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ABSTRACT 

Performance comparison of conjugate gradient density 

matrix search and Chebyshev expansion methods for 

avoiding diagonalization in large-scale electronic 

structure calculatiolls 

by 

Kevin R. Bates 

We report a performa~lce conlparison of two linear-scaling 

methods which avoid the diagonalization bottleneck of tradi- 

tional electronic structure algorithms. The Chebyshev expan- 

sion method (CEWI) is implemented for carbon tight-binding 

calculations of large systems and its memory and t,iming re- 

quirernents compared to those of our previolisly inlplernented 

conjugate gradient density ~rlatrix search (CG-DMS). Bench- 

mark calclilatiorls are carried out on icosahedral fullerenes from 

Cso t,o Cesso and the linear scaling nlclnory and CPU require- 

ments of CEM demonstrated. TVe show that t,he CPU requisites 

of CEM and CG-DMS are similar for calculations with compa- 

rable accuracy. 
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CHAPTER 1 

INTRODUCTION 

Recent advances in co~nputational quantum chemistry have 

introduced algorithms which scale linearly with system size by 

avoiding the O(!V2) asymptotic scaling of the electron-electron 

quantum Colilomb problem.' introducing fast 0(,V) cluadra- 

ture schcn~es ,~  and replacing the diagonalization O(N3) bot- 

tleneck of traditional electror~ic s t ruc tu~e  methods with al- 

ternative  method^.^-'^ These achievements allow theoretical 

chemists to address much larger che~nical systems than pre- 

viously possible. In this paper. we focus on the diagonaliza- 

tion bottleneck. Two tech~liques which bypass diagonalization 

and scale linearly with system size are the conjugate gradient- 

density matrix scarch (CG-DMS)3-7 and the Chcbyshev expan- 

sion method (CEM),8-'6 also referred as the truncated moment 

approach or the kernel polynomial mct,hod. In order to cleter- 

mine the strengths and weaknesses of these two methods. it 

is important to cl~antit~atively characterize and compare their 

performance in calculatio~ls on cllemical systems of inkrest. 
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The tight-binding (TB) method is a well-known and widely- 

used semi-empirical method for calculating energies and band 

structure of carbon TB uses a parametrized 

Hamiltonian and a short-range spatially-dependent potential 

function to replace the electron-electron Coulomb interaction. 

The simplicity and relative speed of the tight-binding method 

compared with Illore rigorous ub initzo methods. such as 

Hartree-Fock or density-functional theory, makes it a conve- 

nient framework within which to benchmark the performance 

of new algorithms. Furthermore. the CPU requirements of the 

TB method are completely dominated by the Hamiltonian di- 

agonalization making it an ideal candidate for benchmark cal- 

culations of algorithms that bypass this step. In this work, we 

have implemented the CEM algorithm within a TB scheme and 

compared it with our previous implerncntation of a competing 

method, CG-DMS. 

The TB electronic cnergy is defined as 

where {c i )  are the occ~~pied  eigenvalues of HTD, Nocc is the 



number of occupied orbitals, and the prefactor 2 denotes that 

all electrons are paired. It is widely known that  the compu- 

tational time required for diagonalization of HTB to obtain its 

eigenvalues scales as O(iV3) with respect to system size. This 

computational bottleneck prevents application of traditional 

electronic structure methods to truly large systems (thousands 

of atoms). Driven by the limited application of coriventional 

methods, algorithms which approximate TB energies without 

determining the eigenvalues of HTB have been developed. Two 

important examples are CG-DMS and CEM. Instead of calcu- 

lating the TB energy directly, these methods solve for the den- 

sity matrix of the system. Once the density matrix has been 

determined. an equivalent expression of the electronic energy, 

where p is the density matrix of the system, can easily be 

solved. 

In order t,o ohtaiil linear-scaling with respect to syst'cin size. 

these methocls take advantage of t,he irlherently local nature of 

interactions in finite systems by inlplernenting a spatial cutoff 



beyond which interatomic interactions are disregarded. This 

thresholding, in addition to the local nature of the TB poten- 

tial. results in sparse Hamiltonian and density matrices which 

are efficiently manipulated using sparse matrix routines and 

 algorithm^.^^ The sparsity seen in these calculations due to 

spatial thesholding results in matrix arithmetic which scales 

linearly with system size." 

In this work, we provide a comparison of the performance of 

linear-scaling implementations of CG-DMS and CEM within 

the TB method for carbon as applied to giant icosahedral 

fullerenes. A benchmark study of large icosahedral fullerenes 

using TB with CG-DhlS has been reported previously.5 Here, 

we perform a similar study using TB wit,h CEM. Additionally, 

we draw on the CG-DMS results to compare the timing and 

memory requirements of CG-DMS and CEhI for large carbon 

systems. Our results provide insight 011 the con~parative per- 

forma11c.e of each of these methods. 
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CHAPTER 2 

CONJUGATE GRADIENT DENSITY MATRIX SEARCH 

411 results in this work correspond to molecules with fully 

optimized TB geometries obtained through a lllolecular dynam- 

ics optimization scheme. The molecular point group symmetry 

was not exploited. 

CG-DMS, which has been implemented in both semi- 

empirical5" and ab znitio%ethods in our research group, is 

a variational algorithm in which the electronic energy, Eel,,, is 

minimized as a function of the density matrix, p. Forrrling the 

derivative of Eel,, with respect to the density matrix represents 

the hulk of the method's computational requirements and can 

be expressed as3'5 

Five matrix multiplications are required for each step of CG- 

DMS. .4 purification stepu is used to satisfy the idempotency 

constraint of the density matrix, and accoi~nts for an additional 

two matrix multiplications per CG-DMS step." A11 i~iitial guess 



is required as a first approximatiorl to the clensit,y matrix. In 

the TB case, this initial guess assumes half-occupation of all 

orbitals and no interatomic interactions. The conjugate gra- 

dient minimization algorithm22 is then ernployecl to iteratively 

minimize E,,,, with respect to the density matrix. On average, 

our calculatio~ls require about 15 CG iterations to converge. 

In both se~ni-e~npirical and ab i r ~ i t i o  impleme~ltations of CG- 

DMS, the computational time and memory required for large 

scale calculatio~ls have been shown to scale linearly with system 

size."7 The most important parameter in determining the com- 

putational cost and accuracy of CG-DMS is the spatial cutoff, 

R,. For TB with CG-DMS, reasonably accurate results 

eV/atom) are obtained with R, = 4.0 Based on these re- 

sults, all CG-DA4S and CEM calculations reported in this work 

utilize a 4.0 A spatial threshold. 



THE CHEBYSHEV EXPANSION METHOD 

In contrast to CG-DMS, CEM calculates the density matrix 

of a system directly using only HTB and a Fermi-Dirac distribu- 

tion for the elcctro~lic occupations. In this work we follow the 

formalism introduced previously by Goedecker and Tcter.':' We 

define the electronic density rnatrix as a polynomial expansion 

of HTs scaled such that its eigenvalues fall between -1 and 1. 

This relationship can be expressed as 

where f represents the Fermi-Dirac distribution, ,u is the 

chemical potential. I; is Boltzmann's constant, T is the absolute 
- 

temperature of t,he system, and ff is the scaled HTB. H is 

determined by c:alculating the largest and smallest eigenvallles 

of ElrB via a linear-scaling Lanczos method.23 ,LL is determined 

by ellforcing the electron count of the systen~, 



where I\'~~,, is the total number of electrons in the system. 

Using Newton's approxi~nation. we achieve rapid and tight con- 

vergence to the Fermi level of the system. The accuracy of i c  

determines the accuracy of the Fermi-Dirac distribution, which 

in turn is used to calculate the Chebyshev coefficients used in 

the expansion of R. The central expression which niust be 

solved in CEhl for orthogonal electronic-structure calculations 

can be written as 

where {cj) are the Chebyshev coefficients derived from the 

Fermi-Dirac distribution: {Ti} are the Chebyshev recursion rc- 

lations of the scaled Hamiltonian, as defined elsewhere'" and 

CPO is the Chebyshev polynomial order. A formalism for non- 

orthogonal cases has bee11 developed separately.'5 The CPO 

determines the accuracy of t,he density mat,rix approximation, 

where larger values of CPO result in increasing accuracy. The 

number of matrix ~nultiplications required in CEM is eclual to 

t,he order of the espansio11. We fincl that  p is sufficiently iclem- 

potent for the accuracy requiretl for our calculations, and that 



110 purification step is normally necessary. 

In our imple~ncntation of CEM, we use the above defini- 

tion to calculate the density matrix of our system directly from 

H&. While we impose a set 4.0 A spatial threshold in our 

implementation of CEM, a method which exploits the widen- 

ing column vectors of {Ti) with increasing CPO has recently 

been reported.16 However, a complete discussion and compar- 

ison of this method with other linear-scaling techniques has 

yet to be published. As reported by other authors,16 we also 

greatly increase the efficiency of the Fernli level determination 

by calculating and storing the column vectors of the recursion 

mat,rices {Ti) outside the Newton-Rapson loop. This calcula- 

tion is independent of the method by which the Hamiltonian is 

derived, and therefore applies broadly to most semi-empirical 

and ab irtitio clliantum chemical methods. CEM has been im- 

plementccl in both TB'-~O and DFT mcthods.12 Furthermore, 

CEM has been implementecl to solve for second order proper- 

ties of mat,erials. including optical-absorbtion spectra and the 

density of stat.es." 



CHAPTER 4 

PERFORXIANCE COMPARISON O F  CG-DMS AND CEM 

Before comparing the timing characteristics of CG-DMS 

and CEM, it is important to establish the conditions under 

which the ~net'hods provide similar degrees of accuracy for large 

fullcrenes. As mentioned before: previous work has demon- 

strated that t,he accuracy of linear-scaling CG-DMS calcula- 

tions depends strongly on the cutoff radius, R,, and that R, 

= 4.0 a attains a reasonable compromise between accuracy 

and computational requirements.5 For simplicity, we perform 

all calculations in this work using this cutoff radius. 

In addition to spatial thresholding, the accuracy of the CEh'l 

method depends strongly on the accuracy of the Chebyshev 

expansion. which depends mainly on the CPO. In Figure 1, 

we show absolute prror of our energy calculatioris in eV per 

atom as a function of CPO for the icosahedral fullerene C2d0. 

or C210 I h  Our results show an expone~ltial convergence to 

t,lie exact energy with increasing CPO, a result predicted by 

t,heor;v. l4 



Figure 1. Log of the absohite error in eV per 

aton1 of CEkI calculatio~ls on the icosahedral fi~llerene 

C240 as a function of the Chebyshev polynomial order. 
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In Figure 2,  we show the CPU time of CEM calculations on 

CSGo Ih with respect to the CPO. The results clearly show a 

linear relationship between CPU time and CPO for CEM 

calculations, with the best-fit line for the log-log plot of these 

points having a slope of 2.04. Additionally. it is shown that the 

CPU time required for a CEM calculation on I crosses 

over with CG-DMS (the dotted line) at CPO 85. Based on 

the results from Figures 1 and 2, we must establish a CPO 

which achieves the appropriate accuracy with minimal CPU 

requirements. From the results shown in Figure 1, we find that 

CPO=75 is adequate to achieve an accuracy of approximately 

lo-" eV per atom without requiring excessive computational 

time. 



Figure 2. Plot depicting complitational time req~iirements 

as a function of Chebyshev polynomial order (CPO) 

for CEM calculations on the icosahedral fullerene Cg6f). 

Dotted line represents the CPU time required for a 
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While the conlputatio~lal scaling properties of TB with CG- 

DMS as applied to systems containing tllousands of atoms have 

been discussed elsewhere,hnalogous results for CEM have not 

been reported to date. In Figure 3, we show the CPU time 

required for CG-DMS and CEh4 calculations with CPO = 75 

and R,=4.O A as a function of system size for fullerenes up 

to 8640 atoms. Clearly, CPU times scale linearly with system 

size in our inlplementation of CEhf as well as CG-DMS. Ad- 

ditionally, CEM requires about 10 percent less CPU time than 

CG-DhIS in these calculations. 



Figure 3. CPU time for CEM calculations on icosahedral 

fullerenes up to 8640 atoms. 

Number of atoms 
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In Figure 4, we compare the memory requirements of CG- 

DhIS drld CEM for calculatiorls on giant irosahedral fullerenes 

up to 8640 atoms. Again, are see that the rnemory requirements 

of our calculations scale linearly with system size. .\ddition- 

ally, we show that our implementation of CEWI requires slightly 

more memory than CG-DMS. The memory required for our im- 

plementation of CEh1 is dependent on both the CPO and the 

Rc. 



Figure 4. Memory required in ~rlillions of double precision 

words for CG-DMS and CEM calculatio~is 011 icosahedral fullerenes 
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In Figure 5 .  we show a comparison in the CPL time required 

to perform each of the calculations shown in Figurc 3. This 

plot compares CG-DMS and CEM with R,=4.0 A and C P O  

equal to 50. 75, and 100. Our results confirm those shown in 

Figure 2. CEM calculations with C P O  equal to 50 and 75 

require less CPU time than CG-DMS calculations while CEhI 

calculations with CPO=100 require Inore CPU time than CG- 

DWIS calculations. 



Figure 5. CPU time of CG-DMS a~ ld  CEM calculatiorls on 

icosahedral fullere~les up to 8640 atorns for CPO equal to 50, 

75, and 100. 
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CHAPTER 5 

CONCLUSIONS 

In this xvork we provide a conlparison of two competing 

methods of performing TB electronic-structurc calculations in 

which the computational time and niemory scale linearly with 

system size. Our results show that CEbI calculations on large 

systems are slightly faster than C G - D M  calculations of sim- 

ilar accuracy while requiring slightly more memory. Based on 

these results, CEWI is shown to be an  efficient linear-scaling 

technique for avoiding the diagonalization bottleneck of tradi- 

tional TB methods. The computational requirements of CEhI 

compare favorably with CG-DMS, suggesting the importance 

of futurc implementations of CEM into semi-empirical and ab 

initio quantum chemical mcthods. 
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