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Abstract

A reduced order representation of a large data set is often realized
through a principle component analysis based upon a singular value de-
composition (SVD) of the data. The left singular vectors of a truncated
SVD provide the reduced basis. In several applications such as facial anal-
ysis and protein dynamics, structural symmetry is inherent in the data.
Typically, reflective or rotational symmetry is expected to be present in
these applications. In protein dynamics, determining this symmetry al-
lows one to provide SVD major modes of motion that best describe the
symmetric movements of the protein. In face detection, symmetry in the
SVD allows for more efficient compression algorithms. Here, we present a
method to compute the plane of reflective symmetry or the axis of rota-
tional symmetry of a large set of points. Moreover, we develop a symmetry
preserving singular value decomposition (SPSVD) that best approximates
the given set while respecting the symmetry.

Interesting subproblems arise in the presence of noisy data or in situa-
tions where most, but not all, of the structure is symmetric. An important
part of the determination of the axis of rotational symmetry or the plane
of reflective symmetry is an iterative re-weighting scheme. This scheme is
rapidly convergent in practice and seems to be very effective in ignoring
outliers (points that do not respect the symmetry).

1 Introduction

Determining symmetry within a collection of spatially oriented points is a prob-
lem that occurs in many fields including molecular biology and face recognition
analysis. In these applications, large amounts of data are generally collected,
and it is desirable to approximate this data with a compressed representation.
In some applications, the data is known to obey certain symmetry conditions,
and it is profitable to preserve such symmetry in the compressed approximation.

∗This work is supported in part by NSF Grant CCR-0306503 and by NSF Grant ACI-
0325081.
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Taking advantage of symmetry leads to better modeling of physical processes
as well as more efficient storage and computational schemes.

For a given set of points S = {xj : 1 ≤ j ≤ m} in n-dimensional space,
we form an n ×m matrix X = [x1,x2, . . . ,xm]. The truncated singular value
decomposition (SVD) provides a low rank approximation to X and therefore also
to the data set S. If USVT = X is an SVD of X, then it is well known that
the best rank k approximation to X (in both the 2-norm and Frobenius norm)
is given by Xk = UkSkV

T
k , where Uk,Vk represent the leading k columns of

U,V and Sk represents the leading k×k principal submatrix of S. Here, we are
concerned with preserving symmetry relations present in the set S and hence
in the matrix X. In particular, we desire the best low rank approximation Xk

that also exhibits the same symmetries as the matrix X. This is accomplished
by providing a symmetry preserving singular value decomposition (SPSVD).

We concentrate on determining two types of symmetry: rotational and re-
flective. The computational schemes for calculating the best symmetric approx-
imation of a given set involve two steps for each case. For reflective symmetry,
the first step is to obtain the normal to an approximate plane of reflective sym-
metry, where the normal is defined to be the unit vector perpendicular to a
hyperplane for which the given set can be split into two mirror image sets.
For rotational symmetry, we first determine an approximate axis of rotational
symmetry about which the given set can be rotated (2π/k degrees in 3D) and
returned to the same set. Then, in the second step, we find the best approxi-
mation to the given set that has the appropriate symmetries with respect to the
approximate plane of symmetry or axis of rotation with the aid of the SPSVD.

For practical applications, we must consider noisy data sets. Thus, we need
to construct a normal vector or axis of rotation that diminishes the effects of
outliers. This is accomplished by creating an iterative re-weighting scheme that
minimizes deviation from symmetry in a weighted Frobenius norm. With our
weighted normal or axis of rotation, we build our SPSVD that preserves the
respective symmetries as in the non-weighted scheme.

We also provide a means to compute just the dominant portion (leading k
terms) of the SPSVD that is well suited to large scale computation. This compu-
tation only requires matrix-vector products involving the point set represented
as a matrix. The ARPACK software [8] can be used in this large scale case. The
computation is no more expensive than constructing the leading terms of the
SVD of the full set of points without the symmetry constraint. Computational
examples involving the backbone of the HIV-1 protease molecule are presented
here. These examples provide trajectories that result in matrices of dimension
9,000 by 10,000. The computations were performed on a multiprocessor cluster
using the parallel P ARPACK version of ARPACK.

There has been considerable research in the area of symmetry detection.
Atallah [1] constructs an order n log n algorithm that determines the line of
reflective symmetry of a perfectly symmetric planar object by reducing the
system to a permutation problem. Optimizing a coefficient of symmetry is
employed by Marola to determine an axis of symmetry for planar images [9].
Zabrodsky et al. [16] employ a continuous symmetry measure and apply it
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to finding reflective and rotational symmetries in chemistry. Kazhdan extends
this idea to 3D objects by creating a continuous 2D function that measures the
invariance of an object with respect to reflective symmetry about each plane
that goes through the object’s center of mass [4].

Many papers use the following fundamental properties of symmetry, which
can be found in [15, 10, 11], to determine reflective and rotational symmetry.
In this literature, the term “principal axes” refer to the eigenvectors of the
correlation matrix XXT of the set of points, i.e., the left singular vectors of X.
The observation is that:

- Any plane of symmetry of a body is perpendicular to a principal
axis.

- Any axis of rotational symmetry of a body is a principal axis.

Minovic et al. start with this idea and build an octree representation to find
symmetries of a 3D object [12]. Sun and Sherrah [14] begin by looking at the
extended Gaussian image of an object, and then search along the principal axes
for the strongest symmetry measure. O’Mara and Owens [13] also search for
the principal axis with the largest symmetry measure. However, their symmetry
measure is more refined, since it takes into effect intensity values. Colliot et al.
[3] extend O’Mara and Owens’ research by starting with the highest symme-
try measure principal axis. Then, they optimize the axis of symmetry using
the Nelder-Mead downhill simplex method. They apply this method to facial
recognition and brain scan applications.

The idea of a symmetric approximation to a set of data points has come up in
partial differential equations and in face detection. Aubry et al. prove that any
truncated approximation to a dynamical system must maintain its respective
symmetries. They derive a method of truncation, based on Proper Orthogonal
Decomposition, that obeys the symmetries of the original infinite-dimensional
system [2]. Smaoui and Armbruster present a way to symmetrize the eigenmodes
of the Karhunen-Loeve basis in a computationally efficient matter [2]. Kirby and
Sirovich [5, 6] present a symmetric approximation based on taking the average
of the even and odd (correctly oriented) symmetric faces. We prove here that
taking the average gives the best symmetric approximation (in the Frobenius
norm) to the original data set, and we generalize this result to give the best
symmetric approximation to a set that possesses k-fold rotational symmetry.

The folding method is employed by Zabrodsky et al. [17] to calculate the best
symmetric approximation to a set. This method produces an approximation
that is equivalent to ours. However, our proof indicates how to calculate an
SPSVD that gives the best low rank symmetric approximation to a set efficiently
for large scale matrices.

This paper is organized as follows. Section 2 defines perfect reflective and
rotational symmetry. Finding an optimal hyperplane of reflective symmetry for
noisy data is developed and analyzed in section 3; while choosing the axes of
rotational symmetry for noisy data is discussed in section 4. Finally, section 5
develops an SPSVD that best approximates the given data set and provides an
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algorithm for directly computing the best low rank symmetry preserving approx-
imation in a way that is suitable for large scale computation. Computational
results are presented in section 6.

Throughout the discussion, ‖ · ‖ shall denote the 2-norm and ‖ · ‖F shall
denote the Frobenius norm.

2 Perfect Symmetry

In this section, we lay out the basic defining properties of reflective and rota-
tional symmetry. We also give analytic specifications of the normal to a plane of
reflection and the axis of rotational symmetry when the given data set possesses
exact symmetry relations.

2.1 Reflective Symmetry

Recall that a hyperplane H is specified by a constant γ and a vector w via
H := {x : γ + wT x = 0}. The vector w is called the normal to the plane.
We say that a set of points S ⊂ IRn is reflectively symmetric with respect to
the hyperplane H if for every point s ∈ S, there exists a point ŝ such that
ŝ = s + τw for some scalar τ with s + τ

2w ∈ H. It is easily shown that the
center c ≡ 1

m

∑
s∈S s of the point set lies in the plane of symmetry, where m

is the number of elements in S. A simple rigid translation of the point set
will allow us to assume that the center is at the origin c = 0 and hence also
that γ = 0. These assumptions will be made throughout this discussion. For
simplicity, we shall also assume that no points of S lie in the plane of symmetry.

The following lemma is an immediate consequence of the fact that for each
s ∈ S there is a reflected point ŝ = s + τw ∈ S.

Lemma 2.1 A set S is reflectively symmetric with respect to a hyperplane H
with unit normal w if and only if

S = (I− 2wwT )S.

Lemma 2.2 If S is reflectively symmetric about H, then the center c ∈ H.

If S is reflectively symmetric about H, we can arrange the points of S into
two sets represented as two n× m

2 dimensional matrices X0 and X1 such that

X0 = (I− 2wwT )X1.

Moreover, there is no loss of generality in assuming that wTX0 > 0 and that
wTX1 < 0 (elementwise).

2.2 Rotational Symmetry

We say that a set of points S ⊂ IRn
⋂

q⊥ is k-fold rotationally symmetric about
an axis q ∈ IRn if there exist an n × n orthogonal matrix R(q) such that for
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every point s ∈ S, there are k − 1 distinct points s1, s2, . . . , sk−1 ∈ S with
R(q)js = sj for j = 1, 2, . . . , k − 1. We call q the rotational axis of symmetry
and R(q) the rotation matrix.

Lemma 2.3 A set S is k-fold rotationally symmetric with respect to a rotational
axis q if and only if for j = 1, 2, . . . , k − 1

S = R(q)jS = (I−QGQT )jS,

where Q ∈ IRn×(n−1) with [q, Q] forming an orthogonal matrix, and I −G ∈
IR(n−1)×(n−1) is a rotation with (I−G)k = I.

Note, (R(q))k = (I−QGQT )k = I, and for n = 3, the matrix I2−G is a 2× 2
plane rotation through an angle of θ = 2π/k degrees.

If S is k-fold rotationally symmetric about q, we can arrange the points of
S into k sets represented as matrices X0,X1, . . . ,Xk−1 such that

Xj = (I−QGQT )jX0

for j = 1, 2, . . . , k − 1. Again, we will assume that the center c of the data
is at the origin. This can always be attained in general by a simple uniform
translation of all the points of S.

3 Optimal Value of Reflective w

Generally, in practice, the given set S is not exactly symmetric with respect to
any particular plane. However, we may think of calculating a w that does the
best possible job of specifying a plane that separates S into two sets X0 and
X1 (again represented as matrices) that are “nearly” symmetric with respect to
the plane.

It is possible to find an initial separation of S into X0 and X1 that are paired
to be nearly symmetric with respect to a plane determined by a calculated w.
Methods for this are discussed in [10]. However, for this discussion, we shall
assume that a partitioning of S into X0 and X1 is given such that the columns
of the two matrices are correctly paired.

The specification of w may be expressed as an optimization problem

min
‖w‖=1

{‖X0 −WX1‖F : W = I− 2wwT }. (1)

Lemma 3.1 The solution w to the minimization problem (1) is the unit eigen-
vector corresponding to the smallest eigenvalue of the symmetric indefinite ma-
trix

M0 = X0X
T
1 + X1X

T
0 .
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Proof.

‖X0 −WX1‖2F = tr{(X0 −X1)(X0 −X1)
T }+ 4tr{wwTX1(X0 −X1)

T }
+4tr{(wwT X1)(wwT X1)

T }
= tr{(X0 −X1)(X0 −X1)

T }+ 4wTX1(X0 −X1)
Tw

+4wT (X1X
T
1 )w

= tr{(X0 −X1)(X0 −X1)
T }+ 4wT (X1X

T
0 )w

= tr{(X0 −X1)(X0 −X1)
T }+ 2wT (X1X

T
0 + X0X

T
1 )w

where we have used wT w = 1 and that tr{AB} = tr{BA}.
Clearly this quantity is minimized when 2wT (X1X

T
0 + X0X

T
1 )w is mini-

mized, and this occurs precisely when w is the (unit norm) eigenvector corre-
sponding to the smallest eigenvalue of the symmetric matrix

M = X1X
T
0 + X0X

T
1 .

A weighting can be introduced into the minimization problem (1) which
gives a way to de-emphasize anomalies in the supposed symmetry relation. In
this case, we must solve

min
‖w‖=1

{‖(X0 −WX1)D‖F : W = I− 2wwT }, (2)

where D is a diagonal weighting matrix.

Lemma 3.2 The solution w of to the minimization problem (2) is the unit
eigenvector corresponding to the smallest eigenvalue of the symmetric indefinite
matrix

MD = X0D
2XT

1 + X1D
2XT

0 . (3)

Proof. Similar to Lemma 3.1.
We have devised an iterative re-weighting scheme to construct a D that

diminishes the influence of outliers in the SPSVD. Given a guess z to the normal

vector w, the basic idea is to weight the i-th column of X0 −WX1, i.e. x
(0)
i −

(I− 2wwT )x
(1)
i , by the reciprocal of the norm of x

(0)
i − (I− 2zzT )x

(1)
i , where z

is a unit vector. The motivation is to penalize (give the smallest weight) to the
pairs x0

j , x1
j that are farthest from being symmetric with respect to z.

Let us define

F (z,w) =

m∑

i=1

(
fj(w)

fj(z)

)2

= ‖(X0 −WX1)D(z)‖2F ,

where fj(z) = ‖x(0)
j − (I − 2zzT )x

(1)
j ‖ and D(z) = diag

{
fj(z)

−1
}
. To find

the optimal normal with respect to this weighting, we choose w as the point
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that minimizes ‖(X0 −WX1)D(z)‖F , as described in Lemma 3.2. Then, the
approximate w associated with this weighting solves

min
‖w‖=1

F (z,w). (4)

This suggests an iterative re-weighting scheme that will adjust the vector z

to optimally diminish the effect of outliers; begin with an initial guess z0 and
iterate

zk+1 = arg min
‖w‖=1

F (zk,w), k = 0, 1, 2, . . . (5)

until ‖zk+1 − zk‖ is sufficiently small. Upon convergence, this fixed point iter-
ation will solve the following max-min problem

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
(6)

as the following lemma indicates.

Lemma 3.3 If v = z is a fixed point of the minimization problem (4), then z

is a solution to the max-min problem (6), and F (z,v) = m.

Proof. Given z, ‖z‖ = 1,

min
‖v‖=1

m∑

j=1

(
fj(v)

fj(z)

)2

≤
m∑

j=1

(
fj(z)

fj(z)

)2

= m.

Hence,

max
‖z‖=1

{
min
‖v‖=1

F (z,v)

}
≤ m.

If v = z, then F (z,v) = F (z, z) = m. Therefore, any fixed point of the
minimization problem (4) is a solution to the max-min problem (6).

We’ve shown in the above lemma that a fixed point of iteration (5) solves
the max-min problem (6). Now, we will show the existence of a fixed point to
the iteration (5) in Lemma 3.4.

Lemma 3.4 There is a point z∗ of unit norm such that

z∗ = arg min
‖w‖=1

F (z∗,w).

Proof. Let Mi = ‖x(0)
i −x

(1)
i ‖2I+ 2(x

(0)
i x

(1)
i

T
+x

(1)
i x

(0)
i

T
). For a given z, any

w that solves

min
‖w‖=1

F (z,w) = min
‖w‖=1

m∑

i=1

wT Miw

zT Miz
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will also solve

min
‖w‖=1

Φ(z)F (z,w) = min
‖w‖=1

m∑

i=1

φi(z)w
T Miw,

where Φ(z) =
m∏

i=1

zTMiz, and φi(z) =
m∏

j=1
j 6=i

zT Mjz. The function Φ(z) restricted

to the unit n-sphere is a continuous function on a compact set. Therefore,
minz Φ(z) = Φ(z∗) is attained at some point z = z∗ on the unit sphere.

From Lagrange Theory, we see that

∇Φ(z∗) = 2

m∑

i=1

φi(z∗)Miz∗ = 2z∗λ,

or, if we denote M(z) =
∑m

i=1 φi(z)Mi,

M(z∗)z∗ = z∗λ.

Now, it is straightforward to show that an eigenvector corresponding to the
smallest eigenvalue of M(z∗) is also an eigenvector corresponding to the smallest
eigenvalue of MD in equation (3) with D = D(z∗). Therefore, it is sufficient to
show that λ is the smallest eigenvalue of M(z∗) to show that z∗ is a fixed point.
The following argument will establish this.

Due to the KKT first and second order necessary conditions, for all w such
that wT z∗ = 0, we must have

wT∇Φ(z∗) = wTM(z∗)z∗ = 0,

and
wT

(
∇2Φ(z∗)− 2λI

)
w ≥ 0. (7)

Now,

∇2Φ(z) = 2

m∑

i=1

φi(z)Mi + 2

m∑

i=1

Miz∇φi(z)
T

and

∇φi(z) = ∇




m∏

j=1
j 6=i

zT Mjz





= ∇
(

Φ(z)

zT Miz

)

=
1

zT Miz
∇Φ(z) − 2Φ(z)

(zT Miz)2
Miz.

Therefore,

wT∇φi(z∗) = − 2Φ(z∗)

(z∗T Miz∗)2
wT Miz∗. (8)
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Substituting expression (8) into the formula for wT
(
∇2Φ(z∗)− 2λI

)
w in the

second order necessary conditions (7) gives

0 ≤ 2wTM(z∗)w − 4

(
wTMiz∗

z∗T Miz∗

)2

Φ(z∗)− 2λ

≤ 2(µ− λ),

where µ = wT M(z∗)w. Thus, λ ≤ µ for any eigenvalue µ of M(z∗). Since
λ is the smallest eigenvalue of M(z∗) we have established that a constrained
minimizer z∗ of Φ(z) satisfies z∗ = argmin‖w‖=1 F (z∗,w).

Remark: We have assumed in Lemma 3.4 that Φ(z) 6= 0. This is a reason-

able assumption, since the only way Φ(z) = 0 is if ‖x(0)
i ‖ = ‖x(1)

i ‖ for some pair

(x
(0)
i ,x

(1)
i ). Since we are dealing with noisy sets, it is unlikely that these norms

are precisely equal in practice. Nevertheless, we are considering equivalent re-
formulations that avoid this difficulty altogether.
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Convergence of Iteration zk for 1000 Frames of HIV1 Protease

Figure 1: Convergence of 1000 frames of HIV-1 Protease using iteration (5).

Convergence of the iterates zk produced by (5) is yet to be proven. However,
the convergence history shown in Figures 1 and 2 is typical, and iteration (5)
seems to be convergent in practice. Lemma 3.5 does at least establish that the
sequence Φ(zk) is monotonically decreasing and convergent.

Lemma 3.5 The sequence Φ(zk), with zk produced by iteration (5), is conver-
gent.

Proof. In the proof of Lemma 3.4, we show that a constrained minimizer z∗ of

Φ(z) =
m∏

i=1

zT Miz =
m∏

i=1

‖x(0)
i − (I− 2zzT )x

(1)
i ‖2
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is a fixed point to iteration (5). If we can show Φ(zk), where zk satisfies iteration
(5), is a monotonically decreasing function, we’ll have proven that the sequence
Φ(zk), with zk produced by iteration (5), is convergent. Notice,

Φ(zk+1)

Φ(zk)
=

m∏

i=1

‖x(0)
i − (I− 2zk+1z

T
k+1)x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

.

And, zk+1 is chosen such that it minimizes the optimization problem (4); thus

m∑

i=1

‖x(0)
i − (I− 2zk+1z

T
k+1)x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

≤
m∑

i=1

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

= m.

Since the geometric mean never exceeds the arithmetic mean,

[
m∏

i=1

‖x(0)
i − (I− 2zk+1z

T
k+1)x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

](1/m)

≤ 1

m

m∑

i=1

‖x(0)
i − (I− 2zk+1z

T
k+1)x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

≤ 1.

Thus,
m∏

i=1

‖x(0)
i − (I− 2zk+1z

T
k+1)x

(1)
i ‖2

‖x(0)
i − (I− 2zkz

T
k )x

(1)
i ‖2

≤ 1.

Hence, Φ(zk) is a monotonically decreasing sequence that is bounded below and
is therefore convergent.
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Figure 2: Iterations showing that our weighting is a good choice. Notice how
as the iterations progress the normal converges to the correct solution, even in
the presence of outliers (larger dots). The smaller dots in the last frame show
our best symmetric approximation to the original data set.

We have compared the convergence of iteration (5) to a fixed point with the
modified compass search method [7] on an equivalent optimization problem:

min
‖z‖=1

‖z− v‖, (9)

where, as before, v is the eigenvector associated with the smallest eigenvalue
of equation (3) with D = diag(fj(z)

−1). We see that, in general, iteration
(5) converges faster and more efficiently when compared to the compass search
method. Also, more accurate results are usually obtained with iteration (5).

10

• 

•• •• • • 



4 Optimal Value of Rotational Axis q

Recall that for a perfectly rotationally symmetric set,

Xj = (I−QGQT )jX0, (10)

where the columns of [q, Q] form an orthogonal set. This specification suggests
a means to compute the axis of rotation.

Lemma 4.1 Suppose X0 has rank n and that G is nonsingular. Then, q is an
axis of rotational symmetry if and only if

qT [(k − 1)X0 −
k−1∑

j=1

Xj ] = 0. (11)

Proof. First, note that if q is an axis of rotational symmetry, then qT Q = 0
must hold, and thus,

qT Xj = qT (I−QGQT )jX0 = qTX0, for j = 1, 2, . . . , k,

which implies equation (11) must hold.
From equation (10),

Xj = (I−QGQT )jX0

= (qqT + Q(I−G)QT )jX0

= (qqT + Q(I−G)jQT )X0.

Thus,

k−1∑

j=1

Xj = ((k − 1)qqT + Q(
k−1∑

j=1

(I−G)j)QT )X0

= ((k − 1)qqT −QQT )X0 = kqqTX0 −X0,

since (I −G)k = I implies
∑k−1

j=1 (I −G)j = −I when G is nonsingular. From
this, it follows that

(k − 1)X0 −
k−1∑

j=1

Xj = k(I− qqT )X0.

Now, suppose q̂ is any unit vector that satisfies equation (11) (in place of
q). Since X0 is full rank and q̂ satisfies equation (11),

0 = q̂T [(k − 1)X0 −
k−1∑

j=1

Xj ] = kq̂T (I− qqT )X0

implies that q̂ = q(q̂T q). Since both q and q̂ are unit length, it follows from
Cauchy-Schwarz that q̂ = ±q.
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Remark: In IR3 the only way G can be singular is if it is identically 0, and
since we are assuming many points, it is also not unreasonable to assume X0

has full rank.
This exact condition is satisfying, but in general, we are not given a perfectly

symmetric data set S. Therefore, we need to be able to specify an approximate
rotational axis q that best fits the data. To this end, we shall assume a par-
titioning of S into X0,X1, . . . ,Xk such that the columns of the matrices are
correctly paired. Then, we can formulate the optimization problem

min
‖q‖=1

{‖qT [(k − 1)X0 −
k−1∑

i=1

Xi]‖F } (12)

to specify our approximate rotational axis of symmetry q. Of course, we can
characterize q as follows:

Lemma 4.2 The solution q to the minimization problem (12) is the unit eigen-
vector corresponding to the smallest eigenvalue of MMT , where

M = (k − 1)X0 −
k−1∑

i=1

Xi. (13)

Note that this characterization provides a computational mechanism that is
robust in the presence of noise. An alternate specification of q suggested by
Minovic et al. is to consider the principal axis of the inertia matrix (correlation
matrix) associated with the distinct eigenvalue for an initial guess to the rota-
tional axes of symmetry. The motivation for this is that with exact symmetry
the inertia matrix will have a distinct eigenvalue of multiplicity one and another
eigenvalue of multiplicity n− 1. However, in the presence of noise, this criteria
may fail, since the eigenvalues are likely to be perturbed into a distinct set mak-
ing it impossible to distinguish the “correct” eigenvalue. For example, consider
the following 4-fold perfectly rotationally symmetric data set with respect to
q = [1, 0, 0]T :




1 4 0 1 4 0 1 4 0 1 4 0
0 1 4 0 0 1 0 −1 −4 0 0 1
0 0 1 0 −1 4 0 0 −1 0 1 4





with eigenvalues 34.6667, 36, 36 after centering. In this case, we can clearly
distinguish the distinct eigenvalue. However, if we perturb the data to the
following data set,




1 4 0.01 1 4 0.01 1 4 0.01 1 4 0.01

0.1 1 4 .1 0 1 0.1 −1 −4 0.1 0 1
0.1 0.01 1 0.01 −1 4 0.01 0 −1 0.01 1 4



 ,

then the eigenvalues of the centered data become approximately 34.4870, 35.998,
36.0755. In this case, calculating the correct axis of rotation becomes impossible
for the Minovic algorithm. But, our algorithm constructs it correctly.

12



As with reflective symmetry, we can introduce a weighting scheme that min-
imizes the influence of outliers in the supposed rotational symmetry relation:

min
‖q‖=1

{‖qT [(k − 1)X0 −
k−1∑

i=1

Xi]D‖F } (14)

where D is a diagonal weighting matrix. If such a weighting has been specified,
then:

Lemma 4.3 The solution to the optimization problem (14) is the unit eigenvec-
tor q corresponding to the smallest eigenvalue of MD2MT , where M is defined
as in equation (13).

As in reflective symmetry, we have developed an iterative re-weighting scheme
to specify the weighting matrix D of the minimization problem (14) that effec-
tively diminishes the influence of outliers in the final SPSVD approximation.
Given a guess z of unit length, the i-th column of M is weighted by gi(z)

−1,

where gi(z) = ‖zT
[
(k − 1)x

(0)
i −

∑k
j=1 x

(j)
i

]
‖. If we define

G(z,q) =

m∑

i=1

(
gi(q)

gi(z)

)2

= ‖qT [(k − 1)X0 −
k−1∑

i=1

Xi]D(z)‖2F ,

then the approximate q associated with this weighting solves

min
‖q‖=1

G(z,q). (15)

The motivation for this is to put greater weight on points that are more sym-
metric with respect to z than points that are not. Then, q is constructed to
have the optimal normal with respect to the weighting as described in Lemma
4.3. If q is not acceptable, then z ← q, and the process is repeated until an
acceptable q is found. This suggests an iterative re-weighting. Given an initial
guess z0 to the axis of rotation, we iterate:

zk+1 = arg min
‖q‖=1

G(zk,q) (16)

until ‖zk+1− zk‖ is under a predetermined tolerance. A fixed point of iteration
(16) is the solution to the following max-min problem

max
‖z‖=1

{
min
‖q‖=1

G(z,q)

}
. (17)

as the next lemma suggests.

Lemma 4.4 If q = z is a fixed point of the iteration (16), then q is a solution
to the max-min problem (17), and G(z,q) = m.

13
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Proof. The proof is essentially the same as the proof of Lemma 3.3.

Moreover, we have the following

Lemma 4.5 There exists a fixed point to iteration (16).

Proof. The proof is essentially the same as the proof of Lemma 3.4.

We have also compared iteration (16) with the modified compass search
method on the equivalent optimization problem:

min
‖z‖=1

‖z− q‖ (18)

where q is the eigenvector associated with the smallest eigenvalue of MD2MT

with D = diag(gj(z)
−1). We have observed that iteration (16) is generally more

efficient and produces more accurate fixed point solutions when compared to
the compass search method.

5 Best Symmetric Approximation to a Set

To find the best reflective or rotational symmetric approximation to a set, we
can take advantage of the following theorem. For reflective symmetry R = W

and W2 = I, and in the case of rotational symmetry R = R(q) and R(q)k = I.

Theorem 5.1 If

X =





X0

X1

...
Xk−1





where
Rk−iXi = X0 + Ei,

and Rk = I, then

min
bXj+1=RbXjj=0,1,...,k−2

∥∥∥∥∥∥∥




X0

...
Xk−1



−




X̂0

...

X̂k−1





∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑

i=0

k−1∑

j=i+1

‖Ej−Rj−iEi‖2F

and the SVD

USVT =




X̂0

...

X̂k−1





14
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satisfies

U =
1√
k




U0

...
Uk−1



 , S =
√

kS0, V = V0,

where
Uj = RjU0, for j = 0, 1, 2, . . . , k − 1,

and

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · ·+ RXk−1).

Proof. The proof will consist of a sequence of straightforward lemmas. We
begin by assuming that we have perfect symmetry.

Lemma 5.2 Suppose Ej = 0 for all j = 0, 1, 2, . . . , k − 1 and let





X0

X1

...
Xk−1




=





U0

U1

...
Uk−1




SVT (19)

be the short form SVD of X. Then,

Ui = RiU0

where i = 0, 1, . . . , k − 1.

Proof. From (19), we have

Uj = XjVS−1

where UT
0 U0 + UT

1 U1 + · · ·+ UT
k−1Uk−1 = I. Thus,

Uj = XjVS−1 = RjX0VS−1 = RjU0.

Therefore, when R is known, the SVD of a perfectly symmetric set may be ef-
ficiently computed by just taking the SVD of X0 and putting Uj = RUj−1, 1 ≤
j ≤ k − 1. Combining this fact with the following lemma leads to an algorithm
for calculating the best low rank approximation to a matrix that preserves sym-
metry.

Lemma 5.3 Let X0 = U0S0V
T
0 be the short form SVD of X0 where UT

0 U0 =
VT

0 V0 = I. Then, 


X0

:
X0



 = USVT
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is the SVD of the composite matrix, where

U =
1√
k




U0

...
U0



 , S =
√

kS0, V = V0.

Proof. Clearly, UTU = I, and




X0

...
X0



 =




U0

...
U0



S0V
T
0 =

1√
k




U0

...
U0




√

kS0V
T
0

= USVT ,

which is indeed the SVD.
We are now ready to give the best low rank approximation that preserves

symmetry for a noisy data set.

Lemma 5.4 Let Ẑ = 1
k (Z0 + Z1 + · · ·+ Zk−1). Then, Z = Ẑ solves

min
Z

∥∥∥∥∥∥




Z0

:
Zk−1



−




Z

:
Z





∥∥∥∥∥∥

2

F

.

Proof. Consider

∥∥∥∥∥∥∥




Z0

...
Zk−1



−




Z
...
Z





∥∥∥∥∥∥∥

2

F

= ‖Z0−Z‖2F +‖Z1−Z‖2F +· · ·+‖Zk−1−Z‖2F ,

and note that

‖Zi − Z‖2F = tr(ZT
i Zi)− 2tr(ZT

i Z) + tr(ZT Z)

for i = 0, 1, 2, . . . , k − 1. Therefore,

∥∥∥∥∥∥




Z0

:
Zk−1



−




Z

:
Z





∥∥∥∥∥∥

2

F

= tr(

k−1∑

i=0

ZT
i Zi)−2tr(

k−1∑

i=0

ZT
i Z)+(k)tr(ZT Z).

16
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However,

−2tr(

k−1∑

i=0

ZT
i Z) + (k)tr(ZT Z) = −2tr(

1√
k

(

k−1∑

i=0

Zi)
T
√

kZ) + tr((
√

kZ)T (
√

kZ))

= −tr(
1√
k

k−1∑

i=0

ZT
i

1√
k

k−1∑

i=0

Zi) + tr(
1√
k

k−1∑

i=0

ZT
i

1√
k

k−1∑

i=0

Zi)

−2tr(
1√
k

(

k−1∑

i=0

Zi)
T
√

kZ) + tr((
√

kZ)T (
√

kZ))

= −1

k
tr(

k−1∑

i=0

ZT
i

k−1∑

j=0

Zj) + ‖ 1√
k

k−1∑

i=0

Zi −
√

kZ‖2F .

The fact that trZT
i Zj = trZT

j Zi and some tedious book keeping will show

tr(

k−1∑

i=0

ZT
i Zi)−

1

k
tr(

k−1∑

i=0

ZT
i

k−1∑

j=0

Zj) =
k − 1

k
tr(

k−1∑

i=0

ZT
i Zi)−

2

k

k−1∑

i=0

k−1∑

j=i+1

tr(ZT
i Zj)

=
1

k

k−1∑

i=0

k−1∑

j=i+1

‖Zi − Zj‖2F .

Hence,
∥∥∥∥∥∥∥




Z0

...
Zk−1



−




Z
...
Z





∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑

i=0

k−1∑

j=i+1

‖Zi − Zj‖2F + k

∥∥∥∥∥
1

k

k−1∑

i=0

Zi − Z

∥∥∥∥∥

2

F

≥ 1

k

k−1∑

i=0

k−1∑

j=i+1

‖Zi − Zj‖2F

with equality if and only if

Z = Ẑ =
1

k

k−1∑

i=0

Zi.

These lemmas establish Theorem 5.1, since solving

min
bXj+1=RbXj

∥∥∥∥∥∥




X0

:
Xk−1



−




X̂0

:

X̂k−1





∥∥∥∥∥∥

2

F

is equivalent to solving

min
bX0

∥∥∥∥∥∥∥∥





X0

Rk−1X1

:
RXk−1



−





X̂0

X̂0

:

X̂0





∥∥∥∥∥∥∥∥

2

F
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because 



I

Rk−1

. . .

R





is unitary. Therefore, by Lemma 5.4, X̂0 = 1
k

∑k−1
i=0 Rk−iXi, and

min
bXj=Rj bX0

∥∥∥∥∥∥∥




X0

...
Xk−1



−




X̂0

...

X̂k−1





∥∥∥∥∥∥∥

2

F

=
1

k

k−1∑

i=0

k−1∑

j=i+1

‖Ej−Rj−iEi‖2F

where Rk−iXi = X0 + Ei.

6 Algorithms and Computational Results

The algorithmic structure for both the reflective and rotational SPSVD is the
same. It consists of two major steps

1. Determine the normal w or the axis q for reflective or rotational symmetry
respectively.

2. Compute the standard SVD

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + · · ·+ RXk−1)

where R is a reflector determined by w or a rotation about the axis de-
termined by q.

We seek the dominant (largest) singular values and this can be done in a
straightforward manner using the ARPACK software on a serial computer or
P ARPACK on a parallel system. Of course, one might question the use of
ARPACK on dense problems. However, the timings shown in Figure 3 clearly
verify that it is computationally more efficient to calculate only the leading k
terms (singular values) using ARPACK instead of computing all of the singular
values and then discarding n−k of them for large scale matrices. One may either
specify k or utilize a restarting scheme to adjust k until σk ≥ tol ∗ σ1 > σk+1.
The important computational point is that only matrix-vector products of the
form

u =
1

k
(X0 + Rk−1X1 + Rk−2X2 + · · ·+ RXk−1)v,

are required and this is slightly less work than is needed to compute the corre-
sponding standard SVD of X without the symmetry constraint.
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Figure 3: Comparison of calculating the largest 20 singular vectors of an HIV1
Protease trajectory using ARPACK and a dense SVD solver.

6.0.1 SPSVD in Protein Dynamics

Given a dynamical system ẋ = f(x), x(0) = x0, there are well known techniques
for dimension reduction based upon the Gramian of the trajectory {x(t), t ≥ 0}.
The technique is known as Proper Orthogonal Decomposition in computational
fluid dynamics, as Karhunen-Loeve decomposition in face recognition and de-
tection, and as Principle Component Analysis in molecular dynamics. For a
system with n-dimensional state vectors, the Gramian

P =

∫ ∞

0

x(τ)x(τ)T dτ

is an n× n symmetric positive (semi-)definite matrix (assuming it exists). The
eigensystem of P

P = US2UT

provides an orthogonal basis via the columns of U, and in this basis we have
the representation

x(t) = USv(t)

with the components of v(t) being mutually orthogonal L2(0,∞) functions.
If the diagonal elements of the positive semidefinite diagonal matrix S decay
rapidly (assuming they are in decreasing order), then a reduced basis represen-
tation of the trajectory may be obtained by discarding the trailing terms and
considering the approximation xk = UkSkvk(t) where the subscript k denotes
the leading k columns and/or components. This is usually approximated using
snapshots consisting of values x(tj) of the trajectory at discrete time points and
forming the n×m matrix

X = [x(t1),x(t2), . . . ,x(tm)].
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Regular

Symmetric

Figure 4: Comparison of SVD vs. SPSVD. Notice the nice fit for all but the
indicated region and its symmetric counterpart.

The SVD of X provides

X = USVT ≈ UkSkV
T
k ,

where

UTU = VTV = In S = diag(σ1, σ2, · · · , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn. This is a direct approximation to the continuous
derivation if we consider

P ≈ 1

m
XXT =

1

m

∑

j

x(tj)x(tj)
T ,

where the approximation to P is given by a quadrature rule. Here, we are con-
cerned with introducing symmetry constraints into this approximation when
appropriate. In molecular dynamics, there is often a known spatial structural
symmetry for the state variables, and the purpose of the constrained SVD ap-
proximation developed here is to impose such symmetry constraints on the ap-
proximate trajectory through the SPSVD.

This method has been implemented using P ARPACK on a Linux cluster
with 6 dual-processor nodes consisting of 1600MHz AMD Athlon processors
with 1GB RAM per node and a 1GB/s Ethernet connection. The method was
applied to compute the leading 20 symmetric major modes for a HIV-1 protease
molecule. The molecule consists of 3120 atoms, and hence, the state has 9360
degrees of freedom. The molecular dynamics trajectory consisted of 10000 time
steps (snapshots). This resulted in
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1. The first 20 symmetric singular vectors took 244 secs.
This includes axis of rotation determination.

2. The first 20 standard singular vectors took 118 secs.

This may seem contradictory to the claim that the SPSVD should be as
efficient as regular SVD. However, the need to compute the axis of rotation
significantly adds to the run time. If more singular vectors are computed, the
SPSVD indeed runs faster than regular SVD.

1. The first 50 symmetric singular vectors took 312 secs.
This includes axis of rotation determination.

2. The first 50 standard singular vectors took 390 secs.

These computations were done for both reflective and rotational symmetry
with essentially the same computational time. The computation of the reflective
normal or the axis of rotation was included in both SPSVD approximations. As
this normal/axis determination is quite demanding, these computations indi-
cate that obtaining the leading terms of the SVD is comparable for both the
symmetry preserving and standard SVD cases. Moreover, both are well suited
to the large scale setting when P ARPACK is used.

It turns out that HIV-1 protease has a 2-fold rotational symmetry and this
aspect is preserved while providing good approximations to the full trajectory
as can be seen in Figure 4. Additional visualizations are available at the web
site http://www.caam.rice.edu/∼sorensen/ under “recent talks”.

6.0.2 Face Recognition

Generalizations of techniques described here can be used to orient faces once
the plane of symmetry has been found. Once the correct orientation is attained,
the SPSVD can find the best symmetric approximation to the face.

We notice that a face seems to have reflective symmetry through the vertical
mid-line of the face (through the center of the eyes, middle of the nose, etc.).
Therefore, if a face is correctly oriented, we have a reflectively symmetric data
set of intensity values. The left half of the face forms X0, while the right half
gives us X1. Note that the columns of X1 will have to be in reverse order to
maintain correctly paired data points with relation to X0. Then, using SPSVD,
we know that our best symmetric approximation will be formed by taking the
average of the intensity levels of the left and right half of the face, i.e., the best
symmetric approximation

S = [A Â],

where A = 1
2 (X0+X1) and Â is the matrix A with its columns in reverse order.

The SPSVD was applied to a series of newly synthesized, laser-scanned (Cy-
berware TM), 256×256 gray scaled pixel heads without hair. The face database
was provided by the Max-Planck Institute for Biological Cybernetics in Tuebin-
gen, Germany. An example of one of the faces and its symmetric counterpart
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(a) Regular SVD (b) Symmetric SVD

Figure 5: Comparison of SVD verses SPSVD on faces.

can be seen in Figure 5. The SPSVD gives a good approximation to the original
head, while the storage is essentially cut in half. We should also note that the
sudden decrease of the singular values in the SPSVD occurs at an index that
is approximately half that of the regular SVD (Figure 6). This suggests that a
lower rank approximation from the SPSVD could give a better approximation to
the original data set when compared to a regular low rank SVD approximation.

7 Conclusion

This paper has described a mathematical formulation of a symmetry preserving
singular value decomposition which has led to practical (parallel) algorithms
suitable for large scale computation. Criteria and methods were given for the
calculation of reflective normal and rotational axis of symmetry of objects in
IRn that are able to overcome problems with noisy data and outliers. The
resulting technique is able to compute the best low rank symmetry preserving
approximation to a given set.
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