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ABSTRACT 

Social Interactions in Two Species of Social Amoebae Dictyostelium 

discoideum and Dictyostelium purpureum 

By 

Chandra Nicole Jack 

The core of sociality and one of the key forces behind the transition to 

multicellularity is cooperation. The study of social behavior in 

microorganisms has gained considerable attention in the last decade as 

researchers have discovered that many of the cooperative social 

interactions found in higher organisms can also be found in microbes. The 

dictyostelids are particularly amenable to the study of social evolution 

because of the potential for conflict and cooperation during multicellular 

formation. The formation of the multicellular fruiting body may lead to 

conflict because all nearby cells aggregate together, which may be distinct 

clones, each trying to increase its own fitness. I first explored how D. 

discoideum and D. purpureum interact and if either species looks to cheat 

the other when they interact. I found that both species prefer being clonal 

but cooperate with each other when it seems the benefits outweigh the 

costs. Cooperating amoebae are able to make larger fruiting bodies, 



which are advantageous for migration and dispersal, but both species 

suffer a cost in producing fewer spores per fruiting body. I next examined 

short-range social dispersal in the social amoebae, D. discoideum and D. 

purpureum. It appears that the evolutionary loss of stalked migration 

gives D. discoideum cells the advantage of delaying specialization and the 

ability to colonize more distant locations, but has significant costs due to 

migration distance, such as the fraction of cells that become fertile spores. 

In my final study, we examine the interaction of different clones of D. 

discoideum before and after migration. We show that chimerism and 

migration interact to produce fruiting bodies that have a proportionally 

higher spore allocation compared to clonal fruiting bodies after migration 

but were unable to determine whether the results that we see are an 

indication of clones defecting in a tragedy of the commons or more 

cooperation. With further study will be able to better explain the affects of 

cooperation on group dispersal and whether it can be used as a 

mechanism to reduce local competition. 
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1 Introduction 
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1.1 Sociobiology and microbes 

The core of sociality and one of the key forces behind the transition to 

multicellularity is cooperation (Maynard Smith & Szathmary 1995; Crespi 

2001). The study of social behavior in microorganisms has gained 

considerable attention in the last decade as researchers have discovered 

that many of the cooperative social interactions found in higher organisms 

can also be found in microbes (Crespi 2001 ). One example is that of 

cooperative swarming in Myxococcus xanthus, which is comparable to the 

cooperative hunting seen in wolf packs. Another social behavior found in 

both micro- and macroorganisms is a cooperative division of labor. The 

social amoeba Dictyostelium discoideum aggregates with nearby cells to 

form a fruiting structure where some individuals will reproduce and others 

will not is comparable to the eusocial wasp Polistes dominulusi, where 

several foundresses nest together and all but one give up their 

reproduction (Strassmann et al. 2004). Microorganisms have an 

advantage over larger organisms because of their small size and rapid 

generation times. They are also more easily manipulated genetically. 
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1.2 The social amoebae Dictyostelium as a model organism for 

social evolution. 

The dictyostelids are particularly amenable to the study of social evolution. 

The most commonly studied species of the group is Dictyostelium 

discoideum. It is a model organism for the study of development because 

of its ability to for a multicellular structure. It is now being considered a 

model for the study of social evolution because of the potential for conflict 

and cooperation during multicellular formation (Strassmann et al. 2000). It 

is a unicellular amoeba that preys on soil bacteria (Raper 1984). When it 

runs out of food it sends out a signal of cAMP, causing all nearby cells tog 

aggregate and form a multicellular slug (Kess in 2001 ). At this point there 

is the potential for conflict because approximately 20% of the cells in the 

slug will altruistically forego reproduction to form a sterile stalk so that the 

remaining 80% can be held aloft as reproductive spores in a structure 

called a sorus. The formation of the multicellular fruiting body (stalk plus 

sorus) may lead to conflict because all nearby cells aggregate together, 

which may be clones of different genotypes (Fortunato et al. 2003), each 

trying to increase its own fitness. Several studies have found that D. 

discoideum is capable of recognizing kin from non-kin. The response to 

this recognition ranges from sorting out from aggregates containing other 

genotypes to cheating, where one of the genotypes will gain an unfair 



advantage in reproductive spores (Fortunato et al. 2003; Ostrowski et al. 

2008; Buttery et al. 2009). Its genome has been sequenced (Eichinger et 

al. 2005), which gives the potential to connect social behaviors to their 

underlying genes. 

4 

The other species I study in my thesis is D. purpureum. Its genome has 

recently been sequenced, although it is not yet fully aligned (Sucgang et 

al. 2011). It differs both developmentally and morphologically from D. 

discoideum. Comparative analysis of the two genomes finds that they are 

as different from each other as humans are from jawed fish (Sucgang et 

al. 2011). However, the two species are in the same major phylogenetic 

dictyostelid group based on small subunit RNA and a-tubulin sequences 

(Schaap et al. 2006). Phylogenetic analysis of morphology shows that D. 

purpureum is the older species (Schaap et al. 2006; Schaap 2007), 

characterized by its stalked migration and smaller spores. 

1.2.1 Between species interactions of Dictyostelium 

The first project in my thesis is about the mutualistic interaction of D. 

discoideum and D. purpureum. Mutualisms are interactions between 

different species where each gains a benefit out of partnership. It is a 

cooperative relationship without the benefit of relatedness, such as seen 

between cooperative interactions within a species. Because inclusive 
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fitness cannot be used as a mechanism for this behavior, there must other 

reasons why species would cooperate. One species might offer some 

public good or service that the other cannot obtain on its own. For 

example, the in the mutualism between the Senita cactus and Senita 

moth, the moth pollinates the cactus in exchange for a place to oviposit 

eggs (Holland & Fleming 2002). A host of literature on mutualisms and 

cooperative interactions mentions several methods that individuals use to 

prevent cheating, such as policing, tit-for-tat, sanctions (Axelrod & 

Hamilton 1981; Boucher 1985; Frank 1995). We know that both species 

can be found in the same soil sample and that they both aggregate to the 

same chemoattractant making it more than likely that they may find 

themselves in the same multicellular aggregate. In this chapter we 

explore how D. discoideum and D. purpureum interact and if either of the 

species looks to cheat the other when they interact. 

1.2.2 Dispersal and Dictyostelium 

The second part of my thesis is devoted to looking at the cost of dispersal 

in D. discoideum and D. purpureum. Dispersal is a life history trait that 

affects both ecological and evolutionary behaviors because of its effects 

on population structure and speciation (Johnson & Gaines 1990; 

Friedenberg 2003). While well studied in macroorganisms, it has not been 

nearly as well studied in microorganisms (Holekamp 1984; Cote & Clobert 
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201 0). One reason may be the strength of the hypothesis proffered by 

Baas Seeking in 1934, that "everything is everywhere, but, the 

environment selects" (Fierer 2008). According to this theory, 

microorganisms have high dispersal and therefore are found, without 

population structure, in all types of environments. If there is high, random 

dispersal, then the assumption is that costs are not limiting and do not 

factor into dispersal distances (Rousset & Gandon 2002). However, many 

of these studies were done on microorganisms that disperse passively 

(Finlay 2002). My aim was to quantify the costs of dispersal during the 

social migration phase of Dictyostelium. We know that as the slug 

migrates, it loses cell that must be replaced through dedifferentiation of 

the cell types within the slug. Additionally, we are using two species that 

migrate in different ways. D. discoideum migrates and then undergoes 

final differentiation into stalk and spore, while D. purpureum differentiates 

some of its cells to stalk as it migrates. Our goal was to explore the 

fitness costs associated with timing of stalk determination. 

1.2.3 Cooperation and Dispersal in D. discoideum 

My final project is to examine how migration affects the interaction of 

different clones of D. discoideum. Hamilton's theory of kin selection shows 

that cooperation can evolve if the recipient of the beneficial action has a 

high enough degree of relatedness to the actor to overcome the cost 
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involved, according to the inequality: rb-c > 0 (Hamilton 1964). In order for 

kin selection to favor altruism, relatedness must be sufficiently high. 

Hamilton proposed two mechanisms for this. One way is through kin 

discrimination, where organisms preferentially direct benefits towards kin 

whom they can recognize on some level (Hamilton 1964). The second 

mechanism is through limited dispersal (Hamilton 1964). Theoretical 

models suggest that it can be an important method for the evolution of 

cooperation but may also lead to the breakdown of cooperation because 

of increased local competition between kin (Taylor 1992; Queller 1994; 

Bourke & Franks 1995; West et al. 2006). We know that clones of D. 

discoideum will compete with each other to become reproductive spores 

(Fortunato et al. 2003). We also know that chimeric slugs do not travel as 

far as clonal slugs of the same size (Foster et al. 2002). However, we do 

not know the effect of simultaneous dispersal and cooperation on 

population structure. In this study, we examine the interaction of different 

clones of D. discoideum before and after migration. 

1.3 Conclusion 

Together, these chapters will help explain how the population structure of 

Dictyostelium is affected by interactions with other species and with other 

members of the same species. This work will give us further 



understanding of how kin competition and cooperation may have evolved 

and remained stable. 
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2.1 Abstract 

2.1. 1 Background 

A major challenge for evolutionary biology is explaining altruism, 

particularly when it involves death of one party and occurs across species. 

Chimeric fruiting bodies of Dictyostelium discoideum and Dictyostelium 

purpureum develop from formerly independent amoebae, and some die to 

help others. Here we examine co-aggregation between D. discoideum 

and D. purpureum, determine its frequency, which party benefits, and the 

extent of fair play in contribution to the altruistic caste. 

2.1.2 Results 

We mixed cells from both species in equal proportions, and then we 

analyzed 198 individual fruiting bodies, which always had either a D. 

discoideum or D. purpureum phenotype (D. discoideum- 98, D. 

purpureum- 1 00). Fifty percent of the fruiting bodies that looked like D. 

discoideum and 22% of the fruiting bodies that looked like D. purpureum 

were chimeric, though the majority of cells in any given fruiting body 

belonged to one species (D. discoideum fruiting bodies- 0.85±0.03, D. 

purpureum fruiting bodies- 0.94±0.02). Clearly, there is species level 

recognition occurring that keeps the cells mostly separate. The number of 

fruiting bodies produced with the D. discoideum phenotype increased 
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from225± 32 fruiting bodies when D. discoideum was alone to 486±61 in 

the mix treatments. However, the number of D. discoideum spores 

decreased, although not significantly, from 2. 75e7 ±1.29e7 spores in the 

controls to 2.06e7 ±8.33e6 spores in the mix treatments. D. purpureum 

fruiting body and spore production decreased from 719± 111 fruiting 

bodies and 5.81 e7 ±1.26e7 spores in the controls to 394±111 fruiting bodies 

and 9.75e6 ±2.25e6 spores in the mix treatments. 

2.1.3 Conclusions 

Both species prefer being clonal but cooperate with each other when it 

seems the benefits outweigh the costs. Cooperating amoebae are able to 

make larger fruiting bodies, which are advantageous for migration and 

dispersal, but both species here suffer a cost in producing fewer spores 

per fruiting body. 

2.2 Background 

Cooperative relationships between different species are common in 

nature (Boucher 1985; Maynard Smith & Szathmary 1995; Herre et al. 

1999). They can be found in every environment, from cactus pollinators in 

the desert (Holland & Fleming 2002) to microbial symbionts in the ocean 

(Nyholm & McFaii-Ngai 2004). Although species cooperation has become 

recognized as important both ecologically and evolutionarily it is less well 



16 

studied than other interspecies relationships such as predator-prey 

interactions and competitive interactions (Bronstein 1994; Bergstrom et al. 

2003). The evolution of cooperation presents a conundrum. How do these 

relationships evolve and remain stable over generations? Why would 

selection favor altruism and cooperation when cheaters could reap the 

benefits of an interaction without paying any of the associated costs (Bull 

& Rice 1991; Ferriere et al. 2002; Sachs et al. 2004; Foster et al. 2006)? 

Only in recent years have the worlds of microbiologists and evolutionary 

biologists merged to begin interdisciplinary studies on cooperation in 

microorganisms (Crespi 2001; West et al. 2006). The social amoebae of 

the genus Dictyostelium present ideal candidates for studying microbial 

interactions. All dictyostelid species spend the majority of their lifecycle as 

solitary amoebae living on the forest floor, eating bacteria. When the cells 

begin to starve, they send out a signal, which is cyclic AMP in many 

species, causing all nearby cells to aggregate together. In some species, 

such as D. discoideum (Figure 2-1a), the cells form a multi-cellular slug 

that then migrates to a new location. Once migration is complete, 

approximately one-fifth of the cells will altruistically die to form a sterile 

stalk to hold aloft the remaining cells, which have formed a sorus 

consisting of viable spores (Bonner 1967; Raper 1984). In other species, 

including D. purpureum (Figure 2-1 b), the slug forms a sterile stalk as it 
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migrates to a new location. Once migration is complete, the stalk 

becomes vertical and the sorus forms. At this stage in the life cycle of 

Dictyostelium conflict may occur as the amoebae make the transition to 

multicellularity from individual cells. Some of the cells undergo the 

ultimate sacrifice of dying to form the sterile stalk leaving the majority to 

form fertile spores. This behavior will be favored by natural selection only 

if those cells are able to pass on their genes through relatives, who may 

often be clone mates. The higher the relatedness to spore cells, and the 

greater the advantage to having a stalk, the more the stalk cells will 

benefit from paying the cost and there will be less conflict between the two 

cell types. 

The social behavior of Dictyostelium discoideum makes it an ideal model 

to study social evolution (Strassmann et al. 2000). It has been shown, 

both in the lab and in nature, that D. discoideum clones will form chimeras 

(Strassmann et al. 2000; Foster et al. 2002; Fortunato et al. 2003; Gilbert 

et al. 2007). In these chimeric fruiting bodies, conflict can occur. Foster et 

a/. (Foster et al. 2002) reported that chimeric slugs migrate less far than 

clonal slugs of the same size indicating that some form of conflict is 

occurring within the slug between different clones. Additionally, some 

clones of D. discoideum have the ability to cheat other D. discoideum 

clones in chimeras by forcing them into the stalk, leading to an unequal 



representation in the fruiting body (Strassmann et at. 2000). Recently it 

has been shown that clones of two other species of social amoeba, D. 

purpureum and D. giganteum form intraspecific chimeras (Kaushik et at. 

2006; Mehdiabadi et at. 2006). 
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A single soil sample of a fifth of a gram may contain several clones and 

species (Fortunato et at. 2003). Yet, the formation of interspecific 

chimeras has not been carefully studied even though many of these 

species aggregate to the same chemo-attractant, cyclic AMP. Olive (Olive 

1902) first looked for and failed to find chimeras of D. purpureum and D. 

mucoroides, followed by two other groups almost fifty years later (Raper & 

Thorn 1941; Bonner & Adams 1958). Neither group managed to find 

chimeras under normal aggregation conditions. Another researcher, 

Hagiwara (Hagiwara 1992), made some preliminary interspecific mixtures 

while he explored whether aggregating streams of cells of three different 

genera of Dictyostelids mixed or overlapped in any way. His work verified 

that many species use the same chemo-attractants. 

A molecular phylogeny of the Dictyostelids based on small subunit 

RNA and a-tubulin sequences shows subdivision of all known species into 

four major groups. D. discoideum, D. purpureum, and D. giganteum are 

all members of Group 4, a group where all of the studied species 

aggregate and respond to the same chemo-attractant, cAMP (Schaap et 
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al. 2006). Most of the studies exploring social behavior in the 

Dictyostelids have concentrated on within-species interactions in D. 

discoideum. Recent work in other species, such as D. giganteum and D. 

purpureum has shown interesting behavior between clone mates (Kaushik 

et al. 2006; Mehdiabadi et al. 2006). However, species interactions 

between members of Group 4 have not been closely studied, despite their 

similar biological properties. Here we test the hypothesis that D. 

discoideum and D. purpureum form chimeric fruiting bodies, and we test 

some of the costs and benefits. 

2.3 Results 

2.3.1 Chimerism of D. discoideum and D. purpureum fruiting bodies 

We found chimeric fruiting bodies in 20 out of 21 trials where the 

initial cell suspension contained an equal number of cells of both species. 

All fruiting bodies in each experiment displayed either the D. discoideum 

phenotype or the D. purpureum phenotype. None of the fruiting bodies, 

including those that were chimeric, displayed an intermediate phenotype. 

Half of the D. discoideum fruiting bodies examined contained spores of D. 

purpureum, while only 22% of the D. purpureum fruiting bodies contained 

D. discoideum spores (W14, 13=124, n=27, p<0.05). 
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The majority species in the chimeras, with a few exceptions, determined 

the phenotype. Chimeric D. discoideum fruiting bodies contained an 

average of 26.8± 4.4% D. purpureum spores per clone while chimeric D. 

purpureum fruiting bodies had 29.5±9.2 % D. discoideum spores (W12, 

a=51, n=20, p=0.851). However, when we include all fruiting bodies, 

chimeric and clonal, from the experimental plates, fruiting bodies with the 

D. discoideum phenotype contained a higher percentage of 'nonself 

spores, than D. purpureum fruiting bodies, although it was not significant. 

(DDnonseltspores =16.04±4.52%, DPnonseltspores =5.44±1.90%, W14. 13=125, 

n=27, p=0.1 01, Figure 2-2A-B). 

2.3.2 Numbers of fruiting bodies with the morphology of D. discoideum 

vs. D. purpureum 

We counted the number of fruiting bodies produced by each species on 

the control plates (each species alone) and on the experimental plates 

(50:50 mix of the two species) to compare the number of fruiting bodies 

produced after we standardized for the difference in cell number. We 

distinguished the fruiting bodies based solely on phenotype and not on 

whether the fruiting bodies may have contained spores of the other 

species. In the controls, D. discoideum produced 225± 32 fruiting bodies 



per 2x1 07 cells, while D. purpureum produced an average of 719± 111 

fruiting bodies per 2x107 cells, (W1 4, 15=10, n=27, p<0.001). 
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The number of fruiting bodies with D. discoideum morphology significantly 

increased to 486± 61 when plated with D. purpureum when compared to 

the number of fruiting bodies produced when alone (W14, 13=35, n=27, 

p<0.01, Figure 2-2C). Conversely, the number of fruiting bodies with D. 

purpureum morphology decreased significantly to 394±111 when plated 

with D. discoideum (W13. 13=135, n=26, p<0.01, Figure 2-2D). 

2.3.3 Spore production by D. discoideum and D. purpureum from cells 

We determined the number of spores produced by each species after 

equal numbers of cells of each species were mixed together without food 

to determine if one species gained an advantage over the other. We 

corrected for germination efficiency and initial cell number when we 

compared control plates to experimental plates. D. discoideum produced 

the same number of spores from a given number of cells whether or not 

cells of D. purpureum were also present. (DD_sporesexp=2.06e7 ±8.33e6 , 

DD_sporeSctr1=2.75e7 ±1.29e7, Ws, s=29, n=18, p=0.331, Figure 2-2E). 

However, D. purpureum produced fewer spores when cells of D. 

discoideum were present compared to when D. purpureum cells were 
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alone (DP _sporesexp=9.75e6 ±2.25e6, DP _sporeSctr1=5.81e7±1.26e7, W10, 

1o=81.5, n=20, p=<0.05, Figure 2F). We also calculated the number of 

spores produced per fruiting body for both D. discoideum and D. 

purpureum when alone and when mixed with each other as a measure of 

fruiting body size. Both D. discoideum and D. purpureum produced fewer 

spores per fruiting body in mixes when compared to the number produced 

when alone but neither was significant (DDexp=4.16e4 ±1.54e4, 

DDctrl=6.15e4 ±1.55e4, Ws,s=60, n=18, p=0.094, DPexp=3.65e4 ±6.74e3, 

DPctrJ=4.96e4 ±6.74e3, W1o, 1o=53, n=20, p=0.853). 

2.3.4 Relatedness 

We defined relatedness (r) as the probability that two spores in the same 

fruiting body were from the same species. Relatedness was calculated in 

the experimental fruiting bodies using p2 + (1-p)2 where p was the 

proportion of D. purpureum spores in a fruiting body. This measures the 

degree to which clones experience their own type in the fruiting body, 

above the population expectation of near zero. Fruiting bodies with the D. 

purpureum phenotype had an average relatedness of r=0.943±0.014 

which was not significantly higher than the relatedness of those fruiting 

bodies with a D. discoideum phenotype, r=0.89±0.022 (W14, 13=60.5, n=27, 

p=0.140). 
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2.3.5 Time-lapse microscopy 

We used time-lapse microscopy to determine when the cells of D. 

discoideum and D. purpureum aggregate together and when they begin to 

sort. We found that the cells aggregate through the mound stage, the 

point in the life cycle after aggregation when the cells are found in small 

mounds before they differentiate into slugs, and then a primarily D. 

purpureum slug migrates away, leaving behind a mound composed mostly 

of D. discoideum cells that eventually become a fruiting body (Figure 2-3). 

2.4 Discussion 

More than one-third of the fruiting bodies we examined were chimeric and 

95% of the experiments contained at least one chimeric fruiting body. 

This shows that, at least in a lab setting, D. discoideum and D. purpureum 

cells can interact, aggregate, and form chimeric fruiting bodies, although 

the average percentage of one clone in any given fruiting body is 90%, 

which indicates that the two species prefer to segregate but do so 

imperfectly. Both species had an equivalent proportion of the other 

species in the chimeric fruiting bodies, but because chimeras were more 

frequent in D. discoideum, there were more foreign spores found in fruiting 

bodies with the D. discoideum morphology. We measured relatedness to 

determine how much mixing and sorting is happening between the two 

species. The higher the relatedness, the less intermixing that is occurring 
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between the two species. An r-value of 0.5 means that the cells are 

randomly mixing while an r-value of 1 means that the cells are completely 

sorting. Despite the presence of chimeric fruiting bodies, relatedness 

remained high within fruiting bodies of each phenotype (0.89 for D. 

discoideum, 0.94 for D. purpureum) on plates that began with an equal 

number of cells of each species. 

It is remarkable that we found such a high incidence of chimerism for 

several reasons. First, D. discoideum and D. purpureum are not 

particularly closely related. In the current phylogeny (Schaap et al. 2006), 

the node separating the two species has 4 other species in the branch 

including D. discoideum and 17 others in the branch including D. 

purpureum. This phylogenetic distance is manifest in several 

developmental differences between the two species that may impact the 

level of sorting. D. purpureum forms a stalk as the slug migrates, while D. 

discoideum forms its stalk after the slug finishes migrating (Raper 1984). 

Additionally, D. purpureum develops faster than D. discoideum. As a 

result, cells of D. purpureum may differentiate first leading to an increase 

in sorting if the genes responsible for cell-type partitioning and 

development up-regulate at different times. We found evidence of this 

pattern when we used time-lapse microscopy. Cells of both species 

aggregate together for a short time, but then D. purpureum slugs break off 
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and migrate away from the initial mound, leaving mostly D. discoideum 

cells. A short time later, D. discoideum slugs begin to migrate and then 

form fruiting bodies. Interestingly, slugs contained cells from both species, 

indicating only partial disassociation. 

Our chimerism result is also surprising because prior research failed to 

show chimerism despite mixing different species in a variety of ways. 

Raper and Thorn (Raper & Thorn 1941) first mixed spores of D. 

discoideum and D. purpureum and reported the absence of intermediate 

phenotypes, which was in accordance with our results, but does not 

preclude chimerism. They then mixed D. discoideum spores with spores 

of D. mucoroides, a species that is as equally distant phylogentically as D. 

purpureum (Schaap et al. 2006). They used the bacterium S. marcescens 

as a food source. S. marcescens contains a red pigment that D. 

discoideum is unable to digest, resulting in dyed cells (Raper 1937; Raper 

1984) while D. mucoroides digests the pigment and remains white They 

found that the red cells initially aggregated together with the white cells but 

separated into red and white fruiting bodies. This shows that most cells 

segregated, but it is not clear if some individual cells of the wrong type 

might have been present. 

Raper and Thorn (Raper & Thorn 1941) also tried making grafts between 

different portions of the slugs of D. discoideum and D. purpureum, but 
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were unsuccessful in getting the segments to permanently coalesce and 

form chimeric fruiting bodies. Using these data, they concluded that 

Dictyostelium species did not form chimeras. In one final experiment, they 

were able to obtain fruiting bodies with intermediate phenotypes by 

allowing cells of each species to form slugs and then crushing those slugs 

and mixing them (Raper & Them 1941). These fruiting bodies contained 

spores from both species. However, those fruiting bodies that retained the 

phenotype of only one parent only produced fruiting bodies of that same 

phenotype, seemingly indicating that those fruiting bodies consisted of one 

species. Bonner and Adams (Bonner & Adams 1958) also failed to find 

chimeras after they completed a series of experiments where they 

attempted to make intermediate fruiting bodies by grafting different 

species together during the aggregation stage. Neither group reported the 

density of spores that they used. 

Perhaps we were able to find chimeras while the others did not because 

we plated out individual spores from fruiting bodies carefully at a very low 

density so we could detect low levels of mixing. Overall, there was mostly 

sorting, but some mixing, which may have been missed if not looked for 

carefully. We also used multiple clones, and had we used only one pair, 

an unlucky choice (for example mix 10 between clones QS75 and 



QSPu13 in Figure 2-2A-B) could have led us to the false conclusion that 

there was little mixing. 
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Finally, the finding of chimerism between species is surprising because 

both species apparently avoid chimerism even with other clones of their 

own species, Gilbert eta/. (Gilbert et al. 2007) found that the relatedness 

for naturally occurring fruiting bodies collected in the wild that contained 

multiple clones of D. discoideum was 0.68, which was much lower than 

the overall relatedness of 0.98, because there were many clonal fruiting 

bodies. This result could be due either to sorting or to patchy distribution 

of clones. However, clear sorting was shown in fruiting bodies of D. 

purpureum when pairs of clones were mixed in 50:50 ratios; the result was 

an overall relatedness of 0.81 (Mehdiabadi et al. 2006). Recently, 

somewhat weaker sorting has also been demonstrated between D. 

discoideum clones (Ostrowski et al. submitted). Our relatedness values 

for the two species mixed 50:50, were 0.89 for D. discoideum and 0.94 for 

D. purpureum. The higher values indicate greater clonal sorting than 

within-species mixes. 

Why do these two species cooperate, at least some of the time? In most 

cooperative interactions involving different species, each partner brings 

different goods or services to the association, such as between the Sen ita 

cactus and Senita moth, where the moth pollinates the cactus in exchange 
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for a place to oviposit eggs and the larvae to subsequently eat a portion of 

the seeds. That is not the case with these two dictyostelids because both 

species provide essentially the same services- migration and stalk 

formation. One possibility is that the mixing is a mistake. Each species 

may undergo its social lifecycle where certain cells altruistically form stalk 

cells as it would if in a clonal population. Cells of different species may 

aggregate and develop together because of their close proximity to each 

other and similar developmental characteristics. Another possibility is that 

although this interaction evolved to provide beneficial cooperation within 

species (or even within clones), different species are able to benefit from 

those services, such as protection from predators, migration, spore 

formation and dispersal when they would otherwise not be able to 

because of a cell number deficiency. When both species face the 

possibility of being unable to aggregate on their own because they lack 

sufficient cell number, the two species will aggregate together and form 

fruiting bodies, to their mutual benefit instead of dying out. Though we are 

unable to fully distinguish these hypotheses, we can provide an 

accounting of some of the costs and benefits that result from interspecies 

chimerism. 

In any cooperative relationship, there are costs associated with each 

altruistic act. One such cost is that the altruistic act is not reciprocated, 
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which may lead to the exploitation of one partner by the other. Cheating is 

the greatest concern when there is an interaction between two individuals 

that are not genetically identical. Earlier research shows that clones of D. 

discoideum may cheat each other but prior experiments involving only D. 

purpureum clones show that the species maintains a high degree of kin 

discrimination by preferentially associating with kin without displaying a 

consistent pattern of cheating (Strassmann et al. 2000; Mehdiabadi et al. 

2006). The stronger segregation seen in D. purpureum may have evolved 

as a way to prevent cheating between clones, but it also might mean that 

this species no longer has a need to maintain mechanisms of cheating, or 

other defenses against cheating. When the two species are mixed 

together, D. discoideum's ability to cheat and D. purpureum's lack of a 

cheating mechanism may be the reason D. purpureum was exploited. 

It is possible that this association is kept stable and cheating to a minimum 

because the aggregates form only when necessary and that they are kept 

as pure as possible, as indicated by the much higher relatedness values 

we calculated when compared to those found in previous studies. 

Additionally, both species suffered in the production of spores per fruiting 

body, which may be why the two species tend to segregate from each 

other despite some of the benefits that may be gained from the interaction. 
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We did not observe a clear benefit to this interaction that might explain 

why it has persisted. In terms of spore production, D. discoideum 

maintained the number of spores it produces while D. purpureum 

decreased the number of spores produced. However, additional possible 

benefits result from larger slug size that are not measurable using spore 

production, the metric we tested. One possible benefit for cells from both 

species is protection from predators. By aggregating together, the 

amoebae can initiate mechanisms to avoid soil predators such as 

nematodes. Kess in et a/. (Kessin et al. 1996) showed that Caenorhabditis 

elegans feeds on individual amoebae up through early aggregation. 

However, in late aggregation the cells form a polysaccharide sheath that 

the nematodes are unable to penetrate. This sheath protects the 

amoebae as they migrate as a multicellular slug. Once the fruiting body is 

formed, C. elegans may ingest the spores, but they are unable to digest 

them. Kessin eta/. (Kessin et al. 1996) found an additional benefit in D. 

purpureum: at high cell densities, it is able to repel nematodes. Therefore, 

it may be beneficial to both species to aggregate together when cell 

numbers are low, especially in the presence of predators. 

Migration distance is another potential benefit of forming a larger slug. 

Foster eta/. (Foster et al. 2002) found that larger slugs of D. discoideum 

traveled further than slugs containing half the number of cells. Also, they 
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found that larger chimeric slugs traveled further than smaller clonal slugs. 

When slugs are traveling to a new location because the current one has 

run out of bacteria, larger slugs are more likely, over both smaller slugs 

and solitary cells, to reach a new patch of bacteria (Foster et al. 2004; 

Kuzdzai-Fick et al. 2007). 

A final possible benefit to co-aggregation is for spore dispersal purposes. 

To successfully disperse spores, they must be held aloft on a stalk of 

sufficient height. If there are too few cells in the aggregate, a fruiting body 

may not form at all. Or, even if a small fruiting body is able to form, it may 

be at a disadvantage relative to larger fruiting bodies, making it less likely 

to disperse due to contact from passing invertebrates. 

There may be other benefits that both species gain from cooperating and 

these benefits may override the cost to D. purpureum in spore production 

and any conflict that may arise as a result of the chimerism. 

2.5 Conclusions 

The surprising finding that D. discoideum and D. purpureum can 

cooperate to form chimeric fruiting bodies cannot be explained by 

increased spore production. It may simply be a mistake or it may be 

making the best of a bad job. Both species seem to prefer being clonal, 

but a fraction of cells cooperate with other clones and even other species, 

perhaps when benefits are high enough to overcome those costs. 
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Cooperating amoebae are able to make larger fruiting bodies, which is 

advantageous for migration and dispersal, but these benefits will need to 

be quantified to assess their importance. 

2.6 Methods 

2.6.1 Clones 

We used fourteen genetically distinct wild clones of D. discoideum and 

thirteen clones of D. purpureum isolated from different soil samples 

collected at the Houston Arboretum, Texas (Table 2-1). 

2.6.2 Cell preparation 

We plated out 3x1 a5 spores from each clone with 3aat-tl of the bacteria 

Klebsiella aerogenes (KA) as food on SM/5 agar plates (Sussman 1966). 

After approximately 38 hours, we harvested the cells while they were in 

log growth before multi-cellular development occurred with cold standard 

KK2 buffer (3.8mM K2HP04, 16.5mM KH2P04). The cells were then 

centrifuged three times at 1 aaa rpm for three minutes to remove any 

remaining bacteria and set at a concentration of 1 a8 cells per milliliter in 

KK2 buffer. 
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2.6.3 Experiment set-up 

For each of the 21 experiments, we tested one D. discoideum clone with 

one D. purpureum clone. We filled each well of a 6-well tissue culture 

plates (3.5cm in diameter) with 7ml of non-nutrient agar (14.9g agar per 

liter KK2 buffer). We designated four of the wells, from here forward 

called plates, as control plates. We labeled the final two plates as 

experimental plates. For the control plates, we added 4x1 07 cells in 400f..ll 

of KK2 buffer for each clone. For the experimental plates, we added 

together 2x1 07 cells of each clone in 200f..ll of KK2 buffer. After thoroughly 

mixing the cells, we spread 400!-ll of the cell suspension on a plate. Thus, 

we had a replicate of the control and experimental plates. We used one 

set to assess mixing and the other to assess spore production. We used 

both sets to assess fruiting body production. 

2.6.4 Data collection and analyses 

2. 6. 4. 1 Fruiting body assessment: 

In order to determine the number of fruiting bodies present on all plates, 

we created a circular grid 3.5cm in diameter that exactly fit the bottom of 

the tissue culture plates. Each square in the grid had an area of 0.25cm2. 

Before the start of the experiment we randomly selected eight of the 

squares to be the counting squares so that the same squares were used 
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consistently for all 21 of the experiments. In these squares, we counted 

all of the fruiting bodies, and in the case of the experimental plates, 

whether they had a D. discoideum or D. purpureum phenotype using a set 

of established criteria such as sorus color, presence of a basal disc, and 

stalk type (Figure 2-4). We examined the remaining squares for the 

presence or absence of fruiting bodies of each species. We then 

calculated the number of fruiting bodies by multiplying the average 

number of fruiting bodies over the eight squares by the area of the plate. 

2.6.4.2 Spore production assessment: 

For one of each control and experiment plate, we collected all of the 

fruiting bodies in 1 ml of KK2 buffer to count the number of spores that 

were produced. We used a hemacytometer to count the spores. 

Additionally, we plated out a dilute sample of the spores from the 

experiment on five 60 em Petri plates containing SM/5 agar to determine 

the proportion of spores produced for each species. By plating a diluted 

concentration of the spores, we were able to determine where on the plate 

cells were released from individual spores and were then able to 

determine the identity of the spore and calculate the proportion of spores 

of each species. After adjusting for germination efficiency, we were able 

to determine the number of spores produced by each species on the 

experimental plates by multiplying the proportion of spores of each 



species previously calculated by the total number of spores that were 

collected from the experimental plate. 

2.6.4.3 Germination efficiency: 

35 

For each clone, we plated out approximately 30 spores per plate over six 

60 em Petri plates containing SM/5 agar with 300ul of KA. After three 

days, we began scoring the plates for germinated spores, indicated by 

clearings in the bacteria. We replicated this procedure twice to get an 

average number of spores that germinate for each species. We also 

plated out an equal known number of spores from both species together at 

low density to see if the spores of one species inhibited the other and 

prevented them from germinating. 

When plated at low density, the average germination rate for D. 

discoideum was 17.7% (SE=0.022) while the average rate of germination 

for D. purpureum was 50.3% (SE=0.033) (F1, sa=59.41 ,n=60, p<0.001). 

We also tested the germination efficiency of each species alone and when 

plated with the other species to ensure that the spores of one species 

were not inhibiting spores of the other. We found that there was no 

difference in the germination efficiency for either D. discoideum (F1, 

16=0.31, n=18, p=0.585) or D. purpureum ((F1, 1s=0.31, n=17, p=0.361) in 

mixes as compared to pure clones. Based on these results, we adjusted 



spore numbers to reflect the greater spore germination rate of D. 

purpureum. 

2.6.4.4 Chimera assessment: 
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From the other set of experiment plates, we collected five fruiting bodies 

that had a D. discoideum phenotype and five fruiting bodies that had a D. 

purpureum phenotype. We placed each fruiting body individually in 40~-tl 

of KK2 buffer and plated out a dilute sample of the spores with on SM/5 

plates with KA. We tallied the number of spores of each species that 

hatched from the fruiting bodies to determine if the fruiting body was 

chimeric and what percentage of the spores in the fruiting body were of 

the other species' phenotype after again adjusting for germination. 

2.6.4.5 Time/apse Florescence Microscopy: 

We observed the different stages of development in one pair, (Experiment 

#4: QS71 and QSPu16) by labeling QS71with CeiiTracker™ Green 

CMFDA. We followed the manufacturer's recommended protocol to label 

the cells, except that we used 50~-tM of CeiiTracker™ Green CMFDA. We 

created the timelapse using a Nikon™ E1000 florescent microscope and 

MetaMorph® imaging software. 



2. 6.4. 6 Analyses: 

We ran Wilcoxin rank sum tests on all our data except the germination 

efficiency results. The data were analyzed after grouping by clone, 

although when the data were grouped by experiment, the results were 

comparable. The germination efficiency data was analyzed using 

ANOVAs. We ran all analyses on our data using R (Team 2006). All of 

the data are reported as the mean ± standard error. The graphs were 

created using Microsoft Excel version 11.3.5. 
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Table 2-1 Table of D. discoideum and D. purpureum clone used in the experiment 

EXPERIMENT D. discoideum D. purpureum 
# clone ID clone ID 
l QS68 QSPu16 

2 QS69 QSPu16 

3 QS70 QSPu16 

4 QS71 QSPu16 

5 QS72 QSPu16 

6 QS73 QSPulS 

7 QS73 QSPu16 

8 QS73 QSPu17 

9 QS74 QSpu18 

10 QS75 QSPu13 

II QS76 DP12 

12 QS71 QSPu14 

13 QS77 QSPu8 

14 QS77 QSPu19 

15 QS78 QSPulO 

16 QS78 QSPu11 

17 QS79 QSPu20 

18 QS78 QSPu20 

19 QS80 QSPu20 

20 QS81 QSPu12 

21 QS81 QSPu14 
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Figure 2-1 The lifecycle of the two Dictyostelium species 
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Both species have a similar developmental lifecycle until the slug stage. The darker cells are the spore cells and the 
lighter cells are the stalk cells. 1) The cells eat bacteria and reproduce asexually. 2) Upon starvation, the cells begin to 
aggregate together using cyclic AMP as a chemo-attractant. 3) In late aggregation, the cells form a mound. 4) The 
cells form a multicellular slug. In D. discoideum, the slug migrates to a new location, forms a stalk, and then completes 
development. In D. purpureum, the slug forms a stalk as it migrates to a new location and then completes 
development. 5) The final fruiting body stage where some of the cells have become sterile to form a stalk and hold up 
the reproductive spore body. 
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Figure 2-2 The effects of the interaction of D. discoideum and D. purpureum 

The graphs show the results of analyses of D. discoideum and D. purpureum by clone, both when alone and when mixed with 
each other. A-8: The composition of the fruiting bodies of each species, alone and mixed, where the higher the percentage 
means the more clonal the fruiting body. C-D: Fruiting body production of each species, alone and when mixed, after being 
standardized for the number of cells of each species added to a plate. E-F: The number of spores produced by each species, 
alone and mixed after being standardized for the number of cells of each species added to a plate. 
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Figure 2-3 Slugs of D. discoideum and D. purpureum show partial sorting due to developmental differences 

Although cells of both species aggregate together {A), the majority of cells of D. purpureum forms a slug first and migrates 
away, taking some D. discoideum cells {indicated by the green) with it {B). The majority of the cells of D. discoideum stays 
in the mound to later form a slug and migrate {C). 
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Figure 2-4 Characteristics used to determine Dictyostelium phenotype 

D. discoideum is characterized by having a basal disc; thick, straight stalk, and white/clear sorus. D. purpureum is 
characterized by its lack of basal disc; thin, wavy stalk; and purple sorus. 
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3.1 Abstract 

One of the challenges of microbial life is that the best location for feeding 

and growth may not be the best location for dispersal. This is likely to be 

the case for the social amoebae Dictyostelium discoideum and 

Dictyostelium purpureum that feed on soil bacteria in the amoeba stage, 

but then group into a multicellular slug that moves towards light before 

forming a fruiting body. Here we examine this short-range social dispersal 

in the social amoebae, Dictyostelium discoideum and D. purpureum. We 

predicted D. purpureum would have higher migration costs and travel less 

far because it forms a dead stalk from living cells as it moves, while D. 

discoideum delays stalk formation until movement ceases. We found that 

D. purpureum migrated shorter distances than D. discoideum, in accord 

with our prediction. D. discoideum slugs moved an average of 2.46 ± 0.19 

em while D. purpureum slugs moved an average of 1.04 ± 0.06 em. In 

both species, migration incurred a cost in reduced spore production, 

compared to experimental conditions where slugs did not migrate. D. 

discoideum under the no migration treatment produced 0.55± 0.05 spores 

per cell and under the migration treatment produced 0.25 ± 0.04 spores 

per cell. D. purpureum under the no migration treatment produced 1.01± 

0.06 spores per cell and under the migration treatment produced 0.85 ± 

0.06 spores per cell. We also found that D. discoideum produced fruiting 
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bodies with fewer spores after migrating while D. purpureum did not. It 

appears that the evolutionary loss of stalked migration gives D. 

discoideum cells the advantage of delaying specialization and the ability to 

colonize more distant locations, but has significant costs due to migration 

distance, such as the fraction of cells that become fertile spores. 
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3.2 Introduction 

Dispersal is a life history trait that affects both ecological and 

evolutionary behaviors because of its effects on population structure and 

speciation (JOHNSON & GAINES 1990; FRIEDENBERG 2003). The costs of 

dispersal must be outweighed by the benefits of this potentially dangerous 

and energetically costly activity. The cost of dispersal has been studied 

extensively and modeled in macro-organisms (HOLEKAMP 1984; 

SCHTICKZELLE et al. 2009; COTE & CLOBERT 201 0). However, it has not 

been examined nearly as extensively in microorganisms. One reason 

may be the strength of the hypothesis proffered by Baas Seeking in 1934, 

that "everything is everywhere, but, the environment selects" (VANDER 

GucHT et al. 2007; FIERER 2008). This theory assumes that 

microorganisms have high dispersal and therefore are found, without 

population structure, in all types of environments. If there is high, random 

dispersal, then the assumption is that costs are not limiting and do not 

factor into dispersal distances (RoussET & GANDON 2002). However, many 

of these studies were done on microorganisms that disperse passively 

(FINLAY 2002). More recent research on active dispersers has introduced 

new theory that suggests that dispersal is non-random (MARTINY et al. 

2006; JENKINS et al. 2007), but this area is still developing and is just 



52 

beginning to include microorganisms that have cooperative dispersal (Vas 

& VELICER 2008; SCHTICKZELLE et al. 2009). 

The eukaryote social amoebae Dictyostelium discoideum and D. 

purpureum are microorganisms where both cooperation and dispersal can 

be studied. Both species spend most of their life cycles as single-celled 

organisms eating soil bacteria (RAPER 1984). However, when their prey 

becomes scarce, the cells aggregate together to form a multicellular slug. 

The slug can then move to a better location where it will form a fruiting 

body. The fruiting body consists of a sterile stalk composed of 

approximately 20% of the cells which hold aloft the other cells as fertile 

spores in a ball called a sorus (BONNER 2001 ). The two species are in the 

same major phylogenetic dictyostelid group based on small subunit RNA 

and a-tubulin sequences (SCHAAP et al. 2006). However within this group 

they are not particularly closely related, and their genomes are as 

disparate as humans and fish (N. PUTNAM, personal communication). Both 

species aggregate to the same chemical stimulant, cAMP (BONNER 1967), 

but then largely, but not entirely, sort into species-specific slugs (JACKet 

al. 2008). 

There are several developmental and behavioral differences 

between the two (BONNER 1957; FOSTER et al. 2002; BONNER & lAMONT 

2005; MEHDIABADI et al. 2006). The most relevant difference for the 
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purpose of this study is the timeline for when cells fully differentiate into 

different cell types. The slugs of both species contain two main cell types: 

pres pore cells in the posterior portion of the slug and prestalk cells in the 

anterior of the slug. When there is no migration, the cells in both species 

are totipotent. However, the two species behave differently during 

migration. D. discoideum forms a stalk comprised of dead cells only when 

it has ceased moving. This means all cells in D. discoideum are totipotent 

during slug movement. On the other hand, D. purpureum cells head 

towards their fate much earlier in development. They produce a stalk 

horizontally along the entire migratory path which means cells in the slug 

are continually dying to form the stalk and must be replaced by prespore 

cells. A much earlier work by Bonner shows that the prespore and 

prestalk regions of slugs of D. discoideum and D. mucoroides, a stalked 

migrator similar to D. purpureum, maintain constant proportions 

throughout migration (BONNER 1957). This may mean that movement is 

more costly for D. purpureum because many cells that would otherwise 

become reproductive spores in a non-migrating slug must dedifferentiate 

into prestalk cells to make up for the cells that become stalk as the slug 

travels. 

Experimental work has shown that D. discoideum leaves cells behind in a 

slime trail, although not as many as would be expected in D. purpureum 



54 

(BONNER et al. 1953; KUZDZAL-FICK et al. 2007). Some of the cells in the 

slugs are that are left behind are likely to be sentinel cells that served as 

the slug's waste removal organ. These immune-like cells engulf bacteria 

that may infect the slug and are then sloughed off as the slug migrates 

(CHEN et al. 2007). Whether they die, or are still able to eat bacteria if they 

encounter them, and proliferate, is not known. Therefore, we expect to see 

a cost in both D. discoideum and D. purpureum because they are not only 

losing cells that could become spores, but that they are also investing 

energy into constantly reallocating cells to retain the proper proportion of 

prespore to prestalk cells within the migrating slug in addition to the 

increased energy required for moving. Our goal is to explore the fitness 

costs associated with timing of stalk determination. We predict that D. 

purpureum will pay a higher cost and travel less far because it continually 

produces a dead stalk as it migrates while D. discoideum delays stalk 

formation until migration is finished. 

3.3 Materials and Methods 

3.3.1 Clones 

We used 15 clones each of genetically distinct Dictyostelium discoideum 

(QS68, QS69, QS70, QS71, QS73, QS74, QS75, QS76, QS79, QS80, 

QS81, QS175, QS176, QS177, QS178) and D. purpureum (QSPU1, 
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QSPU2, QSPU3, QSPU6, QSPU7, QSPU8, QSPU9, QSPU11, QSPU12, 

QSPU13, QSPU15, QSPU16, QSPU18, QSPU19, QSPU20) that we 

isolated from soil in natural, undisturbed areas of the Houston Arboretum 

and Nature Center, Houston TX. 

3.3.2 Cell Preparation 

We plated out spores from each clone with 300J,JI of a saturated culture of 

Klebsiella aerogenes as food on SM/5 agar plates (SussMAN 1966). We 

harvested the cells while they were in log growth, well before multi-cellular 

development occurred, and suspended them in cold standard KK2 buffer 

(3.8mM K2HP04, 16.5mM KH2P04). We then centrifuged the cells three 

times at 1300 rpm for three minutes to remove any remaining bacteria and 

prepared a concentration of 108 cells per milliliter in KK2 buffer. 

3.3.3 Experimental Setup 

We placed buffered non-nutrient agar Petri plates (72. 7mM KH2P04, 

12.54mM Na2H2P04, 20 g agar) in a laminar flow hood for 30 minutes 

prior to use to remove all excess moisture from their surface. We then 

drew a line on the bottom of the plates that was 1 em from the side of the 

plate. Cells of each clone were spread on the agar behind the line on two 

Petri plates. The plates were once again left in the laminar flow hood so 

that any excess buffer dried on the plates leaving a film of cells. After the 
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plates dried, they were divided into two different treatments, placed in an 

incubator at 22°C with 24-hour light, and left for one week. The first 

treatment was a unidirectional light treatment, which we refer to as our 

migration treatment. The plates were stacked with black paper circles 

between them and aligned so that all of the cells were on one end. The 

plates were then wrapped in aluminum foil, leaving a small opening at the 

end of the plates opposite the cells. This provided a directional light 

gradient. These two species of Dictyostelium are phototactic so the slugs 

will migrate towards the light source. Our second treatment was the 

overhead light treatment which we refer to as the no migration treatment. 

The remaining plate of each clone was placed as is in the incubator so 

that they received light from above. Each clone was replicated twice. 

3.3.4 Light Intensity versus Spore Production 

To ensure that any change we saw in the number of spores was a result 

of migration and not the light intensity on a plate, we set up a small 

experiment where we tested four clones under six different light intensities 

using a light meter to measure relative light intensity. Two of the 

treatments closely resembled the treatments used in the migration 

experiment. We had a treatment with overhead light, which was set at a 

light intensity measurement of one and we had a foil treatment that 

blocked some light and was standardized to a value of 0.03 after we 
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converted the f-stop number to a linear scale. The other four treatments 

were created by placing tinted nylon stockings around a plate and 

measuring the light intensity and subsequent spore production. Their 

values ranged from 0.31 to 0.79 after standardizing. These results 

indicate that light intensity did not affect spore the number of spores 

produced (Treatment: F6, 1a = 1.625, p = 0.197), so we can be confident 

that any results are due to slug movement, not quality of the light. 

3.3.5 Data Collection and analyses 

We assessed migration distance by dividing each Petri plate into 

zones (z). Four of the zones were migration zones 2cm in width in front of 

the initial cell line. A zone 0 was used for the area where the cells were 

initially placed. All fruiting bodies in each zone (Fz) were counted. We 

then used the following formula to determine the average distance fruiting 

4 I 4 bodies traveled on each plate: ~Fz2z ~Fz 
z•O z•O 

We used sporulation efficiency as our measure of fitness to 

determine the cost of migration. This is defined as the proportion of 

initially plated cells that become reproductive spores. All fruiting bodies on 

each plate were collected in one Eppendorf tube containing 1 ml of 20mM 

EDTA in buffer. We used a hemacytometer to count the number of spores 

produced. 
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All data were analyzed using R version 2.11.1 (R Development 

Core Team 2011) and the nlme package was used to create the models 

that we analyzed (Pinheiro et al. 2009). We used species and treatment 

as fixed effects predictors and clone as a random effect to look at the 

response variables migration distance, sporulation efficiency, and spores 

per fruiting body. All figures were created using ggplot2 (Wickham 2009). 

The boxplots are Tukey boxplots where the box ends are the 1st and 3rd 

quartiles, the middle line represents the median, the whiskers extend to 

the farthest point that is no more than 1.5 times the interquartile range and 

the dots represent outliers beyond those values. 

3.4 Results 

3.4.1 Migration distances 

In the migration treatment, we found that D. discoideum slugs moved an 

average of 2.46 ± 0.19cm while D. purpureum slugs moved an average of 

1.04 ± 0.06cm. None of the D. purpureum slugs in the no migration 

treatment moved past the start line (Figure 3-1 ). The D. discoideum slugs 

in the no migration treatment moved slightly, on average 0.12 ± 0.02cm, 

not different from 0 (t1, 21 = 1.26, p = 0.219). We found that all comparisons 

between treatments and species were significantly different from each 

other (p-values less than 0.001) except for the D. discoideum and D. 
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Figure 3-1 The distance each species migrated in the migration treatment 

compared to the no migration treatment. 

The distance each species migrated in the migration treatment compared to 

the no migration treatment. All interactions were significantly different from 

each other (p-values less than 0.001) except for the D. discoideum and D. 

purpureum No Migration treatments (F3• 27 = 0. 79, p = 0.378). The distance 

traveled during the migration treatment was greater and varied more amongst 

the D. discoideum clones compared to the D. purpureum clones. 
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purpureum No Migration treatments, which did not differ from each other 

(F3, 27 = 0.79, p = 0.378). 

3.4.2 Sporulation Efficiency 

We found that both D. discoideum and D. purpureum produced 

fewer spores from the initial cells after migration as compared with no 

migration (D. discoideum- No Migration: 0.55± 0.05 spores per cell; 

Migration: 0.25 ± 0.04 spores per cell; F1,14 = 15.05, N = 15, p < 0.01) and 

D. purpureum (No Migration: 1.01 ± 0.06 spores per cell; Migration: 0.85 ± 

0.06 spores per cell; F1.14 = 5.66, N = 15, p < 0.05, Figure 3-2). We also 

found that D. discoideum has a lower sporulation efficiency under all 

treatments than D. purpureum (F1, 28 = 42.44, p < 0.001). Interestingly, 

when we standardized for distance traveled by dividing the change in 

sporulation by the average distance traveled, we found that D. discoideum 

and D. purpureum showed a similar decrease in sporulation efficiency (D. 

discoideum: -0.211 ± 0.056 spores per cell per em; D. purpureum: -0.201 

± 0.053 spores per cell per em, F1, 28 = 0.019, p = 0.892). 
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Figure 3-2 The sporulation efficiency of D. discoideum and D. purpureum in each 

treatment 

The sporulation efficiency of each species was lower in the migration treatment 

compared to the no migration treatment (D. discoideum: F1,14= 15.05, N = 15, p < 

0.01; D. purpureum: F 1,14 = 5.66, N = 15, p < 0.05). Overall, D. purpureum had a 

higher sporulation efficiency and was less affected by migration. The presence of 

outliers and data over 1 suggest that some clones may have undergone a late 

stage cell division. 
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3.4.3 Spores per fruiting body 

We looked at the average number of spores per fruiting body for each 

species to determine if the sori of the fruiting bodies from the Migration 

treatment were smaller than those in the No Migration treatment (Figure 

3-3). We found a mixed result. D. discoideum produced smaller sori after 

migrating (Migration: 4390 ± 611 spores per fruiting body; No Migration: 

8511 ± 755 spores per fruiting body; F1,14 = 12.514, N = 15, p < 0.01). 

However, D. purpureum did not produce fruiting bodies that were 

significantly different in sorus size between treatments (Migration: 11,240 

± 874 spores per fruiting body; No Migration: 12,510 ± 1244 spores per 

fruiting body; F1,14= 0.523, N = 15, p = 0.482). 

3.5 Discussion 

We found that migration in both species led to lower sporulation 

efficiency (percent spores resulting from a starting number of cells) and 

resulted in fruiting bodies with sori that contained fewer reproductive 

spores as compared to the No Migration treatments. Our results 

demonstrate that there is a cost to migration in reproductive fitness in both 

species of slime molds, despite their different methods of migration. To 

our knowledge, this is one of the first papers to quantify actual costs to 

active migration in 
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Figure 3-3 The number of spores per fruiting body produced by D. discoideum and 

D. purpureum in both treatments 

The number of spores produced per fruiting body by each species was lower in the 

migration treatment compared to the no migration treatment, but it was only significant 

for D. discoideum (F1.14 = 12.514, N = 15, p < 0.01) and not for D. purpureum (F1,14= 

0.523, N = 15, p = 0.482). In both species there was higher variance (but fewer 

outliers) in the no migration treatment suggesting a constraint on spore production in 

the migration treatment. The lack of significance in D. purpureum suggests that it 

may be changing its spore:stalk allocation when it migrates. 



microbes. While there is some work done on dispersal on microbes, the 

focus is generally population structure and microbial diversity with 

emphasis on passive dispersal (MARTINY et al. 2006). Our results are 

similar to what is found in literature on macroorganisms where there are 

tradeoffs between fecundity and migration (RANKIN & BURCHSTED 1992; 

ROFF & FAIRBAIRN 2001; JOHNSON et al. 2009) 
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Our a priori hypothesis was that D. purpureum would pay a higher 

cost and travel less far than D. discoideum because we thought that 

stalkless migration would be a cost saver. If very few cells are sloughed 

off, then this manner of migrating to a more favorable location should be 

favored over stalked migration where many cells must be lost to form the 

stalk. However, that is not what we found. Instead, we found that 

migration seems to have a larger cost in D. discoideum, resulting in 

drastically fewer spores per fruiting bodies and depressed sporulation. 

We found reduced sporulation in D. purpureum but did not find fruiting 

bodies with significantly smaller sori. This suggests that D. purpureum 

changes its spore:stalk ratio when migrating. When we correct for the 

distance migrated, we found that there was no difference in spore loss 

between D. discoideum and D. purpureum, because D. purpureum 

traveled only half the distance that D. discoideum traveled. Nevertheless, 

it remains true that stalkless migration does not show the cost reduction 
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expected from not having to allocate cells to a stalk. Some of the cell loss 

may be due to the sentinel cells as these cells engulf bacteria that may 

infect the slug and are then sloughed off as the slug migrates (CHEN et al. 

2007). Additionally, there may be some cell mortality due to the 

exhaustion of energy stores as the slug moves 

A partial explanation for our finding may be found in a recent paper 

that looked at benefits to sociality in D. discoideum. KuzoZAL-FICK et al. 

(2007) found that cells that were sloughed off of migrating slugs were able 

to colonize local bacteria patches, which could lead to more fruiting bodies 

after a period of time (KuzoZAL-FICK et al. 2007). This could mitigate the 

loss of cells in individual migrating slugs and could actually be a benefit 

that leads to increased migration. Like D. discoideum, sloughed off cells 

of D. purpureum are also able to colonize bacteria patches (data not 

shown). However, the majority of lost cells that ends up as part of the 

reproductively dead stalk cannot contribute to this function. So, although 

there is no difference in cells lost per distance traveled, most cell loss in a 

stalked migrator is absolute, while most cells lost in stalkless migration 

may have the potential to colonize, especially since more cells being 

sloughed off as the slug moves, gives it a higher likelihood of encountering 

a bacterial patch. 
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Perhaps the adaptation of D. discoideum represents a tradeoff in 

dispersal traits that led to more reliance on active dispersal compared to 

D. purpureum. SCHAAP et al. (2006) mapped all well-documented 

morphologic traits onto a molecular phylogenetic tree. D. discoideum has 

a stalk length of 3-?mm and an average spore volume of between 50-

80f..tm3. Compare this to D. purpureum, which has a much taller stalk(> 

7mm) and smaller spores(< 50f..tm\ A taller stalk allows the fruiting body 

to rise up farther off the ground which may make it easier to be dispersed 

by passing invertebrates or the wind. Conversely, a shorter stalk in D. 

discoideum means that it has to travel farther to find a suitable location 

while D. purpureum may be able to fruit in more locations. This 

information combined with the distance that each species traveled may 

indicate that although each species uses both passive and active 

dispersal, they may be better adapted to one method over the other. D. 

purpureum has stalked migration, which could be a more costly method of 

travel over long distances. However, it could compensate by not traveling 

as far and making structures that are better suited for passive dispersal to 

lower its costs of migration. An additional benefit for D. purpureum is that 

migrating slugs with stalks can cross gaps in soil and leaf litter while those 

that migrate without them are unable to do so (0. GILBERT, personal 

communication). D. discoideum, on the other hand, has adapted its 
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method of migration in such a way that it allows migration and propagation 

while reducing some of the costs normally associated with migration. It 

may lose more cells as it travels longer distances, but there is no reason 

these cells could not colonize bacteria patches since none have died to 

form stalk cells. This would lead to more reproductive spores, which 

would go unaccounted in our experimental setup. This could be a recent 

adaptation as only five species of Dictyostelium have been found to show 

stalkless migration: D. discoideum, D. citrinum, D. intermedium, D. 

dimigraformum, and D. polycephalum, representing two origins of the trait, 

since the first four species are each other's closest relatives, and are 

separated from D. polycephalum by many stalked migrating species 

(BONNER 1982; SCHAAP 2007). 

More work is necessary to fully explore the benefits and costs of 

microbial dispersal but this work indicates that there is a cost to migration 

in some microbes, much as there is for macroorganisms, which can limit 

the extent of movement. However, it also indicates that species are able 

to get around those costs in different ways. 
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4 The interaction of chimerism and migration in the Dictyostelium 

discoideum 
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4.1 Abstract 

Hamilton's theory of kin selection predicts that cooperation can evolve through 

either kin discrimination or limited dispersal. Theoretical studies of limited 

dispersal suggest that it can either increase local competition or lead to 

cooperation. There have been very few experimental studies that have tested 

this idea. The social amoeba Dictyoste/ium discoideum is an ideal organism to 

study these ideas. There have been many studies that have looked at 

cooperation in D. discoideum but very few that have added dispersal. In our 

study we look at the effect of migration on fitness and cooperation. We found 

that chimeric slugs traveled a shorter distance than expected compared to their 

clonal counterparts. We did not find a difference in cheating when we compared 

the No migration and Migration treatments using the traditional measure of 

cheating. When we looked at facultative change, whether a clone increases its 

spore allocation in the presence of a partner or changed its partner's spore 

allocation, we found that clones that migrated show a greater change in their 

behavior when in chimera compared to when they did not migrate in a chimera. 

This may show that both clones are cheating, but one is more successful. Both 

clones may be decreasing their cooperation leading to reduced stalk production 

in a tragedy of the commons. 
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4.2 Introduction 

The evolution of cooperation is key to understanding the transition from 

single cells to multicellular organisms (Maynard Smith & Szathmary 1995). This 

process creates a conundrum for evolutionary biologists because it requires 

individuals to seemingly decrease their own fitness to provide some benefit to 

another. These individuals would also be susceptible to cheaters, selfish 

individuals who benefit from the cooperation of others, but who themselves do 

not pay any costs. An individual who can increase its reproductive fitness by not 

cooperating can rapidly spread through a population leading to an overall 

decrease in altruistic behavior. 

Hamilton's theory of kin selection shows that cooperation can evolve if the 

recipient of the beneficial action has a high enough degree of relatedness to the 

actor to overcome the cost involved, according to the inequality: rb-c > 0 

(Hamilton 1964). In order for kin selection to favor altruism, relatedness must be 

sufficiently high. Hamilton proposed two mechanisms for this. One way is 

through kin discrimination, where organisms preferentially direct benefits towards 

kin whom they can recognize on some level (Hamilton 1964). The second 

mechanism is through limited dispersal (Hamilton 1964). Under this mechanism, 

altruism is directed indiscriminately towards all nearby individuals because those 

receiving the benefits are likely to be relatives. The spread of cooperation using 

kin discrimination is readily understood. Relatives help their kin and both benefit 

through inclusive fitness. This has been demonstrated in Dictyostelium 
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purpureum, where cooperative fruiting structures are mostly composed of kin, the 

result of actual sorting (Mehdiabadi et al. 2006). 

However, there is some dispute as to how limited dispersal alone can lead 

to the evolution of cooperation. Theoretical models suggest that it can be an 

important method for the evolution of cooperation but may also lead to the 

breakdown of cooperation because of increased local competition between kin 

(Taylor 1992; Queller 1994; Bourke & Franks 1995; West et al. 2006). According 

to Kummerli et al (2009), there have been very few empirical reports on how 

population structure and cooperation interact. Their recent work found that 

limited dispersal leads to an increase in local competition and disfavored 

cooperation. They also found that by dispersing in groups, cooperation would be 

favored because it would maintain high relatedness while reducing local 

competition (KOmmerli et al. 2009). 

The social amoeba, Dictyostelium discoideum, is an excellent organism 

for studying the effects of cooperation and competition in local patches. It is a 

unicellular organism found in the soil of deciduous forests (Bonner 1967; Raper 

1984). They prey on bacteria and reproduce mostly asexually, though they do 

have a sexual stage. When conditions deteriorate and they begin to starve, they 

send out a signal of cAMP, which causes all nearby cells to aggregate into a 

multicellular structure. After aggregation, the resulting slug will migrate to a new 

location where approximately 20% of the cells will die to form a sterile stalk to 

hold the remaining cells as reproductive spores. If all of the neighboring cells are 

related, then cooperating to form the fruiting body is expected because cells that 



give up their reproductive rights will increase their inclusive fitness through the 

reproduction of clones. However, if there are multiple clones present, then 

conflict between reproductive fates can lead to the breakdown of cooperation. 
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We know that multiple clones and multiple species are found in the same 

soil samples (Fortunato et al. 2003; Jacket al. 2008) and that they form chimeras 

both in the lab and in nature (Strassmann et al. 2000; Gilbert et al. 2007). The 

resulting struggle between genotypes can lead to cheating, where one genotype 

gains an unfavorable advantage over the other by producing more than its fair 

share of spores (Fortunato et al. 2003; Buttery et al. 2009). A recent 

experimental study forced global dispersal upon a population composed of 12 

distinct clones of D. discoideum and found that low relatedness allowed cheaters 

to persist in the population (Saxer et al. 201 0). 

Some dispersion beyond that expected of an amoeba is a normal part of 

the D. discoiduem lifecycle. As part of this lifecycle, the multicellular slug will 

migrate to a more favorable location to form a fruiting body. This local dispersal 

is very costly because the slug loses a considerable number of cells as it travels 

(Jack et al. 2011 ). However, this dispersal is necessary if the slug is to find a 

location more suitable for later reproduction because slugs can travel greater 

distances than single cells(Kuzdzai-Fick et al. 2007). Additionally, traveling 

within a slug is also a security measure against predation (Kessin et al. 1996). 

Foster et al (2002) found that chimeric slugs traveled less far when compared to 

clonal slugs of the same size but that chimeric slugs would travel further than a 

smaller clonal slug. Despite these studies, we do not know the effect of 
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simultaneous dispersal and cooperation on population structure. In this study, 

we examine the interaction of different clones of D. discoideum before and after 

migration. We predict that migration will lead to an increase in cheating because 

the inherent conflict between clones will be protracted giving the dominant clone 

more time to cheat. 

4.3 Methods 

4.3.1 Clone growth and development 

To study social interactions and migration in D. discoideum, we used 5 clones 

that have been much studied previously, NC28.1, NC34.1, NC63.2, NC85.2, and 

NC 1 05.1. John Eisenberg collected these clones from Little Butt's Gap, west of 

Mount Mitchell, North Carolina (Francis & Eisenberg 1993). For each replicate, 

we started by growing spores stored at -aooc on SM plates (Sussman 1966) with 

Klebsiella aerogenes (Ka) for food. 

4.3.2 Transformation of wild clones with red fluorescent protein (rfp) 

We needed a visual label to observe interactions among clones through chimera 

formation and migration, so we labeled them with a gene for red fluorescent 

protein, (rfp) on an actin-15 promoter. To do this, we collected actively growing 

and dividing cells from the edges of plaques grown in association with Ka on SM 

agar plates and transferred them to HL5 axenic medium (5g proteose peptone, 

5g thiotone E peptone, 10g glucose, 5g yeast extract, 0.35 g Na2HP04·7H20, 

0.35 g KH2P04 per liter (Watts & Ashworth 1970)) + 1% PVS (1 00,000 units of 

penicillin, 100mg streptomycin sulphate, 200ug folate, 600ug vitamin 812 per 
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liter). We removed the spent medium daily and replaced it with fresh medium 

until no bacteria were visible in the culture dishes. We then harvested the cells 

and washed them twice by centrifugation and resuspended them in cold standard 

KK2 buffer (3.8mM K2HP04, 16.5mM KH2P04). We transformed the clones 

with the actin15-rfp plasmid by electroporation (Pang et al. 1999). We then 

transferred the cells to culture dishes containing HL5+1 o/oPVS and left them for 

24 hours before replacing with fresh medium containing 20f.lg/ml G418. After five 

days of selection, we transferred the amoebae to SM agar with Ka. We 

transferred red plaques to G418-SM agar plates (30f.lg/ml G418) in the presence 

of G418 resistant Ka for a final round of selection. 

4.3.3 Determination that RFP-Iabeled clones behave similarly to wild type 

After selection, we tested each transformant for neutrality against its ancestor by 

making 50:50 mixes of cells and allowing them to develop on a 1.5% water agar 

plate without bacteria. We examined spores from individual sori using 

fluorescent microscopy to ascertain that the two clones were not sorting out from 

each other. We collected spores from the whole plate to ensure that one clone 

was not producing a disproportionate number of spores. We also made mixes of 

cells at a ratio of 5:95 rfp:ancestor and looked for sorting during the slug stage. 

We chose the most stable isolates that displayed no sorting or cheating behavior 

(NC28.1 R2, NC34.1 R3, NC63.2R2, NC85.2R2, and NC1 05.1 R2). 

4.3.4 Cell Preparation for experiments 

We plated out spores from each clone with 4001JI of a stationary phase culture of 

Ka on SM agar plates. We harvested the cells while they were in log growth, but 
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before multi-cellular development occurred, and suspended them in cold 

standard KK2 buffer. We then centrifuged the cells four times at 1300 rpm for 

three minutes to remove any remaining bacteria and prepared a concentration of 

108 cells per milliliter in KK2 buffer. To measure the effect of social competition 

on migration, we made 10 chimeric mixes at 50:50 (each rfp clone against all 

other ancestor clones). We also had clonal treaments of ancestor strains and the 

rfp-transformants 

4.3.5 Social Migration Assay 

We placed 1.5% water agar Petri plates (size: 150 x 15mm) in a laminar flow 

hood for 45 minutes, prior to use, to remove all excess moisture from their 

surface. We then drew a line on the underside of the plates that was 2cm from 

the edge of the plate. For each treatment, we carefully pi petted 1 x 107 cells on 

the agar behind the line on each of two Petri plates. We then left the plates in 

the laminar flow hood for one hour so that any excess buffer dried on the plates 

leaving a film of cells, after which we divided the plates into two different 

treatments: migration and non-migration. For the migration condition, cells were 

exposed to a unidirectional light source. The plates were stacked with paper 

circles between them and aligned so that all of the cells were all aligned at one 

end. The plates were then wrapped in aluminum foil, leaving a small opening at 

the end of the plates opposite to the cells. This provided a directional light 

gradient for the aggregates to phototax toward. The non-migration treatment 

consisted of subjecting cells to overhead light, causing them to produce fruiting 

bodies without migration. Although previous experiments show that the amount 
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of light did not affect spore production (Jacket al. 2011), we wanted to 

standardize the amount of light received in both treatments. The remaining plate 

of each clone or mix was wrapped individually in foil with a 0.5cm wide slit cut 

over the cells and then placed in the incubator so that they received light from 

above. Each mix and clone was replicated five times. 

4.3.6 Assessment of the distance slugs traveled 

We assessed migration distance on both the clonal and mix plates by dividing 

each Petri plate into seven zones (z). Six of the zones were migration zones 

2cm in width starting from the initial cell line. Zone 0 was counted as the area 

where the cells were initially placed. All fruiting bodies in each zone (Fz) were 

counted. We then used the following formula to determine the average distance 

6 I 6 fruiting bodies traveled on each plate: ~Fz2z ~Fz 

4.3.7 Initial and final clone representation in chimeric fruiting bodies 

We determined the initial (cells) and final (spores) proportion of each clone in 

each mix by using a Ziess Axioplan microscope with DIC and CY3 filters and 

MetaMorph TM Imaging Software. We also measured the percentage of 

fluorescent cells and spores for the clonal RFP clones so that we could correct 

for loss of fluorescence in the chimeric mixes. 
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4.3.8 Calculating spore allocation in clonal fruiting bodies 

We calculated the spore allocation (a;) of our clones as our measure of fitness to 

determine the cost of migration. This is defined as the proportion of initially 

plated cells that become reproductive spores represented by the equation 

Number of spores (i) .. 
ai = N b f 11 (') • All fru1t1ng bodies on each agar plate were collected in urn er o ce s z 

one Eppendorf tube containing KK2 buffer. We used a hemacytometer to count 

the number of spores produced. 

4.3.9 Calculating spore allocation chimeric fruiting bodies 

The chimeric spore allocation of a clone i in a mix with clone j (a;J was calculated 

. th t' Number of spores (ij) * Proportion of spores (i) us1ng e equa 1on a .. = -----=-----'-"-..;__ _ __..:,_ ___ -=-----'-'-
,, Number of cells(ij) *Proportion of cells (i) 

This was calculated for each clone in a mix for both treatments. This allowed us 

to calculate the deviation of a clone in chimera from its clonal spore allocation 

(dij): 

d .. = (aii- au) 
IJ a .. 

II 

4.3.1 0 Social success of clones in chimera 

Social success is defined as how well a clone does when in chimera and is used 

to determine if a clone produces more spores in chimera than it would clonally. 

We calculated several different measures of social success for both the migration 

and non-migration treatments: 
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4.3.10.1 Cell-to-spore change 

This answers the most basic definition of cheating: does the proportion of clones 

in a mix change from the cell to the spore stage? This is calculated using ~p = 

Pct+1) - Pt where Pt is proportion of cells of the clone in the mix and Pct+1> is the 

proportion of spores of the clone in the mix. If ~p is greater than 0, then the clone 

is considered a cheater under this broad definition of cheating. If ~Pis less than 

0, then the clone is considered a loser. We chose one clone from each mix and 

looked at its change in frequency. If that clone had a value over 0, then its 

partner must have a value below 0. To ensure that we were not only analyzing 

the affect of rfp labeling, we randomly chose one clone from each pair for 

analysis. We averaged the clones to get an overall idea of cheating. 

4.3.10.2 Mechanism behind social success 

Self-promotion- a clone is a good self-promoter in chimeras if it increases its 

spore allocation in chimeras, averaged across all partners. It is calculated as: 

Ability to coerce- this is a clone's ability to decrease its partner strain's spore 

allocation and is calculated similarly: 

c, = 

4.3.10.3 Facultative change and migration 

We measured the interaction of migration and facultative change by mapping the 

clones on a mean di-mean Ci coordinate plane for each treatment similar to 
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Buttery eta/ (2009). We then calculated each clones Euclidean distance from 

the origin and compared the distances between the No Migration and Migration 

treatments. The higher the value, the more a clone is changing its behavior. This 

is a good measure of social success because it allows us to consider not only the 

end result of an interaction between clones, but the way in which the clones 

interact (i.e. are the clones changing their behavior in response to their partners 

(self-promotion) or, are the clones having their behavior changed by their 

partners (coercion)?). 

4.3.11 R- statistical software program 

All data were analyzed using R version 2.12.2 (R Development Core Team 2011) 

and the nlme package was used to create the models that we analyzed (Pinheiro 

et al. 2009). All figures were created using ggplot2 (Wickham 2009). 

4.4 Results 

4.4.1 Clonal Measurements 

4.4. 1. 1 Migration distances 

We did not find a significant difference between the RFP and Ancestor clones for 

distance migrated, which allowed us to combine the data from both to analyze 

the migration distances (one-way Nested AN OVA; F1. 4 = 1.54, p = 0.28). We did 

find that the clones migrated significantly different distances (one-way nested 

ANOVA; F4, 34 = 7.55, p < 0.001, Figure 4-1). 
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4.4.1.2 Spore allocation 

As with the clonal migration distances, we also did not find a significant 

difference between the clonal spore allocation between the RFP and Ancestor 

clones (one-way Nested ANOVA; F1, 47 = 3.16, p = 0.082). We found, in 

accordance with Jack et al (2011 ), that clones that migrated had a lower spore 

allocation compared to clones that did not migrate (one-way nested ANOVA; No 

migration: 1...1 = 0.324 ± 0.021 spores per cell; Migration: 1...1 = 0.102 ± 0.009 spores 

per cell; F1. 48 = 160.05, p < 0.001, Figure 4-2). We did not find a significant 

difference between the different clones (one-way nested ANOVA; Fa, 83 = 0.56, p 

= 0.81 ); although the spore allocations did match the linear hierarchy found in 

Buttery et al (2009). However, we are only interested in the broad differences in 

behavior with migration, not specific differences between the different clones. 

4.4.2 Chimeric Measurements 

4.4.2.1 Migration distances 

We found that, on average, chimeric slugs traveled shorter distances than we 

expected based on clone composition (!...lobs = 5.50 ± 0.24 em, IJExp = 6.19 ± 0.20 

em; one-way Nested ANOVA: F1, 49 = 17.86, p < 0.001; Figure 4-3). 

4.4.2.2 Spore allocation 

We found that overall, chimeras showed a decrease in spore allocation when the 

Migration treatment was compared to the No Migration treatment similar to the 

single clones but we also saw a slight increase in their spore allocations in both 

the No Migration and Migration treatments compared to the single clones that 
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was nearly significant (two-way ANOVA; Clone vs. Chimera: F1, 73 = 2.76, p = 

0.066; Treatment: F1, 73 = 133.85, p < 0.001; Figure 4-2). When we calculated 

the decrease in spore allocation per centimeter traveled, we did not find a 

significant difference between the clonal group (IJ = -0.040 ± 0.004 spores per 

cell/em) and the chimera group (IJ = -0.046 ± 0.005 spores per cell/em; one-way 

ANOVA; F1,s3 = 0.83, p = 0.365; Figure 4-4). 

4.4.3 Social success and cheating with and without migration 

4.4.3.1 Measuring cheating using cell-to-spore change 

When all 1 0 mixes are compared together for both treatments in a nested 

ANOVA, we find that there is a significant interaction between the change in 

frequency of clone i between development stages and the clone in the mix, 

although each on its own was not significant (Cell stage vs. Spore stage: F1, 144 = 

1.4077, p = 0.24; Clone: F4,16 = 2.6064, p = 0.075; Development stage x Clone: 

F4, 144 = 3.5252, p < 0.01). This indicates that some clones are cheaters and 

some are losers. We did not find a significant difference between the No 

Migration and Migration treatments (F1, 144 = 0.4019, p = 0.53), Figure 4-5. 

4.4.3.2 Facultative change 

We found that facultative change, a combination of a clone's ability to promote 

itself and its ability to coerce other clones was significantly different between 

treatments (one-way nested ANOVA; No Migration vs. Migration: F1, 24= 7.62, p < 

0.05; Figure 4-6). 
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Figure 4-1 The average distance the clones migrated were significantly different 
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Figure 4-2 Comparison of migration and no migration treatments for the clonal 

slugs versus the chimeric slugs. 

Clones that migrated had a lower spore allocation compared to clones that did not 

migrate (No migration: 1-1 = 0.324 ± 0.021 spores per cell; Migration: 1-1 = 0.102 ± 0.009 

spores per cell; F1 , 83 = 118.71, p < 0.001, Fig 2). Chimeras increased their spore 

allocation in both the No Migration and Migration treatments compared to the single 

clones, but they showed a similar decrease in spore allocation when the Migration 

treatment was compared to the No Migration treatment (Clone vs. Chimera: F1. 73 = 

2.76, p < 0.066; Treatment: F1, 73 = 133.85, p < 0.001 
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Figure 4-3 Chimeric slugs traveled a shorter distance than expected based on 

clone composition 

(~obs = 5.50 ± 0.24 em, ~Exp = 6.19 ± 0.20 em; one-way Nested AN OVA: F1 . 49 = 17.86, 

p < 0.001 . 
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Figure 4-4 Clonal and chimeric slugs lost approximately the same number of 

spores per cell after standardizing for distance traveled. 

When we calculated the decrease in spore allocation per centimeter traveled , 

we did not find a significant difference between the clonal group (~ = -0.040 ± 

0.004 spores per cell/em) and the chimera group (~ = -0.046 ± 0.005 spores 

per ce ll/em ; one-way ANOVA; F1 , 93 = 0.83, p = 0.365). 

90 



:~ 

X 

0.5 

-~ 0.4 
.5 
OJ 
c 
0 
u 
(50.3 
>. u c 
OJ 
::J 
0' 

&o.2 
OJ 
~ 

~ 
~ 
~ 0.1 

0.0 

91 

No Migration Migration 

I 

Cell Spore Cell Spore 

Figure 4-5 Does the proportion of clones in a mix change from the cell to the spore 

stage? Between treatments? 

If there is no difference between the proportions, then there should not be a difference 

between the frequency of clone i in the cell stage and its frequency in the spore stage. We 

find that there is a significant interaction between the change in frequency of clone i 

between development stages and the clone in the mix (Development stage x Clone: F 4. 144 

= 3.5252, p < 0.01 ). This indicates that some clones are cheaters and some are losers. 

We did not find a significant difference between the No Migration and Migration treatments 

(F 1, 144 = 0.4019, p = 0.53) 
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Figure 4-6 Clones in the migration treatment showed more facultative change than 

in the No migration treatment 

We found that social success, a combination of a clone's ability to promote itself and 

its ability to coerce other clones was significantly different between treatments (one-

way nested ANOVA; Treatment: F1 . 24= 7.62, p < 0.05) 



4.5 Discussion 

4.5.1 Clonal Migration Behavior 

In a previous study on slug migration, slugs of D. discoideum only 

averaged a migration distance of 2.5cm (Jack et al. 2011 ). In order to 

maximize the potential affect of migration on chimerism we switched to a 

larger Petri plate and decreased the percentage of solutes in the agar 

(Bonner & Shaw 1957). This resulted in longer migration distances and 

allowed us to find discernible differences between clone migration 

distances. We also confirmed the result from our earlier paper that 

migration leads to a decrease in spore allocation, as cells that are 

sloughed off as the slug migrates must be replaced. 

4.5.2 Chimeric Migration behavior 
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We used the same set of clones from two previous studies that found a 

linear hierarchy among the clones when they were tested pair-wise 

against each other (Fortunato et al. 2003; Buttery et al. 2009). For this 

reason and because we are more interested in the global affect of 

migration, we did not look for hierarchies in this experiment. Although our 

results were not as extreme as Foster et al (2002), we did find that 

chimeric slugs traveled a shorter distance than expected based on the 

clones that composed them. There are a number of possibilities for why 



94 

this is the case. It is possible that the chimeric slugs can only travel as far 

as the clone that migrates the shortest distance. It could also be that 

there is some recognition mechanism that is causing conflict within the 

slug. One additional possibility is that the slug is not traveling as far 

because there are fewer prestalk cells. Buttery et al (2009) found that 

clones increased their spore allocation in chimera compared to when they 

were clonal, and we found similar results in both our migration and no 

migration treatments. The prestalk region of the slug is "motor'' of the slug 

and is responsible for forward movement. If this region is small, then it is 

possible a slug would not travel as far as a slug with a larger prestalk 

region. 

4.5.3 Competitive interactions and migration 

We examined cheating using two different methods. The first 

method is the traditional method to compare the initial frequency of cells of 

clone in a mix to its final frequency of spores in a mix after the cells have 

developed. Using this method, we found a significant interaction effect 

between the average frequency of the clones in the initial cell stage and 

the final spore population. This indicates that some of our clones are 

cheaters and some are losers. However, we did not find a significant 

difference in the change of clone frequency between the migration and no 

migration treatments as we expected. 
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Our first method of cheating showed that clones cheat but it does 

not show how they do so. We used the method of Buttery et al (2009) to 

determine the method of facultative cheating the clones were using. We 

looked to see if the clones were using self-promotion (changing their own 

spore allocation in response to a partner) or were using coercion (forcing 

their partner to change its spore allocation). We found that most clones 

are increasing their own spore allocation rather than changing their 

partner's behavior. Using this method, we found some support for our 

prediction of an increase in cheating with migration. However, it was not 

in the method that we predicted, which was the dominant clone increasing 

its competitive advantage. Instead, we found that both clones are 

cheating, but one is more successful. An analogy can be made using five 

runners in a race. A racer can cheat by taking steroids to improve his own 

performance (self-promotion) or by hindering his competitors (coercion). 

Our predicted hypothesis would be that the racer, who would win at one 

distance by cheating, would have an even greater advantage at a longer 

distance. Using this same analogy, our results suggest another scenario. 

We would again have our dominant runner, but we would also have 

another cheater. Normally this runner would come in last place, but the 

increased distance allows him to come in third. The runner has not won 

the race, but has done better than expected. 
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A recent paper found that wild isolates of D. discoideum vary in 

their production and sensitivity to diffusible stalk-inducing factors 

(StlFs)(Parkinson et al. 2011). The prespore cells produce this diffusible 

signal molecule known as DIF-1 (Differentiation inducing factor),which 

induces differentiation of cells into prestalk cells (Kay & Thompson 2001). 

They were able to predict the outcome of competitive interactions between 

clones when they were not migrating using differences in the production 

and response to these StiFs. They also found that there was an inverse 

relationship between StiF production and response within clones. They 

suggest that this is a tradeoff between passive dispersal (formation of a 

longer stalk) and fecundity (greater spore allocation); and that facultative 

outcomes are not the result of facultative changes. 

One point that is not addressed is why we generally see higher 

spore allocations in chimera, regardless of the outcome of the interaction. 

Also, why do we see proportionally higher spore allocation in chimeric 

slugs that have migrated compared to those that have not. A possible 

explanation is that clones are defecting from participating in production of 

the stalk, a problem known as tragedy of the commons (West et al. 2006). 

This is where the group would benefit from everyone cooperating, but 

where individuals can gain by pursuing their own self-interests, leading to 
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a decrease in cooperation and unwillingness to enter the prestalk region. 

This could manifest itself in the shorter migration distances that we found 

and also the higher spore allocations. Clones are cooperating less and 

are producing more spores at the expense of stalk production. Another 

possibility that may explain higher spore allocation is that migrating, which 

we know is energetically taxing, causes the clones to produce less DIF-1, 

which may result in higher spore allocations after migration, but would not 

explain the spore allocation increases without migration. It is a question of 

whether it is a variable trait or simply a maladaptive response to increased 

slug migration. 

4.6 Conclusion 

We have shown that chimerism and migration interact to produce fruiting 

bodies that have a proportionally higher spore allocation compared to 

clonal fruiting bodies after migration. We have also shown that we see a 

greater change in clonal behavior after migration, which suggests that 

migrating leads to more cheating by clones, and less cooperation. The 

next step is to parse out whether the results that we see are an indication 

of clones defecting in a tragedy of the commons, or if the results may be 

somewhat more mechanistic due to StiF production and response. Once 

we have these answers, we will be able to better explain the affects of 



cooperation on group dispersal and whether it can be used as a 

mechanism to reduce local competition 
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