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CHAPTER I

INTRODUCTION

l,1. Objective Statement

Generally speaking, one of the most important and
fundamental problems associated with the studying of
dynamical systems is the investigation of stability, since
a given dynamical system is seldom proven to be useful
unless it is stable., Much attention has been confined to
systems whose dynamic behavior is governed by ordinary
differential equations[1-5]. However, there are many systems,
for example, those systems which include transmission lines,
wave guides, vibrating strings or membrances, torsional
shafts, and heat exchangers, etc.,, in which the spatial con-
figuration must be taken into account. Such systems, in
which the spatial configuration constitutes an important
factor, are often called distributed parameter systems, and
their dynamic behavior is represented by partial differential
equations instead of ordinary differential equations. For
stability analysis, the second method of Liapunov is applied
primarily to systems having finite degrees of freedom described
by ordinary differential equations. The theory has been ex-
tended to distributed parameter systems by Zubov[6] and to
systems having infinite degrees of freedom by Masseral7].
Movchan [8] Slobodkin[9], Wang[l0] and Knop'and Wilkes[11]
discussed stability of elastic systems in the frame-work of

Liapunov., Kostandian[l12] and Rakhmatullina[l3] considered
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the stability of solutions of the nonlinear heat conduction
equation., Wang[l4] considered the_stability problems for
particular classes of distributed parameter systems with
feedback control.. A variety of questions on the stability
of partial differential equations are also examined by
Eckhaus[15]. Recently, Hale and Infante[l6] analized some
Stability questions in a format which is applicable to cer-
tain partial differential equations., However, problems that
still remain open for further investigation are the stability
of distributed parameter systems with periodic coefficients
and the extension of existing results on bounded input bounded
output stability of lumped systems to distributed parameter
systems,

One of the main objectives of the present work is to
develop methods for analyzing the stability of distributed
parameter systems which can be described by a general partial

differential equation of the type

—’-’-‘5-(-}@-1:—)- = A(x,t,42) ulx,t) (1-1)

where u(x,t) is a n-vector which is a function of the co-
ordinate x (scalar variable) and time t, A(x,t, %§) is a

linear polynomial operator in %E of degree p with varying
coefficients in x and t. This equation is of general |
interest in the description of many engineering problems

and includes such important cases as the wave and the diffusion

equations,
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In chapter II, we develop a state space representation
for distributed parameter systems governed by the nth order
linear homogeneous partial differential equation. This
approach is further extended to the general nth order linear
nonhomogeneous partial differential equations.

Chapter III is devoted to the stability of linear periodic
distributed parameter systems, Attention is first focused
on systems where the operator A is a function of a polynomial
in %§ with periodic coefficients depending on t only. The
Floquet theory[l7] is formulated for distributed parameter
systems by using the Fourier transform technique., A theorem
similar to the conventional Floguet theorem is stated for
systems described by (1-1) with A(t,%i) periodic in t with

period w, i.e.,

A(tte j5m) = A(t,3—), (1-2)

A fundamental matrix operator solution §(t,i-) exists

X
such that
R (4
3 3
Bty = Plt,g) e °F (1-3)
where P(t,%;—) is a_linear operator with polynomial in %;—

and its coefficients are periodic in t with period w, i.e.,

P(t, ) = P(t+w ,d) 1)

and R(%;—) is a linear operator in polynomial in 4%; and
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is independent of t, Since P(t,%;—) is periodic bounded
linear operator, it is sufficient to examine the spectrum
G[R(%ﬁ—)] of the linear operator R(%ﬁ—) to determine whether
the system is stable. The system is asymptotically atable

if the maximum of the spectrum of R(%ﬁ—) is negative, i.e.,
max G[R(-g-}?-] < 0, (1-5)
If on the contrary,
max G[R(%;'] > 0, | (1-6)

then the system is unstable.

By using this idea and an appropriate variable trans-
formation, this stability analysis has been further ex-
tended to the case where the operator A(t,x,_%;) has co-
efficients varying periodically both in t and x with periods,

This is illustrated by several examples from the diffusion
process and wave propagation,

One of the most general and powerful approaches in
the theory of stability is the so-called "second method"
of Liapunov, It answers question gf_gtability of differential
equations without explicit knowledge of the solutions.

Because of this property of the second method, it is some-



times called the "direct method". Chapter IV, begins by
consideration of the absolute stability of a linear, constant
coefficient, distributed parameter system described by (1l-1)
with A(t,Xf%E—) = A(%§-). This serves as a basis for the
stability analysis of nonlinear distributed parameter control
systéms.

The nonlinear distributed parameter system with control,

which we consider, is described by a set of modified Lurie

type equations of the form:

u 3
3t A(AX Ju - bg

¥ = ¢() (1-8)
¢ =c'u ’

where x, t and u are defined as before, A(%x_) is the
constant coefficient matrix operator mentioned above, b

and c are constant n-vectors, the scalar variable ¥ denotes
the error, the scalar variable ¢ the output and the non-
linear function ¢ (o) the control., For example, the equation
that governs the motion of a string with controlled load

may be put into the form of (1-8). By using a Liapunov
functional approach similar to that of Lurie, conditions on
the parameters, ¢(d) and the boundaries which are gulrarntee
absolute stability of the null solution of (1-8) are derived,

In chapter V, we look at the stability of distributed



parameter systems in presence of inputs. The bounded input-
bounded output stability problem is studied for the linear

control system

du  _ 9
=t = 2 (55)u + of (1-9)

as well as the nonlinear control system described by (1-8)

with an additional forcing term v:

U _ o2

3t A(m)u + bg

E=v - L¢ (1-10)
o =c'u

where u, t, A(%;—), b, 8, ¢, & again are defined as before,
v is the input (scalar) function. Bounded input bounded
output stability is demonstrated by properly constructing
a Liapunov functional V for (1-9) and (1-10) whose total
time derivative satisfies

. 1/2

V<L-=-1V+ sV (1-11)
where r and s are positive constants. This differential
inequality implies a bounded response and thus the bounded
input produces a bounded output.

The stability theorem under persistent disturbances

due to Malkin[l] is extended to a general distributed para-

meter system dgscribed by

1-6



du(X,t) ) 3 4
_n_xf_— = U(X,35u,t) + R(X,;;,u,t) (1-12)

where R(X,—%i,u,t) is a n-vector - the forcing function,
Roughly speaking, our. result establishes that provided the
unforced system corresponding to (1-12) is asymptotically
stable and under appropriate boundary conditions, the norm
of the state vector is bounded if the norms of the initial
(distributed) states and the inéutAvector are suitable bounded.
What we have just stated is the inverse of the bounded
input bounded output stability problem.

l.2, General Background

Some of the relevant definitions and theorems such as
definitions for various degree of stability, Liapunov's
stability theorem and the conventional Floquet theory will be
briefly stated in this section,

(1) Notations and Definitions

Consider a distributed parameter system defined on a
spatial domain & <€ Rm, whose state at any time t can be generally
specified by a real-valued vector function u(X,t) - an element
of some function space (R) with a specified metric @ (u,u')

at any time t. Let X = (x Xoreeor xm) be the spatial co-

ll
ordinate vector, R™ a real m-dimensional Euclidean space,
N an open connected set, rigl), i=1, 2, ..., n, a set of
function spaces defined onf, and I"(Q) = Fign)rch),,,ﬂhul)

a state function space, The system motion starting from any

specified initial state u(X,to) at time to is defined by



i(trto)u(x,to), where 8 (t,t,) is a continuous operator on
P(n) defined in the interval to and t; it maps () into
itself, If the set of the operators 2(t,ty) obey the

following conditions
i(tlrt)§(tlto) = i(tlrto)
B(t,t) = I, 0 < ts ﬁ t + o (1-13)

where I is ‘the identity operator, then it is said that
§(tpto) has the properties of a semi-group. A particular
motion resulting from a corresponding initial condition
u(X,t,) determines a specific trajectoryA in r@®) for all
t . . . N . .

2 t. J\lnv C f(n) is said to be an invariant set, if

u(X,ty) € Min implies that its corresponding trajectory

v

i in A i i A, :
also lies in v, The invariant set iny usually consists

of one or more trajectories of the dynamical system. The
distance between a particular state u and the invariant set

A, is defined as
inv

inf
and the distance of a particular m.otion.A.s from.Ainv is
defined by
" sup
P lAgrfing) = ued piu, Ajpny). (1-15)

Precise definition of stability can now be stated in the

sense of Liapunov[2,3,6,14] as follows:
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Definition: An invariant set innv of a dynamical

system is said to be stable with respect to the metric defined
in P(A) whenever for every t_, and € >0, there exists a real

number 6(to,£) > 0 such that

PIu(Xrto) ) A inyl < 8(tg,€)

implies
PIA A L,) < € for all t » t_,

where Ag denotes the corresponding trajectory of the system
with respect to the.initial state u(X,tgy). If, in addition
to the above conditions p(A_,Mjpy) -+ 0 as t-—+e, then
the invariant set A o is said to be asymptotically stable.
Furthermore, if.AinV is asymptotically stable for all
u(X,ty) € (), then the invariant set A, o is said to be
globally asymptotically stable or asymptotically stable in
the large.

In stability analysis, an equilibrium state is being
considered., This is actually the special case where./\-inv
is an invariant set consisting of only an eqﬁilibrium state
or the null state. It is sometimes convenient to reformulate
the system equation to transfer the equilibrium state u, to
the null state by means of a displacement in the state function
space. Therefore, without losing generality, the null state

may be investigated for stability.

(ii) Floguet Theory
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Consider the nth order linear differential equation

with periodic coefficients in the vector form
x = A(t)x (1-16)

where x is a n-vector, A(t) is a n by n matrix and is
periodic in time with period w, i,e., A(t+w)=A(the FTheguRloguet
theory states that a fundamental matrix solution exists

for (1-16), and is given by
B(t) = p(t) R (1-17)

such that P(t) is apperiodic nonsingular matrix with period
w, and R is a constant matrix.
Let P(t) is a periodic nonsingular transformation

with bounded coefficients of period such that
y =P(t)x , - (1-18)
using (1-17), (1-15) becomes

y = Ry

pp L 4+ pap T . (1-19)

where R

According to a theorem by Liapunov (2), there exists a
non-singular transformation P(t) with periodic coefficients
with period w such that R is a constant matrix. This means
that a linear system with periodic coefficients is reducible

to a linear system with constant coefficients through a non-
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singular transformation P(t). Since P(t) is periodic and
nonsingular, for the stability of system (1-16), it is
only necessary to examine the eigenvalues of R. The
system is asymptotically stable if the real part of all
the eigenvalues are negative. The system becomes unstable
if one of the eigenvalues has positive real part. -

(iii) Stability Theorem,

(a) Liapunov's Theorem on Stability. Consider

as a n-vector system, where f(x,t) is continuous and satisfies
a Lipschitz condition in the state space for all x and t., An
important stability theorem by Liapunov[l] states that the
system described by (1-20) is stable if there exists a
function V(x,t) which is continuous together with its first

partial derivatives such that

Wy (%) D V(x,t) > W(x) >0, x#0  (1-21)
V(0,£) =0, t >0 (1-22)
and | V(x,t) >0, t>0, (1-23)

where Wl(x) and W2(x) are positive definite., If in addition

to (1-21) and (1-22)

- V(x,t) 2 Wy(x) > 0, (1-24)
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where W3(x) is again popitive definite, then the system
is asymptotically stable,

(b) Zubov's Theorem on Stability., Liapunov's theorem
can be extended to distributed parameter systems. The main
idea is to select a Liapunov functional V which is a mapping
from the state function space "() into a set of real
numbers R instead of Liapunov function to give some estimate
of the distance of the system state u from a specific in-

variant set in "(QQ). In order to study the stability of

invariant sets of dynamical systems, and of systems in a
metric space, the following important generalized Liapunov's
theorem due to Zubov[6] is applicable,

Theorem: An invariant set A; . of a distributed parameter

v

system defined on f'(a) is stable if and only if there exists
a real Liapunov functional V having the folloWing properties:
(i) V(t,u) is defined for all t and u for u € S(Ainv,f),
Schinv,r) is a certain neighborhood: the set of all
u such that the distance between the state u ana the
invariant set is less than r,.
(ii) For every ¢y > 0, there is a cy> 0 such that

v(t,u) > c, for all pP(u,4A,

1nv) > cq and t > 0.

2
(iii) V(t,u) -» 0 uniformly for all t > 0 as u-s A

nv

(iv) The supremum of the function V(t,u') for all u'é€ A
is non-increasing for all t >» to .

If in addition to the conditions (i) to (iv), the function



defined in (iv) approaches zero as t—+ e for any u € SCAi

where S(A. _,8) is a certain neighborhood of A, .
inv inv

nv

1-13

')



CHAPTER II

STATE VARIABLE REPRESENTATION FOR DISTRIBUTED PARAMETER SYSTEMS

2.1l. Introduction

In this chépter, the matrix techniques and state space
concepts of ordinary differential eguations are extended to
the distributed parameter systems described by linear partial
differential equations, The similarity between the theory
of a system described by ordinary differential equation and
that of a system governed by a partial differential equation
is indicated.

By defining the state variables

. dn—lx
X = X X =X e o0 X = 2"'1
1 r X9 ' r Xp dtn"l ( )
a nth order linear differential equation
ax dn-lx ax
X
a + a__ + ... ta + ax=0 (2-2)
n gt n=1""4¢n-1 1 at °
has the matrix form
X = AX (2=3)
where
— -
1
)
x=|. (2-4)
X
h— n—

and



0 1 0 0 R . . 0 0
0 0 1 0 . R R 0 0]
A= 0 0 0 l . . . 0 0
[ 3 L ] L ] L ] [ ] [ ] L] [ ] L ] . (2-5)
0 0 0 0 R . N 0 1
an a8, &, 2p an an__

Assuming A to be a constant n by n matrix with n distinct

eigenvalues, the general solution of (2-3) is[18]
- Mt Mt . + c éltp (2=6)
X = Cle + Cze p2 eoe n n
or in matrix form[1l7]

X = et.A x(0) = PetJPan(O) (2-7)

where Cir Cpr eser C, are arbitrary constants, A; distinct

n
eigenvalues of A, Py the eigenvectors associated with the
eigenvalues Ai' J the diagcnal matrix similar to A, and
P a nonsingular constant matrix such that

P = (P Py vus pp) - : (2-8)

If A has repeated eigenvalues, J can in general be

reduced to its Jordan canonical form



rJ’ 0 L] L L] 0
o]
0 Jl . o o 0
J = . . . . . . (2_9)
0 0 . . . J
S

where J, is a diagonal matrix with diagonal Xl, Kz, ceey km

-- m distinct eigenValueé of A, and

xm_i 1 0 o . . 0 -0
0 Am'i-i 1l . . . 0 0
0 0 xm.*_i L ] '] L) 0 0
Ji - [ ] L] ] [ ] ') [ L] L] (2_10)
0 0 0 . . . A‘m+i 1
0 0 0 . . . Api

(i=l’ 2' TN, S)

a ri by risqﬁare ma_trix’ ri the mU.ltlpllClty of A'm+i

(i.e., r; = number of times ki is repeated) and

n=m +}§: r.. It follows that
i=l *t



etJo
0
etJ -
0
where —
etxl
0
etJo =
0
and 2
T‘l e t
21
0 1 t
0 0 1
tJ
e O= P M .
0 0 0

(i=l’ 2, 600y S)

0 .

tJ1

0 .

0 .
A

et 2,

0 .

(ri=1)!

trj_-2
(ri-2)!

tri-3

(ri—3)l

’ (2-11)

(2-12)

(2-13)



2.2, Linear Homogeneous Partial Differential Equation

A linear homogeneous constant coefficient partial

differential equation can be written as

n Il n
a -a--l-l- + a )-———-— + a u +
natn n-latn—lax n-2 btn'26x2 s o o
n n
P
At 4a 22U -, (2-14)

Litax-! °
where u is a scalar function of x and t, and'ai's are

constants, If Xi are distinct and satisfy the characteristic

equation
n n-1
apXi + ap-1™y t eee t A+ a = 0, (2-15)
the general solution will be giveh by
%E :
= + . —
u = ¢i (x Klt) _ (2-16)

where ¢i are arbitrary functions,
We now introduce the state variables for the system

(2=14) by defining

) bn-lu
4 = -1
v =2
2 3t dxt
(2=-17)
¢ -1
n-1 3MN—2yx
-1
gl u
U, = .




(2-14) can then be written as

bul _ du,
3t Tox
buz _ du,
ot X
(2-18)
du _p _ duy
2y %M 2 My 31
3t a, X a, dX ap - Xﬁ'
This can be put into the vector form
ou Iu
e - 2 % (2-19)
with o
41
42
u =1 . (2=20)
u
hoe n—




2=-17

and — B
0 1 0 0 . o . 0 0
0 0 1 0 . o . 0 0
00 0 0 1 . o . 0 0
A = L(2=-21)
0 0 0 0 M ‘ . 0 1
% A& %2 %, Zn-2 %p-1
e an an a,n an an , an_..J

Then a general linear homogeneoué partial differential
equation can be easilﬁ put into the vector form of
(2-19) with the state variables defined in (2-17).

Note that the state variable representation expressed
by (2-~19) to (2-21) is valid when the parameter as, i=1l, 2,..44n,
appearing in (2-14), are functions of x and t.

Returning to the constant coefficient case, a solution
of (2-19) may be formally obtained as,

u=4¢(x +At)p (2=22)
where p is a nonzero constant vector, Substituting (2-22)
into (2-19),

¢'(x +At)p = Ad'(x + At)p
or (A - AI)p= 0, : : (2=-23)

Hence (2-22) is a solution of (2—14) precisely
when p is an eigenﬁector of A associated with the eigen-

value A, If A has n distinct eigenvalues SN Apreser Npy



then the corresponding eigenvectors pj, Py, «++s Pp are
linearly independent and form a basis for the space.

Therefore the linear combination

u(x,t) =4, (x+ME)p) + @5 (XA t)py + ouw + & (x¥A t)p) (2-24)
is the general solution to (2-19).
The n arbitrary functions ¢, can be determined by
the n given boundary conditions, -
Let us denote by F the linear operator A%E“ in the product
space H = LZN(-‘\-) = L2 (2) ......L2 (®) (n times), where o is
a subset of the real line., The boundary of . will be denoted
by ssu.
We define the domain of F
D(F) = {u(x,t) € H: t € [0, ); u absolutely condittous
on f, u(x,t) satisfies a homogeneous boundary condition
c'u(x,t) = 0 ¥V x € 8 , where the components of the n-vector
c may depend on both x'and t} . (2-25)
Let us impose the following two restrictions on the operator F
(1) D(F) is dense in H,

(2) there is a real number k such that

-1
| RuE) | 2 O1-F) T g e (2-26)

for all A > k; where I = identity operator,

Then by the Hille and Yoshida theorem, F is the infinitesimal

generator of semigroup {&(t,t')} where
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(t-t")F (t-t")A L
B(t,t') = e = e 3x (2-27)
and a solution of (2-19) satisfying the homogeneous boundary
conditions (2=-25) and corresponding to an initial function

u(x,0) may be expressed as
£Ad
u(x,t) = e sxu(x,O) ; X€N, te[0,e) (2-28)

Let J be the diagonal matrix similar to A, obtained

by means of the nonsingular matrix P

Jo=P AP . (2-29)

Then the fundamental matrix operator solution &(t,t')

takes the form

_rryald et -1 3
E(t,t') = e(t t )Aax = e(t EHRIP T 3R
—t') I -1
= pe(FF ) Top , (2-30)
and the general solution (2-~28),
- J . " -
u(x,t) = pe t7E )JT§;P L ux,0 . (2=-31)

in genéral, if A has repeated eigenvalues, (2-31)
will againnbe the general solution provided that J and etJ
are defined by the equations (2-9) to (2-13).

Notice the similarities between the nth_order drdinary
differential equation and the nth order homogeneous partial
differential equation. The vector equations (2-3) and (2-19),
their general solutions (2-6) or (2-7) and (2-24) or (2-31)

are similar to each other.



Example 2-1, Consider the wave equation

2
Bzu(xzt) i 02 du(x,t)
dt2 ax2 ’

Using the state variable technique developed in the

above section, and defining

u = 2u
1 dX
- o
u ]
2 ot !

the wave equation will then become

bul =62£
dt ax
0t = € dx
or —
ul 0 1 ul
L _ 3
ot u, 2 o | u,
with —
0 1
A= .
02 0

The characteristic equation of A is
A-XI, =0.

This implies A= + c. The eigenvector associated with

X1= + c is



P, = ’

and p, associated with Kz = - Cc is

1
P2= .
| -
Hence, —
1 1 '
P = ’ |P|='20 ’
c -C
-C -1
-1 1
P. = .
-2C
-C 1
c 0
J=ptap= .
0 -C

In terms of (2-24), the general solution is

u(x,t) = ¢, (x+tMt)p; + ¢, (x+Ayt) p,

¢l(x+ct) + ¢2(x-ct)

f¢l(X+Ct) -c¢2(x-cﬁl

The boundary conditions when determine, the functions
®(Xt) i =1, 2, ..., n and the formulation of equations (2-27)
throggh (2-31) can be applied without difficultyes‘The way in
which boundary cqnditions are taken into account is illustrated

in the subsequent chapters.
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2-3. Linear Nonhomogeneous Partial Differential FEquation.

The state variable representation developed in the
th
last section, will not in general be applicable toan -

oder linear system described by

anu bnu bnu bnu
o LTt @B T T Ry
- n-l -1
n-l 3 bn 1

u u cee
tnl,0 5 me L o2, 1w — T T 8o -1 mE T

+ L] . L ]
+a EE% + 932— + 33%
2v°bt alo 1btbx ao'sz
U M

t8),03% T 8,13%

[~
]
o

(2-32)

A new state variable representation technique will

be developed to transform (2-32) into the vector form

;: =A:: + Bu , (3-33)

where u is a n-vector, A and B are n by n matrices. Consider

the simple second order vestor equation



2=-13

bul buz .
==z + byquy (2=32a)
bu2 . bul 3112 .
>t = -al e - 85 3T + b21111 + bzzuz (2-34.0)

Partially differentiating (2-34b) with respect to

X, we obtain

2 2 2

» “up 3y 37U, duq du,
——— D - + —— ———— -3
Trealains e v A real (2-38)

The left hand side can be obtained by partial
differentiating (2-34a) with respect to t

azul bul bzuz (2-36)
- b = L -36
22 11 2t otax

Equating (2-35) and (2-35),

duq b duq ou,y du, + b duq + b duy
atz 113 155%2 2 axz 21z 22x
» (2-37)
3, 2u,
gre and 3= °en again be obtained from (2-34a)
as
2
bu2 _ d ul_ o Qul
. dt2x 1173
(2-38)
=t - b..u
rra X 1%
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Substituting (2-3g) in (2-37), we get

:fi%% +a g +a EEE%
2t 2ytax 1 2%
bul bul
= (byy+ bpplyp™ + (agbyy + bpyl)33-
+ bjjb2ou; = o . (2-39)

This simply means that a constant coefficlent
system described by (2-32) for n = 2, can be transformed

into the vector form (2-33) with

A= and B , (2-40)
-8y =83 b2y P22

The coefficients are related by

8z 0 = 1l

81,1 7 %2

"0,2 7 %1 (2-41)
81,0 = ~(Pyy +Pp5)

89,1 = ~(82017 + Pyy)

89,0 = P11P22



For the third order system, n = 3,

o 1 o0 by 0 O
A=| 0 0 1 |and B= by by, 0 [,
| 81 "8z -8j | | P P32 P33

the relationsamong the coefficlents being

a3'0 =1

8y 1 = 83

81,2 = 82

20,3 = 21

a3 0 = -(byy + byy + b33)

83,1 = -a3(bll + b22) + byy + b32
89,2 = '(azbll + a3b21 + b31)
81,0 = (by1bpp + byibgq + b22b33)
80,1 = 83P22P1) * P3b3p + byqPsg

80,0 = “P11P22P33

2-15

(2-43)

(2-43)
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th

For a general n“ -order system,

A= (2=-44)

and b,; © 0 o . . . 0 0
b21 bzz o o . . . 0 0
B - . . . . . . . . r e . (2-45)
bn1 Pp2 bn3 bpy - ) ’ Ym-1Pnn

Sr— ————

By the method of induction, the following relations zmong

coefficients are obtained.
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——8apo =1
n-1,1 = 2n
8n.2,2 = @n-1
82 n-2 = 23
81,n-1 = 82
&0n =8
n
M @p-1,0 = ~ El byy
n=1
8p-2,1 ° ~ 15:- anbn + b1+1,1
= - K2 b.. + a.b +b
8n-3,2 = ~ 1)51 8n-1P11 T 2nPi41,1 142,1

2

®1,n-2 = 7 2 (agbyy +ayPyyy 3 *8sPg4p,9 + o0
* e 1P1n-3,1 + Prme-2,1)

20, n1= = £ (agbyy +abiy g teybp .y

i=1
+ 8, 1P14n-2,1 * P

14n-1,1)
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n
——8n2,0 =% 2__ Dbybyy
1,3=1
1#)

8p-3,1 = a, (%

n-1

1;;_1b11bjj) + b32b11 + b33b21
1#)

+ b43(bll + bzz) + buu(baz + b21) + oo

o n-1(Pyy TP e+ pp i)

+ bnn(b

nel,n-2 * P

n-2,n-3 * *** + b3z + byy)

n-2
Sn-ly,2 = an--1(‘l’1 §=1 byybyy) + a;[bgpbyy + bygbyy
1)
+ byg(bgy + byy) + +en + by pnoa(byy
+ oy + ee. + bn-3.n-3)]

+ bn-l,n-l(bn-z,n-B + bn-3,n-'+ toeeo

+ b32 + b21)

2 |
'— 8 p.z = 33‘121 byy) + ay(bgobyy + bygbyy) + -
=
+an(byy,2b11 + bpoy 3Py 00

+ bp-1,n-1bn-2,1)



— 8n-3,0

T |
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1 3 bbb
-3 -1P11P3 1Pxx
3115%:

-1
- {an(%'1 %EI=1P11bJkak) + by 3(b11b22)
133§k

+ by (b3pby14b33b01) + by (by1bap+daabyz+bagbyg)

+ bss [ (D3by +0g3bp1 ) 40y, (by1+bp5 ) by (bpg #03p)] + + ¢
+ hn.n-l(%lj- lbiibjj)+hhn[b32b11+b33b21+bu4(b21+b32)
toere 4 by naa(byytpat cor 4+ by_g po3)

+ b1, n-1(b21+032+ « o+ +by_2 n_3)]}

— 89,n-3 =-{am11b22bg3a5[by3(B11P22) oy (D3pbyy b330z )]

+ag[ Ps3(b1102) #b5y (b3pby g #b33bp7 ) 4055 (byby g
+by 3B #byyb3p)] a5 bg3by D20 +gy (Dabyy #033bs7 )
b6 5(Dyzb11 +by 3021 b3y ) 4066 (byoby g +hgabyy

+bgy by +o5sbyy )]

b

+an [bn) P11022#00.1, 1 (B3abyy 33027 )

on.1, 5(Py2b11+by3b) Foyuybay) + oo
*on-1,n-1(Pn-2,2P11%0q 2 3b2yt *-°

+b:n-;:,n-zbn-j,1)]
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)n-l 1 ii n-1
al 0~ (- (n-l)i J’...v_l 11bJJooobvv]
1‘3‘ 'ﬁh n-1
n-1 -
ao’l = (=1) { n[(n-l)i .Z..v 1b11bJJoo.bw]
1£J£°-'¢v

+ by pn-1(P11b22°* bp_2 n.2)

®n-1,n-2Pn-3,n-3n-4,n-4"* " P22P11
* i + bn-2,n-3bn-'+,n-’+"'b22b11
bn-l,n- + Ppa3,n-b bn-5,n-5"°b22b11
bn-2,n-2 + et
®n-3,n-3 + B3afP11
.o by }

P33{P21

[ 20,0 = (=1)7(byybypt b))

(2=46)

Generalizing these results, we are led to the
following representation for a general linear distributed

system with

au(t,xl,x2,°-'x )

au(t,xy,x3, ,Xp) n

% + Blu(t,xl,x2,~yxnﬂ

1 oXy
(2-4)
where u is a function of time t and n-dimensional space

coordinates Xy Xpp 00y Xy
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Example 2-2, Consider the transmission line problem. The

voltage e(x,t) in a line can be shown to satisfy the equation

W2e 1 2%¢  RC + GL 2 RG
— =+ L2, B o .
’2t2  LC ax LC 3t  ILC

With the technique just developed in the last section,

this can be written in the vector form

du _ . du
'S-E—A X+Bu
where uq
u = and u, = e .
1
o)

A and B are found to be

(1]

B 0 1
A =
=
LC OJ
- R
T, 0
B = "
-
. e




CHAPTER III

STABILITY OF DISTRIBUTED PARAMETER SYSTEMS WITH PERIODIC
COEFFICLENTS

3.1, Introduction

In the present chapter, the main concern will be with
distributed parameter systems whose dynamic performance is

governed by the partial differential equation of the form

t
'ﬂ"('f't")' = A(xrtr'%‘;) u(x,t), (3-1)

where u(x,t) is an n~-vector which is a function of the
coordinate x and time t, A(x,t,%;) is a polynomial in 4%;
with varying coefficients in x and t.

To begin with (section 3-1 and 3-3), Floquet theory
will be extended to systems described by (3-1) with A(t,%;
periodic in t with period w , In section 3-3, we will allow
the coefficients of A to depend on, and be périodicimn, both

t and x.

Consider the simple first order wave equation

L) o a(e) -——-‘-—au(fxt) . (3-2)

Using separation of variables and assuming u(x,t) =
T(x)X(x), where T and X are chosen to satisfy appropriate

boundary conditions, the general solution of (3-2) is obtained as

3 co t
® at)dt Ap ) At
u(x,t) = ggoelnx T(O)anX(O) = g;oe L’ un(x,O). (3=3)

It is found that (3-3) is identical to

t 3
()ya(t)dt) ==
u(x,t) = e & X u(x,0) (3-4)



3-2

o

ua(x,0) = nz__:o u_(x,0) .  (3-5)

Now, if a(t) a + cos t, the general solution (3~4)

has the form

. F d
sSin t) = t ( Qetemm
N I3w tlagy)

u(x,t) X" u(x,0) (3-6)

or it can be said that for (3-2), there exists a fundamental

matrix operator solution
(3-7)

such that P(t+“3c§§), and R(%;) is a linear operator

independent of t. For the example just considered,
(sin t)3&
X

PlEigm) = e

and R(A—) = a %§

3.2. Linear Systems with Periodic Time Varying Coefficients

Consider a distributed parameter system described by

the general partial differential equation of the form

2 t)
—"Hi?é—“ = A(t,%g) u(x,t) (3-8)

defined for t > 0 and x€fl, where N is a subset of the line

N
~w<¢x <o , and W(x,t) € L2 ) . A(t,{-}z) is a linear differential
operator in %X‘ with coefficients that are periodic in t.

The domain D(A) of A consists of the functions u(x,t)€ L_ (s)

2
which satisfy a set of homogeneous boundary conditions, and
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have a Fourier transform w.r.t., x. We assume that D(A) is
dense in LZN(nJ and that A is the infinitesimal generator of
semigroup {E(t,t')} . For obvious reasons, we will denote
B(t,0) by w(t,3z).

We begin formally taking the Fourier transform of both

sides of (3-8), thereby getting

E'I'I'LZ_.IE'Q‘= A(t,ig) G(§rt)r (3-9)
where -4
(5,8 Flulx,t) = fulx, e’ > ax, (3-10)

Since U(g,t) is independent of the coordinate variable
x, the partial derivative may be replaced by the total

derivative. Therefore,

du(g,t =,
dul8) _ ace, i3)T(3,t) (3-11)
(3-11) is an ordinary differential equation with

periodic coefficients of period w, and its fundamental matrix

solution by Floquet theory([l7] is given by

w(t,iz) = P(t,i3) e (i¥) (3-12)

where P(t+tw,iy) = P(t,iy) , (3-13)
tR(iy) = n

and ¢ = Lo Ry (3-14)

and R(i3) is independent of t.
Hence, given an initial function E(;,O)=¥{u(x,0ﬂ ’
where u(x,0)€é D(A), the general solution u(g,t) can be

written as

tR(i¥)

Q(y,t) = P(t,1i}) e a(y,0) . (3=15)



3-4
Using (3-14), (3-15) becomes

2
W(s,t) = P(t,if) [T + tR(i§) + SoR2(iy) + ...]1T(3,0) (3-16)

Taking the inverse Fourier transform of both sides of

(3-16)
t) = P(t, . 3 £ 2
u(x,t) (Brgem) [T + tR(§) R (+£) + ...]u(x,0)
)
or u(x,t) = P(t,%;)etR(xg) u(x,0) (3-17)
where u(x,t) = 5—%—- i:u(g,t)eifx dg . (3-18)

From the general solution (3-17), our first result is

Theorem (1l). If *(tr%ﬁ) is the semigroup operator resulting

from the infinitesimal geherator of A(t,-%;) in (3-8), then
there exists a linear matrix operator P(t,—%—ﬁ, periodic im
X
t with period w , and a linear operator R(%;) which is independent

of t, such that

d
tR
b(tdg) = (e, 2 e (3-19)

It is now clear that to investigate the stability question,
it is sufficient to examine the stability of the null solution

of the system

2t - R vix,e) (3-20)

since the general solution of (3-20) is given by

d
vix,t) = g RO L0 (3-21)

This leads to the following theorem:
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Theorem (2). For the system given in (3-8), there exists

a nondingular transformation P(t,%;—) with bounded co=-

efficients of period w such that

v(ix,t) =P(t,%§) u(x,t) (3-22)
20l = r(dm) v(x,t) (3-23)
where
b, _B(t,3w) -1 ) ) -1,
ROBR) =" =5 P (t,5m)+P(t, g0 AL, )P (Ei5p) (3-24)

and R(%;) is a time independent operator.
Proof:
From Theorem (1), it is found that for a system given

by (3-8), there exists a semigroup operator

)
tR (o=
w(t,3=) = P(t,do) dx
or —~£R (2
Plt,d) = bt e NGR (3-25)

Now, making the coordinate transformation

v(x,£) = P(t, ) u(x,t) (3-26)
or u(x,t) = P—l(t,gi) v(x,t), (3-27)

with (3-25), (3-26) becomes

d
,  ~tR(TR)
vix,t) = P(t,yx) e “ux,t). (3-28)

Partially differentiating (3-28) with respect to t

~tR -

-1
bv(;étl= =(A + PAP -~ WRe P )v(x,t). (3-29)

It is necessary to show that the right hand side of



(3=29) is indeed Rv where R is defined by (3-24). Assuming

the equality sign holds,

A + paP~l - gre~tR p~1 = R = %% p~1l + pap-l
A - yre~tR p-1 = 3P p-1
3t
or 9_% = AP - $Re"ER (3-30)
Now,
%% - %E [pe~tR] = %% e~tR - pRe-tR

Ape~tR - Pre~tR

= AP -~ tl»\Re"tR

which is indeed the right hand side of (3-30). This completes
the proof.

Theorem (2) simply means that a linear digtributed
parameter system with periodic coefficients, as in (3-8),
is reducible to a linear distributed parameter system with
constant coefficients through a nonsingular transformation
P(t'%§) with bounded coefficients of period w, Hence, in
order to study the stability question, it is only necessary
to examine the spectrum of the linear operator R(%;). The

stability theorem can now be stated as follow:

Theorem (3). The null solution of éEi?%EL = A(t,%§)u(x,t)

with A(t+m,%§) = A(t,§§) is asymptotically stable in the

large if the spectrum of R(%;) — c[R(%;)] is negative, i.e.,
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Re 6 [R(4)] & - k, k = constant > 0.

Furthermore, if HP(t,%;)" 4 M, its solution satisfies the
inequality

,lu(x,t)" < M ekt "u(x,O)Il .

Proof:

It follows directly from the Hille and Yosida theoremfil9],

when applicable to (3-23) that

| e’ | & e75¢ for all t > 0 .
The general solution of u(x,t) can be written as
_ R £R ()
u(x,t) = P(t,3§) e ¥X u(x,0)
and its norm must satisfy

3

tR (3=) flux,0) " ,

Jute,e) || < Joce 3 e

where the norm of a linear operator A is defined by

2l

sup{lax (|  Jx = 1)
sup{lax|l/llxll : Jx}]# 0}, =x € D(A).

Using the fact that [[P(t,3=) |< M,
"u(x,t)" <M e_kt"u(x,O)" .
This completes the proof.
Theorem (1) to (3) can be easily extended to the n-

dimensional system described by



dU(X],Xg, e ,Xn,t)

_ d 3 .o
3t , - A(t’§§5'7§;'*§*'7§5) u(xy %2, rXp,t)
(3-31)
: B b e 0 0 } — L b e e )
with A(t+w13§313§5r r;;;) = A(tr3§I13§31 r§§;)
(3-32)
By defining the multiple Fourier transform
- o SIS AN A Sy ST
u(;\lg’l’...lgr\lt) =5 j' ru(xl’xz’coc'xn't)e dx.---dxn
-00 *00 -0

(3-33)

the general solution of (3-31) is given by

33 b
u(xl’xz’ooo'xn’t) = P(t,:_x.'bé;z:_xzetR(Eul F:)u(xlfxz’...’xl'l’o)

(3-34)
The null solution of (3-31) is asymptotically stable if
) ) A1t ; 23 2 31 ; e
max ¢ [R(E %, “"]A is negative, If max ¢ [R(u. =, M‘)] is positive
then the null solution is unstable.

Example 4-1, The voltage e(x,t) and the current i(x,¥),

along the transmission line with periodic varying inductance

and capacitance, are governed by

S22 gy, 4 AREEGY)]

(3-35)

_ )i(;zt) = Ge(x,t) + d3[C(t)e(x,t)]
X ot

It is more appropriate to consider the capacitamce

charge u; = Ce and the inductor flux u, = Li as the state

variables in the present case. In terms of uy and Uy o



(3-35) .can now be written as

U1 - C TIX u1
3 = -
3 _1) R ' (373¢)
uz C ?x L uz
If L and vary in the same way
L(t) = Ly/a(t) , C(t) = Cy/a(t) (3-37)
where L, and €, are constants., (3-36) then takes the form
-8 - L3
vl Co L% "1
%E = a(t) (3-38)
1 R
U.2 e v - v u
Coox o 2

Taking the Fourier transform on both side of (3-38)

-

<
CO

glis)

N
- oY) Uy
R . . (3'39)
- T, 2
4 L

t

Since tHe,bperatdr A(t,i}) and S A(M,i¥3)dA commute.
‘ 0

A(t,iy) is defined as

Ola

(o)
A(t'iS) = a(t)

1l .
= 56(12)

The general solution to (3-39)

(3-40)

is given by [17,20]



oy )] 5,0

U (3,t) u, (§,0)
= e (3-41)

_az (3 ,t)_ ' _ﬁz (3,0) ]
Assuming a(t) = a + cos t (3-42)

where a is a constant, and taking the inverse Fourier trans-

form, the general solution for u(x,t) is obtained as

e L2
_. _ ca Co Lobx B _
ul(x,t) 1 _R ul(x,t)
Cq X LL
uz(x,t) u, (x,t)
bt —ed : e el
(3-43)
- (3=43) is in the form of (3-17) with
6 L2
C L.?
© © ; cos t
T, "I,
P(t,2.) = e (3-44)
X
and
A T
T, I ik
R(%;) = a . (3-45)

#l ¥ _R
|8, Lo |

In order to study the stability problem of this system,
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it is necessary to find the spectrum of R(%;) according to

Theorem (3). The characteristic equation of R(%g) is

R(-g-;) u = Au . (3-46)
This reduces to
32111 2 -
v R ) (3-47)
where - %2 = LOCO(X/a + R/LJ) (Ma + G/Lg) . (3-48)

Note that (3-47) is now an ordinary differential equation.

The typical boundary conditions are assumed to be

e(0,t) = e(L,t) =0 , (3-49)

i.e., the transmission line is grounded at x = 0 and x = L.

The general solution for Uy is given by

u; = A cos«x + B sing X (3=-50)
In order to satisfy the boundary condition at x = 0, A
must be zero. From the second boundary condition at x = L,
sindL = 0,
therefore, 4L, = nw
or o« = qn/L , n=1,2, 3, *** ., (3-51)

XN/a can be found from



_ 2
- - L,Co(Ma + R/L.) (M/a + G/C,) = (nn/L)
to be
' R , Gy12_,RG n?r?LoCoiVz
N/a = - 1/2(R/L, + G/C,) X {[1/2 (= + =) 1 "("T:' --—---)}
LO CO Lo fo) L2
(3=53)
If R, G, L, and C, are positive constants, the real

part of the spectrum will be negative if and only if a is
positive. Hence the null solution of u; will be asymptotically
stable according to Theorem (3).

3.3. Linear Systems with Periodic Time and Space Varying

Coefficients.

Let us now consider distributed parameter systems with
coefficients varying both with t and x. Such systems can

generally be described by

3
3 = Alt,x, ) v (3-53)

where A(t,x;%& is again a linear differential operator in

%; with coefficients varying both in t and x with period
w and @ respectively, i.e.,

A(t+w,x+p,.§.§) = A(t,k,%i) . (3-54)

Remarks similar to the one made in the proceding section
apply here,

We assume that A(t,x,%;) can be split into two parts
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either as a product or as a sum, First, consider the case
where the coefficients in A(t,x,%;) can be separated into
products of functions in t and x., Before going into the
general formulation, a time invariant system is analyzed to
illustratedthe'ﬁechnique.

Consider a second degree, first order equation

2
du _ d7u du
T = a(X)-S-;{—i- + b(X) T‘X (3"55)

2 .
Since A(x,%;) = a(x)ézﬁ + b(x)%ﬁ is independent of t,

the general solution is given by

¥ )
t —_— + Db
u(x,t) = e [a(x))xz (X)TE] u(x,0). (3-56)
Assuming a(x) >0, b(x) > 0 (3-57)
and introducing the new variables
XA
= !
Xl (x) SOSO m ax, d)sz
X (3-58)
_ }
and XZ(X) = So B—mﬂ d)\\ ,

since a(x) and b(x) are greater than zero, there a one-to-
one correspondence between xl(x) and x, and likewise between
xz(x) and x, Differentiating xl(x) twice and xéx) once with

respect to x,

3t 32
a(X)bxz B Bx{
(3=-59)
>
b(x) =z = 577
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Considering u(x,t) now as a function of xq, X, and t,
with (3=59), (3-55) becomes
bu(t,xl,xz) azu(t,xl,xz) au(t,xl,xz)

= (3-60)
3t bxlz 30X,

To solve (3-60), take Fourier transform with respect

to x4 and Xy respectively and solve the resulting equation,

t[(15)2 + (i%,)]
ﬁ(trs,l;z) = e a(opgugz) (3-61)

Taking the inverse Fourier transform to (3-61)
2
) ]

+ st

t( 3X2

u(t,xl,xz) = e 3x12

u(0,%q,%5). _ _(3-62)

Notice that u(t,x;,%X,) is nothing but u(x,t), and

2
3 )

+
bxlf bxz

2
_ d
= a(X)-b-}-{-i-'*' b(X)%‘E

therefore (3-62) can be written as

2
> 2

t[a(x)-i* b (x)y= ]

u(x,t) = e 3x * O u(x,0) (3-63)

which is identical to the general solution (3-56)
This technique can be easily extended to the case where

each element of A(t,x,%;) has the general form

k
2 P _, " d
t —_—) = < t
aij( ,X,)x) k=0aijk( ) aijk(X)be
J = [ n = n -64
where aijk(t+w) aijk(t)' aijk(x+p) aijk(x) (3-64)

a;jo(x) = 1, and a;y<(x) > 0 i,y =1,2,°**,n
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The main idea is to transform the system given by 13-53)
and (3-64) into a system with coefficients in time only.
Defining

A

X A 2 |
X33k (X) ='SoSo ...50 'ETT;T7:T d\, dAy--- dA, (3-65)

Since a?,k(x) > 0, there is a one-to-one correspondence
ij :
between x, ., (x) and x, Differentiating x,  (x) k times,

ijk ijk

¥x; 3 () 1
bxk a;jk(x)
; ok -
or aijk(x)szﬁ = bxk. ; (3-66)
ijk
Now considering u(x,t) as a function of Xi5%! i,j=1,2,*°+*yn,

k =1,2,°**,p, the system under consideration will become

du(t,x sall ijk
( ’ ijk J )

)
= A(t,5o— :all idk) u(t,x.. :all ijk
>t ¥%; 5k T wlE g 3k)

(3-67)
Assuming u(x,t) has a Fourier transform, then u(t,xijk:all ijk)

will also Bave a multiple Fourier transform defined by

u(t,gijk:all ijk) =J f "-J. u(t,xi. :all ijk) Ir dxi

too =00 =00 Jjk ijk jk

(3-68)

since xijk"’ & as X —s o , As before, a multiple Fourier



transform technique may be used to obtain the general solution

:alli3 K)

s
.ijk) e

)

bxijk

u(t,x; g, :all ijk) = B(t, u(o’%iﬁﬁ'“ij”

(3-69)

Again, there exists a semigroup operator for the system

such that
e, £R (3=— :all ijk)
'K, i rall ijk) = P(t,demsall ijk) e 1k
(3-70)
» L] a . 3
where P (t+w %m—w—:all ijk) = P(t,gT——:all ijk)
’ Xi 'k J ’axijk

d ‘. . . .
and R(g;;;;:all ijk) is an operator independent of t. Given
any initial function u(o,xijk:all ijk), the general solution
is given by (3-69). The stability theorem (3) can be extended
to the system just considered,

Theorem (4}, The system given by (3-53) and (3-64) is asymp-

totically stable if the maximum spectrum of R(%§TTE:all ijk)
1]

(R defined in (3=69)) = %§§<IEE%§§—-':all ijk)]1, is negative.
ijk
If max<r[R(§x :all ijk)] is positive, then the system is
ijk

unstable.

Next, we consider the case where

At x,d) = Al(t,%§) + A2(x,%§) (3-71)

(3-53) can now be written as



du a_ oy -

and condition (3-54) has the form

2 - )
N ) . (3=73)
A, (x+p,5=) = A, (X,5=)

An asymptotic stability theorem for the system described

by (3=72) can now be stated as follows:

Theorem (5). If A (t,%g) and A (X'%E) varying periodically

in t and x with periods w and p respectively, and"Az(x,%§”| { a

for some a > 0, Moreover, if all the solutions of the syséem
%%==Al(t,%§)u are asymptotically stable, i.e., the maximum spectrum
of R(%;) — maxtr[R(%;)] £ -k < 0, then the system (3-72) is
asymptotically stable provided k > aM, where "P(t,%g)" <M,

o d : u _ o
and P(t,;;), R(SE) are related to the solution of ST Alit,ax)u

d
tR(3%)
u(x,t) = P(t,%;) e X u(x,0).

The method of proof is quite similar to that used by
Cesari[22] for a result on systems described by linear time
varying ordinary differential equation. Before going into
the proof, an important lemma[21,22] is stated.

V Lemma: If x(t) is a continuous function of t and y(t) is
also a function of t integrable in a finite interval and
y(t) >0
z(t) >0; 0Lt =,

moreover, if for some nonnegative constant C,



t
y() ¢ c+§ yx) z(nan , £ >0
0
then y(t) also satisfies the inequality
t
S z(») Aax

y(t) £ Ce?© t> 0.

Proof: In proving the theorem, first treat Az(x,%§)u as

a forcing function, and consider the homogeneous system

= 3 -
Al(t,.é.;{.)v (3-73)

b

From Theorem (1), one knows that there exists a semi-

group operator for system (3-73)

)
t e
bt = B, FOF

then the general solution to (3-73) by considering Az(x,g )

as a forcing function is given by
u(x,t) = ¢(t, 2Fu(x,0) +j ¢(t—x,-m)A (x,%;)u(x,x)dx

(3-74)
Since the system %% = Al(t'§§)u is asymptotically stable

G[R(%i)] < -k <0,

Therefore, ”¢(t,§§)” £ M okt
where ”P(t,%;)" S M
and | tR( )”

If the norm of the initial function
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o] < < =

and "A(X,%§)||$ a<w,
t
then "u(x,t)"ekt < MNe"kt + SOaMe-k(t-x) u(x,N) da ,
t
or "u(x,t)”ekt < MN + S aM u(x,M) ekA aa .,
v 0

By using the lemma, this becomes
v £

||u(x,t)" ekt < mye?

aM da

“'LI(X,t) "_‘_ MN e"' (k—aM)t

Hence, if k > aM,
u(x,t) — 0 as t—® ,

This completes the proof.

Example 3-2, The flow of electricity in a long cable or

transmission line with neglegible leakage conductance and
inductance. Equations governed the transmission line with

L = G= 0 can be written from Example 3-1 as

V. - - Ri

X

(3-75)
3i de
7% - -~ C3%

Now, if R is a function of t, and R(t+w) = R(t), and C
depends only on x, and C(x) > 0. The voltage along the line

is governed by



- 1 3%y
T R(r)C(x) ax* ° (3-76)

2

XAZ
Defining  x,,,4%) = So So C(N) dndx, (3-77)

(3-76) can now be written as

2
%% - 1 3y
R(t 2 ' (3-78)
(€) A§112
where e is now a function of t and x112 . By using a
Fourier transform technique, with 1/R(t) = a® + cos t ,
the general solution is found to be
2 ¥
(a“t + sin t)b 5
X
V(t:Xllz) = e 112 V(O'Xll.?.) (3-79)
In this case
. ) bz
> (sin t)-—=
Pt,g) = e 3x112
X112
2
and R(L——) = azl-r' .
31127 - =P,

For stability, it is necessary to examine the spectrum

of R(%iﬁz—). Hence

[R(%I}Z-_) - XI1v = 0

112
2
bx1{12

If the transmission line is grounded at x = 0 and

or

x = L, then v =0 at x = 0 and L. This implies v = 0 at



X = 0 and L With these boundary conditions,

112 112 °
2.2.2
n g<ca
X = == 2 n= 1’2’ 3’ ee
L )
112
L A
2
where L = C(N\ ) A\, dA, .
112 SO SO . 1 ) 2

Therefore the system is asymptotically stable.

3-21



CHAPTER IV

ABSOLUTE STABILITY OF DISTRIBUTED PARAMETER SYSTEMS

4,1. Introduction

In this chapter, the absolute stability is considered
for the linear distributed parameter systems by using the
second method of Liapunov, the result is further extended
to the nonlinear distributed parameter systems with control

described by a set of the modified Lurie type equations.

4.4, Stability of Linear Systems

In order to apply Theorem (2-3) to a practical problem,
it is necessary to'establish'upper bounds for the real part
of the spectrum of Ri~%§) or for a system with constant co-
efficient

dU )
dC A( ax) u

the spectrum of A(—%g). Sometimes this may be difficult to
evaluate. The Liapunov's direct method enables one to find
the sufficient condition for stability without explicit
knowledge of the solution.

Consider an unforced linear system described by

2ulel) _p 2008 4 sux,b), (4-1)

where us is an n-vector, A and B are nxn constant matrices.

Let the state space (&) - LG(AJ with a norm defined by

1/2
Juex,£) | = 1fuu as / . (4-2)



Select a suitable positive definite functional, the
integral of a positive definite quadratic form, for system
(4-1)

L
v=y u'buax, (4-3)
0

where P is a positive definite matrix, and henceforth the '
on a vector_matrix denotes its transpose, From now on, we
will use the convention M > 0 to denote that a matrix M is
positive definite. Positive and negative semidefinite and
negative definite matrices are denoted in the same way.

Since

L S
Af [ulPax < v g RS fulax, (4-4)
0 0

where A and A are the minimum and the maximum eigenvalues
of P respectively. The conditions (i) - (iii) of Zubov's
theorem are automatically satisfied., A sufficient condition

for stability is that the total derivative of V with respect

to t
H <0, tx0 (4-5)
L
or g.‘{:’. = § [(u'Pagy + 3= A"Pu) + u'(PB + B'Buldx 0 (4-6)
. _
If | PA = A'P (4-17)
%.‘é = jL[.:_;(u'PAu) - u'Quldx (4-8)
0
where - Q =PB + B'P , (4-9)

The first term in (4-8) becomes zero if u(x,t) vanishes

on the boundary, therefore,



4=-3
L

g.‘é = - {u'Qu dx . (4-104-~3
0

By imposing the boundary condition

u(0,t) = u(L,t) =0 for all t,
and assuming a stable B, for the null solution of u to be
asymptotically stable in the sense of norm (4-2), it is
sufficient to setect a symmetric Q >0, to give a symmetric
P >0 such that PA = A'P, Since P is symmetric, condition
(4-7) simply means that (PA) is symmetric. Now, if P is a
diagonal matrix, it is sufficient to make PA symmetric by
assumihg a symmetric A, If A has n distinct eigenvalues, a
nonsingular transformation

u=Fv (4-11)
can be employed to give a diagonal A = FAF— . An example
will be given to illustrate the technique.

Example 4-1, Consider a transmission line problem, the

voltage e and current i satisfy the equation

de . _ 1 ?i _G e
3T C »x C
°2i_ _ _ 1 e R . (4-12)
ot T 3x ~T*t
This can be put into the vector form (4-1) with
r— Ao
1 G
ul e 0 ol T 0
u = = r A= 1 and B =
u i - = 0 0 -R
2 L i L
(4-13)

B is stable if R, L, C, G are positive., A suitable

Liapunov functional V is assumed to be
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v =SL u'Pu dx ,
0

L
then v = u'padl du' an - ! .
0 [( % + = A'Pu) u'Quldx

Select a Q positive

Q = >0,
0. R

P can be found from - Q = PB + B'P to be

" c :
> 0
P = >0
0 L
= 2
such that PA = A'P, therefore,
L
y o
vV = S [ 3§~(u'PA u) - u'Qu ] dx
0
L L
= u'PA ul - ugQu dx
0 0
S L
or V = - 5‘ u'Qu dx < 0
0

if the first term vanishes. Now,
L . 3
u'pPA u| = - e(L)i(L) + e(0)i(0)
0

This is identically zero if

(i) both ends opened, i(L) = i(0) = 0,
(ii) both ends shorted, e(L) = e(0) = 0,
(iii) one end opened and the other end shorted, i(L) = e(0) =

or e(L) = 1(0) = 0,



Thus shows that the null solution is asymptotically stable.

Example 4-2. Consider some variable ¢(x,t) satisfying the

equation
(
? ) d 3 3 d - _
(33 + clsg)(gz + 023§)¢ + (sg + a$§)¢ = 0, (4=14)

By using the state variable technique developed in

section 2.2 and defining

= o _ 3
U = 3x ! U =3¢ ¢

then (4-14) has the vector form

du dU
3¢ = A 3x *Bu (4-15)
where

Uy

u=
up

0 1 0 0
A =
~C4C,y ~(cy+cy) and B = -Aa -N *

Employing the transformation u = Fv, (4-15) becomes

W =K gL+ By
dt X ’
where X = rlap
~ _ -1
and B =F “BF .

The characteristic equation of matrix A is

A=X|=0



1 1
F =
~C1 ~C2
and -C -1
- 2
F'= 1
C.=C
1 =2
c1 1
o --cl 0 N a-cl a-02
A = and B = .
0 c “17% a o]
2 €1 2”8

Let us consider the Liapunov functional

SL v'Pv dx
0

v

with : v

v'PAvlL - SL v'Qv dx .
0 0

If the imposed boundary conditions are such that u

vanishes on the boundary,
. L

v=-§ viovax
0

where - Q=PB + B'P ,
A necessary condition for Q > 0 is that B > 0, from
Silvester's theorem{24]

A(a -ci)

< 0
C1 = ©2



Alcz - a)

and < 0 .
€1 = C2
This implies
AD>0
and cl > a»> c2 .

A Q>0 will give a P > 0, hence for A > 0, the solution
is stable when a lies between ¢; and c, . This is the same
result as that obtained by Whitham[24] by a different procedure.

The method developed here can be extended to the more

general class of systems described by

2
au ¥3“u d2u
SE=A = +B—+@u (4-16)
t ax 3x ¢

where u is a n-vector and A, B and C are constant matrices.
By selecting a Liapunov functional V in the form of (4-3)
L
v=_ upruax , (4-17)
0

the total time derivative of V for the system (4-16) is

given by
L 2 2
: d°u 2°u!
vV = [(u'PA——7 + — A'Pu)
SO &= ax%?
' 2u au' '
+ (u'PCu + u'C'Pu) }Jdx (4-18)

Now, if PB = B'P (4-19)



L 2

then, V = S [2u'PA 24 . 2 (4'PBu) - u'Quldx
0 bxz dx
L 3¢ v L
=‘j [2u'PA ——%q- u'Quldx + u'PBu (4-20)
0 Ix4“ 0
where - Q=PC+C'P , (4-21)

At this point, we impose the restriction that

u(x,t) = 0 on the boundary, i.e., for x=0 and x=L,.(4-22)
(4-22)
L
Hence u'PBu = 0. _ (4-23)
0
If in addition, Q is such that P, resulting from the

solution of (4-21), is positive definite and

2u'PA 232 -u'Qu{ 0 VvV xe€(0,L) o (4-24)
ax2
then V > 0 and V € 0 (according to (4-21)) and hence the
system is aymptotically stable.
Note that the above restrictions do not require -Q to
be negative definite. In fact, in the example 4~3 below,
we discuss a case in which -Q is actually positive and the

system is still asymptotically stable provided the condi-

tion indicated above are satisfied.

Another set of sufficient conditions for asymptotic
stability may be formulated as follows.
Assume that (4-22) holds. Then integrating (4-20)

by parts, we get

L I L
. du au' du
=] ' -—l - ————e —e—— — ' . -—
V = 2u PA) . 2 .3 PA S dx sou Qu dx (4-25)



The first term in the right side of (4-25) vanishes
by virtue of (4-22).

Let Q>0. (4-26)
Then by a well known theorem[l] P, resulting from the
solution of (4-21), is positive definite if C is stable.

(C stablen= Rédiltparts of eigenvalues of C are negative)., If
in addition

PA > 0 , (4=27)
then V in (4-25) is negative definite. Hence the system
is aéymptotically stable,

Summarizing our two sets of conditions:

Proposition 1., Let P and Q be related by (4-21) and assume
that (4-22) is true. If there is a Q such that (4-24) holds,
then the null solution of (4-16) is asymptotically stable.

Proposition 2. Assume that (4-21) and (4~22) hold. C is

stable and there is a positive definite Q such that for P
resulting from (4-21), (4-27) is true, then the null solution

of (4-16) is asymptotically .stable.

Example 4-3, Consider the following partial differential

equation which appears in nuclear reactor physics.

2

bcA _ by cA

3T - PaB 7t Rea - (4-28)
with T e (0,t) = (L,t) =0, (4-29)

where A is a scalar function of x and t, DAB and K are



constants greater than zero. In this case

u = cC 'A=D ’B=O’ andc==Kq (4—

Our boundary conditions on ¢, coincide with condition

" (4-22), Select

2K
Q= - = 4~
Dag ' (
then by (4-21)
P = l/DAB . (4-
For this Q, (4-24) takes the form
.2
3°CaA K 2
c
AT 3 +tg— C < 0 (4-
3x* DPap A '
2
yee
or A K
— 4 € £ 0 cp, > 0 (4~
be DAB A '’ A
¥’cp . K
bxz BXE Ca > 0, ¢ < 0 (4-

It is clear that our boundary conditions together with

4-10

30)

31)

32)

33)

34)

35)

the -differential inequalitges (4-34) and (4-35) imply that cp

is of the form

nmw

o
cp = (rf‘;.loln(t) sin 7= _x), n=1,2,3,°*". (4-

36)

By the above representation we are constructing a domain

of functions which is dense in H and satisfies the conditions

of the Hille-Yosida theorem stated in Chapter II.

Now, if cp > Q, WB need

oo . K . »
nél{[_(%.z + 51 %q(t)sin L x}< 0 (4=37)
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In order for this inequality to hold

K n, 2
— K (=) -
Brp (T, (4-38)
5 .
or L £ R(-%E)l/z . ' (4-39)

Similarly, we can prove thatvthis condition is need
to establish (4-35).

Thus (4-39) is then our condition for the asymptotic
stability of (4-28) and (4-29).

4,3. Stability of Nonlinear Systems

Consider a nonlinear distributed parameter system
governed'by a vector partial differential equation differing
from a linear equation with constant coefficients (4-1) only
by an additively-entering nonlinear function, its argument
is any one or a linear combination of the state variables.

du(x,t (X t)
-—l3%—1-= A ——3%t= + Bu(x,t) + b}

3 = - ¢(s) (4-40)

c c'u(x,t)

and the nonlinearity satisfies the inequality

¢(a)
o

0 < < o (4-41)

where x, t, u, A abd B are defined as before, b and c are
constant n-vector, & denotes the output and the nonlinear
function ¢ (¢) the control. This is the extended Lurie

type of equation.( (4-40) can be rewritten as
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ulx,t) _ o 2Ei§§3l + Bu(x,t) - bé(o)

ot
(4-42)
Q.FE = ao' a—u-(-?—:_l{-i:—)- + bo'u(x,t) - Po¢(c)
where ag = A'c ,
by = B'c , (4-43)
and Po = c'b .

It is of interest to examine the stability of the

system in terms of known parameters, Consider a Liapunov

functional
L ]
v =, eu+ [ ele)delax (4-44)
0 0
where P > 0 and P' = P, This is a positive definite function,

it vanishes only when u = @ = 0, The total derivative of V

is then
av L_ ' au
TE T s [(zx— A'Pu + u'PA 33

0
+ u'(PB + B'P)u

+ $(a) (=b'Pu - u'Pb + b_'u) - P_$° (o)

+ Q(c)ao'%é]dx

= _{L{(}}l‘- A'Pu + u'PA %) + $(o)a 'A%
ot 2% X o ax

- [u'Qu + 2¢(0)u'd, + p_¢*(v)] dx (4-45)



where d, = Pb - bg/2 , (4-46)

Select a Q > 0 to give a P > 0 such that PA = A'P,

the integral

L ou' 2U du
SO[(Tx'" A'Pu + u'PA 33 + p(o)a,’ ypldx

u(L,t)
+-S ' $(6)c'A du
u(o,t)

L
u'PAuI
0
=0 (4-47)

if u vanishes on the boundary. Therefore,

av Lo , 2
I =- jo[u Qu + 2¢()u'd, + P 4" (v)Idx . (4-48)

The integrand is a negative definite quadratic form in
u and ¢ (6) if

-1
p, > d Q7 d . (4-49)

Hence the nonlinear system given in (4-40) and (4-41)
is asymptotically stable if
(i) the linear system without control is asymptotically
stable, and

(i1) ey > do'Q'ld .



CHAPTER V

BOUNDED INPUT BOUNDED OUTPUT STABILITY

5.1l. Introduction

A physical system is said to be stable in the sense
of boundedness if and only if every bounded input produces -
a bounded output. This is certainly different from the
conceét.of stability due to Liapunov which deals with the
local phenomena about a particular motion., The stability
of distributed parameter systems will be discussed by the
application of the second method of Liapunov., The stability
theorem due to Malkin is extended to distributed systems.
The bounded input bounded output stability is demonstrated
by explicitly constructing a Liapunov functional V for.the
forced distributed system. The total time derivative of V

satisfies the inequality

V S -xV + sVl/2

where r and s are positive constants. Since this inequality
implies a bounded response as time approaches infinity, there-
fore every bounded input will produce a bounded output,
Stability in this sense is demonstrated for an asymptotically
stable constant coefficient system and for a forced nonlinear
system of the modified Lurie type.

5.2, Linear Systems

The system under consideration can be described by



it = 2 X

+ Bu(x,t) + bf(x,t) (5-1)

where f£(x,t) is a scalar forcing function., We will assume
that the boundary conditions given in the preceding chapter
hold.

Theorem 5-1, If the unforced system is asymptotically

stable, then a bounded input f£|f(x,t)| < M) produces a
bounded output.
Proof: According to Proposition 2 in the preceding chapter,
for a positive definite Q, the solution of

- Q=PB + B'P
for P yields a P which is positive definite such that

PA = A'P

L

and u'PAuI0 =0

if u vanishes on the boundary.

L
Consider vV = S u'Pu dx , : (5-2)
0

then for the forced system
Lb A
vV = S [o—(u'PAu) - u'Qu + 2fb'Puldx , (5-3)
0 2% |

The first term inside the integral is zero by the

assumption, therefore

. L
V = S (-u'Qu + 2fb'Pu)dx .
0



5=3

Let the minimum eigenvalue of P,

g o
®

(0]

the maximum eigenvalue of P,

o

e the minimum eigenvalue of Q,

=S| = > P

be the maximum eigenvalue of Q.

Then it is clear that

L L
ﬁf(yunzdxivsxuuuz dx (5-4)
and 1 S%u"z dx < SLu'Qu dx < ¢ S%u"z dx (5-5)
—Yo ~ =My ) -
Thus,
) L 5 L
Vg =nfjuf” ax +§ 2M|b'Puldx . (5~6)
0 0

Using (5-4), (5-6) becomes

V& -

e

L
Vv + 2M{ | b'Pujdx . (5-7)
‘ 0
Letting u = ¢w, then with |lw| = 1,

L L L
S |brPufax = S Ib'PwIdx = f | o' Pw|ax
0 0 0

L
su
s=350“w"51|b'PwIdx . (5-8)
1/2 L 1/2 L 1/2
Now, \Y / = (5 u'Pu dx) / = (S gzw'Pw dx) /
0 0
L 1/2
= (] w'Pw dx) ¢5-9)
0
1/2 Loine 1/2 - 10
or viT > ?(Soﬂwu=lw Pw dx) ) ¢5-10)
L 1 _1/2 |
Thus, S Ib'PUIdX s -—é—- v (5"'11)

0
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where ¢ is a non~zero constant such that

wl=1
c < . (5-12)

L
su
5 o= (o7 ax

I, =
[S ||J.nf (w'Pw)dx]l/z
0

Thus for V,

V- =V + 21;4 v, (5-13)

This inequality implies a bounded response([25] which yields

Vl/Z(t) < 2% M

(-t
M o)
C

I
v .

1=
!M
131>l
alz
o

hence showing that V and hence u is bounded for all t. It
is worth noting that both terms in (5-13) are necessary to
establish the result, and that the method is- easily extended
to nonlinear systems.

5.3. Nonlinear Systems

The method developed in the last section can also be
used on a class of forced system problems of the modified

Lurie type (4-16)

au(?ét) =2 ﬁEi;;EL + Bu(x,t) + b
g = £ - 4(c) (5-15)
g = C'u(x’t)

where f(x,t) is the forcing function which is assumed to be



bounded by M, and the nonlinearity
¢(c) = (s)o . (5-16)

The unforced system (f=0) is assumed to be asymptotically
stable for any constant £ in 0 € £< £ ‘€ 2 . Let there

exist a Liapunov functional for the unforced system

\Y

L s
§ u'Pu + gf flo)edelax (5-17)
0 0

. I ~ L 1 :
then, V = = S u'Qu dx + f [(%%—A'Pu + u'PA%%
0 0

+ (plc'uc'A-:%)]dx (5-18)

where 6 = Q + &(cz' + zc') + ﬂlzc'bcc' (5-~19)
- Q = B'P + PB (5=-20)

and z=7Pb - g B'c, (5-21)

If u vanishes on the boundary, choosing a Q » 0 to give a
P > 0 such that PA = A'P, the second term in (5-18) vanishes
identically. Since the unforced system is assumed to be

asymptotically stable, Q is.positive definite. Now,
L 8 L ’ 8 —
S u' (P + 5 Rect')u dx € V £ S u'(P + = gcc')udx g> 0
0 = =2, ) el

(5-22)

L L
or Sou'(P+-g-'fcc')u dxg_vs_Sou'(P+%,g_cc')u dx p <0

(5+23)



It is thus clear the left-hand expressions in (5=-22)

and (5-23) are positive definite since the system with £ = 0
is asymptotically stable for any constant £ in £ € £¢ 2 .
Hence,
L2 = (T2
A Julfax ¢ v e X § Ju)® ax (5-24)
0 0
where minimum eigenvalue of P + %ﬁpc' gz> 0
A= { - (5=25)
_ minimum eigenvalue of P + %Ibc' B <0
™ _ - £5-26)
maximum eigenvalue of P + %{bc' g >0
A= { ¢ (5-26)
maximum eigenvalue of P + 2&cc' g <0,
Now, for the forced system, same V is assumed as in
(5-17), the total time derivative of V is.given by
. L au' _, 1pa 24 gctuct du
vV = 50[(T§— A'Pu + u'PA 7;) + (pLc'uc'A ?2)
- u'au + 2fb' (P + %,1cc')u]dx . (5=~2%)

The first two terms vanish identically by our boundary
conditions, therefore
L
v = jg[- u'Bu + 2fb' (P + %,Qcc')u]dx . (5-28)
Again, let
M be the minimum eigenvalue of Q,

and M be the maximum eigenvalue of Q.

Then it is clear that
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. L 2 L
Ve - 7!5 ful” ax + S 2M| b'Bu| dx (5-29)
=40 0
where P=7P + % cc' , (5-30)

with (5-24), V also satisfies

V< - V o+ ZMJE,b'ﬁu |ax . (5-31)

>|||.=s

Following the same derivation under last section, V is

satisfied by the inequality

) " 1/2
V<-—==V+ zg’lv/ (5-32)
- A
where .
L inf ~ 1/2
LS, pwp=2 (V7R dx)
c & L sup . . (5-33)
§  pwp=1(®'PwW) ax

o |
Again showing that V and hence u is bounded for all t, the
similar theorem is obtained,

Theorem (5-2) For the system given by (5-15), if the un-

forced system is asymptotically stable, then a bounded input
produces a bounded output.

Ohe is able to explicitly determine the bounds as in
(5-14) by solving the relevant equations above for P and Q
and hence A, A, M, | and c.

5.4, Extended Malkin's Theorem

In a practical situation, it is sometimes more desirable
to have a better knowledge of the stability property besides

the fact that a bounded input produces a bounded output.



Given any prescribed boﬁnd on the output (state), one is
interested in estimating fhe maximum allowable range of
the input norm that will keep the output norm within the
prescribed bound., The method developed here represents
an extension of a theorem due to Malkin[l] to distributed
parameter systems,

Consider the general system which can be represented
by

u(X,t)

X o U(x,-:—x-,u,t) (5-34)

where u(X,t) is a n-vector, and X is a m-dimensional spatial
coordinate vector. Let be an open connected subset od m-
dimensional Euclidean space x™, Assume (5-34) has a trivial
solution u = 0, which is an invariant set of the system, and

let the forced system be a modification of (5-34),

)
..2.(.%5.142.‘22. = U<x, jue) + F (X, 4 3-,u,t) (5-35)

where F(x,%i,u,t) is a forcing function which is assumed
bounded.

Definition. The origin is stable in the sense of Malkin,

whenever for any 0 < &€ < A, there exists two numbers M&(€) > 0,
and v (¢) > 0 such that if

Tux, 0] < a(e),

F(X,ii,u,t) < V(e) for all fJulj<€ and t > O,

then |u(x,t)]] ¢ € for all t > 0 ,
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Theorem 5-3, Let the origin of u be an agymptotic invariant.

set of (5-34) with a Liapunov functional
v = f.wda= {jupu aa, (5-36)

the region of attraction is M(A). In addition, there is a

M > 0 such that in P'(4)

< M, i=1,2,***,n, t20. (5=37)

Then the origin of (5-35) is stable in the sense of
Malkin,
Proof :

Let the time derivative of V along the trajectories of
(5-34) be denoted by V and ﬁf bedthe time derivative of V

along (5-35). Hence

o _ (W -
V= [ 50U da (5-38)
and V.= § 5 (U +maa . (5-39)

Let\&gldn.be the positive lower bound for - ﬁ, i.e.,

= inf % -
faman = A e (). (5-40)

Vf can then be reduced to

1/ 'Sn,"ld““‘jn.%ng“-

N

IN

(o (=M + nMF)dn

in

(o (-M + nM )dn, ‘ (5-41)



Let k be a constant such that

0< k< 1
kn
and set v = - °

Then (5-41) becomes

: i n
U < fal-n+ nghan

- a-xfmar<o,

hence showing that V is decreasing along every trajectory

5-10

of the forced system (5-35), therefore no trajectory of (5-35)

starting in the sphere S(4) can reach S(g&) .



CHAPTER VI

CONCLUSIONS

In formulating the stability problem for distributed
parameter system, it is customary to approximate the dié-
tributed mathematical model by a lumped parameter system
by some truncation method. Although, this approach is
reasonable from a practical standpoint, it often leads to
unsatisfactory stability information. The result thus
obtained is an approximate one, it is neither necessary
nor sufficient. Therefore from the analytical point of
view, it is desirable to havé such information directly
from a distributed model in the form of partial differential
equations. In this work, the problem of stability of dis-
tributed parameter system is analyzed in the framework of
partial differential equations without resorting to their
approximation by ordinary differential equations, Stability
conditions are derived for distributed parameter systems
with periodic coefficients, Sufficient conditions are
derived via the second method of Liapunov for particular
classes of distributed parameter systems. The bounded
inpu£ bounded output stability are also demonstrated in the
“framework of the Liapunov theory. In applying the second
method of Liapunov to sidtributed parameter systems, the
main difficulty lies in the fact that there are no general
and systematic procedure for finding a suitable Liapunov

functional applied to systems. Sucessful manipulation



techniques have been developed for only a relatively few
cases. As should be evident, the proof of the bounded
input bounded output stability of distributed parameter
systems resides in the fact that one is able to obtain a
Liapunov functional V such that the total time derivative
along the trajectories of the forced system can be writtem
as

Vv < -rv + svl/2 (6-1)

where r and s are constants greater than zero, and it is
clear that V has bounded solutions as t approaches infinity.
There is no implication of bounded input bounded oﬁtput
stability if a suitable Liapunov functional satisfies (6-1)

cannot be found,
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