


Abstract

High-Dimensional Integration for Optimization

Under Uncertainty

by

Timur Takhtaganov

This thesis focuses on the problem of evaluating high-dimensional integrals arising

in optimization under uncertainty. Uncertainties in the input data affect the behavior

of the physical system and need to be accounted for at the design stage or in the way

the system is controlled. This translates into evaluating integrals of the quantities

of interest with respect to the random parameters. This task becomes challenging

when the dimension of the random parameters is high. Without guidelines for the

choice of favorable integration methods the optimization algorithm might encounter

prohibitively high computational cost. This thesis provides a comprehensive overview

of methods for high-dimensional integration and exposes their relative strengths and

weaknesses. Emphasis is placed on problems with moderately high dimension and

with non-smoothness. The performance of integration methods in high dimension is

assessed on several simple model problems.
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Introduction

Many engineering applications are affected by uncertainty in the data. This uncer-

tainty might be due to incomplete knowledge (epistemic uncertainty) as is the case,

for example, in oil reservoir simulation where the properties of the subsurface me-

dia are only known at a few locations and have to be inferred everywhere else. It

might also be the case that the physical system has some intrinsic variability and our

knowledge cannot be improved by additional measurements (aleatoric uncertainty).

An example would be fluctuations of the flow field around the aircraft wing due to

the gusts of wind. In either case, in order for our mathematical model of the system

to give good predictions we need to account for the uncertainty in the input data and

find the ways to “quantify” the uncertainty in the outputs of interest.

This thesis addresses the problem of uncertainty quantification in the context of

optimization. The emphasis is placed on the task of efficient evaluation of integrals

of the outputs of interest with respect to the random parameters, i.e., expectations,

deviations, etc. The challenges addressed are: potentially high dimensionality of

the random input parameters, high cost of evaluating the objective function, and

non-smoothness in the integrand.

This thesis provides a comprehensive overview of the methods for high-dimensional

integration and assesses their applicability for optimization under uncertainty. The

first chapter is dedicated to the review of available literature on the topics of nu-

merical solution of PDEs with random inputs, uncertainty quantification via “risk

measures”, and high-dimensional interpolation and integration methods. The second
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chapter sets the stage for the discussion of optimization problems with PDE con-

straints with random inputs. The main goal of this chapter is to provide motivation

for the following overview of the integration methods. Chapter 3 provides the detailed

description of these methods along with known convergence results. Numerical ex-

periments are presented in chapter 4. Finally, the conclusions drawn from numerical

simulations are summarized in the last chapter.



Chapter 1

Literature Review

Optimization problems under uncertainty arise in many application areas. In order to

tackle such problems one needs to combine methods from diverse fields, such as opti-

mization theory, probability and statistics, functional analysis and numerical analysis.

This thesis presents some of the theoretical background required to understand gen-

eral approaches to optimization problems under uncertainty. Particular emphasis is

placed on one of the main challenges in the numerical solution of such problems -

multivariate integration.

In practice many problems are formulated as systems of partial differential equa-

tions (PDEs). The uncertainty is incorporated into such systems in the form of

random inputs: coefficients, source terms, boundary and initial data, geometry. In

general, uncertainty is described as a random field, i.e., a random variable indexed

by a spatial or temporal variable. PDEs in which random effects are manifested in

parameters are called random PDEs [75, Sec. 4.7]. The optimization problems stud-

ied in this thesis are constrained by random PDEs. In contrast, stochastic PDEs

(SPDEs) ”are forced by ’an irregular process such as a Wiener process or Brownian

motion.” [75, Sec. 97].

The solutions to random PDEs are also random fields. Representation of random

fields is, therefore, one of the first important problems that needs to be considered.
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Two main approaches to describing random fields exist and are used in practice:

Karhunen-Loève expansion (Karhunen (1947) [39], Loève (1948) [50]) and expansions

in terms of global orthogonal polynomials (Wiener (1938) [82], Ghanem and Spanos

(1997) [23]). Both types of expansion represent a random field in terms of an infinite

number of random variables. In this thesis I will use the Karhunen-Loève (KL)

expansion. The KL expansion represents the random field as an infinite series by

utilizing the eigenvalues and eigenfunctions of its covariance function. In practice

this series is truncated to obtain an approximation of the random field. In particular,

for correlated random fields with correlation length comparable to the size of the

domain only few terms are needed to describe random field with sufficient accuracy

([18], [51, Ch. 7]). Finite dimensional representation of random fields allows numerical

solution of corresponding random PDEs.

Once the inputs of a system, e.g., coefficients and source terms of a random

PDE, are described by a finite dimensional random vector, the task of uncertainty

quantification becomes that of obtaining statistical information about the outputs of

interest that depend on the solution of a random PDE. In many cases in the literature

this is limited to obtaining expected value and other statistical moments ([2, 57]).

In the context of optimization under uncertainty, for example in optimal control

under uncertainty problems, obtaining solution that holds “on average” is usually not

sufficient ([66]). For most practical cases the problem needs to be reformulated to

account, for example, for rare events or large deviations from the expected value. This

results in problems where the goal is to minimize the risk associated with a certain

choice of control. The risk in this context is understood as a measure of variation of

the objective with respect to the random parameters. Of particular interest is the

class of “coherent risk measures” - a term first introduced by Artzner et al. [1] and

rigorously studied by many others ([65, 70]). Coherent risk measures are particularly

well suited for optimization due to their properties (convexity, monotonicity).

Whether seeking to approximate the expected value of the objective function
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or estimate some other risk measure associated with it, we are faced with a task

of integrating with respect to the random parameters. As the number of random

parameters grows, numerical integration becomes challenging. The simple strategy

of using tensor products of one-dimensional integration rules fails due to the so-

called “curse of dimensionality” - a term coined by Bellman ([4]) that refers to the

exponential growth of the number of nodes required to evaluate multivariate integral.

For example, evaluating an integral of a function of 10 variables using just 5-point rules

requires 510 function evaluations. In the framework considered here, each evaluation

of the objective function requires solving an random PDE, hence it becomes crucial to

cut the number of integration points as much as possible while preserving the desired

accuracy.

In this thesis I consider several methods for multivariate integration starting with

the simplest Monte Carlo (MC) approximation which is abundantly covered in liter-

ature (e.g., [34, 49]). Although the MC method has some attractive features, such as

embarrassingly parallel implementation, in many cases its probabilistic rate of con-

vergence of O(1/
√
N) is considered too slow. The desire to improve on this rate

resulted in the development of quasi-Monte Carlo methods in the 1950s and 1960s.

Quasi-Monte Carlo methods are purely deterministic methods that heavily rely on

number-theoretic concepts ([54, 11]). Development of QMC methods was further

motivated by applications. In particular, option pricing problems have prompted

many theoretic developments ([26, 29]). A comprehensive survey of QMC methods is

presented in [16].

In the context of solving random PDEs MC methods have been combined with the

multilevel methods in order to further reduce computational burden ([25, 14, 46, 47]).

The main idea behind these methods is to use the hierarchy of spatial discretizations

of the PDE in combination with discretizations of random variables. Although outside

the scope of this thesis these methods provide an important direction to consider for

the future work.



6

Another family of methods aimed at circumventing the curse of dimensionality

are known under the common name of sparse grid methods. These methods stem

from the Smolyak algorithm for approximating the high-dimensional tensor product

quadrature ([76]). Smolyak’s construction uses the combination of tensor products

of one-dimensional quadrature formulas in a way that reduces the dependence of the

total number of integration nodes on the dimension up to logarithmic factors (for

certain classes of functions). Smolyak algorithm has been applied to the problems of

numerical integration ([58, 59, 60, 20]), solution of stochastic PDEs ([8, 56, 57]) and

many other problems. In this thesis I review the algorithm and the error estimates

that are available in literature (e.g., [3]).

As mentioned above Smolyak’s construction is general enough to be applied in dif-

ferent contexts. For the problems of multivariate integration and interpolation, which

are the main focus of this thesis, this construction can be applied in two settings. The

difference between the two is the type of bases used. The global polynomial bases, e.g.,

Lagrange polynomials, are good for sufficiently smooth integrands but are ineffective

for the integrands that have, for example, sharp gradients or jump discontinuities. By

contrast methods based on locally supported piecewise polynomial bases are better

suited for non-smooth integrands and allow adaptivity. If the global polynomial ap-

proaches achieve greater interpolation accuracy by increasing the polynomial degree,

the piecewise polynomial approaches do so by keeping the polynomial degree fixed

and refining the grid instead.

The sparse grid approach based on piecewise linear functions was introduced by

Zenger in 1991 [83]. It has since been extensively covered in literature (in particular,

by Bungartz and Griebel [8]) and generalized to higher order polynomial bases ([5, 6]).

The hierarchical construction of such bases proved to be particularly well-suited for

implementation of spatial adaptivity ([28, 7]).

Adaptive sparse grids have been a subject of many studies. Gerstner and Griebel

in [21] have introduced dimension-adaptive sparse grids that allowed for detection of
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“important” dimensions, i.e., dimensions corresponding to higher variability of the

function of interest. Locally adaptive sparse grids using hierarchical basis functions

have been applied in the context of solving stochastic PDEs ([19, 52]), solving re-

gression and classification problems ([63, 64]), and multivariate quadrature ([7]). The

attempts to consolidate both dimension and local adaptivity were also reported ([38]).

The implementations of various sparse grid methods that are publicly available

include the library spinterp by Klimke and Wohlmuth written in Matlab ([40]), the

TASMANIAN toolbox developed at the Oak Ridge National Laboratory ([79]), and

the SG++ toolbox by a group at the Technische Universität München ([63]).



Chapter 2

Optimization Under Uncertainty

The motivation for this thesis comes from the optimization problems governed by

random partial differential equations (PDEs). Random PDEs are PDEs for which

the input data (such as advection/diffusion/reaction coefficients, forcing terms,etc.)

is modeled as random variables, or more generally, random fields. This thesis does

not consider stochastic differential equations which require different techniques for

solving and analysis (for explanation of the difference see [75, Sec. 4.7]).

In this chapter I first introduce the general optimization problem with a constraint

given by a random PDE. I outline a general theory for solving random PDEs and

provide some examples that will be used in numerical simulations. Finally, I describe

the notion of the risk measure and motivate the exploration of adaptive integration

methods later in the thesis.

2.1 General Problem Setting

As a motivation for the rest of the thesis I first introduce an abstract optimization

problem with equality constraints in general Banach spaces.

Let U , Z be reflexive Banach spaces and W be a Banach space. Consider opti-

8
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mization problems of the form

min J(u, z) (2.1.1a)

subject to

e(u, z) = 0, (2.1.1b)

u ∈ Uad, z ∈ Zad, (2.1.1c)

where Uad and Zad are admissible subsets of the state space U and control space Z,

respectively. The objective function J : U × Z → R represents the “cost” corre-

sponding to the state u and control z, and the equality constraint e : U × Z → W

describes the dynamics of the system and represents a PDE or a system of PDEs.

Optimization problems in Banach spaces of the type (2.1.1) are discussed, e.g., in the

book by Hinze et al. [37].

When the data of the system are not known completely, this uncertainty can be

modeled by introducing random variables. Therefore, assume that the state equation

e(u, z) depends on some stochastic parameter ω ∈ Ω, where Ω is a set of outcomes

(future states of knowledge). Assume that the control variable z needs to be chosen

before the outcomes of ω become known. Thus z does no depend on ω. The state

equation now reads:

e(u(ω), z, ω) = 0 a.e. in Ω (2.1.2)

where “a.e.” stands for almost everywhere.

Introducing randomness in the constraint equation (e.g., random diffusion coef-

ficient in advection-diffusion equation) forces the state u to be a random variable

depending on parameter ω. The solution space for the state equation (2.1.2) is a

Bochner space, which I introduce next.

Definition 2.1.1 Let X be a Banach space and (Ω,F , P ) be a measure space. The

Bochner space LpP (Ω;X) is defined as the space of strongly measurable functions v :

Ω→ X such that ∫
Ω

‖v(ω)‖pXdP (ω) <∞ (2.1.3)
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for p ∈ [1,∞) and

ess sup
ω∈Ω
‖v(ω)‖X <∞ (2.1.4)

for p =∞.

Let u ∈ LpP (Ω;U) be a solution to the state equation (2.1.2). For a fixed z the map

ω → J(u(ω), z) : Ω→ R is now a random variable as well. To handle the uncertainty

the problem (2.1.1) is reformulated as follows:

minσ(J(u(·), z)) (2.1.5a)

subject to

e(u(ω), z, ω) = 0, a.e. in Ω (2.1.5b)

u(ω) ∈ Uad, a.e. in Ω (2.1.5c)

z ∈ Zad, (2.1.5d)

where σ is a risk measure (“measure of the risk of loss” in [65]). The precise meaning

of this term along with some examples will be provided later in the chapter.

I postpone the discussion of the risk measures until the end of the chapter. First

I introduce the theory of random PDEs.

2.2 Random Partial Differential Equations

Let D ⊂ Rd with d = 1, 2, or 3. Let (Ω,F , P ) be a complete probability space,

where Ω denotes the set of outcomes, F is a σ-algebra of events, and P : F → [0, 1]

is a probability measure. Let L be a differential operator, linear or nonlinear, that

depends on some coefficients a(ω, x) with ω ∈ Ω and x ∈ D.

Consider the following informal statement of a random boundary value problem:

find a function u : Ω×D̄ → R, such that P -almost everywhere in ω, or in other words
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almost surely (a.s.), the following equation holds:

L(a(ω, ·))(u) = f(ω, ·) in D, (2.2.1a)

u = g(ω, ·) on ∂D. (2.2.1b)

Here the forcing term f and the boundary data g can also be random fields (f(ω, x),

g(ω, x)), or they can be deterministic (f(x), g(x)).

The precise statement of (2.2.1) and its well-posedness need to be discussed for

the specific examples considered in the following.

Example 2.2.1 Consider the following random linear elliptic partial differential equa-

tion:

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) + z(x) (ω, x) ∈ Ω×D, (2.2.2a)

u(ω, x) = 0 (ω, x) ∈ Ω× ∂D. (2.2.2b)

Here a(ω, x), f(ω, x) : Ω × D → R are random fields, i.e., collections of realizations

indexed by a random variable. Hence, the solution u(ω, x) of (2.2.2) is a random field

as well.

In the following, I will follow [41] to show that, under suitable conditions, for

almost all ω ∈ Ω there exist a weak solution u(ω, ·) ∈ H1
0 (D) of (2.2.2).

For the purpose of solving (2.2.2) I consider the Bochner space U := L2
P (Ω;H1

0 (D)),

which is a Hilbert space with the inner product

〈u, v〉U =

∫
ω

〈u(ω, x), v(ω, x)〉H1
0 (D)dP (ω) (2.2.3)

Multiplying left-hand side of (2.2.2) by a test function v ∈ U , integrating over

Ω×D and applying Green’s identity we get

−
∫

Ω

∫
D

∇ · (a(ω, x)∇u(ω, x))v(ω, x)dxdP (ω) =∫
Ω

∫
D

a(ω, x)∇u(ω, x) · ∇v(ω, x)dxdP (ω)−
∫

Ω

∫
∂D

∂u

∂n
(ω, x)v(ω, x)dxdP (ω),
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where the second term on the right-hand side is 0 since v(ω, x) = 0 almost surely

(a.s.) for x ∈ ∂D.

Thus, the weak formulation of (2.2.2) is: find u ∈ U such that∫
Ω

∫
D

a(ω, x)∇u(ω, x) · ∇v(ω, x)dxdP (ω) =

∫
Ω

∫
D

f(ω, x)v(ω, x)dxdP (ω)

+

∫
Ω

∫
D

z(x)v(ω, x)dxdP (ω) (2.2.4)

for all v ∈ U .

Under the assumption that a ∈ L∞(Ω × D) is bounded away from zero almost

everywhere on Ω×D, that is

∃ amin > 0 such that a(ω, x) ≥ amin a.e. in Ω×D, (2.2.5)

and f(ω, x) ∈ L2
P (Ω; (H−1(D))), one can apply Lax-Milgram theorem to show the

existence of a unique solution u ∈ U to the problem (2.2.4) (for details see [41]). In

fact, one can show the existence of c > 0 such that

‖u(ω, ·)‖H1
0 (D) ≤ c‖f(ω, ·)‖H−1(D) for almost all ω ∈ Ω.

�

2.2.1 Finite Noise Assumption

In general, random fields a(ω, x) and f(ω, x) (and any other possible sources of un-

certainty) are not related to each other, therefore, they are defined on different prob-

ability spaces (Ωa,Fa, Pa) and (Ωf ,Ff , Pf ). The solution u is then defined on the

product probability space (Ω,F , P ) = (Ωa × Ωf ,Fa × Ff , Pa × Pf ). Thus, a and f

are functions of ωa and ωf respectively.

For numerical purposes I will need the finite noise assumption, which states that

the random fields a(ωa, x) and f(ωf , x) depend on a finite number of random vari-

ables. Formally, I assume that there exists a vector of random variables Ya(ωa) =
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[Ya,1(ωa), . . . , Ya,Na(ωa)] such that a(ωa, x) = a(Ya(ωa), x) and a vector of random

variables Yf (ωf ) = [Yf,1(ωf ), . . . , Yf,Nf (ωf )] such that f(ωf , x) = f(Yf (ωf ), x).

Further, I can relabel the elements of the random vectors Ya and Yf and define a

vector of random variables Y = [Y1, . . . , YN ] = (Ya, Yf ) with N = Na + Nf . Denote

the image of the random variables Yi to be Γi ⊂ R for i = 1, . . . , N and set Γ =

Γ1 × · · · × ΓN . Now Y : Ω → Γ ⊂ RN . Assume that there exists a joint probability

density function (pdf) for {Yi}Ni=1 denoted by ρ : Γ → R+ with ρ ∈ L∞(Γ). In

this case the probability measure dP (ω) can be replaced by the Lebesgue measure

ρ(y)dy and one can perform the change of variables in (2.2.4) to obtain the following

parametrized deterministic PDE:∫
Γ

ρ(y)

∫
D

a(y, x)∇u(y, x) · ∇v(y, x)dxdy =

∫
Γ

ρ(y)

∫
D

f(y, x)v(y, x)dxdy

+

∫
Γ

ρ(y)

∫
D

z(x)v(y, x)dxdy (2.2.6)

for all v ∈ L2
ρ(Γ;H1

0 (D)). Here the solution space is defined analogously to previously

defined Bochner space LpP (Ω;X):

Lpρ(Γ;X) = {u : Γ→ X : u is strongly measurable,

∫
Γ

ρ(y)‖u(y)‖pXdy <∞}. (2.2.7)

Under the finite noise assumption and by the Doob-Dynkin’s lemma ([61]) the so-

lution u(ω, x) can be characterized by the same vector Y (ω) as are a and f . Therefore,

it has a deterministic parametric equivalent u(y, x).

I provide two examples of the random field a(ω, x) that satisfy the finite noise

assumption. In the first example the random field is finite-dimensional by definition.

In the second, the infinite-dimensional random field is represented by an expansion

of which only a few terms are retained.

Example 2.2.2 Piecewise constant random fields

Consider problem (2.2.2) where the spatial domain D = ∪Ni=1Di, Di ∩ Dj = ∅ for

i 6= j. Let the diffusion coefficient aN(ω, x) be piecewise constant and random on
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each subdomain Di, i.e.,

aN(ω, x) = amin +
N∑
i=1

σiYi(ω)χDi(x) (2.2.8)

where χDi(x) is a characteristic function of the set Di, σi, amin > 0 and random

variables Yi are nonnegative with unit variance. �

Example 2.2.3 Karhunen-Loève expansion

According to Mercer’s theorem (Theorem 11, chapter 30, section 5 of [48]), any

second-order correlated random field a(ω, x) with continuous covariance function

COV(x1, x2) can be represented as an infinite sum of random variables. One ex-

ample of such an expansion is the Karhunen-Loève (KL) expansion ([39, 50, 51]),

which is an extension of singular value decomposition. In this case the random field

a(ω, x) can be approximated by a truncated KL expansion:

a(ω, x) ≈ aN(ω, x) = E[a](x) +
N∑
n=1

√
λnbn(x)Yn(ω) (2.2.9)

where λn and bn(x) for n = 1, . . . , N are the dominant eigenvalues and correspond-

ing eigenfunctions of the covariance function and Yn(ω) are uncorrelated real-valued

random variables.

In order to keep the property that a random input coefficient is bounded away

from zero, I will use KL expansion for the logarithm of the random field

log((aN − amin)(ω, x)) = b0(x) +
N∑
n=1

√
λnbn(x)Yn(ω) (2.2.10)

where amin is the lower bound on a.

�

Similar expansions are used for the random field f(ω, x) when applicable.
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2.3 Risk Measures

Consider the general optimization problem under uncertainty (2.1.5). Under the finite

noise assumption it becomes:

minσ(J(u(·), z)) (2.3.1a)

subject to

e(u(y), z, y) = 0, a.e. in Γ (2.3.1b)

u(y) ∈ Uad, a.e. in Γ (2.3.1c)

z ∈ Zad, (2.3.1d)

Assume that for every z ∈ Zad equation e(u(y), z, y) = 0 has a unique solution

denoted by u(y; z). Then the mapping y 7→ J(u(y; z), z) : Γ → R is a random

variable. This randomness in the objective is handled using risk measures. By a risk

measure we understand an operator that acts on the space of functions with domain

Γ and codomain R such as Lqρ(Γ) ≡ Lqρ(Γ;R) for q = [1,∞) or q = ∞. Denote it by

σ : Lqρ(Γ)→ R.

Next I introduce several examples of risk measures σ. In order to simplify notation

I will denote the random variable J(u(y; z), z) for a fixed z by X(y). The assumptions

on X(y) will be stated separately for each of the risk measures.

2.3.1 Examples

Expected value

The simplest and most commonly used choice is

σ(X) = E[X] (2.3.2)

This choice requires that X ∈ L1
ρ(Γ). Although easy to deal with, the expected

value is not sensitive to the possibilities of high values of X, and, thus, incorporates

no level of risk averseness, i.e., does not take into account possibility of high cost and
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associated consequences. ([65]).

Worst case

The choice

σ(X) = sup
y∈Γ

X(y)ρ(y) (2.3.3)

for X ∈ L∞ρ (Γ) accounts for the “worst case scenario”. In most situations it is overly

conservative (infinite for normal and exponential distributions), as it ignores all in-

formation about the distribution of X except its highest possible realization.

Mean plus deviation

The expected value risk function can be modified by adding a penalty term. To this

end define the Lq norm of a random variable X ∈ Lqρ(Γ) = Lqρ(Γ;R) by

‖X‖q =


E[|X|] for q = 1

(E[|X|q])1/q for 1 < q <∞

sup
y∈Γ
|X| for q =∞

(2.3.4)

and consider

σ(X) = E[X] + c‖X − E[X]‖q (2.3.5)

with c ≥ 0. For q = 2 this corresponds to mean plus c units of standard deviation.

This risk measure introduces safety margins for the expected value, thus, assuring

that high costs are incurred only for the outcomes corresponding to the upper part of

the distribution of X lying more than c deviation units above the mean. However, it

does so in a symmetrical manner, thus, penalizing not only outcomes with cost higher

than average but also those that are lower.

Mean plus semi-deviation

The mean plus semi-deviation risk measure is defined as σ(X) = E[X] + c‖[X −
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E[X]]+‖q with c ≥ 0. Here we denote by [·]+ the function max (·, 0). Using this risk

measure as an objective in the minimization we penalize only costs that are higher

than average.

We can rewrite σ(X) in terms of auxiliary function σ̂q : R × Lqρ(Γ) → R defined

by

σ̂q(t,X) = t+ c‖[X − t]+‖q (2.3.6)

by simply taking σ(X) = σ̂q(E[X], X).

Conditional-value-at-risk

In order to account for tail probabilities and extreme events one might want to employ

the conditional-value-at-risk (CVaR), which is defined as

σ(X) = min
t∈R

t+ (1− α)−1 E[[X − t]+] (2.3.7)

with α ∈ (0, 1) ([67]).

It too can be written in terms of the auxiliary function (2.3.6) as σ(X) = mint∈R σ̂1(t,X)

with c = (1− α)−1.

The conditional-value-at-risk satisfies the following property ([65]):

CVaRα(X) depends continuously on α ∈ (0, 1) with

limα→1 CVaRα(X) = supy∈ΓX(y)ρ(y) and limα→0 CVaRα(X) = E[X].

2.3.2 Application to optimization problems

Among the introduced risk measures some are more useful in the context of optimiza-

tion under uncertainty than the others. One desired property is coherency.

Definition 2.3.1 (Coherent Risk Measure). A functional σ : Lqρ(Γ) → R is

called a coherent measure of risk in the sense of Artzner, Delbaen, Eber, and Heath

[1], if it satisfies the following properties:
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• convexity: for all X1, X2 ∈ Lqρ(Γ) and λ ∈ [0, 1]

σ(λX1 + (1− λ)X2) ≤ λσ(X1) + (1− λ)σ(X2)

• monotonicity: for all X1, X2 ∈ Lqρ(Γ) such that X1 ≤ X2 a.s.

σ(X1) ≤ σ(X2)

• translation equivariance: for all X ∈ Lqρ(Γ) and c ∈ R

σ(X + c) = σ(X) + c

• positive homogeneity: for all c > 0 and X ∈ Lqρ(Γ)

σ(cX) = cσ(X)

The main consequences of coherency for optimization problem (2.3.1) are summa-

rized in the following theorem from [65]:

Theorem 2.3.2 Suppose the functional σ in (2.3.1) is a coherent measure of risk.

• Preservation of convexity. If the mapping z 7→ J(u(y; z), z) is convex for each

y, then z 7→ σ(J(u(·, z), z)) is convex. Thus, if the problem without uncertainty

were a problem of convex programming, this advantage would be inherited by the

formulation (2.3.1).

• Preservation of certainty. If J(u(y; z), z) is a constant random variable for each

z, i.e., J(u(y; z), z) = J(u(z), z) with no contibution from y, then

σ(J(u(·, z), z)) = J(u(z), z).

• Insensitivity to scaling. The problem (2.3.1) remains the same even if the values

of J(u(y; z), z) are denominated or rescaled.
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Among the risk measures introduced earlier the expected value, the supremum,

the mean plus semi-deviation with c ∈ [0, 1] and CVaR are coherent measures of risk

[65, 70]. The mean plus deviation risk measure for q > 1 violates the monotonicity

property [71], [74, Sec. 6.3].

Another property of risk measures that is often considered in literature is averse-

ness [68], which is simply understood as

σ(X) > E(X) (2.3.8)

In this sense the expected value is a risk-neutral risk measure, while mean plus

semi-deviation and CVaR are risk-averse.

Some of the risk measures that might be used in the context of optimization under

uncertainty introduce non-smoothness in the objective via the [·]+ function. My goal

is to adress this issue carefully when considering discretization methods. In particular,

I will compare performance of various methods for high-dimensional integration on

the functions with non-smoothness introduced by [·]+ function.



Chapter 3

High-dimensional Integration

Methods

In the problems of evaluating risk measures of quantities of interest that depend on

the solution of a PDE we have to deal with integrating over a high-dimensional do-

main of random parameters. Moreover, for certain risk measures, such as mean plus

semi-deviation and CVaR, the integrand becomes non-smooth ([·]+ function). The

convergence of integration methods based on global polynomial interpolation deteri-

orates for such problems, that is such methods converge slowly or do not converge at

all. Therefore, I consider methods based on local approximations.

In the following I give an overview of methods for evaluating multivariate inte-

grals, starting with Monte Carlo and quasi-Monte Carlo methods. Next I describe

quadrature methods based on global polynomials. Finally, I focus on methods based

on local polynomial approximations and adaptive refinement strategies.

Let y ∈ Rd, y = (y(1), . . . , y(d)). Consider a problem of integrating a function

f : Rd → R from a function class F to be specified later over Γ ⊂ Rd.

Denote the exact integral of f with respect to the weight function ρ(y) over the

domain Γ by

Idρ [f ] =

∫
Γ

f(y)ρ(y)dy (3.0.1)

20
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3.1 Monte Carlo Method

The classical Monte Carlo (MC) method is an equal-weight cubature rule given by

QMC
N [f ] =

1

N

N∑
i=1

f(yi) (3.1.1)

where y1, . . . ,yN are independent and identically distributed (i.i.d.) random samples

drawn from ρ(y).

Theorem 3.1.1 (MC root-mean-square error) For all square-integrable functions

f , √
E[|Idρ [f ]−QMC

N [f ]|2] =

√
VAR[f ]√
N

(3.1.2)

where the expected value is taken with respect to the random samples y1, . . . ,yN , and

VAR[f ] = Idρ [f 2]− (Idρ [f ])2 (3.1.3)

is the variance of f .

For proof see, e.g., Theorem 2.1 in [16].

It is easy to see that E[QMC
N [f ]] = Idρ [f ], i.e., that MC method is unbiased, and

VAR[QMC
N ] = E[|QMC

N [f ] − Idρ [f ]|2] = VAR[f ]
N

. By the Central Limit Theorem, if

0 < VAR[f ] <∞, then

lim
N→∞

P

(
|Idρ [f ]−QMC

N [f ]| ≤ C

√
VAR[f ]

N

)
=

1√
2π

C∫
−C

exp (−x
2

2
)dx. (3.1.4)

(See e.g. [11]).

This gives a probabilistic error bound with a convergence rate of O(N−1/2). Note,

that the convergence rate is independent of the dimension.

Perhaps one of the main advantages of MC method is its simplicity that allows for

embarassingly parallel implementation. However, the convergence rate of O(N−1/2)

is in many cases too slow, especially, in the context of solving random PDEs. The
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efficiency of MC methods can be improved using variance reduction techniques, such

as, importance sampling, stratified sampling, correlated sampling (see, for example,

[11, Sec. 4]), or multi-level MC method (see [36, 24, 25]). But often MC method is

still considered too slow. This is the main motivation for the switch to quasi-Monte

Carlo methods.

3.2 Quasi-Monte Carlo Methods

In the following assume that Γ = [0, 1]d and ρ(y) ≡ 1. Thus, we are concerned with

approximating Id1 [f ].

Quasi-Monte Carlo (QMC) methods are equal-weight cubature rules of the form

QQMC
N [f ] =

1

N

N∑
i=1

f(yi) (3.2.1)

just like MC method, however, the points y1, . . . ,yN are now chosen deterministically.

There are two types of QMC methods:

• the “open” type rules use the first N points of an infinite series, thus, increasing

N only requires evaluation of the integrand at the newly added points;

• the “closed” type rules use a finite point set depending on N . Different values

of N require evaluating integrand at completely different points.

In order to provide some examples of QMC rules I need the following definition.

Definition 3.2.1 Let i ≥ 0 and b ≥ 2 be integers. The radical inverse function φb(i)

is given by

φb(i) =
∞∑
a=1

ia
ba

(3.2.2)

where i =
∞∑
a=1

iab
a−1 and ia ∈ {0, 1, . . . , b − 1}. In other words, if i = (. . . i2i1)b is a

representation of i in base b, then φb(i) = (0.i1i2 · · · )b.
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Example 3.2.2 van der Corput sequence

The van der Corput sequence in base b is the one-dimensional sequence

φb(0), φb(1), φb(2), . . .

For example, let b = 2. Write down the natural numbers 0, 1, 2, . . . in base 2:

0, 12, 102, 112, 1002, 1012, 1102, . . .

Applying φ2 to each number we obtain the sequence

0, 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, . . .

which in decimal form is a sequence

0, 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, . . .

�

Example 3.2.3 Halton sequence

Let p1, p2, . . . , pd be the first d prime numbers. The Halton sequence y1,y2, . . . in

d dimensions is given by

yi+1 = (φp1(i), φp2(i), . . . , φpd(i)), i = 0, 1, 2, . . . (3.2.3)

that is, the j-th components of points in the Halton sequence form the van der Corput

sequence in base pj, where pj is the j-th prime. The Halton sequence is an example

of an “open” QMC method. Explicitly,

y1 = (0, 0, 0, . . . , 0),

y2 = (0.12, 0.13, 0.15, . . . , 0.1pd),

y3 = (0.012, 0.23, 0.25, . . . , 0.2pd),

y4 = (0.112, 0.013, 0.35, . . . , 0.3pd),

...
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�

The Halton sequence satisfies the error bound

|Id1 [f ]−QQMC
N [f ]| ≤ Cd

(logN)d

N
V [f ], for N ≥ 2

as shown in [33] with the constant Cd depending on dimension d, and V [f ] being a

total variation in the sense of Hardy and Krause (to be defined later).

Example 3.2.4 Hammersley point set

Let p1, p2, . . . , pd−1 be the first d− 1 prime numbers. The Hammerseley point set

y1, . . . ,yN in d dimensions is given by

yi+1 = (
i

N
, φp1(i), φp2(i), . . . , φpd−1

(i)), i = 0, 1, . . . , N − 1 (3.2.4)

The Hammersley point set leads to a “closed” QMC method. Explicitly,

y1 = (0, 0, . . . , 0),

y2 = (
1

N
, 0.12, 0.13, . . . , 0.1pd−1

),

y3 = (
2

N
, 0.012, 0.23, . . . , 0.2pd−1

),

...

yN = (
N − 1

N
, . . . ).

�

The Hammersley point set satisfies the error bound

|Id1 [f ]−QQMC
N [f ]| ≤ Cd

(logN)d−1

N
V [f ], for N ≥ 2 (3.2.5)

as shown in [33] with the constant Cd depending on the dimension d. Note that there

is one less power of logN compared to the error bound for the Halton sequence. In

general, the error bounds for QMC methods based on “closed” point sets are better

than those based on “open” sequences.

The examples provided so far and the ones that will follow are examples of so-

called “low discrepancy sequences”. In the next subsection some of the main notions

related to the theory of low discrepancy sequences are defined.
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3.2.1 Theory of low discrepancy sequences

The infinite sequence of numbers is called a low-discrepancy sequence if for all values

of N its subsequence y1, . . . ,yN has a low discrepancy. Let y1, . . . ,yN be N numbers

in Γ = [0, 1]d. If B is a subset of Γ, then

A(B;N) =
N∑
n=1

χB(yn) (3.2.6)

counts the number of points yn that fall into B.

Definition 3.2.5 The discrepancy DN of the N numbers y1, . . . ,yN is defined, using

Niederreiter’s notation ([54]), as

DN = sup
B∈J

∣∣∣∣A(B;N)

N
− |B|

∣∣∣∣ (3.2.7)

where J is the family of d-dimensional boxes of the form
d∏
i=1

[ai, bi) = {y ∈ Rd : ai ≤

y(i) < bi} contained in Γ and |B| denotes the d-dimensional Lebesgue measure of B.

A useful variant of the above definition is a so-called star-discrepancy.

Definition 3.2.6 The star-discrepancy D∗N of the N numbers y1, . . . ,yN in Γ is

defined by

D∗N = sup
B∈J∗

∣∣∣∣A(B;N)

N
− |B|

∣∣∣∣ (3.2.8)

where J∗ is the family of boxes of the form
d∏
i=1

[0, ti) contained in Γ.

The star-discrepancy is perhaps the more natural one in statistics, since it mea-

sures the maximum difference between the empirical cumulative distribution function

of the points y1, . . . ,yN and the uniform distribution of measure on the unit cube. If

we construct the empirical cumulative distribution function of the points y1, . . . ,yN

F̂N(y) =
1

N

N∑
n=1

1{yn ≤ y} (3.2.9)
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where 1(E) is the indicator function of event E, and compare it with the theoretical

uniform distribution on Γ given by

F (y) = F (y(1), . . . , y(d)) = min{1, y(1) · y(2) · . . . · y(d)} if all y(i) ≥ 0, (3.2.10)

then the star-discrepancy D∗N is the Kolmogorov-Smirnov distance between these two

cumulative distribution functions

D∗N = sup
y
|F̂N(y)− F (y)|. (3.2.11)

For an infinite sequence of points in Γ the conditions limN→∞DN = 0 and

limN→∞D
∗
N = 0 are equivalent to the sequence being uniformly distributed in Γ

([45, Chapter 2, § 1]). Thus, finite sequences of points with small discrepancy provide

a good approximation to uniform distribution.

It makes intuitive sense that the points y1, . . . ,yN should be chosen so that the

discrepancy is small for each N . This intuition is supported by theoretical results,

at least in the case of smooth integrands with smooth partial derivatives. In order

to present these results I need a notion of total variation for a function of several

variables.

For a function f on Γ = [0, 1]d and a box B = [y
(1)
1 , y

(1)
2 ]× · · · × [y

(d)
1 , y

(d)
2 ] ⊆ Γ let

∆(f ;B) =
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+...idf(y
(1)
i1
, . . . , y

(d)
id

).

Next define a partition P of Γ to be a union of boxes of the form [y
(1)
i1
, y

(1)
i1+1]× · · · ×

[y
(d)
id
, y

(d)
id+1] with 0 ≤ ij < mj for j = 1, 2, . . . , d.

Definition 3.2.7 For a function f on Γ set

V (d)[f ] = sup
P

∑
B∈P

|∆(f ;B)| (3.2.12)

where the supremum is taken over all partitions P of Γ. If V (d)[f ] is finite, then f is

said to be of bounded variation on Γ in the sense of Vitali.
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For sufficiently regular functions V (d)[f ] can be represented by an integral ([54,

Sec. 2]):

V (d)[f ] =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣ ∂df

∂t1 . . . ∂td

∣∣∣∣ dt1 . . . dd (3.2.13)

whenever the partial derivative under the integral is continuous.

Note that if function f is constant with respect to some of the variables, then

∆(f ;B) = 0 and, hence, V (d)[f ] = 0. Since such a function might still be irregular, a

more suitable notion of variation is required.

The next definition generalizes the notion of total variation to the case when

function f does not depend on all d variables.

Definition 3.2.8 Let f be a function on Γ. For 1 ≤ k ≤ d and 1 ≤ i1 < i2 < · · · <

ik ≤ d, denote by V (k)[f ; i1, . . . , ik] the k-dimensional variation in the sense of Vitali

of the restriction of f to {(t1, . . . , td) ∈ Γ : tj = 1 for j 6= i1, . . . , ik}. If all variations

V (k)[f ; i1, . . . , ik] are finite, then f is said to be of bounded variation on Γ in the sense

of Hardy and Krause.

Since V (d)[f ] = V (d)[f ; 1, 2, . . . , d], a function of bounded variation in the sense of

Hardy and Krause is automatically a function of bounded variation in the sense of

Vitali. For more information on these types of variation see [45].

Denote by V [f ] the total variation of f in the sense of Hardy and Krause defined

as

V [f ] =
d∑

k=1

∑
1≤i1<i2<···<ik≤d

V (k)[f ; i1, . . . , ik] (3.2.14)

The following inequality provides an estimate of the error in the approximation

of the multi-dimensional integral by quasi-Monte Carlo methods.

Theorem 3.2.9 (Koksma-Hlawka inequality) If f is a function of bounded vari-

ation on Γ in the sense of Hardy and Krause and y1, . . . ,yN are points in Γ, then∣∣∣∣∣ 1

N

N∑
n=1

f(yn)−
∫

Γ

f(y)dy

∣∣∣∣∣ ≤ V [f ]D∗N (3.2.15)
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For proof see [45, Chapter 2, § 5].

The bound in the theorem above allows a separation between the regularity prop-

erties of the integrand and the degree of uniformity (or level of discrepancy) of the

sequence. As stated earlier the sequences used in quasi-Monte Carlo methods aim to

achieve low level of discrepancy (on the order of (logN)d

N
).

For the one-dimensional van der Corput sequence introduced earlier, we have

that D∗N = O( logN
N

). The Halton sequence, which is a generalization of van der

Corput sequence to multi-dimensional setting satisfiesD∗N = Cd
(logN)d

N
with a constant

Cd depending on dimension d. This constant, in fact, is asymptotic to dd ([55]),

thus, the uniformity of the points in the sequence degrades rapidly with increasing

dimension. The following examples provide an improvement over Halton sequence for

high dimensions.

Example 3.2.10 Faure sequence

Faure sequence is similar to the Halton sequence in that each dimension is a per-

mutation of the van der Corput sequence. However, to construct the Faure sequence

the same prime is used as the base b for each component of the vector. This prime is

usually chosen to be the smallest prime greater than or equal to the dimension d.

Recall, that in the van der Corput sequence the natural numbers i = 1, 2, . . . were

written in the form i =
∞∑
a=1

iab
a−1 and then mapped into the point

∞∑
a=1

iab
−a in the

unit interval via the radical inverse function φb(i). For the Faure sequence the same

construction is used but with different permutations of the coefficients ia for each of

the coordinates. The first coordinate still repeats the van der Corput sequence. For

the j-th coordinate with j ≥ 2 we generate the point

∞∑
a=1

cab
−a (3.2.16)

where

ca =
∑

m≥a−1

(
m

a− 1

)
(j − 1)m−a+1im+1 mod b (3.2.17)
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For example, for the case b = 2 the first two coordinates of the first 10 Faure

numbers are

d = 1 : 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16

d = 2 : 0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16

The first two coordinates of the first 1000 points of Faure sequence in d = 3 are

plotted in Figure 3.1a.

�
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(a) Faure sequence
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(b) Sobol’ sequence

Figure 3.1: The first two coordinates of the first 1000 QMC points in d = 3.

Example 3.2.11 Sobol’ sequence

The Sobol’ sequence is generated using a set of so-called direction numbers vi = mi
2i

,

i = 1, 2, . . . , where mi is an odd positive integer less than 2i. The values of mi are

chosen to satisfy a recurrence relation using the coefficients of a primitive polynomial

in the field Z2. A primitive polynomial is a polynomial of order p that is irreducible

(i.e., cannot be factored into polynomials of smaller degree) and does not divide the

polynomial xr + 1 for r < 2p − 1. For example, the polynomial x2 + x + 1 has no

non-trivial factors over the field Z2 and it does divide x3 + 1 but not xr + 1 for r < 3.
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Corresponding to a primitive polynomial

zp + c1z
p−1 + · · ·+ cp−1z + cp

is the recursion

mi = 2c1mi−1 + 22c2mi−2 + · · ·+ 2pcpmi−p

where the addition is carried out using binary arithmetic. For the Sobol’ sequence

the binary digit ia is then replaced by iava.

The first two coordinates of the first 10 Sobol’ numbers generated using irreducible

polynomials x+ 1 and x3 + x+ 1 are

d = 1 : 0 1/2 1/4 3/4 3/8 7/8 1/8 5/8 5/16 13/16

d = 2 : 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 11/16 3/16

The first two coordinates of the first 1000 points of Sobol’ sequence in d = 3 are

plotted in Figure 3.1b.

�

The Faure and Sobol’ sequences are particular cases of (t, s)-nets. In order to

define them we need the concept of an elementary interval.

Definition 3.2.12 An elementary interval in base b is an interval E in [0, 1)d of the

form

E =
d∏
j=1

[
aj
bdj
,
(aj + 1)

bdj

)
, (3.2.18)

where dj ≥ 0, 0 ≤ aj ≤ bdj , and aj, dj are integers.

Definition 3.2.13 ((t,m, s)-net) Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base

b is a finite sequence with bm points from [0, 1)d such that every elementary interval

in base b of volume bt−m (i.e., d1 +d2 + · · ·+dd = m−t in the definition of elementary

interval) contains exactly bt points of the sequence.
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Definition 3.2.14 ((t, s)-sequence) An infinite set of points {yi} ∈ [0, 1)d is a

(t, s)-sequence in base b if for all k ≥ 0 and m > t, the finite block ykbm , . . . ,y(k+1)bm−1

of bm points forms a (t,m, s)-net in base b.

The van der Corput sequence in base b is a (0, 1)-sequence in base b; the Sobol’

sequence is a (t, s)-sequence in base 2, where t is a non-decreasing function of s; the

Faure sequence is a (0, s)-sequence ([16]).

For a (t, s)-sequence in base b the low discrepancy is ensured ([55, Theorem 4.17]):

D∗N ≤ C
(logN)d

N
+O

(
(logN)d−1

N

)
. (3.2.19)

The theory of low-discrepancy sequences and QMC methods based on them is

rich and remains an area of active research. For the purposes of this thesis I only use

the sequences introduced as examples in this section. For low to moderate dimension

problems there is not much of a difference between Halton, Faure or Sobol’ sequences

in terms of performance for general problems. Therefore, in my numerical section I

will use interchangeably Faure and Sobol’ sequences.

3.3 Tensor Product Quadrature and Sparse Grids

This section closely follows [20]. In the following let Γ =
∏d

i=1 Γi = [−1, 1]d and

ρ(y) =
∏d

i=1 ρi(y
(i)) with ρi(y

(i)) being a one-dimensional weight function of a variable

y(i) in Γi.

The quadrature rule that integrates f over the domain Γ with respect to the

weight function ρ(y) is defined by the nodes {yi}Ni=1 ⊂ Γ and weights {wi}Ni=1 ⊂ R:

Idρ [f ] ≈
N∑
i=1

wif(yi). (3.3.1)
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3.3.1 One-dimensional Quadrature Formulas

I provide a short review of univariate quadrature formulas for functions f ∈ Cr where

Cr = {f : Γi → R |
∥∥∥∥∂sf∂ys

∥∥∥∥
∞
<∞, s ≤ r}. (3.3.2)

I will focus on formulas that are based on nested sets of points meaning that the

grid corresponding to level l rule is a subset of a more refined, level l + 1, grid. The

reason for this will become clear in the section on sparse grids. Moreover, the number

of points at level 1 is always set to 1 and Q1[f ] = 2 · f(0).

Example 3.3.1 Trapezoidal Rule

The Newton-Cotes formulas use equidistant nodes with weights obtained from

integration of Lagrange polynomials constructed using these nodes. They are known

to become numerically unstable for large number of points, i.e., some of the weights

become negative, therefore, in practice iterated versions of low degree formulas are

most commonly used. An example is iterated trapezoidal rule: the number of points

at level l is defined

nl = 2l−1 + 1, l ≥ 2

and the rule is defined as

Ql[f ] = 22−l

(
1

2
f(−1) +

nl−1∑
i=2

·f((i− 1) · 22−l − 1) +
1

2
f(1)

)
.

The error bound is well known to be O(2−2l) for the functions f ∈ C2 [15].

�

Example 3.3.2 Clenshaw-Curtis Formulas

The Clenshaw-Curtis formulas [13] use nodes given by the extreme points of the

Chebyshev polynomials:

yl,i = − cos
π · (i− 1)

nl − 1
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with nl = 2l−1 + 1 for l ≥ 2 and weights given by

wl,1 = wl,nl =
1

nl(nl − 2)

wl,i =
2

nl − 1

1 + 2 ·
(nl−3)/2∑
j=1

1

1− 4j2
· cos (

2π(i− 1)j

nl − 1
) +

cos (π(j − 1))

nl(nl − 2)


for 2 ≤ i ≤ nl − 1.

The polynomial degree of exactness is nl − 1 and the error bound for f ∈ Cr is

O(2−lr) [15].

�

Example 3.3.3 Gauss and Gauss-Patterson Formulas

Gauss formulas have the maximum possible polynomial degree of exactness of

2n − 1 for n points ([77, pp. 172-175]). For the case of the unit weight function the

nodes are the zeroes of the Legendre polynomials and the weights are computed by

integrating the associated Lagrange polynomials.

In general Gauss-Legendre formulas are not nested. Kronrod [44] extended an

n-point Gauss quadrature formula by n + 1 points in a way to achieve maximal

polynomial degree of exactness of teh resulting (2n+1)-point formula. Patterson [62]

iterated Kronrod’s scheme recursively and obtained a sequence of nested quadrature

formulas with maximal degree of exactness. However, Patterson extensions do not

exist for all Gauss-Legendre formulas. Gauss-Patterson rules are only available for

orders of 1, 3, 7, 15, 31, 63, 127, 255 or 511.

If Ql for l ≥ 3 is the (l− 2)-nd Patterson extension, then the error is O(2−lr) [20].

�

3.3.2 Tensor Product Quadrature

For i = 1, . . . , d consider a sequence of one-dimensional quadrature formulas {Q(i)
l }∞l=1

defined on Γi = [−1, 1], where subscript l denotes the level of the rule. When applied
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to a univariate function f the rule Q
(i)
l has a form:

Q
(i)
l [f ] =

nl∑
j=1

wl,jf(y
(i)
l,j ). (3.3.3)

Here nl denote the number of nodes of the rule Q
(i)
l so that nl < nl+1. Suppose that

the rules are chosen so that Q
(i)
l [P ] = I1

ρi
[P ] holds exactly for all polynomials P of

degree at most ml on Γi. We denote the nodes and the weights of the rule Q
(i)
l by

{y(i)
l,j }

nl
j=1 and {wl,j}nlj=1 respectively.

Applying the quadrature rules Q
(i)
l to evaluate the integral Idρ [f ] coordinate-wise

we obtain the following approximation

Idρ [f ] ≈
nl∑
j1=1

· · ·
nl∑
jd=1

wl,j1 · . . . · wl,jd · f(y
(1)
l,j1
, . . . , y

(d)
l,jd

) =
d⊗
i=1

Q
(i)
l [f ]. (3.3.4)

This quadrature is typically referred to as a tensor product quadrature. Note that

the total number of nodes here, and therefore the number of evaluations of f , grows

exponentially with d. This phenomenon is referred to as a curse of dimensionality.

An improvement over the tensor product rule comes in the form of Smolyak quadra-

ture.

3.3.3 Smolyak quadrature

For the construction of Smolyak quadrature [76] consider f ∈ Cdr where

Cdr = {f : Γ→ R |
∥∥∥∥ ∂|ααα|1f

∂yα1
1 . . . ∂yαdd

∥∥∥∥
∞
<∞, αi ≤ r} (3.3.5)

with |α|1 = α1 + · · · + αd, that is f has bounded mixed derivatives of order r. The

integer r is called the regularity of the function f ∈ Cdr .

Let {Q(i)
l }∞l=1 be a sequence of univariate quadrature defined on the intervals Γi,

i = 1, . . . , d. For each dimension i define the difference quadrature rule in Γi by

∆
(i)
1 = Q

(i)
1 , ∆

(i)
l+1 = Q

(i)
l+1 −Q

(i)
l for l = 1, 2, . . . . (3.3.6)
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Definition 3.3.4 The d-dimensional Smolyak quadrature rule of level l in Γ is de-

fined by

QSM
l,d [f ] :=

∑
|ααα|≤l+d−1

d⊗
i=1

∆(i)
αi

[f ], (3.3.7)

where α = (α1, . . . , αd) is a multi-index denoting the level of difference quadrature

rule in each dimension and |α| =
∑d

i=1 αi.

Using the difference quadrature rules the full tensor product rule can be rewritten

as
d⊗
i=1

Q
(i)
l [f ] =

∑
maxαi≤l

d⊗
i=1

∆(i)
αi

[f ]. (3.3.8)

Smolyak’s formula can be written in terms of Q
(i)
αi instead of ∆

(i)
αi using a so-called

combination technique [20]:

QSM
l,d [f ] =

∑
l≤|ααα|≤l+d−1

(−1)l+d−1−|ααα|
(
d− 1

|ααα| − l

) d⊗
i=1

Q(i)
αi

[f ]. (3.3.9)

It is also important to notice that the Smolyak rule is dimension recursive [81]:

QSM
l,d [f ] =

l−1∑
k=1

(QSM
l−k,d−1

⊗
∆

(d)
k )[f ]. (3.3.10)

3.3.4 Sparse grids

The points of a multivariate Smolyak formula form a so-called sparse grid [83].

Denote the set of nodes required to evaluate Q
(i)
l by N (i)

l , that is

N (i)
l = {y(i))

l,j }
nl
j=1 ⊂ Γi. (3.3.11)

If the one-dimensional quadrature formulas Q
(i)
l are nested, i.e., N (i)

l ⊂ N
(i)
l+1, then

define the one-dimensional difference grid by

D(i)
l = N (i)

l \N
(i)
l−1 for l = 1, 2, . . . (3.3.12)
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with N (i)
0 = ∅. The number of elements in D(i)

l is pl := nl − nl−1 with n0 = 0. In the

non-nested case, set

D(i)
l = N (i)

l for l = 1, 2, . . . (3.3.13)

and pl := nl.

Now, the points of the multivariate Smolyak quadrature are given by the union

over pairwise disjoint grids D(1)
α1 × · · · × D

(d)
αd :

N SM
l =

⋃
|ααα|≤l+d−1

d⊗
i=1

D(i)
αi
. (3.3.14)

The number of points in a sparse grid can be determined from

nSMl =
∑

|ααα|≤l+d−1

pα1 · . . . · pαd . (3.3.15)

If the number of points in the one-dimensional rule is O(2l), then the sparse grid

constructed using this rule has O(2l · ld−1) points. This is in contrast to the full tensor

product rule that involves O(2ld) points. The order of nSMl is the same in both the

nested and the non-nested case, however, the constants in the non-nested case are

considerably larger, thus, in general the nested sequences are preferrable.

3.3.5 Weights

The Smolyak quadrature formula (3.3.7) can be written as [20]

QSM
l,d [f ] =

∑
|ααα|≤l+d−1

pα1∑
j1=1

. . .

pαd∑
jd=1

wααα,jf(yααα,j) (3.3.16)

where yααα,j = (y
(i)
α1,j1

, . . . , y
(i)
αd,jd

). In the nested case the weights are given by

wααα,j =
∑

|ααα+βββ|≤l+2d−1

v(α1+β1),j1 · · · · · v(αd+βd),jd (3.3.17)

where βββ ∈ Nd and

v(α+β),j =

wα,j, if β = 1,

w(α+β−1),r − w(α+β−2),s, if β > 1, yα,j = y(α+β−1),r = y(α+β−2),s
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In the non-nested case wααα,j can be found using

wααα,j = wα1,j1 · . . . · wαd,jd . (3.3.18)

In both cases weights can be precomputed.

Smolyak quadrature formula can contain negative weights even if the underlying

one-dimensional quadrature formulas are positive. The absolute values of the weights,

however, remain relatively small. It can be shown [59] that

∑
|ααα|≤l+d−1

pα1∑
j1=1

. . .

pαd∑
jd=1

|wααα,j| = O((log(nSMl ))d−1) (3.3.19)

In order to avoid numerical cancellation due to the existence of negative weights

it is preferrable to perform summation coordinate-wise [20]

Qdl [f ] =
l∑

α1=1

l−α1∑
α2=1

· · ·
l−α1−...−αd∑

αd=1

pα1∑
j1=1

. . .

pαd∑
jd=1

wααα,jf(yααα,j) (3.3.20)

as opposed to summing-up with increasing l:

Qdl [f ] =
l∑

m=1

∑
|ααα|=m+d−1

pα1∑
j1=1

. . .

pαd∑
jd=1

wααα,jf(yααα,j). (3.3.21)

3.3.6 Generalized sparse grids

The Smolyak quadrature rule can be generalized. Instead of using the set of multi-

indices α such that |α| ≤ l + d − 1 as in the Smolyak rule we could construct a

different set of multi-indices M and define a generalized sparse-grid quadrature rule

QGS
M,d[f ] =

∑
ααα∈M

d⊗
i=1

∆(i)
αi

[f ]. (3.3.22)

In order to be able to rewrite (3.3.22) in terms of the original 1D quadrature

operators as we did in (3.3.9), we need to restrict possible setsM to admissible ones.
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Definition 3.3.5 The multi-index setM∈ Nd is admissible if for all α = (α1, . . . , αd) ∈

M the following holds:

α− ej ∈M for 1 ≤ j ≤ d, αj > 1 (3.3.23)

where ej denotes j-th unit vector.

To apply the combination method to the generalized sparse grid quadrature rule

(3.3.22) we introduce a characteristic function χM of M:

χM(α) =

1, if α ∈M

0, else.

(3.3.24)

Then the combination method leads to

QGS
M,d[f ] =

∑
ααα∈M

 ∑
βββ∈{0,1}d

(−1)|βββ|χM(α + β)

 d⊗
i=1

Q(i)
αi

[f ]. (3.3.25)

By defining

ϑ(α) =
∑

βββ∈{0,1}d
(−1)|βββ|χM(α + β) (3.3.26)

we can determine the set of points required to evaluate QGS
M,d (i.e., the sparse grid

associated with M) from

NGS
M =

⋃
{ααα∈M : ϑ(ααα) 6=0}

d⊕
i=1

N (i)
αi
. (3.3.27)

The choice of admissible set M affects the computing cost of the integral. In

general, the number of points in NGS
M is considerably smaller than in the full tensor

product grid, as we have already seen in the case of classical Smolyak grid (M =

{α | |α| ≤ l + d − 1}). The cost can be reduced further if the underlying 1D

quadrature rules are nested.

The index set M can be obtained a-priori - if the behavior of the integrand is

known - or by adaptive procedure. An algorithm that builds up an index set M by

adaptively selecting most important dimensions has been developed by Gerstner and

Griebel in [21].
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3.3.7 Error bounds

First, consider polynomial degree of exactness of Smolyak quadrature rule. Let P(i)
l

be the space of one-dimensional polynomials of degree at most l corresponding to

dimension i. Define the space of multivariate polynomials as

Pdl :=

{
d⊕
i=1

P(i)
αi
, |α| = l + d− 1

}
. (3.3.28)

It can be shown that if Q
(i)
l is exact for P(i)

l , then QSM
l,d is exact for Pdl (see [58]).

To formulate an error bound for Smolyak’s formula first consider error bounds

for one-dimensional quadrature rules. Suppose that for a univariate function f with

bounded derivatives up to the order r the quadrature error E1
l [f ] := |I1

ρi
[f ]−Q(i)

l [f ]|

satisfies

E1
l [f ] = O((nl)

−r). (3.3.29)

This bound holds for example for interpolatory quadrature formulas with positive

weights, such as Clenshaw-Curtis, Gauss-Patterson and Gauss-Legendre formulas [20].

Using one of such formulas as a basis for the Smolyak construction one can show that

for f ∈ Cdr and nl = O(2l) the quadrature error is on the order of (see [81])

Ed
l [f ] = O(2−lr · l(d−1)(r+1)). (3.3.30)

3.4 Hierarchical Interpolation and Locally Adap-

tive Sparse Grids

Quadrature methods described earlier are based on global Lagrange polynomials and

require high regularity of the function of interest f in order to achieve high accuracy.

For efficient integration of functions with locally sharp behavior (e.g. steep gradients)

I consider methods using hierarchical bases. I start with the piecewise linear inter-

polation of the function of interest in hierarchical setting. Given the interpolation

formula for the function of interest the quadrature formula can be obtained simply
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by integrating the basis functions. Therefore, in the following I focus on interpolation

problem keeping in mind its relation to quadrature.

3.4.1 One-dimensional hierarchical interpolation

Consider an interpolation problem for a function f : [−1, 1] → R: Given a set of

points (yk,j, f(yk,j)), where the points Yk = {yk,j}nk−1
j=0 partition the interval [−1, 1],

i.e., y0,0 = 0 for k = 0 and

−1 = yk,0 < yk,1 < · · · < yk,nk−1 = 1, for k ≥ 1 (3.4.1)

we seek to construct a linear interpolant Ik[f ] that satisfies Ik[f ](yk,j) = f(yk,j) for

j = 1, . . . , nk−1. The index k stands for the level of refinement of the interval [−1, 1],

k ≥ 0, and nk is a number of points at level k. Assume that {nk}∞k=0 is an increasing

sequence.

I will consider the grid with equidistant nodes defined as follows

nk =

1, k = 0

2k + 1, k ≥ 1

(3.4.2)

yk,j =

0, j = 0, k = 0

jhk − 1, j = 0, . . . , nk − 1, k ≥ 1

(3.4.3)

with hk = 1/2k−1 for k ≥ 1 denoting the mesh size.

Next I define the usual nodal basis functions φk,j(y). They are derived from the

“mother” hat function

φ(y) = max{0, 1− |y|} (3.4.4)

using dilation and translation:

φk,j(y) = φ

(
y − yk,j
hk

)
for k ≥ 1. (3.4.5)
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The resulting basis functions φk,j(y) are centered at yk,j and have local support [yk,j−

hk, yk,j + hk]. Set φ0,0(y) ≡ 1.

Using functions φk,j(y) the linear interpolant Ik[f ] can be constructed as follows

Ik[f ](y) =

nk−1∑
j=0

f(yk,j)φk,j(y). (3.4.6)

Now consider the sequence of finite-dimensional subspaces {Vk}∞k=0 spanned by

the nodal basis functions {φk,j(y)}2k

j=0 corresponding to level k:

Vk := span{φk,j | j = 0, . . . , 2k} for k = 0, 1, . . . . (3.4.7)

Each of the subspaces Vk is a standard finite-element subspace of continuous linear

functions on [−1, 1], and {φk,j(y)}2k

j=0 is a standard nodal basis for Vk.

The sequence of subspaces {Vk} is nested, that is V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ Vk+1, and

is dense in L2([−1, 1]), i.e., ∪∞k=0Vk = L2([−1, 1]).

Alternative to the nodal basis for Vk is the hierarchical basis, which is constructed

in the following manner.

First, define the interpolation difference operator ∆k[f ] as

∆k[f ] = Ik[f ]− Ik−1[f ] for k = 0, 1, . . . (3.4.8)

with I−1[f ] ≡ 0 and Ik[f ] := Ik[f ](y). Recall that Ik[f ] =
∑

yk,j∈Yk
f(yk,j)φk,j(y). Using

the fact that Vk−1 ⊂ Vk we have that

Ik−1[f ] = Ik[Ik−1[f ]]. (3.4.9)

Therefore,

∆k[f ] =
∑

yk,j∈Yk

(f(yk,j)− Ik−1[f ](yk,j))φk,j(y). (3.4.10)

Observe also that f(yk−1,j) − Ik−1[f ](yk−1,j) = 0 for all yk−1,j ∈ Yk−1. Since

Yk−1 ⊂ Yk we can write

∆k[f ] =
∑

yk,j∈∆Yk

(f(yk,j)− Ik−1[f ](yk,j))φk,j(y), (3.4.11)
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where ∆Yk = Yk\Yk−1. Here ∆Yk consists of the points yk,j with indices j from the

set

Bk =


{0} for k = 0

{0, 2} for k = 1

{j ∈ N | j = 1, 3, 5, . . . , 2k − 1} for k = 2, 3, . . .

(3.4.12)

Thus, ∆Y0 = Y0 = {0}, ∆Y1 = {−1, 1}, ∆Y2 = {−0.5, 0.5} and so on.

Coefficients of the basis functions in (3.4.11) are usually referred to as hierarchical

surpluses. I denote them by sk,j:

sk,j := f(yk,j)− Ik−1[f ](yk,j) for j ∈ Bk. (3.4.13)

Thus,

∆k[f ] =
∑
j∈Bk

sk,jφk,j(y) for k = 0, 1, . . . . (3.4.14)

With the incremental interpolation operators ∆k[f ] we can decompose interpolant

Ik[f ] at any level k in the form

Ik[f ] = Ik−1[f ] + ∆k[f ] = · · · =
k∑
l=0

∆l[f ]. (3.4.15)

For each ∆k[f ] the set of functions {φk,j}j∈Bk generate a so-called hierarchical

subspace:

Wk := span{φk,j(y) | j ∈ Bk} for k = 0, 1, . . . . (3.4.16)

Due to the nestedness of subspaces Vk we have that Vk = Vk−1 ⊕Wk and Wk =

Vk\⊕k−1
l=0 Vl for k = 1, 2, . . . . We also have a hierarchical subspace splitting of Vk given

by

Vk = W0 ⊕W1 ⊕ · · · ⊕Wk for k = 0, 1, . . . . (3.4.17)

The hierarchical basis for Vk is given by

∪kl=0{φl,j(y)}j∈Bl . (3.4.18)
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φ0,0

φ1,0 φ1,2

φ2,1 φ2,3

φ3,1 φ3,3 φ3,5 φ3,7

y0,0

y1,0 y1,2

y2,1 y2,3

y3,1 y3,3 y3,5 y3,7

Figure 3.2: Hierarchical basis functions (left) vs. nodal basis functions (right). The

functions on the left represent subspaces W0, W1, W2, W3, while those on the right

correspond to V0, V1, V2, V3.

It can be easily verified that for each k the subspaces spanned by the nodal and

the hierarchical bases are the same. The hierarchical functions for the first few levels

and their nodal counterparts are depicted in Figure 3.2.

Recall that the nodal basis {φk,j}2k

j=0 posesses the delta property, that is, φk,j(yk,i) =

δj,i for i, j ∈ {0, . . . , 2k}. The hierarchical basis (3.4.18) for Vk posesses only a partial

delta property - the basis functions corresponding to a specific level l posses delta

property with respect to their own level and coarser levels, but not with respect to
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finer levels. That is, for l = 0, 1, . . . , k and j ∈ Bl we have

for 0 ≤ l′ < l, φl,j(yl′,i) = 0 for all i ∈ Bl′ ,

for l′ = l, φl,j(yl′,i) = δj,i for all i ∈ Bl′ ,

for l < l′ ≤ k φl,j(yl′,i) 6= 0 for all i ∈ Bl′ .

(3.4.19)

The delta property of the nodal basis implies that interpolation coefficients are

just the values of the function at the nodes as seen in (3.4.6). For the hierarchical

basis the coefficients are hierarchical surpluses. Due to the recursive form of Ik(f)

in (3.4.15) interpolant at each level k can be constructed using the procedure in

Algorithm 1.

Algorithm 1: Computing Ik[f ]

I−1[f ](y) ≡ 0;

for l← 0 to k do

∆l[f ](y) = 0;

for j ∈ Bl do

sl,j = f(yl,j)− Il−1[f ](yl,j);

∆l[f ](y) = ∆l[f ](y) + sl,jφl,j(y);

end

Il[f ](y) = Il−1[f ](y) + ∆l[f ](y);

end

Hierarchical surpluses sk,j can in fact be computed only using function values at

the points yk,j − hk, yk,j and yk,j + hk. This is due to the fact that the supports of

the basis functions spanning Wk are mutually disjoint and do not contain coarse grid

points yl,j for l < k. One can write the surplus sk,j as follows:

sk,j = f(yk,j)−
1

2
(f(yk,j − hk) + f(yk,j + hk)). (3.4.20)

Adopting multigrid stencil notation (see for example [31]) the above expression

can be rewritten as [8]

sk,j = [ −1

2
1 − 1

2
]yk,j ,kf (3.4.21)
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3.4.2 Multi-dimensional hierarchical interpolation

I now generalize the construction of Section 3.4.1 to the problem of interpolating a

function f(y) defined over a d-dimensional hypercube Γ =
⊗d

i=1 Γi = [−1, 1]d. The

one-dimensional hierarchical basis (3.4.18) can be generalized to the d-dimensional ba-

sis using tensor product construction. That is for each point yk,j = (y
(1)
k1,j1

, . . . , y
(d)
kd,jd

)

the associated d-variate basis function φk,j(y) is defined as

φk,j(y) =
d∏
i=1

φki,ji(y
(i)), (3.4.22)

where φki,ji(y
(i)) is a one-dimensional hat function associated with the point y

(i)
ki,ji
∈ Γi,

ji = 0, . . . , nki − 1, i = 1, . . . , d. Here k = (k1, . . . , kd) is a multi-index denoting level

of refinement along each dimension i. The examples of two-dimensional basis function

are depicted in Figure 3.3.

The collection of d-dimensional functions {φk,j(y)} for 0 ≤ j ≤ 2k form a basis of

a discrete space

Vk = span{φk,j(y) | 0 ≤ j ≤ 2k}. (3.4.23)

Here 0 = (0, . . . , 0) is a multi-index with d zeros and all operations on multi-indices

are performed componentwise, i.e., α ≤ β means αi ≤ βi for all i = 1, . . . , d, and

2α = (2α1 , . . . , 2αd).

As in the one-dimensional case define the d-dimensional incremental subspace Wk

by

Wk =
d⊗
i=1

Wki = span{φk,j(y) | j ∈ Bk} (3.4.24)

where the multi-index set Bk is given by

Bk = {j = (j1, . . . , jd) ∈ Nd
+ | ji ∈ Bli for i = 1, . . . , d}. (3.4.25)

The schematics of subspaces Wk for d = 2 is depicted in Figure 3.4.

Similar to the one-dimensional case we obtain

Vk =
⊕
l≤k

Wl (3.4.26)
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(a) W0,0 (b) W1,0

(c) W0,1 (d) W1,1

Figure 3.3: 2D hierarchical basis functions.

Note again that the supports of the basis functions φk,j spanning Wk are mutually

disjoint. Thus, we obtain a hierarchical basis for Vk:

{φl,j : j ∈ Bl, l ≤ k}. (3.4.27)

I will mostly be interested in the finite-dimensional subspaces constructed from

Wl as follows:

V
(α)
k =

⊕
α(l)≤k

Wl (3.4.28)
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i1

i2

W0,0

W0,1

W1,0

Figure 3.4: Scheme of subspaces Wk for d = 2. Squares represent subspaces with

their grid points. The basis functions belonging to a particular subspace are given as

tensor products of corresponding 1D basis functions of each dimension. The supports

of basis functions are indicated by the lines dividing the squares.

The key for constructing such subspaces is to specify the mapping α(l). For

example, taking α(l) = maxi=1,...,d{li} gives the full tensor product space, which I

will denote by V
(∞)
k (see Figure(3.5)). Note, that the sequence of subspaces V

(∞)
k is
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nested, that is V
(∞)
k ⊂ V

(∞)
k+1 . Furthermore, this sequence is dense in L2(Γ).

The choice of α(l) = |l|1 =
∑d

i=1 li leads to a sparse polynomial space correspond-

ing to the sparse grids introduced earlier. I will denote it by V
(1)
k (see Figure (3.6)).

It is shown in [8] that this choice of α(l) is optimal with respect to L∞ and L2 norms.

The multi-linear interpolant corresponding to V
(α)
k is given by

I(α)
k [f ] =

∑
α(l)≤k

∑
j∈Bl

sl,jφl,j(y), (3.4.29)

where sl,j are multi-dimensional hierarchical surpluses. To find the expression for

sl,j consider just as in the 1D case the incremental interpolation operators ∆li for

i = 1, . . . , d and their tensor products.

W0,0

W0,1

W1,0

k=0 k=1 k=2

Figure 3.5: The subspaces comprising V
(∞)

2 and the corresponding grid (d=2).

Recall that ∆li ∈ Wli for i = 1, . . . , d, and, therefore,
⊗d

i=1 ∆li ∈ Wl. Further

notice that

I(α)
k [f ] = I(α)

k−1[f ] +
∑
α(l)=k

d⊗
i=1

∆li [f ]. (3.4.30)



49

W0,0

W0,1

W1,0

k=0 k=1 k=2

Figure 3.6: The subspaces comprising V
(1)

2 and the corresponding grid (d=2).

Moreover,
d⊗
i=1

∆li [f ](y) = (∆l1 ⊗ · · · ⊗∆ld)[f ](y) =

=
∑

γγγ∈{0,1}d
l−γγγ≥0

(−1)|γγγ|1(
d⊗
i=1

Ili−γi)[f ](y).
(3.4.31)

Here the tensor product of the one-dimensional interpolation formulas is given by

(
d⊗
i=1

Ili)[f ](y) =

nl1−1∑
j1=0

· · ·
nld−1∑
jd=0

f(y
(1)
j1
, . . . , y

(d)
jd

) · (φl1,j1 ⊗ · · · ⊗ φld,jd)(y)

=
2l∑
j=0

f(yl,j)φl,j(y).

(3.4.32)
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Plugging-in (3.4.32) into (3.4.31):

d⊗
i=1

∆li [f ](y) =
∑

γγγ∈{0,1}d
l−γγγ≥0

(−1)|γγγ|1
2l−γγγ∑
j=0

f(yl−γγγ,j)φl−γγγ,j(y)

=
2l∑
j=0

f(yl,j)φl,j(y)−
∑

γγγ∈{0,1}d
γγγ 6=0

l−γγγ≥0

(−1)|γγγ|1
2l−γγγ∑
j=0

f(yl−γγγ,j)φl−γγγ,j(y).

Now just as in the 1D case we can expand everything in the basis corresponding

to the level l:

d⊗
i=1

∆li [f ](y) =
2l∑
i=0

f(yl,i)−
∑

γγγ∈{0,1}d
γγγ 6=0

l−γγγ≥0

(−1)|γγγ|1
2l−γγγ∑
j=0

f(yl−γγγ,j)φl−γγγ,j(yl,i)

φl,i(y).

Finally due to the nestedness of the grids as was the case in the 1D setting we get

the cancellation of the coefficients in front of the functions φl,i(y) corresponding to

the points that already appeared at the levels previous to l. Hence,

d⊗
i=1

∆li [f ](y) =
∑
i∈Bl

f(yl,i)−
∑

γγγ∈{0,1}d
γγγ 6=0

l−γγγ≥0

(−1)|γγγ|1
2l−γγγ∑
j=0

f(yl−γγγ,j)φl−γγγ,j(yl,i)

φl,i(y).

The expression inside the parenthesis is the multi-dimensional hierarchical surplus

sl,i. In short, it can be computed as a difference between the function value at the

point yl,i and the value of the interpolant of f constructed using basis functions from

Vl	Wl at the point yl,i. Since the subspaces Wl were constructed so that their basis

functions have mutually disjoint supports and do not contain coarse grid points yk,i,

k < l, the surpluses can be computed from function values f(yl,i) in the following

way:

sl,i =

(
d∏
j=1

[ −1

2
1 − 1

2
]yli,ij ,lj

)
[f ] =: Iyl,i,l[f ], (3.4.33)

where Iyl,i,l denotes a d-dimensional stencil which gives the coefficients for a linear

combination of nodal values of the argument f (compare with (3.4.21)).
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3.4.3 Error estimation

Here I follow the analysis presented in [8]. The slight modification to the construction

presented there is the choice of the basis functions on the first two levels. In [8]

the functions under consideration were vanishing on the boundary of the domain,

therefore, the only basis functions needed were those that corresponded to the interior

nodes. Specifically, the basis functions of the 0-th and 1-st levels in our construction

were not considered, instead the only basis function of the first level was the the

hat function centered at 0 with support on the whole interval [−1, 1]. Thus, with

the exception of the basis functions on the 0-th and 1-st levels in the construction

presented here the following analysis is still applicable.

In the following assume that f : Γ→ R has (in some sense) bounded weak mixed

derivatives

Dαααf :=
∂|ααα|1f

(∂y(1))α1 · · · (∂y(d))αd

up to a given order. Specifically, for the case of piecewise linear approximations that

I used up to this point assume that f ∈ Xq,2
0 (Γ), where

Xq,r(Γ) := {f : Γ→ R : Dαααf ∈ Lq(Γ), |α|∞ ≤ r} (3.4.34a)

Xq,r
0 (Γ) := {f ∈ Xq,r(Γ) : f

∣∣∣
∂Γ

= 0} (3.4.34b)

For the functions f ∈ Xq,r
0 introduce the following semi-norms:

|f |ααα,∞ := ‖Dαααf‖L∞ , |f |ααα,2 := ‖Dαααf‖L2 (3.4.35)

The starting point for the analysis is the following integral representation of the

surpluses sl,j:

sl,j =

∫
Γ

ψl,j(y) ·D222f(y)dy, (3.4.36)

where ψl,j(y) =
d∏
i=1

ψli,ji(y
(i)) with ψli,ji(y

(i)) = −2−(li+1)φli,ji(y
(i)).
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Next, the following equations hold for the norms of the hierarchical basis functions

φl,j(y):

‖φl,j‖∞ = 1 (3.4.37a)

‖φl,j‖p =

(
2

p+ 1

)d/p
· 2−|l|1/p, p ≥ 1 (3.4.37b)

The integral representation (3.4.36) combined with the values of the norms (3.4.37)

gives the following bounds on |sl,j|.

Lemma 3.4.1 For any f ∈ Xq,r
0 (Γ) given in its hierarchical representation f(y) =∑

l

∑
j∈Bl

sl,jφl,j(y) the following estimates on |sl,j| hold:

|sl,j| ≤ 2−d · 2−2|l|1 · |f |222,∞ (3.4.38a)

|sl,j| ≤ 2−d · (2

3
)d/2 · 2−3/2·|l|1 · |f

∣∣∣
supp(φl,j)

|222,2 (3.4.38b)

where supp(φl,j) denotes the support of φl,j.

The next lemma provides bounds on the contributions of incremental subspaces

Wl, which I denote by fl, i.e., fl(y) =
∑
j∈Bl

sl,jφl,j(y) ∈ Wl.

Lemma 3.4.2 Let f ∈ Xq,r
0 (Γ) be given by its hierarchical representation f(y) =∑

l

fl with fl ∈ Wl. Then the contributions fl can be bounded as follows:

‖fl‖∞ ≤ 2−d2−2|l|1|f |222,∞ (3.4.39a)

‖fl‖2 ≤ 3−d2−2|l|1|f |222,2 (3.4.39b)

Having bounds on the contributions of fl to the infinite expansion f =
∑
l

fl of a

function f ∈ Xq,2
0 one can estimate the error between f and its interpolants I(∞)

k and

I(1)
k ( see (3.4.29) and discussion above).
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Lemma 3.4.3 (Interpolation error of the full grids) For any f ∈ Xq,2
0 the following

estimates hold:

‖f − I(∞)
k ‖∞ ≤

d

6d
· 2−2k · |f |222,∞ = O(h2

k), (3.4.40a)

‖f − I(∞)
k ‖2 ≤

d

9d
· 2−2k · |f |222,2 = O(h2

k). (3.4.40b)

(Here hk stands for the mesh size at level k 1D grid).

This accuracy comes at a cost of (2k + 1)d = O(2k·d) = O(h−dk ) function evalua-

tions, since this is the number of points and basis functions in V
(∞)
k . We can clearly

see here the manifestation of the curse of dimensionality: the number of function eval-

uations necessary to achieve the accuracy of order O(h2) grows exponentially with

dimension d.

Lemma 3.4.4 (Interpolation error of regular sparse grids) The following error bounds

hold for the interpolant of the function f ∈ Xq,2
0 in the sparse grid space V

(1)
k :

‖f − I(1)
k ‖∞ ≤

2 · |f |222,∞
8d

· 2−2k · A(d, k) = O(h2
k · | log2 h

−1
k |

d−1), (3.4.41a)

‖f − I(1)
k ‖2 ≤

2 · |f |222,2
12d

· 2−2k · A(d, k) = O(h2
k · | log2 h

−1
k |

d−1), (3.4.41b)

where A(d, k) :=
d−1∑
n=0

(
k+d−1
n

)
= kd−1

(d−1)!
+O(kd−2).

As far as the cost of sparse grid, it can be shown that the number of points in

V
(1)
k is given by 2k ·

(
kd−1

(d−1)!
+O(kd−2)

)
= O(h−1

k · | log2 hk|d−1).

3.4.4 Adaptivity

In constructing interpolant (3.4.29) one can think of an adaptive way of selecting the

subspaces Wl based on some error criterion that estimates their contribution to the

interpolant. This corresponds to the dimension-adaptive approach mentioned earlier

in the section on generalized sparse grids and leads to algorithm by Gerstner and

Griebel [21].
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Alternatively, one could perform adaptation and refinement on the level of the

single basis function φl,j.

As we see from Lemma 3.4.1 for functions with bounded second order weak deriva-

tives the surpluses sl,j tend to zero as interpolation level increases. This provides an

avenue for constructing adaptive sparse grids using the magnitude of the surplus as

a local error indicator. This approach should allow us to better capture possible

irregularities of the function of interest, such as steep slopes or jump discontinuities.

I first review adaptive procedure for one-dimensional grids and then generalize it

to multi-dimensional grids.

One-dimensional hierarchical grids have a tree-like structure. In general, a grid

point yk,j on level k has two children yk+1,2j−1 and yk+1,2j+1 on level k + 1, except

for the points of level 1, which only have 1 child point each. The basic idea of

adaptivity is to refine the grid only by adding the children of the points with relatively

large contributions given by |sk,j| · ‖φk,j‖. Note, that we can use different norms

for estimating the error. The common and most obvious choice is taking the L∞

norm, which leads to estimating local variation by the means of |sk,j|. The resulting

interpolant can be represented as

Il[f ](y) =
l∑

k=0

∑
j∈Bεk

sk,jφk,j(y) (3.4.42)

where Bε
k = {j ∈ Bk : |sk,j| ≥ ε}.

An example of adaptive interpolation of the function f(y) = max{exp (−10(y2))−

0.3, 0} on the interval [−1, 1] using tolerance ε = 0.01 is presented in Figure 3.7. Note

that I limit the maximum level of the tree to guarantee termination.
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(a) The function of interest and the points

of the adaptive grid (in red).
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(b) Adaptivity tree. The lines represent

parent-child relation with dotted lines indi-

cating that the endpoints were not added to

the grid.

Figure 3.7: A six-level adaptive sparse grid for interpolating the one-dimensional

function f(y) = max{exp (−10(y2))−0.3, 0} using error tolerance 0.01. The resulting

sparse grid has 29 points, whereas the full grid has 65 points.

Note that in some cases the magnitude of the hierarchical surplus sl,j might not

be a good error indicator. The extreme case is a function

f(y) =

1, y ∈ [−1, 0),

0, y ∈ [0, 1]

(3.4.43)

For this function hierarchical surpluses to the left of the origin are always 1/2 and,

thus, the refinement process will never stop unless given a maximum level stopping

criterion. A better error indicator in this case would be |sl,j| · ‖φl,j‖L2 , which would

take into account the sizes of the support of basis functions.

Another source of problem could be early termination due to, for example, van-

ishing of hierarchical surpluses corresponding to the inflection points of the function

(as is seen from (3.4.36) surpluses are related to the second derivatives). To circum-

vent this problem look-ahead strategies might be employed, i.e., looking at the node’s
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children even if the node is “irrelevant” according to the error indicator [17].

In general, any refinement criterion might fail in some special cases. In practice,

one might develop error criteria specific for a given problem to enhance convergence

(see for example [63], [64]).

Adaptive approach can be easily extended to multi-dimensional setting. In gen-

eral, in d dimensions a grid point has 2 · d children which are also its neighboring

points. Given a tolerance ε we can construct an interpolant

I(1)
k [f ] =

∑
|l|1≤k

∑
j∈Bεl

sl,jφl,j(y) (3.4.44)

where Bε
l = {j ∈ Bl : |sl,j| · ‖φl,j(y)‖ ≥ ε}.

Since in practice this interpolant is built recursively the choice of refinement set

associated with a given point yl,j is not completely trivial. One might consider several

strategies. Here we present a short overview of refinement strategies presented in [79]

and implemented in TASMANIAN [78].

• “Classic refinement”. Isotropic refinement that adds only the children of the

points with large coefficients (surpluses). It is noted that this approach might

result in unstable interpolant, i.e., algorithm might fail to converge.

• “Family selective refinement”. Improves stability of the algorithm by adding

the parents of the node associated with large surplus if these parents were not

yet included in the grid. The parents are always considered before children.

• “Direction selective refinement”. Besides considering the coefficients associated

with the multi-dimensional interpolant, it takes into account the coefficients

of one-directional interpolants that are constructed using points lying on the

same line in a given direction. Has the effect of reducing the clustering of

the points along the lines, but includes additional cost associated with forming

one-directional interpolants.
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• “Family direction selective refinement”. Combines the family selective and di-

rection selective strategies.

3.4.5 Other types of bases

Besides the piecewise d-linear basis functions that were introduced earlier other types

of basis functions are commonly employed. Some of these bases are introduced in the

following.

Piecewise d-polynomial basis functions. I outline here the main idea and

refer to [5], [6] for detailed description.

Polynomial basis functions of arbitrary degree p are based on Lagrange polyno-

mials. In order to construct a polynomial of degree p associated with yl,j one needs

p + 1 supporting nodes. If we want to maintain the sparse structure of the grid, we

need to avoid introducing any new degrees of freedom. The solution is then to use the

hierarchical ancestors of the given point yl,j that lie outside of [yl,j − hl, yl,j + hl] to

help build the Lagrange polynomial. Once constructed, this polynomial is restricted

to [yl,j − hl, yl,j + hl], i.e., set to zero outside of the interval. In this way a higher

order basis can be constructed that still retains the hierarchical structure. See figure

3.8 for examples of constructing cubic basis function φ2,3(y) and quartic basis func-

tion φ3,1(y). In each case hierarchical ancestors are used to construct the Lagrange

polynomial. The dotted line represents those parts of the functions that get omitted.

Note that a polynomial of order l cannot be used before level l−1 due to insuffcient

number of ancestors.

The d-dimensional basis functions are derived by tensor product of one-dimensional

ones. The polynomial degree can be different in each dimension. The piecewise d-

polynomial basis functions have the advantage that higher order convergence can be

reached than in piecewise d-linear case: for a function f with (in some sense) bounded

weak mixed derivatives of the order less than or equal to p + 1 in each dimension it
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(a) Cubic basis function φ2,3.
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(b) Quartic basis function φ3,1.

Figure 3.8: Construction of cubic and quartic basis functions. Dotted part of the line

in each case gets omitted at the final step of the constuction.

can be shown [8] that the order of approximation is increased to

O(h
(p+1)
k · | log2 h

−1
k |

(p+2)(d−1)) (3.4.45)

(compare with 3.4.4).

In order to provide comparison to the rates of convergence obtained using Monte

Carlo-like methods I provide the ε-complexities of the approximations using piecewise

d-polynomial basis of degree p.

Theorem 3.4.5 Given N grid points the following accuracies can be obtained for the

problem of computing the interpolant I(p,1)
k [f ] ∈ V (p,1)

k , i.e. maximum degree p in each

direction, with respect to L∞ and L2 norms:

ε(p)∞ (N) = O(N−(p+1) · | log2N |(p+2)(d−1)) (3.4.46)

ε
(p)
2 (N) = O(N−(p+1) · | log2N |(p+2)(d−1)) (3.4.47)

Wavelet basis. One of the major drawbacks of utilizing multi-polynomial basis

in the framework of the hierarchical adaptive sparse grid method introduced above is

the lack of the error estimate from below with constants independent of the number
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of hierarchical levels. This means that the magnitude of the hierarchical coefficient

only provides a local error indicator and not a true error estimator. In order to

overcome this drawback authors in [30] propose the use of multi-resolution wavelet

basis that “guarantees optimality”. In particular, they build a locally supported

hierarchical basis consisting of second-generation wavelets constructed using lifting

scheme ([80]). Presented numerical results speak in favor of the proposed approach,

however, improvements appear to be marginal.

B-splines, mexican hat functions, etc. Successful results have been reported

of the use of other types of bases tailored for specific applications: B-spline basis

functions for regression problems and Mexican hat wavelet for the problems in finance

([63]).



Chapter 4

Numerical experiments

In this chapter I use the following contractions for different integration methods: MC

for Monte-Carlo, QMC for quasi-Monte Carlo, SG for sparse grids (Smolyak rule)

and hASG for hierarchical adaptive sparse grids using piecewise polynomial basis.

The numerical experiments presented here were performed in MATLAB2013b.

The following codes and software packages were used: for quasi-Monte Carlo se-

quences - SOBOL DATASET and FAURE DATASET by John Burkardt ([10, 9]),

for sparse grids and locally adaptive sparse grids - TASMANIAN by Miroslav Stoy-

anov et al at ORNL ([78]).

4.1 Simple integration problems

I study the performance of the methods introduced in Chapter 3 on several simple

test problems. For all the problems the exact value of the integral is known either by

direct computation or highly accurate approximation.

Problem 1 Gaussians

Consider a multi-dimensional Gaussian defined on [−1, 1]d:

f1(y) = exp (−
d∑
i=1

(y(i))2) (4.1.1)

60



61

with exact integral given by πd/2 · erf(1)d. This function is infinitely smooth and has

a product structure with each dimension being equally important.

As well as comparing different methods for f1 with varying dimension, I compare

them also on the problem with non-smoothness introduced by [·]+ function:

f2(y) = 2 · [f1(y)− 1

2
]+ = 2 ·max{exp (−

d∑
i=1

(y(i))2)− 1

2
, 0} (4.1.2)
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(a) Integration errors in f1.
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(b) Integration errors in f2.

Figure 4.1: Convergence comparison for d = 2.
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(a) Integration errors in f1.
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(b) Integration errors in f2.

Figure 4.2: Convergence comparison for d = 5.
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The results for dimensions d = 2 and d = 5 are plotted in Figures 4.1 and 4.2.

In both cases the Faure sequence was used as a base for QMC integration, and the

Clenshaw-Curtis rule as a base for sparse grid approximation (SG). Furthermore,

the hierarchical adaptive sparse grid method (hASG) was used with local polynomial

basis of maximum possible order (i.e., the order of basis functions increased from level

to level), “classic” type of refinement and tolerance ε = 10−5.

Observe that for the smooth function f1 sparse grids based on global or local

polynomials outperform MC type methods dramatically. However, the convergence

rate of sparse grids deteriorates with dimension faster. Although this is expected from

the theory (see (3.3.30) and (3.4.46)), it is still surprising that already for dimension

d = 5 sparse grids provide not much of an improvement over MC type methods.

This, however, might be a particular case of approximating Gaussians (see [63] for a

detailed discussion).

For the non-smooth function f2, I observe that sparse grids methods behave much

worse even for dimension 2 with convergence establishing rather late. Going to di-

mension 5 it is clear that QMC is the method of choice for this particular problem.

Of the sparse grid methods, the hierarchical adaptive method is marginally better

than the regular sparse grids, but improvement is much less than one would hope for.

It might be partially due to the fact that the region of discontinuity in the derivative

for function f2 is a circle and, thus, it is completely misalligned with the grid, which

is a worst case scenario for the method (see Figure 4.3). Therefore, a lot of points

are needed are spent around the jump in the derivative. To prove this theory, I also

present the results for a function with discontinuity aligned along the axes (Example

2).

Now, consider smoothing the function f2 in order to improve convergence rates

of sparse grids. Specifically I replace the [·]+ function with a C∞ approximation. I

choose the smooth approximation to be

P(y, γ) = y +
1

γ
log(1 + exp−γy) (4.1.3)
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Figure 4.3: Adaptive sparse grid for the function f2(y).

( see [12] for details). This function has the following properties:

1. P(y, γ)→ [y]+ as γ →∞;

2. P(y, γ) > [y]+;

3. |P ′(y, γ)| < 1;

4. |P ′′(y, γ)| ≤ γ
4
.

I let the parameter γ take values 100 and 10 and compare the performance of

methods on the smoothed version of function f2, that I denote by f3:

f3(y) = 2 · P(f2(y)− 1

2
, γ) (4.1.4)

The smaller value of γ corresponds to the smoother version of the function, while

the higher value provides closer approximation to the original function. As we see

from Figures 4.4 and 4.5, the smoothing of the integrand reflects favorably on the

convergence properties of sparse grids. These figures are to be compared with 4.1b

and 4.2b respectively.
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(a) γ = 100.
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(b) γ = 10.

Figure 4.4: Convergence comparison for f3 with d = 2.
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(a) γ = 100.
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(b) γ = 10.

Figure 4.5: Convergence comparison for f3 with d = 5.

Finally, consider the version of the function f1 with weights assigned to different

dimensions:

f4(y) = exp

(
−

d∑
i=1

(y(i) − ci)2

w2
i

)
(4.1.5)

Let ci = 1
2

for all i and integrate f4 over [0, 1]d. I consider two choices of weights

wi. First, take wi = 2i for i = 1, . . . , d. With this choice the function becomes

more and more constant with increasing dimension. Next, let wi = 2ri , where r
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is a random vector scaled so that
d∑
i=1

ri =
d∑
i=1

i. The results are plotted in Figures

4.6 for d = 10. Observe that performance of sparse grids is much better now that

the function has only few “important” dimensions. Furthermore, when the weights

assigned to different dimensions are random, the adaptive sparse grids do a better

job by automatically finding dimensions with greater variability.
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(a) wi = 2i.
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(b) wi = 2ri .

Figure 4.6: Function f4 with different choice of weights for d = 10.

Problem 2 Jump along hypercube

Consider integrating a function f5(y) = χ[0.21,0.81]d over [0, 1]d. This simple test

allows to see the benefit of axis-aligned structure for the performance of sparse grids

based on local polynomials. For this test I take standard hat basis functions and set

the refinement tolerance to ε = 10−3. The results are depicted in Figure 4.7.
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(a) Integration errors in f5. (b) Adaptive sparse grid.

Figure 4.7: Convergence comparison for the function f5 with d = 2.

Problem 3 Absorption problem

Consider a simple transport problem described by the integral equation

f(x) =

∫ 1

x

γf(t)dt+ x. (4.1.6)

This equation describes particles traveling through a one-dimensional slab of length

one [53]. In each step the particle covers a distance which is uniformly distributed

in [0, 1]. This may cause it to exit the slab; otherwise, it may be absorbed with

probability 1 − γ before the next step. The variable x corresponds to the current

position of the particle, while the value of f(x) gives the probability that the particle

will eventually leave the slab given that it has already made it to x. The quantity

of interest is f(0), i.e., the probability that a particle entering the slab will leave the

slab.

The exact solution to this problem is given by

f(x) =
1

γ
(1− (1− γ) exp(γ(1− x))) (4.1.7)

and can also be represented as an infinite-dimensional integral over the unit cube

f(x) =

∫
[0,1]∞

∞∑
i=1

Fi(x,y)dy, (4.1.8)
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where

Fi(x,y) = γiθ

(
1− x−

i∑
j=1

y(j)

)
· θ

(
i+1∑
j=1

y(j) − (1− x)

)
. (4.1.9)

Here function θ(t) is the Heaviside function:

θ(t) =

1, t ≥ 0

0, t < 0

(4.1.10)

This corresponds to a particle doing a forward random walk with jump size uniformly

distributed on [0, 1]. If the particle leaves on its (i + 1)-st jump, it contributes γi to

the approximation of f(x). Since higher dimensions correspond to particles that

undergo many collisions before leaving the slab, and the likelihood that a particle can

do more than a few collisions before leaving or being absorbed is small, f(x) can be

approximated sufficiently accurately by truncating the infinite sum to a finite value

d. For this experiment I took d = 20. Also, the survival probability γ was chosen to

be 1
2
. See results in Figure 4.8a.

The integrand above is non-smooth with discontinuity along the diagonal, which

is a worse case for sparse grids. Much better results can be obtained by changing

the formulation to the one with smooth integrand. The idea behind it is that each

jump that a particle makes should contribute something to the evaluation of the inte-

gral. Therefore, the discontinuous integrand Fi(x,y) can be replaced by a polynomial

F ∗i (x,y):

F ∗i (x,y) = γi(1− x)i

(
i−1∏
j=1

(y(j))i−j

)(
1− (1− x)

i∏
j=1

y(j)

)
. (4.1.11)

The results for smooth problem are presented in Figure 4.8b. As expected, sparse

grids now perform much better. Adaptive sparse grids give an additional improvement

by automatically detecting more important dimensions.
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(a) Integration errors for discontinuous ab-

sorption problem.
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(b) Integration errors for smooth absorption

problem.

Figure 4.8: Convergence results for absorption problem with d=20.

4.1.1 Note on weights

One of the major drawbacks of sparse grids in the context of optimization is the fact

that they lead to the appearance of negative weights, as was mentioned earlier in the

subsection on Smolyak quadrature. This poses a problem for optimization methods

(see, e.g., [41]). To demonstrate the appearance of negative weights I consider a

problem of integrating a two-dimensional function using hierarchical bilinear basis

introduced in Section 3.4.2.

Recall that when building the interpolant using a hierarchical basis we add the

basis functions from hierarchical subspaces (see Figure 3.6). In particular, the func-

tions comprising the subspaces W0,0, W1,0 and W0,1 that are used to construct sparse

grid interpolant corresponding to V
(1)

1 are depicted in Figure 4.9. Here in order to

simplify notation I relabeled the points of the grid and ordered them in a sequence

of N points (4.9a). In this basis the coefficients of the interpolant are hierarchical

surpluses.
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W0,0

W0,1

W1,0

k=0 k=1

y1

y4

y2 y3

y5

(a) Nodes of V
(1)

1 (b) φ2(y) (c) φ3(y)

(d) φ1(y) (e) φ4(y) (f) φ5(y)

Figure 4.9: 2D hierarchical basis functions.

Now I wish to switch from this hierarchical basis to its dual set in which the

coefficients of the interpolant are the function values at grid points, i.e., I want to

represent

f(y) ≈
N∑
i=1

f(yi)ψi(y). (4.1.12)

The functions ψi(y) are constructed by applying the dual of the linear transformation

to the hierarchical basis functions φi(y) (Figure 4.10). Since hierarchical surpluses

corresponding to φ2(y)-φ5(y) at this level interpolant are just the function values at

y2-y5, the functions ψ2(y)-ψ5(y) coincide with φ2(y)-φ5(y).



70

(a) ψ1(y) (b) ψ2(y) (c) ψ4(y)

(d) ψ4(y) (e) ψ5(y)

Figure 4.10: Functions ψi(y) corresponding to the sparse grid of level 1.

The function ψ1(y) corresponding to the point y1 = (0, 0), however, changes and

becomes partially negative. Its integral is zero.

When going to the next level of the sparse grid, i.e., adding the subspaces needed

to get V
(1)

2 , the functions ψi(y) corresponding to the old points of the grid change

(see Figure 4.11). The integral of function ψ1(y) now becomes −1, while the other

functions shown on the figure integrate to 0.
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(a) ψ1(y) (b) ψ2(y) (c) ψ3(y)

(d) ψ4(y) (e) ψ5(y)

Figure 4.11: Functions ψi(y) corresponding to the sparse grid of level 2.

Thus, the sparse structure of the grid leads to the negative weights in the quadra-

ture formula for f(y). This is independent of the type of the basis considered. By

contrast the full grids corresponding to subspaces V
(∞)
k will always have positive

weights.
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4.2 Linear elliptic problem with random inputs

Consider the problem described in Example 2.2.1. Assuming that the control is

z(x) ≡ 0 we have:

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) (ω, x) ∈ Ω×D, (4.2.1a)

u(ω, x) = 0 (ω, x) ∈ Ω× ∂D (4.2.1b)

with D = [0, 1]2. I will denote the components of x ∈ D by x1 and x2.

Here I want to investigate the convergence of sparse grids and MC type methods

when applied to the problem of computing the expected value and semi-deviation of

the solution of (4.2.1). I adopt the description of the problem from [57].

Consider deterministic source f(ω, x) ≡ f(x) = cos(x1) sin(x2). The approxima-

tion of the random diffusion coefficient a(ω, x) is constructed in the following manner.

First, construct the Karhunen-Loève (KL) expansion of a one-dimensional random

field b(ω, x1) with covariance function

COV[b(·, x1), b(·, x′1)] = exp

(
−(x1 − x′1)2

L2
c

)
. (4.2.2)

Here parameter Lc corresponds to the physical correlation length for the random

field b(ω, x1), meaning that random variables b(·, x1) and b(·, x′1) become essentially

uncorrelated if |x1 − x′1| � Lc.

The eigenvalues and eigenfunctions of the covariance function (4.2.2) are given by

the following analytic expressions [57]:

λ1 =

(√
πL

2

)1/2

λn = (
√
πL)1/2 exp

(−(bn
2
cπL)2

8

)
, for n > 1

and

φn(x1) =

sin
(
bn
2
cπx1
Lp

)
, if n even,

cos
(
bn
2
cπx1
Lp

)
, if n odd
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where parameters Lp and L are given by Lp = max{1, 2Lc} and L = Lc/Lp.

The truncation of the KL expansion of the field b(ω, x1) is then given by

bN(ω, x1) = 1 + Y1(ω)

(√
πL

2

)1/2

+
N∑
n=2

λnφn(x1)Yn(ω) (4.2.3)

Here Yn(ω), n = 1, . . . , N , are random variables that could be determined given the

analytical expression for the random field b(ω, x1) ([22, Sec. 2.3]). For the purposes of

this experiment I take {Yn(ω)}Nn=1 to be independent uniformly distributed random

variables in the interval [−
√

3,
√

3].

Finally, take an approximation of the random field a(ω, x) to be

aN(ω, x) = 0.5 + exp (bN(ω, x1)) (4.2.4)

Small values of the correlation length Lc correspond to the slow decay of eigenval-

ues λn, thus, each random dimension is weighed almost equally. On the other hand,

large values of Lc result in the fast decay rates with only few first dimensions being

most important. For my numerical experiments I take N = 11 and Lc = 1/2. For

this choice of Lc the decay is fast with only first 4-6 dimensions contributing most to

the variability of the coefficient aN(ω, x).

First, I approximate the expected value of the solution uN(ω, x). This is done for

each point x in the spatial discretization. I then take the L2(D) norm of the result.

The approximations of L2 norm of the expected value of the solution for different

methods are plotted versus the number of points used in the parameter space in

Figure 4.12a. Note that the same number of points is used for MC methods as for

SG method (based on Clenshaw-Curtis rule). The tolerance for hASG methods is

set to 10−5 and “family direction selective refinement” is used (see Section 3.4.4). I

observe that sparse grid methods and quasi-Monte Carlo method (Sobol’ sequence)

both converge fast to what should be the true value. In Figure 4.12b I plot the

L2 norms of the difference between expected values obtained using each method and

expected value obtained using sparse grids of level 6 (with≈ 63000 of points). In other
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words, I plot ‖E[uN(ω, x)]− E[u∗(ω, x)]‖L2(D) vs the number of points in parameter

space, where u∗(ω, x) is a “reference” solution obtained sparse grids of level 6. This

allows to see the convergence rates of different methods. I observe that sparse grids

converge fastest with a little performance gained by adaptive sparse grids over the

standard ones.
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(b) Errors wrt the reference solution.

Figure 4.12: Approximation of the expected value of the solution (N=11).
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(b) Errors wrt the next level solution.

Figure 4.13: Approximation of the semi-deviation of the solution (N=11).

Next, I estimate the semi-deviation of the solution uN(ω, x). In Figure 4.13a I plot

the L2(D) norm of the semi-deviation values obtained using different methods vs the



75

number of points in the parameter space. Now that the integrand is non-smooth due

to the presence of the [·]+ function the sparse grid methods do not seem to converge

within the number of PDE solves allowed. Although the true solution is not known,

the behavior of MC methods indicates that they converge to what should be a true

value, with QMC clearly converging to it much faster. Since the sparse grid solution

in this case cannot be trusted, instead of plotting the errors with respect to the finest

sparse grid solution, I plot the errors between two consecutive levels of approximation

for each of the methods, i.e., I estimate ‖E[u
(l)
N (ω, x)]− E[u

(l+1)
N (ω, x)]‖L2(D), where l

for the sparse grids means the level in the Smolyak’s construction and for MC methods

means the corresponding level of approximation. The results are presented in Figure

4.13b. I observe that reduction in error is smallest for QMC which indicates faster

convergence, while for SG method using more points does not guarantee reduction

in error. For hASG from level to level the error reduces but slower than for QMC.

Even standard MC looks more preferrable in this setting than any of the sparse grid

methods.

The results obtained here for the case of expected value essentially repeat the

results in Ma and Zabaras (2009) [52] (where only SG and hASG methods were

compared). In their paper the authors also demonstrate the convergence of hASG

for higher dimensions (N=25, 50, 75, 100) when the correlation length Lc is large

(Lc = 0.6). As mentioned above, in this case only few dimensions contribute most

to the variability of the solution, hence, adaptive sparse grids perform well by de-

tecting important dimensions and keeping the total number of points relatively low.

To the best of my knowledge, comparison of different methods has not been done

on this problem for the case of semi-deviation. The findings here and in Section 4.1

indicate that although hierarchical sparse grids perform better on non-smooth prob-

lems than standard sparse grids, even for moderately high dimensions (d = 5 ∼ 11)

their performance is inferior to quasi-Monte Carlo and even standard Monte-Carlo

methods.
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4.3 Optimal control problem

4.3.1 A 1D model problem

As an example problem I use the stationary advection diffusion equation in 1 dimen-

sion. Consider the following minimization problem

min
u,z

J(u, z) := max
x∈[0.8,0.9]

[u(x)− v]+ +
α

2

0.6∫
0.5

z(x)dx (4.3.1)

with v ≡ 0.1 being a given “target” or “goal”, subject to

−D ∂2

∂x2
u(x) + a

∂

∂x
u(x) = f(x) + χ[0.5,0.6]z(x), x ∈ [0, 1], (4.3.2a)

u(0) = u0, u(1) = u1. (4.3.2b)

where D and a are given constants, and z(x) plays the role of the control. Multiplying

the control by a characteristic function restricts it to the interval [0.5, 0.6]. For the

case u0 = u1 = 0.1 and a source f(x) being a gaussian function, the optimal control

z(x) is depicted in Figure 4.14.

0 0.5 1
−0.2

−0.1

0

0.1

0.2

 

 

State u

Source f

Control z

Goal v

Figure 4.14: Optimal control z for the problem (4.3.1)-(4.3.2). Here control z and

source f are scaled by 1/5 in order to better demonstrate the solution u.
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To derive the weak form of (4.3.2) I multiply the differential equation in (4.3.2) by

a function φ ∈ H1
0 (0, 1); then I integrate both sides over [0, 1], and apply integration

by parts. This leads to the weak form formulation: Find u ∈ H1(0, 1) with u(0) = u0,

u(1) = u1 such that

1∫
0

D
∂

∂x
u(x)

d

dx
φ(x) + a

∂

∂x
u(x)φ(x)−

0.6∫
0.5

z(x)φ(x)dx =

1∫
0

f(x)φ(x)dx (4.3.3)

for all φ ∈ H1
0 (0, 1).

I subdivide the interval [0, 1] into N + 1 subintervals of length h = 1/(N + 1) and

define

ϕi(x) =


(h)−1(x− (i− 1)h) x ∈ [(i− 1)h, ih],

(h)−1(−x+ (i+ 1)h) x ∈ [ih, (i+ 1)h],

0 else

i = 0, . . . , N + 1.

I approximate u by a function of the form

uh(x) =
N∑
j=1

ujϕj(x) + u0ϕ0(x) + u1ϕN+1(x) (4.3.4)

and z by

zh(x) =
∑
j=Ic

zjϕj(x). (4.3.5)

where Ic = {j : φj(x) has support on [0.5, 0.6]} with |Ic| = m.

Set

u = (u1, . . . , uN)T , z = (z1, . . . , zm)T .

Insert these approximations into (4.3.3) and require (4.3.3) to hold for φ = ϕj,

j = 1, . . . , N . This leads to the linear system

Au + Bz = b, (4.3.6)
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where A ∈ RN×N , B ∈ RN×m, and b ∈ RN are matrices or vectors with entries

A(i, j) =

1∫
0

D
d

dx
ϕj(x)

d

dx
ϕi(x) + a

d

dx
ϕj(x)ϕi(x), i, j = 1, . . . , N,

B(i, j) = −
0.6∫

0.5

ϕj(x)ϕi(x)dx, i = 1, . . . , N, j ∈ Ic,

b0 =

1∫
0

f(x)ϕ1(x)dx− u0

1∫
0

D
d

dx
ϕ0(x)

d

dx
ϕ1(x) + a

d

dx
ϕ0(x)ϕ1(x)dx,

bi =

1∫
0

f(x)ϕi(x)dx, i = 2, . . . , N − 1,

bN =

1∫
0

f(x)ϕN(x)dx− u1

1∫
0

D
d

dx
ϕN+1(x)

d

dx
ϕN(x) + a

d

dx
ϕN+1(x)ϕN(x)dx

Since the coefficients are constant, I can compute the integrals. Then the stiffness

and the mass matrices are given by

A =
D

h



2 −1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 −1 2



+
a

2



0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 0


∈ RN×N ,
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B = −h
6



0 0 0
...

...
...

0 0 0

2 1 0

1 4 1
. . . . . . . . .

1 4 1

0 1 2

0 0 0
...

...
...

0 0 0



∈ RN×m,

and the right hand side vector (using composite trapezoidal rule) by

b =



hf(h) + u0(D
h

+ a
2
)

hf(2h)
...

hf(1− 2h)

hf(1− h) + u1(D
h
− a

2
)


∈ RN .

Consider now objective J(u, z) from (4.3.1) in discretized form:

J(u, z) = ‖[Cu− v]+‖∞ +
α

2
zTRz (4.3.7)

where the matrix C ∈ Rp×N only picks out components of u that are in the region of

interest ([0.8, 0.9]). The matrix R ∈ Rm×m is given by

R =
h

6



2 1

1 4 1
. . . . . . . . .

1 4 1

1 2


∈ Rm×m,
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and the penalty coefficient α is set to 1. Moreover, vector v ∈ Rp has all components

equal to 0.1. The boundary conditions u0 and u1 are set to 0.1 as well.

In the following, I define

u(z) = A−1(b−Bz).

The deterministic optimization problem is

min
z
‖[Cu(z)− v]+‖∞ +

α

2
zTRz. (4.3.8)

4.3.2 Specification of random variables and risk measures

I introduce uncertainty in the problem by allowing the source term f to be of the

form

f(y, x) = y1 exp

(
−(x− y2)2

y2
3

)
, (4.3.9)

where y1, y2 and y3 are random variables uniformly distributed within prescribed

intervals.

Furthermore, I substitute the constant advection coefficient a by a random variable

y4 also uniformly distributed.

Let y = (y1, y2, y3, y4). Then the spatially discretized version of the problem

(4.3.1)-(4.3.2) with uncertainty is

min
u,z

σ(J(u(y), z)) (4.3.10a)

s.t. A(y)u(y) + B(y)z = b(y), y ∈ Γ, (4.3.10b)

where σ is a risk measure to be specified later. Note that in my case B(y) ≡ B, but

in general matrix B could depend on random parameter as well.

In the following, I define

u(y, z) = A(y)−1(b(y)−B(y)z).

The random optimization problem (4.3.10) is then equivalent to

min
z

σ(J(u(·, z), z)). (4.3.11)
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with J(u(·, z), z) = ‖[Cu(z)− v]+‖∞ + α
2
zTRz.

For the purposes of this example I consider the following risk measures:

1. Expected value, E[J(u(·, z), z)];

2. Worst case, supy∈Γ[J(u(y, z), z)];

3. Conditional value-at-risk, min
t
{t+ 1

1−c E[J(u(·, z), z))− t]+}, c ∈ (0, 1);

4. Absolute semi-deviation, i.e., mean plus semi-deviation of order 1,

E[J(u(·, z), z) + c[J(u(·, z), z)− E[J(u(·, z), z)]+], c ∈ [0, 1].

The problem (4.3.11) with these risk measures is nonsmooth. Next, I will present

reformulations of these problems as constrained quadratic programs. For these refor-

mulations to hold, it is necessary that the weights are positive.

4.3.3 Reformulations

Let S denote the total number of scenarios (samples) and let wj, j = 1, . . . , S, be

the weights corresponding to points y(j), j = 1, . . . , S. I will use lower index for the

components of the vector as in u = (u1, . . . , uN), and upper index for the realizations

of scenarios as in u(1), . . . ,u(S). Furthermore, the bar will denote a vector indexed by

scenario index: ε̄ = (ε(1), . . . , ε(S)), ū = (u(1), . . . ,u(S)).

4.3.3.1 The deterministic optimization problem

The objective function in (4.3.8) is nonsmooth. I introduce an auxiliary variable

δ ∈ R. The deterministic variant of the problem is

min
z,δ

δ +
α

2
zTRz (4.3.12a)

s.t. Cu− v ≤ δe (4.3.12b)

δ ≥ 0, (4.3.12c)

where e ∈ Rp is the vector of all ones.
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4.3.3.2 The stochastic optimization problem with expected value

The discretization of the stochastic optimization problem (4.3.11) with σ(J(u(·, z), z)) =

E[J(u(·, z), z)] is given by

min
z

(
S∑
j=1

wj‖[Cu(y(j), z)− v]+‖∞

)
+
α

2
zTRz. (4.3.13)

If the weights wj are positive, I can introduce auxiliary variables δ(1), . . . , δ(S) ∈ R to

reformulate (4.3.13) as the following constrained smooth problem

min
z,δ̄

S∑
j=1

wjδ
(j) +

α

2
zTRz (4.3.14a)

s.t. Cu(y(j), z)− v ≤ δ(j)e for j = 1, . . . , S (4.3.14b)

δ(j) ≥ 0 for j = 1, . . . , S. (4.3.14c)

4.3.3.3 The stochastic optimization problem with worst case

The discretization of the stochastic optimization problem (4.3.11) with σ(J(u(·, z), z)) =

supy J(u(·, z), z) is given by

min
z

max
j=1,...,S

‖[Cu(y(j), z)− v]+‖∞ +
α

2
zTRz. (4.3.15)

It can be reformulated as a smooth constrained problem as follows:

min
z,δ

δ +
α

2
zTRz (4.3.16a)

s.t. Cu(y(j), z)− v ≤ δe for j = 1, . . . , S (4.3.16b)

δ ≥ 0. (4.3.16c)

4.3.3.4 The stochastic optimization problem with CVaR

Let σ(J(u(·, z), z)) = mint{t+ 1
1−c E[J(u(·, z))− t]+} with c ∈ (0, 1). The discretiza-

tion of the stochastic problem takes the form

min
z,t

t+
1

1− c

S∑
j=1

wj[‖[Cu(y(j), z)− v]+‖∞ − t]+ +
α

2
zTRz. (4.3.17)
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If the weights wj are positive, I can remove the outer [·]+ function above by re-

formulating the problem with auxiliary variables ε(1), · · · , ε(S) and added constraints:

min
z,t

t+
1

1− c

S∑
j=1

wjε
(j) +

α

2
zTRz (4.3.18a)

s.t. ‖[Cu(y(j), z)− v]+‖∞ − t ≤ ε(j) for j = 1, . . . , S, (4.3.18b)

ε(j) ≥ 0 for j = 1, . . . , S, (4.3.18c)

By introducing auxiliary variables δ(j), for j = 1, . . . , S, I can remove the remain-

ing non-smoothness by adding additiona constraints:

min
z,t

t+
1

1− c

S∑
j=1

wjε
(j) +

α

2
zTRz (4.3.19a)

s.t. δ(j) − t ≤ ε(j) for j = 1, . . . , S, (4.3.19b)

Cu(y(j), z)− v ≤ δ(j) for j = 1, . . . , S, (4.3.19c)

ε(j), δ(j) ≥ 0 for j = 1, . . . , S. (4.3.19d)

4.3.3.5 The stochastic optimization problem with semi-deviation

Finally, let σ(J(u(·, z), z)) = E[J(u(·, z), z) + c[J(u(·, z), z)− E[J(u(·, z), z)]+].

The discretization of the stochastic optimization problem (4.3.11) is

min
z

(
S∑
j=1

wj

(
‖[Cu(y(j), z)− v]+‖∞

)

+ c

(
S∑
j=1

wj

[
‖[Cu(y(j), z)− v]+‖∞ −

S∑
k=1

wk‖[Cu(y(k), z)− v]+‖∞
]

+

)

+
α

2
zTRz. (4.3.20)

If the weights wj are positive, I can define ε(1), . . . , ε(S) to remove the [·]+ corresponding
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to the semideviation by adding constraints. The problem (4.3.20) is equivalent to

min
z,ε

( S∑
j=1

wj‖[Cu(y(j), z)− v]+‖∞
)

+ c
( S∑
j=1

wjε
(j)
)

+
α

2
zTRz, (4.3.21a)

s.t. ‖[Cu(y(j), z)− v]+‖∞

−
S∑
k=1

wk‖[Cu(y(k), z)− v]+‖∞ ≤ ε(j) for j = 1, . . . , S, (4.3.21b)

ε(j) ≥ 0 for j = 1, . . . , S. (4.3.21c)

Defining δ(j) = ‖[Cu(y(j), z)− v]+‖∞, the previous problem can be written as

min
z,ε,δ

( S∑
j=1

wjδ
(j)
)

+ c
( S∑
j=1

wjε
(j)
)

+
α

2
zTRz, (4.3.22a)

s.t. δ(j) −
S∑
k=1

wkδk ≤ ε(j) for j = 1, . . . , S, (4.3.22b)

‖[Cu(y(j), z)− v]+‖∞ = δ(j) for j = 1, . . . , S, (4.3.22c)

ε(j) ≥ 0 for j = 1, . . . , S. (4.3.22d)

If the equality in (4.3.22c) can be replaced by an inequality, the resulting problem can

be formulated as a smooth quadratic programming problem. In fact, the problem

min
z,ε,δ

( S∑
j=1

wjδ
(j)
)

+ c
( S∑
j=1

wjε
(j)
)

+
α

2
zTRz, (4.3.23a)

s.t. δ(j) −
S∑
k=1

wkδ
(k) ≤ ε(j) for j = 1, . . . , S, (4.3.23b)

‖[Cu(y(j), z)− v]+‖∞ ≤ δ(j) for j = 1, . . . , S, (4.3.23c)

ε(j) ≥ 0 for j = 1, . . . , S, (4.3.23d)
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is equivalent to

min
z,ε,δ

( S∑
j=1

wjδ
(j)
)

+ c
( S∑
j=1

wjε
(j)
)

+
α

2
zTRz, (4.3.24a)

s.t. δ(j) −
S∑
k=1

wkδk ≤ ε(j) for j = 1, . . . , S, (4.3.24b)

Cu(y(j), z)− v ≤ δ(j)e for j = 1, . . . , S, (4.3.24c)

ε(j), δ(j) ≥ 0 for j = 1, . . . , S. (4.3.24d)

Lemma 4.3.1 If the weights wj satisfy wj ∈ (0, 1) and
S∑
j=1

wj = 1, then the opti-

mization problems (4.3.22) and (4.3.23) are equivalent.

Proof: The feasible set of (4.3.22) is contained in that of (4.3.23). Therefore,

we must show that at a solution of (4.3.23), ‖[Cu(y(j), z) − v]+‖∞ = δ(j) for all

j = 1, . . . , S.

Let z, ε̄, δ̄ solve (4.3.23) and suppose that ‖[Cu(y(j), z) − v]+‖∞ < δ(j) for some

j. Without loss of generality let j = 1. Define δ̃(1) = ‖[Cu(y(1), z) − v]+‖∞ <

δ(1) and δ̃(2) = δ(2), . . . , δ̃(S) = δ(S). I will generate ε̃(1), . . . , ε̃(S) such that z, ¯̃ε =

(ε̃(1), . . . , ε̃(S))T , ¯̃δ = (δ̃(1), . . . , δ̃(S))T are feasible for (4.3.23) and have a lower objective

function value than that at z, ε̄, δ̄, which contradicts that z, ε̄, δ̄ solves (4.3.23).

Define ε̃(1) := ε(1). The variables ¯̃δ, ε̃(1) satisfy the constraint (4.3.23b) with j = 1

since

δ̃(1) −
S∑
k=1

wkδ̃
(k) = (1− w1)(δ(1) − δ̃(1)) + δ(1) −

S∑
k=1

wkδ
(k) < δ(1) −

S∑
k=1

wkδ
(k) ≤ ε(1)

due to the assumption w1 ∈ (0, 1). Define ε̃(j) := ε(j) + w1(δ(1) − δ̃(1)) for j > 1. The

variables ¯̃δ, ε̃(j) satisfy the constraint (4.3.23b) with j > 1 since

δ̃(j) −
S∑
k=1

wkδ̃
(k) = δ(j) −

S∑
k=1

wkδ
(k) + w1(δ(1) − δ̃(1)) ≤ ε(j) + w1(δ(1) − δ̃(1)) = ε̃(j).

The variables ¯̃δ, ¯̃ε satisfy the constraint (4.3.23c,d).
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Consider the value of the objective at ¯̃δ, ¯̃ε:

S∑
j=1

wj δ̃
(j) + c

S∑
j=1

wj ε̃
(j)

=
S∑
j=1

wjδ
(j) − w1(δ(1) − δ̃(1)) + c

S∑
j=1

wjε
(j) + c

S∑
j=2

wjw1(δ(1) − δ̃(1))

=
S∑
j=1

wjδ
(j) + c

S∑
j=1

wjε
(j) − w1(δ(1) − δ̃(1))

[
1− c

S∑
j=2

wj

]

<
S∑
j=1

wjδ
(j) + c

S∑
j=1

wjε
(j)

since δ(1) > δ̃(1) and c
S∑
j=2

wj < 1 (recall c ∈ [0, 1]).

Hence, the solution (z, δ̄, ε̄) is not optimal, which leads to a contradiction.

2

Thus, we proceed with the reformulation given by (4.3.24).

4.3.4 Results

I present here the results of solving problem (4.3.11) with objective given by (4.3.7).

These results help demonstrate the differences between various risk measures.

In order to generate realizations of 4-dimensional random variable y I use quasi-

Monte Carlo (Sobol’ sequence) approach. Since with QMC all the weights wj = 1/S

are positive (where S is the total number of scenarios (realizations)), I am able to use

the reformulations that were introduced earlier. I solve the reformulations of problem

(4.3.11) with the four risk measures using MATLAB’s quadprog solver.

For the problems with uncertainty the results are presented in figure 4.15. Here I

have used 100 realizations of y in order to approximate the objective of (4.3.11). The

results demonstrate the differences between various risk measures. For the expected

value the magnitude of the control variable is the smallest with many realizations ex-
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ceeding the target value v in the region of interest. For the sup measure, as expected,

all of the realizations lie below the target value. The price for it is the larger value

of the control z. The other two risk measures produce results in-between these two

extreme cases with CVaR being more conservative (recall that for c close to 1 CVaR

behaves almost as sup) and mean plus semi-deviation being closer to the expected

value.

0 0.5 1
−1

−0.5

0

0.5

1

 

 

State u

Control z

Goal v

(a) Expected value
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(b) Worst case
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(c) CVaR (c = 0.8)
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(d) Absolute semi-deviation (c = 1)

Figure 4.15: Results of solving problem (4.3.11) with uncertainty using reformulations

(4.3.14),(4.3.16),(4.3.19) and (4.3.24). Here plotted 100 realizations of the state u,

the deterministic optimal control z and the target v. The control z is scaled by 1/2.



Chapter 5

Conclusions

In this thesis I have reviewed several topics that are of importance for optimization

under uncertainty. The first is the formulation of the optimization problems governed

by PDEs with random inputs. Such problems arise in many areas of application, and

growing interest in them motivates a lot of research ([73, 35, 42, 69, 43]). I have

provided a short overview of the risk measures that can be used in the context of

optimization under uncertainty ([65]). The application of these risk measures to the

problems with high-dimensional random parameters motivated the core topic of this

thesis - multivariate integration methods.

I have provided the overview of the high-dimensional integration methods starting

from Monte Carlo and continuing onto sparse grids methods. Paying particular atten-

tion to the assumptions on the integrands I have summarized the main convergence

properties of the methods considered.

Finally, I have tested the performance of various integration methods on several

model problems. The results indicate that among the methods considered MC type

methods have an edge over the sparse grids for the problems with high dimensional-

ity and non-smoothness. In particular, quasi-Monte Carlo methods appear to be a

promising direction for future research. Although their performance also deteriorates

with increasing dimension and loss of smoothness ([11]), the effect is less obvious than

88
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for the sparse grids. In addition, MC type methods have an advantage of having all

positive weights which is favorable for optimization.

On the other hand, when the integrand is smooth the sparse grids allow to fully

exploit its smoothness. In addition, hierarchical sparse grids based on local polyno-

mials provide a natural framework for adaptivity allowing to detect more important

dimensions of the integrand and focus on the regions of irregular behavior. Unfortu-

nately, for high-dimensional problems with non-smoothness without careful problem-

dependent selection of the refinement criteria hierarchical sparse grids spend still

spend too many points making them ineffective and inapplicable. Some attempts to

mitigate this drawback have been made recently, such as high-dimensional disconti-

nuity detection [84], which might be worth exploring. Another potential direction for

exploration is the relation between sparse grids and tensor representations ([32, 27]).
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