrays
3.2 Compilationstages
3.3 Loop analysis and transformation

3.3.1 Target loop selection

i
ii

vili

00 O O a o

10

13
15
16
17
17

18

3.4

3.5

332 Reuseanalysis.
3.3.3 Loop peelinganalysis
3.3.4 Prefetch distance calculation
3.3.5 Transformation ordering
3.3.6 Sourcecodesize.
New techniques
3.4.1 Enhanced looppeeling
3.4.2 Loop strip-mining to reduce code expansion
3.4.3 Cross-loop reuse analysis for prefetching
3.44 Prologoverlap.
3.4.5 Outer loop pipelining
Summary

Evaluating software prefetching

4.1
4.2

4.3
4.4
4.5
4.6

Introduction L L
Prefetch target selection
4.2.1 Coverage.
422 Overshoot
423 Selectivity L
Overhead
Scheduling
Pipeline characteristics

Summary

Uniprocessor Prefetching

5.1
5.2
5.3
5.4
5.5

5.6

Uniprocessor benchmark programs
Simulator
Compiler parameters
Executiontime
Experimental data on prefetching performance
3.5.1 Prefetch target selection
5.5.2 Instruction overhead
5.5.3 Experimental data on prefetch scheduling
New uniprocessor compiler techniques
3.6.1 Techniques for improving prefetch target selection

25
27
27
28
28
28
30
33
35
36
38
40

41
41
42
43
44
45
45
46
48
50

5.6.2 Techniques related to instruction overhead
5.6.3 Applying strip-mining to moderate loop unrolling
5.6.4 Techniques to improve prefetch scheduling

5.7 Summary e e e e e e e

Cross-loop Reuse Analysis and Transformations

6.1 Introduction

6.2 Analysisframework
6.2.1 Control flow representation
6.2.2 Data-flow universe
6.2.3 Initial information
6.24 Reuseequations
6.2.5 Meet (/\) and join (\/) operators
6.2.6 Incorporating cache constraints
6.2.7 Complexity
6.2.8 Interprocedural analysis

6.3 Applications of cross-loop reuse information
6.3.1 Elimination of useless prefetches
6.3.2 Locality-enhancing loop transformations
6.3.3 Transformation selection

6.4 Experimentalresults
6.4.1 Compilation,
6.4.2 Simulator
6.4.3 Benchmarkprograms
644 Results.,

6.5 Relatedwork

6.6 Summary

Software Prefetching for DSM Multiprocessors

7.1 Introductionm

7.2 DSM multiprocessors
7.3 Parallel programmodel L.

7.3.1 Parallel code generation
7.4 Evaluation of software prefetching for DSM machines

7.4.1 Parallel benchmark programs

vi

80
80
81
82
84
85
85
86
87
90
91
91
91
92
93
93
94
94
95
95
98

100

Vil

7.4.2 Parallelcoverage, 109
7.4.3 Architectural parameters L. 110
7.4.4 Compiler parameters 111
7.4.5 Performance of prefetching on DSM machines 112
7.4.6 Outcomes for prefetches 113
7.4.7 Prefetch scheduling: a closer look 114
7.5 Compiler framework 115
7.5.1 Predicting coherence misses: an overview 115
7.5.2 Array-section analysis 116
7.5.3 Predicting coherencemisses 118
7.5.4 Intervalanalysis. 123
7.5.5 Data-flowequations L L. 124
7.5.6 Incorporating cache size constraints 128
7.6 Optimizations 130
7.6.1 Exploiting coherence miss information 133
7.6.2 Additional optimizations 134
7.7 Experiments. 137
7.7.1 Subroutines 137
7.72 Optimizations 137
7.8 Summary e e e e 140
Conclusions 141
Bibliography 143

A Interprocedural analysis to support shadow regions 153

B Cache volume estimation for nested loops 155

o
—

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
3.4
5.5

Illustrations

Prefetch pipelining 11
[mplementing prefetches with shadow regions 21
Shadow array prefetchingexample 22
Compilationstages 23
Analysis stages for innerloops 24
Analysis stages for non-innerloops 25
Transformation overview 29
Compiler source code size 30
Reuse analysis for imperfectly nested loops 30
Section-based group temporal dependence check 32
Strip-mining in combination with unrolling 34
Example of cross-loopreuse 35
Prologoverlap 37
Outer loop pipelining 39
Outer loop pipelining with strip-mining 39
Prefetching efficiency metrics 42
Control flow within an innerloop 44
[nstructionoverhead 46
Prefetch scheduling 47
Pipeline efficiency categories 49
Uniprocessor benchmark programs and their vital statistics 52
Architectural parameters for uniprocessor simulations 53
Execution time reduction due to prefetching, 1 processor 54
Prefetch coveragefactors, 55

Reference categories by lexical/interprocedural loop nesting 87

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Loop nesting breakdown for uncovered cache misses 57
Useless prefetches as a total of all prefetches 59
Inner and outer loopepochs 59
Epoch values stored with each cacheline 60
Categories of useless prefetches 61
Useless prefetch breakdown 61
Overshoot and Virtual Overshoot 62
Instruction overhead from prefetching 64
Effect of cache linesizeon IPP 65
Pipeline efficiency metrics 67
Late prefetches as a percentage of useful prefetches 68
Spectrum of reuse analysis techniques 69
Effects of more general reuse analysis methods 70
Group-spatial reuse among irregular references 71
Effects of group-spatial reuse analysis on selected irregular applications 72
Compile time and executable size increase with longer cache lines . . 73
Compile time and executable size increase, with strip-mining 74
Applicability of scheduling optimizations 75
Effects of prolog overlap on performance 76
Effects of outer loop pipelining on performance. 7
Example sub-program with interval-flow graph 83
Reuseequations 85
Procedure for computing reuse equations 86
Control flow, 87
V for finite cachecase. L L. 89
Compilationstages 94
Program characteristics. 96
Simulation data for original programs [thousands] 96
Transformation summary 96
Simulation data for transformed programs [thousands] 97
Percent change between original and transformed (no profile data) . . 97
Transformation summary (with profile) 99

Simulation data for transformed programs, with profile [thousands] . 99

6.14 Percent change between original and transformed (with profile)

7.1 DSM multiprocessor block diagram
7.2 State diagram for example MESI cache coherence protocol
7.3 Parallelization directives
7.4 Parallel programexcerpt Lo
7.5 Miss rates for parallelized benchmarks
7.6 Parallelcoverage
7.7 Network parameters for DSM multiprocessor simulations
7.8 Execution time reduction due to prefetching, 4 processors
7.9 Outcome breakdown for prefetches, 4 processors
7.10 Late prefetches as a percentage of useful prefetches, 4 processors . . .
7.11 Example loop nests with section information
7.12 Parallel loop with corresponding CFG.
7.13 Possible outcomes for a cache-coherent read (worst-case)
7.14 Conditions for predicting read outcomes
7.15 Possible outcomes of cache-coherent write (worst-case)
7.16 Conditions for predicting write outcomes
7.17 Dataflowsets L L
7.18 Data-flow equations computed within an interval
7.19 Data-flow equations for interval summarization.
7.20 Read outcomes based on data-flowsets
7.21 Write outcomes based on data-flowsets
7.22 Data-flow equations computed within an interval (with cache
constraints) e e
7.23 Interval summarization equations (with cache constraints)
7.24 Example with coherencemisses
7.25 Example with many-processor read-sharing
7.26 Example with falsesharing
7.27 Exclusive-mode prefetching opportunities
7.28 Selected subroutines,
7.29 Optimization strategies
7.30 Relative performance of different optimization strategies
7.31 Percent reduction in late prefetch penalty, increase in overshoot for

each optimization strategy

A.1 Algorithm for computing ShadowForFormal

..............

X1

Chapter 1

Introduction

One of the major challenges that computer architects have faced during recent years
is the widening gap between processor speed and main memory latency. The rate at
which processors execute computations has grown much more quickly than the speed
with which items can be fetched from memory. Cache memories are the primary tool
that designers use to cope with this mismatch. As a result, cache design has been
intensively researched in recent years, and cache hit rates are now a critical component
of overall program performance. Cache memories are not perfect, however. In order
to effectively exploit the cache, a program has to exhibit locality of reference, and
even programs with good locality must incur cache misses now and then. For this
reason, techniques that improve cache utilization and hide the latency of cache misses
are very important.

This dissertation concentrates on a particular latency hiding technique: compiler-
directed software prefetching. In this form of prefetching, the compiler inserts non-
binding cache prefetch instructions into a program as it is being compiled. At run-
time, the program issues prefetch operations to fetch data items into the cache before
they are explicitly loaded, effectively hiding the latency that would ordinarily be
incurred due to cache misses.

Previous researchers have established software prefetching as a viable method
for improving cache hit rates. This research has explored the architectural issues
surrounding prefetching in considerable detail. In our work we choose to focus on the
compiler-related aspects of software prefetching. Qur goal is to advance the state of
the art with respect to compiler design in this area, and to provide useful information
to future compiler designers.

The chief contributions in this thesis are as follows. First, we perform detailed
performance evaluations of software prefetching for both sequential and parallel pro-
grams. Throughout these evaluations, our emphasis is on gauging the efficiency of the
compiler algorithms employed. Based on the data from our evaluations, we propose

a series of new compiler techniques for software prefetching.

o

For uniprocessor architectures, our contributions are in two main areas: new meth-
ods for detecting and eliminating useless prefetches, and new techniques for improv-
ing prefetch scheduling. We develop a pair of reuse analysis strategies that are more
powerful than those applied in previous work, and we experimentally evaluate their
effectiveness. Our results show that our more general methods are useful primarily for
programs that make extensive use of imperfect loop nests, which are more difficult to
analyze than perfect loop nests. In the area of prefetch scheduling, our new optimiza-
tions are effective in reducing late prefetch penalties. Performance improvements due
to scheduling optimizations are fairly modest, however, since relatively few programs
incur significant numbers of late prefetches on our simulated uniprocessor.

For multiprocessor architectures, we focus on the issues surrounding software
prefetching for parallel programs running on distributed shared-memory (DSM) ma-
chines. These architectures present a series of additional challenges to the compiler,
due to their increased overall memory latency and their more variable cache miss la-
tencies. The results from our experimental study of compiler-parallelized benchmark
programs running on a simulated DSM show that late prefetches are a much more
serious problem than in case of uniprocessor architectures. To address this problem,
we develop a new form of compiler analysis designed to predict the loops and ref-
erences that cause coherence activity within a parallel program. We show how our
compiler can use the information gathered by this analysis to provide better prefetch
scheduling, and we present a set of partial experimental results that demonstrate the
effectiveness of these techniques in practice.

The foundation for many of our analysis techniques is a new compiler framework
for detecting cross-loop reuse: repeated data accesses that take place between loop
nests, as opposed to within a single loop nest. This framework incorporates both data-
flow analysis, to handle intra-procedural control flow, and array-section analysis, to
compactly summarize regions of arrays accessed within loops. The information gener-
ated by the framework is useful for a variety of compiler tasks, including detecting and
eliminating useless prefetches, and predicting the profitability of locality-enhancing
loop transformations, such as loop fusion and loop reversal. Finally, it forms the basis
of the analysis techniques we use for optimizing prefetching within parallel programs.

In order to support our experiments, we introduce a collection of enhanced metrics
for characterizing and quantifying various aspects of prefetching performance. These
metrics incorporate refinements designed to provide information on compiler behavior
that is more useful than the data generated by existing methods.

Finally, we contribute a new approach to developing the compiler infrastructure
needed to support research on software prefetching. By emulating prefetches us-
ing stores to compiler-generated “shadow regions”, we avoid the prohibitively ex-
pensive step of developing an optimizing low-level compiler for the target architec-
ture/instruction set. Our experiments demonstrate that using shadow arrays to em-
ulate prefetches is a viable method for conducting research on software prefetching.

An outline of this dissertation is as follows. We begin in Chapter 2 by survey-
ing the spectrum of latency-hiding techniques and other strategies with goals similar
to those of software prefetching. We also summarize previous research on software
prefetching, and highlight the unique contributions of our work relative to prior stud-
ies. Chapter 3 describes the internal architecture of our compiler, detailing the various
analysis and transformation techniques we employ. In this chapter we also discuss the
use of shadow arrays to implement prefetches. In Chapter 4, we present the system of
efficiency metrics that we use to evaluate the performance of prefetching. Chapter 5
presents the results of our work on uniprocessor prefetching, including an experi-
mental study of prefetching for a set benchmark programs running on a simulated
uniprocessor architecture, and evaluations of our new uniprocessor compiler tech-
niques. Chapter 6 describes our compiler framework for detecting cross-loop reuse.
In Chapter 7 we address the problem of prefetching for DSM multiprocessors. We
present our new compiler strategy for analyzing parallel programs, and we show how
it can be used improve prefetching for this class of architectures. Finally, in Chapter 8

we summarize the contributions in this thesis and offer our concluding remarks.

Chapter 2

Related Work

In this chapter we summarize previous research on software prefetching, and we dis-
cuss other topics in the area of memory hierarchy management and memory latency
hiding. An outline of this chapter is as follows. We begin in Section 2.1 by briefly
discussing developments in cache design relevant to prefetching and to other latency-
hiding techniques. In Section 2.2 we provide a survey of previous work on soft-
ware prefetching, first for uniprocessor architectures and then for multiprocessors.
Section 2.3 covers a variety of other hardware and software methods that hide mem-
ory latency and improve cache utilization. Section 2.4 contains a summary of our

conclusions.

2.1 Cache design

The design of cache memories has been researched intensively over the last several
decades [89]. We mention just a few of the important aspects of cache design that
relate to software prefetching.

Multi-level cache hierarchies interpose multiple levels of cache between the pro-
cessor and main memory. They provide a means of keeping overall miss penalties low
without resorting to long cache hit latencies. Multi-level memory hierarchies typi-
cally enforce the inclusion principle, that is, the hardware requires that the contents
of the cache at level K be a subset of the contents at K+1. The inclusion requirement
is essential for efficient implementation of hardware cache coherence in multiproces-
sors [82]. In keeping with the widespread acceptance of multi-level hierarchies in
modern workstation and multiprocessor designs, we assume a 2-level cache hierarchy
for all of our simulation studies.

A write buffer is a small queue (2-32 entries) that stores pending write operations,
typically placed between a cache and main memory or between two levels of cache
in a multi-level hierarchy [89]. When a write is issued, the write buffer stores the
written value and allows execution to resume before the write completes, thereby

masking the latency of the write. When combined with other architectural features
such as a relaxed memory consistency model [1, 32] and a write-through primary
cache, an aggressive write buffer will allow the compiler to issue prefetches only for
load instructions, since most or all store latency will be hidden.

A lockup-free cache provides a mechanism for the processor to continue issuing
instructions even after a cache miss, provided that the processor does not use the reg-
ister that is the destination of the load instruction that caused the miss [58]. Software
prefetching requires that the cache be lockup-free (at least with respect to prefetch op-
erations), since prefetch operations must execute in parallel with other cache accesses
in order to be effective. Lockup-free caches are often implemented through use of
Miss Status Holding Registers (MSHR's), which keep information about pending re-
quests. A lockup-free cache is typically more effective as a latency-hiding mechanism
if it is combined with other advanced hardware features, such as multiple instruction
issue [49], dynamic branch prediction [64], dynamic scheduling [33], register renam-
ing [51], and/or speculative execution [77]. Although the latency-hiding mechanism
provided by lockup-free caches is very general-purpose, it is limited by the amount of
instruction-level parallelism in the program, as well as the ability of the processor to
exploit that parallelism [7, 28].

We categorize cache misses using the following classification scheme [47]:

® a compulsory or cold start miss corresponds to the very first access to a given
block of data made by a program, causing the block to be brought into cache

® capacity misses are due to situations where the cache is not large enough to hold
all of the blocks referenced by the program, causing a given cache block to be
evicted and then subsequently retrieved.

o conflict misses result when blocks are evicted from the cache due to limited
associativity. Given an N-way set associative cache, if the program uses a group
of K data items (K > N) that map to the same cache set, when one item from
the group is brought into the cache, it will displace another item within the
group, causing a miss when the evicted item is subsequently referenced.

¢ coherence misses occur on multiprocessors with invalidation-based cache coher-
ence protocols.! These misses take place when a given line in one processor’s

!Invalidation-based cache coherence protocols are discussed in Section 7.2.

cache is invalidated by a second processor, then subsequently referenced again

by the first processor.

2.2 Prior work on software prefetching

In this section we give a summary of previous work on compiler-directed software
prefetching, first for uniprocessors and then for multiprocessors. Our work differs
from the studies mentioned below in three important respects. First, we provide
an experimental infrastructure that is at least comprehensive and complete as those
employed in prior studies (and in some cases more comprehensive). In particular,
we apply prefetching to realistic-sized complete application programs (not kernels or
individual loop nests), we provide a compiler implementation that integrates most
of the techniques developed by previous researchers (as well as our own), and we
use a very detailed simulator, capable of gathering useful statistics not available
when running on real hardware. This combination allows us to provide new insights
into the behavior of compiler-directed software prefetching. Second, our work is
the first to apply reuse analysis techniques that look beyond the level of individual
loop nests, gathering information about memory access patterns across an entire
procedure or program. Finally, our compiler is the first to provide a comprehensive
framework for analyzing the coherence patterns in a parallel program, allowing it to
begin addressing some of the challenges that shared-memory multiprocessors present

to software prefetching.

2.2.1 Uniprocessor architectures

Porterfield, Callahan, and Kennedy produced some of the first results on software
prefetching [18, 79]. Their compiler targeted array accesses within loops, issuing
prefetches for array data an iteration in advance. Since the simulator they used
(PFCSim) operated at the level of subscripted array accesses and not instructions, it
was difficult for them to accurately characterize instruction overhead and scheduling
efficiency. Their work introduced the idea of an overflow iteration for predicting the
cache behavior of loops.

Klaiber and Levy explored a form of software prefetching in which prefetched data
are stored in a separate “fetch buffer”, distinct from the cache [55]. They developed
the idea of computing a prefetching distance for each loop, as a means of determining
how far in advance to issue prefetches. The prefetching distance is calculated as [-A%'] ,

~1

where C is the number of instructions during a single iteration of the loop, and M is
the expected memory latency in cycles. They did not implement a compiler as part
of their work; for their experiments, they used the Livermore Loops [71], which they
instrumented by hand with prefetch instructions.

Chen, Mahlke, Chang, and Hwu performed a series of studies that compared
prefetching into a separate buffer with prefetching directly into cache [22]. They used
trace-driven simulation to model a hypothetical multiple-issue processor equipped
with support for software prefetching. Their simulation results indicated that prefetch-
ing into a separate prefetch buffer outperformed prefetching into the main cache in
most cases. The use of a separate prefetch buffer for prefetching has seen little ac-
ceptance in commercial processor designs, however, most likely due to the additional
cost and design complexity required.

Mowry, Lam, and Gupta provided a comprehensive study of software prefetching,
for both uniprocessors and multiprocessors (73, 75]. In contrast to most previous
implementations (in which prefetches were inserted into benchmark programs entirely
by hand), they integrated their support for prefetching into an optimizing compiler
for a MIPS-like architecture [92]. They simulated their compiled programs using a
cycle-level simulator that modeled the cache and memory of the target machine in
detail. To experimentally validate their techniques, they applied software prefetching
to a set of kernels and small programs drawn from the SPEC, SPLASH, and NAS
benchmark suites [10, 87, 96]. In addition to issuing prefetches for array references
with affine subscript functions, their compiler also issued prefetches for references that
used indirection arrays. They found that prefetching was quite effective for hiding
memory latency; in most cases stalls due to memory latency were reduced by 50% or
more. We discuss Mowry’s work in more detail in Section 2.2.3.

Bernstein, Cohen, Freund, and Maydan described their compiler implementation
of software prefetching for the PowerPC architecture, and provided performance results
for the SPEC92fp benchmarks [14]. Their compiler strategy was similar in spirit to
that of Mowry et al., although they targeted only references with affine subscript
functions within inner loops. They were able to achieve performance improvements
of (5-20%), which are significant given the relatively short memory latency (30 cycles)
of the target architecture. They showed only total execution time improvement due
to prefetching, since they did not employ simulation for their experiments.

Santhanam, Gornish, and Hsu evaluated the performance of software prefetching
for the Hewlett Packard PA-8000 architecture [86]. In an experimental study, they

applied their compiler implementation of software prefetching to the programs in
the the SPEC95fp benchmark suite, resulting in execution time improvements of up
to 100%, with a harmonic mean value of 26%. They also included discussions of a
variety of issues related to prefetching performance, including cache conflicts, memory
bank conflicts, instruction overhead, and instruction scheduling. As with the work by
Bernstein et al., the authors reported primarily execution times, as opposed statistics

from simulations.

2.2.2 Multiprocessor architectures

Gornish, Granston, and Veidenbaum implemented a form of software prefetching as
part of their compiler for the Cedar machine, a shared-memory multiprocessor [36].
They focused on using prefetching to gather blocks of data into a processor’s local
memory, as opposed to into the cache. They employed sophisticated compiler analysis
to handle the problem of determining the safety of accessing locally cached items,
because their target architecture provided no support for keeping the contents of the
local memories up to date with the contents of global memory. Since prefetched data
were not at risk of being displaced (as is the case with prefetching into a cache),
their compiler issued prefetch operations as early as possible. They observed that the
additional traffic produced by prefetching sometimes caused delays for other memory
operations.

Mowry and Gupta reported results on the effects of software prefetching for par-
allel programs running on the DASH shared-memory multiprocessor [74]. In this
particular study, they inserted prefetch instructions by hand, instead of using a com-
piler. The goal of their work was to assess the effectiveness of software prefetching
in reducing memory latency penalties for programs running on shared-memory mul-
tiprocessors with hardware cache coherence. They concluded that prefetching can
indeed be beneficial, provided that there is enough memory bandwidth available.

In subsequent work, Mowry performed studies using a similar set of parallel pro-
grams (the SPLASH benchmarks [87]), but with a compiler implementation of soft-
ware prefetching [73]. The compilation strategy used was similar to that used in the
Mowry’s uniprocessor experiments, but with the addition of ezclusive-mode prefetch-
ing for write references (see Section 7.2 for a description of this enhancement). This
work provided additional data on the overall effectiveness of prefetching and demon-

strated that exclusive-mode prefetching can be beneficial in terms of reducing network
traffic on machines such as the DASH [65].

Tullsen and Eggers examined prefetching in the context of a bus-based, bandwidth-
limited multiprocessor [94, 95]. Their study was based on off-line trace analysis, in
which prefetch instructions were inserted into a previously generated program trace
by consulting an “oracle”. Their results were in three general areas. First, they found
that for multiprocessors with very limited memory bandwidth, software prefetching
will seldom produce any significant improvement, and can easily produce a degra-
dation in performance. Second, they found that prefetching can exacerbate cache
conflicts, but that the problems can often be overcome through the use of a victim
cache [50]. Finally, they concluded that for the programs they considered, a signifi-
cant fraction of the cache misses were due to coherence activity (i.e., invalidations),
and that this source of misses should be considered in the prefetching strategy. There
is some question as to whether results derived from oracle-inserted prefetch studies
can be compared with studies in which a compiler is employed, however. The oracle
used by Tullsen and Eggers was a simple uniprocessor cache simulator. The trace be-
ing studied was run through the cache simulator, and instructions that caused misses
with the simple simulator were marked for prefetching during the multiprocessor sim-
ulation run. This method of inserting prefetches may generate prefetches that are
substantially different from those generated by a compiler. For example, in the oracle
method, prefetches are inserted for conflict misses, which are for all practical purposes
undetectable at compile time (using existing techniques). Prefetching conflict misses
may improve some programs, but it may make others worse, depending on the nature
of the conflicts. Similarly, if cache miss behavior is very “bursty” during the oracle
simulation, then prefetches will also be issued in a bursty fashion (which again may
not necessarily the case when prefetches are inserted by compiler). In the absence
of a comparative study, we are uncertain whether oracle prefetching studies provide
reliable information to a compiler developer.

More recently, Ranganathan, Pai, Abdel-Shafi, and Adve examined the perfor-
mance of software prefetching for a class of advanced multiple-issue shared-memory
multiprocessor architectures [85]. Their simulator modeled a processor that is de-
signed to take advantage of instruction-level parallelism (ILP). These processors ex-
ploit ILP by means of features such as dynamic instruction scheduling, branch pre-
diction, and non-blocking reads, which overlap instructions and hide latency. The
authors found that in spite of the processors’ hardware-supported latency-hiding fea-

10

tures, programs still incurred significant memory latency penalties, and that software
prefetching was found to be helpful in hiding this latency. The results also showed that
prefetching placed additional strain on the processor’s resources, creating significant
problems in certain cases. The authors of this work inserted prefetch instructions into
their benchmark programs by hand, simulating the various compiler techniques used
by Mowry et al. Some of the optimizations they applied to improve performance were
fairly aggressive; current-generation compilers would probably be unable to duplicate

them automatically.

2.2.3 Mowry, Lam, and Gupta’s prefetching algorithms

In this section we provide additional detail on some of the compiler techniques devel-
oped by Mowry, Lam and Gupta [75], since we have integrated many of them into our
software prefetching scheme. The chief compiler-related contributions in the work of
Mowry et al. are the use of locality analysis for selecting prefetch targets, software
pipelining for effective scheduling of prefetches, and loop unrolling to reduce or elimi-
nate the need for guarded prefetch instructions. The example in Figure 2.1 illustrates
each of these steps. Part A of Figure 2.1 shows a loop nest containing references to
an array. [n this example, the cache line size is 16 bytes and each array element is 8
bytes long.

[n part B of Figure 2.1, prefetch operations have been inserted and the loop has
been split into three new loops. The first loop, the prolog, performs no computation
but simply fetches data needed in the first few iterations of the original loop. Note
that only a single prefetch is present for the array “a”: the compiler’s locality analysis
has determined that the two references to “a” always access the same cache line (and
thus only a single prefetch needs to be issued for the pair). The next loop, the
steady-state, fetches data for later iterations while performing computation on array
elements that have already been prefetched. The number of iterations in advance that
items are fetched is known as the prefetching distance (“PD”), and in this example is
equal to 8 iterations. The prefetching distance is calculated as f%], where C is the
number of instructions during a single iteration of the loop, and M is the expected
memory latency in cycles. The third new loop is the epilog or cleanup; it executes the
final iterations of the original loop without performing any prefetching. Initially, the
prefetches in the prolog and steady-state are protected by guards to insure that they
execute only on every other iteration (without the guards, two prefetches would be

11

A) Original loop nest B) After prefetch pipelining C) After loop unrolling

do i =1, 1024 PD = 8 PD =8
..o =x + a(i) doi=1, PD doi=1, PD, 2
..o =y + a(i) if (i mod 2 = 0) prefetch a(i)
enddo prefetch a(i) enddo
endif do i =1, 1024~-PD, 2
enddo prefetch a(i+PD)
do i=1, 1024-PD --e=x + a(i)
it ((i+PD) mod 2 = 0) ..o =y + a(i)
prefetch a(i+PD) - = x + a(i+l)
endif -ee =y + a(i+l)
= x + a(i) enddo
.- =y + a(di) do i = 1024-PD+1, 1024
enddo --- = x + a(i)
do i = 1024-PD+1, 1024 --- =y + a(i)
-v- = x + a(i) enddo
o=y + a(i)
enddo

Figure 2.1 Prefetch pipelining

issued for each cache line, effectively wasting half the prefetches). In part C of Figure
2.1, the prolog and the steady-state loops have been unrolled, allowing each guarded
prefetch to be replaced by a single unconditional prefetch. The unrolling factor is
selected based on the minimum eflective stride of the references in the loop; the
compiler uses the smallest unrolling factor that will allow all prefetches to be issued
unconditionally. In combination, these techniques schedule prefetches appropriately,
avoid unnecessary prefetches, and avoid overhead due to guards.

In order to reduce the fraction of prefetches issued that are useless (i.e., those
that hit in cache), Mowry uses temporal reuse analysis to recognize situations where
a section S of a given array is repeatedly used within a given loop nest. It exploits
this information by applying loop peeling, splitting a given loop nest into an initial
“peel” loop (in which prefetches are issued for S), followed by the remainder of the
loop (in which no prefetches are issued for S). Mowry’s compiler also uses a form of
multistage pipelining to support prefetching of references that access data through
indirection arrays. This is accomplished by adding additional stages to the prefetch
pipeline, to allow time to fetch the indirection array value before issuing the prefetch
for the indirectly accessed location. For a single level of indirection, for example, the

12

first preloop stage prefetches the indirection array at distance 0, the second preloop
stage prefetches the indirection array at distance D and the indirectly accessed data
at distance 0, and then the steady state stage of the pipeline issues prefetches for
both types of data, with indirection arrays prefetched at distance 2* D and indirectly
accessed data prefetched at distance D. See Mowry’s thesis for the details [73].

Mowry’s study was limited in certain ways, and we have tried to address some of
these limitations in our work. First, some of the the programs he used were fairly
small. In his uniprocessor studies, ten of thirteen uniprocessor benchmarks had 3 or
fewer subroutines and were under 200 lines. Larger programs can often be difficult
to analyze, and they tend to have more control flow and more procedure calls than
kernels or small benchmarks. The benchmark programs used in our experiments are
complete applications, and are of a size that is more representative of scientific and
numerical programs used in practice.

Second, Mowry’s compiler used only intra-loop reuse analysis, with an emphasis
on perfectly nested loop nests. As part of this dissertation we develop more general
intra-loop reuse analysis techniques, and we apply them to the problem of detecting
useless prefetches. We also develop a framework for analyzing cross-loop reuse, that
is, reuse of memory locations that takes place across outer loop nests. We provide
experimental results on how useful these techniques are in practice.

Finally, Mowry’s compiler targeted explicitly parallel programs when compiling for
multiprocessors. Because of the nature of the application programs that he targeted,
his compiler had no specific knowledge about communication patterns within the
programs. It was therefore difficult for the compiler to target specific sets of references
or loop iterations that incur long-latency cache misses. We address this limitation
in our work through the development of a compiler framework for detecting and

exploiting coherence activity in compiler-parallelized programs.

2.3 Related areas

[n this section we discuss various developments in compiler optimization and in com-
puter architecture that are particularly relevant to software prefetching. Our goal
is not to provide an exhaustive history of computer architecture and latency-hiding
techniques, but rather to provide enough background material to allow the reader to
understand the relative strengths and weaknesses of software prefetching compared

to other methods.

13

In Section 2.3.1 we discuss hardware prefetching, and describe the advantages and
disadvantages of hardware prefetching as compared to software prefetching. In Section
2.3.3 we discuss multithreaded architectures, which take an entirely different approach
to memory latency hiding. Finally, we discuss a number of compiler techniques related
to software prefetching, including instruction scheduling (Section 2.3.4) and compiler

techniques for improving cache utilization (Section 2.3.5).

2.3.1 Hardware prefetching

We use the term “hardware prefetching” to refer to hardware support for bringing
items into cache prior to any actual request for the items on the part of the processor.
Hardware prefetching schemes are advantageous in that they do not require compli-
cated compiler support, they do not require additional instructions to be added to
a program, and they are capable of exploiting information that is available only at
run time. Most forms of hardware prefetching rely on the assumption that future
memory access patterns can be predicted from past memory access behavior. As a
result, they are best suited to applications with fairly simple access patterns that can
be easily detected at run-time.

The chief drawback of hardware prefetching is simply that it requires additional
hardware, increasing the total system cost and possibly slowing down access to the
primary cache. In addition, hardware schemes place more bandwidth demands on the
memory subsystem than software schemes, and they tend to fetch more data items
that go unused, compared with software schemes. A number of researchers have
performed studies to compare the performance of hardware prefetching and software
prefetching (see Section 2.3.2); in general, most have concluded that both techniques
are roughly equal in terms of overall benefit.

Hardware prefetching has unfortunately not gained widespread acceptance in in-
dustry; few contemporary computer designs provide hardware prefetching of the sort

described in the works discussed below.

Prior research on hardware prefetching

Some of the first work on hardware prefetching was by Smith [88, 89]. Smith concen-
trated on a simple sequential prefetching scheme called one block lookahead, in which
the hardware fetches block (¢ +1) on an access to (or cache miss on) block i. He used
a cache simulator that analyzed traces generated from a set of programs running on

14

an IBM mainframe; his results showed that for the machines of the day, hardware
prefetching based on one-block lookahead was fairly successful at lowering the miss
ratio, provided that the cache line size was small enough.

Chen et al. studied a variety of hardware prefetching schemes that are more
aggressive than simple sequential prefetching {9, 20, 21]. Chen divided hardware
prefetching schemes into two categories: spatial schemes, which base prefetching de-
cisions only on current access patterns, and temporal schemes, in which the prefetch-
ing unit tries to predict future accesses by looking ahead in the program’s instruction
stream for hints on what to prefetch [20]. Temporal schemes require that the hardware
maintain a lookahead program counter, which uses branch prediction to anticipate fu-
ture values of the program counter. Both schemes associate state information about
access streams with the particular load instruction that causes the access. This in-
formation is stored in a Reference Prediction Table, or RPT, in which entries are
indexed by the actual address of the load instruction.

Jouppi proposed a form of hardware prefetching in which data items are brought
into one of several hardware units called stream buffers, distinct from the cache [50].
This idea was subsequently extended and elaborated on by Kessler [78]. A stream
buffer is a small FIFO queue, where each entry in the queue contains the address
and data for a cache line. On a cache miss, the hardware first checks the head of
the stream buffer. If the desired line is not present in the stream buffer, then the
stream buffer begins fetching lines subsequent to the address in question. If the line
is present in the buffer, then it is transferred to the cache, the entries in the queue
are shuffled up one, and the buffer continues to fetch subsequent addresses. In the
Jouppi’s original work, sequential access is required: a non-sequential miss will cause
the buffer to be flushed. Subsequent researchers extended stream buffers to handle
strided accesses.

Dahlgren, Dubois, and Stenstrém examined the performance of sequential prefetch-
ing for DSM (distributed shared memory) multiprocessors. The simplest scheme they
considered, fixed-degree sequential prefetching, fetches the next K blocks ahead of a
particular location when a cache miss takes place for that location, where K is a fixed
value referred to as the prefetching degree. In adaptive sequential prefetching, a set
of hardware counters are used to record the number of useless/useful prefetches that
take place within a given interval, and the degree of prefetching is increased or de-
creased depending on the values in the counters. In both cases, data was prefetched
into the second level cache only. They performed a study of both schemes in us-

15

ing simulation of the SPLASH benchmarks [87], for finite and infinite second level
caches. Both schemes were found to be effective in eliminating read miss penalties,
and the adaptive scheme is effective in reducing the amount of additional interconnect
bandwidth consumed by prefetching.

In a subsequent paper, Dahlgren and Stenstrom compare simple sequential prefetch-
ing with a variety of more complex schemes that detect accesses with non-unit
strides [26]). The stride prefetching schemes they examined included a method similar
to the spatial RPT-based technique proposed by Chen, as well as a method pro-
posed by Hagersten [42] that detected strides by analyzing a cache miss history list.
Surprisingly, the simplest scheme (sequential prefetching) outperformed the other

forms of hardware prefetching in all but a small number of cases.

2.3.2 Comparisons of hardware and software prefetching

Chen and Baer performed a study that compared the performance of hardware and
software prefetching for a given set of programs [21]. They found roughly equivalent
performance for the two techniques, and their observations tended to confirm previous
findings on the relative strengths and weaknesses of the two areas. In addition to
their comparative study, they also proposed a hybrid form of prefetching, in which
the compiler inserts prefetches at the granularity of entire variables or objects to
bring items into the second level cache, and the hardware is then given the task of
prefetching items into the primary cache.

Gornish considered both hardware and software prefetching in his dissertation [37].
He used two constructs for supporting hardware prefetching. The first was an instruc-
tion table, similar in nature to Chen’s RPT, in which each entry is indexed by the
address of a particular load instruction, storing any state information for the stream
generated by that load. The second scheme used a stream table, in which state in-
formation on access streams is stored without any regard to the instructions that
generate them. Stream table entry IDs are associated with each cache line; when
a line is initially brought into the cache due to a miss, a new stream table entry is
allocated for it and a prefetch is generated for the block immediately following it.
Subsequent prefetches are triggered when prefetched lines arrive in the cache; the
hardware determines the stream ID associated with each new arrival by looking the
line up in the stream table. Gornish also examined the idea of using a combination
of hardware and software prefetching, in which compiler-issued prefetches are used to

16

handle irregular and non-constant streams, and to “jump start” hardware prefetching
for sequential streams. The idea is to have the compiler issue prefetches for the first
few lines (presumably just prior to the beginning of a loop) in a sequential or small-
stride stream in order to get the hardware mechanism started, at which point the
hardware takes over and does the prefetching during the bulk of the loop’s execution.

Poulsen evaluated the performance of two types of software prefetching for shared-
memory multiprocessors, and also compared prefetching with sender-initiated data
forwarding [80, 81]. He used a pipelining-based prefetching scheme similar to that de-
veloped by Mowry, and a vector prefetching scheme, in which each prefetch operation
inserted by the compiler fetches a fixed-length, strided vector of data. For his ex-
periments, he used execution-driven simulation of parallelized versions of the Perfect
benchmarks; the target machine is a uniform-access-time shared-memory multipro-
cessor with hardware cache coherence. In the work on data forwarding, he employed
a profile-based scheme in which forwarding write operations were identified through
the use of an initial profiling simulator run. His results showed that neither of the two
prefetching schemes had an overwhelming advantage over the other, and he found that
for some programs, data forwarding was considerably more effective than prefetching,

given the particular architectural parameters used.

2.3.3 Multi-threaded architectures

Multi-threaded architectures hide latency by means of context-switching between
different processes or threads of control within a program [3, 6, 56, 60, 97]. The type
of scheduling varies depending on the design. Context switches can be made as often
as every cycle, or they can be triggered by a particular event, such as an access to
memory or a cache miss.

In order for a multithreaded architecture to be effective for a single program, the
program in question must be parallelized; a single-threaded program would defeat
the whole purpose of this type of architecture. Thus multithreaded architectures
are currently attractive primarily as platforms for running scientific codes and other
computationally intensive applications. The question of whether multithreaded ar-
chitectures can provide a cost-effective general-purpose computing platform is still an
open one. At least for the present, these architectures have not gained widespread

acceptance.

2.3.4 Instruction scheduling

We use the term “instruction scheduling” to refer to a class of compiler techniques
that attempt to reorder operations within a region of the program (typically a basic
block) in order to increase utilization of processor resources and to hide the latencies
of multi-cycle instructions [34, 57]. While instruction scheduling is capable in theory
of hiding arbitrary latencies, it is generally limited in practice by the average basic
block length relative to the memory latency. This form of scheduling can only hide
the latency of an instruction X if there are other useful instructions that can be
placed between X and the subsequent uses of values produced by X.

More powerful forms of instruction scheduling have been developed, including
trace scheduling [31] and software pipelining [62]. These techniques use more ad-
vanced forms of compiler analysis that can exploit scheduling opportunities over larger
regions of the program (loops bodies or frequently-executed sequences of blocks).
Almost all of these techniques operate under the assumption that instructions have
fixed and relatively small latencies, however. Kerns and Eggers developed an en-
hanced form of instruction scheduling that significantly improves scheduling for variable-
latency load instructions [54]. This work explicitly takes into account the fact that
load latency is uncertain, as opposed to using a fixed assumption that all loads either
miss the cache or hit the cache. Nevertheless, this form of scheduling works best for
short load latencies (2-10 cycles), and provides relatively little help in hiding very

large cache miss latencies.

2.3.5 Compiler management of cache

A number of compiler techniques have been developed to help programs make bet-
ter use of cache, including loop tiling, unroll-and-jam, loop interchange, and copy
optimizations [19, 91, 98]. These methods work by analyzing the program’s access
patterns and then reordering portions of the program to improve the program’s local-
ity of reference, by arranging for computations that access the same memory locations
to be executed closer together in time.

For the most part, these techniques are orthogonal and complimentary to prefetch-
ing. They reduce capacity misses, but they do not eliminate them altogether. As a
result, prefetching is still plays a useful role even after locality-enhancing transforma-

tions.

18

2.4 Summary

Previous research has shown that software prefetching is a viable technique for mem-
ory latency hiding on both uniprocessor and multiprocessor architectures. Hardware
prefetching offers comparable performance improvements, but at a considerably higher
price, both in terms of additional bandwidth requirements and total system cost.
Various other hardware and software techniques exist to hide latency, many of them
complementary to software prefetching (as opposed to acting as a substitute for it).

In comparison with previous studies of software prefetching, our work focuses
primarily on the compiler’s role. We use a robust experimental infrastructure that
incorporates many of the strengths of previous approaches, including detailed simula-
tion, representative application programs, and a comprehensive compiler implemen-
tation. Our work also extends the compiler analysis used in previous studies. These
extensions include more aggressive forms of reuse analysis, and compiler analysis of

coherence activity within parallel programs.

19

Chapter 3

Compiler Overview

In this chapter we describe the implementation details of our compiler framework for
software prefetching. Section 3.1 explains some of the difficulties of developing com-
piler infrastructure to support software prefetching, and outlines the novel approach
we have taken to leverage existing vendor compilers for our work. Section 3.2 presents
the various stages in our compiler at a high level. In Section 3.3, we discuss the han-
dling of loops in detail, including target loop selection, reuse analysis, loop peeling,
prefetch distance calculation, and ordering of transformations. Section 3.4 describes
the new uniprocessor techniques that are part of our compiler, including enhance-
ments to group-temporal reuse analysis, enhanced loop peeling, loop strip-mining to
moderate code expansion, cross-loop reuse analysis to eliminate useless prefetches,
and two transformations to improve prefetch scheduling: prolog overlap and outer
loop pipelining. In Section 3.5, we wrap up with a summary of the material covered

in this chapter.

3.1 Prefetch implementation
3.1.1 A researcher’s dilemma

One of the critical components of a good software prefetching package is a robust op-
timizing compiler for the target instruction set and architecture. Without the support
of an industrial-strength optimizer and register allocator, the loop transformations
that prefetching is based on can cause enough instruction overhead to swamp any
gains derived from memory latency hiding.

This need creates a problem for researchers working on software prefetching.
Writing an optimizing compiler for even a single machine requires a great deal of
work. Architectures and instruction sets change very rapidly, however, which means
that much of the work invested in developing a good compiler back-end can be lost in
Just a few years (or less). Because of the intense competition and short design cycles
in the present-day computer industry, it may well be that by the time a researcher

20

finishes writing a compiler for a particular architecture, the machine has already be-
come obsolete. If the researcher is truly unlucky, the entire company that created the
machine may have folded.

Prefetches can be implemented in a more portable and compiler-independent fash-
ion by using subroutine calls, but this solution typically comes at the cost of very
high instruction overhead, due both to the procedure call itself and to the undesirable
effects on optimization of the inner loop that contains the call.

Faced with this dilemma, we have chosen an intermediate solution. Our strat-
egy provides prefetches at a reasonable level of instruction overhead, but also gives
our framework some degree of machine- and compiler-independence, allowing us to
use vendor compilers without modifications. It does, however, require that we simu-
late our benchmark programs instead of executing them directly on a machine that
supports prefetching. We describe our strategy in the remainder of this section.

3.1.2 Shadow array implementation of prefetches

We implement our approach by associating a “shadow region” with each variable that
might be the target of a prefetch. The shadow region is a section of the program’s
address space that is used to signal prefetches for a given variable. When the com-
piler decides to issue a prefetch for a variable V, instead of actually generating a
prefetch instruction, it instead generates a store to V’s shadow region. At run-time,
the simulator maintains a mapping between shadow regions and variables; when the
program issues a store to a location known to be within a shadow region, the simulator
interprets the operation as a prefetch of the corresponding variable.

Figure 3.1 shows an abstract view of a program’s address space, with a variable
“xyz” and its corresponding shadow region. When the simulator sees a store to the
location S+4, for example, it treats the instruction not as a store but as a prefetch
of the location K+4.

In order to support this approach, the compiler must identify all of the variables
in the program that might be prefetched, allocate appropriately-sized shadow regions
for them, and generate calls to the runtime library to inform the simulator about the
shadow regions. Shadow regions for collections of related variables can be aggregated
in certain circumstances, simplifying the management of the mapping information.

There are a variety of tactics that can be used to create and manage shadow
regions. One possibility is to create a single shadow region for the entire data segment

21

Address space of program

- xyz
|
1]

Figure 3.1 Implementing prefetches with shadow regions

of the process. The compiler can then generate pointers into the shadow region by
adding an offset to the address of the target variable. We use a slightly different

method in our compiler, however.

3.1.3 Shadow regions for Fortran programs

For programs written in Fortran 77, the task of creating shadow regions is simplified,
since Fortran 77 does not support dynamic memory allocation (all variables must be
declared statically at some point in the program). Shadow regions themselves can
thus be declared as new array variables within the program, reducing the level of
runtime support needed. Our compiler adds shadow regions by creating a shadow
array of the appropriate size for each array variable that might be the target of a
prefetch. For arrays that appear in common blocks, we create a single large shadow
region for the entire block.

Figure 3.2 shows an example of the transformations made by our compiler to
support shadow array prefetching. In the original subroutine there are two arrays that
need to be prefetched, “a” and “b”; the first is a formal parameter and the second
is declared in a common block. The transformed program, shown in an abstracted
form, contains shadow regions for all arrays that are targets of prefetches. Note that
a shadow region for the array “b” has been added to the common block “cb”, and a
call to a runtime routine has been added to inform the simulator about the shadow
region.

When an array is passed to a function as a parameter, such as the array “a” in
Figure 3.2, the compiler is generally unable to statically determine the shadow region
for the array, since there may be many different callers of the function, each passing
a different array. We solve this problem using interprocedural analysis: the compiler

Original subroutine Transformed subroutine
subroutine mumble(a, n, t) subroutine mumble(a, n, t, [aShadow])
common /cb/ b common /cb/ b, |bShadovl
integer i, t, n integer i, t, n
integer a(n), b(100) integer a(n), b(100)
doi=1,n integer aShadow(n), bShadow(100) |
t=t+ald+bld) call $daclareshadow(b, bShadow, 100%4)]
enddo
end doi=1,n
aShadow(i+P)| = 0 prefetch a(i+P)
bShadow(i+P)| = 0 prefetch p(i+P)
t =t +a(i) + bl
enddo

end

Figure 3.2 Shadow array prefetching example

identifies all situations where a calling procedure passes an array as a parameter to a
callee, and patches the call site to pass the array’s shadow region in addition to the

array itself. The details of this process are given in Appendix A.

3.1.4 Tradeoffs involved in the use of shadow arrays

The chief disadvantage of using shadow arrays, aside from the time required to imple-
ment the interprocedural analysis and transformations to support them, is that they
can result in a slightly higher level of instruction overhead, relative to actual prefetch
instructions. This additional overhead is created because the compiler must generate
an address to an entirely separate array, as opposed to an offset from the address
of the real array. With an actual prefetch instruction, the optimizer can sometimes
recognize situations where the address used by a load of an array and the address used
by a prefetch of the array share the same base register. The compiler can often exploit
this redundancy, allowing it to use fewer instructions when generating the address of
the prefetch. According to Mowry, this effect can result in a significant reduction
in instruction overhead, if properly exploited by the optimizer [73]. Although our
framework does not permit this sort of optimization, we have been able to achieve
reasonably low levels of instruction overhead, as demonstrated in Section 5.5.2.

23

3.2 Compilation stages

Figure 3.3 gives a high-level outline of the stages of our compiler. The compiler
operates in a source-to-source fashion, reading and writing Fortran code. The most
interesting aspects of the compilation process have to do with loop analysis (including

array-section analysis) and loop transformation. These phases phases are described
in Figures 3.4, 3.5, and 3.6.

| Phase IL Remarks j

Read and typecheck Fortran source; build
AST (abstract syntax tree).

Build Control-Flow Graph (CFG) and
2. Control flow analysis || Static Single Assignment (SSA) graph for
procedure.

1. Front end processing

Construct
array-section summaries for references and

3. Array-section analysis loops. Apply section-based intraprocedural
data-flow analysis (see Chapter 6).

4. Loop analysis Described in Figures 3.4 and 3.5.

5. Transformations Described in Figure 3.6.

6. Output Generate output Fortran source based on

transformed AST.

Figure 3.3 Compilation stages

3.3 Loop analysis and transformation

Our compiler analyzes loops from innermost to outermost. Figures 3.4 and 3.5 show
the stages of the analysis for inner and non-inner loops, respectively. Once the analysis
phases have determined the proper sequence of transformations to use, applying them

to the code is a complex but fairly mechanical process.

3.3.1 Target loop selection

We currently insert prefetches only for references contained within inner loops, since
these references account for the bulk of the cache misses in our benchmark suite.

| Stage Remarks]
| Preliminaries Detefrmine loop step and loop trip count, if
possible.
Partition references into equivalence classes
cre s based rra; e/extent. Analyze refer-
2. Reference partitioning ased on array name/e Calyze reler

ence subscript functions. Identify references
accessed via indirection arrays.

Temporal reuse analysis

I[dentify useful self-temporal and group-
spatial reuse via dependence analysis. Store
reuse information for later use in stages 5
and 8.

Spatial reuse analysis

Use symbolic analysis to identify references
with self-spatial reuse. Build sets of refer-
ences that share group-spatial reuse.

()]

Mark leading references

Use temporal and spatial reuse information
to select initial set of references that need
prefetching (“leading references”).

Loop pipelining decision

Decide whether to apply pipelining to the
loop (loop may contain no leading references
at this point).

Loop stride analysis

Compute “effective stride” for all leading
references. Compute unroll amount based
on smallest effective stride within loop.

Peeling analysis

Initial loop peeling analysis: identify set
of leading references for which loop peeling
might be profitable.

. Prefetching distance analysis

Compute prefetching distance for loop.

Figure 3.4 Analysis stages for inner loops

25

Phase Remarks

Determine if it is profitable to apply loop
peeling to the current (outer) loop.

Determine if this loop should be pipelined

2. Pipeline level selection || instead of the inner loop it contains (see
Section 3.4.5 for more information).

1. Peeling analysis

Determine whether prolog overlap transfor-
mation is legal and/or profitable (see Section
3.4.4 for a description of this transforma-
tion).

3. Prolog overlap analysis

Figure 3.5 Analysis stages for non-inner loops

Some existing compiler implementations apply prefetching to non-inner-loop refer-
ences, and others do not. In particular, in the work by Mowry et al., the compiler
does target these references, whereas in the frameworks used by Santhanam et al. and
by Bernstein et al., the compiler does not target non-inner loop references [14, 75, 86].
In Section 5.5.1, we present empirical data on the percentage of cache misses due to
this class of references.

In our base compilation strategy we suppress prefetching for inner loops containing
procedure calls (with the exception of Fortran intrinsic and generic functions) and for

loops that contain I/0.

3.3.2 Reuse analysis

We use Wolf’s terminology to classify reuse between array references into one of four
categories: self-spatial reuse, group-spatial reuse, self-temporal reuse, and group-
temporal reuse [98]. All four of these types of reuse are important for software
prefetching; our compiler exploits each type of reuse in a variety of ways.
Dependence analysis forms the basis of our temporal reuse detection algorithm.
We cast the problem of finding useful reuse in terms of interrogating the dependence
graph for the candidate loop nest. We configure our dependence tester to add input
dependence edges to the dependence graph in addition to true- and anti-dependence
edges [16]. Our compiler utilizes a dependence testing package developed by Goff,
Kennedy, and Tseng [35]. Not every dependence corresponds to reuse that the com-

26

piler can exploit. Our framework looks for dependences that the analyzer has flagged
as consistent [35]. In addition, we consider only loop-carried dependences with non-
symbolic dependence distances [83].

Dependence information is exploited as follows. Dependences carried at the in-
nermost loop level? are used to select the set of “leading” references for the particular
inner loop. If a reference R has a self-dependence at the innermost loop level, or if R is
the sink of a loop-carried or loop-independent dependence at the innermost level, then
reference R is marked as non-leading (i.e. not requiring prefetching). Dependences not
carried at the innermost loop level are used to drive loop peeling. If a reference R has
a self-dependence at level K, or if R is the sink of a loop-carried or loop-independent
dependence at level K, where K is some non-inner loop level, then we flag R and the
loop at level K for peeling. In our default loop peeling strategy, we only consider
dependences between references that are enclosed by exactly the same set of loops,
in order to be consistent with the reuse analysis methods used by Mowry et al. In
Section 3.4.1 we describe how to relax this restriction.

To detect self-spatial and group-spatial reuse, our compiler uses a symbolic anal-
ysis package developed by Havlak [46]. This package greatly simplifies the analysis
of array references by expressing loop bounds and subscript functions in a canon-
ical sum-of-products form. After the compiler applies symbolic analysis, detecting
self-spatial reuse is simply a matter of classifying the induction variable use in each
subscript position and then analyzing the stride of the reference. We identify group-
spatial reuse by symbolically subtracting the subscript functions of pairs of relerences;
our method is loosely based on that developed by Carr, McKinley, and Tseng [70].

When applying reuse analysis, the compiler needs to take into account the cache
line size and whether the cache is write-back or write-through. In the case of a write-
through cache, we consider only input dependences (edges between two read refer-
ences) when performing the reuse analysis, and we suppress prefetches for writes/stores.

Multi-level cache hierarchies make things particularly complicated, since they in-
troduce the question of whether to use the L1 cache size or the L2 cache size when
performing the analysis. If a reference always hits in the L1 cache, then eliminating
the prefetch for the reference is a win. If the compiler identifies a reference that
always misses in the L1 cache and always hits in the L2 cache, however, then the
decision of whether to suppress the prefetch depends on the L2 miss penalty and on

*We use Allen and Kennedy’s terminology for classifying dependences with respect to loop levels [5]

27

the cost of issuing the prefetch. Mowry studied this problem in his dissertation; he
characterized prefetch cost in terms of instruction overhead, increased conflicts, and
increased contention for the primary cache tag array [73]. In general, if the L2 miss
penalty takes K cycles and the cost of issuing a prefetch is P cycles, then it makes
sense to issue the prefetch when P < K. In our particular simulated architecture,
the cost of issuing a prefetch is nearly always less than the cost of an L2 cache hit.
Because of this fact, we target the L1 cache and not the L2 cache when performing

our reuse analysis.

3.3.3 Loop peeling analysis

Our default loop peeling implementation is based on the algorithm developed by
Mowry et al. The compiler performs the analysis in two stages, as follows. When an-
alyzing a reference within an inner loop, an initial phase (described in Section 3.3.2)
determines whether loop peeling is profitable for the reference in question. The com-
piler ignores cache size when making this first peeling profitability decision. It adds
the IDs of candidate references to a list associated with the loop that carries the de-
pendence (the “peel reference list”), along with a preliminary peeling degree. Once all
of the loops enclosed in an outer loop have been processed, it selects a single peeling
degree for the loop by taking the maximum of the distances recorded for each of the
entries on its peel reference list. Note that a reference may be marked for peeling at
multiple loop levels.

The second phase of the peeling analysis takes into account the cache size. The
compiler computes an estimate of the cache volume for the loop (the number of lines
the loop will bring into the cache), and disables loop peeling in situations where the
it predicts that the cache does not have enough capacity to hold the entire section in

question throughout the loop’s execution.

3.3.4 Prefetch distance calculation

Since our compiler is operating at the level of Fortran statements and not assembly
language instructions (or some other low-level intermediate form), calculating the
prefetching distance presents a problem: our compiler cannot statically count the
number of instructions in the bodies of the inner loops being compiled.

We solve this problem by using off-line trace analysis. We compile the program
and run it using our simulator, which counts the number of instructions in each inner

28

loop body and writes this information to a database. The information gleaned from
the instruction count database is then used to calculate an appropriate prefetching
distance.

A final note: our compiler assumes that the memory latency is unknown at
compile-time. Rather than computing the prefetching distance directly, it generates
a distance-computation function and adds it to the transformed program. When the
transformed program is executed, the runtime library calls the distance-computation
function, passing it the memory latency of the machine. The function then computes
and stores prefetching distances on the fly for all of the loops in the program. This
mechanism allows us to use a single program executable on set of machines with

different memory latencies, provided that the machines have similar cache configura-

tions.

3.3.5 Transformation ordering

Figure 3.6 gives an algorithm that captures the order in which transformations are
applied. The compiler walks through the loops in the procedure from outermost to
innermost, applying loop peeling and loop pipelining to loops that have been marked

as candidates.

3.3.6 Source code size

Figure 3.7 shows the approximate number of lines of source code (with comments)
devoted to various major tasks in our compiler. The numbers shown reflect only
prefetching-specific scurce code, and do not include any of the base compiler infras-
tructure (parser, abstract syntax tree, symbol table, control-flow graph, static single
assignment support, symbolic expression analysis, dependence analysis, or scalar in-

terprocedural analysis).

3.4 New techniques

The base compiler algorithms discussed in Section 3.2 (loop pipelining, loop peeling,
marking of leading references, etc.) were developed by Mowry et al., although we do
not always use the same set of tools to implement them. In the remainder of this
section we introduce some of the new uniprocessor compilation techniques that are

part of this dissertation.

Sfunction
parameters:
returns:

{

}

function
parameters:
returns:

{

TransformLoop(L)
L — AST of header node of the original loop
transformed version of L (list of AST nodes)

if (L marked for loop peeling) {
enable prefetching for references on L’s peel reference list
PL = TransformAST(L.body)
disable prefetching for references on L’s peel reference list
ML = TransformAST(L.body)
return MakeList(PL, ML)

} else if (L is marked for pipelining) {
generate prolog, steady-state, and epilog stages for L
return MakeList(prolog, steady-state, epilog)

}

TransformAST(N)
N - AST node in original function
transformed version of N

if (N is a loop node) {
return TransformLoop(N)

} else {

for each descendant D of N {
compute TransformAST(D)
}

return copy of N with transformed descendants

}

Figure 3.6 Transformation overview

30

Lines of C++
Component source code
prefetching analysis and transformations 49,000
array-section analysis 20,000
shadow array support 5,000
simulator glue code 1,000
total 75,000

Figure 3.7 Compiler source code size

3.4.1 Enhanced loop peeling

The base method we use for detecting group-temporal reuse (described in Section
3.3.2) is designed to provide the same functionality as the system used in the compiler
developed by Mowry et al. Their reuse analysis strategy is oriented primarily towards
perfectly nested loop nests. When applied to imperfect nests, it may not recognize
certain types of group-temporal locality. Consider the imperfectly nested loop nest in
Figure 3.8. For this loop nest, the analysis used by Mowry et al. would detect reuse
between the two references in the “do i” loop, but it would fail to detect the reuse

between the references in the “do i” and “do m” loops.

b n
do i=1, 100

z=2 + a(i,j,k) + a(i,j+1,k)
enddo
dom=1, 100
z=2z+ a(m,j,k)
enddo
enddo
enddo

Figure 3.8 Reuse analysis for imperfectly nested loops

31

The difficulty in extending group-temporal reuse analysis to handle non-identically
nested references is that references in different loops may be controlled by different
loop bounds. For example, in Figure 3.8, if the bounds on the “do m” were 99 to
100 instead of 1 to 100, there would be very little useful reuse, but there would still
be a dependence present. In this case, dependence analysis provides “may access”
information instead of “must access” information, which is what we need for this

application. We solve this problem by applying array-section analysis.

Array-section analysis

Array-section analysis is a technique for summarizing the region(s) within an array
that are accessed during some portion of the program [11, 15, 17, 45]. These summary
representations provide a compact way of capturing the array access patterns, making
them attractive for applications in which large portions of the program need to be
considered, as opposed to single loop nests. Our particular implementation represents
array accesses using Data Access Descriptors [12], or DADs.

The region within an array accessed by a given subscripted reference depends
on the context that surrounds the reference. For example, consider the first array
reference a(i, j,k) in Figure 3.8. If we consider this array reference in isolation, then
it can be thought of as accessing the single element at a(i,j,k). If we take the “do
i” loop into account, then the reference can be thought of as accessing the vector
a(l:p,j,k), and so on.

We use the term array section at level M to refer to the region within an array
that is accessed at a given loop level. More formally, given a subscripted reference
nested within N loops, the array section at level K for the reference is the region
accessed within the array when A) the loop induction variable(s) at levels 1 through
K inclusive are viewed as invariants, and B) the induction variables at levels K+1

and above are allowed to vary.

Relaxed group-temporal reuse analysis

We employ array-section analysis as follows. When we find a dependence that meets
our criteria, we apply a section-based bounds check to insure that the regions accessed
by the source and sink of the dependence are conformable, i.e., overlap significantly.
An algorithm for the region check is shown in Figure 3.9. By incorporating this
additional step, we can safely capture useful group-temporal reuse in imperfect loop

32
nests, while excluding dependences that do not correspond to useful reuse. We refer
to the this new scheme as “Relaxed” group-temporal reuse analysis, and the default

scheme as “Restricted”.

function CheckGroupTemporalDependence(R1, R2, L)
parameters: Rl - reference at source of dependence

R2 - reference at sink of dependence

L - level of loop that carries dependence
returns: true if dependence is useful, false otherwise

Build Data Access Descriptor D1 for R1 (with respect to level L)
Build Data Access Descriptor D2 for R2 (with respect to level L)
If (D1 contains D2) or (D1 is a shifted copy of D2) {

return true

} else {

return false
}

Figure 3.9 Section-based group temporal dependence check

When “Relaxed” group-temporal reuse is in effect, we also use a different algorithm
for the second phase of loop peeling analysis, in which cache capacity is taken into
account. The algorithm used by Mowry for determining the loop traffic for a given
nest operates by tallying the contributions of each leading reference. This algorithm
handled imperfectly nested loops, but the reuse analysis method he used did not.
For example, although the imperfect loop nest shown in Figure 3.8 contains group-
temporal reuse carried by the “do j” loop, this reuse would not be considered by his
compiler. The compiler would create an equivalence class for each inner loop, and
would mark one reference from each loop as “leading”. As a result, the loop traffic
for the loop would be over-estimated, potentially disabling loop peeling, increasing
the fraction of useless prefetches.

The approach we use for calculating the cache traffic for a loop is based on array-
section analysis. Similar to Mowry’s algorithm, we visit loops from innermost to

outermost. For each loop, the compiler builds a summary of the region accessed by

33

every array reference, again employing Data Access Descriptors. Once the set of DADs
is constructed for the loop, the compiler then compares the sections for each array,
coalescing together DADs that are substantially contained in each other. Finally, the
compiler sum the volumes of the DADs that remain. This process is described in more
detail in Appendix B.

There are two advantages to our algorithm. The first is that it recognizes reuse
in imperfect nests, as in Figure 3.8. The second is that the use of array-section
analysis allows us to recognize a larger class of references that have group-temporal
reuse. These advantages yield an algorithm that produces more precise loop traffic

estimates.

3.4.2 Loop strip-mining to reduce code expansion

The cache line size of the target machine is the main factor used to determine the
degree unrolling when applying prefetching transformations. If a loop contains a unit-
stride access to an array with element size K, then the unrolling degree will be set
to %’—S, where CLS is the cache line size. For machines with large line sizes (64-128
bytes), the optimal unrolling degree can often be in the 16-32 range.

Large unrolling degrees can have a number of unpleasant consequences. First,
although the loop body produced by a large unrolling degree may enhance optimiza-
tion opportunities and reduce loop overhead, it can also increase register pressure. If
the increase pressure forces the register allocator to spill values within the loop, then
the larger unroll degree can actually increase execution time. Second, increases in
code size can change instruction cache behavior, with unpredictable and occasionally
dramatic results. Finally, the code expansion from unrolling can result in very long
compile times and drastically increased object file size. A doubling or tripling of the
compile time and executable size may not be acceptable to every user. For these rea-
sons, our compiler includes support for a “cutoff” in situations where the unrolling
degree is predicted to cause problems. Our goal is to create a loop nest that still
derives some benefit from unrolling, but also yields a more moderate compile time.

Our algorithm works as follows. We estimate the register pressure in the loop by
scanning the statements in the loop body, looking for subscripted array references and
other values that are live throughout the entire loop’s execution (scalars, constants,
etc.). Array references are grouped into equivalence classes if the compiler predicts

that they will share the same base register (example: a(i,j) and a(i+1,j),and each

34

equivalence class is only counted once. References are also flagged if the compiler
predicts that they will not need additional registers when the loop is unrolled. For
example, the register requirements for a collection of loop-invariant references are
unlikely to increase as a result of unrolling. We use the data gathered by this phase to
estimate the the maximum unrolling degree possible before register pressure becomes
a major problem. We call this degree the “adjusted” unrolling degree.

A) Pure unrolling B) Limited unrolling with strip-mining
doi=1,m, 18 do ii =1, m, 16
prefetch a(i+PD) prefetch a(ii+PD)
w=w+ a(i) do i = ii, min(ii+3,m), 4
W=+ a(i+1) w=w+ a(i)
v =w+ a(i+2) w=w+ a(i+1)
w=w+ a(i+3) w=w + a(i+2)
w=w+ a(i+q) w=w+ a(i+3)
enddo
w=w+ a(i+13) enddo
v =w+ a(i+14)
w =w+ a(i+16)
enddo

Figure 3.10 Strip-mining in combination with unrolling

Once we have computed the adjusted unrolling degree, we use a combination of
strip-mining and loop unrolling in the steady-state stage of the prefetch pipeline.
Figure 3.10 gives an illustration. Part A of the figure shows a loop nest where only
unrolling is used, with an unroll degree of 16. In part B, the inner loop is unrolled
using the adjusted unrolling degree (4), and then surrounded by an auxiliary “strip”
loop. We measure the results of this technique in practice; the results are given in
Section 5.6.3.

Other researchers have implemented loop unrolling cutoff mechanisms as well.
Mowry’s compiler limits unrolling for a given loop when the loop body reaches a
certain size, as opposed to estimating register pressure [73].3 Bernstein et al. also use
heuristics to limit the unrolling factor for a loops that require prefetching [14].

3Although not specifically discussed or evaluated in his thesis, Mowry’s compiler also supports a
similar form of loop strip-mining to reduce code expansion [76).

35

3.4.3 Cross-loop reuse analysis for prefetching

[n this section we give a high-level description of how we use cross-loop reuse analysis
to augment intra-loop analysis during software prefetching. The details of our cross-

loop reuse analysis framework are described in Chapter 6.

do i 2, m
r = bn(i) / an(i-1)
an(i) = an(i) - r * cn(i-1)
fn(i) = fn(i) - r * fn(i-1)
enddo
gn(m) = fo(m) / an(m)
do i =1, (m-1)
gn(m-i) = ([fn(m-i)| - [cn(m-i)] »
gn(m-i+1)) / [an(m-i)

enddo

Figure 3.11 Example of cross-loop reuse

Consider the example program fragment in Figure 3.11, taken from the SPEC95
benchmark apsi. When analyzing the second loop nest, a compiler that relies only on
intra-loop reuse analysis would apply prefetching to all of the references in the second
loop nest (“fn(m-i)”, “an(m-i)”, etc.). Depending on the cache capacity and the
loop bounds, however, some of the sections accessed in the second loop nest may
already be in the cache (as illustrated by the boxes). If the compiler can detect this
type of reuse, then it can disable prefetching for the references in question, effectively
reducing the number of useless prefetches.

We exploit cross-loop reuse as follows. Give a reference R within a loop L, we
construct an array-section descriptor (DAD) Sg that surnmarizes the region accessed
by R. When deciding whether to issue prefetches for R, we try to find another section
Sq that is already resident in the cache when L begins its execution, where the Sg’s
region is contained in Sq’s region. This is accomplished by solving a series of data-
flow equations over the function’s control-flow graph; during the analysis, sets of array
sections are propagated along edges in the CFG, taking into account the size of the

36

cache and the reuse among the various arrays. If the data-flow analysis can establish

that

L. the section Sg is accessed every path in the CFG flowing into L, and

o

So is not displaced from the cache between the point at which it is brought into

cache and the start of L, and

3. the geometric region of Sg contains the region of Sg

then the prefetch for R in L is useless and can be eliminated. We evaluate the

effectiveness of this form of reuse analysis in Section 5.6.1.

3.4.4 Prolog overlap

We have developed a new transformation called prolog overlap that is intended to
provide better scheduling for prefetches issued during the prolog stage of the prefetch
pipeline. In this section we describe the prolog overlap transformation and discuss
the compiler support needed to implement it.

Prolog overlap is a form of rotation or shifting in which the three stages in the
prefetch pipeline (prolog, steady-state, and epilog) are rearranged in order to provide
better latency-hiding for prefetches issued in the prolog stage. Figure 3.12 gives an
illustration of the technique. The original loop nest is shown in part A; part B shows
a standard software prefetching pipeline for the loop. Part C shows the loop after the
compiler has applied prolog overlap. In this scenario, the prolog stage for outer loop
iteration K+1 is placed between the steady-state loop and the epilog loop for outer
loop iteration K. The prolog loop is also duplicated and placed just before the outer
loop, in order to cover the first outer loop iteration. Prolog overlap does require an
enclosing outer loop, which may or may not be available.

This transformation has the potential to provide two benefits. First, it can improve
the scheduling of the prefetches issued in the prolog stage of the prefetch pipeline.
Since the prolog loop contains no other computation, the prefetches issued at this
point can’t be overlapped with other useful computation (floating point calculations,
for example) prior to the point where the data is actually needed, in the first few
iterations of the steady state. By placing the prolog between the steady state and

cleanup stages of a previous pipeline, we increase the opportunities for latency hiding,.

37

A) Original loop nest

B) Standard pipeline

C) Prolog overlap

do j=1, m do j=1, m doi=1, 8, 2
.a(1,3) ... prefeich a(1, j+1) prefetch b(i,1)
doi=1, 1024 .a1,3j) ... enddo
... b(1,j) ... doi=1, 8, 2 do j=1, m
enddo prefetch b(i,j) .a(1,3) ...
enddo enddo do i =1, 1016, 2
do i =1, 1016, 2 prefetch b(i+8,3j)
prefetch b(i+8,j) ... b(i,3) ...
... b(i,3) b(i+1,3) ...
... b(i+t,j) ... enddo
enddo prefetch a(1,j+1)
do i = 1017, 1024 doi=1, 8, 2
... b(i,3) ... prefetch b(i, j+1)
enddo enddo
enddo do i = 1017, 1024
... b(i,3) ...
enddo
enddo

Figure 3.12 Prolog overlap

Second, prolog overlap can be used to schedule prefetches for references that are
not enclosed in an inner loop. The main problem for such references is the selection
of a prefetching distance. If a prefetching distance of 0 is used (i.c., prefetches are
issued for the current outer loop iteration’s data), then there will be very little time
for the prefetch to complete before the data is needed. If the reference is prefetched
one outer loop iteration in advance, then the data is likely to arrive too early, since
the entire inner loop must execute before it can be used, as in Part B of Figure 3.12.
When prolog overlap is in effect, we can use a prefetching distance of 1 iteration, and
place the prefetch within the shifted prolog, as in part C.

Prolog overlap is not always safe to apply, since it may not always be possible for
the compiler to generate code that predicts the values needed by the next iteration
of an outer loop, due to control flow, complex expressions, etc. Given an outer loop
Louter and a series of inner loops L},,.., L?,..,... L5 __ directly contained in Loyser,

we enforce the following conditions when applying prolog overlap:

1. Loyuter must not contain any procedure calls or I/0

38

2. the step for the outer loop Loytr must be known at compile time

3. all inner loops contained in L,y must be immediately control dependent only
on Louter [29]

4. the loop bounds and subscript functions within each inner loop L7, must be
composed of linear functions of loop induction variables and values that are

loop-invariant with respect to Loyter)

If the nest meets these criteria, then we duplicate the prolog loop for L} ._ and place

it prior to Loytr, and we place the prolog loop constructed for LI, . between the
steady state and cleanup loops of loop L.\, (the prolog loop for L! _ is placed
between the steady state and cleanup stages of L],,..). We examine the effectiveness

of this transformation in Section 5.6.4 (page 75).

3.4.5 Outer loop pipelining

The efficiency of the pipelining transformation used during prefetching is highly de-
pendent on the number of iterations in the target loop. If a loop executes for only
a few iterations, then the pipeline will never “fill” (the steady state stage will never
execute, only the prolog and cleanup stages), resulting in poor performance.

To tackle the problem of short inner loops, our compiler implements a form of
outer loop pipelining, in which the compiler pipelines a loop that directly encloses an
inner loop. loops. Figure 3.13 shows an example of outer loop pipelining. Because
the trip count of the inner loop is very small, and because it contains very little
computation, the compiler has chosen to pipeline the enclosing “do j” loop instead
of the inner loop. In addition, the inner loop trip count is small enough that the
compiler has decided to completely unroll the inner loop as well.

If the inner loop bounds are unknown at compile-time, applying outer loop pipelin-
ing is more difficult. Since the compiler cannot statically determine the inner loop trip
count, it cannot compute an accurate value for the outer loop prefetching distance. If
the compiler predicts that the loop will incur very long-latency references, however,
then outer loop pipelining can still be applied by applying strip-mining beforehand.
Figure 3.14 gives an example. Here the inner loop is strip-mined into chunks of K
iterations, and the strip loop is then moved outside the original two innermost loops.
Although the compiler may not be able to determine the value of “m”, it can still
compute a prefetching distance, since it has control over the value of K.

Original loop nest

Outer loop pipelining

do j=1, n do j =1, OPD
doi=1, 4 prefetch a(1,j)
w=w+ a(i,j) enddo
enddo do j =1, n-0PD
enddo prefetch a(1,j+0PD)
w=w+ a(l,j)
w=w+ a(2,j)
w=w+ a(3,j)
w =+ a(4,j)
enddo
do j = n-0PD+1, n
doi=1, ¢4
w=w+a(i,j)
enddo
enddo

Figure 3.13

Outer loop pipelining

Original loop nest
do j=1,n
doi=1,m
- a(i,j) ---
enddo
enddo

Strip-mine inner loop
do j=1,n
doii =1, m, K
U = min(ii+K-1,m)
doi=1i, U
. a(i ’j) ves
enddo
enddo
enddo

Interchange, pipeline
do ii =1, m, K
U = min(ii+K-1,m)
prolog:
do j = 1, OPD
doi=1ii, U, 4
prefetch a(i,j)
enddo
anddo
steady-state:
do j = 1, n-0OPD
do 1 =1ii, U, 4
prefetch a(i,j+0PD)
- a(i,j) ---
enddo
enddo
epilog:
do j = n-0PD+1i, n
doi=1ii, U
- a(i,j) -
enddo
enddo
enddo

Figure 3.14

Outer loop pipelining with strip-mining

39

40

In our compiler we currently only apply this transformation in a restricted set of
circumstances. First, the outer loop must contain only a single inner loop (we require
perfect nesting), and must not contain procedure calls or [/O. Second, the inner loop
bounds and subscript functions must be such that the compiler can predict the values
needed several outer loop iterations in advance. Finally, we apply dependence-based
tests to insure that loop interchange (blocking) is safe. In Section 5.6.4 (page 77), we

give experimental results on the effectiveness of outer loop pipelining.

3.5 Summary

In this chapter, we have described the architecture of our compiler, giving high level-
descriptions of the methods we employ to implement prefetching. We first outline how
to use shadow arrays to implement prefetches, allowing us to avoid the difficult step of
developing an entire optimizing compiler that supports prefetch instructions. We then
detailed the stages of analysis and transformation used by our compiler, highlighting
the differences between our implementation and that of previous researchers. We give
an overview of the new techniques incorporated into our compiler, including enhanced
loop peeling for imperfect loop nests, cross-loop reuse analysis, enhanced loop peeling,
a register-pressure driven loop unrolling cutoff based on strip-mining, and a pair of

optimizations designed to improve prefetch scheduling.

41

Chapter 4

Evaluating software prefetching

4.1 Introduction

In order to improve the performance of software prefetching, developers need to be
able to determine not just whether prefetching fails or succeeds for a given program,
but why it fails or succeeds. Overall execution time will always be the final arbiter of
the success of a given latency-hiding technique, but it is generally not very informative
when diagnosing the specific drawbacks of an implementation.

For this reason, we use variety of metrics to provide more information on prefetch-
ing performance to the compiler developer. We characterize a prefetching scheme by
examining how it performs with respect to three major areas: prefetch target selec-
tion, prefetch scheduling, and prefetch instruction overhead. Figure 4.1 shows each
area along with the specific metric used evaluate it.

Prefetch target selection is the process of determining the set of references for
which prefetches need to be issued. The goal of prefetch target selection is to issue
prefetches for the exact set of references that cause cache misses, without prefetching
any unneeded data or issuing prefetches for lines already in cache.

Prefetch scheduling efficiency is concerned with how well the compiler is able to
place a given prefetch prior to the reference that it is intended to cover. A perfectly
scheduled prefetch will cause the desired line to be brought into the cache just prior
to its use.

Instruction overhead is defined as the number of additional instructions added
to a program as a result of prefetching. Overhead includes the prefetch instructions
themselves, supporting instructions needed for address computations, as well as ad-
ditional instructions that may result from loop transformation overhead and/or spill
code due to increased register pressure.

Most of these metrics were originally used by Mowry as part of his dissertation,
including instructions per prefetch, prefetch coverage factors, percentage of useless
prefetches, and percentage of prefetched lines that are displaced before being used (73].

42

Area Sub-area Metric Comments
Fraction of the cache misses that

Coverage Z drtrllclzst?on prefetching is able to turn into cache hits.
Target Overshoot % ‘;?c;lsl?d Fraction of prefetched lines that are
selection Pret ¢ 1nes | evicted from the cache before being used.
Selectivity % useless l.?raction of prefetcl-les that hit in cache,
prefetches | i.e., don’t accomplish useful work.
% late Fraction of prefetches that fail to
Scheduling prefetches complete before their corresponding load
or store.
Overhead PP Additional dynamic instructions resulting

from issuing prefetches.

Figure 4.1 Prefetching efficiency metrics

Our contribution is to add refinements that allow the metrics to be more useful for
evaluating compiler implementations. Some of these refinements are described in this

chapter, and some are presented in Chapter 5.

4.2 Prefetch target selection

We view prefetch target selection as having three components or categories: coverage,
overshoot, and selectivity. Coverage measures the success with which prefetching is
able to convert cache misses in the base program into cache hits in the transformed
program. A given reference R is considered “covered” if the compiler issues a useful
prefetch for the location needed by R, turning R from a cache miss into a cache hit.
The prefetch coverage factor for a program is defined as the percentage reduction in
uncovered cache misses achieved by applying prefetching to the program. Overshoot
takes place when a prefetch is performed for a line that is subsequently never accessed,
i.e., the prefetched line is evicted from the cache before it can be used. Finally,
selectivity measures how well the compiler is able to avoid issuing prefetches for lines

that are already in cache (useless prefetches).

43

4.2.1 Coverage

The main metric for prefetch coverage is the percentage reduction in cache misses for

the transformed program:

Morig - Mpref

Coverage = 100 * Mo,

where M,y and M, are the number of cache misses in the original and transformed
versions of the program, respectively. The ideal coverage factor for a program is 100%.
A cache miss whose latency is partially hidden (due to a late prefetch) is considered

covered in our framework.

Static vs. dynamic coverage

We attribute poor coverage to two causes: static failures, and dynamic failures.

Static coverage breakdowns occur when the compiler fails to insert a prefetch
instruction for a reference that causes a cache miss. There are host of circumstances
that may result in static coverage failures. For example, some prefetching algorithms
insert prefetches only for references within inner loops. If a reference is not contained
in an inner loop (or not contained in a loop at all), then it may result in an uncovered
miss. Limitations in the prefetching algorithm may also prevent the compiler from
inserting prefetches even for inner loop references. For example, an inner loop may
contain a subroutine call, making it impossible to calculate a prefetching distance at
compile-time, or the subscript function for a given reference may be too complex to
analyze. Finally, a coverage breakdown may result from imprecision in the compiler’s
reuse analysis: if the compiler incorrectly decides that references R, and R, both
access the same cache line within a given loop, it will only insert prefetch for one of
the references, resulting in an uncovered miss for the other reference.

Dynamic coverage failures occur when a prefetch is issued at run-time, but fails to
cause a cache hit for the reference it is intended to cover. Late prefetches are special
type of dynamic coverage failure; we treat them as a separate category (see Section
4.4). Cache conflicts are another main cause of dynamic coverage failures: it is often
the case that a line is brought into the cache by a prefetch, and then displaced from

the cache (due to conflicts) before it can be used.

44

As part of our experiments, we attempt to separate out the static and dynamic
components of prefetch coverage; see Section 5.5.1 for the details. In addition, in
Section 5.5.1 we perform a classification of uncovered misses according to lexical

nesting, to try to identify the sources of poor coverage.

4.2.2 Overshoot

Overshoot can be measured by counting the number of prefetched lines that are
evicted from the cache without being used, and expressing this number as a fraction

of all lines brought into the cache by prefetches:

P, unused

QOvershoot = 100 *
Ptotal

As with prefetch coverage, there are static and dynamic components to overshoot.
Static overshoot takes place when the compiler issues prefetches for data that is
subsequently never accessed, perhaps due to control flow within a loop. Figure 4.2
shows an example of how control flow can result in prefetching overshoot. In the loop
nest shown, the “if” statement determines whether the loop accesses the array “c”
or the arrays “2z” and “yy”. If the compiler issues prefetches for all of the references
in the loop, then there is a chance that much of the data will go unused, depending

on which way the branch proceeds.

doi=1,n
d(i) = x(q(i))
if (a(i) .1t. 1)
c(i) = 0
else
zz(i) = yy(i)
endif
enddo

Figure 4.2 Control flow within an inner loop

45

Dynamic overshoot takes place when a prefetch is issued and completes, but the

line in question is displaced before it can be used, typically due to cache conflicts.

4.2.3 Selectivity

A simple measure of selectivity is the percentage of all prefetches issued that hit in

the cache or in the pending prefetch buffer.

useless
Ptotal

Selectivity = 100 *

The percentage of useless prefetches depends largely on how accurately the compiler
is able to identify locality of reference within the program being compiled. A high per-
centage of useless prefetches for a given program usually indicates that the compiler’s
reuse analysis is performing poorly for that program.

Useless prefetches can arise in a number of situations and circumstances. [n order
to isolate the most significant sources of useless prefetches, we develop and apply a

more sophisticated set of selectivity metrics in Section 5.5.1.

4.3 Overhead

As mentioned previously, prefetching overhead measures the number of additional
instructions that have to be added to the program to issue prefetches. Figure 4.3
illustrates how we measure the instruction overhead of a prefetching implementation.
The upper portion of the figure shows the instruction stream of the base program
(without prefetching). The lower portion of the figure shows the instruction stream
of the transformed program; two prefetch instructions have been inserted, along with
3 other supporting instructions, for a total of 5 additional instruction, yielding an
IPP (instructions per prefetch) of 2.5. More formally,

Lpres — Lori
I[Pp = -P___ g
Ptotal

where /,; and [, are the dynamic instruction counts for the original and trans-
formed versions of the program, and P, is the total number of prefetches issued in

the transformed version of the program.

46

original
s s load load

-€ K >

transformed

R pref pref load load

-+ K+5 >

Orig instructions: K
Instructions added: 5
Prefetch instructions: 2

2.

Intructions per prefetch: 5

Figure 4.3 Instruction overhead

An ideal IPP value is close to 1, however [PP values are very seusitive to the loop
unrolling policy used for both versions of the program. Restricting unrolling in the
original version of the program while applying unrolling in the transformed version
of the program can result in a low IPP value. Very high unrolling degrees in the
transformed version of the program can sometimes lead to high IPP values, due to
increased register pressure. High IPP values can also occur when a program has a
large fraction of indirect references, which are more difficult to prefetch.

It is important to mention that for a multiple-issue processor capable of over-
lapping the execution of many instructions simultaneously, the notion of IPP as a
measure of instruction overhead becomes considerably more hazy. For example, in
a compute-bound loop with a large number of floating point instructions, it may be
possible to add prefetches to the loop without any visible increase in execution time,
since the processor’s integer unit can independently issue and retire the prefetch in-
structions while other functional units are stalled waiting the floating point operations

to complete.

4.4 Scheduling

Scheduling is concerned with the arrival time of a prefetched line in the cache, relative
to the load or store that the prefetch is intended to cover. If the prefetch is placed too
early, then there is a risk that the prefetched line will be displaced before it can be

47

used. If the prefetch instruction is scheduled too close to the actual reference, then
it may be the case that the prefetch is still in progress when the reference executes,

resulting in partial memory latency penalties.

 J

time
instruction stream
PX | PY L.z X LYy
: conflict between X and 2
cache history ///
wmex (O ... @1 &7 4
fine Y Q) / (HI|
At T RO R R A TN A
line Z X5
Legend: O - prefetch issued O - cache hit
A - line avicted from cache @ - prefetch completes 3 -~ cache miss

Figure 4.4 Prefetch scheduling

Figure 4.4 illustrates some of the issues of prefetch scheduling. The top portion
of the figure shows the program’s instruction stream. The program issues prefetches
for two lines (X and Y), performs some other instructions (including a load of line z),
then loads locations X and Y. The bottom portion of the figure shows the activity
taking place in the cache. In the scenario depicted, the prefetch for line X completes
well before its corresponding load. Due to a cache conflict between line X and line
Z, however, the line X is displaced from the cache before it can be used, thus the
subsequent load of X results in a cache miss. If the prefetch for X had been issued
(and completed) later, then the load of X might have resulted in a cache hit instead
of a miss. Note that we are assuming that evictions caused by prefetches only occur
when the prefetch completes (not at the time it is issued).

Prefetches that are scheduled too late can be easily counted, provided that simu-

lation is being employed:

48

where P, is the number of times that the processor encounters a cache miss on a
line for which there is currently a prefetch operation in progress. Another metric for
scheduling efficiency is the average number of cycles that the processor has to stall
when waiting for a prefetch to complete.

Prefetches that are scheduled too early are more difficult to measure, since the
undesirable effects of an early prefetch are more variable. If a prefetched line X

arrives in the cache too early,
L. it may have no ill effects (if the displaced line was no longer being used), or
2. it may be displaced by some other line before it can be used, or

3. it may displace some other line Y that will be used again shortly

The second scenario above will result in an increase in overshoot for the L1 cache
(but typically not for the L2 cache), and a decrease in coverage, since the subsequent
access to line X will result in a cache miss. The third scenario will result in a decrease
in coverage (since the subsequent access to line Y will result in a cache miss), and
possibly an increase in overshoot as well (if Y was a prefetched line that had not yet

been used).

4.5 Pipeline characteristics

As described in previously, prefetch scheduling is accomplished using a form of pipelin-
ing, in which the loop is split into a prolog loop, an unrolled steady-state loop, and an
epilog loop. The relative amount of time (iterations) spent in each stage depends on
a number of factors, including the trip count of the loop, the amount of computation
in the loop body, and the memory latency. Ideally, we would like to see programs
spending most of their time executing within the steady-state stage of the prefetch
pipeline, for two reasons.

First, the more time the program spends in the steady state, the more it benefits
from loop unrolling, since the steady state is unrolled (whereas the epilog is not). If
the trip count of the loop is very small, and/or the prefetching distance is quite large,
then the epilog stage of the pipeline will perform most of the computation, resulting
in increased instruction overhead.

Second, prefetches issued during the steady-state stage are more likely to be sched-
uled properly. Since the prolog loop contains no other computation, the prefetches

49

it issues will be spaced very close together in time, and will often wind up being
buffered due to limited cache and memory bandwidth. Once the prolog is complete,
the steady-state loop immediately begins accessing the data prefetched in the prolog;
this allows very little time for the prolog prefetches to complete. In contrast, prefetch
instructions issued during the steady-state are generally spaced further apart and are
overlapped with other useful computation, increasing the likelihood that they will be
successful. The end result of these pipeline “start-up” effects is that prefetches issued

during the prolog will be less likely to complete on time.

| Categories Definition

A majority of the prefetches in the loop were issued dur-
ing the steady-state stage of the pipeline.

SteadyMajIter

A majority of the prefetches in the loop were issued dur-
SteadyMinIter | ing the prolog stage, but some of the prefetches were
issued during the steady-state.

All of the prefetches in the loop were issued during the
prolog stage; the steady state did not execute.

NoSteady

Same as NoSteady, but in this case the the trip count of

WorstCase the loop was less than the prefetching distance.

Figure 4.5 Pipeline efliciency categories

The fraction of prefetches issued in each stage of the pipeline is dependent on
two factors: the prefetching distance for the loop (which is in turn a function of the
number of instructions in the loop body and the memory latency), and the number
of iterations in the loop. If T is the number of iterations in the loop and P is the
prefetching distance in iterations, then the fractions of prefetches issued in the prolog
will be roughly Mffrﬂ).. In the case that P > T, the steady state portion of the
pipeline will not execute at all: only the prolog and cleanup loops will run. In such
situations we can expect that prefetch scheduling efficiency will suffer. Instruction
overhead will also increase, since the non-unrolled epilog loop has higher instruction
overhead than the steady-state loop.

Figure 4.5 shows our classification scheme for the pipeline characteristics of a given
execution of a pipelined loop. There are four categories, ranging from SteadyMajIter

(good pipeline characteristics) to WorstCase (very poor pipeline characteristics). By

50

identifying the dominant pipeline characteristics of a given application, we can get a
sense for the overall potential of pipelining with respect to scheduling and instruction
overhead. In Chapter 5, we use simulation to gather empirical data on the pipeline

characteristics of our benchmark applications; this data is presented in Section 5.5.3.

4.6 Summary

This chapter has outlined a set of metrics that are useful for gauging the effectiveness
of prefetching for a given compiler, target program, and simulated architecture. We
characterize the efficiency of a given prefetching scheme by measuring its performance
in three major areas: target selection, scheduling, and instruction overhead. Target
selection metrics are designed to indicate whether the compiler is issuing prefetches
for precisely the set of references that cause cache misses. They include include
coverage (fraction of cache misses whose latency is hidden using prefetching), se-
lectivity (fraction of useless prefetches), and overshoot (fraction of prefetched data
that is subsequently unused). Scheduling metrics are designed to measure whether
prefetch instructions are being issued at the right time, relative to the accesses they
are intended to cover. Prefetches that are scheduled too late can be counted as a
measure of scheduling efficiency. In addition, the average number of cycles stalled
per late prefetch is a good way to measure the severity of the penalties incurred by
late prefetches. Early prefetches are more difficult to detect, and must generally be
measured indirectly by looking for decreases in coverage and increases in overshoot.

Most of the metrics described in this chapter were originally developed by Mowry
et al. Our contributions are to provide enhancements that allow the metrics to
be more useful for evaluating the compiler components of prefetching performance.
These enhancements include static and dynamic coverage factors, static and dynamic
overshoot, and more detailed scheduling metrics. Additional refinements of these

metrics are presented in Chapter 5.

al

Chapter 5

Uniprocessor Prefetching

In this chapter we explore the area of prefetching for single-processor architectures.
In the first half of the chapter, we present a series of experiments designed to deter-
mine the overall effectiveness of prefetching for a set of benchmark programs. Our
focus for this work is on the compiler; we have structured our experiments to isolate
compiler behavior, and to distinguish between situations where the compiler is per-
forming poorly and situations where performance is poor due to application-related
or architectural factors. In the second half of the chapter, we experimentally evaluate
the new compiler techniques we have developed.

An outline of this chapter is as follows. Sections 5.1, 5.2, and 5.3 describe the
benchmark programs that we have chosen for our experiments and give the details
of our compilation and simulation methodology. Sections 5.4 gives raw data on the
performance improvement provided by prefetching for each of our benchmarks. In
Section 5.5 we give a more detailed evaluation of prefetching performance, using the
metrics developed in Chapter 4. Finally, Section 5.6 covers the evaluation of the new

uniprocessor techniques outlined in Chapter 3.

5.1 Uniprocessor benchmark programs

Figure 5.1 gives some of the important characteristics of our benchmark programs.
These programs were selected from the SPEC 95 benchmarks, the NAS benchmarks,
the Rice Compiler Evaluation Program Suite, and the PERFECT benchmarks [10, 25,
79, 96]. In order to yield more reasonable simulation times, we reduced the number
of timesteps executed for many of the programs, and in some cases we had to reduce
the sizes of the arrays used. In Figure 5.1, “Functions” is the number of procedures
in the program; “Lines” is the number of non-comment source lines. “Data” is the
total size of all the arrays used by the program, in megabytes. “Instructions” is the
approximate dynamic instruction count for the program. The L1 and L2 miss rates
shown are for the cache configuration specified in Figure 5.2. The miss rates are

W
[V

Data L1 miss | L2 miss
Program Origin | Functions | Lines | (MB) | Instructions rate rate
appbt NAS 20 2734 1.2 66,103,834 13.1% 22.7%
applu SPEC 16 1883 | 33.1 69,851,918 15.0% 23.2%
appsp NAS 26 2120 0.3 45,247,366 10.5Y% 9.3%
apsi SPEC 96 4872 9.6 169,836,484 8.9% 32.0%
cgm NAS 14 381 2.9 77,141,945 14.2% 24.0%
erl RiCEPS 16 494 8.1 387,659,431 16.8Y% 26.5%
£lo52 PERFECT 36 2236 1.0 89,212,405 16.9% 1.9%
hydro2d SPEC 40 15656 2.2 164,286,869 24.7% 30.5%
mgrid SPEC 13 445 1.1 129,600,606 5.7% 26.5%
nasbuk NAS 7 181 3.2 269,816,923 35.2% 13.6Y%
ocean PERFECT 37 2061 0.8 150,291,613 18.3% 4.5
su2cor SPEC 36 1763 | 24.4 | 661,211,029 25.3% 15.6%
swim SPEC 6 261 14.7 | 207,196,621 74.9% 11.5%
tomcatv SPEC 1 126 14.8 | 369,712,137 20.8Y% 21.2%
waveb SPEC 104 7372 | 42.8 | 372,647,826 41.9% 3.8%

Figure 5.1 Uniprocessor benchmark programs and their vital statistics

calculated based on accesses to arrays and global (common) data only; we exclude

cache activity due to stack-allocated scalars, the constant pool, spill code, etc.

5.2 Simulator

For these experiments we use an execution-driven simulator derived from RPPT [27].
We simulate a pipelined SPARC processor with functional unit latencies that are
equivalent to those of the Sun UltraSparc [72]. The simulator models the cache
and memory subsystems in detail. Data collected by the simulator include overall
execution time, cache miss rates, average miss latency, total prefetches issued, useless
prefetches, and late prefetches, among others. Figure 5.2 shows the parameters we
use for our uniprocessor simulations. Since we are using reduced data set sizes for
many of our benchmark programs (to yield shorter simulation times), we selected L1
and L2 cache sizes that are correspondingly reduced as well.

We use a blocking-load model for the processor. Both levels of cache are lockup-
free, however, in the sense that they can support multiple outstanding prefetch and/or
write requests, in concert with a single pending cache miss. Multiple requests for a
given line are coalesced, thus there can only be one outstanding type of request for a
given line at a time. Inclusion between the L1 and L2 cache is enforced. When the

33

processor tries to issue a prefetch but encounters a full prefetch buffer, it stalls until

a slot is available in the buffer, as opposed to dropping the prefetch.

Processor parameters

Clock speed I 300 MHz
Cache parameters
Cache line size 32 bytes
L1 cache 8 Kbytes, 2-way set-associative, write-through
L1 hit time 1 cycle
L1 write buffer 16 entries
L2 cache 128 Kbytes, 2-way set-associative, write-back
L2 hit time 10 cycles

Pending prefetch buffer 16 entries
Memory parameters

Main bus 100 Mhz, 256 bits wide
Peak bus bandwidth 3.2 Gbytes/sec

Memory speed 200ns / 32 bytes
Memory interleaving 4-way by 32-byte chunks
Peak memory bandwidth | 640 Mbytes/sec
Miss-to-memory 83 cycles

Figure 5.2 Architectural parameters for uniprocessor simulations

5.3 Compiler parameters

We used a prefetch latency of 175 cycles for these experiments. This value was
arrived at empirically, by trying a wide range of latencies and selecting the value that
produced the best improvement for all of the programs. The programs were compiled
using the compilation strategy described in Chapter 3, including selective prefetching,
loop peeling, and multi-stage pipelining for indirect references, but without any of
the new techniques discussed in Section 3.4. Only references enclosed in inner loops
are considered for prefetching. We refer to this as the “default” compilation strategy.
Since the target architecture features a write-through L1 cache, our compiler does
not insert prefetch instructions for writes (stores).

Our compiler operates in a source-to-source fashion, reading and writing Fortran;
both the original Fortran program and the transformed Fortran program are then
run through the Sun £77 compiler (version SC4.0) to produce a SPARC executable.

34

The compiler flags given to £77 were “-dalign -03 -cg92” for the original program
and “-dalign -03 -cg92 -unroll=1" for the transformed program.

5.4 Execution time

Figure 5.3 shows the overall improvement in execution time provided by software
prefetching for our benchmark programs. There is a wide variation in the effective-
ness of prefetching, ranging from 43.4% improvement (hydro2d) to -6.2% (£1052).
The programs that derived the most benefit from prefetching were generally those
with high L1 and/or L2 miss rates (as shown in Figure 5.1), with some exceptions.
In the next few sections we will attempt to explore these results in more detail,
and to determine the reasons why prefetching behaves the way it does for these pro-
grams. Section 5.5.1 provides empirical data on prefetch target selection; Section 5.5.2

presents data on instruction overhead, and Section 5.5.3 presents data on prefetch

scheduling.

Reduction in
Program | execution time
appbt 8.3%
applu 8.6
appsp 2.4},
apsi -5.1]
cgm 27.0}
erl 14.8Y,
flob2 -6.2J
hydro2d 43.4,
mgrid 20.2J
nasbuk 22.2/
ocean 5.6%
su2cor 21.9%
swim 17.0%
tomcatv 38.5Y
waveb -0.24%

Figure 5.3 Execution time reduction due to prefetching, 1 processor

55

5.5 Experimental data on prefetching performance

In this section we use the metrics described in Chapter 4 to look at various aspects of
prefetching performance. We first examine prefetch target selection (Section 5.5.1),
then consider instruction overhead (Section 5.5.2) and finally prefetch scheduling

(Section 5.5.3).

5.5.1 Prefetch target selection

Figure 5.4 contains data on prefetch coverage for our benchmark programs. We report
coverage factors for both levels of cache. To simplify our measurements of target
selection, we modified our simulator (for these experiments only) to treat prefetches
as zero-latency operations: fetched data is brought into the cache on the next cycle.
We use a prefetching distance of a single loop iteration for all pipelined loops. In
combination, these modifications remove imprecision due to poor prefetch scheduling

(i.e. very early or very late prefetches), and allow us to focus solely on the issue of

coverage.

Coverage factors
L1 cache L2 cache
Program || Base | Virtual | Base | Virtual
appbt 58.0% | 66.7% [61.7% | 61.6%
applu 91.0% | 94.0% | 96.2% | 96.4Y%
appsp 84.4%, | 89.1), |82.4% | 82.8Y%

apsi 41.8% | 90.5% | 42.1% | 90.6)
cgm 84.1) | 84.5/ | 66.9% | 67.0%
erl 89.6% | 90.3% |91.3% | 91.3%

£1o52 76.0% | 79.3% | 87.7% | 84.0Y%
hydro2d || 92.6% | 94.5% | 94.5% | 94.5Y
mgrid 73.8% | 88.0% | 93.0% | 93.1Y%
nasbuk | 98.4% | 100.% | 99.9Y% | 100.0%
ocean 61.7% | 63.0% |86.9% | 86.6%
su2cor | 70.1%(96.2% | 99.1% | 99.4%
swim 4.1% | 72.2% [69.0% | 84.1Y
tomcatv [59.0% | 99.7% | 99.6% | 99.7Y%
waveb 26.9% | 54.6% | 88.8% | 88.9Y

Figure 5.4 Prefetch coverage factors

Virtual coverage

Prefetch coverage factors provide only limited information about compiler behavior,
since it is difficult to determine whether poor coverage is due to static or dynamic
coverage breakdown (see Section 4.2.1 for a definition of these terms). To deal with
this problem, we introduce the notion of the “virtual” coverage factor, also shown in
Figure 5.4.

To calculate virtual coverage, we add a 64-entry victim cache to our hypothetical
simulated machine. This cache is a separate, fully-associative cache used to store
prefetched lines that have been recently evicted from the main cache [50]. During the
simulation, when a line is displaced from a given cache, we insert it into the victim
cache for that level. When the program incurs a cache miss, the simulator checks
for the line in the victim cache; if the line is present, then the miss is considered a
cache hit for the purposes of computing the virtual coverage factor. By comparing
the virtual coverage factor with the base coverage factor, we can get a sense for both
the static and dynamic components of prefetch coverage.

The results in Figure 5.4 show that for the first level of the memory hierarchy,
cache conflicts have at least some effect on most of the programs. For 3 of the pro-
grams, “apsi”, “swim”, and “tomcatv”, cache conflicts cause significant reductions in
prefetch coverage. In these cases the difference between the base and virtual coverage
factors is more than 40 percentage points.

Although some of the programs have virtual L1 coverage factors approaching
100%, there are a few programs for which L1 and L2 coverage factors are roughly
50-70%. For these programs, it seems logical to conclude that the compiler is failing
to insert prefetches for a significant numbers of references (see Section 4.2.1 for a
description of the situations where our compiler will disable prefetching for an inner
loop).

To try to learn more about the coverage failures exhibited in Figure 5.4, we de-
signed an experiment to learn more about the locations of uncovered cache misses,

and to see what factors are responsible for the low coverage rates.

Lexical nesting of uncovered misses

In this experiment, we instrumented our benchmark programs with calls that mark the
beginning and end of each function and loop. The simulator then uses a stack to keep
track of dynamic loop nesting at runtime. The simulator’s book-keeping information

n
-~1

| Ref category Definition
NoLoop Reference is not enclosed in any loop.
Reference is not enclosed in any loop within the current
IPLoop procedure, but is dynamically enclosed in a loop in some
calling routine.
MidLoop Reference is enclosed in a loop, but not an inner loop.
InnerLoop Reference is enclosed in an inner loop.

Figure 5.5 Reference categories by lexical/interprocedural loop nesting

is used to place each reference into one of four classes, shown in Figure 5.5. Each
L1 cache miss is then assigned to a category based on the class of the reference that

incurred the miss.

Program || No loop | I[P loop | MidLoop | Inner loop
appbt - - 43.9% 56.0%
applu - - 0.1% 99.8Y%
appsp - - 27.0Y% 72.9%
apsi - 0.4/ 10.9% 88.5%
cgm - - 3.2% 96.6Y
erl - - - 99.9Y%
flob2 2.8Y% - 4.0% 93.0%
hydro2d - - 0.1% 99.8%
mgrid - - - 99.9%
nasbuk - - - 100.0%
ocean - - 0.5% 99.3Y%
su2cor - 0.5% 0.5% 98.9Y%
swim - - - 99.9%
tomcatv - - 0.1% 99.8Y%
waves 0.5% - - 99.4Y

Figure 5.6 Loop nesting breakdown for uncovered cache misses

Figure 5.6 shows the percentage of each category of uncovered cache miss for each
of the programs. Since we are primarily interested in the compiler’s contribution to
prefetch coverage, we use virtual cache misses for this experiment. The data indicate
that in general, the majority of uncovered cache misses in fact take place within the

58

inner loops of these programs. Four of the programs exhibit non-trivial fractions of
MidLoop misses; for these programs, our default policy of applying prefetching only
to references in inner loops is falling short. For the remaining programs, however, we
find that reduced coverage is not due to unprefetched outer loop misses, however. In
addition, uncovered misses in the NoLoop and IPLoop categories are almost nonexis-
tent. This suggests that efforts to improve prefetch coverage should continue to focus
on loops, and that there is little benefit to be gained from prefetching references not

enclosed in loops.

Selectivity

Figure 5.7 shows the percentage of useless prefetches exhibited for the programs in our
benchmark suite. The results show that with the exception of a few programs (erl,
swim, and tomcatv), the total percentage of useless prefetches is above 50%. This
suggests that the compiler’s locality analysis is not entirely successful in predicting
and/or exploiting locality of reference in these programs. We report the percentage
of prefetches that hit in the L2 cache, but it should be noted that a high fraction of
useless prefetches at this level is not generally an indication of a problem with the
compiler analysis, since prefetches that hit in the L2 cache still provide benefit to the

program.

Classification of useless prefetches

In order to pinpoint the places where the compiler analysis is falling short, we per-
formed the following experiment. We conceptually we divide the program’s execution
into a sequence of intervals or epochs, where each epoch corresponds to a loop or loop
nest. In our model, there are two types of epochs, inner loop epochs and outer loop
epochs. A new inner loop epoch begins each time an inner loop starts to execute, and
a new outer loop epoch begins each time a lexically outermost loop starts to execute.
Figure 5.8 gives an illustration.

The compiler makes epoch transitions visible to the simulator by instrumenting the
benchmark programs, inserting calls to simulator runtime routines at the beginning
and end of each loop. The simulator maintains counters that record the current inner
and outer epoch number, incrementing them at the appropriate points. Finally, the
simulator associates epoch information with each line in the cache, by storing some
state information with each cache line. Each line is tagged with four values, shown

% useless prefetches
Program || L1 cache | L2 cache
appbt 68.4 37.5%
applu 67.2/, 34.3%
appsp 50.5Y% 77.1Y%
apsi 71.5Y% 46.8%
cgm 55.1Y% 65.1Y%
erl 19.6Y% 14.9Y%
flo52 71.1% 95.6%
hydro2d 27.2), 11.7%
mgrid 26.0Y% 48.6Y,
nasbuk 34.9Y 77.6Y%
ocean 85.0% 82.9%
su2cor 58.3% 49.0%
swim 5.2% 30.4Y
tomcatv 1.5% 35.3%
waveb 60.6% 81.9%

Figure 5.7 Useless prefetches as a total of all prefetches

time | |

inner
loop
epoch

Figure 5.8 Inner and outer loop epochs

59

60

in 5.9. These values record the epoch numbers during which the line was A) brought

into the cache, and B) most recently used, for each type of epoch.

| Counter | Interpretation |

inner epoch number during which the line
was brought into the cache

InnerEpochin

most recent inner epoch number during
InnerEpochUse || which the line was used (set on every access
to line)

outer epoch number during which the line
was brought into the cache

OuterEpochln

most recent outer epoch number during
OuterEpochUse || which the line was used (set on every access
to line)

Figure 5.9 Epoch values stored with each cache line

When a useless prefetch was issued for a given line, the line’s epoch values are then
used to classify the prefetches into one of several categories, shown in Figure 5.10. A
“Cross-Loop Useless” (CLU) prefetch corresponds to a prefetch issued for a line that
was brought into the cache in a prior outer loop epoch, and not referenced since then;
this type of prefetch is only possible to eliminate using cross-loop reuse analysis. A
“Mid-Loop Useless” (MLU) prefetch corresponds to a line that was brought into the
cache in the current outer epoch, but not used or prefetched during the current inner
epoch. This type of useless prefetch may be detected with intra-loop analysis, and
can often be eliminated by loop peeling. An “Inner Loop Useless” (ILU) prefetch
corresponds to a line that was brought into the cache in the current outer epoch, and
was prefetched and/or used during the current inner epoch. Intra-loop reuse may be
able to detect and directly eliminate this type of useless prefetch.

Figure 5.11 shows the fractions of all useless prefetches that fall into these three
categories for our benchmark suite. For the programs that make heavy use of in-
dex arrays (cgm, nasbuk, su2cor, and waveS), we note that the bulk of the useless
prefetches fall into the ILU category. We attribute this to the fact that since the
compiler can’t determine the contents of an index array, the compiler cannot predict
reuse among indirect accesses, and therefore can’t eliminate useless prefetches that

61

[Type

Definition

Conditions

Cross
Loop
Useless
(CLR)

Prefetch hits a line L that arrived
in the cache during a previous
outer epoch, but has not been
used or prefetched since then.

L.OuterEpochIn < curQOuterEpoch and
L.OQuterEpochUse < curQuterEpoch

Mid
Loop
Useless
(MLU)

Prefetch hits a line L, where L has
been used during the current outer
epoch, but has not been used
within the current inner epoch.

L.OuterEpochUse
L.InnerEpochUse

Al

curOuterEpoch and
curInnerEpoch

Inner
Loop
Useless
(ILU)

Prefetch hits a line L, where L has
been used during the current
outer epoch and during the
current inner epoch.

L.OuterEpochUse
L.InnerEpochUse

curQuterEpoch and
curlnnerEpoch

Figure 5.10 Categories of useless prefetches

| Program || CLU % | MLU % | ILU %
appbt 1.5% | 65.3Y% | 33.0Y%
applu 2.2% | 68.4% | 29.3Y%
appsp 2.1% | 78.1% | 19.6Y
apsi 49.3Y, 15.6% | 34.9%
cgm - 37.8% | 62.1%
erl -] 92.6Y 7.3%
flo52 9.7 29.6% | 60.6Y%
hydro2d 0.2% | 64.4%| 35.3Y%
mgrid 0.9%| 82.9%| 16.1Y%
nasbuk 0% 0.1% | 99.8%
ocean 0.4 13.8% | 85.7%
su2cor 1.9% 3.4% | 94.6%
swim 0.1% | 91.8Y% 8.0%
tomcatv - 87.1% | 12.8%
waveS 1.7% 8.2% | 89.9%

Figure 5.11 Useless prefetch breakdown

62

are caused by the reuse. The program ocean does not use indirection arrays, but con-
tains many references with symbolic strides, effectively hiding all spatial locality from
the compiler. For many of the remaining programs that have high rates of useless
prefetches (appbt, applu, appsp, erl, hydro2d, and mgrid), the bulk of the useless
prefetches fall in the MLU category, which suggests that the compiler is successfully
recognizing and exploiting inner loop locality, but is failing to properly detect and
exploit outer loop locality. In the case of the program apsi, almost half the useless
prefetches fall into the CLU category, which cannot be detected by using loop level
reuse analysis.

In general, these results suggest that there is some room for improvement with
respect to the reuse analysis employed by the compiler. As part of Section 5.6.1, we
evaluate the extent to which more advanced forms of reuse analysis can be used to

reduce the frequency of useless prefetches.

Overshoot
Program ' Base | Virtual
appbt 6.7Y% 5.8
applu 5.0% 4.4
appsp 4.8Y% 3.8%
apsi 44.8Y 0.6%
cgm 0.7 04
erl 0% o’
flo52 13.4% | 11.3Y
hydro2d || 1.3% 0.2Y%
mgrid 0.8% 0.1%
nasbuk 0.6% oY%
ocean 1.5% 0.8Y
su2cor 27.5% 3.6}
swim 88.8Y% 4.0Y%
tomcatv || 20.7% oY%
wave5 54.7% 5.9Y%

Figure 5.12 Overshoot and Virtual Overshoot

Overshoot

Figure 5.12 provides data on overshoot for our benchmarks programs. The values in
this table show the percentage of all lines brought into the cache by prefetch instruc-

63

tions that are subsequently evicted before being used. All values are with respect to
the L1 cache. Figure 5.12 also shows the “virtual” overshoot percentage, measured
using the addition of a victim cache to our simulated architecture (as described in
Section 5.5.1). For virtual overshoot we count the number of unused lines evicted
from the victim cache, not the main L1 cache.

The data indicate that most overshoot is due to cache conflicts— the programs
with high degrees of overshoot are exactly those that suffer from conflicts (apsi,
su2cor, swim, tomcatv, and waveS). The same programs also exhibit elevated rates
of virtual overshoot; we attribute this to cache conflicts that take place over longer
periods of time, which the victim cache is unable to ameliorate. Based on a source
code inspection, we find that inner loop control flow does not appear to be a factor
influencing the level of overshoot. For example, the program with the highest level of
overshoot, “£1052”, has no control flow in the critical loop nests that generate nearly
all of the prefetches. Our conclusion is that there is little to be gained from the
development of optimizations that attempt to reduce static overshoot from control

flow, as discussed in Section 4.2.2.

5.5.2 Instruction overhead

Figure 5.13 provides data on prefetching instruction overhead for our benchmarks, in
the form of IPP values (as defined in Section 4.3). For most of the programs, less
than 10 instructions are required per prefetch. Although comparisons with previous
studies are problematic, due to differences in the target instruction set, compiler, etc.,
the IPP values shown are roughly in line with those produced by previous software
prefetching implementations [73].

In general, we find that programs that use indirection arrays have slightly higher
IPP values, which we attribute to the additional overhead of multistage pipelining.
Several of the programs in our benchmark suite have fairly high levels of instruction
overhead, in spite of the fact that they don’t use indirection arrays. In particular,
apppt, applu, and appsp, have IPP values above 5. We attribute this to the fact
that these codes have very short inner loops, which means that they spend very little
time in the “steady-state” stage of their pipelines, gaining very little from unrolling.
Section 5.5.3 examines this phenomenon in more depth.

Two of the programs, erl and flo52, have elevated levels of IPP due to an
artifact of the compilation process related to loop unrolling. When we run the final

64

transformed Fortran program through the Sun £77 compiler, we disable £77’s loop
unrolling feature, since unrolling has already been applied as part of prefetching. If
our compiler has decided that no prefetching is required for a given loop, however,
then it will not unroll the loop at the Fortran level, whereas the corresponding loop
in the untransformed version of the program may well be unrolled by £77. This effect
can be greatly magnified for loops containing calls to Fortran intrinsic functions, due

to a quirk in the current £77 optimizer, resulting in artificially large IPP values.

% increase in
Program || instructions IPP IPPg
appbt 25.8% | 6.36{ 5.93
applu 34.4) | 7.59 | 7.22
appsp 34.7% | 5.58(4.85
apsi 43.8Y% 6.97 5.35
cgm 131.3% | 6.73 | 4.es
erl 1.8% | 11.05 || -8.99
flo52 41.7% 7.39 4.18
hydro2d 5.9%| 1.57 || -0.87
mgrid -0.1% | -0.13 || -3.49
nasbuk 6.0% 2.59 || -0.94
ocean 27.9% 1 2.46 0.22
su2cor 16.0% | 2.34 1.73
swim -1.9% | -1.59 || -9.22
tomcatv -2.1% { -3.74 || -4.86
waveS 29.5% | 3.99 2.15

Figure 5.13 Instruction overhead from prefetching

It should be noted that we use a slightly different loop unrolling policy than
that used in previous studies. In Mowry’s work, the untransformed versions of the
programs are compiled without loop unrolling, while the prefetched versions of the
program receive the benefits of unrolling as a side effect of the transformations used to
implement prefetching. Since loop unrolling often has beneficial effects for programs
even without prefetching, we allow loop unrolling when compiling the untransformed
versions of the benchmarks. We accomplish this by directing the £77 compiler to
apply loop unrolling, as opposed to unrolling loops at the Fortran level. This policy
results in IPP values that are higher than with a more restrictive loop unrolling
policy. By way of comparison, the column labeled “IPPg” shows the IPP values

65

when no unrolling is applied during compilation of the untransformed versions of the
programs. The data show that suppressing unrolling can yield excellent IPP values

for the transformed codes (-9 for erl and for swim, for example).

Effects of cache organization on overhead

The default cache line size used for our experiments is 32 bytes; in this section we
examine the impact of using a larger line size on prefetching overhead. The main
change that a larger line size causes in the compilation strategy is to increase the
degree of loop unrolling needed in order to exploit spatial locality. If a loop has to be
unrolled by a factor of 4 when using 32-byte lines, the same loop must be unrolled
by a factor of 16 when targeting a machine with 128-byte cache lines. To examine
the effects of line size on instruction overhead, we performed an experimental study.
Figure 5.14 shows the IPP values for each of the programs as the line size is increased

from 32 to 128 bytes.

IPP
Program | LS=32 | LS=64 | LS=128
appbt 6.36 9.92 9.45
applu 7.59 8.85 9.06
appsp 5.58 6.29 6.23
apsi 6.97 7.21 8.63
cgm 6.73 5.69 6.53
erl 11.05] 16.76 64.13
£lo52 7.39 6.47 8.48
hydro2d 1.57 | -0.43 -4.12
mgrid -0.13 | -2.95| -13.40
nasbuk 2.59 1.92 1.70
ocean 2.46 2.27 2.62
su2cor 2.34 2.01 1.86
swim -1.59 | -6.01| -11.55
tomcatv | -3.74 | -9.16 | -21.35
waveb 3.99 3.64 3.43

Figure 5.14 Effect of cache line size on IPP

Our interpretation of these results is as follows. First, based on an inspection
of the transformed programs, we found that excess register pressure (due to loop
unrolling) did not play a key role in determining IPP; the register allocator employed

66

by the Sun SC4.0 £77 compiler is quite robust and seems to be able to handle the
expanded loop bodies produced by large unrolling degrees.

Instead, we found that programs with good pipeline characteristics, (i.e., those
that spend the bulk of their time in the steady-state portion of the prefetch pipeline)
tend to benefit from larger line sizes, whereas programs with poor pipeline charac-
teristics tend to show an increase in prefetching overhead. We look at the pipeline
characteristics of the various benchmark programs in a subsequent portion of this
chapter (Section 5.5.3); we note that there is a strong correlation between pipeline
characteristics and IPP benefits from increased unrolling. The program “erl” ex-
hibits artificially high IPP levels in spite of modest overhead in the 32-byte line case
(1 to 4 percent). This is due to an artifact of our loop unrolling policy, as described
in Section 5.5.2,

It should be noted that compile times increase fairly drastically when larger un-
rolling degrees are used; in Section 5.6.3 we provide empirical data on compile times
and executable sizes, and show how strip-mining can be employed to produce more

moderate compile times while still retaining most of the benefits of unrolling.

5.5.3 Experimental data on prefetch scheduling

We now consider the issue of prefetch scheduling. We begin with an empirical study
that examines the loop characteristics of our benchmark programs with respect to
pipelining, to try to determine how effective inner loop pipelining will be. We then
provide empirical data on the frequency of late prefetches for our benchmark suite.

Pipeline efficiency

As previously described in Section 4.5, the pipeline characteristics of a given inner loop
can be characterized according to the fraction of time spent in the steady state stage,
as opposed to the prolog and epilog stages. In this section we present the results of
an experimental study in which we determined the dominant pipeline characteristics
of the loops in each of our benchmark programs.

The experiment was structured as follows. Our compiler instrumented the inner
loops in each program to record the number of iterations executed. We then com-
bined the data on the average inner loop trip count with the number of instructions
in each inner loop body, effectively computing off-line the fraction of time spent in
each pipeline stage for each inner loop. Based on this information, we placed each

inner loop into one of four categories, shown in Figure 4.5. Each of these categories is
intended to represent a particular level of scheduling efficiency, ranging from excellent
(SteadyMajIter) to poor (WorstCase). We then computed a pipeline category distri-
bution for each program by weighting each loop by the fraction of the total prefetches
issued in each loop, and summing the weighted values for each category to produce a
total.

Figure 5.15 shows the result of this study, conducted using a prefetch latency
of 175 cycles. The data show that there is quite a wide variation in the pipeline
characteristics of the various applications. Programs such as tomcatv and swim
have almost perfect pipeline characteristics, whereas for appbt or applu, most of
the prefetches in the program are issued in loops with worst-case pipeline character-
istics (i.e., loops with very short trip counts), greatly reducing the opportunities for
overlapping prefetches with other computation. At the very least, these data suggest
that there are significant opportunities for improvement for about half the programs
in our suite. We present a pair of optimizations that address these opportunities in
Section 5.6.4.

g

> 140 - .
% SteadyMaijiter
S SteadyMinliter
g 120 NoSteady
a WorstCase
8

% 100}

=

o

[

[]

£ 8o

[}

Q.

8

-~ 60

[«]

2]

g

= 4

]

1<

[

o 2}

Figure 5.15 Pipeline efficiency metrics

68

Empirical data on late prefetches

Percent Average number of
Program | late prefetches cycles late
appbt 8.6% 41
applu 9.7% 39
appsp 1.2 17
apsi 2.6% 36
cgm 1.24 15
erl 7.2% 32
flo52 0.2/ 22
hydro2d 3.9 66
mgrid 1.34 32
nasbuk - -
ocean 7.7% 7
su2cor 0.1% 17
swim 0.5% 69
tomcatv 0.6 35
wave5S 0.2% 39

Figure 5.16 Late prefetches as a percentage of useful prefetches

Figure 5.16 shows the fraction of non-useless prefetches that failed to complete
on time, for all of our benchmark programs. As expected, the programs that exhibit
large fractions of late prefetches are those that have poor pipeline characteristics, as
we saw previously in Figure 5.15. Figure 5.16 also shows the average number of cycles
the processor had to stall to wait for fetched data to arrive in cache. The average stall
is around 30 cycles. In combination with the low level of late prefetches, this suggests
that the payoff provided by scheduling optimizations is likely to be fairly small, for
the given architectural parameters. In a subsequent portion of this chapter (Section
5.6.4) we give the results of a study in which we measure the effects of a pair of new

optimizations that attempt to reduce the frequency of late prefetches.

5.6 New uniprocessor compiler techniques

In this section we evaluate the new methods we have developed to improve unipro-
cessor prefetching. We present new methods related to prefetch target selection,
instruction overhead, and prefetch scheduling.

69

5.6.1 Techniques for improving prefetch target selection

The data from our experiments on prefetch target selection in Section 5.5.1 show that
low levels of prefetch coverage are due primarily to cache conflicts (which are difficult
to attack using compiler techniques), and that most of our programs exhibit very little
overshoot. As a result, we chose to focus primarily on techniques to reduce the number
of useless prefetches. We evaluate a series of more powerful reuse analysis methods
to determine how effective they are in reducing useless prefetches. In addition, we
examine the question of whether it is profitable to apply group-spatial reuse analysis

to references that use indirection arrays.

| Method I Description |
intra-loop analysis only; compiler looks for
IntraLoop-Restricted | group-temporal reuse between identically nested
references

intra-loop analysis only; compiler detects and
IntraLoop-Relaxed exploits group-temporal reuse between
non-identically nested references

compiler employs cross-loop reuse analysis in
CrossLoop addition to relaxed intra-loop reuse analysis

Figure 5.17 Spectrum of reuse analysis techniques

Improved reuse analysis

In this section we evaluate a series of reuse analysis techniques that are progressively
more powerful than those employed in previous frameworks for software prefetching.
Figure 5.17 shows the three schemes used, in order of increasing generality. We start
with the “IntraL.oop-Restricted” scheme, in which the compiler employs only intra-
loop analysis, and is restricted to considering reuse only among identically nested
references. The second scheme is “Intraloop-Relaxed”, in which the compiler also
considers non-identically nested references. The third scheme is “Cross-Loop”, in
which the compiler performs cross-loop reuse analysis (described in Chapter 6) in

addition to intra-loop techniques.

Intra-loop Intra-loop

Restricted Relaxed Cross-loop
Program [Cov. | Usel. | Cov. | Usel. | Cov. | Usel.
appbt 0% | 8.1% [-0.8% [11.4% [-0.2] | 14.8%
applu -0.1% [13.8% | -0.1% | 14.4) | -0.1% | 14.9%
appsp 0.14| 7.14 | o0.9% | 11.6% | 1.7% | 16.8}
apsi -3.4Y), 0.4% | -0.2} 0.9% | -2.6% | -0.6Y%
cgm 0.1Y% 0.2% NC NC | -0.1Y% 0.1%
erl 2.4} | 42.0Y NC NC NC NC
flo52 -0.3% 2.3% | -0.6% 2.7% | -0.5Y 2.4Y
hydro2d (074 3.6% | -1.1% 6.9% NC NC
mgrid 0.5% | 33.0% NC NC NC NC
nasbuk 0% oY% NC NC NC NC
ocean 0.1% 0.1% NC NC NC NC
su2cor 04| 0.1%(-0.4% | o0.1% | -1.2% | 0.2Y%
swim oY, 1.2% | -3.9Y 4.8 NC NC
tomcatv (o)A 0} NC NC NC NC
wave5 -2.34|-0.4%4 | -5.4% | 1.3%|-6.4%| 0.7%

Figure 5.18 Effects of more general reuse analysis methods

Figure 5.18 shows how each of these techniques compare. For each technique,
we measure the percentage of useless prefetches eliminated relative to a baseline
compilation strategy in which loop peeling is disabled. In addition to displaying the
reduction in useless prefetches, we also show the change in L1 virtual coverage. This
is intended to identify situations where the reuse analysis actually eliminating useful
prefetches as opposed to useless prefetches. In the table, “NC” indicates that the
method in question did not produce any change in the particular metric relative to
the method shown in the previous column. All values are with respect to the baseline,
not with respect to the previous method.

We interpret the data as follows. The simplest form of reuse analysis, when com-
bined with loop peeling, provides the biggest payoff in terms of eliminating useless
prefetches. This is particularly the case for programs such as “mgrid” and “erl”, in
which there are essentially no imperfect loop nests. Relaxed intra-loop reuse provides
benefits only for programs that make heavy use of imperfect loop nests, primarily
“appbt”, “applu”, and “appsp”. For these programs, it provides a 2-4% reduction
in useless prefetches above the “IntraLoop-Restricted” scheme. Cross-loop reuse pro-

7l

vides another incremental 2-4% reduction in useless prefetches for these programs, but
generally has little effect on the rest of the benchmarks. Overall, only two programs
show significant benefits from the more general forms of reuse analysis, but for these
programs, we are able to double the fraction of useless prefetches eliminated. Most
programs show little or no reduction in prefetch coverage; the exceptions are “apsi”,
“swim’and “waveS”. Inspection of the L2 coverage factors (not shown) indicated
that these effects are due to L1 cache conflicts, not to any loss of static coverage. We
conclude that for the benchmarks we use, the more general forms of reuse analysis
provide fairly small benefits, due in part to the fact that the analysis targets the 8K
L1 cache, which is unable to exploit program locality over longer periods of program

execution.

Group-spatial reuse analysis for irregular references

Group-spatial reuse analysis seeks to determine situations where two different array
references always access the same cache line for a given point within the iteration
space. This type of reuse analysis is fairly straightforward for regular (affine) subscript
functions; the compiler can symbolically subtract the subscript functions of the two
references, and check to see if the result is 0 for all subscript positions except the
column, which must be a constant c related to the cache line size. Question arise
when applying this sort of analysis to irregular references. The example in Figure
5.19 illustrates.

a(i) = y(i) - y(i+1)
d(i) = x(q(i)) - x(q(i)+1)

Figure 5.19 Group-spatial reuse among irregular references

The two references to array “y” share group-spatial reuse according to our defi-

” also seem share group-spatial reuse, but since the

nition. The two references to “x
values in the index array “q” are unknown at compile-time, we can’t be sure. In

particular. it may be possible that the array element x(q(i)) falls on the last word

72

in a cache line, and the element x(q(i)+1) falls on the first word of the next cache

line. In such a case, it might be detrimental to eliminate either of the prefetches.

Change in coverage
L1 cache L2 cache Change in | Change in
Program {| Base l Virtual | Base | Virtual | useless prefs | exec time
cgm - - - - - -
nasbuk - - - - - -
wave5 2.5% | -3.4%|-6.4%| -6.9Y% -10.5% -1.24
su2cor || -3.0% | -2.7% | -3.8% | -4.2} -0.4% 0.6%

Figure 5.20 Effects of group-spatial reuse
analysis on selected irregular applications

Figure 5.20 shows the increase or decrease in coverage and in the useless prefetch
percentage when group-spatial reuse is applied to irregular references (we show only
the 4 programs that use indirection arrays). Group-spatial reuse analysis appears
to be detrimental to “su2cor”; there is very little change in the useless prefetch
percentage, and coverage factors for the L1 and L2 cache decrease, indicating that
useful prefetches are being eliminated. For “wave5”, the results are less conclusive:
fewer useless prefetches are issued, but most of the coverage factors decrease as well.
In terms of actual execution time, one programs is degraded very slightly and one
program is improved. We conclude that at least for the programs in our benchmark
suite, there is little to be gained by eliminating prefetches in these situations. For
faster processors, where instruction overhead is less of an issue and prefetch coverage

is more important, there may be a more pronounced penalty in execution time.

5.6.2 Techniques related to instruction overhead
5.6.3 Applying strip-mining to moderate loop unrolling

As described in Section 3.4.2, our compiler also includes support for using a combina-
tion of strip-mining and unrolling in situations where a large unroll degree is deemed
to be undesirable. In this section we examine the effects of this transformation on
compile times, executable sizes, and instruction overhead.

We find that from the point of view of the performance of the generated program,
it is always a win to use the unroll degree dictated by the cache line size, even when

73

it results in very long compile times. Our goal in applying strip-mining is rather
to create a final program that makes a good compromise between compile time and

execution time.

" Percentage increase in:
Compile time Executable size
Program || LS=64 | LS=128 | LS=64 | LS=128
appbt 0.3% | -33.6Y% 0% | -14.5Y
applu -3.0}% -3.0% 3.1 0%
appsp 5.1 -7.4) 1.8Y% -1.8%
apsi 13.6 38.5% 9.0% 20.7%
cgm 10.5% | 52.6% o% | 12.5%
erl 12.5Y, 35.4% 8.3% 12.5%
flo52 58.6% | 477.7% | 15.6% | 43.7)
hydro2d 14.8% 75.3}% 3.0% 18.1%
mgrid 52.1% | 147.8Y% | 17.6Y% 23.5%
nasbuk 0, 14.2Y 0% 0%
ocean 11.8Y 23.7% 4.8Y 4.8Y
su2cor 15.1% 60.4% 8.1% 26.5%
swim 26.3% | 115.7Y 6.2/ 12.5Y%
tomcatv || 27.2% | 109.0% 4.4 7.3}
waveS 19.3% 65.7Y% 4.5y 10.3%

Figure 5.21 Compile time and executable
size increase with longer cache lines

Figure 5.21 shows the effects of longer line sizes on the compile times and exe-
cutable sizes of the programs to which prefetching has been applied. The data show
percentage increase in executable size and compile time relative to the default line
size of 32 bytes; compile times are based on the wall clock time to compile and link
the transformed programs using the Sun £77 compiler on an unloaded UltraSparc
workstation with 64 megabytes of memory. Most of the programs show an increase in
compile time and executable size; the exceptions are appbt, appsp, and applu. For
these programs, the larger unroll factors cause the compiler to suppress more of the
steady state loops in the programs (if the compiler can prove that the steady state
loop never executes, due to a small loop trip count, then no steady state will be gen-
erated). As a result, compile time actually decreases for these three programs as the
line size is increased. For many of the other programs, however, compile time and ex-
ecutable size increase drastically when larger line sizes are used, due to the larger loop

74

unrolling factors. Compile-time increases of this magnitude (50% to 400%) are not

always acceptable, given that there may not be a corresponding increase in program

performance when using larger line sizes.

Percentage increase Absolute increase
Compile time Executable size in IPP

Program || LS=64 | LS=128 | LS=64 | LS=128 | LS=64 | LS=128
appbt 1.4 | -34.7Y 0| -12.5% 0.0 0.0
applu -2.2% -2.2% 3.1 3.1Y% 0.0 0.0
appsp 4.0} | -27.87% 0% ~9.2% 0.2 0.2
apsi 4.0% 11.2% 6.4/ 9.0% 0.3 0.4
cgm 5.2/ 15.7% 0% 6.2/ 0.8 0.3
erl -14.5% [-20.8% 4.1}, 0 5.9 -2.1
£lo52 3.5} 4.4y 1.5Y% o 0.7 0.6
hydro2d 8.6 18.5% 3.0% 9.0Y% 1.0 3.6
mgrid 23.9% 26.0% | 11.7% 11.7% 3.6 3.8
nasbuk 07, 14.2, 0% 0% 0.8 1.4
ocean 8.9% 6.9% 2.4, 0% 0.0 0.2
su2cor 1.4 2.8 4.0/, 4.0Y 3.7 3.3
swim -10.5% | -15.7% oY% o’ 9.4 15.7
tomcatv 18.1% 9.0% 4.4} 4.4), 3.9 4.7
vave5 -1.4% 5.9% 1.6Y, 2.9Y% 1.1 1.4

Figure 5.22 Compile time and executable size increase,

with strip-mining

Figure 5.22 shows the same statistics with the compiler’s register pressure driven
loop strip-mining option (described in Section 3.4.2) is enabled. With strip-mining
of the steady-state loop, we are to hold the £77 compile time increase down to a
maximum of 26% in the case of “mgrid” for the 128-byte line case (as opposed to
an increase of 148% when no strip-mining is used). Strip-mining does result in in-
creased overhead- the programs for which strip-mining has the most benefit in terms
of compile-time moderation (hydro2d, mgrid, swim, and tomcatv, for example) show
increased IPP values. It should be noted that IPP is already very low for these
programs when compiled for larger line sizes, however (see Figure 5.14), for most of
these programs IPP is still below 0 even with strip-mining enabled, indicating that
the strip-mined version of the code is still getting most of the benefits of unrolling.

75

5.6.4 Techniques to improve prefetch scheduling

We now evaluate the effects of our two new scheduling optimizations, prolog overlap
and outer loop pipelining. These transformations are described in Sections 3.4.4
and 3.4.5. Figure 5.23 shows the number of loops selected for each transformation,
assuming a prefetching latency of 175 cycles. In these experiments prolog overlap
was applied to every loop nest that met the restrictions on loop bounds, subscript
expressions, etc., whereas we only applied outer loop pipelining to loop nests where
the inner loop had “WorstCase” pipeline characteristics (see Section 5.5.3). We see
that prolog overlap is more widely applicable than outer loop pipelining, which is to
be expected given the more restrictive criteria required for the latter technique. In

the following sections we provide simulation data on each method.

Outer loop | Prolog
Program || Loops | Inner loops | pipelining | overlap
appbt 207 98 23 48
applu 182 83 32 41
appsp 251 110 27 71
apsi 389 228 2 51
cgm 31 26 1 1
erl 82 38 2 27
£lob62 152 85 21 61
hydro2d 161 104 0 50
mgrid 66 30 8 14
nasbuk 10 10 0 0
ocean 227 130 0 17
su2cor 130 90 o] 4
swim 24 16 0 6
tomcatv 16 9 0 5
waveb 414 301 4 70

Figure 5.23 Applicability of scheduling optimizations

Prolog overlap

Figure 5.24 shows the effects of prolog overlap on program performance. The first
column shows the percentage of late prefetches that were eliminated, relative to the
default prefetched version of the program. The second column shows the percentage

increase in overshoot, i.e., the number of prefetched lines that arrive in the L1 cache

76

but are displaced before they can be used. The final column shows the effect on

execution time; positive numbers indicate an improvement in performance.

Late prefs | Increase in | Execution time
Program | eliminated | overshoot improvement
appbt 93.2Y% 52.4Y, 1.2%
applu 68.7Y% 2.2% -0.2%
appsp 81.2Y% 87.6% -1.8%
apsi 11.7% 0.7% -0.6%
cgm 1.0% -1.7% -0.2Y%
erl 95.7Y% 273.9Y -0.2Y%
£lo52 87.3/ 0.6Y% -1.2%
hydro2d 18.1% 51.6% 0.5Y%
mgrid 81.2Y% -0.5% 0.1%
nasbuk oY, o’ 0%
ocean -0.2% ~0.1Y, -0.1%
su2cor 57.8% 3.6/ -1.9%
swim 99.4Y% 2.9% 0.4Y%
tomcatv 99.7% 4.2/ -1.4,
waveS =2.7% -4.0% -0.8%

Figure 5.24 Effects of prolog overlap on performance

The data indicate that prolog overlap is effective in reducing the number of late
prefetches for many of the programs, yet the overall impact on performance was min-
imal. Four programs also show an increase in overshoot, however: appsp, appbt,
erl, and hydro2d. In the case of erl the huge increase is something of a red her-
ring, since in the standard prefetching version there is very little overshoot to begin
with. For the other three programs, however, the increased level of overshoot is sig-
nificant, effectively cancelling out some or all of the gains seen due to the reduction
in late prefetches. The overall effect on execution time due to prolog overlap is rela-
tively minor. We attribute this to the fact that in the uniprocessor case, the average
penalty incurred due to a late prefetch is fairly small (see Figure 5.16). In Chapter
7 we take another look at scheduling optimizations for distributed shared memory
multiprocessors, where the average penalty for a late prefetch is much higher.

Outer loop pipelining

Our results indicate that outer loop pipelining can be somewhat unpredictable in its
effects. We have found several factors that account for this unpredictability. First,
when outer loop pipelining is applied, the prefetching distance granularity becomes
much higher, since the distance must be in terms of outer loop iterations instead of
inner loop iterations. As a result, prefetching distance over- and under-estimates are
more common. Second, outer loop pipelining can have a number of effects on instruc-
tion overhead, both positive and negative. When outer loop pipelining is applied to
loops with very little computation, it can convert the loop’s large inner-loop prefetch-
ing distance to a much smaller outer-loop prefetching distance. This means that
more time will be spent in the unrolled steady state portion of the pipeline, reducing
instruction overhead. On the other hand, the use of strip-mining can introduce ad-

ditional instruction overhead, since the transformation effectively adds another loop

level.

Late prefs | Increase in | Execution time
Program | eliminated | replacements | improvement
appbt 49.7Y -98.7% 1.5Y%
applu 46.6, -95.3% 6.9%
appsp -31.6Y -50.5% 3.8
apsi -0.2% -4.8Y% -2.1%
flo52 -567.0% =3.7% 0.2/
mgrid 7.5Y% 740.4Y -2.1%

Figure 5.25 Effects of outer loop pipelining on performance

Figure 5.25 shows the effects of outer loop pipelining for our benchmark suite.
Only six of the programs showed any noticeable changes; we show the results for
these programs. As in the previous section, we give data on percent reduction in late
prefetches, percent increase in overshoot, and overall improvement (decrease in exe-
cution time). The three programs with short inner loops (appbt, appsp, and applu)
show modest improvements in performance. In the case of appsp, however, most of
the gains come from a reduction in instruction overhead and not from scheduling
effects. In addition, two of the other programs (apsi and mgrid) are degraded by
outer loop pipelining. In the case of apsi, the degradation is from increased instruc-
tion overhead as a result of strip-mining. In the case of mgrid, the slowdown is due

78

to additional conflicts between the current working set and the prefetched lines that
are arriving earlier. The program £1o052 actually shows in increase in late prefetches
(something of a red herring, since it had few late prefetches to begin with), but gains

a little in terms of instruction overhead, resulting in a small improvement.

5.7 Summary

[n this chapter we give the results of a detailed evaluation of compiler performance
for uniprocessor prefetching, using the metrics developed in Chapter 4. Our use of
simulation allows us to provide a clear view of the compiler’s contributions and to
precisely quantify the effects of various compiler strategies.

In the area of prefetch target selection, we find that in most cases poor prefetch
coverage is due to cache conflicts and not due to our prefetching policy (i.e., inserting
prefetches only for references nesting within inner loops). By providing a break-
down of uncovered cache misses by lexical nesting, we show that in programs where
prefetching has been applied, the bulk of the remaining cache misses are still within
inner loops, suggesting that compiler developers should continue to focus on loops,
as opposed to references not enclosed in loops. Our findings indicate that many pro-
grams exhibit a significant percentage of useless prefetches, indicating that existing
compiler analysis techniques are often unable to effectively recognize and/or exploit
the available reuse. We describe several improvements to our default reuse analysis
strategy, experimentally characterizing their effects on useless prefetches. We also
provide empirical data on prefetching overshoot; the data from these experiments
suggest that for this particular benchmark suite, there is little to be gained by adding
optimizations designed to reduce overshoot.

With respect to instruction overhead, we experimentally characterize the instruc-
tion overhead for our compilation scheme; the results show that a prefetching strat-
egy based on shadow arrays provides a viable platform for studying compiler-directed
software prefetching. In the area of prefetch scheduling, we provide an experimental
study of the pipeline characteristics for the programs in our benchmark suite, as well
as giving data on the frequency of late prefetches and the penalties they incur. A num-
ber of the programs in our benchmark suite have very poor pipeline characteristics,
leading to high levels of instruction overhead and non-optimal prefetch scheduling.
We perform experimental evaluations of two new compiler techniques for improving
scheduling: outer loop pipelining and prolog overlap. Our results show that these

79

techniques are effective in reducing the number of poorly scheduled prefetches, al-
though the performance improvements are very modest, due to the relatively small

penalty incurred by late prefetches on our simulated uniprocessor configuration.

80

Chapter 6

Cross-loop Reuse Analysis and Transformations

6.1 Introduction

In this chapter we describe the design of a data-flow framework for detecting cross-
loop reuse. Cross-loop reuse takes place when a set of data items or cache lines is
accessed in a given loop nest and then accessed again within some subsequent portion
of the program, usually another outer loop nest. In contrast to intra-loop reuse, which
occurs during the execution of a single loop nest, cross-loop reuse is hard to analyze
using traditional dependence-based techniques [13, 99]. Dependence analysis can
provide very detailed information about the memory access patterns within a loop,
but applying it to larger regions within a procedure is difficult, especially if the region
in question contains control flow or procedure calls.

Rather than operating on the granularity of individual statements or array ref-
erences, as is the case with dependence analysis, our analysis framework uses array-
section analysis to reason about reuse in terms of entire regions within an array. The
array section information is then used as input to a data-flow solver, which deals with
intra-procedural control flow. The framework is designed to account for cache size
when gathering reuse information, and when used in an interprocedural setting, it
also provides a mechanism for summarizing the effects of procedure calls.

Cross-loop reuse analysis provides information that is useful for compiler-directed
software prefetching. As with intra-loop reuse analysis, cross-loop reuse analysis
allows the compiler to identify situations where the prefetch for a given reference
can be eliminated, decreasing prefetching instruction overhead. Section 3.4.3 outlines
how our compiler uses cross-loop reuse analysis to eliminate redundant prefetches,
and in Section 5.6.1 we give experimental data on the effectiveness of this strategy in
practice. Cross-loop reuse analysis also forms the underlying basis of our framework
for compile-time prediction of coherence misses in parallel programs, described in
Chapter 7.

31

Additionally, cross-loop reuse information can also be used to directly drive a
number of transformations that enhance locality and improve cache utilization, in-
cluding loop fusion and loop reversal [99]. Although these transformations are not
new, their impact on cache behavior has not always been easy to predict, making
them difficult to apply.

An outline of this chapter is as follows. In Section 6.2 we describe the details of our
framework. In Section 6.3 we outline how the information provided by the framework
can be applied, and in Section 6.4 we describe the results of some experiments using
our framework to directly drive locality-enhancing transformations. In Section 6.5 we

discuss related work, and finally in Section 6.6 we summarize our findings.

6.2 Analysis framework

In this section, we describe the details of our analysis. We begin by we outlining some
of the key design goals for the problem we are solving, and discuss how we accomplish
these goals. Section 6.2.1 introduces the control-flow representation used by our data-
flow solver. In Section 6.2.2, we describe the domain over which our data-flow solver
operates (i.e., the sets propagated during the analysis). Sections 6.2.3, 6.2.4 and 6.2.5
describe the actual data-flow equations used, along with their inputs and the details
of the solver. In Section 6.2.6, we discuss incorporation of cache size constraints. In
Section 6.2.7, we briefly cover the algorithmic complexity of some of the operations
performed in the framework. In Section 6.2.8, we describe how this framework can

be used in an interprocedural setting.

Important design considerations

At a high level, the goal of our framework is to determine the set of array regions
accessed on all paths that reach a point X within a given program. In many re-
spects, this problem is similar to the well-known data-flow problem of “Available
Expressions” [4]. We formulate a solution to our problem, therefore, using data-flow
analysis.

We do not use a traditional data-flow solver, however, since our problem is unusual
in some important respects. First, the problem requires that we explicitly take into
account the loop structure of the program, as opposed to treating all control flow
in an identical fashion. This is necessary because a given subscripted reference will

82

access a different region in its array depending on how much of the surrounding loop
context is taken into account (see Section 3.4.1 for an example).

A second aspect of the problem complicates the analysis: we want to take into
account the size of the cache. The tools we have developed for this sub-task are
difficult to combine with traditional flow analysis techniques. The solver we use
allows us to develop a framework for detecting reuse without considering cache size
constraints, and then factor in the cache size if necessary (see Section 6.2.6).

We use array-section analysis extensively in this framework [11, 15, 17, 45]. See

Section 3.4.1 for a brief introduction to this form of analysis.

6.2.1 Control flow representation

Rather than using a standard control-flow graph (CFG), this framework uses an
interval-flow graph (IFG), developed by von Hanxleden and Kennedy [44]. Our use
of the interval-flow graph allows us to take the loop structure of the program into
account explicitly. The IFG is constructed by starting with a normal CFG and then
partitioning the nodes and edges in the graph into categories based on Tarjan interval
analysis.[90] *

A Tarjan interval T'(h) is a set of CFG nodes that corresponds to a loop within

the program, where A is a unique header node (with h ¢ T(h)). Intuitively, T(h)
together with A form a strongly connected region within the CFG. When z € T'(h),
we say that HEADER(z) = h.
Each interval-flow graph G = (N, E) has a unique root node, ROOT, that can be
viewed as the header node for the interval corresponding to the entire procedure.
We define LEVEL(n) as the loop nesting level of node n, counting from the out-
side in, where LEVEL(ROOT) is defined as 0. For a given interval T(n), we define
CHILDREN(n) as the set of nodes { p € T'(n) : LEVEL(p) = LEVEL(n) + 1 }, that is,
the nodes in the interval headed by n that are immediate descendants of n. Figure
6.1 shows an example program fragment along with its interval-flow graph.

Each edge (z — y) in the IFG is placed into one of the following categories:

“The interval-flow graph (a data structure) should not be confused with interval-based data-flow
analysis (an algorithm). Data-flow analysis techniques that use the interval-flow graph generally
do not include the notion of collapsing intervals in the CFG into single nodes, as in interval-based
data-flow analysis.

83

do j=1, n
doi=1,n
= a(i,j) !
endcio b(j) : . Intervals:
enddo T(1) = {234}
call bar(a) 5 5 T(2)={3}
dok=1,n T i, : T(6)={7,8}
.= a(l,k) do k et aci } E
call foo(a, k) e !
enddo : call :

Figure 6.1 Example sub-program with interval-flow graph

ENTRY: iffy € T(z) ; an edge from an interval header

z to a node within the interval.

CycLE: iffz € T(y) ; an edge from within an interval
back to the header of that interval.

Jump: iffdh:z € T(h), y¢ {T(h)Uh};ajump out
of a loop (i.e., an edge from a node in one interval
to a node outside the interval that is not the A,

header node).

FLow: iff Vh:z € T(h) <= y € T(h) ; an intra-
interval edge (i.e., an edge that is none of the

above).

To refer to the predecessors and successors of a given node, we use the following

terminology:
PREDS(n): Thesetofnodes {z : Je€ E, e = (z,n) }

Succs(n): Thesetofnodes {z : Je€ E, e = (n,z) }

84

The PREDS(n) and SucCS(n) notation may be further qualified by adding a su-
perscript containing the desired edge type. For example, PREDS (n) is the set of
nodes that are at the source of a FLOW edge whose sink is n, Succs®/(n) is the set
of nodes that are that are at the sink of an ENTRY or JUMP edge whose source is n,
and so on.

After construction of the IFG, the graph is post-processed to insure that each
interval has at most one CYCLE edge, i.e., for each non-empty interval T'(h) there
exists a unique n € T'(h) such that (n,h) € E. This sometimes requires the insertion
of synthetic nodes and edges [43].

In addition, we define two types of partial orderings on N, as follows:

FORWARD/BACKWARD: Given a FLOW/JUMP edge (m,n), a
FORWARD order visits m before n, whereas a BACKWARD

order visits m after n.

UPWARD/DOWNWARD: Given m,n € N such that m €
T(n), an UPWARD order visits m before n, whereas a
DOWNWARD order visits n before m.

These two orderings are orthogonal and may be combined (for example, a FORWARD
and DOWNWARD order).

6.2.2 Data-flow universe

The universe for this data-flow problem consists of sets of array section descriptors,
where each descriptor is composed of the name of the array in question and a sym-
bolic representation of the region accessed within the array. We call these sets reuse

summary sets. An example of a reuse summary set might be
{a(1:10), a(75:n), b(i:n)}

As can be seen from the set above®, a reuse summary set may contain more than one
region within a given array. The interpretation of the set depends on the context; it
may represent a set of array sections available on entry to a given block, generated

within a given loop, etc.

%In this example we are showing only the geometric region component of the DAD. The actual DAD
contains more detailed information on the array access.

85

6.2.3 Initial information

For each basic block n that contains one or more array references, we compute the
set GEN,yr(n). This reuse summary set contains an array section for each array
reference within the block. The sections initially assigned to GEN,y,r(n) are computed
with respect to the innermost loop level. During the analysis, when the section is
propagated up out of an enclosing loop, the region of the section is reconstructed to
take the loop in question into account.

During the computation of the initial set for a block, we attempt to coalesce
sections that are adjacent or identical. For example, we might try to collapse the set
{a(i,j), a(i+1,j) }into { a(i:i+1,j) }. This coalescing is only performed when

it will result in no loss of precision.

GEN(n) = /\ { GENour(p) } (6.1)
pEPREDF (n)
GENyyr(LASTCHILD(n)) if n is an interval header
GENLoc(n) = (6.2)
GEN,N,T(n) otherWise
GENOUT(n) = GEN,N(‘n) A\ GENLoc(n) (6.3)
REACH,y(HEADER(n)) if PREDSZ (n) # 0
REACH, = 6.4
w(m) A { REACHour(p) } otherwise (6.4)
pEPREDF (n)
REACHOUT(TZ) = REACH[N(n) \ GENLoc(n) (6-5)

Figure 6.2 Reuse equations

6.2.4 Reuse equations

Our goal for the flow analysis is to compute the set REACH,y(n) for all of the nodes
in the IFG. The set REACHy(n) corresponds to the set of array sections that reach
node n on all paths from ROOT to n. We compute REACH,y using the equations in

86

Figure 6.2; evaluation of the equations is controlled by the algorithm in Figure 6.3.
All sets are initially empty (with the exception of GEN,y,7).

[ntuitively, GEN,y(n) corresponds to the set of sections accessed by the nodes
prior to n within the interval that contains n. GEN,oc(n) corresponds to the set of
sections accessed within n (if n is not a loop header) or the sections accessed within
the interval headed by n (if n is a loop header). GENyyr(n) combines GEN,y and
GEN_oc to form the set of sections that flow out of n (taking into account only the
nodes in the interval containing n). The GEN values are computed starting with
innermost loops and working outwards.

REACH n(n) corresponds to the set of sections reaching n from within n’s interval
and (possibly) from some previous loop outside n’s interval. REACH,yr(n) is the set
of sections flowing out of n, where the sections may be generated locally or they may

reach n from some previous loop somewhere in the program.

procedure ComputeReuse

inputs: interval-flow graph G = (N, E)
GENpr(n) foralln e N
outputs: RFEACH;y(n) and REACHyyr(n) foralln e N

begin
forall n € NV in UPwWARD and FORWARD order:
compute equations 6.1, 6.2, and 6.3
forall n € N in DOWNWARD and FORWARD order:
compute equations 6.4 and 6.5
end

Figure 6.3 Procedure for computing reuse equations

6.2.5 Meet (/\) and join (\/) operators

In the equations above, the V and A operators play an important role. The A operator
is used to merge together sets of sections at join points, and the V operator is used
to merge together local information with incoming information (i.e., the V operator
models the effects of passing through a block).

87

The left hand side of Figure 6.4 illustrates a situation where the A operator is
needed. In this case, the analysis must merge together the sections reaching the node
X from its two predecessors M and N, taking into account the fact that the particular

path to X is unknown.

-_—— - - —--

iy through
Y

Figure 6.4 Control flow

- - — -y
-t - - -
D T R aray)

¢

4
~

The right hand side of Figure 6.4 shows a situation where the V operator is needed.
The sections flowing out of X need to be combined with the sections locally generated
at Y, but in this case we know that flow of control must reach Y if it reaches X (unless

the program diverges).

6.2.6 Incorporating cache constraints

The data-flow framework we have described in the previous sections predicts reuse
without regard to cache size or other resource constraints. The resulting information
does not give any hint as to distance between successive uses of array data, but rather
only indicates that a set of array locations is reused. In most situations, we would like
to know whether the distance between the successive uses is small enough that the
reused items will be found in cache, for some fixed cache size. This section describes
how we modify our framework to take cache size and organization into account. The
key change we make is to the implementation of the V and A operators, as will be
shown shortly.

Array section age:

First, we introduce the concept of the “age” of an array section with respect to a
particular point in the program. We define the age of a given section as the number
of cache misses that have taken place since the first element of the section was brought

88

into the cache. Array section age, a compile-time construct, is intended to model the
finite-cache capacity effects on a particular array at run-time.

During the analysis, we associate age values with each of the sections in a reuse
summary set. When an array section is first added to a reuse summary set (corre-
sponding to the point where it is first brought into the cache) we assign it an initial
age value based on its volume. As the section is propagated to other points in the
CFG, other accesses will start to displace the section from the cache; when this hap-
pens, the age of the section is incremented. Eventually the age of the section reaches
a cutoff, at which point we consider the section “dead” (i.e., totally displaced from
the cache), and it is eliminated from its reuse summary set.

In order for this scheme to work, we need to have a mechanism for determining
the number of cache lines accessed by an array reference within a loop; this is in fact
a research problem all by itself [30]. Our approach is to estimate the volume of the
DAD for the reference, using a simple technique similar to the RefCost algorithm

developed by Carr, McKinley, and Tseng [19].

Cache organization:

Our framework is not equipped to predict cache conflicts due to limited associativity.
We instead conservatively assume that cache conflicts will reduce the amount of reuse
that takes place by a fixed factor. We currently estimate the “effective” size of the
cache used in the analysis by multiplying the actual cache size by 1 — 3&, where S is
the set associativity of the cache. We base this heuristic on the commonly used “2:1
rule of thumb”, a conjecture which states that a direct-mapped cache of size N has

approximately the same miss rate as a 2-way set-associative cache of size N/2 [47].

V operator for finite caches:

For the finite cache case, we use a more sophisticated V operator that models the cache
effects when execution passes through a given node (shown in Figure 6.5). Given the
set of sections flowing into block N (/N) and the set of sections accessed locally
within N and N’s descendants (LOC), this new V operator computes the OUT set,
taking into account the level of reuse and the size of the cache. The algorithm is
based on the observation that a given section S € LOC will cause cache misses only

if it is not contained in some section S’ € IN.

89

procedure FiniteCache-V

inputs: IN (incoming reuse summary set)
LOC (reuse summary set for locally accessed data)
outputs: OUT (outgoing reuse summary set)

begin
volume < 0
R«10
forall x € LOC:
if 3 y € IN such that x is contained in y then
R~ Ru{y}
else
volume ¢+ volume + (cache line volume of x)
endif
endfor
OUT « LOCU (IN- R)
forall x € OUT:
increment age value of x by volume
remove x from OUT if age exceeds cache size cutoff
endfor
end

Figure 6.5 V for finite cache case

90

A operator for finite caches:

We also modify the A operator when estimating reuse for a finite cache. Set inter-
section is still the basis for the operator, but the age values of the sections must be
adjusted as well. In particular, when the A operator merges the reuse summary sets
for two incoming paths, it may encounter a section that appears in both sets, but has
a different age value in each one. In this case, the A operator chooses the larger of
the two ages when forming the result.

For example, consider the graph fragment in Figure 6.4. Suppose that we are
applying the A operator to the sections reaching block X from its predecessors M
and N, and suppose that blocks V, M, and X contain array accesses (each to a
different array), and that N contains no accesses. When we apply the A operator,
both input sets will contain the section from V' (we assume here that the number of
accesses in M is relatively small), however the age of the sections from V that arrive
at X along the edge M — X will be larger than the age of the corresponding sections
flowing through the edge N — X (due to the additional data brought into the cache
in M). The A operator selects the larger age, in order to be conservative.

6.2.7 Complexity

Generating the GEN,u,r set for each block requires that we build a DAD for each
array reference in the procedure. This process requires O(D? * N) time per reference,
where D is the number of dimensions of the array and N is the nesting depth of
the reference. Each DAD takes O(D?) space, and most operations involving DADs
(union, intersection, containment, comparison) take O(D?) time.

The flow analysis framework itself considers each node and edge in the IFG exactly
twice. The A and V operators for the unlimited-cache case are linear in the number
of sections in the sets being operated on, but for the finite-cache case, V takes O(N?)
time in the worst case (where N is the number of sections in each set), since since
each section in the set may have to be compared with every other section.

In practice, we have found that the time required by the framework is comparable
to the time that it takes to perform dependence analysis for the procedure.

91

6.2.8 Interprocedural analysis

Array-section analysis was originally conceived as a means of summarizing the effects
of procedure calls within loops. As a result, it is relatively straightforward to extend
our framework to an interprocedural setting.

When invoked in the context of whole-program analysis, we use the following
strategy. We analyze procedures starting with the leaves in the call graph and working
up to the root, visiting a procedure only after all of the procedures it calls have been
visited. When a procedure call is encountered within the IFG of the subroutine being
analyzed, we take the previously computed REACH,,; set for the callee and use it
as the GEN,oc set for call (applying array reshapes if necessary, and translating the
summary into the name space of the caller by substituting actuals for formals, etc.).

Summarizing call sites in this fashion is generally feasible only if the framework is
being run with cache size constraints taken into account (without the size constraints,
the reuse summary sets grow very large in the upper regions of the call graph).

Currently we are restricted to propagating information upwards in the call graph.
We do not, for example, take advantage of context within calling routines to reason
about reuse within a callee. Our analysis does not currently handle programs whose

call graphs contain cycles.

6.3 Applications of cross-loop reuse information

This section describes some of the ways in which cross-loop reuse information can be
used by a compiler. It should be noted that exploiting cross-loop reuse information
tends to be more difficult than exploiting intra-loop reuse information. The larger
the region within the program in which the reuse is taking place, the more obstacles
the compiler must overcome to apply restructuring.

6.3.1 Elimination of useless prefetches

Our compiler uses cross-loop reuse information to detect situations where prefetches
are unnecessary. Given a reference R within a loop L, we use the following test to
determine whether the prefetch for R can be eliminated. We construct an array-
section descriptor Sg that summarizes the region accessed by R with respect to L. We
then check to see if the section Sg is contained in some section Sqg € REACH,\(L),
for R’s array. If Sg exists, and if the same Sq € REACH,yr(L), (indicating that So

92

remains resident in the cache during the execution of the L), then we eliminate the

prefetch for R.

6.3.2 Locality-enhancing loop transformations

Cross-loop reuse can be used to predict the profitability of locality-enhancing trans-
formations involving pairs of adjacent loop nests. These transformations include (but

are not limited to) loop fusion and loop reversal.

Loop fusion:

Loop fusion combines two adjacent loops with identical headers into a single loop,
reordering the sequence of references made by the two loops. Loop fusion has the
potential to convert cross-loop reuse into intra-loop reuse, which can greatly enhance
cache utilization.

Our framework can supply enough information to cheaply predict the profitability
of loop fusion. The compiler can examine the REACH,, set for a given loop nest to see
what sections reach the loop. If the intersection of the REACH,, set with the GEN,oc
set of the loop is sufficiently large and the sections in the REACH,y set originate from
the immediately preceding loop nest, then loop fusion will be profitable (the degree
of profitability will be dependent on the volume of the intersection).® Once it is
established that the transformation is profitable, then the compiler can apply the

more costly dependence-based techniques to determine whether fusion is safe [99].

Loop reversal:

A weaker but slightly more widely applicable technique is loop reversal. This op-
timization can provide benefits only in proportion to the size of the cache, thus it
works best for very large (presumably secondary or tertiary) caches. Consider two
consecutive outer loops that both access a single large vector, where vector itself is
too big to fit entirely in cache. Even though the vector is reused, there is no cache
reuse, since when the second loop begins execution, the first elements of the vector
have been flushed from cache. However if we reverse the second loop, then the last
elements of the vector from the previous loop are likely to still be in cache. This op-
timization relies on the traversal order component of the DAD representation, which

SThis requires that we tag each section with the ID of the loop in which it originated.

93

captures the direction and stride of the access in each array dimension (see [12] for
the details). One advantage of loop reversal is that the target loops do not have to be
directly adjacent. There may be intervening code between the loops, provided that

the code does not destroy the useful reuse.

6.3.3 Transforrmation selection

Even if the compiler can cheaply predict when a transformation is going to be prof-
itable, there still remains the problem of deciding the sequence of transformations to
apply within a procedure. A given loop nest may be optimized in several different
ways (fused with its predecessor or with its successor, for example). Selecting the
optimal set of transformations is a very difficult problem; optimizing temporal local-
ity using loop fusion alone is NP-hard [52]. As a result, the compiler must resort to
heuristics to choose the set of transformations to apply.

Our transformation selection procedure is as follows. For each loop nest N, we
create a hash table (the “reuse score table”) whose entries are tuples of the form
(L, R), where L is a loop ID number and R is an estimate of the number of cache
lines reused from loop L. We generate the reuse score table for a loop N while
computing the value of equation 6.3 in Figure 6.2; when a section z € GEN(N)
intersects with a section y € GEN,oc(N), we compute the volume of the intersection
of z and y, determine the loop L’ in which z originated, and update the L’ entry in
N’s table. We calculate the total score for a loop by summing the values of all of the
entries in its reuse score table.

We then use a greedy algorithm to select the loops to optimize; we first consider
the loop nest with the highest reuse score value, optimize it if possible, then consider
the loop with the next highest score, and so on. We first apply loop fusion, then loop
reversal. We limited loop fusion to the outermost loop in each pair of adjacent loop
nests in our study (for nests involving more than one loop). Fusion of inner loops
often results in decreased instruction count, whereas in this study we opted to focus

primarily on cache effects.

6.4 Experimental results

In this section, we report the results from an experimental study in which we apply
our techniques to ten programs from the SPEC95 floating point benchmark suite [96].
The infrastructure for this experiment consists of a Fortran transformation engine,

94

including the cross-loop reuse analysis framework, and an execution-driven simulator

for gathering instruction counts and cache statistics.

6.4.1 Compilation

The compilation phases for this experiment are shown in Figure 6.6. In order to focus
solely on cross-loop transformations, we disabled most of the phases of our compiler
related to software prefetching (as described in Chapter 3), leaving only the cross-
loop reuse analysis framework and cross-loop transformations. All of the analysis and

transformation steps shown are performed automatically.

{ Phase Remarks]
1. Front end processing || read and typecheck Fortran source

build AST (abstract syntax tree)

2. Local analysis build IFG for each procedure

compute GEN,y,r for all n € IFG

3. Cross-loop analysis run cross-loop framework for each function

4. Transformations apply loop reversal and loop fusion
based on cross-loop reuse info
5. Output generate transformed Fortran source

Figure 6.6 Compilation stages

6.4.2 Simulator

We used a very simple cache simulator for this study, based on the tool shade, part of
the SPARC Performance Analysis Toolkit [23]. Shade provides an extensible mech-
anism for writing execution-driven simulators; it operates by interpreting a SPARC
executable and passing a trace of the instructions to a user-written trace analyzer.
In our case, the trace analyzer counts instructions and simulates a particular cache
configuration.

After the source-to-source transformer is run, the target programs are instru-
mented with calls to runtime routines to tag outer loop nests and to demarcate the
regions of the program’s address space containing array data. The instrumented
programs are then compiled using the Sun £77 Fortran compiler (version SC4.0

18/0ct/95).

95

The simulator deals with data cache behavior only; it does not simulate an in-
struction cache. We use the following cache parameters for our simulations. The L1
cache is 64 Kbytes, 4-way set-associative, with a line size of 32 bytes, and the L2
cache is 1024 Kbytes, also 4-way set-associative with a line size of 32 bytes. An LRU
replacement policy is used within each cache set. Both caches are write-back, with

an allocate-on-write-miss policy.

6.4.3 Benchmark programs

Figure 6.7 gives some of the summary characteristics of the programs we used for
our experiments. “Functions” is the number of procedures in the program; “Lines”
is the number of non-comment source lines. “Data” is the total size of all the arrays
used by the program, in megabytes. “Runtime” shows the approximate wall clock
running time on an unloaded SPARCStation 10 with 256 megabytes of memory. The
“training” input files were used for these runs, in order to yield more reasonable

simulation times [96]. The programs themselves were not modified, however,

6.4.4 Results

Figure 6.8 gives the raw instruction counts and cache metrics for the original un-
transformed programs. All numbers are in thousands. The “Instructions” column
contains the total dynamic instruction count for the program. The Ll and L2 cache
metrics are for accesses to array data only (i.e., they exclude accesses to scalars,
compiler-generated spill code, etc.). The “P-cycles” term in the final column is an
approximation of the overall execution time of the program; it combines the total
instruction count with the projected stalls due to cache misses. It is computed as

follows:

P-Cycles =IC+ (Ml * Pl) + (M2 * P2)

where “IC” is the total instruction count, M, is the total number of misses at level
k, and Py is the additional miss penalty at level k. For the purposes of this study, we
assume a level 1 miss penalty of 10 cycles and an additional level 2 miss penalty of
80 cycles, for a total miss-to-main-memory time of 90 cycles.

Figures 6.9, 6.10, and 6.11 show the results for the transformed programs using
purely static reuse analysis. Figure 6.9 gives a summary of the specific transformations
applied to each of the programs. The numbers show for “candidates” indicate the total

Program |j Functions | Lines | Data (MB) | Runtime (secs)

applu 16 1883 32.3 25

apsi 96 4872 9.4 61

fpppp 38 2408 0.5 6

hydro2d 40 1565 8.6 182

mgrid 13 445 7.5 192

su2cor 36 17583 23.8 551

swim 6 261 14.4 15

tomcatv 1 125 14.4 181

turb3d 23 1294 25.4 337

waveS 104 7372 41.4 65

Figure 6.7 Program characteristics

Program | Instructions { L1 hits | L1 misses | L2 hits | L2 misses | P-cycles
applu 329,240 66,962 5,962 4,731 1,231 487,340
apsi 2,333,872 362,521 5,427 5,413 4 2,388,462
fpppp 240,043 23,771 38 36 2 240,583
hydro2d 5,543,080 | 1,186,888 218,461 16,091 202,371 | 23,917,370
mgrid 12,566,952 | 3,445,822 119,285 102,698 16,587 | 15,086,762
su2cor 23,341,356 | 6,425,969 | 1,215,323 | 1,024,815 190,508 | 50,735,226
swim 481,252 119,409 8,784 21 8,763 1,270,132
tomcatv 6,398,033 | 1,647,655 172,041 26,139 145,901 | 19,790,523
turb3dd 14,453,171 | 2,568,151 84,751 34,275 50,475 | 19,338,681
waved 2,700,459 564,179 38,124 30,988 7,106 | 3,650,179

Figure 6.8 Simulation data for original programs [thousands]

fusion reversal
Program | loops | fused | candidates | reversed | candidates
applu 168 2 4 20 111
apsi 298 1 2 5 150
fpPPP 39 0 0 0 6
hydro2d 163 3 14 5 136
mgrid 57 0 1 7 36
su2cor 118 0 0 3 47
swim 24 0 4 0 22
tomcatv 16 0 2 0 8
turb3d 64 0 0 0 33
waved 377 14 27 27 212

Figure 6.9 Transformation summary

96

Program | Instructions | L1 hits | L1 misses | L2 hits | L2 misses | P-cycles

applu 330,029 67,138 5,814 4,582 1,232 486,729
apsi 2,333,872 360,505 5,411 5,399 4 2,388,302
fpppp 240,042 23,518 39 37 2 240,592
hydro2d 5,542,709 | 1,197,341 218,262 18,518 199,744 | 23,704,849
mgrid 12,561,752 | 3,448,549 116,891 100,306 16,577 | 15,056,822
su2cor 23,341,354 | 6,423,729 | 1,217,500 | 1,027,017 190,482 | 50,754,914
swim 481,490 119,409 8,784 21 8,763 | 1,270,370
tomcatv 6,397,215 | 1,647,651 172,044 26,143 145,901 | 19,789,735
turb3d 14,668,168 | 2,555,806 95,870 45,379 50,490 | 19,666,068
waveb 2,686,798 559,578 38,891 31,779 7,081 | 3,642,188

Figure 6.10 Simulation data for transformed programs [thousands]

Program | Instructions | LI hits | L1 misses | L2 hits | L2 misses | P-cycles
applu 0.23 0.26 -2.48 -3.14 0.08 -0.12
apsi 0 -0.55 -0.29 -0.25 0 0
fpppp 0 -1.06 2.63 2.77 0 0
hydro2d 0 0.88 -0.09 15.08 -1.29 -0.88
mgrid -0.04 0.07 -2.00 -2.32 -0.06 -0.19
su2cor 0 -0.03 0.17 0.21 -0.01 0.03
swim 0.04 0 0 0 0 0.01
tomcatv -0.01 0 0 0.01 0 0
turb3d 1.48 -0.48 13.11 32.39 0.02 1.69
waveb -0.50 -0.81 2.01 2.55 -0.35 -0.21

Figure 6.11 Percent change between
original and transformed (no profile data)

97

98

number of loops in the program that were determined to be legal candidates for fusion
or for reversal. Figure 6.10 shows the raw data for the transformed programs (again,
all numbers are in thousands). Figure 6.11 compares the transformed programs to
the original programs in each category. As can be easily seen, there is very little
overall change in program performance.

After a closer inspection of the results, we found that the framework appeared
to be missing a number of important transformation opportunities. Our initial in-
vestigations suggested that the compiler was frequently forced to make conservative
assumptions about reuse due to unknown loop bounds. To explore this hypothesis,
we ran a new set of experiments in which the compiler incorporated profiling data
into the analysis framework.

We gathered profiling data by running each program on the given input file and
gathering the minimum, maximum, and average value for the loop bounds, loop step,
and overall trip count. For loops whose bounds were invariant at run-time, the com-
piler substituted in the bounds from the profiling data when computing the GEN,oc
set for the loop in question. It should be emphasized that profiling data was only
used in the portions of the analysis that determine profitability of transformations,
not the safety of the transformations.

Figures 6.12, 6.13, and 6.14 show the results with the profiling information. By
using profiling data, the compiler was able to compute more accurate estimates of
the number of cache lines accessed in each loop nest, and was able to detect reuse
in situations where previously it had to assume no overlaps, to be conservative. The
number of loops fused went up from 20 to 24, and the number of reversed loops went
up from 67 to 84. The results in Figure 6.14 indicate that two programs, tomcatv and
hydro2d, showed improvements in performance as a result of the transformations. In
both cases, the improvement is due to improved cache behavior; both programs show

significant reductions in both L1 and L2 misses overall.

6.5 Related work

A number of researchers have developed compiler techniques useful for improving
cache behavior (8, 16, 19, 66, 98]. Almost all of these techniques apply to individual
loop nests, however, and are not designed to detect or exploit cross-loop reuse. Two
exceptions are loop fusion and affinity regions.

fusion reversal

Program | loops | fused | candidates | reversed | candidates
applu 168 2 4 20 111
apsi 298 1 2 b 150
fpppp 39 0 0 0 6
hydro2d 163 5 14 20 136
mgrid 57 0 1 7 36
su2cor 118 0 0 5 47
swim 24 I 4 1 22
tomcatv 16 1 2 0 8
turb3d 64 0 0 0 33
waveb 377 14 27 26 212

Figure 6.12 Transformation summary (with profile)

Program | Instructions | LI hits | L1 misses | L2 hits | L2 misses | P-cycles
applu 329,562 67,122 5,813 4,584 1,229 486,012
apsi 2,333,873 362,635 5,289 5,277 4 2,387,083
fpppp 241,000 23,518 39 37 2 241,550
hydro2d 5,581,854 | 1,195,747 209,575 30,474 179,101 | 22,005,684
mgrid 12,561,753 | 3,446,434 118,673 102,110 16,563 | 15,073,523
su2cor 23,342,471 | 6,423,530 | 1,217,698 | 1,027,185 190,514 | 50,760,571
swim 480,793 119,411 8,783 29 8,754 1,268,943
tomcatv 6,396,957 | 1,663,997 155,700 23,096 132,603 | 18,562,197
turb3dd 14,453,171 | 2,567,901 84,701 34,225 50,476 | 19,338,261
waveh 2,705,524 | 559,560 38,909 31,797 7,081 | 3,661,094
Figure 6.13 Simulation data for
transformed programs, with profile [thousands]
Program | Instructions | L1 hits | L1 misses | L2 hits | L2 misses | P-cycles
applu 0.09 0.23 -2.49 -3.10 -0.16 -0.27
apsi 0 0.03 -2.54 -2.51 0 -0.05
fpppp 039 | -1.06 2.63 2.77 0 0.40
hydro2d 0.69 0.74 -4.06 89.38 -11.49 -7.99
mgrid -0.04 0.01 -0.51 -0.57 -0.14 -0.08
su2cor 0 -0.03 0.19 0.23 0 0.04
swim -0.09 0 -0.01 38.09 -0.10 -0.09
tomcatv -0.01 0.99 -9.49 | -11.64 -9.11 -6.20
turb3d 0 0 -0.05 -0.14 0 0
waved 0.18 -0.81 2.05 2.61 -0.35 0.29

Figure 6.14 Percent change between
original and transformed (with profile)

99

100

Kennedy and McKinley have proposed using loop fusion to improve locality and
cache behavior [52]. In a subsequent study, McKinley, Tseng, and Carr included
loop fusion in their repertoire of transformations for an experimental study on com-
piler cache optimizations [19]. This study used dependence analysis to test for the
profitability of loop fusion; loop reversal was not used as a locality-enhancing transfor-
mation. Their results showed that there are relatively few opportunities for applying
loop fusion, but when applied, it can be very beneficial. In contrast, we find that
loop reversal is much more widely applicable, although the benefits from reversal are
less pronounced.

Affinity regions are a mechanism that allows a compiler or user to give locality-
improving hints to the loop scheduler for a parallel program running on a shared-
memory multiprocessor. By placing a set of consecutive parallel loops within an
affinity region, the user or compiler is informing the loop scheduler that cross-loop
reuse exists and that it should try to assign iterations to processors in such a way that
the reuse is preserved. Compile-time identification of affinity regions was proposed
by Appelbe et al. [8].

Our data-flow framework resembles that of Gross and Steenkiste [39]. However
their framework is geared towards finding parallelism as opposed to detecting useful
reuse for cache optimizations. Our techniques are also similar to those developed
by Gupta, Schonberg, and Srinivasan for optimizing communication placement for
programs running on distributed-memory multiprocessors [41]. The problem of com-
munications placement is quite distinct from the problems we are attacking using
our framework, however. Communications placement deals primarily with the flow
of values within the program, whereas our analysis is more location-oriented. Their
framework also does not provide a means of incorporating resource constraints, such

as cache size.

6.6 Summary

In this chapter, we have presented a framework for predicting cross-loop reuse. The
framework combines two existing tools: array section analysis and data-flow analysis.
By using array sections, we can exploit the characteristics of the program’s array
access patterns without resorting to potentially costly procedure-wide dependence
analysis. By using data-flow analysis, we can gracefully handle intra-procedural con-

101

trol flow. Qur framework also provides a mechanism for taking into account a specific
cache size when predicting reuse.

This work opens up the possibility of systematically applying cross-loop transfor-
mations to improve cache utilization, since it provides a means of cheaply predicting
the profitability of loop fusion and particularly loop reversal. The results in this
chapter demonstrate that for programs that exhibit cross-loop reuse, our analysis
framework is able to detect this reuse and apply cross-loop transformations to exploit
it. For programs running on uniprocessors, our results translate into modest (up to
10%) improvements in overall execution time. We would expect to see more signifi-
cant gains for shared-memory multiprocessors, where small increases in second-level

cache utilization can sometimes result in significant performance improvements.

Chapter 7

Software Prefetching for DSM Multiprocessors

7.1 Introduction

Shared-memory multiprocessors are an attractive platform for small- to medium-scale
parallel programming, since they provide a convenient programming model based
on a hardware-supported shared address space. Recent multiprocessor designs are
starting to incorporate a distributed shared-memory (DSM) architecture, in which
main memory is divided up into modules and distributed across all of the processors.
The processors are then linked together with a high-speed interconnection network (2,
24, 61]. Figure 7.1 shows an abstracted view of a DSM machine. When memory is
distributed in this fashion, a processor that accesses an item currently being stored
in another processor’s memory must wait for the data to be transferred over the
interconnect. Because these remote memory accesses can take hundreds and even
thousands of cycles, cache utilization is a critical component of overall performance
for programs running on these machines. Techniques that improve cache utilization,
such as software prefetching, can be very beneficial.

DSM architectures present a series of additional challenges for software prefetch-
ing. First, coherence misses (accesses to cache lines that have been invalidated due to
remote writes) may add significantly to the total miss count, placing more demands
on prefetching. Second, the time required to satisfy a cache miss varies much more
widely on DSMs than on uniprocessors. Cache miss latencies can be influenced by the
distribution of data among the various memory modules, the sharing patterns in the
program, network contention, and variety of other factors. Existing software prefetch-
ing studies employ a uniform-distance prefetch scheduling policy: the compiler tries
to issue all prefetches a fixed number of cycles in advance [73, 74, 94]. Such a policy
is problematic on DSM machines, where memory latency is much less uniform. If all
prefetches are scheduled assuming a worst-case memory latency, a significant fraction
of the prefetched data may arrive too early, causing evictions that will effectively

eliminate any benefits for long-latency misses.

103

............. e ' Network
v : Interface [

Main Memory

Inter-
connect

0 N S - - : Network
Interface

Main Memory

Figure 7.1 DSM multiprocessor block diagram

[n this chapter we describe our work on software prefetching for DSM machines.
In the first part of the chapter, we evaluate the performance of previously devel-
oped software prefetching strategies on DSM multiprocessors. Our results show that
prefetching improves performance, but is not totally successful in hiding remote mem-
ory latencies. In particular, most programs exhibit a greatly increased percentage of
late prefetches, relative to the levels present for the uniprocessor case, and the av-
erage penalty incurred on each late prefetch is severe. In the second part of the
chapter, we outline a new form of compiler analysis that enables the prediction of one
class of coherence misses, allowing the compiler to schedule prefetches to hide these
long-latency misses.

An outline of the chapter is as follows. In Section 7.2 we describe DSM multi-
processors in more detail, emphasizing the architectural features that are related to
prefetching. Section 7.3 presents information on the class of parallel programs tar-
geted by our compiler, as well as giving a brief overview of the parallel code generation
scheme it incorporates Section 7.4 gives the results of an experimental evaluation of
software prefetching on DSM machines, for a set of parallel benchmark programs.

104

In Section 7.5 we describe our new compiler framework for optimizing prefetching
on DSM machines, and in Section 7.6 we describe some of the optimizations that
framework can be used to drive. Section 7.7 gives a set of experimental results on the
effectiveness of the framework, for a small set of subroutines extracted from three of
our benchmark programs. Finally, in Section 7.8, we summarize the material covered

in this chapter.

7.2 DSM multiprocessors

The components of a typical DSM multiprocessor are illustrated in Figure 7.1. Each
node in the DSM consists of a processor, a cache, a memory module, a local bus, and
a network interface connecting the node with the rest of the machine. Pages of main
memory are allocated to the processors according to some distribution function (ex-
ample: round-robin, or first-touch). Each processor maintains a hardware directory
for the pages it owns. The directory contains an entry for each cache line in a page,

storing IDs of the remote processors that have cached copies of the line [65].

invalid

exclusive §
(unmodified)

LR: local read

LW: local write request

RR: remole read request
RW: remote write request

P: prefetch

EP: exclusive-mode prefetch

Figure 7.2 State diagram for example MESI cache coherence protocol

105

Invalidation-based coherence protocols

When a processor writes to a location that other processors may have cached, or when
it reads a location that another processor may have recently written, the underlying
hardware takes action to ensure that all processors see a consistent view of memory.
In an invalidation-based cache coherence protocol, when a processor P writes to a
location, the hardware brings a copy of the line containing the location into P’s cache,
invalidates any copies of the line cached by other processors, and places the line in
a “modified” state. This state indicates that P is the only processor caching the
line, and that the contents of the line are different from the contents stored in main
memory. When a processor issues a read operation for a line not already in its local
cache, the line is brought into the cache in a “shared” state. This state indicates that
other processors may have a copy of the line, but the contents of all the copies are up
to date with the values in main memory. Finally, a line in an “invalid” state indicates
that the data in the line is stale, and should not be used.

Figure 7.2 shows an example coherence protocol state diagram. The labels on the
edges between the various states indicate the action that causes the state transition,
from the point of view of the local processor. This particular protocol also includes
an “exclusive unmodified” state, which indicates that the caching processor has an
exclusive copy of the line, but that the line’s contents are still in sync with memory.
This additional state can be useful for supporting “exclusive-mode prefetching”, in
which a line is prefetched into the cache in an exclusive but unmodified state [73].
This special type of prefetch is useful for read-modify-write accesses, where a proces-
sor reads a line and then immediately writes the same line. If the compiler issues an
ordinary prefetch in such situations, then two remote requests will have to be per-
formed: the first to fetch the line in a shared state, and the second to obtain exclusive
ownership of the line for the write. If the compiler issues an exclusive-mode prefetch
for the line in question, then only one remote request will be needed, reducing overall

network traffic.

7.3 Parallel program model

Most researchers in the past have focused on applying prefetching to explicitly parallel
programs, in which the compiler has no specific knowledge about parallelism within
the target program, other than that the program is parallel at some level [73]. We
have chosen instead to target a class of compiler-parallelized Fortran programs of the

106

sort produced by KAP [59] or by an advanced workstation compiler. This type of
parallel program consists of a sequential Fortran program that has been annotated
with “DOALL” or “PDO” directives indicating the loops that can be safely be run in
parallel, as well as the sets of variables that can be placed in processor-private storage.
By targeting a class of programs in which information about parallelism is exposed to
the compiler, and by integrating a parallel code generator into our implementation,
we lay the foundation for the design of compiler techniques that exploit information

about parallel loops during prefetching.

7.3.1 Parallel code generation

As part of the compilation process, our compiler uses the parallelization directives
in the source code to transform the annotated sequential input program into a full-
fledged shared-memory parallel program. We refer to this process as “parallel code
generation”. The table in Figure 7.3 shows the set of directives currently supported
by our parallel code generator. Figure 7.4 shows an excerpt of an example parallel
program that uses some of the directives.

The parallel code generator extracts the statements within a parallel region and re-
locates them into a separate subroutine, adding a call to a runtime thread-management
routine in their place. The separate subroutine is then invoked on each processor at
runtime. This process also provides a mechanism for implementing processor-private
storage, since each parallel thread will have its own stack. Within the parallel sub-
routine, parallel loops are given reduced loop bounds, computed by a call to a loop
scheduling function. Other directives such as barriers are converted into calls to
simulator runtime routines.

Our current implementation requires that parallel loops use only barrier syn-
chronization. We assume that the iterations of a given parallel loop are scheduled
(assigned to processors) either statically by blocks, or through the use of an affinity
scheduler [69]. Although our compiler does not currently incorporate data distribu-
tion directives (of the sort provided in High Performance Fortran [48]), our techniques
could easily be extended to exploit information of this nature.

7.4 Evaluation of software prefetching for DSM machines

In this section we evaluate the performance of software prefetching on DSM machines
for our benchmark suite. An outline of this section follows. Section 7.4.1 describes

Directive Interpretation
Marks the beginning of a parallel region
within the program, containing code to be
C$PAR parallel executed by all processors. This directive

also lists the shared and processor-private
variables used within the parallel region.

C$PAR end parallel

Marks the end of a parallel region.

C$PAR pdo

Marks the start of a partitioned loop: iter-
ations of the loop are divided up among all
processors.

C$PAR end pdo

Marks the end of a partitioned loop.

C$PAR barrier

Indicates a barrier synchronization point.

C$PAR single process

Marks the beginning of a “single-processor”
section within a parallel region. The code
within the section must only be executed by
a single processor.

C$PAR end single process

Marks the end of a single-processor section.

C$PAR critical section

Marks the beginning of a critical section
within a parallel region. Only one proces-
sor at a time is allowed to execute within
the critical section.

C$PAR end critical section

Marks the end of a critical section.

Figure 7.3 Parallelization directives

107

108

C$PAR parallel shared(a,b,n) local(i,j,tt)
C$PAR pdo
do j=1,n
tt = b(3,j)
doi=1,n
. tt + a(i,j) ...
enddo
enddo
C$PAR end pdo
C$PAR single process
b(1,1) = n
C$PAR end single process
C$PAR pdo
do j=1,n
b(2,j) = 0
enddo
C$PAR end pdo nowait
C$PAR barrier
C$PAR end parallel

Figure 7.4 Parallel program excerpt

how we produced the parallel programs used in the study, and provides some empiri-
cal data on the level of parallel coverage they exhibit. Section 7.4.3 covers the target
architecture modeled by our simulator. In Sections 7.4.5, 7.4.6, and 7.4.7 we pro-
vide experimental data on prefetching performance, including overall execution time

improvement, information about prefetch outcomes, and data on late prefetches.

7.4.1 Parallel benchmark programs

To obtain the parallel programs for this study, we selected a set of programs from
our uniprocessor benchmark suite and created parallel versions of the programs by
running them through KAP, the Kuck and Associates Preprocessor [59]. KAP, an
automatic parallelization tool, reads a sequential Fortran program and produces an
annotated version of the program that contains directives (comments) indicating loops
and regions that can be safely executed in parallel. The version of KAP (V6.0.2) used
for this study generates only a single level of parallelism (no nested “PDO” loops).
Two uniprocessor programs in our benchmark suite, cgm and nasbuk, were excluded

109

from this study, due to poor parallelization. KAP was unable to parallelize any of
the important loops, because of the way the programs use indirection arrays.

Figure 7.5 shows the cache miss rates of these programs when run on the simulated
DSM described in Section 7.4.3. Coherence activity results in miss rates for several
of the parallel programs that are higher than the miss rates in the equivalent unipro-
cessor program (this is the case for apsi, applu, appsp, £1052, and ocean). The hit
rates for the remainder of the programs are either roughly the same or show minor

improvements, due to the relative increase in total cache available to the program.

L1 miss | L2 miss
Program rate rate
appbt 13.6%4 | 19.2}
applu 23.57 | 45.5%
appsp 10.74 | 11.2}
apsi 19.9% | 33.0%
erl 17.14 | 26.2}
£lo52 15.0% | 14.7}
hydro2d | 24.4% | 25.6Y%
mgrid 6.3 | 34.2
ocean 20.8Y% 8.6Y
su2cor 23.9% 9.2}
swim 74.9, 11.5)
tomcatv 22.5% | 21.2)
wave5s 36.7% 2.4}

Figure 7.5 Miss rates for parallelized benchmarks

7.4.2 Parallel coverage

To provide a sense for how much loop-level parallelism KAP has been able to iden-
tify, we experimentally measured the parallel coverage for our programs. The results
are shown in Figure 7.6. These data were generated by comparing the base (un-
transformed) versions of the programs with the parallelized versions run on a single
processor.

The first column shows the instruction overhead added during the paralleliza-
tion process; this corresponds to the percentage increase in dynamic instruction
count. Most of the programs have fairly reasonable overhead levels; the exceptions

110

Parallelization Parallel coverage
Program overhead instructions | cache accesses
appbt 1.6% 99.2/ 99.5%
applu 29.8Y% 99.3Y 99.4Y
appsp 3.0% 98.9% 99.2Y%
apsi 14.6 92.7Y% 92.6Y
erl -55.6% 99.8Y 99.9Y
flo52 0.5% 94 .8, 96.1%
hydro2d 0.0% 76.5Y% 73.8Y
mgrid 0.0% 95.2/ 97.0%
ocean 1.0% 96.8% 97.2%
su2cor 0.6 55.8% 62.3%
swim 0.0Y% 98.0Y% 98.7Y%
tomcatv 0.3% 16.2/, 22.97%
wave5 3.0/ 68.5% 78.8%

Figure 7.6 Parallel coverage

are “applu” and “erl”. In the first case, the parallelizer selected an inner loop as
the “DOALL” loop within a critical nest, greatly increasing the number of times the
program enters and leaves the subroutine corresponding to a parallel region. In the
case of “erl”, the parallel version is actually faster, due to an artifact of the Sun £77
compiler related to Fortran intrinsic functions. Note that the instruction overhead
shown in Figure 7.6 does not include synchronization.

The second and third columns in Figure 7.6 refer to the parallelized version of
the code; they show the percentage of all instructions and all cache accesses that
are executed within a parallel region. Most programs have high parallel coverage
percentages, but a few have problems. The programs “hydr2od” and “tomcatv”
both read large data files as part of their initialization process; this accounts for their
reduced parallel coverage. In the case of “su2cor” and “waveS”, the extensive use of
indirection arrays has interfered with a complete parallelization of the program.

7.4.3 Architectural parameters

We use execution-driven simulation to gather our data. Our simulated parallel ma-
chine consists of a series of RISC processors connected by a high speed interconnection
network. We assume hardware-supported, directory-based cache coherence, with an

111

invalidation protocol (shown in Figure 7.2). From the point of view of processor
speed, cache configuration, and memory bandwidth, each node in the DSM machine
is identical to that used in our uniprocessor simulations (see Figure 5.2).

Network parameters and remote cache miss latencies for the simulated architecture
are shown in Figure 7.7. In the figure, a “2-hop” remote cache miss refers to the
scenario where a processor requests a cache line from the owning processor, and the
owning processor is able to return the data without any additional remote requests.
In a “4-hop” remote cache miss, processor X requests a line from processor Y, but
a third processor Z has the line in a modified or exclusive state, thus Y must first
communicate with Z before returning the data to X.

The values we have chosen for remote memory access latencies are fairly high,
relative to certain commercially available DSM multiprocessors. For example, aver-
age remote memory access latency for a 128-processor SGI Origin is quoted as 945
nanoseconds, and the ratio of local to remote memory access latency is characterized
very roughly as 2:1 [63]. Other NUMA multiprocessors, such as the Sequent NUMAQ),
have considerably local-to-remote ratios that are closer to the values we use in our
experiments, with correspondingly higher remote memory access penalties [68].

Our simulated DSM uses release consistency [32]. Pages of main memory are

allocated to the processors in a round-robin fashion by default; page size is 4 Kbytes.

Network parameters
Topology ring
Peak network bandwidth | 4 GBits/sec per processor
Remote miss latency 608 cycles (2-hop) or 1216 cycles (4-hop)

Figure 7.7 Network parameters for DSM multiprocessor simulations

7.4.4 Compiler parameters

For these experiments, the prefetching distance for pipelined loops was calculated
based on an assumed memory latency of 350 cycles. This value was arrived at exper-
imentally by simulating our various benchmark programs at a range of compile-time
latency settings and choosing the single latency that provided the best performance
for all programs.

112

Our implementation does not currently support exclusive-mode prefetching; all
lines are fetched initially in a read-shared state. As in the uniprocessor case, the
compiler inserts prefetches only for read references, since the simulated architecture

incorporates a write-through cache and a write buffer.

7.4.5 Performance of prefetching on DSM machines

Reduction in
Program | execution time
appbt 26.6%,
applu 15.4)
appsp 22.8}
apsi 27.3Y%
erl 26.1%
flo52 26.5%,
hydro2d 40.3Y,
mgrid 34.9Y
ocean 14.0%
su2cor 31.5)
swim 25.4)
tomcatv 47.5Y
waveS 20.6%

Figure 7.8 Execution time reduction due to prefetching, 4 processors

Figure 7.8 shows the reduction in execution time provided by software prefetching
for 4 processors, comparing the execution time of the original parallel program with
that of the parallel program with prefetching. In general, the programs for which
prefetching worked well on a single processor also benefit from prefetching in the
multiprocessor case. Such programs include “hydro2d”, “mgrid”, and “tomcatv”,
among others. In addition, some of the programs that derived little benefit from
prefetching on a uniprocessor show more pronounced gains when they are parallelized.
For example, prefetching actually increased the execution time of the single-processor
version of “£1052” by 6.2%, whereas the parallel version of the same program is 26.5%
faster when prefetching is applied.

113

Replaced Hit Hit Full

Used | Overshoot | by Pref | Invalidated | Cache | Buffer | Buffer
appbt | 27.2J 1.5Y% 1.0% 0.4% | 59.5% | 11.4%] o0.2%
applu | 35.6 5.1% 4.6Y, 2.7% | 47.2% | 9.3% | o0.0%
appsp 43.5Y 1.9Y% 1.7% 0.4% | 49.6% | 4.7% | 1.3%
apsi 32.1Y% 10.4Y% 6.7% 2.0% | 40.0% | 15.4], 4.3%
erl 83.9Y 0.7Y% 0.7% 0.0% | 10.3% 5.1% 2.4/
flo52 20.8Y 5.4 4.1Y% 0.8% | 63.8% 9.2% 0.6%
hydro2d | 72.7Y 1.0% 0.5% 0.0% | 25.5% 0.9% | 10.5Y%
mgrid 73.7% 0.6% 0.5% 0.0% | 18.5% 7.3% 2.1Y%
ocean 17.8Y 0.7% 0.6% 0.1% | 65.74 | 15.74 | 0.1%
su2cor 26.0Y% 10.6Y 5.6Y% 0.1% | 57.2% 6.1Y% 6.1%
swim 15.1% 76.7% 46.4Y 0.0% 7.2 1.0Y% 1.9%
tomcatv | 41.1Y, 48.1Y% 27.6Y, 0.0Y% 9.9% 0.9% | 28.4Y
waveb 12.9% 22.2/% 14.2% 0.3% | 58.9% 5.7 4.0%

Figure 7.9 Outcome breakdown for prefetches, 4 processors

7.4.6 Outcomes for prefetches

Figure 7.9 shows the outcome for each of the prefetches issued during the simulations.
“Used” refers to a prefetch that partially or completely succeeds in hiding the latency
of a cache miss. “Overshoot” indicates that a prefetched line arrived in the cache,
but was displaced before it could be used. “Replaced by Pref” is a sub-case of
“Overshoot”, where a prefetched line X is displaced by another arriving prefetched
line Y (as opposed to a line brought in by a cache miss) before X can be used.
“Invalidated” indicates that a prefetch arrived in the cache, but was invalidated before
it could be used. “Hit cache” and “Hit buffer” are prefetches that hit in the L1 cache
and in the prefetch buffer, respectively. “Full buffer” refers to a scenario where the
processor tries to issue a prefetch, but the pending prefetch is full.

We interpret this data as follows. First, the percentage of prefetches that hit in the
cache seem to match the single-processor results, for the most part. Similarly, some of
the programs still have problems with cache conflicts, notably “swim” and “tomcatv”.
[nvalidation of prefetched lines does not appear to be a major problem for any of the
programs, suggesting that there is relatively little false sharing behavior. The one

area where there is a striking difference between uniprocessor and multiprocessor

114

prefetching performance is the frequency of late prefetches, which we discuss in the

following section.

7.4.7 Prefetch scheduling: a closer look

Percent Cycles Late Percent Percent
Program | late prefetches | (average) | dirty remote | clean remote
appbt 23.5Y 332 15.8% 77.4)
applu 34.5Y 493 34.7Y% 55.1Y
appsp 8.8Y% 598 61.0% 37.4)
apsi 34.2 787 81.8% 17 .49
erl 31.1% 361 0.2% 96.4Y
£1o52 17.1Y, 726 92.4) 6.9%
hydro2d 21.6% 418 5.7% 91.0%
mgrid 6.8% 502 27.7Y 70.5Y%
ocean 22.2Y 433 72.1% 19.9Y%
su2cor 3.8Y% 636 35.4Y% 63.3%
swim 20.2% 510 1.3% 98.4Y
tomcatv 23.3% 593 12.5% 87.3%
wave5 13.5% 704 85.3), 14.0%

Figure 7.10 Late prefetches as a
percentage of useful prefetches, 4 processors

In this section we take a closer look at the fraction of prefetches that are late, and
the effects of late prefetches on execution time. Figure 7.10 shows the percentage of
the useful prefetches (prefetches that did not hit in cache or in the pending prefetch
buffer) that were late. “Cycles Late” refers to the average number of cycles the
processor had to stall waiting for the prefetch to complete. The data show that in
comparison to our uniprocessor study, late prefetches are much more prevalent, and
the average penalty for a late prefetch is approximately an order of magnitude larger.
This suggests that compiler optimizations to eliminate late prefetches can potentially
have a major impact on performance.

The last two columns are expressed as percentages of all late prefetches. A late
“clean remote” prefetch refers to a scenario in which a prefetch results in a line being
obtained from another processor where the line is in a clean state (i.e., no processor
is currently caching the line in an exclusive state). This type of late prefetch results

115

simply from the distribution of memory among the processors. In our model, pages are
assigned to processors at run-time, thus the compiler is unable to exploit information
about memory distribution at compile time that might allow it to target this class of
late prefetches.

A late “dirty remote” prefetch occurs when a line must be fetched from a remote
processor, and the line must also be invalidated (some processor has the line in an
exclusive state). A significant fraction of the late prefetches fall into this category
for our benchmark programs. Unlike late “clean remote™ prefetches, late “dirty re-
mote” prefetches are a result of coherence activity, and are originally created by the
program’s sharing patterns, which can be analyzed at compile-time. This type of
late prefetch can arise when a cache line is written on one processor and then subse-
quently read on another processor, for example. In the following sections, we develop
a framework for statically detecting sharing patterns that are likely to result in late

dirty remote prefetches.

7.5 Compiler framework
7.5.1 Predicting coherence misses: an overview

We have developed a global data-flow analysis method that predicts coherence activity
within a parallel program. We give a brief outline of the procedure here and then
describe each component in detail in subsequent sections of the chapter. Qur compiler
uses array-section analysis to identify portions of shared arrays accessed in specific
program regions, typically loop nests. We augment array sections with a parallel
mapping component that describes how a region within an array is accessed by the
processors in the machine. We develop a set of equations that predicts the outcome
(cache hit, cache miss, or remote miss) for specific array references within the program.
Our compiler solves these equations using interval-based data-flow analysis. The
solutions to the equations for a given control-flow graph node are then used to predict
whether particular references within the node will access data that resides in cache,
and if not, whether retrieving the data will require coherence activity. To account for
cache size constraints, we enhance the analysis by incorporating an “age” function on
array sections that approximates the number of capacity misses since the section was
cached. The data-flow machinery updates the ages of each section during the analysis;
when a section’s age reaches a machine-dependent cutoff point, it is eliminated from

the set that contains it.

116

7.5.2 Array-section analysis

Most scientific Fortran programs spend the bulk of their execution time performing
computations on arrays in loops; in order to characterize the memory usage patterns
for these programs, the compiler must analyze how arrays are accessed within loops.
[n our framework, we capture information on array access patterns using array-section
analysis [12, 15, 45, 67]. When applied to a portion of the program (typically a basic
block, loop, or loop nest), array-section analysis produces a summary representation
of the region accessed within each array.

Each of the summaries (referred to hereafter as “sections”) contains a component
that describes the geometric region accessed within the array, in addition to other
bookkeeping data and information about the order in which array dimensions are
traversed. In order to be useful for our work, the sections must also capture informa-
tion on how the accesses to a given array region are distributed among the available
processors at run-time. For example, in Figure 7.11, the “do k3" loop nest and the
“do j2” loop nest both access the region a(1:100,1:100). In the first case, however,
each processor accesses a block of columns, whereas in the second case, each processor
accesses a block of rows [recall that for each “doall” loop, a single contiguous block
of iterations is assigned to each processor].

To distinguish between these cases, we augment each section with a parallel map-
ping component, or PMAP, that contains information on how the elements within the
section are accessed by the available processors at run time. The PMAP is a restricted
version of the “mapping function descriptor” used in the Available Section Descriptor
abstraction [40].

We assume an unbounded virtual processor grid with N dimensions (note that
since our program model currently permits only a single level of parallelism, N is
currently 1). For a given section S, the mapping function is of the form (P, F),
where P and F are vectors of length N. Element i within P (denoted F;) is the
dimension of the array mapped to grid dimension 7, and element i within F (denoted
F}) is a mapping function that gives the position(s) along the processor grid that
array elements are mapped to. The mapping function is of the form

Fi(j)=(c*j+l:cxj+u:s)

117

do k; =1, n
C$PAR parallel shared(a,b.d k1) local(kz,k3,kq) doi; =1, 100
C$PAR pdo o= c(d,2)
do k2 = 1, 100 enddo
do k3 = 1, 100
.= a(ks,kz) +
b(ks, ko, k1) + d(k3) CSPAR. parallel shared(a) local(j;.j2,j3)
enddo C$PAR. pdo
enddo do 1 = 1, 100
C$PAR end pdo do j» = 1, 100
C$PAR de cele = L. a.(j[,jg)
do k4 = 1, 50 enddo
do ks = 1, 50 do js =1, 50
...=...b(k5,k4,k[) ...=...a(j3,j1)
enddo enddo
enddo enddo
C$PAR end pdo C3SPAR end pdo
C$PAR end parallel C3PAR end parallel
enddo
Section || loop | REGION PMAP
S do k3 | a(1:100,1:100) (2,F(7)=g3:7:1)
S2 do k3 | b(1:100,1:100,1:n) | (2,F(j)=5:5:1)
53 do k;; d(l:iOO) (0, T)
Sa do ks [b(1:100,1:50,1:n) [(2,F(j)=j:7:1)
Ss do 7; | c(1:100,2) (0, L)
Se do j, | a(1:100,1:100) (LF()=J7:7:1)
S7 do 73 | a(1:50,1:100) (2,F(j)=j:7:1)

Figure 7.11 Example loop nests

with section information

118

where [and u are invariants, s (stride) is an integer constant, and c is either 1 or 0.7
This triplet-style formulation allows one-to-one mappings (when [= u), one-to-many
mappings (when u > [+ s) and constant mappings (when ¢ = 0). The following
picture illustrates the effects of an example mapping function:

array slements

| | k T]

PMAP:
F() = j-1:1+1

L k1] k [kt]

virtual processors

There are two special-case mapping functions as well. We use the mapping func-
tion (0, L) to indicate accesses that take place outside parallel loops, and the mapping
function (0, T) to indicate that that the section in question is accessed by all proces-
Sors.

The table appearing at the bottom of Figure 7.11 shows each of the regions ac-
cessed within the loop nests, along with their parallel mapping functions.

7.5.3 Predicting coherence misses

Figure 7.12 shows a program fragment containing a parallel loop, along with its
corresponding control-flow graph (CFG). We would like to predict whether some or
all of the array accesses in the loop will result in coherence misses. This will depend
on the access patterns within and prior to the loop, i.e., node X and its predecessors.
Suppose that a loop prior to node X writes to a section Sx in the array “b”, and
that the doall j loop accesses a section S; in array “b”. When the doall j loop
executes, there will be coherence activity if regions of the two sections overlap, but
the common elements are cached on different processors (we will formalize this notion
shortly, with the definition of conformability of array sections). In order to predict
coherence activity, therefore, the compiler must symbolically compare the regions of
the arrays accessed within a given loop with the sections that are likely to be in cache

on entry to the loop.

"In the mapping function that appears in Gupta and Schonberg’s ASD, ¢ can take on a rational
value, provided that the function evaluates to a range over integers. This is more general than is
needed for our work.

119

Cache size is an important factor. Even though there may have been accesses to
the array “b” in a prior portion of the program’s execution, subsequent cache activity
may have flushed these elements from the caches of the processors. If none of the
array elements accessed within the doall j loop are resident in any processor’s cache
on entry to the loop, then there will be no coherence activity within the loop. For
simplicity, we initially ignore cache size constraints in our analysis. Section 7.5.6

describes the mechanism that we use to factor in a specific cache size.

X
C$PAR parallel shared(a,b,n)
C$PARZ local(i,j)
C$PAR pdo
do j=1, n
doi=1,n
a(i,j) = ... b(4,j)
enddo _
onddo e——c—" e —

C$PAR end pdo
C$PAR end parallel
LY

Figure 7.12 Parallel loop with corresponding CFG

Conformability of sections

We say that section S; conforms to section S, if and only if all of the following

conditions are met:

1. REGION(S;) contains REGION(.S;), or REGION(S;) contains REGION(S;)
2. PMAP(S;) = PMAP(S,)

3. if PMAP(S;) = (N,F) where N > 0, then the bounds on dimension N in
REGION(S)) are identical to the bounds on dimension N in REGION(.S;)

120

Intuitively, one section conforms to another if the same data is accessed on the same
set of processors. For example, in Figure 7.11, section S; conforms to S, since these
two sections satisfy all of the conditions above. However S; does not conform to Sg,
since PMAP(S;) # PMAP(Sg). Similarly, S; does not conform to Sy, since the third
condition above is not met.

For the purposes of this analysis, we relax the definition of containment to in-
clude situations where there isn’t strict geometric containment, but the two regions
substantially overlap, i.e., the boundaries match except for a small constant, or one
region is a slightly shifted copy of another region. For example, we would treat a
section S; = a(1:1000,2:999) as containing the section S; = a(1:1000,1:998),
and vice versa.

We use the following notation in the remainder of the chapter:

notation | interpretation

X=Y | X conformstoY

X %Y | X does not conform to Y
X3Y | X contains Y

Read outcomes

Figure 7.13 shows the possible outcomes for a load (read) of shared data on a DSM
multiprocessor, from the perspective of the processor issuing the load. There are three
possible scenarios; the particular outcome depends on the state of the local cache and
the caches of the other processors. For a given scenario, the latency incurred by the
read is given in terms of M, the main memory latency, and N, the network latency
(time required to send a message over the interconnect). For example, in scenario
“B”, the processor issuing the read is accessing a location that is currently not cached
by any processor. In this scenario, the issuing processor sends a request message to
the processor whose memory contains the location in question, which then sends
a message back with the data. The scenarios shown in Figure 7.13 are worst-case
latencies (we assume that the data being accessed is owned by a remote processor,
not the local processor).

Figure 7.14 gives a set of conditions sufficient to predict each of the three scenar-
ios for a read operation. We construct these conditions in terms of array sections,
using the notion of section conformability. In the figure, X refers to the CFG node
containing the read we want to analyze. Note that for the remainder of this chapter,

121

M — local memory latency
N ~ network latency

read from memory changed state of remote
on home node copy to shared; forward
value; update directory

Figure 7.13 Possible outcomes for a cache-coherent read (worst-case)

Scenario | Conditions
A 1 | a section S} reaches node X from some predecessor Y, and
2| Sy J S% and S = S%
B 1| No S¢ (s.t. Sy 3 S%) reaches X for any Y
C 1 | a section Sy reaches X from some predecessor Y, and
2 [S¢ 2 S% and Sy % S%

Figure 7.14 Conditions for predicting read outcomes

write

K — degree of read sharing

read from
cache

invalidate K shared invalidate exclusive

copies; acquire copy and forward
exchisive copy from data
remote node

Figure 7.15 Possible outcomes of cache-coherent write (worst-case)

Scenario | Conditions
A 112 section Sy reaches X from a predecessor Y, where S = S¥ and
Sy 3 S%, and
2 | there is no intervening section S} such that Sy J S¥, and
3 there is no intervening section S¥ such that S¥ % S¥ but (S¥ N
S%) # 0
B 1 | No section Sy reaches X
C 1 | a section Sy reaches X, where S} 3 S¥%, and
2 | there is no intervening section S¥ such that (S§ N S}) # 0
D 1 | a section Sy reaches X, where S J S¥ but S¥ # S¥, and
2 | there is no intervening section S% such that (S5 N S¥) # 0

Figure 7.16 Conditions for predicting write outcomes

123

the term “node” will be used to refer to a CFG node, not to a processor within the
DSM machine. The superscript notation for array sections specifies the type of ac-
cess: S* corresponds to a write, S” corresponds to a read, and S is either a read
or a write. The subscripts for sections indicate the CFG node where the access takes
place; S% is the read operation at node X whose outcome we want to predict. In the
figure, the term “a section S reaches X from Y” should be interpreted as follows: a
region S of an array is accessed in node Y, and this section is still in the cache(s) of
the accessing processor(s) when node X is subsequently executed. In the cases where
there are multiple conditions for a given outcome, they should be interpreted as being

“and’ed” together to form the condition for the outcome.

Write outcomes

Figure 7.15 shows the possible outcomes for a write (store) to shared data; the section
being written is S¥. For writes, the cost in terms of network traffic of some of the
outcomes is no longer fixed: the number of messages needed depends on the degree of
sharing prior to the execution of the loop. In particular, if a processor tries to write a
cache line that is currently read-shared by K processors, then K messages will need
to be sent to invalidate all of the outstanding copies. The actual latency incurred
will depend on the type of write buffer used in the processor, and on the degree to
which the K invalidation and acknowledgement messages can be processed in parallel.
Figure 7.16 gives a set of conditions sufficient to predict each of the scenarios for a
write operation. As before, all of the numbered conditions for a given outcome must
be satisfied.

7.5.4 Interval analysis

In this section we describe how we formalize the conditions presented in Figures 7.14
and 7.16 through the use of data-flow analysis. The data-flow framework we employ
for this task is based on interval analysis. We refer the reader to previous works for
a complete description of the terminology and mechanics of this form of data-flow
analysis [4, 38, 39, 43, 53]. Interval analysis proceeds in two steps: an “interval con-
traction” phase, followed by an “interval expansion” phase. In the contraction phase,
intervals are processed from innermost to outermost; an interval is only processed
after all the intervals it contains are completed. We solve a set of equations for the

nodes in the current interval, and then the nodes in the interval are summarized and

124

collapsed into a single node. The contraction phase proceeds until all intervals have
been contracted; the final graph (a DAG) is then analyzed as if it were an interval.
In the expansion phase, the process is reversed: summary nodes are expanded into
their original intervals and then re-analyzed.

Our interval analysis framework was inspired by that of Granston and Veidenbaum
(38], which in turn was based on the framework of Gross and Steenkiste [39]. It dif-
fers from the work of Granston and Veidenbaum in several important respects. Their
work was geared towards a multiprocessor without hardware support for cache coher-
ence, whereas we specifically target machines with coherent caches in our data-flow
framework. Since their techniques were designed for software-controlled local memo-
ries, they did not develop any mechanism for taking into account cache replacement
effects.

The data-flow analysis we use is also related to the compiler techniques for opti-
mizing communication placement on distributed-memory multiprocessors developed
by Gupta, Schonberg, and Srinivasan [41]. Communications placement is a fairly dif-
ferent problem, however and analyzes the flow of values within the program, whereas
our analysis focuses on the use of locations. Their framework also does not handle
resource constraints, such as cache size, or architectural features that support cache
coherence.

As with the work of Gross and Steenkiste [39] and of Granston and Veidenbaum
[38], we present two sets of equations, the first for computing information within an
interval, and the second for collapsing the nodes in an interval into a single summary

node.

7.5.5 Data-flow equations

Figure 7.17 gives the names and definitions for the sets of sections used in our flow
analysis. For a given CFG node n corresponding to a particular basic block, the
compiler computes initial values of “UREF(n)” and “CREF(n)” by simply inspecting
n. These initial sets are used as the inputs to the framework. The remainder of the
variables are computed during the flow analysis. In the equations, we parameterize
set names according to access type (“r” and “w” superscript notation indicates read
and written sections, respectively; an “rw” superscript indicates that the section is

either read or written). During the analysis we maintain the invariant that for every

Set name Definition Remarks
the sections accessed within node n computed for each basic
UREF(n) | that unconditionally downwardly block as part of the initial
reach the end of node n. information.
the sections accessed by some
UIN(n) predecessor of node n that computeq during data-flow
unconditionally downwardly reach propagation
the start of node n
the sections accessed within node n
UOUT(n) or node n’s predecessors that computec-i during data-flow
unconditionally downwardly reach propagation
the end of node n
the sections accessed in node n that .
et computed for each basic
CREF(n) condltlona.'lly dowr.lwa.rdly reach the block as part of the initial
end of n, i.e., sections that may be . .
. information.
accessed in n
the sections accessed by some
CIN(n) predecessor of node n that computec'i during data-flow
conditionally downwardly reach the propagation
start of node n
the sections accessed within node n
COUT(n) or node n’s predecessors that computed during data-flow

conditionally downwardly reach the
end of node n

propagation

Figure 7.17 Data-flow sets

126

node n, UREF“(n) N UREF"(n) = 0; if a region of an array is both read and written

within a node, then we place the region in UREF*(n) and not in UREF"(n).

Figure 7.18 and 7.19 show the data-flow equations that we solve to obtain infor-
mation about coherence activity. The equations in Figure 7.18 are computed for each
of the nodes within an interval. When processing the interval, we visit the nodes in
the interval in reverse postorder; for each node, we compute the “/N” sets and then

the “OUT” sets. All sets are initially empty.

UIN'(n)
UIN®(n)
UOUT" (n)
UOUT*(n)
CIN"(n)
CIN®(n)
COUT"(n)

COUT*(n)

N (UOUT(p))
pEPRED(n)

N (UoUT“(p))
pEPRED(n)

(UIN"(n) U (UREF"(a) — UIN®(n)))
— CREF“(n)
(UIN“(n) U UREF*(n)) —n. CREF™(n)

U (CouT(p))

pEPRED(n)

U (couT“(p))
pEPRED(n)

(CIN"(n) U (CREF"(n) — UIN®(n)))
— UREF¥(n)

(CIN“(n) U CREF“(1)) —ne UREF"(n)

(7.7)
(7.8)

Figure 7.18 Data-flow equations computed within an interval

Note the use of the “—,." operator in equations 7.4 and 7.8. Intuitively, X —,. Y

subtracts sections in Y from X, but removes only those sections that do not conform
to the sections in X. In other words, if there is some section S; € X and S, € Y such
that (S; N S;) # 0, but S; ~ 5,, then S; will not be removed from X when forming
X —nc Y. Similarly, the “~.” operator removes only the sections that do conform.

UREF (S) = IEJ(UOUT’(E))—IHJ(COUT"’(E)) (7.9)
UREF*(S) = l@jp(UOUTW(E)) e t&)(COUT""(E)) (7.10)
CREF(S) = l@p(COUT'(E))—[Hj (w UOUT*(E)) (7.11)
CREF“(S) = IH-JP(COUT’”(E)) —,.:@(UOUTW(E)) (7.12)

Figure 7.19 Data-flow equations for interval summarization

If a section S € UIN"(n), then this means that the cache lines containing S will
be in a shared state (see Figure 7.2) on entry to node n, whereas if § € UIN*(n), the
lines containing S will be in a modified state.

The “UREF"(n) — UIN"(n)” term in equation 7.3 seems counterintuitive, but
it is necessary due to the way the coherence protocol works. If a previously written
line is already in the cache in a modified state when a read takes place, the line will
remain in the modified state (thus a section S already in UIN*(n) should not be
added to UOUT"(n), even if S € UREF"(n)).

Figure 7.19 shows the data-flow equations used to summarize an interval into a
single representative node. On the left hand side of these equations, the node S refers
to the summary node being created; on the right hand side of the equations, node E
refers to the exit node of the interval being summarized. The ¥ operator is defined
as “loop translation”; when applied to a section within a given loop, it substitutes
the bounds of the loop for the loop induction variable [12]. For example, in Figure
7.11, the section accessed on a given iteration of the “doall j,” loop is a(71,1:100).
Applying the operation @;, to this section will produce the section a(1:100,1:100).

Figures 7.20 and 7.21 show how the results of the flow analysis correspond to
the scenarios in Figures 7.13 and 7.15; they are analogous to Figures 7.14 and 7.16,
except that the conditions have been rewritten in terms of the sets generated by the

data-flow framework.

128

Scenario | Conditions

3 53 in UIN*(X) or UIN"(X) such that Sy J S% and S3™
~ 5%

B No 57 in UIN"(X) or in UIN¥(X) such that S§» 3 S%

C 3 5S¢ in UIN"(X) such that Sy J S% but Sy % S%

A

Figure 7.20 Read outcomes based on data-flow sets

Scenario | Conditions

A 3 S¢ in UIN*(X) such that Sy ~ S¥% and Sy J S¥
No §3* in UIN"(X) or in UIN¥(X) such that Sj* 3 S¥%
3 S} in UIN"(X) such that S} ~ S¥ and S} 3 S%
3 S¢ in UIN¥(X) such that S¢ 3 S¥ but Sy % S¥%

wiNORN:-

Figure 7.21 Write outcomes based on data-flow sets

7.5.6 Incorporating cache size constraints

The data-flow framework we have described thus far does not take processor cache
size into account; in order for the analysis to generate useful information, it must
model capacity effects. For example, if the set UREF"(n) for a given node n contains
a section S%, this tells us that the section in S was accessed some time in the past,
but not whether the section is still resident in cache on entry to node n.

We use the enhancements developed in Chapter 6 to model cache capacity effects,
including the notion of array section age and the modifications to the two data-flow
operators (see Section 6.2.6).

Data-flow framework modifications

The equations in 7.22 compute the same information as those in Figure 7.18, but
for a cache of a particular size. The changes are as follows. First, when computing
UIN"(n) and CIN"(n), we use the V and A operators in place of U and N. V and A still
form the intersection and union of their arguments, however when a given section S

UIN"(n)
UIN“(n)

UIN’, (o)
UIN®(n)
UOUT (n)

UOUT*(n)

CIN"(n)
CIN“(n)

CIN% (n)
CIN%(n)
COUT"(n)
COUT*(n)

A (UOUT (p))
pEPRED(n)

A (UOUT“(p))
PEPRED(n)

UIN(n) @ (UREF'(n) U UREF“(n))
UIN“(n) ® (UREF"(n) U UREF*(n))

(UIN%(n) U (UREF"(n) — UIN“(n)))
— CREF“(n)

(UINY(n) U UREF¥(n)) —n. CREF™(n)

V (CoUT(p))
pEPRED(n)

V (COUT*(p))
pEPRED(n)

CIN"(n) © (CREF"(a) U CREF¥(n))
CIN“(n) ® (CREF"(n) U CREF“(n))
(CIN%(n) U CREF"(n)) — UREF¥(n)
(CIN%Z(n) U CREF“(n)) —n. UREF™(n)

(7.13)

(7.14)

(7.15)
(7.16)

Figure 7.22 Data-flow equations computed
within an interval (with cache constraints)

130

appears in both arguments, the age value of S in the result set will be the maximum
of the ages of S in the arguments. Second, we introduce a new operator ®, which
models the “aging” effects of passing through a given block. Let X be the set of
sections that reaches the start of node n, and let Y be the set of sections accessed
within n. To form the set X @Y, we compute the number of capacity misses that
will be caused by executing n (by computing the volume of the set Y — (X N Y)),
then “age” each of the sections in X by the resulting miss count, and finally remove
any sections whose age values indicate that they have been displaced from the cache.
The © operator is substantially similar to the FiniteCache-V operator described in
Figure 6.5. The OUT sets are then computed using the aged (“A”) versions of the
various IN sets, i.e., UIN,(n), UINx(n), CIN} (n), and CIN(n). The equations for
interval summarization (shown in Figure 7.23) are essentially the same as those in

Figure 7.19, except that the W operator must take section volume effects into account.

UREF"(S) = l@(UOUT'(E)) - IE-J(COUT"’(E)) (7.25)
UREF“(S) = I&JP(UOUT’”(E)) —ne IH-J(COUT“”(E)) (7.26)
CREF"(S) = lL-J(COUT'(E)) - l@-j(UOUT"’(E)) (7.27)
CREF*(S) = l&Jp(COUT’”(E)) e l&J(UOUT‘”"(E)) (7.28)

Figure 7.23 Interval summarization equations (with cache constraints)

7.6 Optimizations

In this Section, we show how a compiler can use the data-flow information provided
by our framework to improve prefetching for parallel programs. Section 7.6.1 out-
lines a strategy for prefetching of references that incur coherence misses. Section
7.6.2 discusses additional optimization opportunities related to widely shared data,

exclusive-mode prefetching, and false sharing.

C$PAR
C$PAR

C$PAR
C$PAR
C$PAR

C$PAR
C$PAR

parallel shared(a,b,n,...) local(i,j,k)

pdo
do j =2, 99
do i =1, 100
a(i,j) =
b(i,j)
enddo
enddo
end pdo
barrier
pdo
do k = 2, 99
doi=1, 100

enddo
enddo
end pdo
end parallel

a(i,k) + b(k,i) ...
a(i,k+1) + a(i,k-1)

Figure 7.24 Example with coherence misses

131

132

C$PAR parallel shared(x,. . .) local(i,j,k)
C$PAR pdo
do j = 1, 100
doi=1, 100

.= x(i,1)
enddo
enddo
C$PAR end pdo
C$PAR pdo

do k = 1, 100
do i =1, 100
x(i,k) = ...
enddo
enddo
C$PAR end pdo
C$PAR end parallel

Figure 7.25 Example with many-processor read-sharing

C$PAR parallel shared(a,. . .) local(i,j)
C$PAR pdo
do j = 2, 99
doi=1, 100
a(i,j) = ...
enddo
enddo
C$PAR pdo
do i =1, 100
a(i,1) = ...
a(i,100) = ...
enddo
C$PAR end pdo
C$PAR end parallel

Figure 7.26 Example with false sharing

133

7.6.1 Exploiting coherence miss information

Our framework provides information about the sets of references likely to cause co-
herence misses, but in order to derive an effective prefetching strategy, we need to
combine this knowledge with information about the iteration space of the loop nest
being optimized.

Consider the second loop nest in Figure 7.24. The data-flow framework will predict
coherence activity for 3 of the 4 references in this nest: a(i,k+1), a(i,k-1), and
b(k,i). Our compiler then further classifies the references into two sets: those that
incur coherence misses on every loop iteration (unconditional coherence misses) and
those that incur coherence misses only on some small subset of iterations (conditional

coherence misses).

Unconditional coherence misses

Our main mechanism for handling the long latencies of coherence misses is to issue
prefetches for the references in question farther in advance than for other data. We
do this either by increasing the prefetching distance for the references or by applying
outer loop pipelining, as described in Section 3.4.5. In some situations, only a subset
of the references will be identified as causing long-latency cache misses. In these
cases we use different prefetching distances for the various references, fetching the

long-latency references farther in advance than the rest of the data.

Conditional coherence misses

Consider the references a(i,k+1) and a(i,k-1) in Figure 7.24. In the doall k loop,
if processor P is assigned iterations K}, through K, + b, then it will read the set of el-
ements a(1:100, K, — 1: K, +b+1). Of these elements, a(1:100, K,: K, + b) will
have been written previously on the same processor (and thus will not cause coherence
misses), whereas the elements a(1:100,K, — 1) and a(1:100, K, + b+ 1) will have
been written on a neighboring processor and will probably result in coherence misses.
This type of “nearest neighbor” communication occurs quite often in matrix-based
scientific programs. In such situations, we don’t want to treat all the references as
long-latency misses, since coherence activity only takes place on a subset of the iter-
ations (and since prefetches that arrive too early may displace useful data). Instead,
the compiler can apply loop peeling to isolate the coherence-causing loop iterations.

134

We identify peeling opportunities as follows. Given a section S” corresponding
to read reference r in CFG node N, peeling is applicable if there is a section S¥ €
UIN”(n) such that S¥ % S™ where

1. PMAP(S") = PMAP(S¥), and
2. PMAP(ST) = (N, F) where N >0, and

3. the bounds on dimension N in REGION(S,) are equal to the the bounds on
dimension N in REGION(SY) shifted by a small constant c.

If any references meet these criteria, then the compiler can peel the first and/or last
c iterations of the parallel loop, effectively isolating the coherence misses within the

peel loop.

7.6.2 Additional optimizations
Many-processor read sharing

As previously discussed, a write miss to a line that is being widely read-shared can
require a series of K invalidation and acknowledgement messages where K is propor-
tional to the degree of sharing. Figure 7.25 shows an example.

Consider the doall k loop in this example. Suppose that processor | is assigned
iteration 1 of the loop. Each time it writes a cache line in the section x(1:100,1), the
hardware must invalidate all K copies of the line. Depending on the circumstances, an
advanced write buffer might be able to hide the latency for such a write. However due
to the nature of the invalidation protocol, there would still be considerable additional
network traffic. One solution would be to determine the parallel nest where the line is
multiply shared and apply a local invalidation operation following the last read of the
data. This would cut the total network traffic in half (provided that the invalidations
did not require acknowledgements) and would spread the traffic out over a longer
period of time. The data-flow analysis required to drive such an optimization is very
similar to that presented in this paper, but requires backward instead of forward
propagation; this form of analysis is currently beyond the scope of our framework.

Exclusive-mode prefetching

As discussed in Section 7.2, when a processor issues a prefetch for a line that is about
to be read and then immediately written, it makes sense to bring the target line

135

into the cache in an exclusive/unmodified state, as opposed to fetching it initially
in a shared state, and then subsequently acquiring an exclusive copy of the line. To
accomplish this, the compiler must consider access patterns within the loop when

selecting the type of prefetch for each read reference.

C$PAR parallel shared(a,b,c,q) C$PAR parallel shared(d,e,f,q)
C$PARZ local(il1,i2,j,x) C$PARZ local(i,j)
C$PAR pdo C$PAR pdo
do j =2, 99 do j =2, 99
do i1 =1, 100 doi=1, 100
x = c(i1,j) + b(it,j) £(i,3) = d(i,j)
if (a(it,j) .eq. x) then if (e(i,j) .1t. O0) then
b(i1,j) =1 d(i,j) =0
endif else
c(i1,j) = 0 d(i,j) = d(i,j) + 1
enddo endif
do i2 = 1, 100 enddo
a(i2,j) = q + b(i2,j) enddo
enddo C$PAR end pdo
enddo C$PAR end parallel

C$PAR end pdo
C$PAR end parallel

Figure 7.27 Exclusive-mode prefetching opportunities

For example, consider the first loop nest in Figure 7.27. The initial reference to
the array “c(i1,j)” is a read, hence it might seem logical to fetch the cache line
containing it in a shared state. Shortly after c(i1,j) is read, however, it is then
written. If the line is prefetched in a shared state, the subsequent write will be forced
to acquire an exclusive copy of the line, causing additional network traffic. It is more
efficient, therefore, to use an exclusive-mode prefetch for “c” from the start, even
though the first reference to “c” is a read.

Mowry et al. developed a compiler algorithm for deciding where to issue exclusive-
mode prefetches (73, 75]. In this algorithm, references are grouped into equivalence
classes based on group reuse. If any of the references within an equivalence class is a

write, then an exclusive-mode prefetch is used for the reference.

136

While this strategy works well in many cases, there are some situations where it is
not optimal. Consider again the example on the left hand side of Figure 7.27. Mowry’s
compiler would not place the two references to the array “a” in the same equivalence
class, since they are not identically nested, and hence exclusive-mode prefetching
would not be employed, resulting in additional unnecessary network traffic.

The algorithm used by Mowry et al. also does not consider control flow when
deciding whether to use an exclusive-mode prefetch: in the case of the references
to “b”, the write to b(it,j) is not always executed, so the exclusive-mode prefetch
might not be necessary at all, depending on the outcome of the test. It may be that
in such situations it is best to use an exclusive-mode prefetch only when the location
must be written, as opposed to situations where the location may be written. The
array “d” on the right hand side of Figure 7.27 is an example of such a situation: in
spite of the control flow, we know that d(i,j) is always written after being read.

The information provided by our analysis framework can be used to make more
intelligent decisions in the situations above. A simple method is to test each reference
r to see if Sy 3 S, for some Sy € UREF“(L) for the loop in question; if so, then

exclusive-mode prefetching is profitable. More sophisticated tests are possible as well.

False sharing

The parallel loops in our model are synchronization-free, thus we can be guaranteed
that if one processor writes an array element within a parallel loop. no other processor
will read that element. With non-unit cache line sizes, however, there may be false
sharing. For references to false-shared data, prefetching may actually make matters
worse, not better. Figure 7.26 illustrates this situation.

In the first parallel loop (“doall j”) each processor writes a block of columns of
the array. In the second parallel loop, however, each processor is assigned a chunk of
the first and last columns in the array. This will result in contention for the cache
lines that are on the boundary between processors- if a line is prefetched too far in
advance, it may very well be invalidated before it can be used, since another processor
may be trying to write it.

Our framework provides a simple way recognize such situations: we examine all
of the sections S € UREF*“(N) (where N is a node contained in an inner loop), and

suppress prefetching for references whose sections have mapping functions of the form

137

PMAP(S) = (1,...). While this will not eliminate the false sharing, it does eliminate
the additional network traffic and thrashing caused by the prefetching.

7.7 Experiments

This section contains the results of a set of preliminary experiments, in which we
apply the techniques described in 7.5 by hand to a set of subroutines taken from our

benchmark suite.

7.7.1 Subroutines

We apply our techniques to the three subroutines shown in Figure 7.28. The sub-
routines were chosen as representatives of the program in question in terms of late

prefetch behavior (fraction of late dirty remote prefetches vs. late clean remote

prefetches).
Taken from | Loop
Subroutine | program: | nests Remarks
eflux flo52 5 Most late prefetches are dirty remote
filter hydro2d 14 | Most late prefetches are clean remote
ez ADDS 4 Mix of late clean and late dirty remote
] PPSP prefetches

Figure 7.28 Selected subroutines

7.7.2 Optimizations

We measure the execution time of each subroutine with three compilation strategies,
shown in Figure 7.29. The Default compilation strategy uses prefetching without
any additional optimizations. In the Long strategy, we double the prefetching dis-
tance for all loops. In the DF-Long, DF-Outer, and DF-Twice strategies, we apply
optimizations selectively, only where our data-flow framework predicts that they will
be profitable. DF-Long uses a larger prefetching distance, DF-Outer uses outer loop
pipelining, and DF-Twice uses a form of double prefetching, in which reference pre-
dicted to cause coherence misses are prefetched twice: the first prefetch is issued

138

an outer loop iteration in advance, and then the second prefetch is issued using the

default inner loop pipeline.

Strategy name Description
prefetching with no additional

Default AR
optimizations
prefetching distance is doubled for all
Long
loops
DF-Lon prefetching distance is doubled for loops
& in which coherence activity is detected
DF-Outer outer loop prefetching is applied to loops

in which coherence activity is detected

references predicted to cause coherence
DF-Twice activity are prefetched twice, at outer
loop level and at inner loop level

Figure 7.29 Optimization strategies

Figure 7.30 shows the performance of each compilation strategy, relative to the
default version of prefetching. For “eflux”, doubling the prefetching distance for
all loops provides about a 3% reduction in execution time. In the DF-Long case,
the compiler selects 2 of the 5 loop nests for long-distance prefetching, and achieves
essentially the same improvement. In the DF~Outer and DF-Twice strategies, the
more aggressive transformations provide better execution time reductions of 9.1%
and 6.9% respectively. For “filter”, doubling the prefetching distance for all loops
causes a slight degradation in performance, and for the DF-Long strategy, there is
little change in performance, since the compiler targets only one minor loop nest out
of the 14 in the subroutine. The DF-Duter and DF-Twice strategies provide no change
in performance, since the compiler cannot find any applicable loop nests. In the case
of “jacz”, the compiler targets 2 of the 4 loop nests in the procedure, but none of the
optimizations appear to have any beneficial effects; in the case of DF-Outer, there is
even a slight performance degradation.

Figure 7.31 shows the effects of each compilation strategy in terms of its effects
on late prefetch amelioration and on overshoot. For each compilation strategy, the
“late” column shows the percent reduction in the average number of cycles that the

Compilation strategy

Long | DF-Long | DF-Outer | DF-Twice
eflux 2.9% 2.8) 9.1% 6.9
filter | -0.7Y -0.1% 0%)
jacz -0.1% -0.1}, -2.1% 0.1%

139

Figure 7.30 Relative performance of different optimization strategies

Compilation strategy
Long DF-Long DF-Outer DF-Twice
late over late over late over late | over
eflux 8.1Y% 48.7% 1.7% 42.6% | 14.5% | -33.8% | 47.3% | 1.8Y
filter | 42.8% | 194.8Y% | 43.4Y% | 206.2% - - - --
jacz 3.24% 8.5% 3.5% 99.1% | 24.7% | 130.8% | 49.5% 0%

Figure 7.31 Percent reduction in late prefetch penalty,
increase in overshoot for each optimization strategy

processor has to wait for a prefetch instruction. The “over” column indicates the
increase in overshoot caused by the strategy.

We interpret the data as follows. Nearly all the strategies result in an increase in
overshoot, which is not surprising, given that this is typically the price of prefetch-
ing farther in advance. Most of the strategies also reduce the penalties due to late
prefetches, as well. In the case of “eflux”, the more aggressive strategies produce
the best payoff. The DF-Twice strategy reduces the late prefetch penalty by almost
50%, with very little cost in terms of additional overshoot. The DF-Quter strategy
produces less of a reduction in the late prefetch penalty, but actually does better over-
all than DF-Twice: this is due to the fact that the jacz subroutine has fairly short
inner loops, and with outer loop pipelining a much higher percentage of prefetches are
issued during the steady state stage of the pipeline. In the case of “filter”, we see
why the increased prefetching distance provides few benefits: the level of overshoot
rises dramatically, cancelling out any scheduling benefits. A similar situation exists
for “jacz”.

In general, these results show that the data-flow analysis is able to recognize
situations where scheduling optimizations are profitable (as in the case of “eflux”)
and when they are not profitable (as in the case of “filter”). For the one subroutine

140

that exhibits a large fraction of late dirty remote prefetches, the optimizations selected
by the compiler reduce the late prefetch penalty by 40 to 50%, with a decrease in
execution time of 6 to 9%. For the subroutines with fewer late dirty remote prefetches,

we see relatively little change in performance.

7.8 Summary

Applying software prefetching on DSM multiprocessors is more difficult than on
uniprocessor machines. Cache miss latencies vary tremendously, and artifacts of the
cache coherence protocol can result in miss latencies that are orders of magnitude
larger than those encountered on uniprocessor systems. This variability can cause
problems for existing prefetching techniques, which were originally developed for ma-
chines with uniform miss latencies.

In this chapter we provide a detailed experimental evaluation of software prefetch-
ing on DSM machines, using execution-driven simulation of a set of compiler-parallelized
Fortran programs. Our experimental results confirm that late prefetches are much
more of a problem on DSM machines than on uniprocessors. To attack the problem of
prefetch scheduling for parallel programs, we describe a data-flow framework designed
to detect situations where late prefetches are likely to arise. It operates by analyzing
the program’s sharing patterns to predict the locations where coherence misses are
likely. Unlike previously developed methods, our framework incorporate knowledge
of both the program’s memory access patterns and the important characteristics of
the cache subsystem on the target machine. We demonstrate methods for using the
resulting data-flow information to improve the effectiveness of software prefetching,
including better prefetching for coherence misses, and handling of false-shared and
heavily shared data. Preliminary experimental results indicate that the framework is
successful in detecting situations where scheduling optimizations are profitable, and
that optimizations guided by the framework can significantly reduce late prefetch

penalties in situations where coherence activity is plentiful.

141

Chapter 8

Conclusions

This dissertation advances the state of the art with respect to compiler support for
software prefetching. Our contributions are in two areas: the detailed experimental
evaluation of software prefetching for various architectures, and the development of
new compiler algorithms and techniques to improve prefetching performance.

In our study of prefetch prefetching on uniprocessor architectures, we find that
the chief impediments to optimal prefetching performance are cache conflicts, which
reduce the level of prefetch coverage, and useless prefetches, which increase the total
instruction overhead for prefetching. We develop a set of new reuse analysis strategies
that are progressively more powerful than those used in previous studies, and we gauge
their effectiveness in eliminating useless prefetches. We find that prefetching over-
shoot (prefetches of data that is subsequently displaced before being used) is largely
due to cache conflicts, and not due to compiler-related factors. For uniprocessors, we
find that prefetch scheduling is not a major source of poor performance, and that there
are relatively few penalties due to poor compiler scheduling of prefetches. We demon-
strate that scheduling optimizations can reduce the percentage of late prefetches for
a given program, but we also find that for our simulated uniprocessor, there is little
to be gained in terms of performance by these techniques.

As a precursor to our work on parallel prefetching, we introduce the notion of
cross-loop reuse, and demonstrate a new form of data-flow analysis designed to detect
it. We show how this analysis can be used to help reduce prefetching overhead.
Additionally, we demonstrate how a compiler can use it to predict the profitability of
transformations such as loop reversal and loop fusion, and we provide experimental
results on the applicability of these techniques in a set of benchmark programs. Our
cross-loop reuse framework forms the foundation for the tools we use to improve
paralle] prefetching.

Our multiprocessor prefetching study is conducted using a set of parallelized sci-
entific programs in which the parallel structure of the programs is exposed to the
compiler, as opposed to so-called explicitly parallel programs, in which the compiler

142

often has little specific information on the program’s parallelism. We study the per-
formance of these programs running on a simulated DSM multiprocessor. Our results
show that prefetching provides better performance improvements than in the unipro-
cessor case, but we also find that late prefetches are a much more serious problem,
due to the more highly variable cache miss latencies on these architectures. We then
develop a novel data-flow framework that is designed to predict one particular class of
late prefetches. This framework builds on the tools we have developed for detecting
cross-loop reuse. It combines information on the program’s sharing patterns with an
understanding of the target machine’s coherence protocol and cache configuration to
detect locations where coherence activity is likely. We show how the framework can
be used to drive a variety of scheduling optimizations, and we provide experimental

results that demonstrate its effectiveness.

1]

2]

[4]

[5]

[6]

[8]

143

Bibliography

Sarita V. Adve and Mark D. Hill. Weak Ordering - A New Definition. In Pro-
ceedings of the 17th International Symposium on Computer Architecture, pages
2-14, Seattle, WA, May 1990.

A. Agarwal, R. Bianchini, D. Chiaken, K. Johnson, D. Kratz, J. Kubiatowicz,
B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife machine: Architec-
ture and performance. In Proceedings of the 22th International Symposium on
Computer Architecture, Santa Margherita Ligure, Italy, June 1995.

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A processor
architecture for mulitiprocessing. In Proceedings of the [7th International Sym-
posium on Computer Architecture, Seattle, WA, May 1990.

A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, second edition, 1986.

J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
October 1987.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The Tera computer system. In Proceedings of the 1990 ACM In-

ternational Conference on Supercomputing, 1990.

Gurindar S. Sohi amd Manoj Franklin. High-bandwidth data memory systems
for superscalar processors. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-1V), pages 53-62, Santa Clara, CA, April 1991.

B. Appelbe and B. Lakshmanan. Program transformations for locality using
affinity regions. In Proceedings of the Sizth Workshop on Languages and Com-
pilers for Parallel Computing, Portland, OR, August 1993.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

144

Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to
reduce data access penalty. In Proceedings of Supercomputing ’91, pages 176-186,
July 1991.

D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.
International Journal of Supercomputing Applications, 5(3):63-73, Fall 1991.

V. Balasundaram. [Interactive Parallelization of Numerical Scientific Programs.

PhD thesis, Dept. of Computer Science, Rice University, May 1989.

V. Balasundaram. A mechanism for keeping useful internal information in par-
allel programming tools: The data access descriptor. Journal of Parallel and
Distributed Computing, 9(2):154-170, June 1990.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Boston, MA, 1988.

David Bernstein, Dohon Cohen, Ari Freund, and Dror E. Maydan. Compiler
techniques for data prefetching on the powerPC. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques, Limas-

sol, Cyprus, June 1995.

M. Burke and R. Cytron. Interprocedural dependence analysis and paralleliza-
tion. In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction,
Palo Alto, CA, June 1986.

D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for sub-
scripted variables. In Proceedings of the SIGPLAN 90 Conference on Program-
ming Language Design and Implementation, White Plains, NY, June 1990.

D. Callahan, J. Cocke, and K. Kennedy. Analysis of interprocedural side effects
in a parallel programming environment. Journal of Parallel and Distributed
Computing, 5(5):517-550, October 1988.

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proceed-
ings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-1V), Santa Clara, CA,
April 1991.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

145

S. Carr, K. 5. M¢Kinley, and C.-W. Tseng. Compiler optimizations for improving
data locality. In Proceedings of the Sizth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-VI),
San Jose, CA, October 1994.

Tien-Fu Chen. Data Prefetching for High-Performance Processors. PhD thesis,
University of Washington, Seattle, WA, July 1993.

Tien-Fu Chen and Jean-Loup Baer. A performance study of software and hard-
ware data prefetching schemes. In Proceedings of the 21th International Sympo-

sium on Computer Architecture, April 1994.

William Y. Chen, Scott. A. Mahlke, Pohua P. Chang, and Wen mei W. Hwu.
Data access microarchitecturess for superscalar processors with compiler-assisted
data prefetching. In Proceedings of the 24th Annual International Symposium on
Microarchitecture, 1991.

R. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. Technical Report SMLI 93-12; UWCSE 93-06-06, Sun Microsystems
Laboratories, Inc. and University of Washington, 1993.

CONVEX Computer Corporation. Ezemplar Architecture. CONVEX Press,
Richardson, Texas, first edition, 1993.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer performance
evaluation and the Perfect benchmarks. In Proceedings of the 1990 ACM In-
ternational Conference on Supercomputing, Amsterdam, The Netherlands, June
1990.

Fredrik Dahlgren and Per Stenstréom. Evaluation of hardware-based stride and

sequential hardware prefetching in shared-memory multiprocessors. [EEE Trans-
actions on Parallel and Distributed Systems, 7(4):385-398, April 1996.

S. Dwarkadas, J. R. Jump, and J. B. Sinclair. Execution-driven simulation of
multiprocessors: Address and timing analysis. In Journal of Transactions on
Modeling and Computer Simulation, October 1994.

Keith I. Farkas, Norman P. Jouppi, and Paul Chow. How useful are non-blocking

loads, stream buffers and speculative execution in multiple issue processors? In

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

146

Proceedings of the st International Symposium on High Performance Computer
Architecture, pages 78-89, Raleigh, North Carolina, January 1995.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319-349, July 1987.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache
effectiveness. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing, Fourth International Work-
shop, Santa Clara, CA, August 1991. Springer-Verlag.

J. Fisher. Trace scheduling: A technique for global microcode compaction. [EEE
Transactions on Computers, C-30(7):478-490, July 1981.

Kourosh Gharachorloo et al. Performance Evaluation of Memory Consistency
Models for Shared-Memory Multiprocessors. In Proc. of ASPLOS{, pages 245~
257, Santa Clara, CA, April 1991.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding memory la-
tency using dynamic scheduling in shared-memory multiprocessors. In Proceed-
ings of the 19th International Symposium on Computer Architecture, Gold Coast,
Australia, May 1992.

P.B. Gibbons and S.S. Muchnick. Efficient instruction scheduling for a pipelined
architecture. In Proceedings of the SIGPLAN ’86 Symposium on Compiler Con-
struction, 1986.

G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In Pro-
ceedings of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

E. Gornisk, E. Granston, and A. Veidenbaum. Compiler-directed data prefetch-
ing in multiprocessors with memory hierarchies. In Proceedings of the 1990
ACM International Conference on Supercomputing, Amsterdam, The Nether-
lands, June 1990.

Edward H. Gornish. Adaptive and Integrated Data Cache Prefetching for
Shared-Memory Multiprocessors. PhD thesis, University of Illinois at Urbana-
Champaign, Department of Computer Science, 1995.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

147

E. Granston and A. Veidenbaum. Detecting redundant accesses to array data.
In Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use
in an optimizing compiler. Software—Practice and Ezperience, 20(2):133-155,
February 1990.

M. Gupta and E. Schonberg. A framework for exploiting data availability to
optimize communication. In Proceedings of the Sizth Workshop on Languages
and Compilers for Parallel Computing, Portland, OR, August 1993.

M. Gupta, E. Schonberg, and H. Srinivasan. A unified data-flow framework for
optimizing communication. In Proceedings of the Seventh Workshop on Lan-
guages and Compilers for Parallel Computing, Ithaca, NY, August 1994.

E. Hagersten. Towards scalable cache only memory architectures. PhD thesis,
Swedish Institute of Computer Science, October 1992. SICS Dessertation Series
08.

R. v. Hanxleden. Compiler Support for Machine-Independent Parallelization of
Irregular Problems. PhD thesis, Dept. of Computer Science, Rice University,
December 1994.

R. v. Hanxleden and K. Kennedy. Give-N-Take — A balanced code placement
framework. In Proceedings of the SIGPLAN ’94 Conference on Programming
Language Design and Implementation, Orlando, FL, June 1994.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded
regular section analysis. /[EEE Transactions on Parallel and Distributed Systems,
2(3):350-360, July 1991.

Paul Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer
Science, Rice University, May 1994. Also available as CRPC-TR94451 from the
Center for Research on Parallel Computation and CS-TR94-228 from the Rice
Department of Computer Science.

J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[56]

[57]

[58]

148

High Performance Fortran Forum. High Performance Fortran language specifi-
cation. Scientific Programming, 2(1-2):1-170, 1993.

Mike Johnson. Superscalar Microprocessor Design. Prentice-Hall, Englewood

Clifts, NJ, 1991.

N. Jouppi. Improving direct-mapped cache performance by addition of a small
fully associative cache and prefetch buffers. In Proceedings of the [7th Interna-
tional Symposium on Computer Architecture, Seattle, WA, May 1990.

R. M. Keller. Look-ahead processors. ACM Computing Surveys, 7(4):177-195,
1995.

K. Kennedy and K. S. MC¢Kinley. Maximizing loop parallelism and improving
data locality via loop fusion and distribution. In Proceedings of the Sizth Work-
shop on Languages and Compilers for Parallel Computing, Portland, OR, August
1993.

Ken Kennedy. A survey of data flow analysis techniques. In S. Muchnick and
N. Jones, editors, Program Flow Analysis, pages 5-54. Prentice-Hall, 1981.

Daniel R. Kerns and Susan J. Eggers. Balanced scheduling: Instruction schedul-
ing when memory latency is uncertain. In Proceedings of the SIGPLAN ’93
Conference on Programming Language Design and Implementation, pages 278-
289, Albuquerque, NM, June 1993.

A. C. Klaiber and H. M. Levy. Architecture for software-controlled data prefetch-
ing. In Proceedings of the 18th International Symposium on Computer Architec-
ture, pages 43-63, May 1991.

J. S. Kowalik, editor. Parallel MIMD Computation: HEP Supercomputer and its
applications. The MIT Press, Cambridge, MA, 1985. .

Sanjay Krishnamurthy. A brief survey of papers on scheduling for pipelined
processors. ACM SIGPLAN Notices, 25(7):97-106, 1990.

D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceed-
ings of the Eighth International Symposium on Computer Architecture, pages
81-87, May 1981.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

149

Kuck & Associates, Inc. KAP User’s Guide. Champaign, IL 61820, 1988.

Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency tolerance
through multithreading in large-scale multiprocessors. In Proceedings of the In-
ternational Symposium on Shared Memory Multiprocessing, pages 91-101, April
1991.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simon, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The Stanford FLASH multiprocessor. In Proceedings of the
21th International Symposium on Computer Architecture, April 1994.

M. Lam. Software pipelining: An effective scheduing technique for VLIW ma-
chines. In Proceedings of the SIGPLAN ’88 Conference on Programming Lan-
guage Design and Implementation, Atlanta, GA, June 1988.

James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scal-
able server. In Proceedings of the 24th International Symposium on Computer
Architecture, Denver, Colorado, July 1997.

J. Lee and A. J. Smith. Branch prediction strategies and branch target buffer
design. I[EEE Computer, 17(1):6-22, January 1984.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In Pro-

ceedings of the [7th International Symposium on Computer Architecture, May
1990.

W. Li and K. Pingali. Access normalization: Loop restructuring for NUMA
compilers. In Proceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-V),
Boston, MA, October 1992.

Z. Li and P. Yew. Efficient interprocedural analysis for program restructuring
for parallel programs. In Proceedings of the ACM SIGPLAN Symposium on
Parallel Programming: Ezperience with Applications, Languages, and Systems

(PPEALS), New Haven, CT, July 1988.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

150

Tom Lovett and Russell Clapp. STING: A CC-NUMA computer system for the
commercial marketplace. In Proceedings of the 23rd Annual International Sym-
posium on Computer Architecture, pages 308-317, Philadelphia, Pennsylvania,

May 22-24, 1996. ACM SIGARCH and IEEE Computer Society TCCA.

E. Markatos and T. LeBlanc. Using processor affinity in loop scheduling on
shared-memory multiprocessors. [EEE Transactions on Parallel and Distributed

Systems, 5(4):379-400, April 1994.

K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424-453, July 1996.

F. McMahon. The Livermore Fortran Kernels: A computer test of the numer-
ical performance range. Technical Report UCRL-53745, Lawrence Livermore

National Laboratory, [986.

T. Mowry. Tolerating Latency Through Software Controlled Data Prefetching.
PhD thesis, Dept. of Computer Science, Stanford University, March 1994.

T. Mowry and A. Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors. Journal of Parallel and Dis-
tributed Computing, 12(2):87-106, June 1991.

T. Mowry, M. Lam. and A. Gupta. Design and evaluation of a compiler algorithm
for prefetching. In Proceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-V),
pages 62-73, Boston, MA, October 1992.

Todd Mowry. Personal communication. Telephone conversation, September
1996.

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The Impact
of Instruction-Level Parallelism on Multiprocessor Performance and Simulation
Methodolgy. In Proceedings of the 8rd International Symposium on High Perfor-
mance Computer Architecture, pages 72-83, February 1997.

Subbarao Palacharla and R. E. Kessler. Evaluating stream buffers as a sec-
ondary cache replacement. In Proceedings of the 21th International Symposium

on Computer Architecture, April 1994.

[78]

[79]

[80]

[81]

[82]

(83]

[84]

[85]

[86]

[87]

[88]

151

A. Porterfield. Software Methods for Improvement of Cache Performance. PhD
thesis, Dept. of Computer Science, Rice University, May 1989.

David K. Poulsen. Memory latency reduction via data prefetching and data for-
warding in shared memory multiprocessors. PhD thesis, University of Illinois at

Urbana-Champaign, 1994.

David K. Poulsen and Pen-Chung Yew. Data prefetching and data forwarding
in shared memory multiprocessors. In Proceedings of the 1987 International

Conference on Parallel Processing, volume II, pages 276-280, 1994.

S. A. Przybylski. Cache and Memory Hierarchy Design: A Performance-Directed
Approach. Morgan Kaufmann, San Mateo, CA, 1990.

W. Pugh. The definition of dependence distance. Technical Report CS-TR-2292,
Dept. of Computer Science, Univ. of Maryland, College Park, November 1992.

William Pugh. Counting solutions to presburger formulas: How and why. In
Proceedings of the SIGPLAN ’94 Conference on Programming Language Design
and [mplementation, Orlando, FL, June 1994.

Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, and Sarita V.
Adve. The Interaction of Software Prefetching with ILP Processors in Shared-
Memory Systems. In Proceedings of the 24th International Symposium on Com-
puter Architecture, Denver, Colorado, July 1997.

Vatsa Santhanam, Edward H. Gornish, and Wei-Chung Hsu. Data prefetching
on the HP PA-8000. In Proceedings of the 24th International Symposium on
Computer Architecture, June 1997.

J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared-memory. Computer Architecture News, 20(1):5-44, March 1992.

A. J. Smith. Sequential program prefetching in memory hierarchies. Computer,
11(12):7-21, December 1978.

A. J. Smith. Cache memories. ACM Computing Surveys, 13(3):473-530, Septem-
ber 1982.

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

152

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9:355-365, 1974.

O. Temam, E. Granston, and W. Jalby. To copy or not to copy: A compile-time
technique for assessing when data copying should be used to eliminate cache
conflicts. In Proceedings of Supercomputing '93, Portland, OR, November 1993.

S. Tjiang, M. E. Wolf, M. Lam, K. Pieper, and J. Hennessy. Integrating scalar
optimization and parallelization. In U. Banerjee, D. Gelernter, A. Nicolau, and
D. Padua, editors, Languages and Compilers for Parallel Computing, Fourth
International Workshop, Santa Clara, CA, August 1991. Springer-Verlag.

Marc Tremblay and J. Michael O’Connor. UltraSparc [: A four-issue processor
supporting mulitimedia — combining on-chip multimedia instructions with a
high-performance, four-issue architecture. I[EEE Micro, 16(2):42-50, April 1996.

H. Tsalapatas. Interprocedural array side effect analysis. Master’s thesis, Dept.
of Computer Science, Rice University, February 1994.

D. Tullsen and S. Eggers. Limitations of cache prefetching on a bus-based mul-
tiprocessor. In Proceedings of the 20th International Symposium on Computer
Architecture, San Diego, CA, May 1993.

Dean M. Tullsen and Susan J. Eggers. Effective cache prefetching on bus-based
multiprocessors. ACM Transactions on Computer Systems, 15(1):57-89, Febru-
ary 1995.

J. Uniejewski. SPEC Benchmark Suite: Designed for today’s advanced systems.
SPEC Newsletter Volume 1, Issue 1, SPEC, Fall 1989.

Wolf-Dietrich Weber and Anoop Gupta. Exploring the benefits of multiple hard-
ware contexts in a multiprocessor architecture: Preliminary results. In Pro-
ceedings of the 16th International Symposium on Computer Architecture, pages
273-280, June 1989.

M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings
of the SIGPLAN 91 Conference on Programming Language Design and Imple-
mentation, Toronto, Canada, June 1991.

153

[99] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, MA, 1989.

154

Appendix A

Interprocedural analysis to support shadow regions

The analysis and transformations needed to add shadow regions to a Fortran programs
are performed in three phases: a local analysis phase, an interprocedural analysis
phase, and a transformation phase.

In the local phase, we record for each procedure P the set of arrays used within the
procedure. For each array, we store the name of the array (using name/offset /length
representation to deal with equivalencing) and the storage class of the array (local,
common, or formal). We also examine each call site within the procedure and deter-
mine the actual positions where arrays are being passed, and for each such actual, the
oftset within the passed array (or a marker that indicates that the offset is unknown).

[n the interprocedural phase, we make a top-down sweep over the call graph. The
goal of the analysis is to compute the function ShadowForFormal, which holds a value
for each array formal of each procedure. In the case that a formal f for a procedure P
is always passed the same array a, and a appears in a common block, then the value of
ShadowForFormal(p, f) will be a. In this case, a declaration for the block containing
a can be simply added to the p, and the compiler can refer directly to it. In the case
that different arrays are passed to f from different call sites, ShadowForFormal(p, f)
will have the value (explicit), which indicates that the caller of f must pass the shadow
region for a at the call along with a itself. Figure A.1 shows the algorithm used in
the interprocedural phase.

Finally, in the transformation phase, declarations for shadow regions are inserted
into each procedure, essentially by adding dummy variables of the appropriate size.
Call sites and lists of formals are patched to include shadow region variables (where
indicated by ShadowForFormal), and calls to the simulator runtime routines are in-
serted to tell the simulator at runtime the starting address and length of each array

and corresponding shadow region.

155

procedure ComputeShadowsForFormal
input: call graph G = (E, N)
output: function ShadowForFormal: (proc, formal) — array

for each n € N in reverse post-order:
for each formal f of n:
P (nil)
ShadowForFormal(n,f) « false
for each edge e = (z — n):
let a be the array in z passed to n’s formal f
if (p = (nil)) then
ShadowForFormal(n,f) « a
endif
if ((non-constant offset within a passed at e) or
((p # (nil)) and (a # p)) or
((a is a formal within z) and (ShadowForFormal(x,a) = (explicit)})) then
ShadowForFormal(n,f) « (explicit)
endif
p=a
endfor
endfor
endfor

Figure A.1 Algorithm for computing ShadowForFormal

156

Appendix B

Cache volume estimation for nested loops

This section describes in more detail the mechanics of estimating the cache volume
of a given loop nest as part of applying loop peeling. Our implementation uses the
Data Access Descriptor abstraction for summarizing accesses to a particular region
within an array; we refer to the reader to the Balasundaram’s thesis for definitions of
the various components used in Data Access Descriptors (ReferenceTemplate),
as well as the relevant algorithms [11, 12].

The main entry point for the cache volume estimation algorithm is the function
ComputeloopVolume, which estimates the number of lines brought into the cache
during the execution of a given loop nest. This function starts by computing DADs
for each of the references contained in the loop; each DADs starts out as a single
point, with all entries in the ReferenceTemplate for the DAD as invariants. The
function then calls itself recursively to collect sections for each sub-loop within the
target loop. The next step is to invoke the function LoopTranslate on the collected
set of DADs, effectively taking into account the loop bounds at level N. Next it calls
the function CoalesceAndCombine, which eliminates redundant sections (it is this step
that effectively captures the reuse taking place in the loop nest). Once the resulting
summary has been coalesced, we compute the number of cache lines in it by summing
the volumes of all of the DADs. Unknown symbolics can introduce great inaccuracies in
this process; when the compiler can’t determine a particular section bound at compile
time, it must conservatively assume that the entire extent in a particular dimension
is accessed, resulting in frequent over-estimates.

Some extensions were required to the base Data Access Descriptor algorithms
and data structures for this work. First, we implemented a DAD containment test,
which is simply a trivial pairwise comparison of all of the boundary pairs in the
Data Access Descriptor, and a “substantial containment” test, which checks for
sections that are substantially overlapping (a(1:n,1:n) and a(2:n+1,1:n), for ex-
ample) without strict containment in either direction. Second, we implemented a
scheme for estimating the number of cache lines accessed by a given DAD. Our algo-

Function ComputeLoopVolume
inputs: loop L at nesting level N
outputs: tuple (X, V), where:

e X is a reuse summary set summarizing the accesses within L, and
e V is the cache line volume of the loop with respect to level N

A=10

For each reference R directly enclosed in L {
Compute DAD D for R at loop level N
Add Dto A

}

for each loop L; directly enclosed by L {
(X, V) = ComputeloopVolume(L;, N-1)
Add X to B

}

C = LoopTranslate(A, N)

D = CoalesceAndCombine(C)

V = sum of volumes of DADs in D

return (D, V)

157

Function LoopTranslate(S, L, N)
inputs: loop L at nesting level N

reuse summary set S (sections invariant with respect to L)

outputs: reuse summary set R that takes into account bounds of L

{

for each DAD x € S {
y = x.TranslateToLoop(N)
compute volume of y with respect to level N
addy toR

}

return R

158

Function CoalesceAndCombine

inputs: reuse summary set S
outputs: coalesced version of S
{

Q=190

for each variable Vin S {
Let W be the set of DADs summarizing the access to V {
for each DAD x in W {
if (there is no DAD y in the V component of Q s.t. y contains x) {
add x to Q

}
}

return Q

rithm starts by using the method developed by Tsalapatas to determine the set of
redundant boundaries in the DAD [93]. Once the redundant boundaries have been de-
termined, we apply pattern matching to handle common cases (regions with entirely
rectangular boundaries, etc.), making conservative assumptions in situations where
more complex shapes crop up. We also take into account the cache line size and
the stride of the access in question. More general methods exist for computing the
volumes of shapes bounded by linear inequalities [83]. Nevertheless, in our experience

pattern matching was simple to implement and worked well in most cases.

IMAGE EVALUATION
TEST TARGET (QA—3)

16

hone: 716/482-0300

ax: 716/288-5989

653 East Main Street

= IMAGE . Inc
~ Rochester, NY 14609 USA

150mm

125

