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Abstract

Flux qubits (also known as persistent current qubits), one kind of superconducting tunnel junc-

tion circuits, are recently demonstrated as a promising candidate to realize quantum computations.

In order to do large-scale quantum information processing, it is necessary to switch on and off the

couplings between individual flux qubits in the time-domain while those qubits retain coherence.

This report contains two parts: one is to describe my understanding of models, fabrications and

measurements for one single flux qubit; the other is to compare two proposed schemes and the

corresponding experimental realizations of coherent tunable couplings between flux qubits.
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II SINGLE FLUX QUBIT

I. INTRODUCTION

Flux qubit consists of a superconducting loop interrupted by a number of Josephson tun-

nel junctions. Compared to other types of superconducting qubits such as “charge qubit”

(“cooper-pair-box” qubit)1,2, it possesses relatively larger Josephson junctions and the “bit”

is represented by two persistent currents of opposite directions circulating in its loop when an

external flux applied to the loop is close to a half integer number of flux quanta Φ0 = h/2e.

Since proposed in Ref. 3, flux qubits have been explored both theoretically and experimen-

tally so much in various aspects for finding possible implementation of a quantum computer

in the past decade.4–15 This article is organized as follows. First, I give a theoretical descrip-

tion of one single flux qubit and a short review on how it is fabricated and measured; then,

I discuss and compare two tunable coupling schemes and their experimental realizations;

finally, I present a conclusion of my understanding of flux qubit.

II. SINGLE FLUX QUBIT

A. model

Diving into the details of Ref. 3, I first summarize the authors’ research method here.

The inventors of flux qubits do not explore further why and how we can model an single

superconducting circuit element in the view of materials or other related regions; instead,

they abstract the corresponding 2-port circuit model for each element to design mesoscopic

superconducting circuits in a higher level. They utilize a standard quantization procedure

to obtain the Hamiltonian for the corresponding quantum system that, in short, the flux

and the charge stand as a pair of conjugate operators for the circuit as an analogy to the

position ~x and the momentum ~p of particles moving in a given potential. After analyzing the

circuit and its Hamiltonian they found useful parameters to simplify the complex quantum

system into a simple two-level one. I only discuss the latter system in this article.

Flux qubit’s circuit model is shown in fig. 1(a). In the classical DC regime, when the

external flux Φext = Φ0f is biased at close proximity of a degenerate point f = 0.5, as a

mechanic analogy5, the system behaves as one particle in a double-well potential shown in

1(b). At a classical limitation, the particle only pins in the bottoms of the well. Those

two classical states have a well-defined characteristics: due to the external flux, they corre-
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A model II SINGLE FLUX QUBIT

spond to persistent currents of opposite signs in the loop (clockwise or counterclockwise).

However, in quantum mechanics, those two classical states should spread a little due to

the Heisenberg uncertainty principle and couple with each other through a tunneling ∆

between the barrier. The bottoms of the potential can also be altered by Φext with en-

ergy ±1
2
ε = ±Ip(Φ − Φ0/2) because of persistent currents of opposite signs in the loop. The

Hamiltonian Ĥqb = −1
2
(∆σx+εσz) describes this system on the basis of the persistent current

states |↑〉 and |↓〉, where σx,y,z are Pauli matrices. The loop current operator is Îq = Ipσz.

Define that Ĥqb has its eigen-states | 0〉 and | 1〉 with eigen-energy E0 and E1 (E0 < E1).

When f = 0.5, eigen-states | 0〉 = |↑〉+|↓〉√
2

and | 1〉 = |↑〉−|↓〉√
2

are solved as symmetrical and

anti-symmetrical superpositions of |↑〉 and |↓〉, with loop current expectation values 〈Îq〉 = 0.

When |f − 0.5| increases and, thus, E1 − E0 = ω =
√

∆2 + ε2 increases, the superpositions

of the eigen states decrease, and finally, they become |↑〉 and |↓〉, respectively. See fig. 1(c).

(a)Circuit model (b)double-well potential (c)two-level

system

(d)Energy band diagram (e)Eigen-functions at the degenerate point

FIG. 1: Properties of a single flux qubit, modified from Refs. 3 and 5. Notes: the sub-figure (c)

shows the two-level system’s band structure and the corresponding loop current expectation values

of eigen-states.
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B fabrications II SINGLE FLUX QUBIT

The above explanation is relatively intuitive but not restrict. At least the words in Ref. 5

lead me to a wrong understanding that Ip can be obtained in the classical regime. Therefore,

I emphasize two complementary points here: the two-level system assumption is based on

the well separation of the corresponding states from other quantum states, see the whole

energy diagram of one flux qubit in fig. 1(d); one flux qubit is a mesoscopic quantum system,

unlike the intrinsic spins of electrons, the states |↑〉 and |↓〉 have their own distributions in

the phase space (ϕm, ϕp) as Ψ1±Ψ2√
2

, with Ip = 〈j | Îq | j〉j=↑,↓.

One notable thing is that Φext = 1
2
Φ0 is called the optimal point where flux qubit has

a longer dephasing time.9,10,13 I give my opinion which may be “naive”. Low frequency

noises δΦ(t) can impact the coherent evolution of one state of flux qubit, e.g., | e(t)〉 =

a | 0(t)〉 + beiφ(t) | 1(t)〉. Because the noises only affect | e(t)〉 slowly, no excitation occurs

between | 0(t)〉 and | 1(t)〉, | e(t)〉 evolves in the basis of | 0(t)〉 and | 1(t)〉, but the phase

varies as φ(t) =
∫ t

0
ω(t0)dt0/~, known as an adiabatic assumption. If ∂ω

∂Φext
= 0, then φ(t)

is insensitive to δΦext(t) to the first order, thus reducing the dephasing effects. Since the

tunneling part ∆ almost depends on the shapes of Ψ1,2 and the barriers between |↑〉 and |↓〉,

yielding ∂∆
∂Φext

= 0, ∂ω
∂Φext

= 0 requires ε = 0 as the optimal point.

B. fabrications

Superconducting circuits for quantum computations including flux qubits can be fabri-

cated using silicon-compatible techniques: to utilize electron beam lithography to define

masks, two-angle shadow evaporations of metals such as Aluminium with a specific oxida-

tion procedure between them to form Josephson junctions and other shadow evaporations

to obtain other metal layers. Optimizing recipes for those techniques is fundamental to fab-

ricate good devices. The scaning electron graph (SEM) of charge and flux qubits fabricated

in different groups are shown in fig. 2. Figures 2(a), 2(c) and 2(d) clearly reveal typical

devices employing shadow evaporations, where the repeated and overlapping patterns refer

to evaporations using the same mask. Figures 2(b), 2(c) and 2(d) show different patterns to

realize one flux qubit. This kind of diversity also indicates the high flexibility of designing

superconducting circuits.

Electron beam lithography and that all of devices are fabricated in the same situation in

one chip is one of the advantages of the superconducting circuits. It is reported that there
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B fabrications II SINGLE FLUX QUBIT

is only 0.5% difference between the loop sizes of two flux qubits.15 However, one exceptions

may be the sizes of Josephson junctions because those junctions are formed using metal wire

edges of not good shapes (See fig. 2(c)), although the thickness of the oxidation layers of

Josephson junctions is relatively easier to control.

It is also found from the SEM pictures that the auxiliary circuits are also fabricated

with qubits, e.g., a DC superconducting quantum interference device (SQUID)17 for mea-

surements, additional DC bias and microwave signal wires. Wisely arranging those unde-

tachable parts with flux qubits, however, makes the circuit designs more complicated. For

instance, different arrangements may lead to completely different mutual inductance dis-

tributions; the circuits fabricated should be isolated from surrounding enviroment noises

normally while it can also be switched into a readout state which, of course, is coupled back

to the environments.

C. measurements

Flux qubits’ resonant frequencies are generally on the order of 1 ∼ 10GHz. Therefore,

the circuits should be maintained in a dilution refrigerator in a very low temperature of the

order of 10mK while auxiliary circuits amplify the signals step by step from ∼ 10mK to the

room temperature for finally reading-out. Most of the final measured results are related to

the possibilities of specific events, so the measuring circuits are also designed to repeat the

experiments automatically thousand to million times.

One measuring technique is to utilize a DC-SQUID as a magnetometer to detect the loop

current of flux qubit shown in fig.3. If the bias current Ib is turned on to reach the critical

current point for DC-SQUID, it is crucial that the additional flux in the loop of DC-SQUID

contributed by the loop current of the flux qubit via the mutual inductance: the circulating

current can increase or decrease (determined by its direction) the possibility of the event that

DC-SQUID is switched into a voltage state and outputs a non-zero Vout. The possibilities

can be measured if we repeat the experiment multi-times.

One interesting thing is that Ib also changes the circulating current in the loop of DC-

SQUID, especially, when those two junctions of DC-SQUID differ from each other, which

impose a small additional flux (the phase ∆γq) to the flux qubit via the mutual inductance.

Therefore Ref. 6 shown in fig. 3 employs a good measurement scheme: when the flux qubit
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(a)Ref. 1 (b)Ref. 4,16 (c)Ref. 6

(d)Ref. 13

FIG. 2: SEM pictures of qubit systems, slightly modified from the original papers (see the sub-

captions). (a), one charge qubit without loops ; (b) the inner loop is flux qubit while the outer one

DC-SQUID; (c) 3-junction flux qubit shared its loop with one DC-SQUID, dashed line indicates

the two junctions of the DC-SQUID; (d) 4-junction flux qubit shared its loop with one DC-SQUID,

dashed line indicates the two junctions of the DC-SQUID.

is not required to measure, we can turn on a slight(ideally zero) Ib to make sure that the flux

qubit runs at the optimal point with zero average loop current; when we want to measure

it, a large Ib drives the flux qubit into a non-optimal point where its two eigen-states have

larger average loop currents.

III. TUNABLE COUPLING BETWEEN FLUX QUBITS

A. theoretical schemes

Two flux qubits, e.g., the kth and lth ones, can couple with each other via their mutual

inductance Mkl. Analogy to the spin coupling, the coupling operator can be expressed

as MklÎqkÎql = Jklσ
k
zσ

l
z with Jkj = MkjIpkIpj. One interesting thing is that in the above
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FIG. 3: Demonstrations of measuring setups.6 (A) Basic circuit model, “MW” means microwave

signals, Ib is the bias current of the DC-SQUID, Vout will have a non-zero output if DC-SQUID

is switched into a voltage-state; (B) Band structures of flux qubit, a large Ib leads to ∆γq; (C)

Difference in percents of effective switching current of DC-SQUID due to the different loop currents

of the ground state of flux qubit at different Φext. See the bias effect caused by ∆γq indicated by

the dashed line: if ∆γq = 0, when ∆Φ = 0, the result should be zero in percent because the ground

state possesses a zero average loop current; (D) Resonant spectra as a function of the microwave

signal F and the external flux bias ∆Φext.

derivations the authors in Ref. 3 construct the Hamiltonian without considering the loop’s

self-inductance, the size of which should be of the same order of the mutual inductance.

It is acceptable in this application in my opinion. Along the loop the self-inductance is

connected to those Josephson junctions in series. Since the Josephson junctions, due to

their large sizes, can provide much large effective inductances, the self-inductance should be

neglected approximately. However, for the coupling between different flux qubits, the mutual

inductances become crucial because of lacking other stronger coupling between them. It is
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expected that this kind of coupling is relatively weak; however, the small loop size can also

reduce the noises coming from the environment: there exists a trade-off between them.

I select Ref. 7,11 and 14 to understand how the tunable coupling scheme works. Two

coupling schemes are presented in fig. 4: coupling two flux qubits via DC-SQUID or a third

flux qubit.

(a)via DC-SQUID (b)via a third-qubit

FIG. 4: Two tunable coupling schemes and their realizations, modified from Refs. 12 and 15,

respectively.

The authors14 proposed a scheme that qubit 1 is coupled with qubit 2 via a third adiabatic

qubit, qubit 3. Qubit 3 possesses a higher ∆3 than those two others. It is not difficult to

write down its Hamiltonian

Ĥ3q = Ĥdc + Ĥ3MW (1)

Ĥ3dc = −1

2

3∑
j=1

(∆jσ
j
x + εjσ

j
z) −

∑
k 6=l

Jklσ
k
zσ

l
z (2)

Ĥ3MW = −1

2

3∑
j=1

δεj(t)σ
j
z (3)

where besides the DC part Ĥ3dc we also apply independent microwave signals δεj(t) =

2IpjδΦj(t) to flux qubits via the external flux biases.
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As we known11, three individual subspaces of those three flux qubits {| 0j〉, | 1j〉} span a

Hilbert space {| i1, j2, k3〉} |i,j,k=0,1, where Ĥ3q can be expressed as a 8×8 matrix. For a given

time t, we can choose another matrix Û(t) and diagonalize the 8×8 matrix Ĥ3q as ÛĤ3qÛ
† =

Ĥeff
2q | 03(t)〉〈03(t) | +Ĥex

2q | 13(t)〉〈13(t) | for qubit 3. Since qubit 3 with |ω3(t)| � |ω1,2(t)| is

frozen in its ground state and operated adiabatically, only Ĥeff
2q dominates in the dynamics

of qubits 1 and 2. The authors in Ref. 14 present such a way to solve the diagonalization

problem using a perturbation method, the Schrieffer-Wolff transformation. As a hint here I

assume there exists only one state in the system of qubits 1 and 2 coupling with qubit 3. Then

we have a 2 × 2 matrix Ĥ2×2 = −1
2
(ω3σz + ∆tmpσx). As shown in the previous discussions

on the self and mutual inductances, we have the mutual inductive energy ∆tmp � ω3 and

the corresponding Ĥeff
2q becomes a number as Heff

tmp = −1
2

√
ω2

3 + ∆2
tmp ' −1

2
ω3 −

∆2
tmp

4ω3
. This

number indicates that besides the original zero-point energy −1
2
ω3 for qubit 3 a correction

is also included where a minus sign means that the coupling lowers the total energy because

qubit 3 stays in its the ground states. Back to Ĥeff
2q , its form reads in a similar style as

Ĥeff
2q = −1

2

2∑
j=1

(∆eff
j σj

x + εeff
j σj

z) − Jeff
12 (t)σ1

zσ
2
z −

1

2

2∑
j=1

δεj(t)σ
j
z, (4)

where

εeff
j = εj +

2ε3(t)Jj3

ω3(t)
= εj − 2Mj3Ipj〈03 | Îq3 | 03〉 (5)

∆eff
j = ∆j −

2(Jj3∆3)
2∆j

ω3(t)2[ω3(t)2 − ∆2
j − ε2

j ]
(6)

Jeff
12 '

(
M12 −

M13M23

LQ(t)

)
Ip1Ip2 = J12 +

2J23J13∆
2
3

ω3(t)3
, (7)

L−1
Q (t) =

∂〈03 | Îq3 | 03〉
∂Φ3

= −
2I2

p3∆
2
3

ω3(t)3
. (8)

Comments are presented here: 1) ω3(t) as a divider makes all of the corrections as perturba-

tions; 2) the loop current of the ground state of qubit 3 lower εj to εeff
j through the mutual

inductance; 3) Jeff
12 (t) tells us that the auxiliary qubit 3 indirectly connects qubits 1 and 2

using its own flux response to qubits 1 and 2 via the mutual inductances; 4) AC components

of qubit 3 are also neglected.

For point 3), I would like to give the explanations in Ref. 7. If qubit 2 switches the current,

it apply a small flux change δΦ3 = 2M23Ip2 to qubit 3; due to the adiabatic assumption

qubit 3 is still frozen in the ground state but with a change in its loop current ∆IJ =
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δΦ3/LQ(t), and, finally, the mutual inductance M13 shifts the energy of qubit 1 with Ks =

−2M13M23Ip1Ip2/LQ(t). Here the energy “flows”along a coupling chain from qubit 2 to

qubit 1. Again the issue about the self and mutual-inductances rises: each qubit has no feed

back during our analysis even though it has its self-inductance, which also suggests that the

term Jeff
12 (t) only approximates the rigorous but much complex one in lower orders. The

idea of the DC-SQUID coupling scheme7 does not differ from this scheme in this context.

What differs is that they apply a large Ib to generate a proper L′
Q for DC-SQUID. However,

Reference 14 follows the idea of Ref. 11 to use AC microwave signals at the angular frequency

ω± = (∆eff
1 ± ∆eff

2 )/~ to couple qubits 1 and 2. Why can the modulated AC signal in the

coupling term Jeff
12 (t) achieve a constant transition between two states? Because there

exist terms of the angular frequency components ω± in the interaction representation in my

opinion.

The authors in Ref. 14 argue that the DC-SQUID-coupling scheme employing a large

Ib contradicts the optimal current bias condition10,13 for the single qubit which requires

∂∆γq/∂Ib = 0 (see the measurement section) to effectively decouple the flux qubit from

its measuring circuit and optimally cancel out the noises from Ib to the first order. Ideally,

DC-SQUID goes at the optimal point with Ib = 0; due to 4% asymmetry of its two junctions

in fabrications, Ref. 10 takes the optimal I∗
b as I∗

b = 180±20nA but still much less than the

switching current IC ∼ 1µA of DC-SQUID. However, it is not obvious why qubit 3 holding a

large loop current cannot trap some noises to impact qubits 1 and 2 in their scheme. Without

further theoretical analysis, I think, the reason may be that we never measure qubit 3 for any

quantum informations. Since the measurement is always a decoherent procedure because it

projects the quantum states into classical ones, the DC-SQUID coupling scheme has a higher

possibility to couple the qubits to the measuring environment, causing their decoherence.

Finally, the theoretical schemes are presented completely. I agree with the authors’ com-

ments on the third-qubit scheme: taking the flux qubits as tunable coupling elements makes

the circuits easier to fabricate in compatible technologies; all magnetic controls and fre-

quency multiplexed(assuming different splittings) requires a minimal number of microwave

lines; it is crucial for this kind of coupling scheme that optimal points exists and the effective

coupling at DC regime can be set to zero if desired.
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B. Experimental results

First af all, I find that Ref. 15 utilizes the new designed and more symmetric flux qubit

shown in fig. 2(d) compared to fig .2(c). It is because in a given Ib the latter one reduces

the circulating current in the loop of DC-SQUID into zero ideally and, thus, couples less

noises to the flux qubit, which is still a issue on how to select the optimal point for Ib.
8

Different schemes lead to different realizations for Refs. 12 and 15( See fig. 4 ). In the

former one, DC-SQUID functions as both the measuring and effective coupling elements, so

two bias lines are included to independently control qubits 1 and 2. The latter one, only

utilizes single uniform flux bias for qubits 1,2 and 3, controls the accuracy of lithography

to make sure of Φ1 ' Φ2 whereas Φ3 is deliberately offset to generate a finite coupling for

qubits 1 and 2. Its DC-SQUID besides as a measuring device also fine-tunes qubits 1 and 2

to be at the opitmal point. It seems that the latter one’s design is of less metal lines, simple

and robust; yet, I am not sure of its flexibilities if we design a system consisting of more

flux qubits. Both of them only fabricate one DC-SQUID, so they cannot measure qubits 1

and 2 individually without destroying the other qubit’s quantum informations and always

obtain the informations of the four-level quantum system shown in fig.4(b)(B).

Generally, the evidences of the coupling betwne qubits 1 and 2 are that there are direct

transitions of | 10〉 ↔| 01〉 and | 00〉 ↔| 11〉. Reference 12 carefully tunes the flux biases

of almost identical qubits 1 and 2 to find a degenerate point for | 10〉 and | 01〉, the cross

point in the first subfigure of fig. 5. At this degenerate point | 10〉 and | 01〉 forms a

new two-level system and the tunnable couplings, if existing, lead to tunnable fine splitting

structures shown in the last three figures in fig. 5. Reference 15 focuses on the other

transtion | 00〉 ↔| 11〉. The spectra in fig. 6 shows that they fabricate qubits 1 and 2 of

different sizes and the observed line (∆1 + ∆2)/h only indicates there is a coupling between

qubits 1 and 2. Further proofs are given in the last seven figures in fig. 6 showing dynamics

of the transitions between different states. Figures from A to D demonstrate single qubit

operations. Figures from E to G show the transition runs faster if a AC signal of a larger

amplitude is applied, with a maximum speed of 23.2MHz, indicating a tunable coupling. I

think the results also suggest that we should enlarge the coherent time so that the transition

curves cannot decay as fast as ∼300ns.
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FIG. 5: Experimental results in Ref. 12

FIG. 6: Experimental results in Ref. 15

IV. CONCLUSION

In this report I present some introductions to flux qubits and coherent tunable coupling

between them. Flux qubit as a superconducting circuit dominated by quantum mechanics

can be treated as a two-level quantum system with a proper set of parameters. To minimize

the impacts of the low frequency noises flux qubit may work better in the optimal point

Φext = 1
2
Φ0. Fabrications of flux qubits show high flexibilities in design which still requires

amounts of design skills to cope with them, e.g., for auxiliary circuits. Flux qubit is usually

measured using a DC-SQUID which can detect its small loop current. Finally, I try my best

to understand and interpret two coherent tunable coupling schemes and their realizations:
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coupling two flux qubits with a DC-SQUID or a third flux qubit.
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