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Abstract 

A domain decomposition technique is proposed for the computation of the acoustic wave 

equation, in which the bulk modulus and density fields are allowed to be discontinuous at 

the interfaces. Inside each subdomain, the method presented coincides with the second 

order finite difference schemes traditionally used in geophysical modelling. However, the 

possibility of assigning to each subdomain its own space-step makes numerical simulations 

much less expensive. 

Another interest of the method lies in the fact that its hybrid variational formulation 

naturally leads to exact equations for gridpoints on the interfaces. Transposing Babuska­

Brezzi's formalism on mixed and hybrid finite elements provides a suitable functional frame­

work for this domain decomposition formulation and shows that the inf-sup condition re­

mains the basic requirement for convergence to occur. 
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1. Introduction 

1.1 Geophysical context 

Over the past twenty years, explicit finite difference methods have been the standard techniques 

for the simulation of acoustic wave propagation. Kelly et al. [11] first advocated their use 

to produce synthetic seismograms. In the present state of the art, their implementation on 

supercomputers not only enables geophysicists to create huge synthetic databases [18], but 

also supplies scientists with a convenient tool for any iterative inverse process or study on 

acoustic waves [17]. Although there have been developed a lot of variants such as higher-order 

differencing [5] and Fourier spectral methods [12], the two most classical schemes remain the 

so-called 2-2 and 2-4 finite difference schemes. We will have the opportunity to recall them in 

greater details. 

The starting point of the present work comes from the following remark. Both 2-2 and 2-4 

methods involve a uniform grid, the spacing of which is determined by the lowest velocity and 

the cut-off frequency of the source wavelet. Generally speaking, the space-step must be chosen 

so that the shortest wavelength contains at least some fixed number of gridpoints [l]. This 

condition is meant to ensure accuracy for the numerical solution. Nevertheless, when applied 

to cases such as layered-media with strongly contrasting velocities, this accuracy condition 

results in a considerable loss of efficiency: since all layers must be as finely sampled as the one 

corresponding to the lowest velocity, a significant amount of extra grid points have to be updated 

at every time-step. As will be shown later on, this turns out to be particularly annoying in 

media with a thin water layer on the top. 

Ideally, it should be possible to discretize layers with higher velocities by coarser grids, 

within the requirement of the accuracy condition that should be considered separately for 

each layer. This physically makes sense, but could be achieved only on the condition that 

an appropriate scheme is devised so as to compute gridpoints on interfaces. Besides, such a 

scheme would have to be exact if accuracy is to be preserved. In this respect, simple-mindedly 
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designed tricks such as interpolation or extrapolation often fall short of our requirement. By 

means of domain decomposition techniques, however, the equations for updating gridpoints on 

interfaces can be found in a rigorous way. 

The primary purpose of this paper is to show how domain decomposition ideas can succes­

fully cope with the problem of grid change for the acoustic wave. As a matter of fact, there exist 

some previous works by Meza and Symes [15] and Lions [14] on domain decomposition methods 

for the wave equation. Their methods are inspired from the Schwarz alternating procedure and 

hence involves overlapping computational subdomains. Despite their advantages of simplicity, 

overlapping methods do not appear to us as a suitable strategy for the wave problem. On one 

hand, it somehow seems awkward that the computational subdomains do not square with the 

physical layers. On the other hand, overlapping methods do not minimize the computational 

amount, which is the key issue in geophysical modelling. 

We wish to propose a nonoverlapping method based on the introduction of auxiliary La­

grange multipliers at the interfaces. This approach bears a formal resemblance to the hybrid 

finite element methods proposed by Raviart and Thomas [16] for elliptic problems. We will 

lay out firm foundations to our method by generalizing Babuska-Brezzi's theory of mixed and 

hybrid finite elements to this peculiar hyperbolic case. Such an attempt has never been made 

before, to the best of our knowledge. 

Prior to going through the nitty-gritty of the method, it is necessary for us to state the 

problem in a more precise and quantitative fashion. 

1.2 Modelling background 

Let n be a bounded open domain of R2 , the boundary of which is an. Any point of n is denoted 

by x = (x1 , x2), while t represents the time. For T > 0, consider the Classical Problem 

(CP) GIVEN 

p, K, J, u 0 , and u~ smooth enough on n. 
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FIND 

u E C 2
( [O, T] x !1, R) such that 

• the acoustic wave equation is satisfied in f!x] 0, T[ 

K~x) u(x,t) - v'. (p/x) v'u) (x,t) J(x,t), (1.1) 

• the boundary condition is satisfied on 8!1x] 0, T[ 

1 . 1 J '" u(x, t) + -( ) v'u(x, t). n(x) ll(x)p(x) p x 0' (1.2) 

• the initial conditions are satisfied at t = 0 

u(x,O) = u0 (x) and u(x,O) = u~(x). (1.3) 

In the above equations I( represents the bulk modulus, p the density, f the source wavelet, 

and u the unknown pressure. Equation (1.2) is the first order absorbing boundary condition 

[8] to which it is for the moment advisable not to pay much attention. Furthermore, it is 

convenient to define the velocity c and the acoustic impedance a as 

c=~ and (1.4) 

Let us temporarily assume, for simplicity, that the density p is uniform, so that Eq. (1.1) 

boils down to 

c2tx) ii(x,t) - ~u(x,t) = g(x,t), (1.5) 

where~ denotes the Laplacian and g = pf. Suppose n is rectangular, so it can be divided into 

squares of side h. Likewise, the interval [O, T] is cut into pieces of length ~t. At time-step n 

and on each vertex ( i, j) of the mesh, an approximation 1tf1 to u( ih, j h, nl).t) is sought. This 

can be done via any of the following schemes: 

1. the 2-2 finite difference scheme (P 1) 

(1.6) 
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where ~ 2 •J
5 is the five-point second order discrete Laplacian ( within a factor h2 ) ,, 

2 5 
~i,j U = Ui+I,j + Ui-1,j + Ui,j+l + Ui,j-1 - 4ui,j · 

2. the 2-2 finite difference scheme (Ql) 

u~fl = 2un. _ un-:-1 + _ _.,_,J_ ~2,9un + ~t2gn , 1 (c· ~t) 2 

t,J ',J ',J 3 h i,J ',J 
(1. 7) 

where ~ ~,? is the nine-point second order discrete Laplacian ( within a factor 3h2 ) 
',J 

The second order schemes (P 1) and ( Q 1) can be derived [2] from the finite element method 

in which (i) the basis functions are defined over regular triangular or rectangular meshes and 

(ii) mass lumping is performed. In practice (Ql) is not of great interest since it requires up to 

nine points per node for the same order of accuracy. 

Usually, the right-hand side of (1.5) takes the tensor form g(x,t) = D(x)S(t). Let !max 

be the cut-off frequency of the signal S, and define the shortest wavelength Amin = cm1n/ J max· 

Theoretical analyses and experimental studies [1, 2, 11] show that in order to be sufficiently 

accurate, the following condition must be satisfied: 

Amin > h _q, (1.8) 

where the number of gridpoints per shortest wavelength q also depends on the propagation 

time. In most real-life simulations q = 10 for (Pl) and (Ql). 

Now, consider the situation depicted in Fig. l. We have to deal with two layers, the 

velocities of which are respectively c1 = 1500m/s and c2 = 3000m/s. The maximal frequency 

of the excitation source is !max = 75Hz, which gives Amin = 20m. When (Pl) is employed, 

according to (1.8), the space-step should be at most h = 2m. Obviously, this value is imposed 

to us by the slower layer alone. It would he economically desirable to sample the latter twice 

as finely as the other layer, as shown in Fig. 2. Once the grids are settled, (Pl) can be applied 

inside each subdomain. At the interface, a natural idea would be: ( a) resort to the coarse 
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c1 = 1500m/s 

c2 = 3000m/s 

Figure 1: A typical two-layer medium 

five-point stencil to update even-numbered grid points; then (b) take the arithmetic mean of 

two neighbor even-numbered points to get the new value of an odd-numbered point. Such a 

strategy is recommended by Jastram and Behle [10] for the fourth order scheme. However, it 

is not derived from any sound principle, and besides, its reliability has never been proven. 

1.3 Outline 

This paper is organized as follows. First, from the variational formulation of (CP) the main 

ideas of the domain decomposition method are sketched out. This intuitive presentation is next 

rigorously justified by a theoretical framework. Afterwards. semi- and full-discretizations are 

considered with a view to deriving error estimates. Hints on the practical implementation of 

the method are given. Finally, numerical results are presented and commented on. 

Figure 2: Filled circles represent the coarse five-point stencil for even-numbered gridpoints. 

Plain circles correspond to odd-numbered gridpoints on the interface. 
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2. Intuitive ideas of the method 

This section is aimed at expounding the basic ideas of the method. All calculations are formal, 

but they will be given a sense in the next section. 

2.1 Notations and settings 

Since generalization to multi-layered media is straightforward, we can restrict ourselves to the 

case of two open sub domains !11 and nu, the interface of which is the open set r defined by 

(2.1) 

If w is a real-valued function defined over n, wli denotes its restriction to ni for i E {I, II}. 

Let V; be a space of functions defined over ni, the generic element of which is Vi. Usually, 

V; = H 1 (!1i)- In domain decomposition, the solution u to the classical problem is sought for as a 

mapping from [O, T] to VrxVu. Thus, u is identified with a couple ( ur, nu) where 1li maps [O, T] 

to V;. For conveniency, the notation 1li ( t) will be used for the function x E ni f--+ 1li ( x, t) E R. 

Regardless of whether or not domain decomposition is applied, let V be a space of functions 

defined over n, the generic element of which is v. Usually, V = H 1 (!1). It is the space to which 

the solution u is presumed to map [O, T], in the context of weak formulation without domain 

decomposition. As before, the notation n(t) will be used for the function x E n f--+ u(x, t) ER. 

Assume that V can be assimilated to a strict subspace of Vr x Vu via a linear constraint. 

For instance, if ,r designates the trace operator on r, it is well-known [3, 16] that 

(2.2) 

2.2 Variational formulation 

Suppose ( ur, nu) : [O, T] f--+ Vr x Vu is a solution to the wave problem. Let us multiply both 

sides of (1.1) by a test function Vi E V;. Next, integrate over ni by using Green's theorem to 

transform the integrals. Substitute condition (1.2) into the boundary integrals that appear in 
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the course of calculations. Finally, sum over i E { J, I I} to get 

II l l ~ -. u;(t)v; dx + 
i=J O; K1i (2.3) 

where n; stands for the exterior normal of ni and 8i = ani \ f' = an n ani. Needless to say, 

the integral relation (2.3) is to be satisfied for every couple (vJ,VJI) E (Vi, VJI). 

Now, regardless of whether or not domain decomposition is applied, it is possible to do the 

same calculations by taking a test function v E V and by integrating over n. This yields 

f 1
.,.u(t)vdx + f !vu(t).v'vdx + f ~u(t)vd( = f J(t)vdx, (2.4) 

lo It lop lao a lo 

where u: [O, T] f-+ Vis the solution to (CP). This is utterly equivalent to 

(2.5) 

The solution obtained by the domain decomposition formulation (2.3) is correct if and only 

if Ui = uli· This seemingly naive requirement has two tremendous consequences. 

l. For the mapping ( UJ, UJI) to have range in V, it is necessary to impose constraints on 

the u;'s. Consider V; = H 1(f1;) and V = H 1 (f1). The matching condition (2.2) can be 

rewritten variationally as 

in which the space A of test functions defined over r remains to be precised. 

2. If the test function ( VJ, VJI) E Vix VII in (2.3) happens to belong to H 1(f1), then (2.3) 

should give us (2.5). This is tantamount to requiring 

,rvJ = ,rvII ==} f (2-v''UJ.nJ VJ + -1
-v'uII .nJI VJI) df = 0, Jr PIJ Pill 

as can be seen by comparing (2.3) and (2.5). Introduce then the co-normal derivative 

1 1 
.X(t) = -v'uII(t). 1lJI = - -v'uJ(t). nJ E A 

Pill P!J 
(2.6) 



Domain Decomposition Methods for the Wave Equation 9 

as an element of A. It will play the role of a Lagrange multiplier at the interface. 

We are thus led to the following Formal Domain decomposition formulation, from which 

numerical schemes will be deduced. 

(FD) GIVEN 

p, K, a= ,/Kp, J, u0 , and ii,~ smooth enough on n. 

FIND 

(u1, uu) [O, T] 1---+ Vix Vu and A [O, T] 1---+ A such that 

• \/ Vi E 11,;, the following integral relation holds 

f . I~ . iii( t)i\ dx Jo., Ii 

• \/ µ E A, the following continuity condition holds 

• the initial conditions are satisfied 

Vi E {J,JJ}, ui(O) = iioli and ui(O) = u~li· 

This formulation calls for several remarks. 

(2.7) 

(2.8) 

(2.9) 

REMARK 2.1 Although no summation sign over i appears in (2.7), the latter is indeed 

equivalent to (2.3), to the extent that ( VJ, vu) is allowed to vary freely in Vi X Vu. D 

REMARK 2. 2 The same space A is used for two distinct purposes, which are (a) testing 

the equality of tra<Ts on r as indicated by (2.8) and (b) describing the co-normal derivative of 

u across f as shown by (2.6). Shedding light on the spaces 11,; and A is an absolute necessity; 

this will be taken up in the next section. D 

REMARK 2.3 Since the calculations are purely formal, the integrals involving \ and µ may 

in fact represent duality products. In the elliptic case, it is classical [13] to define the co-normal 
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derivative of u as an element of H-1
/

2(af!) if u E H 1 (f!) and V. (ivu) E L2 (f!). D 

REMARK 2.4 We will also have to precise what smooth enough means for]( and p. D 

2.3 Time and space discretization 

Let N E N and divide the interval [O, T] into N 2'.: 1 pieces of length fl.t = T / N. Let Vt 

be a finite-dimensional subspace of½ = H 1 (f!i)- The dimension of Vt is connected to the 

space-step hi of the mesh defined on ni. The superscript N reminds that VF may have to 

be chosen in accordance with fl.t in order for some stability condition is satisfied. Let also 

AN C L2(f) be a finite-dimensional subspace of A. 

For n E { 1, 2, ... , N - l}, consider the sequence of discrete problems 

r E L2(f!), ui, ui-l E Vt, and K, p, a= vKp smooth enough (2.10) 

FIND 

u~+l EVN and _xn E AN such that 
' ' 

• V Vi E vr' the following discrete integral relation holds 

where the discrete derivation operators b2 and b1 are defined by 

u7+1 - 2u? + 'U,r-1 
fl.t2 

u~+1 - u~-l 
' ' 2fl.t 

• V µ E AN, the following discrete continuity condition holds 

u~+l + 2u"! + u~-l 
' ' ' 4 

(2.11) 

(2.12) 

(2.13) 

In this discrete formulation, the time discretization is inspired from finite difference meth­

ods, while the space discretization via the subspaces vr stems from finite element procedures. 
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REMARK 2.5 Condition (2.13) is the discrete version of (2.8). The rationale of 8'0ui is to 

express (2.8) at time nl.it while keeping ui+l involved to generate additional equations. D 

REMARK 2.6 By doing so, we have as many equations as unknowns. Equation (2.12) 

written for i E {J,IJ} and for v; in a basis of Vt produces dim Vf + dim Vlf scalar equalities. 

Equation (2.13) written forµ in a basis of AN produces dim AN scalar equalities. On the other 

hand, the number of unknowns amounts exactly to dim Vf + dim V/f + dim AN. D 

REMARK 2. 7 For n = 0, the greatest care must be devoted to taking the initial conditions 

(2.9) into account. It is natural to specify 

O (- )N 
U; = Uoli ' 

where (iio1;)N is the projection [in a certain sense, H 1(f!;) mostly] of iioli on V;N. As far as 

the initial value for the time derivative of u is concerned, it can be taken into account by 

introducing a fictitious u-; 1 such that 

1 -1 
O U; - U; 

81 u; = 
21.i t 

(
-1 )N = UOli 

where (u~
1
;)N is the projection [in a certain sense, L2(f!;) mostly] of ii~li on V;N, and then by 

eliminating u-;1 with the help of (2.12). This enables us to consider (G0
) in a similar fashion 

to (Gn) and to solve it with u}, u}r and >.0 as unknowns. D 

2.4 Matrix interpretation 

Interesting insights into this domain decomposition formulation can be obtained by looking at 

the problem from the standpoint of matrix computations. Let 

Consider (vf) with k E {1, 2, ... ,pf} a basis of V;N. Likewise choose(µ)) with j E {1, 2, ... , qN} 

to be a basis of AN. Introduce 

<> Df the pf x qN-matrix representing the cross products 

(2.14) 
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o Mf the pf X pf-matrix representing the elementary products 

(MN) 1 1 -k-l d fl.t l 1 -k-l de 
i k,l = -;-:- Vi 1\ X + - -. 1\ 1\ <, 

O; fl.I, 2 B; a,, (2.15) 

If u7+1 is the column vector representing the decomposition of u7+1 in (vf) and if ,\n is the 

column vector representing that of >,n in (jJ)), then for n 2'.: 1, problem (Gn can be expressed 

by the linear system 

(2.16) 

in which r'J, rh and gn can be explicited in terms of the data. The linear system corresponding 

to (G0
) is of about the same form. By eliminating ur+i and urt1 from the first two equations 

with the last one, it follows that for n E { 1, ... , N - 1} , 

(2.17) 

where the right-hand side hn depends on r1, r'J1 and gn. The matrix 

(2.18) 

does not change with the time-step n, although it does depend on the discretization level N. 

It will be referred to as the Stecklov-Poincare matr·ix. For gN to be well-defined and for the 

system (2.17) to be well-posed, a few technical requirements are necessary: 

1. Mf must be invertible. From definition (2.15), it is easily seen that Mf is symmetric. 

Moreover, it is positive because J( and p are positive. Definiteness is ensured for Mf as 

soon as K and p have upper-bounds. Then, (Mf)-1 exists and is also positive definite. 

2. sN must be invertible. From definition (2.18), it is easily seen that sN is symmetric. 

Moreover, it is positive because 

II II 

(sN.x, .x) = L (tnf (Mf)-1nf .x, .x) 
i=l 

L ((Mf)-1nf .x, nf .x) 
i=l 
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and because (Mf )-1 is positive definite. Definiteness is ensured for sN as soon as 

A # 0 ==} 3 i E {I, I I} \ Df A # 0 . (2.19) 

The above condition deserves some further developments. Intrinsically, it means that if 

.X E AN and .X # 0, then .X should not be simultaneously orthogonal to Vf and Vfj, the concept 

of orthogonality being associated with the matrices Df and Dfr. A careful examination of 

(2.14) reveals that only the traces on r of the basis functions (vf) are involved in the definition 

of of. For i E {I, I I} , introduce the space of traces on r of VF 

N 2 N ,r ½ = { w; E L (r) I 3 v; E ½ , w; = ,rv; } , (2.20) 

and its orthogonal space 

(2.21) 

Clearly, DfA = 0 if and only if.XE (,r½N)1-. Thence, condition (2.19) is equivalent to 

where AN and ,r ½N are to be regarded as subspaces of L2(f). In a more compact form, 

N ( N N)1-A n ,r V1 + ,r Vn = { O} . (2.22) 

REMARK 2.8 An immediate consequence of (2.22) is that 

dim AN S: dim ( ,r Vf + ,r Vfi) . (2.23) 

In other words, the multipliers should not be oversampled relatively to ,r Vf + ,r Vfj. D 

REMARK 2.9 In practice, mass lumping is applied to Mf. This leads us back to finite 

difference schemes in the strict interior of each subdomain, if regular grids are used. D 

REMARK 2.10 Once the multiplier _xn is known, the pressures u'}+l and u'}t1 can be 

updated in parallel on different processors. D 
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3. Functional framework for the continuous problem 

At this stage, it is time to build up a functional framework for the problem at hand. A good 

framework not only gives a sense to the calculations presented thus far, but also provides us with 

optimal existence and uniqueness results. The wave problem without domain decomposition 

is first addressed. Its interpretation will turn out to be of great interest for the variational 

formulation with domain decomposition. 

3.1 Preliminaries 

Let d EN be the space dimension considered. In this paper, d = 2. 

Sobolev spaces 

Let n C Rd be a bounded open domain, and v a real-valued function defined over n. If a is an 

n-index, then ao:v denotes the a-derivative of v taken in the sense of distributions. For m E N, 

is a vector space, equipped with the norm and seminorm 

11v11;,,n = I: lo 1ao:v12 
de 

lo:l:Sm 
lvl;n,O = L lo lao:vl2 

de. 
lo:l=m 

It is a Hilbert space for the norm 11-llm,O· 

Throughout this paper, n is assumed regular enough [13] for the trace to exist. We denote 

by H 112 ( an) the space of traces on an of all functions V E H 1(n). The trace operator ,o from 

H 1 ( n) onto H 112( 8n) is continuous and has a continuous right inverse. The norm 

llwll1;2,an = inf 
')'ov=w 

llvll1,n 

is associated with H 112(an), whose dual space H- 112(an) is provided with the norm 

(v*,v) 
llv*ll-1;2,an = sup 

v;to llvll1;2,ao · 

Dual spaces on a portion of the boundary 

If S is an open subset of an, the trace on S of v E H 1 (n) is defined by '"'fsV 
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space H 112(S) of traces on S of all functions v E H 1(n) is equipped with the norm 

!lwlli;2,s = -rl~!w llvll1,o · 

We define H- 112(S) as the dual space of H112(S). Contrary to our intuition, H- 112(S) has 

no direct connection whatsoever with H- 112 ( an). This technical detail, the inconvenience of 

which will be pointed out in a moment, originates from the following 

Lemma 3.1 Let S be a strict portion of an and w E H 112(S). Then, the extension by zero of 

w, defined over an by v1s = w and v\&o\s = 0, does not belong to H 112
( an) in general. 

PROOF See [13]. <l 

This somewhat pathological property of H 112(S) makes it impossible for us to identify a 

given element of H- 112(an) with an element of H- 112(S) by "setting the trial function to zero 

outside S." Nonetheless, a little change makes such an identification permissible. Consider 

HU\s) = { ,sv, v E H1(n) and 180\Sv = 0}, (3.1) 

equipped with the quotient norm. Hi£\s) is a subspace of H 112(S). By virtue of definition 

(3.1), the extension by zero of any element in Hi£\s) is now an element of H 112(&n). So, 

and also 

Sum of dual forms defined over different portions 

Let S be an open subset of an and S1 and S2 two open subsets of S such that 

Given any µ1 E H-1l 2(S1) and any 112 E H-1 / 2(S2 ), it is possible to define 

\:/ w E H 1l 2
( S) , (11, w) = (µ1, w1s1 ) + (JL2, w1s) 

It can be easily checked that µ E H- 1! 2(S), and Ji = µj in [H~62(Sj)]' for j E {1, 2}. To 

emphasize the fact that /L has been defined as a special sum of two dual forms, we will write 

(3.2) 
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Normal trace 

Let D,T =] 0, T [xn. For any function q : D,T f----+ Rd+1, '\1.q denotes its divergence taken in the 

sense of distributions. The space 

H(div;D.T) 

provided with the norm 

is a Hilbert space. Over H ( div; D,T), the normal trace on c)D,T can be defined thanks to 

Lemma 3.2 Each function q E H( div; D,T) can be assigned an element of H-112( c)D,T ), denoted 

by q.n, such that 

• For q E V( nT), q. n coincides with the normal trace taken in the classical sense. 

• Green's formula can be extended to the general case by 

(q.n, w) = r v'\l.qdx+ r q.'\lvdx 
lor lor 

(3.3) 

where V E H 1(!1T) and ,ov = w. 

• The mapping q E H(div;D.T) f--+ q.n E H- 112(8D.T) is continuous and on-to. 

PROOF See [3, 4, 6]. <l 

In the first statement of this lemma, D(D,T) is the set of restrictions to D,T of indefinitely 

differentiable and compact-supported functions defined over Rd+l. If q E D(D,T ), then q.n 

dearly exists in the classical sense as a real-valued function over {)f!T, and q.n E L 2 (8!1T)­

Identifying L 2
( {)D,T) with a subspace of H-1/ 2 ( {)f!T) gives a sense to the short-cut expression 

"the element q.n coincides with the normal trace taken in the classical sense." 

Functions with range in a Hilbert space 

Let X be a Hilbert space, and T > 0. The set of square integrable functions from [O, T] to X 

is designated by L2 (0, T; X). Let us provide it with the norm 

llulli2(x) = 1T llu(t)II} dt. 
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If u E L2 (0, T; X) , the derivative of u in the sense of distributions is defined as the linear 

mapping it : D(] 0, T [) 1-l- X whose explicit expression is 

V<p E V(]O,T[), [u,<p] = - foTu(t)rp(t)dt. (3.4) 

Here V(] 0, T [) is the space of indefinitely differentiable and compact-supported real-valued 

functions defined over] 0, T [. It can be shown that u defined by (3.4) is actually a distribution. 

The reader is referred to [6] for greater details. 

Let Y be another Hilbert space with X C Y, and let 'U E L 2(0, T; X). We say that 

ii, E L 2 (0, T; Y) if there exists a function v E L 2(0, T; Y) such that 

V<p E V(] 0, T [), (3.5) 

The distribution u is then identified with the function v. Note that in (3.4), the result of the 

integral is an element of X, while in (3.5), the integral converges in Y. Thus, the fact that 

(3.5) should hold for all <p E V(] 0, T [) is worth pondering over. 

The way u has been defined does not rely on the L 2 character of the mapping t 1-l- u(t). If 

L2(0,T; X) were replaced by C0 (0,T; X), the space of continuous functions with range in X, 

provided with the norm 

llullc0 (X) = sup llu(t)llx, 
tE[O,T] 

it could be equally possible to define u by (3.4) since the integral of the right-hand side still 

exists. We could then look for functions u E C 0(o, T; X) such that it E C0 (o, T; Y). 

3.2 One-domain variational formulation 

We are first going to set a framework to the standard acoustic wa.ve problem, with some ulterior 

motives on domain decomposition. This will help clarify ideas and will lay grounds to upcoming 

discussions on domain decomposition. 

For the sake of notation conveniency, let us introduce some bilinear forms. Let 
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0 co(v,w) = lo:( vwdx for v, w E L2(n) 

ao(v,w) = 1 l for v, w E H 1(n) (3.6) 0 - v'vv'w dx 
op 

0 bo(v, w) = 1 ~ vwdl for v, w E L2 (8n) 
30 a 

The bilinear forms a0 , b0 and c0 are well-defined thanks to 

Hypothesis 3.1 Throughout this paper, it is assumed that 

1. The data ]( and p are measurable, bounded above and below over n, z.e. there exist 

constants Kmin, Kmax, Pmin and Pmax such that for all X E n 

0 < Kmin ::S: K(x) ::S: Krnax and O < Prnin ::S: p(x) ::S: Prnax. 

2. The data a can be extended by continuity to a function a1 00 that is measurable, bounded 

above and below over an. 

REMARK 3.1 Condition (2) is much less demanding than a E H 1(n). To see this, consider a 

decomposition of n into n1 and nu as described by (2.1). Take a1 1 = 1 and a1u = 2. Obviously, 

the discontinuity of a along the interface r prevents it from being in H 1(n). However, a1an 

does exist as a1annan1 = 1 and a1aonann = 2. D 

Under the assumptions of Hypothesis 3.1, it is not difficult to see that 

• co is 11-llo,o-continuous and 11-llo,n-coercive. 

• ao is 11-111,0-continuous and 11-111,0-coercive relatively to 11-llo,n, namely 

Vv E H1(n), 
1 

a(v, v) > -- lvli n 
Prnax ' 

1 

Pmax 
( llvlli,n - llvll6,n) · (3.7) 

• bo is 11-llo,Bn-continuous and 11-llo,an-coercive. 

Consider now, at last, the following variational problem. 
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(T) GIVEN 

K, p, and a = -JKp satisfying Hypothesis 3.1, 

FIND 

u E C0 (0, T; H1(n)) such that 

• in addition to (3.11) 

u E C 0 (0, T; L2(0,)) and 
~ 2 2 ,1ou EL (O,T; L (80,)), 

• for all v E H 1(0,), the integral relation 

d ~ 
dt co(u(t),v) + ao(u(t),v) + b0 (,10u(t),,10v) = (J(t),v)v(n) 

holds in the sense of scalar distributions over ] 0, T [, 

• the initial conditions are satisfied 

u(O) = 'Uo and u(O) =ii~. 

This formulation calls for a few remarks. 

19 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

REMARK 3.2 The initial condtions (3.14) make sense thanks to requirements (3.11) and 

(3.12) and to condition (3.10). D 

REMARK 3.3 ,17;u is the derivative of ,10u in the sense of distributions over ] 0, T [ with 

range in H 112(8n). It should not be confused with 'You, which does not necessarily exist. D 

The continuity and coercivity properties of a0 , b0 and c0 give rise to 

Theorem 3.1 Problem (T) has a unique solution u, which depends continuously on the data, 

z. e. there exists a constant C such that 
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PROOF A proof is given in [6] for a general class of hyperbolic problems. Some alterations are 

necessary to take into account the presence of 17";u E L2(0, T; L2(8il)). <l 

The question that now arises is: to which extent is u still a solution to the classical problem 

(CP) ?. Our next task is thus to find an appropriate interpretation to (T). 

Proposition 3.1 Consider 

the cylinder ilr = ] 0, T [ X il as an open bounded domain of Rd+I ; 

the surface Sr = ] 0, T [ x an as an open subset of oily, the boundary of ily. 

Let u be the unique solution to (T). Then, u satisfies 

• Jc ii - V. (i Vu) f in the sense of V' ( ilr) , scalar distributions over ilr ; 

1 ,,:.__ 1 
• - ')'oU + - Vu . n 

(J" p 
0 in the sense of [Htb\Sr )] ', dual forms of Htb\Sr). 

PROOF Adaptation of ideas from [6] is straightforward. <l 

3.3 Two-domain hybrid formulation 

Consider again a two-domain decomposition of n into il1, nu and r as described by (2.1). 

Before getting into the formulation in itself, we need to introduce some specific materials. 

Vector spaces 

The Cartesian product nature of spaces being reminded by underlined names, let 

• V = H 1(il1) x H 1(ilu), equipped with the norm and seminorm 

• H = L2(il1) x L2(ilu), equipped with the norm 

• Z = L2
( 81) x L2

( au), where a; = ail;\ f', equipped with the norm 
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• A = H-112(f) , equipped with the norm 

I 
(11,, s) 

1111,I A = sup --- · 
sEH112(r) llslh/2,r 

Bilinear forms 

Introduce the following bilinear forms defined over these product spaces. 

o f( v, w) = II 1 1 L -,-_ v;w; dx 
i=l O; Ji .. Ii 

for v, w EH 

0 !I( v, W) = II 1 1 L -:-Vv;Vw;dx 
i=l O; Pii 

for v, w EV (3.15) 

o !!_( v, w) = II l 1 L -. v;w;d( 
i=I a; ali 

for v, w E Z 

Under the assumptions of Hypothesis 3.1, the bilinear forms g_, Q and f enjoy continuity and 

coercivity properties similar to those of a0 , bu and c0 . Now, the novelty is 

II 

o g,_(v,JL)= I:(-l)i(JL,1'rv;) for v E Z , JL E A 
i=I 

The role of this cross bilinear form is to reflect the difference of traces on r. 

Basic properties of the cross bilinear form 

(3.16) 

Obviously, the bilinear form d. is continuous with respect to v and JL measured by !lvll!::'.. and 

llµIIA· This allows us to define the mapping 

D V ~ A' ( dual of A) 

V ~ [ µ E A f-+ g,_( V' µ) E R l 

where A' can be identified to H 112(f), and its transpose 

A ~ V' (dual of V) 

Jl ~ [ V E V f-+ g,_( V' Jl) E R l 

To begin with, observe that 

Next, introduce 

Ker D H1(D,) and Ker tn = {O}. 

(Ker D)0 = { v* EV' I V v E Ker D, (v*, v) = 0} 

(KertD)0 = {11,*EA' I VJLEKertD, (JL*,JL) = O} 

(3.17) 

(3.18) 

(3.19) 
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Lemma 3.3 d_ and D enjoy the following equivalent properties: 

a. Im tD = (Ker D)0 

b. tD admits a continuous lifting from (Ker D)° C V' to A 

c. :3 ko > 0 I V µ E A , 
d( v, µ) 

sup II II 2'. ko ll11IIA . 
vEl'._ V l'.._ 

PROOF The equivalence of a, b and c comes from functional analysis. See [3] for a more 

exhaustive list of equivalent statements. As for the proof of c, we can proceed as follows. 

Let µEA, fixed for the moment. Then, 

d.( v, µ) > 
~~t llvlll'... 

sup 
v=(O,vII) 

d.( v, µ) 

llvlll'... 
sup 

VIJEVII 

(µ, ,rvu) 
llvull1,0II · 

But, there exists a continuous lifting ,rh : w E H 112(f) r-r vu( w) E H 1(0,II) such that 
' 

llvu( w )lli,oII ~ C llwll1;2,r · 

This is a property of the trace operator. As a result, 

This argument being valid for all JL EA, we obtain c with k0 = l/C. <l 

Property c is also known as the continuous inf-sup condition. It is the key condition for 

existence of the multiplier .X in the variational formulation with domain decomposition 

(G) GIVEN 

the data specified by (3.8), (3.9) and (3.10) 

FIND 

u=(u1,uu)EC0 (0,T;V) and .XEV'(]O,T[;A) such that (3.20) 

• in addition to (3.20) 

u E C 0 (0, T; H) and ,au E L2 (0, T; Z); (3.21) 
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• V v = (VJ, vu) E V, V <.p E D(] 0, T [), the following integral relation holds 

-f([u,cp],v) + g_([u,cp],v) + Q([,au,cp],,av) 

([f,cp],v) + d.(v,[-X,cp]) 

where [., .] denotes the duality product of vector-valued distributions; 

• V µ E A, Vt E] 0, T [, the following continuity condition holds 

d_(u(t),µ) = O; 

• Vi E { I, I I} , the initial conditions are satisfied 

u;(0) = fioli and 'ti,;(0) = fi~li. 

(3.22) 

(3.23) 

(3.24) 

REMARK 3.4 In (3.21) and (3.22), ,au denotes ( 101 u1, ,an uu) E H 112
( 81) x H 112

( 8n ), 

whose derivative ,au is taken in the sense of distributions. D 

REMARK 3.5 Condition (3.23) is equivalent to u( t) E Ker D, Vt E] 0, T [. D 

Theorem 3.2 Problem (G) has a unique solution (u, .\), the first component of which solves 

problem (T). 

PROOF Suppose ( u, >.) is a solution to (G). According to Remark 3.5, u E C 0 (o, T; Ker D) 

where Ker D = H 1 (f2). Evidently, u satisfies (3.12). Besides, if the test function v of (3.22) is 

taken in Ker D, then d.( v, [-X, cpl) vanishes and we end up with (3.13). Of course, u also meets 

(3.14) because of (3.24). Therefore, u must solve (T). Now, Theorem 3.1 ensures existence and 

uniqueness for u. 

If (u,-\1) and (u,-\2) are two solutions to (G), then by applying (3.22), 

V <.p ED'(] O,T[), [-\2 - .\1, cp] E KertD. 

Since Ker tD = {0}, we must have .\1 = .\2 in D'(] 0, T [; A). Uniqueness for,\ is thus proven. 

Let <.p E D(] 0, T [). Put (3.22) under the form 

V V E V ' d.( V' [ ,,\. p]) = ( L 'P' '/)) 
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where L'P E (Ker D)0 = Im tD C V' and furthermore, there exists C > 0 such that 

By virtue of the continuous lifting property b of Lemma 3.3, there exists ..\'P E A such that 

tD)..'P = L'P and ll..\'PII~, :S :
0 

IIL'PII~'· 

The latter inequality, together with (3.25), shows that the mapping ).. : <.pf--+ [>-., <.p] = ..\'P is 

continuous with respect to the topology of D(] 0, T [). Hence, >. E D'(] 0, T [; A). <l 

Does ( u, ).. ) depend continuously on the data? The question cannot be answered right now 

since D'(] 0, T [; A) is not a normed space. We first have to agree on how ).. is to be measured. 

To begin with, recall that V(] 0, T [) is a dense subspace in the Sobolev space 

HJ(] 0, T [) = { 1/1 E H1(] 0, T [) I 1/J(O) = 1/J(T) = O}, 

equipped with the H 1-norm 111/Jlli = 111/1116 + 11~116 - Next, 

Definition 3.1 We introduce 

the space of linear continuous mappings from HJ(] 0, T[) to A, equipped with the norm 

II (v, 'I/J) IIA 
llvllH-1(A) = sup II II . 

t ,fr:f-0 "P l 

As can be noticed from the proof of Theorem 3.2, the mapping ..\ : D(] 0, T [) f-l- A is, in 

reality, continuous with respect to 11-111 and 11-IIA- By density, it can be extended to a linear 

mapping from HJ(] 0, T[) to A which has the same "norm." Once the extension has been 

performed, it makes sense to speak about ll>-.IIHt-1(A)· 

Proposition 3.2 Let W be the space of all functions u E C0 (0, T; V) that satisfy the addi­

tional regularity condition {3.21 ), provided with 
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Then, the solution ( u, A) to {G) depends continuously on the data in the sense that there exists 

a constant C such that 

PROOF The estimate for u comes from Theorem 3.1. As far as A is concerned, we have seen 

in the proof of Theorem 3.2 that 

\f <p EV(] 0, T [), II [A, <p] Iii :S C ( llulli + llflli2(H)) ll'Plli · 

The extension of A from V'(]O,T[; A) to Ht-1 (A) satisfies 

from which the estimate proposed for A is readily deduced. <1 

Before closing the case of the continuous problem, let us interpret ( G). 

Proposition 3.3 For i E {I,II}, consider 

the cylinder (f!i)T = ] 0, T [ X f!; as an open bounded domain of Rd+I; 

the surface ( Si )T = ] 0, T [ x an; as an open subset of ( ani )T ; 

the surface ( 8; )T = ] 0, T [ X 8; as an open subset of ( S; )T . 

Consider also I'r =]0,T[xr. Let (u,A) with n = (u 1 ,uu) be the solution to (G). Then, 

• T.(l iii - V. (_..!:_ Vui) 
1 ' Ii Pii 

f1; in the sense of V' ( ( ni )T) 

1 ,,.:___ . 
• -- 1a;u;EB(-l)'A 

a1; 

1 
- Vu;. n; in the sense of [H~b\(S;)T)]' 
Pii 

1 . 
where EB, defined by {3.2), operates on - -,i0t,:, regarded as a dual form of H 112((8i)T), and 

a1; 

on (-l)i A, regarded as a dual form of 

Ht12(rT) = closure in H 112(rT) of { <p ® wr, <p E V(]O, T[) , wr E H 1l 2(r)}. 

PROOF Proceed as in a standard [6] evolution problem. Realize that A E V'(]O,T[; A) can 

be interpreted as a dual form of H61\rr), thanks to its ll'Pll 1-continuity: define ~A, W::}>= 

( [A, <p], wr) for W = <p ® wr first, then extend ~A,.::}> by density to H61\rT ). <1 
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4. Semi-discrete approximation 

In this section, our attention is focused on the space approximation of the continuous problem. 

Error estimates will be derived, which will highlight some features of paramount importance 

for the analysis of the fully-discrete approximation. 

4.1 Discretization spaces 

Let Vh C V be a finite-dimensional subspace of V. In practice, Vh = V/ 1 x V//1 with 

V;,h; C 11,;. The index h = (hr, hn) refers to the characteristic sizes of the meshes on which 

these spaces are built. 

Let Ah C L2(f) be a finite-dimensional subspace of A. The index h = hr refers to the size 

of the mesh from which Ah is derived. We have seen, and will see again, that Ah cannot be 

chosen independently of V". We have required Ah c L2(f) for computational conveniency. 

The cross bilinear form d. is continuous on V" x A", regarded as a subspace of V x A. This 

allows us to define the mapping 

Dh vh f---7 (Ah) I (dual of Ah) 
( 4.1) 

Vh f---7 [µ1i E Ah f---+ d.(v1i,JLh) ER] 

and its transpose 

tnh A" f---7 (Vh) I (dual of Vh) 
(4.2) 

µ1i f---7 [ vh E v" f---+ d.( vh, JL1i) E R J 

In general, Ker Dh </. Ker D and Ker tnh :/= {O}. This might cause trouble for the unique­

ness of Ah ( approximating >.). Fortunately enough, Ker tnh = {O} can be guaranteed under 

Hypothesis 4.1 The discretization spaces V" and Ah are chosen in such a way that 

where the concept of orthogonality 1- is taken in the sense of L2 (f). 

It can be shown from the definition of d. that Hypothesis 4.1, which is none other than 

(2.22), actually secures Ker tnh = {O}. 
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4.2 Semi-discrete problem 

The semi-discret problem can be formulated as 

the data specified by (3.8), (3.9) and (3.10) 

FIND 

uhEC0(0,T;Vh) and AhEV'(]O,T[;Ah) such that (4.3) 

• in addition to ( 4.3), posing zh = 181 vt X ,all vN1 ( C Z), 

• V vh E Vh, V <p E V(] 0, T [), the following integral relation holds 

( 4.5) 

where [.,.]denotes the duality product of vector-valued distributions; 

• V µh E Ah, Vt E] 0, T [, the following continuity condition holds 

O· 
' 

( 4.6) 

• Vi E { I ,I I} , the initial conditions are satisfied 

uh(O) = flo,h and 1i1i(O) = fLiJ,h. ( 4.7) 

REMARK 4.1 Condition (4.6)is equivalent to uh(t) E KerD", Vt E]O,T[. Since KerDh is 

finite dimensional (and so closed), condition (4.4) implies that iL1i(t) E Ker Dh. D 

REMARK 4.2 In the initial conditions ( 4.7), flo,h is the 11-lly_-projection of u0 on Ker Dh, 

while u6h is the 11-llwprojection of ub on KerD". , - D 

The existence and uniqueness result for ( G h) is given by 

Theorem 4.1 Problem (Gh) has a unique solution ( uh, Ah)- Moreover, there exist a constant 
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C, independent of h, and a constant K,h > 0, in general dependent on h, such that 

PROOF Suppose ( uh, Ah) is a solution to (G1i). According to Remark 4.1, we have 

uh E C 0 (0, T; Ker D") and uh E C 0 (0, T; Ker D"). 

- Existence and uniqueness of uh 

If the test function vh of (4.5) is taken in Ker Dh, then d.(v1,, [>.h, <pl)= 0 and we encl up with 

( 4.8) 

in the sense of scalar distributions over ] 0, T [. In the finite dimensional space Ker Dh, take a 

basis Bh in which uh(t) is represented by uh(t) for all t. In ( 4.8), set Vh E Bh. We obtain a 

second order differential system, that can be reduced to the first order differential system 

in which 

Mh : mass matrix representing f over Ker D" in Bh 

Kh : stiffness matrix representing g_ over Ker D" in Bh 

Bh : boundary matrix representing Q over Ker D" in Bh 

fh(t) : vector representing L2 (f!)-proclucts of J(t) with Bh's elements 

Note that Mh is invertible because f is coercive. As far as the initial conditions are concerned, 

It is well-known [6] that (i) there exists a unique solution to such a system and (ii) the regularity 

of the solution depends on that of the right-hand side. Here, fh E L2(0, T; Rdim(KerQhl) because 
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f E L2(0, T; H). It follows that ( uh, uh) is continuous with respect to t. In other words, after 

recombination, uh satisfies ( 4.3) and ( 4.4). 

- Continuous dependence of uh on the data 

It also follows from fh E L2(0, T; R<lim[KerQhl) that dl (uh, uh) is L2 with respect tot. This 
<t 

means, via the linear combination, that ii,h E L2(0, T; Ker D"). Hence, we can carry out the 

very classical energy calculations [6] by putting vh = uh E Ker Dh in ( 4.8). [The next steps 

are: integrate over t E [0, T], find a lower bound to the semi-discrete energy, and after a few 

tricks, use Gronwall's lemma to conclude.] The final result is that there exists C, independent 

of h, such that 

- Existence and uniqueness of Ah 

If ( uh, >-.k) and ( uh, >-.Dare two solutions to ( G1i), then the side-by-side difference of ( 4.5) yields 

't/ cp E D' (] 0, T [) , [>. 2 - >.1 1n] E Ker tDh h li,r _ · 

Since KertDh = {0} (thanks to Hypothesis 4.1), we must have>-.}.= >-.1 in V'(]0,T[; Ah). 

Let cp E D(] 0, T [). Put ( 4.5) under the form 

where L~ E (Ker Dh)o C (V") '. Furthermore, there exists C' > 0, independent of h, such that 

( 4.9) 

The finite dimensions of Vh and A" imply that (Ker D")0 = Im tDh and that there exists kh, 

the largest constant that satisfies 

't/ µh E Ah, ( 4.10) 

Note that kh > 0 because Ker tDh = {0}. In fact, ( 4.10) expresses that there is a continuous 

lifting from (Ker Dh )0 to A"· Consequently, there exists >.~ E A" such that tDh >.~ = L~ and 

h l h 11\,11.!::'..' :s; kh IIL'PII (.!::'..h),. The latter inequality, together with ( 4.9), shows that the mapping 
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Ah : <p 1--+ [ Ah, cp] = A~ is continuous with respect to the topology of V(] 0, T [) . Hence, 

- Continuous dependence of Ah on the data 

On the other hand, since D(]0,T[) is dense in HJ(]0,T[) and 

[ 
2 C' 2 2 2 

V <p EV(] 0, T[), II Ah, cp] IIA ::; k2 ( llu1illw + llflluuD) ll'Pll1, 
h 

it is possible to extend Ah: D(] 0, T [) 1-+ Ah to an element of Ht- 1(Ah) = £(HJ(] 0, T[); Ah), 

regarded as a subspace of Ht- 1(A), that has the same norm, i.e. 

which completes the proof with "'~ = ~: . 
h 

<l 

It might happen that k1i ----+ 0 as h ----+ 0. In such a case, not only the bound on Ah will go to 

infinity, but also the error estimates (addressed in the next subsection) will be much worsened. 

To avoid this unfavorable situation, we put forward 

Hypothesis 4.2 The discretization spaces Vh and Ah are chosen in such a way that 

3 ko > 0 I V h > 0 , V Jlh E A" , 

Put another way, the constants k1i defined in (4- 10) are always greater than some k0 > 0. 

Hypothesis 4.2 is referred to as the discrete inf-sup condition [3, 4], or sometimes uniform 

continuous lifting property. Anyhow, the constant "'h of Theorem 4.1 no longer depends on h. 

4.3 Error estimates 

We wish to find some upper-bounds for the errors 

and 

where the normed spaces W and Ht- 1(A) were introduced earlier. Putting v = VJi in (3.22) 

and subtracting to ( 4.5) shows that the errors E1, and (1i satisfy 

( 4.11) 



Domain Decomposition Methods for the Wave Equation 31 

Vvh E Vh and V<p E D(] 0, T [). Putting /l = /lh in (3.23) and subtracting to ( 4.6) results in 

( 4.12) 

Vµh E Ah and Vt E]O,T[. From (4.11), it can be shown that 

Proposition 4.1 There exists a constant C, independent of h, such that 

In other words, an estimate for (1i is known as soon as an estimate for Eh is avalaible. 

PROOF For cp E V(]O,T[), we have tnh[(h,'P] = L~ where L~ E (V")' is defined by the 

left-hand side of (4.11) and is bounded by 

with C independent of h. 

By the uniform continuous lifting property, 

so that by extension from V'(] 0, T [; A) to Ht- 1(A), we obtain the desired estimate. <l 

Our task is now to find an estimate for Eh. In conformity with the philosophy of finite 

element error analysis, we will try to bound Eh by some projection errors Ef and ({:. Let us 

elaborate a little on these projection errors. 

Definition 4.1 For v E V, let 7rh v be the projection of v on Ker Dh in the sense of the weighted 

norm 11-IIJI+_g_(., .). The difference Ef(v) = v-1rhv is termed projection error. If vh E Ker Dh 

is supposed to approximate v, the difference Ef ( v) = 7rh v - VJi is called approximation error. 

Let u be the pressure component of the solution to (Gh)- Define (1rhu) (t) = 7rh (u(t)) for 

t E [O,T]. The errors Ef(u) and Ef(u) are similar-ly defined and is designated by Ef and E{ 

REMARK 4.3 7rh is continuous from V onto Ker Dh. Therefore, u E C0(o, T; V) implies 

D 
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Definition 4.2 Forµ E L2(f), let '3hJL be the projection of JL on Ah C L2(f) in the sense of 

the L2 (f )-norm. The difference (f(µ) = fl - 3hµ is termed projection error. 

Let .,\ be the multiplier component of the solution to (Gh), and assume >. : 'P 1-+ [.-\, 'P] 

has range in L2(f) C A. Define 3h). : 'P 1-+ [ ::::,.>., <p] = 3h [,\, <p] for <p E V() 0, T [). The 

projection error a: ().) is similarly defined and is designated by a:. 

REMARK 4.4 3h is continuous from L2(f) onto Ah, both regarded as subspaces of A. So, 

0 

What we have in mind is to bound fh by some combination of ff and (f. These depend on 

the discretization spaces alone, and not on the particular form of the problem at hand. Finding 

error estimates for projection errors is a matter for interpolation theory, to which we have thus 

"passed the buck." At some point in the calculations, however, the derivatives i:f and if will 

appear, for which the existence of estimates relies on that of 1r1Jt and 7rhii. For 7rh to operate 

on u and ii, the solution u should be more regular than required in the formulation. 

Hypothesis 4.3 Let ( u, .,\) be the solution to ( G). For the purpose of error estimates, we 

assume 

1. There exists an integer r 2 2 such that u E L00 (0, T; Hr(n)), u E L00 (0, T; Hr- 1(D,)), 

and ii E L2 (0, T; Hr- 2(fl)); 

2. There exists an integer l 2 1 such that>. E L00 (0, T; H 1(f)) and ~ E L2(0, T; H 1- 1 (f)). 

From now on, we can safely speak of({: E L2(0, T; A) and the like 

We denote 

tf E C0 (0, T; V), 

')'atf E C0 (0, T; Z), 

Ill tf 111
2 

Ill 'Ya1:f 111
2 

for short-hand conveniency. 

i:f E C0(0, T; V), 

,'ai:f E C0 (0, T; Z), 

if E L2 (0, T; H), 

')'aEf E L2(o, T; Z). 

( 4.13) 
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According to Hypothesis 4.3, ,\ is an element of L'X)(O, T; H 1(r)), i.e. a function. As a 

result, its projection 3h,\ is a function, and so (f E L'X)(O, T; A). Likewise, (f E L2(0, T; A). 

This allows us to introduce 

Ill (f 111 2 = II (f lli00 (A) + II (f lli2(A). ( 4.14) 

Theorem 4.2 There exists a constant C, independent of h, such that 

II ff lliv ~ C ( 11 Ef(o) llt + II if(o) 111 + Ill ff 111 2 + Ill-raff 1112 + Ill (f 1112) 

PROOF Splitting fh into fh = Ef + Ef and setting vh = it(t) E Vh in (4.11), we get 

(4.15) 

Let us apply some transformations. On one hand, since if E Ker Dh and [(h - (f, <p] E Ah for 

all <p E V(] 0, T [), we have 4 (it, [(h, <pl) = !l (it, [(f, <pl). On the other hand, as a projection 

error, Ef can be characterized in the weak sense by 

Thence, in view of Hypothesis 4.3, ( 4.15) becomes 

( ··P ·A) ( P ·A) 
-f_ Eh' Eh + Eh ' Eh 

( 4.16) 

in the sense of functions ( a: is a function, but (It is not necessarily so). 

At this stage, we resort once again to the classical energy calculations, as suggested by 

Dupont [7] for the continuous case. In essence, after integrating ( 4.16) overt E [O, T] and using 

integration by parts, we can manage to place Ef only where a V-bound exists and if only 

where a H-bound exists. Although the details are a little intricate, there is no difficulty in 

transposing the calculations presented in [7] to our problem. <1 
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By triangular inequality, a similar W-estimate for f.Ji can be worked out in terms of cf (0), 

cf, and (f. In the right-hand side of this estimate, however, the only component for which 

we have an immediate upper-bound is 111 a: 111- Indeed, it is well-known from finite element 

analysis [4] that if µ E H1(f) and if the mesh on the interface r meets some uniformity 

criterion, then there exist C, independent of hr, such that 

( 4.17) 

By continuity of the projection operator 31i, we obtain 111 (f 111 ~ C' h~-I 111 A 11 lz, 

The remaining terms in the upper-bound of the error estimate raise two major issues con­

cerning the control of Eh. 

1. The initial data must be "well" approximated, i.e. in such a manner that II cf(0) ll_t + 

II i1(0) Ilk -the error brought about by discretizing the initial data- is bounded by a 

suitable power of hy + hJJ. Fortunately, in practical modelling, it occurs very often that 

iio = Wi = 0, so that iio,h = u~,h = 0, and cf (0) = if (0) = 0. 

2. The spaces Vh and Ah must be "consistently" chosen, i.e. in such a manner that 111 cf 111 2 

-the error induced by projecting on Ker Dh_ is bounded by a suitable power of hy + 

hJJ + hf. The main difficulty lies in the fact that 7rh has range in Ker Dh instead of 

Vh ( otherwise, estimates in terms of hr are available from finite element literature). For 

the moment, we are not in a position to assess the error due to the weighted projection 

7rh on Ker Dh. It is very likely that an additional hypothesis would have to be assumed 

between Vh and Ah. 

REMARK 4.5 There is a third issue in error estimates that is worth mentioning, even 

though it goes far beyond the scope of this paper. By definition, 11-llw involves an H 1-norm, 

which is known not to be optimal in the Galerkin context: the power of h can be increased by 

one if the error is measured in the L2-norm. The reader is referred to [3, 4, 7, 16] for a more 

comprehensive treatment of this aspect (the Aubin-Nitsche technique). D 
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5. Fully-discrete approximation 

The purpose of this section is to demonstrate that the error corresponding to the fully-discrete 

scheme proposed in Section 2 is second order in time. To achieve this goal, we will have to 

devise a judicious way of comparing the fully-discrete solution, represented by the sequence 

(uh,Ah), n E {0,1,···,N}, with the continuous solution (u,A) studied in Section 3. 

5.1 Fully-discrete norms 

Let N = T / tlt. Following the spirit of finite difference analysis, we define 

Definition 5.1 Let WN be the space of all finite sequences s = (sn)nE{D,l,-··,N}, taking values 

in V. As a norm over wN, we consider 

II 

sn+l _ 
8

n 11

2 

II 
8

n+l + 8 n 1

2 

llslliv = sup - + sup 
0~n~N-1 f:lt H 0~n~N-1 2 ~ 

This norm is the discrete counterpart of 11.sll&o(li.) + llsll&o(}:'.'..). Its dependence on N should 

not come as a surprise to the reader accustomed to finite difference methods. It is by means 

of 11-llw that the error associated with u will be measured. Similarly, introduce 

Definition 5.2 Let iI[/ be the space of all finite sequences <p = ( <pn)nE{D,l,-··,N}, taking values 

in R such that <p0 = <p1 = <pN-I = <pN = 0. As a norm over Hf/, we define 

The space Hf/ can be seen as the discrete counterpart of V(] O,T[), while 11-11 1 appears as 

the discrete version of 11-lh defined in Section 3. Using the elements of Hf/ as test sequences, 

it is possible to figure out a discrete equivalent of Ht-1 (A). 

Definition 5.3 Let iJN be the space of all finite sequencesµ = (Jln )nE{O,l,-··,N}, taking values 

in A. Suppose that Vh depends on N. Then, a norm over· iJN can be defined as the smallest 

constant kN > 0 such that 
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The existence of llµllb follows from the finite dimension of Hf/, which also accounts for 

its dependence on N. This is the norm by means of which we will be measuring the error 

associated with >-.h. We need a technical lemma. before going into the heart of the matter. 

Lemma 5.1 For all v = (vn)nE{0,1,-··,N} E WN, for all 'f' = ('f'n)nE{O,I,···,N} E Hf/, and for 

all w E V, posing <pn = 'f'n ® w, we have the average equality 

and the integration by parts identities 

(5.2) 

(5.3) 

PROOF The proof is fairly elementary. It suffices to carry out the discrete summations ex­

plicitly. The assumption 'f'o = 'f'N = 0 turns out to be capital for the three equalities. 

'f'1 = 'f'N-l = O is needed for (5.3) only. 

5.2 Fully-discrete problem 

The fully-discrete problem, namely sequence (Gn)nE{O,l,···,N-l} of stationary problems, was 

already formulated in Section 2. Notwithstanding, let us state it once a.gain with the bilinear­

form notations in order to specify the discretization spaces. 

(Gh) GIVEN 

f n E L2(!1) Un Un-I E v" 
' h, h - ' 

and K, p fulfilling Hypothesis 3.1 (5.4) 

FIND 

u~+i E v" and ,\h E A" such that (5.5) 
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• \:/ vh E Vh, the following discrete integral relation holds 

where the discrete derivation operators b2 and <!1 are defined by 

• \:/ µh E Ah, the following discrete continuity condition holds 

un+I + 2un + Un-I 
h h h 

4 
(5.7) 

REMARK 5 .1 The finite dimensional spaces V" and A" are those introduced for the 

semi-discrete approximation. D 

REMARK 5.2 For n = 0, it is natural to impose ui = uo,h· As far as the fictitious value 

for u-,; 1 is concerned, we can proceed by setting 

ul u-1 
h - h 

2b.t 
-I 
Uo,h, (5.8) 

where -fro,h and u~,h were defined in Section 4. Equations (5.8) and (5.6) written for n = 0 

are combined together with a view to eliminating u-,; 1
. D 

Condition (5.7) is equivalent to 6'0uh E KerD" for all n E {0,1,···,N-1}. In addition, 

according to their definitions, uo,h E Ker Dh and u~,h E Ker D". Under those circumstances, 

it can then be shown that 

Lemma 5.2 If (u~+ 1 ,>.h) is a solution to (Gh)for n E {0,1,···,N-1}, then uh E KerD" 

for all n E {0,1,···,N}. 

PROOF The proof can be done by induction on n. For n = 0 u0 = ii0 1 E Ker Dh. For n = 1 
' h ,i - ' 

a little algebra leads to 

which is a linear combination of elements of Ker D", especially because bf u1i = ii~ h E Ker D". , 
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Suppose, for n 2 1, that uh-I and uh belong to Ker Dh. Then 

is evidently a linear combination of elements of Ker Dh, and thus belongs to Ker Dh. <l 

The following Proposition is concerned with existence and uniqueness result. 

Proposition 5.1 For all n E {0,1, ... ,N- 1}, there exists a unique solution (uh+ 1 ,.Xh) to 

PROOF The proof is based on the fact that Ker Dh is finite dimensional. Set vh E Ker Dh 

in (5.6) so as to cancel out d.(vh,Ah). Take any basis of KerDh. In this basis, the matrix 

. h b"li " ( ) /j.t b( ) . · . . d fi · h" h ·1 representmg t e 1 near 10rm f ., . + 2 _ ., . 1s symmetnc positive e mte, w 1c enta1 s 

existence and uniqueness for uh+l. The uniqueness of Ah follows from Ker tnh = {O}, while 

its existence is implied by the continuous lifting from (Ker D" )0 = Im tnh to A". <l 

We wish to investigate about the stability of such a scheme. It is known, for Galerkin 

methods, that a stability condtion must be imposed between /j.t and h. In the present instance, 

this would mean that Vh and possibly A" must be linked to N. For reasons that will be clarified 

later [proof of Theorem 5.1), we are compelled to assume 

Hypothesis 5.1 Vh is chosen accordingly with N = T / b.t in such a way that 

:111 E Jo, 1 [ I v /j.t 2 o, v v1i E v" , 

We will refer to Hypothesis 5.1 as the uniform stability condition. Practically, since the 

order of magnitude of g_(., .) is about constant and that off(.,.) is proportional to h2 in 2-D, 

Hypothesis 5.1 means that 

ViE{I,IJ}, 
( C /i )maxb. t 

< ( 1 - 77) CFL . 
hi 

(5.9) 

where CFL represents the stability threshold, determined by the type of finite elements in use. 

A nice -and very useful- consequence of this is 
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Lemma 5.3 Let Xh > 0 be the smallest constant for which 

(Xh exists because in a finite dimensional space, all norms are equivalent one another}. If 

Hypothesis 5.1 holds, then the product Xh/),.t is bounded by a constant, independently of !}._t, 

PROOF This result is a consequence of (5.9), since Xh is readily seen (inverse assumption, see 

[4]) to be proportional to 1/ min (h1, hu ). <l 

Things are ripe now for the study of stability. Introduce the finite sequences 

UN= ( uh)nE{0,1,··,N-1} and AN= (>..h)nE{o,1,. .. ,N-1} · 

Proposition 5.2 For !}._t--+ 0, there exists a constant C, independent of !}._t, such that 

PROOF Let Wh E vh and 'P = ( cpn)nE{0,1,. .. ,N-1} E ilf/. Pose <Ph = 'Pn ® Wh- In (5.6), put 

Vh = <Ph, then sum over n. Apply Lemma 5.1 to transform the different sums. This yields 

N 

I: 4(4>h, >-h) 
n=O 

where we have omitted the sign 'Ya in the arguments of the !!_-sum. Using continuity properties 

and the Cauchy-Schwartz inequality, we can easily bound the first four sums in the right-hand 

side by C lluNllw ll'Plli llwhlll'... Note that for the fourth sum, which involves~(-,.), we have to 

resort to 

and to invoke Lemma 5.3 in order to for lluNllw to appear. The fifth sum is bounded without 

any difficulty by C llfllucm ll'Plli llwhill'.., insofar as j" = f( n!}._t) and !}._t--+ O. As far as the 
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last sum is concerned, it can be bounded quite "ruthlessly" by 

on the grounds of fn = f( nb.t) and D.t -+ 0. In short, there exists a constant C, independent 

of b.t, such that 

N 

L4(wh, ,\h)'Pn 
n=O 

for all <p E ill/ and wh E Vh. This completes the proof. <I 

This above proposition shows that AN depends continuously on the data if UN does. The 

latter question is elucidated in the upcoming theorem. 

Theorem 5.1 For b.t-+ OJ there exists a constant C, independent of D.t! such that 

II uNlliv ::; C ( II f lli2(H:) + II uo,h Iii_+ E;/2) , 

where E;/2 is the discrete energy defined by setting n = 0 in {5.10}. If we furthermore assume 

that the first time-step occurs in such a way that Et12 ~ C' ( II flo,h Iii_ + II u~,h IIJI), then UN 

depends continuously on the data. 

PROOF In the integral relation (5.6), for n E {l, 2, · · ·, N - l}, set 

The term containing _4(., .) vanishes because bfuh E Ker D" after Lemma 5.2. Apply Lemma 

5.1 to transform the remaining terms. The discrete energy E:;:+1!2
, defined as 

(5.10) 

enables us to recast the integral relation in the form 

E n+l/2 En-1/2 _ b ( i:n, i:n ) + (Jn i:n ) 
u - u - - _ 1BU1 ILi,, 1au1 UJi , U1 UJi • 
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Summing over m E {1, 2, · · ·, n}, we get 

(5.11) 

Hypothesis 5.1 makes it possible for us to find a positive lower-bound for E:+i/2
• Indeed, 

> n C h h 
(

Un+l _ Un 

., - b.t ' 

> 

The rest of the proof is really classical [6, 7]. 

5.3 Error estimates 

uh+12+ uh) 

un+l + Un 
h h 

2 

<I 

We wish to assess the difference between the fully-discrete solution (UN, AN) and the continuous 

solution ( u, >.). Assume that Hypothesis 4.3 holds, so that we are justified in defining 

( en )nE{0,1,-··,N} 

( qn )nE{0,1,-··,N} 

with 

with 
(5.12) 

qn 

We also need to introduce the notion of truncation errors, the definition of which is made 

possible by Hypothesis 4.3. 

Definition 5 .4 For n E { 1, 2, · · ·, N - l}, the following quantities are called truncation errors 

Tn 
1 

u((n + l)b.t) - 2u(nb.t) + u((n - l)b.t) 
/).t2 

u((n + l)b.t) - u((n - l)b.t) 
2/).t 

The finite sequences ( r2,N) and ( r1,N) can be constituted. Their values at n = 0 and 

n = N are not involved in the definition of 11-IIH and 11-11 11 , and thus can be set to zero. 

By comparing the integral relations (5.6) and (3.22), we obtain the equations satisfied by 

the errors, namely 

for all vh E Vh. Note, however, that a priori en r/. Ker D" and qn rf. Ah. 

Analogously to the semi-discrete approximation, we can start by estimating qN in terms 

of eN, measured by some discrete norms. 
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Proposition 5.3 For /j.t--+ 0, there exists a constant C, independent of /j.t, such that 

PROOF The proof is based on (5.13) and is utterly similar to that of Proposition 5.2. <l 

Our objective is now to estimate eN in terms of the truncation errors. As was the case for 

the semi-discrete approximation, we need to decompose eN into the sum of a projection error 

and an approximation error. 

Definition 5.5 The projection error et and the approximation error ei are defined as the 

finite sequences whose general terms are 

and 

for n E {O, 1, · · ·, N}. Likewise, the projection error qt and the approximation error qi are 

the finite sequences whose terms are 

and 

In preparation for the upcoming Theorem, we would like to introduce some notations. We 

apologize for having to set up so many Definitions in this section, but in our opinion, this is 

the clearest way to present the error estimates. 

Definition 5.6 If SN= (sn)nE{O,l,-··,N} takes values in some space S, we denote by b1sN and 

b2sN the finite sequences defined by 81sn = 811s and 82sn = 8~s for n E {1, 2, · · ·, N - 1}. 

For j E {1, 2}, the sequence DjSN is measured by either 

N-1 
II 8jSN llh(s) = I: II Djsn II} /j.t or 

n=l 

If SN = (sn)nE{l,---,N-l} is another finite sequence taking values S, we denote by b1;2sN 

the finite sequence whose terms are indexed by half-integer l and are equal to 

\I l = n + ~ E { ~ ~ · · · N - ~ } 81 ; 2 si 
2 2' 2' ' 2 ' 
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The newly defined sequence can be measured by the norm 

N-3/2 
II 01;2sN llz2(s) = L II 81;2st 111 tit. 

t=3/2 
Finally, for short-hand conveniency, we denote 

lllei1112 II ei II 1= (D + II 82ei llbcm 

111,aet 1112 II ,a81et III=(.£) + 11 ,c181;281 et llhrnJ 

Ill TN 111
2 II 72,N lli=(H) + II ,a81;2r1,N llhrnJ 

Ill qt 1112 II qfi lli=(A) + II b1;2qt llh(A) 

Theorem 5.2 For flt-+ 0, there exists a constant C, independent of flt, such that 

II eirllw :; C ( Ill e1}2 lll2 + Ill 7Nlii2 + Ill etlii2 + Ill ,aetlll2 + Ill qtlll 2
) ' 

where the initial approximation error 111 eY2 I I I is defined by 

43 

PROOF Inspiration can be drawn from the proofs of Theorem 4.2 and Theorem 5.1. The 

situation is very similar. Note that the stability condition is required. <l 

It is not difficult to see from the Definition 5.G that e7J, = <:f(ntlt) and q7}, = ({(nb..t), 

where cf and a:' projection errors of the semi-discrete case, have been proven to be sufficiently 

regular. Therefore, as flt goes to zero, there exists a constant C', independent of flt, such that 

Ill ei 111 2 + Ill ,c1etill2 + Ill qtlll 2 
:; C' ( Ill Eflll 2 + Ill ,c1cf lii2 + Ill (flll 2

) • 

Hopefully, these various projection errors can be "controlled" by some power of h, as was 

discussed at the end of Section 4. As for the truncation errors, it is well-known [7] that 

as soon as u(4) E L2 (0, T; H) and 10u(3 ) E L2 (0, T; Z). There remains to be solved a technical 

subtelty regarding the initial approximation error, which systematically arises in finite difference 

analysis via the energy technique. 
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6. Example of practical implementation 

In this section, hints are given on the implementation of the method proposed for two sub­

domains, one of which being sampled twice as finely as the other. For simplicity, only (Pl) 

mass-lumped finite element basis functions are considered. These lead in reality to the stan­

dard 2-2 finite difference scheme. A simpler version of the method will be worked out, which 

no longer involves the Lagrange multipliers representing the co-normal derivative. 

6.1 Mesh 

Consider again the example of grid change mentioned in the introduction. In Fig. 3, where 

the numbering of gridpoints is explained, the notations are different from those used so far. 

From now on, lowercase letters correspond to variables pertaining to the fine subdomain and 

0123456 i nx 
nz 

J c=fi 
2 h, b.t 
1 
0 r 

1 

2 

H, b.t 

J C=li 

Nz 
0 1 2 3 I Nx 

Figure 3: Numbering of gridpoints in the neighborhood of the interface. Capital letters corre­

spond to the coarse sub domain. Note that H = 2h implies i = 2I and nx = 2N X · 

UPPERCASE letters to those of the COARSE one. In particular, 
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0 1 2 3 4 5 
1 

r 

1 
0 1 2 Nx 

Figure 4: Basis functions ( wi)iE{O,l, ... ,nx} of ,rvN and (W1 )JE{O,l, ... ,Nx} of ,r yN 

• The indices of fine subdomain are (i,j), while those of the coarse subdomain are (I, J). 

Here ( i, j) must run twice as fast as (I, J). For clarity, the interface r has been taken as 

the horizontal line z = Z = 0, so that j is counted upward and J downward. 

• The pressures at time-step n are denoted by un in the fine subdomain and un in the 

coarse one. The finite-dimensional spaces to which they belong are vN and yN_ 

• The piecewise linear basis functions of ,r VN and ,rvN are denoted by ( wi)iE{O,l, ... ,nx} 

and (W1)JE{O,l, ... ,Nx}· They are depicted in Fig. 4. 

6.2 Data and source 

For simplicity, we deliberately restrict ourselves to when 

1. The bulk modulus and the density are constant inside each subdomain. Following the 

convention of Fig. 3, they are named respectively K,, I( and p, R. 

2. The initial data are zero, i.e. uo = 0 and Uci = 0. This assumption often holds true in 

real-life geophysical modeling. 

3. The excitation is a point-source, the time-dependence of which is the so-called Ricker 

function. More specifically, f(x, z, t) = b0 (x - xs, z - zs) ® R(t) with 

R(t) = (1-21r 2(!0 t-1)2) exp[-1r 2(!0 t-1)2], (6.1) 
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where 60 is the Dirac function and Jo is called the central frequency of the source wavelet. 

The Ricker wavelet stands out as one of the most popular sources among geophysicists, 

since its shape is similar to that of a real explosion. In the simulations presented, it will 

always be located inside the fine subdomain. 

REMARK 6.1 As a point-source, f rf_ L2 (0, T; L2(f!)). We will explain how to numerically 

implement the Dirac function. D 

REMARK 6.2 The above assumptions are designed to make formulae simpler, insofar as 

we do not have to worry about how geophysical parameters should be taken into account via 

numerical integration.' D 

6.3 Update formulae for interior regions, boundaries, and corners 

In the integral relation (2.12), take 1\ equal to a basis function of vN or yN. Mass-lumping is 

performed, which leads to explicit formulae for updating interior and boundary points. 

Based on the convention of Figure 3, the interior regions are defined by 

• fine interior 1 :S i :S nx - l and 1 :S j :S nz - l 

• coarse interior 1 :S I :S N x - 1 and 1 :S J :S N z - 1 

Proposition 6.1 Introduce the velocities 

c=l and 

Then, for the (Pl) scheme, the update fo1'mulae fo1' the two inte1'i01' 1'egions are 

U".'tl 2 n n-1 + (c/lt) 2 
[ 4 n + n + n + n + n ] 

i,J ui,j - ui,j h - ui,j ui-1,j ui+l,j ui,j-1 ui,j+l 

u;,11 
2UP,J - u;,-:,t + (cit) 2 

[-4U}'.J + UF-1,J + UJ+1,J + UP,J-1 + UI,J+i] 

Furthermore, if the point-source is located at the node (is, j s) in the interior of the fine subdo-

( 
c!lt) 2 main, then a source term equal to -

1
- R( n!lt) must be added to uf+Jl previously computed. 

1, 8, 8 

PROOF By mass-lumping, the mass matrix [associated with the bilinear form~(.,.)] becomes 

diagonal, and what is more, the entries corresponding to interior points are equal to h2 in the 
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fine subdomain and H 2 in the coarse one. The calculation of the stiffness matrix is not difficult 

and is left to the reader. It provides an approximation of the Laplacian. 

The presence of h2 in the denominator of the source term is accounted for by the fact that 

the Dirac function is spread over a square cell of size h2 • <l 

The update formulae are slightly different on the boundaries. To put it more accurately, 

the following subsets of gridpoints are called boundaries 

• North j = Tlz - 1 and 1 s; i s; nx - 1 

• South J = Nz- 1 and ls;Js;Nx-1 

• fine West i = 1 and 1 s; j s; nz - 1 

• coarse West l=l and ls;Js;Nz-1 

The East boundaries are defined similarly for i = nx - 1 and J = N x - 1. 

Proposition 6.2 Introduce 

and D = 1 + C b.t E = 1 - C b.t . 
H ' H 

(6.2) 

Then, for the (Pl) scheme, the update formulae for the North and South boundaries are 

1 { 2 n n-1 + (cb..t) 2 
[ 4, n + n +, n + 2 n ] } - U,· n - eU,· n -- - U,· n U,·-1 n U,·+1 n Ui n -1 d ,z ,z /1, ,z ,z ,z ,z 

~ {2UJ,Nz - EUI,N~ + (C:tr [-4UJ,Nz + U?-1,Nz + U?+1,Nz + 2Ul,Nz-ll} 

The formulae for the remaining boundaries are deduced by symmetrically changing the indices. 

PROOF By mass-lumping, the entries of the diagonal mass-matrix [associated with the bilinear 

form f(., .)] corresponding to boundary points are equal to t,i2 in the fine subdomain and tH 2 

in the coarse one. Mass-lumping is also applied to the boundary mass-matrix [associated 

with the bilinear form fl.(.,.)], thereby giving an additional term proportional to h in the fine 

subdomain and to H in the coarse one. The calculations are left to the readers. <l 

An additional change in the update formulae is necessary for the corners. In fact, the 

following gridpoints a.re called corners 
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• North East J = Tlz and i = nx 

• North West J = Tlz and i = 0 

• South East J = Nz and I= Nx 

• South West J= Nz and 1=0 

Proposition 6.3 Introduce 

Then, for the (Pl) scheme, the update formulae for the North East and South East comers are 

un+l 
Nx,Nz 

The formulae for the remaining corners are deduced by symmetrically changing the indices. 

The update formulae in the last three Propositions are valid as soon as the grid is regular 

in each sub domain, regardless of the ratio H / h. We are now giving the update formulae for 

the gridpoints on the interface. These will be valid only when H = 2h. 

6.4 Linear system at the interface 

The space AN is taken to be the that of piecewise constant functions over r. The pieces are 

determined by the finer grid, and therefore its dim AN = nx + l. A basis of AN is 

o i = 0 µo(x) = 1 for x E [O, h/2], 0 elsewhere; 

o 1 :Si :S nx - l Jli(x) = l for x E [(i-1/2)h, (i + 1/2)h], 0 elsewhere; 

o i = nx µnx(x) = l for x E [ (nx - 1/2) h, nxh], 0 elsewhere. 

The following lemma shows that such a choice for AN is likely to be a good one, to the 

extent that Hypothesis 4.1 is actually satisfied. 

Lemma 6.1 With the choice of AN made above, we have AN n (,rVN + ,rvN).L {O}. 
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PROOF From Fig. 4, it is obvious that ,rVN C ,rvN, so that ,rVN + ,rvN = ,rvN. 

Since AN and ,rvN have the same dimension, we can prove the lemma by considering the 

nx X nx-matrix d of elementary products (JLi, Wj)£2(r)· Calculations yield 

3 1 

1 6 1 

h 1 6 1 
d -

8 

1 6 1 

1 3 

This matrix is not singular because its diagonal is strictly dominant. 

At time-step n, let An be the column vector representing the multiplier An 

nx 

An - ~ Anµ· 
-~ti 

i=O 

The coefficient Af also represents the value of An at the ith node on r. 

<l 

Proposition 6.4 For the interior segment of the interface r, i.e. for l < i < nx - 1 and 

1 ~ J ~ N x - 1, let us introduce 

2 n n-1 + (cfl.t) 2 

[ 4 n + n + n + 2 n ] ui o - u,- o - 1- - ui o ui-1 o U;+1 o ui 1 
' ' i ' ' ' ' 

BECJTJ 2U'f',o - U?,;
1 + (C:t) 2 

[-4U'f',o + U'f'-i,o + U'f'+1,o + 2U'f',1] 

If the multipliers ( Af )iE{O,l, ... ,nx} were known, then the update formulae for the interior segment 

of r would be 

un+i 
l,O BEG1 + 

(6.4) 

PROOF In the integral relation (2.12), take v; as the basis functions of vN and yN associated 

with the nodes on r. Calculations are left to the readers, who should be very careful. <l 

In these formulae, the quantities b:gf and BEG7J stand for the beginning expressions of 

uft1 and Uj'J 1
• At the ends of the interface f, the pressure values are similarly updated by 

' ' 
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Proposition 6.5 For the left end of the interfacer, i.e. for i =I= 0, let us introduce 

1 { n n-1 (cf:1t) 
2 

[ n n n ] } -d 2u0 0 - eu0 0 + - -4u0 0 + 2u1 0 + 2u0 1 ' ' /-,., ' ' ' 

1 { nn Enn-1 (Cf:1t)
2 

[ n n Trn]} D 2uo,o - uo,o + H -4Uo,o + 2U1,o + 2uo,1 

If the multipliers ( >.7)iE{O,l,2} were known, then the update formulae for this left end would be 

K, f:1t2 
2d T [3>-3 + >-rl 

un+i 
0,0 BEG0 + .!!_ t::.t2 [ 7>.'' + s>.n + .xn l 

8D H o 1 2 

(6.5) 

The update formulae for the right end of r are deduced by symmetrically changing the indices. 

Let us now express the continuity condition (2.13) in terms of un, un and >.n. This gives 

us two series of equations, depending on whether the index of the gridpoint considered is odd 

or even. Several intermediate quantities need to be introduced. Define 

EVEN1 1 un 7 un 
16 l-1,0 + S l,o 

1 un + 16 l+l,0 for 1:S:l:S:Nx-1 

ODD,:, 
1 n 
2,Ul,O 

1 n + 2,Uf+l,O for 1 ::; k = 2I + 1 :S nx - 1 (6.6) 

<RX;n 1 n 3 n l n for 1 :S i :S nx - l sui-1,0 + -U· + 8ui+1,0 i 4 i,O 

Expressing the continuity condition at an even-numbered gridpoint on r is equivalent to 

settingµ= µ21 in (2.13). By taking into account the fact that H = 2h we obtain 

EVENn+I - 01.en+I - -2 (EVEN" - 01.e" ) - (EVENn-l - <R.X;"-
1 ) l 21 - l 21 l 21 (6.7) 

for IE {l, ... ,Nx-1}. Express now the continuity condition at an odd-numbered gridpoint 

on r by settingµ= µk with k = 2I + 1 in (2.13). It follows that 

(6.8) 

for odd k E { 1, ... , nx - l}. At the left end of the interface, by posing 

EVE n 7 n l n 
Wo = -Uoo + -U1 o 

16 ' 16 ' 
and (6.9) 

the continuity condition is expressed as 

(6.10) 
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A similar relation holds for the right end of r. 

The most painstaking task consists in eliminating the unknowns un+l and un+i by plugging 

the update formulae (6.4) and (6.5) into the continuity relations (6.7), (6.8) and (6.10). In the 

following theorem, note that for 4 :=::; i :s; nx - 4, we have two alternating series of equations. 

Theorem 6.1 The multipliers (.Xf)iE{O,l, ... ,nx} must be solution to the linear system gN_xn = 
Tn. The ( nx + l) X ( nx + l )-matrix gN is a banded matrix 

Eo 81 ,2 8 1 

81 80 E1 /32 8 0 

,2 E1 ,o ,1 a2 8 1 

8 /32 ,1 f3o ,1 !h 8 0 

1 8 a2 /1 ao ,1 a2 8 1 

0 8 /32 /1 f3o ,1 /32 8 0 

gN (6.11) 

1 8 a2 ,1 ao ,1 a2 8 1 

0 8 /32 /1 f3o ,1 /32 8 

1 8 a2 ,1 ,o E1 ,2 

0 8 /32 E1 80 b1 

1 8 ,2 81 Eo 

with 

ao = 198 + 608r f3o = 128 + 608r 

,o = 197 + 608r + 2G bo = 64 + 592r + 128G + 32rg Eo = 1 + 16r + 98G + 288rg 

,1 = 120 + 192r 81 = 8 + 96r + 112G + 96rg E1 = 112 + 192r + 16G 

a2 = 28 + 16r /32 = 64 + 16r 12 = 14 + 16r + 14G 

where 

K, 
1' - -- J(' 

1 
g = -

d 
and 
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The right-hand side Tn is defined as 

Vi E {0,1, ... ,nx}, rn = 256
H (m.J~~' - AVEBEGn - 2AVEDlF'! - AVEDlFn-l) 

' J(!::J.t2 UK&, ' ' ' 

where the terms in the parentheses are defined as follows: 

• for i = 0 

AVEBEG3 

AVEDlF3 

3 i__n 

-uyo 
8 

!__BEGn 
16 ° 

1 J=,n + - e<:&1 
8 

_..!:__BEGn + 16 1 

• for i = nx analogous formulae 

• for even i E { 1, ... , nx - 1} with i = 21 

mdrgf l lrgn 8 i-1 
3 Inn + - Y· 
4 ' 

l lrgn + 8 i+l 

AVEBEGf 
1 
l6BEG'J_1 + ;BEG'] 

1 
+ l6BEG'J+1 

AVEDlFf EVEN'] - mt::f 

• for odd k E {1, ... , nx - l} with k = 21 + 1 

mdrg,; l frgn 3 frgn l n 
8 . k-1 + - k + 8 lrgk+l 4 

AVEBEG,; l BEGn 2 TJ 
l 'EGn + 2B TI+l 

AVEDlF,; ODD,; - mt::,; 

In practice, the banded-matrix sN is Cholesky factorized once for all as sN = tLN LN. At 

each time step, after the right-hand side is computed, a library subroutine is called, which solves 

the linear system with the given banded triangular matrix LN. Once An is known, formulae 

(6.4) and (6.5) are applied to update un+l and un+i on r. 

REMARK 6.3 It could be interesting to check the discrete inf-sup condition on the mesh 

chosen for this example. Although we have not taken up this study, we refer the reader to [3) 

for greater details on the matrix form of the inf-sup condition. D 
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7. A significant simplification 

The h-2h grid change studied the previous section is one of the simplest examples that could 

be envisaged. Yet, its computer implementation looks much trickier than the plain finite 

difference scheme. From the computational standpoint, not only a 1-D array of multipliers has 

to be stored, but also a linear system has to be solved at every time-step. Even though the 

matrix of the system is banded, the multipliers cannot be determined "locally." 

7.1 Elimination of multipliers 

In return for an extra level of approximation, we can obtain a much handier algorithm. Let 

us temporarily come back to the notations used in (Gh). We know by Lemma 5.2 that 

uh+l E Ker Dh. Taking vh E Ker D" as a test function in (5.6) naturally cancels out 4( Vh, Ah). 

Therefore un+l E Ker Dh necessarily satisfies 
' h -

(7.1) 

Conversely, if ( 7 .1) holds, then by proceeding as in the proof of Proposition 5 .1, a little algebra 

shows the existence of a Ah E Ah such that (u~;+ 1,A1'.) is solution to (Gh). 

The obvious interest of (7 .1) lies in the fact that it does not contain any multiplier explicitly. 

The problem is that Ker Dh, which depends on V" and A", does not lend itself to an easy 

interpretation in terms of node values of 1th. The idea consists then to replace Ker D" by 

another space Eh, the characterization of which is purportedly more straightforward in terms 

of node values. We are thus led to the simplified method 

(Bh) GIVEN 

r 

B" as a substitute space for Ker Dh 

K, p fulfilling Hypothesis 3.1 

(7.2) 

(7.3) 

(7.4) 



54 A. Bamberger, R. Glowinski and Q. H. Tran 

FIND 

un+l E B" such that 
h - (7.5) 

• V v1i E B", the following discrete integral relation holds 

Given the initial data iio,h and ii~,h, there exists a unique solution UN= (uh)nE{O,l,-··,N} to 

the sequence of problems (Bh)- The question of stability can be addressed in a manner similar 

to Section 3. The most fundamental question arises as to how B" should be selected. As was 

announced earlier, this is via mass-lumping performed on the continuity conditions. The next 

subsection supplies us with details on B" , as well as on the implementation of the new version 

for the h-2h example. 

7.2 Application to the previous example 

Once again, we opt for the notations of Section 6. Let [h,J and Ui,j denote node values of 

the pressure in the coarse and fine subdomains. Before saying what B" could be, let us try to 

characterize Ker D" in terms of equations between U1,o and 'Ui,O· From the calculations of the 

previous section, it is not difficult to see that the function u1, determined by the node values 

( u, U) belongs to Ker Dh if and only if 

VIE {O, 1, · · ·, N x}, 

V k = 2I + 1 E { 1, 3, · · · , nx - 1} , 

EVEN1 

where EVEN I, ODDk and <D£i were defined by (6.6) and (6.9). To be more specific, 

l=i=O 

2 ::::; i = 2J ::::; 'flx - 2 

1 ::::; k = 2J + 1 ::::; 'flx - 1 

7Uo,o + U1,o = 6uo,o + 2u1,o 

U1-1,o + 14U1,o + [h+i,o = 2ui-1,o + 12ui,o + 2ui+1,o 

4U1,o + 4U1+1,o = uk-1,0 + 6uk,o + uk+1,o 

By mass-lumping the U's at even-numbered gridpoint and the u's everywhere, we get 

0 ::::; i = 2J::::; 'flx 

1 :'.:'.'. k = 2J + 1 :'.:'.'. 'flx - 1 

U1,o = u;,o 

(7. 7) 

(7.8) 
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The equations (7.8) are extremely easy to implement. This is the reason why they will be 

used to define Bh. In the present example, the characterization of Bh is strikingly straight­

forward. If the U1,o's are known, then the ui,o's can be deduced by (i) forcing the equality at 

even-numbered grid point and (ii) taking the arithmetic mean of two consecutive even-numbered 

gridpoints to obtain the odd-numbered gridpoint. 

REMARK 7.1 The characterization (7.8) also implies that ,rU = ,ru, insofar as both of 

them are piecewise linear. So, Bh C H 1(0,) whereas Ker Dh </.. H 1(0,). This tends to prove 

that Bh is even "better" than Ker D". D 

REMARK 7.2 From the standpoint of finite elements, the U1,o's for IE {O, 1, · · ·, Nx} are 

degrees of freedom, while the ui,o 's are not. The support of a basis function in Bh, which 

corresponds to a gridpoint at the interface, is depicted in Fig. 5. D 

0 

0 0 

Figure 5: A (Pl) basis function corresponding to an interface grid point i = 2I 

The update formulae for the interior regions, boundaries and corners are unchanged com­

pared to Section 5. In contrast, those for the interface gridpoints are a little simpler. 

Lemma 7 .1 Let uh = ( u, U) E B" and let v1i,1 be the basis Junction of B" corresponding to 

the interface grid point i = 2I. Denote by f* and !l the mass-lumped versions off and Q. Then, 

for IE {l,2,···,N-1}, 

( 
1 1 ) 2h2 
r.· + - U10 
1i 2K, ' 

1 

2
R [ 4U1,o - (2UJ,1 + U1-1,o + U1+1,o)] 

+ 
1 

- [4ui o - (2ui 1 + Ui-11 + Ui+11)] 
2p ' ' ' ' 
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and for I = i = 0 

2 ( 1 1 ) h I( + 2K, Uo,o 

h (~ + ~) Uoo 
I; 2a ' 

1 
R [ 2Uo,o - (Uo,1 + U1,o)] 

+ 
1 
- [ 2uo o - ( 11,0 1 + u1 1) ] 
p ' ' ' 

with a = ~ and I: = vlJ(R. The formulae for I = N x = 2nx are deduced by symmetry. 

PROOF It suffices to carry out the calculations carefully. Express the results in terms of 

U1-1,o, U1,o, U1+1,o, U1,1 and Ui-2,0, Ui-1,0, u;,o, u;+1,o, ui+2, u;-1,1, ui,l, u;+1,1. 

Next, simplify by taking into account (7.8) and H = 2h. <l 

These preliminary results being stated, the update formulae for interface gridpoints are 

given by 

1 ( 1 1 ) Proposition 7.1 Let "' = 4 ----,:- + - . Then, for the interior segment, we have 
k X 2/'i, 

Introduce 

un+l 
I,O Un un-l l (tlt)2 [ 1 ( un un un un ) 2 Jo- 10 +"' -1- R J-10+ 1+10+2 Il-4 Io ' ' k 1 , ) l ' ' 

C = k -+--( 1 1) 
I; 2a ' 

+ ~ ('u?--11 + uf+11 + 2uf1 - 4uf o) ] 
p ' ' ' ' 

- ctlt 
d = l + - and 

h 
e = 

ctlt 
1--. 

h 

For the left-end of the interface, we have 

nn+ 1 _ l { nn - nn-1 2 ( /l t) 2 
[ 1 ( r n n ) 

uo,o - d 2uo,o - e uo,o + k h R U1'.o + Uo,1 - 2Uo,o 

l(n n n)]} + - u1 1 + Uo 1 - 2uo o 
p ' ' ' 

The update formula for the right-end of the interface is deduced by symmetry. 

PROOF Apply Lemma 7.1 and (7.6) in which r::_* and !/ are substituted for f and fl.. We have 

to assume that the source is not located on the interface, which seems reasonable. <l 
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8. Numerical results 

In order to illustrate the validity of the method Gh as well as its simplified version Bh , we 

briefly present some numerical results obtained for the h-2h example. Like geophysicists, we 

proceed by examining snapshots and trace recordings for various situations. 

8.1 Snapshots of propagation 

Three different models are considered. In the description below, the densities p and Rare given 

in kg.m-3 ; the bulk moduli "' and J( in kg.m- 1 .s- 2 ; the velocities c and C in m.s-1 ; finally, 

the acoustic impedances a and ~ in kg.m- 2 .s-1 . 

A- p = R = 103 and "'= J( = 2.25109 

This is in actuality a homogeneous medium with c = C = 1.5 103 and a = ~ = 1.5 106
• 

Its interest is to allow for a direct visualization of the effects caused by the grid change 

alone. 

B- p = R = 103 and "' = 2.25109
, J( = 9.0 109 

The jump in the bulk moduli entails c = 1.5 103 , C = 3.0103 and a = 1.5 106
, ~ = 

3.0106 • We want to see how well the physically predicted reflection and transmission 

waves are modeled by the grid change. 

C- p = 2.0103, R = 103 and"'= 4.5 109
, J( = 9.0 106 

We still have c = 1.5 103 , C = 3.0 103 but this time a = ~ = 3.0 106
• It is well-known 

in geophysics that when the acoustic impedances are equal, there is no reflection wave at 

normal incidence. This is what we wish to check. 

The central frequency of the Ricker source is set to Jo = 30 Hz. The source itself is always 

located in the finer subdomain, at 75 m above the interface. The numerical simulations are 

performed with h = l m and H = 2 m, which corresponds to roughly 20 points per shortest 

wavelength. The time-step is deliberately taken as small as i:l.t = 2.5 10-4 s so as to minimize 

the error due to time-discretization. 
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A snapshot is the image of the pressure field at a given time. For instance, Fig. 6 represents 

the reference solution in model A at t = 1.5 s. By reference solution we mean the numerical 

solution computed with the classical 2-2 finite difference method on a uniformly fine grid h. 

The wavefront appears to be circular, as is expected in a homogeneous medium. 

Pl.all• 2 

Trace 40 !iO 80 70 88 90 100 1.1.D 120 llO 140 1!10 180 

800 800 

Figure 6: Reference solution at time t = 1.5 s for model A. The thick line coincides with the 

interface. The numerical solutions ( not represented) are pretty much the same. 

The pressure snapshots computed with G~ and B~ at the same time look much alike. Their 

differences with the reference solution are displayed in Fig. 7, using a much smaller scale of 

course. In addition to the difference in the transmitted front, there is a reflected front whose 

amplitude is relatively small and whose origin could be attributed to the interface. The total 

relative error -measured by the discrete L2-norm- is about 2.:3%. This figure can be further 

decomposed into 2.0% from the transmitted front and 0.3% from the reflected front. 

In model B, the reference solution itself is composed of a transmitted and a reflected 

wavefront, as illustrated by panel a of Fig. 8. The transmitted part is propagated at the higher 
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(a) 
P1-• 2 

T:nuoe 40 !10 60 70 80 90 100 1.10 llO UO 140 150 160 

68' HO 

(b) 
P1-• 2 

Trace 40 50 60 71 80 90 100 1.10 llO UO 140 150 168 

809 HO 

Figure 7: Errors between the previous reference solution and the numerical solutions computed 

with (a) the original scheme Gh or (b) the simplified scheme B,;. 
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speed C = 2c. The difference between the Gh -solution and the reference solution is plotted in 

Fig. 8b. The difference between the B1; -solution and the reference solution looks very much 

alike, and this is why it will not be represented. In both instances, the error created by the 

grid changed is mainly concentrated in the transmitted front. Their relative order of magnitude 

-again measured by the discrete L2-norm- amounts to 2.5% . 

In model C, the reference solution behaves as predicted, i.e. there is no visible reflected 

waves at normal incidence. This is clearly evidenced in Fig. 9a. Barring from a slightly smaller 

amplitude, no noticeable difference with model B can be detected from the error snapshot in 

Fig. 9b. The L 2 relative error is approximately 2.1 % . 

8.2 Study of accuracy by trace recordings 

A series of receivers are placed along the horizontal line Z = 150 m inside the coarse subdomain. 

At each receiver location, we keep track of the development in time of the pressure. The result 

is called a trace recording or simply trace. For the study of accuracy, we are interested in the 

traces obtained at the same receiver locations, in the same physical model, but with a sequence 

of decreasing space-steps h and time-steps flt such as flt/ h = cte. For each value of h, we plot 

the difference between the Gh - or B1! -trace and the reference trace. 

Figure 10a depicts this trace difference for the Gh -method and three values of h. The 

model considered is A, and the receiver to which the traces correspond is located right below 

the source. We see that every time his divided by 2, the error amplitude is roughly divided by 

4. Since the reference solution has been computed with the same parameters h and flt, this 

behavior suggests that the error introduced by the grid change is of second order. 

A similar observation holds true for the Bh -method, as shown by Fig. 10b. The trace 

differences obtained at other receiver locations exhibit the same second order convergence. 
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(a) 
pi.,., z 

Trace 40 110 60 78 80 90 100 ll.l ll0 U0 140 1!10 161 

60I 680 

(b) 
Pl.ale Z 

Trace 40 110 60 78 80 90 100 :ll.D ll8 U0 140 1!10 161 

6DI 680 

Figure 8: Reference solution (a) for model B at time t = l.5 s and ( b) error between the 

numerical solutions and this reference solution (with a larger sea.ling factor). 
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(a) 
pi.,., 2 

Tnu,o, 40 110 60 70 81 !IO 100 11.1 121 :LIO 140 1110 UD 

IOI HO 

(b) 
pi.,., 2 

Tnu,e 40 110 60 70 80 90 100 110 120 :LIO 140 1110 UD 

600 600 

Figure 9: Reference solution (a) for model C at time t = 1.5 s and (b) error between the 

numerical solutions and this reference solution (with a larger scaling factor). 



Domain Decomposition Methods for the Wave Equation 

e 
ai 
$ 
::, 

0 
(/) 
.a 
as 

~ 

e 
ai 
$ 
::, 

0 
(/) 
.a as 

2500 

2000 

1500 

1000 

500 

0 

-500 

-1000 

-1500 

-2000 

-2500 
0.1 

2500 

2000 

1500 

1000 

500 

0 

-500 

-1000 

-1500 

-2000 

-2500 
0.1 

0.15 

0.15 

I 
I 

(a) 

/ I 
I 

I ,, 
\ 

time (s) 

(b) 

/1 
I I 

I 

I 
I I 
\ 

time(s) 

" , , 
I I 
I 
I 
I 
I 

,, 
I I 
I I 
I I 

I 
I 
I 

,,., ,._. 
I 

I / 
\ I 
\ I ... 

0.2 

,._ . ,,,, ., 
I 

I I 
I I 
\ I ... 

0.2 

63 

0.25 

0.25 

Figure 10: Trace difference between the reference solution and (a) the Wk-solution or (b) the 

Gh -solution for h = 1.0 m ( dashed line), 0.5 m ( dash-dotted line) and 0.25 m ( solid line). 
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9. Conclusion 

The domain decomposition methods proposed in this paper are primarily aimed at meeting 

a practical need in wave propagation modelling. Their mathematical properties have been 

thoroughly investigated, and their implementations have been validated by the numerical sim­

ulations, which testified to a second order convergence. 

Although the simplified version appears to be much more interesting than the original one 

from the computational point of view, it turns out that a prominent part of this paper has been 

devoted to the original method. The rationale of this seemingly paradoxical situation is that, 

in reality, we have tried to take advantage of this opportunity to generalize Babuska-Brezzi's 

formalism of mixed and hybrid finite element to the hyperbolic case. In the course of error 

estimates, however, the question remains as to how the projection error on Ker Dh could be 

controlled. We dare hope that this difficulty would be overcome soon, most probably by means 

of a new condition between the discretization spaces V" and Ah. 

Finally, we believe that these methods will be more widely used in the future by geophysi­

cists, so long as they are restricted to second order methods at least. A fourth order domain 

decomposition method for the wave equation is currently under study. 
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