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ABSTRACT

Performance comparison of conjugate gradient density
| ~ matrix search and Chebyshev expansion methods for
avoliding diagonalization in large-scale electronic
structure calculations
by

Kevin R. Bates

We report a performance comparison of two linear-scaling
methods which avoid the diagonalization bottleneck of tradi-
tional electronic structure algorithms. The Chebyshev expan-
sion method (CEM) is implemented for carbon tight-binding
calculations of large systems and its memory and timing re-
quirements compared to those of our previously implemented
conjugate gradient density matrix search (CG-DMS). Bench-
mark calculations are carried out on icosahedral fullerenes from
Cgo to Cggao and the linear scaling memory and CPU require-
ments of CEM demonstrated. We show that the CPU requisites
of CEM and CG-DMS are similar for caleulations with compa-

rable accuracy.
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CHAPTER 1

INTRODUCTION

Reécent advances in computational quantum chemistry have
introduced algorithms which scale linearly with system size by
avoiding the O(N?) asymptotic scaling of the electron-electron
quantum Coulomb problem,! introducing fast O(N) quadra-
ture schemes,? and replacing the diagonalization O(N?) bot-
tleneck of traditional electromic structure methods with al-
ternative methods.*='% These achievements allow theoretical
chemists to address much larger chemical systems than pre-
viously possible. In this paper. we focus on the diagonaliza-
tion bottleneck. Two techniques which bypass diagonalization
and scale linearly with system size are the conjugate gradient-
density matrix search (CG-DMS)*~7 and the Chebyshev expan-
sion method (CEM), 216 also referred as the truncated moment
approach or the kernel polynomial method. In order to deter-
mine the strengths and weaknesses of these two methods, it
1s important to quantitatively characterize and compare their

performance in calculations on chemical systems of interest.
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The tight-binding {TB) method is a well-known and widely-
used semi-empirical method for calculating energies and band

structure of carbon systems.}T—1?

TB uses a parametrized
Hamiltonian and a short-range spatially-dependent potential
function to replace the electron-electron Coulomb interaction.
The simplicity and relative speed of the tight-binding method
compared with more rigorous ab initio methods, such as
Hartree-Fock or density-functional theory, makes it a conve-
nient framework within which to benchmark the performance
of new algorithms. Furthermore, the CPU requirements of the
TB method are completely dominated by the Hamiltonian di-
agonalization making it an ideal candidate for benchmark cal-
culations of algorithms that bypass this step. In this work, we
have implemented the CEM algorithm within a TB scheme and
compared it with our previous implementation of a competing

method, CG-DMS.

The TB electronic cnergy is defined as
-Nacc
Eelec = & Z €y

2

where {¢;} are the occupied eigenvalues of Hrp, N, is the



nuiber of occupied orbitals, and the prefactor 2 denotes that
all electrons are paired. It is widely known that the compu-
tational time required for diagonalization of Hrp to obtain its
eigenvalues scales as O(N?) with respect to system size. This
computational bottleneck prevents application of traditional
electronic structure methods to truly large systems (thousands
of atoms). Driven by the limited application of conventional
methods, algorithms which approximate TB energies without
determining the eigenvalues of Hrp have been developed. Two
important examples are CG-DMS and CEM. Instead of calcu-
lating the TB energy directly, these methods solve for the den-
sity matrix of the system. Once the density matrix has been

determined, an equivalent expression of the electronic energy,
Eelec == TT(PHTB)_-.

where p is the density matrix of the system. can easily be
solved.

Iu order to obtain linear-scaling with respect to system size,
these methods take advantage of the imherently local nature of

interactions in finite systems by implementing a spatial cutoff



beyond which interatomic interactions are disregarded. This
thresholding, in addition to the local nature of the TB poten-
tial, results in sparse Hamiltonian and density matrices which
are efficiently manipulated using sparse matrix routines and
algorithms.?® The sparsity seen in these calculations due to
spatial thesholding results in matrix arithmetic which scales
linearly with system size.’

In this work, we provide a comparison of the performance of
linear-scaling implementations of CG-DMS and CEM within
the TB method for carbon as applied to glant icosahedral
fullerenes. A benchmark study of large icosahedral fullerenes
using TB with CG-DMS has been reported previously.> Here,
we perform a similar study using TB with CEM. Additionally,
we draw on the CG-DMS results to compare the timing and
memory requirements of CG-DMS and CEM for large carbon
systems. Qur results provide insight on the comparative per-

formance of each of these methods.



CHAPTER 2
CONJUGATE GRADIENT DENSITY MATRIX SEARCH

All results in this work correspond to molecules with fully
optimized TB geometries obtained through a molecular dynam-
ics optimization scheme. The molecular point group symmetry
was not exploited.

CG-DMS, which has been implemented in both semi-
empirical®” and ab initio® methods in our research group, is
a variational algorithm in which the electronic energy, E.p., is
minimized as a function of the density matrix, p. Forming the
derivative of F .. with respect to the density matrix represents
the bulk of the method’s computational requirements and can
be expressed as®®

aEe!ec
8p1-j

= 3(pH + Hp);i — 2(p"H + pHp + Hp*) ;.

Five matrix multiplications are required for each step of CG-
DMS. A purification step?! is used to satisfy the idempotency
constraint of the density matrix, and accounts for an additional

two matrix multiplications per CG-DMS step.® An initial guess



is required as a first approximation to the density matrix. In
the TB case, this initial guess assumes half-occupation of all
orbitals and no interatomic interactions. The conjugate gra-
dient minimization algorithm?®? is then employed to iteratively
minimize E.,. with respect to the density matrix. On average,
our calculations require about 15 CG iterations to converge.
In both semi-empirical and ab initio implementations of CG-
DMS, the computational time and memory required for large
scale calculations have been shown to scale linearly with system
size.>~7 The most important parameter in determining the com-
putational cost and accuracy of CG-DMS is the spatial cutoff,
R.. For TB with CG-DMS, reasonably accurate results (1073
eV/atom) are obtained with R, = 4.0 A.> Based on these re-
sults, all CG-DMS and CEM calculations reported in this work

utilize a 4.0 A spatial threshold.
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CHAPTER 3
THE CHEBYSHEV EXPANSION METHOD

In contrast to CG-DMS, CEM calculates the density matrix
of a system directly using only Hrp and a Fermi-Dirac distribu-
tion for the electronic occupations. In this work we follow the
formalism introduced previously by Goedecker and Teter.!* We
define the electronic density matrix as a polynomial expansion
of Hrg scaled such that its eigenvalues fall between -1 and 1.

This relationship can be expressed as

H—yp
p=f( T )

where f represents the Fermi-Dirac distribution, g is the

chemical potential, k is Boltzmann’s constant, T is the absolute
temperature of the system, and H is the scaled Hyg. H is
determined by calculating the largest and smallest eigenvalues
of Hyg via a linear-scaling Lanczos method.? p is determined

by enforcing the electron count of the system,

Neee =Tr (p) )



where N is the total number of electrons in the system.
Using Newton’s approximation, we achieve rapid and tight con-
vergence to the Fermi level of the system. The accuracy of u
determines the accuracy of the Fermi-Dirac distribution, which
in turn is used to calculate the Chebyshev coefficients used in
the expansion of H. The central expression which must be
solved in CEM for orthogonal electronic-structure calculations
can be written as

CPO
p=cy+ » oT;

i=1

where {c;} are the Chebyshev coefficients derived from the
Fermi-Dirac distribution, {T;} are the Chebyshev recursion re-
lations of the scaled Hamiltonian, as defined elsewhere!®, and
CPQ is the Chebyshev polynomial order. A formalism for non-
orthogonal cases has been developed separately.!® The CPO
determines the accuracy of the density matrix approximation,
where larger values of C'PQ result in increasing accuracy. The
number of matrix multiplications required in CEM is equal to
the order of the expansion. We find that p is sufficiently idem-

potent for the accuracy required for our calculations, and that



no purification step is normally necessary.

In our implementation of CEM, we use the above defini-
tion to calculate the density matrix of our system directly from
Hrg. While we impose a set 4.0 A spatial threshold in our
implementation of CEM, a method which exploits the widen-
ing column vectors of {T;} with increasing CPO has recently
been reported.'® However, a complete discussion and compar-
ison of this method with other linear-scaling techniques has
yet to be published. As reported by other authors,!® we also
greatly increase the efficiency of the Fermi level determination
by calculating and storing the column vectors of the recursion
matrices {T;} outside the Newton-Rapson loop. This calcula-
tion is independent of the method by which the Hamiltonian is
derived, and therefore applies broadly to most semi-empirical
and ab initio quantum chemical methods. CEM has been im-
plemented in both TB*10 and DFT methods.!? Furthermore,
CEM has been implemented to solve for second order proper-
ties of materials, including optical-absorbtion spectra and the

density of states.!!
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CHAPTER 4

PERFORMANCE COMPARISON OF CG-DMS AND CEM

Before comparing the timing characteristics of CG-DMS
and CEM, it is important to establish the conditions under
which the methods provide similar degrees of accuracy for large
fullerenes. As mentioned before, previous work has demon-
strated that the accuracy of linear-scaling CG-DMS calcula-
tions depends strongly on the cutoff radius, R., and that R,
= 4.0 A attains a reasonable compromise between accuracy
and computational requirements.’ For simplicity, we perform
all calculations in this work using this cutoff radius.

In addition to spatial thresholding, the accuracy of the CEM
method depends strongly on the accuracy of the Chebyshev
expansion, which depends mainly on the C'PO. In Figure 1,
we show absolute error of our energy calculations in eV per
atom as a function of C'PO for the icosahedral fullerene Csyy4p,
or Caqo I. Our results show an exponential convergence to
the exact encrgy with increasing C' PO, a result predicted by

theory. !4



log (abs(error(eV/atom)))
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Figure 1. Log of the absolute error in eV per
atom of CEM calculations on the icosahedral fullerene

Caqp as a function of the Chebyshev polynomial order.
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In Figure 2, we show the CPU time of CEM calculations on
Cogo I with respect to the CPQO. The results clearly show a
linear relationship between CPU time and C'PO for CEM
calculations, with the best-fit line for the log-log plot of these
points having a slope of 2.04. Additionally, it is shown that the
CPU time required for a CEM calculation on Cggy I, crosses
over with CG-DMS (the dotted line) at CPO ~ 85. Based on
the results from Figures 1 and 2, we must establish a C PO
which achieves the appropriate accuracy with minimal CPU
requirements. From the results shown in Figure 1, we find that
CPO=T75 is adequate to achieve an accuracy of approximately
10~ eV per atom without requiring excessive computational

time.
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Figure 2. Plot depicting computational tirne requirements

as a function of Chebyshev polynomial order {CPO)

~ for CEM calculations on the icosahedral fullerene Cygp.

Dotted line represents the CPU time required for a

CG-DMS calculation on Cygp.
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While the computational scaling propertiés of TB with CG-
DMS as applied to systerns containing thousands of atoms have
been discussed elsewhere,’ analogous results for CEM have not
been reported to date. In Figure 3, we show the CPU time
required for CG-DMS and CEM -calculations with CPO = 75
and R.=4.0 A as a function of system size for fullerenes up
to 8640 atoms. Clearly, CPU times scale linearly with system
size in our implementation of CEM as well as CG-DMS. Ad-
ditionally, CEM requires about 10 percent less CPU time than
CG-DMS in these calculations.
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Figure 3. CPU time for CEM calculations on icosahedral

fullerenes up to 8640 atoms.

10000

O  CG-DMS (R.=4.0 A)

©  CEM (CPO=75,R.=4.0 A)

7500+

5000+

2500+

] 1 |
0 2500 5000 7500

Number of atoms



16

In Figure 4, we compare the memory requirements of CG-
DMS and CEM for calculations on giant icosahedral fullerenes
up to 8640 atoms. Again, we see that the memory requirements
of our calculations scale linearly with system size. Addition-
ally, we show that our implementation of CEM requires slightly
more memory than CG-DMS. The memory required for our im-
plementation of CEM is dependent on both the C'PO and the

R..



Figure 4. Memory required in millions of double precision
words for CG-DMS and CEM calculations on icosahedral fullerenes

up to 8640 atoms.
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In Figure 5, we show a comparison in the CPU time required
to perform each of the calculations shown in Figure 3. This
plot compares CG-DMS and CEM with R,=4.0 A and CPO
equal to 50, 75, and 100. Our results confirm those shown in
Figure 2. CEM calculations with CPO equal to 50 and 75
require less CPU time than CG-DMS calculations while CEM
calculations with C PO=100 require more CPU time than CG-

DMS calculations.
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Figure 5. CPU time of CG-DMS and CEM calculations on
icosahedral fullerenes up to 8640 atoms for C'PO equal to 50,

75, and 100.
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CHAPTER 5

CONCLUSIONS

In this work we provide a comparison of two competing
methods of performing TB electronic-structure calculations in
which the computational time and memory scale linearly with
system size. Our results show that CEM calculations on large
systems are slightly faster than CG-DMS calculations of sim-
ilar accuracy while requiring slightly more memory. Based on
these results, CEM is shown to be an efficient linear-scaling
technique for avoiding the diagonalization bottleneck of tradi-
tional TB methods. The computational requirements of CEM
compare favorably with CG-DMS, suggesting the importance
of future implementations of CEM into semi-empirical and ab

tnitio quantum chemical methods.
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