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Abstract

Spacecraft Attitude Estimation Integrating

the Q-Method into an Extended Kalman Filter

by

Thomas G. Ainscough, 2d Lt, USAF

A new algorithm is proposed that smoothly integrates the nonlinear estimation of the

attitude quaternion using Davenport’s q-method and the estimation of non-attitude

states within the framework of an extended Kalman filter. A modification to the

q-method and associated covariance analysis is derived with the inclusion of an a

priori attitude estimate. The non-attitude states are updated from the nonlinear

attitude estimate based on linear optimal Kalman filter techniques. The proposed

filter is compared to existing methods and is shown to be equivalent to second-order

in the attitude update and exactly equivalent in the non-attitude state update with

the Sequential Optimal Attitude Recursion filter. Monte Carlo analysis is used in

numerical simulations to demonstrate the validity of the proposed approach. This

filter successfully estimates the nonlinear attitude and non-attitude states in a single

Kalman filter without the need for iterations.
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Chapter 1

Introduction

Virtually all spacecraft require some sort of attitude determination. While accuracy

requirements vary based on mission requirements, a certain level of attitude informa-

tion is vital. Often accurate attitude estimation is essential for the primary mission

objective such as in remote sensing satellites or space based telescopes like the well

known Hubble Space Telescope. Furthermore, some degree of attitude determination

is necessary for successful operation of satellite secondary subsystems such as orien-

tation with respect to the sun in order to optimize solar panel efficiency or proper

orientation of antenna for effective communications. As a result, a variety of sensors

and algorithms have been developed over the decades in order to accurately estimate

attitude with a wide range of complexity and cost. Highly accurate sensors such as

star trackers are capable of determining the spacecraft attitude with very high ac-

curacy, but come at a correspondingly high cost which could exceed the budget for
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some applications. Cost savings on spacecraft subsystems such as the attitude de-

termination system provide a greater margin for the primary mission. It is therefore

desirable to employ attitude estimation algorithms that can sufficiently determine the

spacecraft attitude from noisy measurements.

The basic problem of spacecraft attitude determination is to ascertain the space-

craft’s orientation by comparing measurements from attitude sensors in a spacecraft

body-fixed frame to a known reference frame. By determining the appropriate ro-

tation from the known reference frame to the measurements in the spacecraft body

frame the attitude can be determined. Typical spacecraft attitude sensors consist of

sun sensors, star trackers, horizon sensors, magnetometers, and GPS receivers as well

as inertial sensors such as various forms of gyroscopes and accelerometers. Attitude

determination methods can be classified into the two main classes of single-point atti-

tude determination methods and recursive attitude estimation methods. Single-point

solutions utilize two or more vector measurements to calculate the attitude at a single

point in time. Recursive estimation algorithms combine attitude measurements over

time with kinematic and dynamic models to estimate the spacecraft attitude. The

advantages and shortcomings of both classes has led to the development of many

different attitude determination methods.

This thesis presents a new recursive algorithm for attitude estimation which incor-

porates a nonlinear attitude estimation method into the framework of the extended

Kalman filter. The proposed filter uses Davenport’s q-method [1] to solve for the atti-
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tude without any small angle approximations and uses the nonlinear attitude solution

to update the non-attitude states using the optimal gain from the Kalman filter. The

standard q-method solution is modified to incorporate a priori attitude information

using the method of averaging quaternions [2] and the corresponding error covariance

analysis is performed. It is shown that the method of first updating the attitude and

subsequently updating the non-attitude states from the attitude update is equiva-

lent to the standard Kalman filter for the linear measurement case. The proposed

q-method extended Kalman filter (qEKF) is presented where the non-attitude states

are updated according to the linear case. The qEKF is compared with the Sequential

Optimal Attitude Recursion (SOAR) filter [3] and shown to be equivalent. Pertinent

numerical simulations are used to verify the proposed algorithm.

1.1 Single-Point Methods

Single-point attitude determination methods are also known as point-by-point meth-

ods or batch estimation as they determine the attitude of a spacecraft at a single point

in time from at least two vector observations. Spacecraft attitude sensors typically

output unit vector measurements, y, which can be compared with known reference

vectors, n, in order to identify the attitude often represented as the orthogonal atti-

tude matrix, T. Specifically,

yi = Tni for i = 1, ..., n. (1.1)
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With single-point methods, knowledge of the spacecraft dynamics is not necessary.

This results in reduced complexity and potentially negating the need for expensive

sensors such as accelerometers and gyroscopes. A priori knowledge of the attitude is

also not required enabling single-point methods to be effective when such information

is lacking or very poor. One of the oldest and often used single-point methods is the

TRIAD algorithm also known as the Algebraic Method [4, 5]. In this method exactly

two unit vector measurements and the corresponding unit vectors in the reference

frame are used to calculate the attitude. In the absence of noise, the two unit vector

measurements provide sufficient information to determine the attitude as represented

in Eq. (1.1). However, in the case of noisy measurements a solution does not typically

exist. The TRIAD algorithm combines the unit vector measurements in such a way

that discards part of the less accurate measurement in order to obtain a solution

for the attitude in the presence of noise. This method is very simple and quickly

determines the spacecraft attitude with very little computational cost. However, the

TRIAD algorithm is only capable of processing exactly two unit vector measurements

and therefore incapable of incorporating additional attitude measurements which may

be available. Nevertheless, the simplicity and success of the TRIAD algorithm has led

to its use in several satellites over the years such as in the Navy Navigation Satellite

System [6].

The foundation of most single-point attitude determination algorithms from vector

observations is the well known Wahba problem [7]. While interning with IBM Federal
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which was supporting NASA attitude activities, Grace Wahba posed the problem

in a 1965 issue of SIAM Review [7]. The Wahba problem is simply a nonlinear,

weighted least-squares problem to determine the optimal attitude matrix from a set

of at least two independent vector measurements. The resulting performance index

to be minimized is given by

J =
1

2

n∑
i=1

ai ‖yi−Tni‖2 , (1.2)

where ai are scalar, positive weights associated with each vector pair. The Wahba

problem is capable of processing any number of synchronized, noisy vector mea-

surements to produce the optimal attitude in the sense of minimizing the weighted

residual between the reference and measurement vectors. It has received much at-

tention over the years because of its ability to provide a globally optimal solu-

tion for the attitude without making any linearization or small angle assumptions

[1, 5, 8, 9, 10, 11, 12, 13, 14].

Over the years many solutions have been developed to solve the Wahba problem,

some of which are purely mathematical and others much more relevant to practical

applications. Most solutions to the Wahba problem rewrite the performance index in

some manner. A typical approach is to rewrite the Wahba performance index as a

function of the attitude quaternion. Paul Davenport [1] showed that this approach

results in a quadratic performance index and the optimal solution is obtained by

solving an eigenvalue problem.

As will be shown in a later section the loss function of the Wahba problem can be
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rewritten as

J =
n∑
i=1

ai − trace
[
TBT

]
, (1.3)

where

B ≡
n∑
i=1

aiyin
T
i , (1.4)

and trace[·] signifies the matrix trace. A solution developed by Markley takes ad-

vantage of the fact that the Wahba problem rewritten as in Eq. (1.3) is a special

case of the Orthogonal Procrustes Problem [15] and then solved using Singular Value

Decomposition (SVD) [16]. In SVD the optimal attitude is obtained directly from

decomposing the B matrix to its singular values. While computationally intensive,

SVD utilizes mathematically rigorous matrix algorithms and is very robust [17]. In

order to reduce the computational burden Markley developed a numerical extension

of SVD in the Fast Optimal Attitude Matrix algorithm (FOAM) which is much more

efficient [12]. In FOAM the singular values are used to develop an expression for the

optimal attitude matrix that does not require the singular value decomposition, but

rather computes the necessary coefficients by means of iteration from relationships

derived from the singular values.

Davenport’s solution (also known as the q-method) calculates the attitude quater-

nion rather than the orthogonal attitude matrix [1]. The attitude quaternion is sub-

ject to a unit normal constraint and the resulting loss function is an eigenvalue prob-

lem where the largest eigenvalue of the Davenport matrix minimizes the loss function

and the corresponding unit eigenvector is the optimal attitude quaternion. A more
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detailed derivation of the q-method is included in a subsequent section. Davenport’s

q-method is also very robust and solves the nonlinear Wahba problem exactly without

any linearization or simplifying assumptions.

While mathematically rigorous, solving the eigenvalue problem of the q-method is

computationally burdensome and not ideal for on-board attitude determination. As a

result, numerous numerical techniques have been developed to estimate a solution to

the q-method in a more efficient manner. The foundation for such numerical solutions

is the Quaternion Estimator (QUEST)[8]. The most computationally burdensome

part of the q-method is solving the eigenvalue problem. Shuster noted that when the

value of the performance index in Eq. (1.3) is small (which is a valid assumption as

the attitude is chosen such that the performance index is minimized) the maximum

eigenvalue is very close to
∑n

i=1 ai which in turn may be used as the starting value

for a Newton-Rhapson iteration that quickly converges to the maximum eigenvalue.

After some manipulation in which the quaternion is factored in terms of Rodrigues

parameters [18] the eigenvector can be computed. The introduction of Rodrigues

parameters also adds a singularity for rotations of π radians which Shuster avoids

by employing a method of sequential rotations [8]. The computational requirements

for QUEST are significantly reduced compared to the q-method which has made the

algorithm much more appealing for real-time on board attitude estimation. With

the increased speed QUEST sacrifices robustness, but performs well as long as the

measurement noise does not vary excessively between measurements [17].
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Another numerical solution to the q-method is the Estimator of the Optimal

Quaternion (ESOQ) algorithm [13]. Mortari uses the same iterative method to cal-

culate the eigenvalue as in QUEST, but avoids the the singularity introduced by the

Rodrigues parameters by instead computing the quaternion as a four-dimensional

vector cross product. This arises as a result of the eigenvalue problem. The optimal

quaternion or eigenvector must be orthogonal to all columns of the matrix K−λmaxI

where K is the Davenport matrix, λmax the corresponding maximum eigenvalue, and I

is the identity matrix. Therefore the eigenvector is computed for the four-dimensional

cross product of any three columns of the aforementioned matrix. ESOQ2 is a follow-

on algorithm which parametrizes the quaternion in terms of the Euler axis/angle

representation of the attitude [14]. This parametrization calculates the Euler axis

from the null space of a 3 × 3 matrix that is derived from the Davenport matrix.

However, it also introduces a singularity for a zero angle rotation which is also re-

solved by using successive rotations. Like QUEST, ESOQ and ESOQ2 are much

faster than the q-method, but with reduced robustness.

1.2 Recursive Estimation Methods

In contrast with single-point methods which process batches of measurements at a

single time in order to produce an attitude measurement, recursive estimation meth-

ods take into account the measurements of all previous times while accounting for

vehicle dynamics in order to produce an accurate estimate of the attitude at the cur-
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rent time. They combine previous measurements and propagate the estimate to the

current time while also providing an estimate of the accuracy of the current state.

These techniques can process any type or number of attitude measurements and can

be used to filter out measurement noise. Stochastic processes are used in order to

combine the measurements and previous estimate in some statistically optimal man-

ner. If properly tuned, recursive methods are capable of producing very accurate

estimates of the attitude in real time. However, they often require a priori knowl-

edge of the state and can be sensitive to initial conditions, possibly diverging for poor

initial estimates.

The workhorse of recursive estimation is the extended Kalman filter [19, 20, 21].

The Kalman filter is essentially a recursive form of linear least squares estimation.

Provided a measurement model relating the states to the measurements a Kalman

filter minimizes the residual between the observed measurements and the expected

measurements based on the measurement model and the current state. For linear,

Gaussian systems the Kalman filter provides the optimal minimum mean square error

estimate of the state at the current time given all previous measurements. The

algorithm is split into two main steps: a propagation step which moves the state

estimate and covariance forward in time and a update step which incorporates new

measurements into the current state estimate. Because few systems of interest a

linear, the extended Kalman filter (EKF) applies the method to nonlinear systems.

In EKF the system is linearized by a first-order Taylor series expansion about the
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nominal or current state estimate. Instead of actually estimating the state itself,

EKF estimates the differential correction to the state which is then added to the

nominal state. As a result of the linearization the extended Kalman filter is no

longer optimal and can diverge for highly nonlinear systems or large errors in the

initial condition. However, the extended Kalman filter has proved sufficiently accurate

for a wide number of applications and continues to be a highly successful recursive

estimation method.

In the context of attitude estimation the preferred attitude representation is the

quaternion for its efficiency in computations and lack of singularities. However, the

quaternion is also subject to a unit norm constraint which makes direct implemen-

tation into a Kalman filter more difficult. As opposed to a traditional Kalman fil-

ter which features an additive update, the Multiplicative Extended Kalman Filter

(MEKF) maintains the unity constraint on the quaternion and makes use of the fact

that an additional rotation is more accurately represented as a multiplication of the

quaternion instead of an addition [22]. Recall that EKF uses differential correction to

the state and in the case of attitude amounts to a small rotation. For the quaternion

this amounts to the multiplication of the initial quaternion by an incremental quater-

nion. Recognizing that the incremental rotation will necessarily by a small angle, the

scalar component of the quaternion will be approximately one and the incremental

rotation may be accurately expressed as the three-dimensional error angles expressed

in the body frame. These error angles may be viewed as the small deviations of the
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Figure 1.1: Spacecraft Attitude Representation

traditional roll, pitch, and yaw angles as shown in Figure 1.1 [23]. In the MEKF this

three-dimensional error vector is used to represent the attitude portion of the state

and error covariance. As a result, the complications that arise from the unit norm

constraint on the quaternion can be avoided. The updated quaternion is obtained by

composing the error angle vector with the associated a priori quaternion.

As the Wahba problem provides a globally optimal nonlinear attitude estimate,

several methods have been developed that seek to mechanize the Wahba problem

into a recursive algorithm for continuous attitude estimation. Shuster proved that

when the scalar weights of the Wahba problem are chosen according to the QUEST

measurement model that the resulting attitude estimate is a maximum likelihood

estimate [8, 9]. Recognizing that the Kalman filter is a sequential mechanization of

maximum likelihood estimation, Shuster extended QUEST into a Kalman filter to

produce Filter QUEST [24]. The attitude profile matrix defined in Eq. (1.4) contains
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all the necessary information to compute the maximum likelihood attitude estimate.

In [9] Shuster also shows that the attitude covariance matrix may also be extracted

from the attitude profile matrix using the relationship

B '
(

1

2
trace

[
P−1

θθ

]
I3×3 −P−1

θθ

)
T̂, (1.5)

where Pθθ is the attitude covariance, T̂ is the estimated attitude matrix, and the

approximation is accurate to the lowest order in the standard deviation of the vector

measurements. As a result, updating the attitude profile matrix provides both the

attitude and the covariance updates. The attitude matrix is propagated forward in

time until the next measurement at which point it is updated following the defini-

tion of the attitude profile matrix by simply adding the new measurements to the

propagated matrix as the ith measurements. The attitude and covariance are not

directly computed during the course of the filter, but can readily be obtained from

the attitude profile matrix at any point using QUEST to determine the attitude and

the equation

P−1
θθ ' trace

[
T̂B
]

I3×3 − T̂B (1.6)

to calculate the corresponding covariance. As opposed to an extended Kalman filter,

Filter QUEST does not require linearization and updates the full attitude in the

form of the attitude profile matrix instead of using differential correction. However,

process noise is not included in Filter QUEST and its effects are approximated by

the addition of a fading memory factor.

An alternative recursive algorithm based off of QUEST and dubbed REQUEST is
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developed by Bar-Itzhack [25]. In REQUEST the entire K matrix of the Davenport

solution to the Wahba problem is recursively updated as opposed to only the attitude

profile matrix in Filter QUEST. Like Filter QUEST, REQUEST accounts for process

noise during state propagation by adding a fading memory factor which is determined

heuristically. Shuster shows that REQUEST is mathematically equivalent to Filter

QUEST [26]. Both of these methods represent sub-optimal attitude estimation filters

which account for process noise using fading memory factors as weights to appropri-

ately scale the states, but do not account for measurement noise. The sub-optimality

is addressed and accounted for to produce an optimal attitude estimation filter in

Optimal-REQUEST [27]. Optimal-REQUEST uses Kalman filtering techniques to

solve for the optimal fading memory factor of REQUEST accounting for both process

and measurement noise. All of these filters only estimate attitude and are incapable

of estimating any additional states.

In order to accommodate the inclusion of non-attitude states into the attitude

estimation filters based on the Wahba problem, additional derivations of the above

filters have been developed. In [28] Markley first demonstrated how to incorporate

other parameters such as sensor biases into an attitude estimation algorithm based on

the Wahba problem. He reformulates the loss function of the Wahba problem given

in Eq. (1.3) to include other parameters. The resulting performance index is given

by

J =
n∑
i=1

ai − tr
[
TB (x)T

]
+

1

2
(x− x0)T W0 (x− x0) , (1.7)
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where the reference and measurement vectors of the attitude profile matrix, B, are

allowed to be functions of non-attitude states, x, and W0 is a weighting matrix

corresponding to the a priori estimates. The attitude is obtained by using the q-

method and the non-attitude states are determined using an iterative procedure.

Extended QUEST expands the QUEST-based filters to include non-attitude states

using square-root information filtering techniques [29]. Where Markley’s algorithm

uses batch iteration to determine the non-attitude states, Extended QUEST more

closely resembles the form of a Kalman filter by using stage-to-stage iterations. In

Extended QUEST the loss function is also modified to include a series of additional

terms that penalize the differences between the attitude, non-attitude states, and

process noise.

Another recursive algorithm, the Sequential Optimal Attitude Recursion (SOAR)

filter is proposed by Christian and Lightsey [3]. In SOAR the Wahba problem is

recast into the framework of maximum likelihood estimation which allows for the

straightforward inclusion of other parameters. It is developed as the information

matrix formulation of the extended Kalman filter. Using Bayesian estimation the

performance index for SOAR is given by

J =
1

2
(x− x̂0)T P−1

0 (x− x̂0) +
1

2

n∑
i=1

ai ‖yi−Tni‖2 , (1.8)

where x̂0 is the initial estimate of the full state with covariance P0. In SOAR the

state vector is partitioned into the same three-dimensional attitude error angle vector,

θ, as MEKF and a non-attitude state vector, β. The optimal attitude is solved using
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the q-method and the optimal update for the non-attitude states is derived. The a

priori attitude is incorporated by calculating an a priori attitude profile matrix from

the quaternion and attitude covariance using the same relationship as identified by

Shuster [9]

B− =

(
1

2
trace

[(
P−θθ

)−1
]

I3×3 −
(
P−θθ

)−1
)

T
(
ˆ̄q−
)
, (1.9)

where the superscript [·]− represents a priori quantities. The measurement attitude

profile matrix is computed according to the q-method with both attitude profile ma-

trices used to form the Davenport matrix K which results in the standard eigenvalue

problem for the optimal attitude. The optimal non-attitude state update arises from

partitioning the state in Eq. (1.8) and minimizing the cost function subject to the

unity constraint on the quaternion according to standard optimal control theory. The

resulting filter avoids the assumptions surrounding the fading memory factor of Filter

QUEST and REQUEST to produce an optimal state update that achieves equiva-

lent performance to MEKF when errors are small and superior performance in the

presence of large errors.

The q-method extended Kalman filter presented in this thesis, like SOAR, incor-

porates the q-method into a Kalman filter in order to perform the optimal attitude

update and the non-attitude states are updated based on the attitude update. The

main difference between SOAR and qEKF is that the former utilizes the information

formulation of the Kalman filter whereas the qEKF is derived using the covariance for-

mulation. This is advantageous when the state vector is large as the required matrix
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inversions in the algorithm will generally be smaller for the covariance formulation.

In the qEKF the method of averaging quaternions [2] is used to incorporate the initial

attitude and covariance whereas SOAR uses the information matrix relationship iden-

tified by Shuster [9] and discussed above. A comparison of the two approaches shows

that the attitude update is equivalent at least to second-order while the non-attitude

state update is identical.

1.3 Thesis Outline

This thesis begins with an introduction to the Wahba problem and a derivation of

the Davenport solution in Chapter 2. Attitude covariance analysis is also performed

based on the Wahba problem and a discussion on the appropriate selection of the

Wahba problem weights is included. Chapter 2 concludes with the inclusion of an

initial attitude estimate into the framework of the Wahba problem with a solution

for the optimal quaternion and associated attitude covariance. Chapter 3 begins

with a brief introduction to the Kalman filter. The appropriate equations for a

partitioned state where the measurements are only a function of part of the state are

derived. The update equations of the q-method extended Kalman filter are derived

performing the attitude update first followed by the non-attitude state update and

shown to be equivalent. The qEKF algorithm is presented and compared to Filter

Quest and SOAR. Several numerical simulations are presented in Chapter 4 along with

a comparison to the SOAR filter using the same simulation. Concluding remarks and
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recommendations for future work close out the thesis in Chapter 5.



Chapter 2

Attitude Estimation

The first task of the algorithm proposed in this thesis is to accurately estimate the

spacecraft attitude. As outlined in the introduction, the Wahba problem provides an

advantageous approach to attitude estimation and is the foundation for this work.

As a result, the Wahba problem and associated Davenport solution are derived, with

a slight modification to the definition of the Davenport matrix, along with the as-

sociated attitude error covariance matrix. A clarification on the selection of scalar

weights proposed by Shuster in [8] is also provided. A significant feature of this

work is the inclusion of an initial attitude estimate into the framework of the Wahba

problem. This thesis integrates the performance index proposed in [2] to include the

initial condition and resulting modifications to the q-method and covariance analysis

are derived.

18
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2.1 Wahba Problem and Davenport Solution

The Wahba problem is a nonlinear, weighted least squares problem composed of the

attitude matrix and vector measurements [7]. Solutions to the Wahba problem seek

an optimal attitude estimate from vector measurements in the sense of minimizing

the least squares residual. Davenport’s solution, the so called q-method, provides

a global solution for the Wahba problem parametrized with the attitude quaternion

without any simplifying assumptions [1]. It is this globally optimal, nonlinear attitude

update which the present work seeks to integrate into a Kalman filter. This approach

differs from the linearization which is required for a traditional extended Kalman

filter algorithm. As it forms the foundation of the proposed filter, a derivation of the

q-method is presented here. The attitude matrix T is obtained from observation unit

vectors y in the spacecraft body frame and corresponding reference unit vectors n

in the inertial frame. Solving the Wahba problem requires the minimization of the

performance index

J =
1

2

n∑
i=1

ai ‖yi−Tni‖2 , (2.1)

where ai are scalar, positive weights associated with each vector pair [7]. The Wahba

problem can be rewritten as

J =
1

2

n∑
i=1

ai [yi−Tni]
T [yi−Tni]

=
1

2

n∑
i=1

ai
(
yT
i yi + nT

i TTTni − 2yT
i Tni

)
=

n∑
i=1

ai
(
1− yT

i Tni
)

(2.2)
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recognizing that the observed and reference vectors have unit length and that the

attitude matrix is orthonormal. The Davenport solution to the Wahba problem

parametrizes the attitude matrix by the quaternion q̄ =

[
qT
v q4

]T

consisting of a

vector component qv and a scalar component q4 [1]. The attitude matrix is deter-

mined from the quaternion by [10]

T(q̄) = I3×3 − 2q4 [qv×] + 2 [qv×]2 , (2.3)

where the skew symmetric cross product matrix is defined as

[qv×] =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (2.4)

From Eq. (2.2) it is clear that minimizing the performance index J is equivalent to

maximizing the auxiliary problem

max
q̄
G =

n∑
i=1

aiy
T
i T(q̄)ni. (2.5)

Introducing

B ≡
n∑
i=1

aiyin
T
i , (2.6)

which is commonly referred to as the attitude profile matrix because it contains all

the necessary information to compute the attitude, and using matrix trace properties,

the auxiliary performance index is rewritten as

G = trace[G] = trace

[
n∑
i=1

aiy
T
i Tni

]
= trace

[
n∑
i=1

aiT
Tyin

T
i

]
= trace

[
TTB

]
= trace

[
BTT(q̄)

]
. (2.7)
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By substituting Eq. (2.3) the auxiliary function can be rewritten as

G = trace
[
BT
]
− 2q4trace

[
BT [qv×]

]
+ 2trace

[
BT [qv×]2

]
. (2.8)

Using matrix trace properties it is possible to rewrite Eq. (2.8) in a more useful

format [8]. The first term can be rewritten as

trace
[
BT
]

= trace [B] ≡ σ. (2.9)

The second term of Eq. (2.8) is rewritten as the following

−2q4trace
[
BT [qv×]

]
= −2q4trace

[
[qv×]T

n∑
i=1

aiyin
T
i

]

= −2q4trace

[
n∑
i=1

aiy
T
i [qv×] ni

]

= 2q4trace

[
n∑
i=1

aiy
T
i [ni×] qv

]

= 2q4trace

[
n∑
i=1

aiq
T
v (yi × ni)

]
= 2q4z

Tqv, (2.10)

where

z ≡
n∑
i=1

ai (yi × ni) . (2.11)
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The third term of Eq. (2.8) is expanded as

2trace
[
BT [qv×]2

]
= 2trace

[
n∑
i=1

aiyin
T
i [qv×] [qv×]

]

= 2trace

[
n∑
i=1

ai [qv×] niy
T
i [qv×]

]

= 2trace

[
n∑
i=1

ai [yi×] qvq
T
v [ni×]

]

= trace

[
n∑
i=1

aiq
T
v [yi×] [ni×] qv

]
+ trace

[
n∑
i=1

aiq
T
v [ni×] [yi×] qv

]

=
n∑
i=n

aiq
T
v ([yi×] [ni×] + [ni×] [yi×]) qv

= qT
v Hqv (2.12)

using matrix trace and cross product properties where the matrix H is defined as

H ≡
n∑
i=1

ai ([yi×] [ni×] + [ni×] [yi×]) . (2.13)

Take note that the matrix is defined in this way such that it is symmetric which will

be important in the upcoming eigenvalue problem. The auxiliary function can now

be written as

G = σ + 2q4z
Tqv + qT

v Hqv, (2.14)

which is maximized with respect to q̄ therefore σ can be ignored. By defining

K ≡

 H z

zT 0

 , (2.15)

the auxiliary problem is equivalent to maximizing[30]

G = q̄TKq̄ (2.16)
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subject to the constraint q̄Tq̄ = 1 from the definition of the quaternion. This maxi-

mization problem can be solved by the method of Lagrange multipliers. That is,

max
q̄
G? = q̄TKq̄− λ

(
q̄Tq̄− 1

)
(2.17a)

∂G?

∂q̄T
= 0 =

(
K + KT

)
q̄− 2λq̄ = Kq̄− λq̄ (2.17b)

Kq̄ = λq̄. (2.17c)

The result of the maximization is the familiar eigenvalue problem where the optimal

quaternion is the eigenvector associated with the largest eigenvalue of the matrix K

[10].

G = q̄TKq̄ = q̄Tλq̄ = q̄Tq̄λ = λ. (2.18)

Clearly the largest eigenvalue maximizes the performance index and therefore pro-

duces the optimal attitude estimate. Note that the K matrix derived in this work

is slightly different from the one proposed by Davenport and commonly referred to

as the Davenport matrix. In [1] Davenport includes σ from Eq. (2.9) in the for-

mulation of the K matrix. In this work the σ is factored out of the matrix. The

resulting solution to the eigenvalue problem is identical using both methods due to

the maximization as σ is independent of the quaternion.

2.2 Wahba Problem Covariance Analysis

The estimated attitude matrix may be decomposed into the true attitude and an

attitude error δq̄ which defined in the body frame rotates from the estimated attitude
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to the true attitude

T
(
ˆ̄q
)

= T (δq̄?) T (q̄) , (2.19)

where the quaternion conjugate is defined by q̄?=

[
−qT

v q4

]T

. With this substitution

the performance index for the Wahba problem Eq. (2.1) becomes

J (δq̄?) =
1

2

n∑
i=1

ai ‖yi −T (δq̄?) (T (q̄) ni)‖2 , (2.20)

the minimization of which produces the attitude error given knowledge of the true

attitude. In the ideal case of perfect measurements defined as yi = Tni, where T

is the true attitude and the vectors are free of error, the minimization of Eq. (2.20)

through the q-method again yields Htrue ztrue

zT
true 0

 δq̄? = λδq̄?, (2.21)

where now

Htrue =
n∑
i=1

ai ([yi×] [Tni×] + [Tni×] [yi×])

=
n∑
i=1

ai
(
yT
i yi − I3×3

)
= 2

n∑
i=1

ai [yi×]2 (2.22)

ztrue =
n∑
i=1

ai (yi ×Tni) = 0. (2.23)

Htrue always has non-positive eigenvalues and the Davenport matrix is now singular.

Therefore, the maximum eigenvalue is zero and the corresponding optimal attitude

is given by the identity quaternion defined as iq̄ =

[
0T 1

]T

. This result is intuitive

as it would be expected that in the absence of errors the attitude error would simply
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be zero (represented by the identity quaternion) and the estimated attitude would be

equivalent to the true attitude.

If errors in the measurements are now reintroduced the measurement model be-

comes

ỹi = Tni + δyi (2.24a)

and ñi = ni + δni. (2.24b)

The performance index is given by

J (δq̄?) =
1

2

n∑
i=1

ai ‖ỹi −T (δq̄?) (T (q̄) ñi)‖2 . (2.25)

The auxiliary performance index becomes

G = δq̄?T

 Hθ −δz

−δzT 0

 δq̄? = δq̄T

 Hθ δz

δzT 0

 δq̄, (2.26)

where the conjugate error quaternion has been replaced with the error quaternion in

the body frame (estimated to true) and

Hθ =
n∑
i=1

ai ([ỹi×] [Tñi×] + [Tñi×] [ỹi×]) (2.27)

δz = −
n∑
i=1

ai (ỹi ×Tñi) . (2.28)

Note the addition of the negative in Eq. (2.28) arises as a result of replacing the

conjugate error quaternion with the error quaternion. Forming the eigenvalue problem

as before results in the equation

Hθδqv + δq4δz = δλδqv (2.29)
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where the optimal eigenvalue δλ is a small quantity recognizing that in the case of

perfect measurements the optimal eigenvalue is zero and the addition of noise results

in a nearly singular Davenport matrix. Noting that the errors are small quantities,

δq4 ≈ 1 and δλδqv ≈ 0, and solving for the estimation error in the form of the vector

component of the error quaternion yields

δqv = −H−1
θ δz. (2.30)

The error angle vector is related to the vector component of the error quaternion by

δθ = 2δqv. Therefore, the attitude error covariance is given by

Pθθ = E
{
δθδθT

}
= 4E

{
δqvδq

T
v

}
= 4H−1

θ E
{
δzδzT

}
H−T

θ . (2.31)

This expression for the attitude error covariance is equivalent to the result obtained

by Shuster [8]. In order to calculate the covariance E
{
δzδzT

}
the measurement model

Eqs. (2.24a) and (2.24b) are substituted for the measurement vectors and a first order

approximation is made

δz = −
n∑
i=1

ai (ỹi ×Tñi) = −
n∑
i=1

ai [(yi + δyi)×T (ni + δni)]

= −
n∑
i=1

ai (yi ×Tni + yi ×Tδni + δyi ×Tni + δyi ×Tδni)

= −
n∑
i=1

ai (yi ×Tδni + δyi ×Tni) . (2.32)

By making the common assumption that each source of error is uncorrelated the
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resulting covariance is given by

E
{
δzδzT

}
=

n∑
i=1

a2
i

{
[yi×] TE

{
δniδn

T
i

}
TT [yi×]T + [Tni×] E

{
δyiδy

T
i

}
[Tni×]T

}
.

(2.33)

In the actual filter the true attitude and measurement vectors are unknown and

must be approximated with the estimated and measured values T̂, ỹi, and ñi. It is

important to note that the minimization of the Wahba problem minimizes the square

of the residual ỹi − T
(
ˆ̄q
)
ñi and not the error quaternion. As a result there is no

guarantee that the error quaternion obtained through this method will be minimal,

however, it is an effective method for providing an optimal attitude estimate.

2.3 Wahba Problem Weights and the QUEST Mea-

surement Model

The scalar weights of the Wahba problem may be arbitrarily selected as any positive

non-zero value. It is therefore desirable to determine an optimal selection for the

scalar weights in some sense. A logical selection would be to choose the weights

ai that minimize the trace of the attitude error covariance matrix. The primary

goal of the algorithm is to accurately determine the attitude and such a choice would

minimize a measure of the total attitude error. However, as noted by Shuster [8], such

a choice would have a rather complex dependence on the observation vectors and in

the case of the proposed q-method extended Kalman filter an analytic solution does
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not appear possible. As a simpler alternative Shuster recommends selecting ai that

minimize the performance index of the original Wahba problem when evaluated at

the true attitude [8]. This procedure may be developed as follows where the measured

or estimated vectors (ỹi, ñi) are composed of the true (yi, ni) and the error vectors

(δyi, δni). The Wahba problem is first expanded and evaluated at the true attitude

T.

J =
1

2

n∑
i=1

ai ‖ỹi −Tñi‖2

=
1

2

n∑
i=1

ai ‖yi + δyi −Tni −Tδni‖2

=
1

2

n∑
i=1

ai ‖δyi −Tδni‖2

=
1

2

n∑
i=1

ai (δyi −Tδni)
T (δyi −Tδni) . (2.34)

Utilizing properties of the trace

J = trace [J ] =
1

2
trace

[
n∑
i=1

ai (δyi −Tδni) (δyi −Tδni)
T

]
, (2.35)

expanding and taking the expectation of both sides (assume errors are uncorrelated)

gives

J = E {J } =
1

2
trace

[
n∑
i=1

ai
(
E
{
δyiδy

T
i

}
+ TE

{
δniδn

T
i

}
TT
)]

(2.36)

The QUEST measurement model [8, 31]defines the measurement error covariances as

Ryy = σ2
yi

(
I3×3 − yiy

T
i

)
(2.37)

and Rnn = σ2
ni

(
I3×3 − nin

T
i

)
, (2.38)
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which arises from the assumption that the error has an axially symmetric distribution

about the vector. Shuster explains that for vector sensors with limited fields of view

such a distribution is typically accurate and even for sensors with large fields of view

the approximation is generally sufficient. Substituting the measurement error the

performance index reduces to

J =
1

2
trace

[
n∑
i=1

ai
(
σ2

yi

(
I3×3 − yiy

T
i

)
+ σ2

ni
T
(
I3×3 − nin

T
i

)
TT
)]

=
1

2
trace

[
n∑
i=1

ai
(
σ2

yi

(
I3×3 − yiy

T
i

)
+ σ2

ni

(
I3×3 −Tnin

T
i TT

))]

=
1

2
trace

[
n∑
i=1

ai
(
σ2

yi

(
I3×3 − yiy

T
i

)
+ σ2

ni

(
I3×3 − yiy

T
i

))]

=
1

2
trace

[
n∑
i=1

ai
(
σ2

yi
+ σ2

ni

) (
I3×3 − yiy

T
i

)]
. (2.39)

By defining the complete measurement error variance as σ2
i = σ2

yi
+σ2

ni
and recognizing

that for unit vector measurements trace
[
I3×3 − yiy

T
i

]
= 3− 1 = 2, the performance

index may be reduced to a simple function of the scalar weights and the measurement

error variance. That is,

J =
n∑
i=1

aiσ
2
i . (2.40)

The performance index of the Wahba problem can be arbitrarily scaled without

impacting the attitude estimation. As a result, Shuster employs a common additional

constraint by normalizing the scalar weights such that
∑n

i=1 ai = 1 [8]. Together with

the constraint that the weights must be positive, Shuster identifies the selection of ai
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that minimizes the performance index as

ai =
σ2
tot

σ2
i

,
1

σ2
tot

=
n∑
i=1

1

σ2
i

, (2.41)

where σ2
tot is simply a scaling parameter determined by the relationship above in order

to meet the constraint. However, the minimization of J with respect to ai is ill-posed

and the selection posed by Shuster does not actually minimize the performance index.

This may be readily shown with a simple example of two measurements. In this case

the performance index is given by

J = a1σ
2
1 + a2σ

2
2, (2.42)

subject to the constraints

a1 + a2 = 1 (2.43a)

and a1, a2 > 0. (2.43b)

The constraints, may be recast as

a2 = 1− a1 (2.44a)

and 0 < a1 < 1. (2.44b)

Thus, substituting into the performance index

J = a1σ
2
1 + (1− a1)σ2

2 (2.45)

it becomes clear that as a1 approaches zero, J approaches σ2
2 and as a1 approaches

one, J approaches σ2
1 with a linear dependence on a1. Therefore, assuming σ2

1 < σ2
2



31

the performance index is minimized as a1 approaches one and not with Shuster’s

selection where a1 = (σ2
1+σ2

2)/σ2
1. While Shuster’s selection for the scalar weights

does not minimize the performance index of the Wahba problem when evaluated at

the true attitude, the selection does intuitively make sense and is not without reason.

Shuster also proves that this selection of the scalar weights corresponds to a maximum

likelihood estimate of the spacecraft attitude under certain assumptions [9].

This selection is also intuitively pleasing when viewed from the perspective of the

general weighted least squares cost function given by

J = (y −Hx)T W (y −Hx) , (2.46)

with measurements y, states x, measurement sensitivity matrix H, and weighting

matrix W. It is known that the optimal selection for the weighting matrix is the

inverse of the covariance. Recalling the covariance for the QUEST measurement

model, it is clear that the selection ai = 1/σ2
i is reminiscent of the inverse of the

covariance.

2.4 Incorporation of Initial Attitude Estimate

Often an initial estimate of the attitude is available and is desirable to incorporate

it into the attitude determination method. Markley et al. [2] developed a method

for averaging quaternions that is equivalent in form to the Davenport solution of the
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Wahba problem [1]. The average of n quaternions q̄i is given by

q̄avg = min
q̄

n∑
i=1

q̄TΞ(q̄i)AiΞ
T(q̄i)q̄, (2.47)

where

Ξ(q̄) =

 q4I3×3 + [qv×]

−qT
v

 , (2.48)

and A is a weighting matrix. For the case with a single a priori quaternion q̄◦ the

minimization of Eq. (2.47) is completed as

J = q̄TΞ(q̄◦)A◦Ξ
T(q̄◦)q̄ (2.49a)

and
dJ
dq̄T

= 0 = Ξ(q̄◦)A◦Ξ
T(q̄◦)q̄. (2.49b)

Noting the property ΞT(q̄◦)q̄◦ = 0 the minimization criterion is met when q̄ = q̄◦

and simply returns the a priori quaternion.

The original Wahba problem Eq. (2.1) can be augmented with the a priori quater-

nion in order to incorporate the initial attitude information. The resulting augmented

performance index to be minimized is given by

J ′ = q̄TΞ(q̄◦)A◦Ξ
T(q̄◦)q̄ +

1

2

n∑
i=1

ai ‖ỹi −T(q̄)ñi‖2 . (2.50)

The term from the Wahba problem can be rewritten as in Eq. (2.14) and the term

σ can be ignored in the minimization as it is not a function of the quaternion. The

resulting performance index poses an equivalent maximization problem

G ′ = −q̄TΞ(q̄◦)A◦Ξ
T(q̄◦)q̄ + q̄TKq̄, (2.51)
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where K is defined by Eq. (2.15). The optimal attitude incorporating an a priori

attitude estimate is determined in the same manner as the q-method by now solving

for the corresponding unit eigenvector of the maximum eigenvalue of the augmented

Davenport matrix defined as

Kaug = −Ξ(q̄◦)A◦Ξ
T(q̄◦) + K (2.52)

instead of the matrix in Eq. (2.15).

Covariance analysis is applied to the augmented problem in the same manner as

for the Wahba problem discussed previously. In the covariance analysis of the Wahba

problem the reference vector is replaced with Ttrueni (where the true quaternion is

approximated by the estimated quaternion) so that the minimization produces the

error quaternion. In a similar manner the initial quaternion estimate of the first term

of Eq. (2.51) is composed with the true quaternion to produce the error quaternion

upon minimization

δq̄◦ = q̄true ⊗ q̄?◦, (2.53)

where the quaternion product is defined as

q̄⊗ p̄ =

q4pv + p4qv − qv × pv

q4p4 − qv · pv

 . (2.54)

Note that in this manner the quaternion product is defined in the same order as

multiplying attitude matrices. In the actual calculation of δq̄◦ the true quaternion is

approximated to first order by the estimated quaternion. Using this substitution the
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initial error quaternion is the identity quaternion

δq̄◦ = q̄◦ ⊗ q̄?◦ = īq =

[
0 0 0 1

]T

. (2.55)

Recalling the definition in Eq. (2.48), the first term of Eq. (2.51) can be rewritten as

−δq̄T

δq4◦I3×3 + [δqv◦×]

−δqT
v◦

A◦

[
δq4◦I3×3 − [δqv◦×] −δqv◦

]
δq̄

= −δq̄T

M1 M2

M3 M4

 δq̄, (2.56a)

where M1 = δq2
4◦A◦ + δq4◦ [δqv◦×] A◦ − δq4◦A◦ [δqv◦×] (2.56b)

− [δqv◦×] A◦ [δqv◦×] , (2.56c)

M2 = −δq4◦A◦δqv◦ − [δqv◦×] A◦δqv◦, (2.56d)

M3 = MT
2 = −δq4◦δq

T
v◦A◦ + δqT

v◦A◦ [δqv◦×] , (2.56e)

and M4 = δqT
v◦A◦δqv◦. (2.56f)

Again applying a first order approximation δq̄◦ =

[
δqT

v◦ 1

]T

and higher order terms

may be neglected. Eq. (2.51) can now be expressed as

g′(δq̄) = δq̄T

−A◦ + A◦ [δqv◦×]− [δqv◦×] A◦ + Hθ A◦δqv◦ + δz

δqT
v◦A◦ + δzT 0

 δq̄. (2.57)

Eq. (2.57) is maximized subject to the constraint δq̄Tδq̄ = 1 to produce the familiar

eigenvalue problem−A◦ + A◦ [δqv◦×]− [δqv◦×] A◦ + Hθ A◦δqv◦ + δz

δqT
v◦A◦ + δzT 0


δqv

1

 = δλ

δqv
1

 . (2.58)
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and again recognizing that to first order δλδqv ≈ 0, the vector component of the error

quaternion is given by

δqv = (−A◦ + A◦ [δqv◦×]− [δqv◦×] A◦ + Hθ)−1 (δz−A◦δqv◦) (2.59)

which is approximated to first order by

δqv ≈ (−A◦ + Hθ)−1 (δz−A◦δqv◦) . (2.60)

Assuming that the errors δqv◦ and δz are uncorrelated and defining

Kθ = (−A◦ + Hθ)−1 (2.61)

the attitude error covariance matrix of the attitude angles expressed in the body

frame is obtained in the same manner as Eq. (2.31).

Pθθ = KθA◦Pθθ◦A
T
◦K

T
θ + KθRKT

θ (2.62)

where

R = 4E
{
δzδzT

}
. (2.63)

Using the following rearrangement

(−A◦ + Hθ)−1 (−A◦) = (−A◦ + Hθ)−1 (−A◦ + Hθ −Hθ)

= I3×3 − (−A◦ + Hθ)−1 Hθ

= I−KθHθ (2.64)

Eq. (2.60) is equivalently expressed as

δqv = (I−KθHθ) δqv◦ + Kθδz (2.65)
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The resulting error covariance matrix is given by

Pθθ = (I−KθHθ)Pθθ◦ (I−KθHθ)T + KθRKT
θ (2.66)

which is in the same form as the Joseph formula for the covariance update, which is

used for Kalman filters [32].

Up to this point no choices have been made as to the appropriate selection of

the weighting matrix A0. The goal is to select a weighting matrix so that the initial

condition in Eq. (2.50) is added to the Wahba problem term in an equivalent manner.

Begin with the measurement model including noise

ỹi = Tni + δyi (2.67a)

ñi = ni + δni (2.67b)

and substitute into the Wahba problem term. For simplicity assume that there is no

error in the reference measurements (δni = 0)

1

2

n∑
i=1

ai ‖ỹi −Tñi‖2 =
1

2

n∑
i=1

ai ‖yi + δyi −Tni‖2

=
1

2

n∑
i=1

ai ‖δyi‖2

=
1

2

n∑
i=1

δyT
i aiI3×3δyi (2.68)

Recall that the scalar weights are selected such that aiI3×3 is the inverse of the

measurement covariance P−1
yy . Therefore, recognizing that ΞT(q̄◦)q̄ = δqv◦ Eq. (2.50)
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may now be expressed as

J ′ = δqT
v◦A◦δqv◦ +

1

2

n∑
i=1

δyT
i P−1

yyδyi

=
1

4
δθTA0δθ +

1

2

n∑
i=1

δyT
i P−1

yyδyi (2.69)

Selecting the weighting matrix as

A0 = 2P−1
θθ0

(2.70)

results in an appropriately scaled method of incorporating the initial condition to the

Wahba problem.



Chapter 3

The q-Method Extended Kalman

Filter

The Kalman filter is the primary tool for recursive estimation and serves as the

framework for the proposed algorithm of this thesis. For background, a basic review

of the linear Kalman filter update equations is derived. Recall that the q-method

extended Kalman filter seeks to update the attitude using the q-method as derived in

the previous chapter and then update the non-attitude states using standard Kalman

filter techniques. The linear optimal state and covariance update are first derived

for a partitioned state where the measurements are linear and only a function of

one partition of the state. This linear optimal case is then compared to a Kalman

filter where the attitude update is used as the new measurement and is subject to

correlated measurement and process noise. The q-method Kalman filter non-attitude

38
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state and covariance updates are the extension of the linear optimal case. The qEKF

algorithm is then compared to the SOAR filter [3] and shown to be equivalent in the

attitude update to second-order and identical in the non-attitude state update.

3.1 Kalman Filter Review

The Kalman filter is the workhorse of on-board estimation and provides the foun-

dation for this thesis. A review of the basic formulation is beneficial in illustrating

the feasibility of the q-Method Extended Kalman Filter as it relates to traditional

filtering techniques. It is sufficient to begin with linear measurements y given by

y = Hx + η, (3.1)

with state vector x, measurement sensitivity or observation partials matrix H which

maps the states to the measurements, and zero-mean white noise η with a corre-

sponding covariance R. In the case of nonlinear measurements where

y = h (x) + η (3.2)

the measurements are linearized about a nominal state using a first order Taylor

series expansion in what is known as the extended Kalman filter which is explained

in greater detail in [19, 20, 21]. All Kalman filters are built on a linear assumption so

the linear case is sufficient to illustrate the necessary formulation. Define x̂− as the

unbiased a priori estimate of the state with estimation error covariance P− and x̂+
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represent the a posteriori state estimate with resulting estimation error covariance

P+. The a priori and a posteriori estimation errors are given by

e− = x− x̂− (3.3a)

and e+ = x− x̂+ (3.3b)

respectively. The objective of the Kalman filter is to combine an a priori estimate

of the state and new measurements in some optimal manner in order to produce the

best estimate of the state at the current time. For illustrative purposes assume that

the a priori estimate and the measurement are combined in a linear weighted average

to produce the a posteriori estimate

x̂+ = K1x̂
− + Ky (3.4)

where K1 and K are constant matrices to be determined. In the case of a perfect

(true) a priori state and measurement, such that x̂− = x and y = Hx, the update

should also produce the true state. Making the appropriate substitutions and solving

for K1

x = K1x + KHx (3.5a)

and K1 = I−KH (3.5b)

where I is the identity matrix. The state update equation may now be rewritten

x̂+ = (I−KH) x̂− + Ky

= x̂− + K
(
y −Hx̂−

)
. (3.6)
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The a posteriori estimation error may now be expressed in terms of the a priori

values.

e+ = x− x̂+ = x− x̂− −K
(
Hx + η −Hx̂−

)
= e− −K

(
He− + η

)
= (I−KH) e− −Kη (3.7)

Recall that the estimation errors are zero mean and the a priori estimation error

covariance is defined as

P− = E
{

e−
(
e−
)T
}

(3.8)

It is typically assumed that the estimation errors and measurement noise are uncorre-

lated therefore E
{
e−ηT

}
= 0, as well as for the transpose. Therefore the a posteriori

estimation error covariance is determined by

P+ = E
{

e+
(
e+
)T
}

= (I−KH) P− (I−KH)T + KRKT, (3.9)

which is known as the Joseph formula for the covariance update [32]. At the expense

of extra operations the Joseph formula guarantees a symmetric positive semi-definite

covariance as opposed to alternative derivations of the covariance update. It is im-

portant to note that the Kalman gain, K, has not yet be defined and the Joseph

covariance update is valid for any choice of K. This fact is key to the development

of the qEKF. In a traditional Kalman filter the optimal gain K is selected so as to

minimize the estimation error. This is accomplished by minimizing the trace of the
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estimation error covariance update with respect to the gain K.

min
K

trace
[
P+
]

= trace
[
(I−KH) P− (I−KH)T + KRKT

]
(3.10)

∂trace [P+]

∂K
= 0 =

∂

∂K
trace

[
(I−KH) P− (I−KH)T + KRKT

]
0 =

∂

∂K
trace

[
P−
]

+ trace
[
−KHP−

]
+ trace

[
−P−HTKT

]
+trace

[
KHP−HTKT

]
+ trace

[
KRKT

]
0 = −2P−HT + 2KHP−HT + 2KR (3.11)

K
(
HP−HT + R

)
= P−HT

Kopt = P−HT
(
HP−HT + R

)−1
. (3.12)

Note that P− and R are both covariance matrices and therefore symmetric. The

expression in Eq. (3.12) is given as the optimal Kalman gain in references of Kalman

filtering as it results in the optimal updated state by minimizing the a posteriori

estimation error.

3.2 q-Method EKF

3.2.1 Partitioned State Update Equations

In the development of the qEKF it is necessary to separate the attitude from the

non-attitude states in the Kalman filter. For reference, the linear optimal update
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equations for a standard Kalman filter are derived for a partitioned state

x =

θ
s

 , (3.13)

where θ corresponds to the three component attitude state and s are the remaining

non-attitude states. Again assuming linear measurements y = Hx + η, the observa-

tion partials, gain, and covariance matrices are similarly partitioned

H =

[
Hθ Hs

]
, (3.14)

K =

Kθ

Ks

 , (3.15)

and P =

Pθθ Pθs

Psθ Pss

 . (3.16)

For this work, it is assumed that the measurements are only a function of the atti-

tude, θ, and independent of all non-attitude states, s. Recalling that the observation

partials relates the measurements to the states by H = ∂y/∂x, Hs = 0 by definition.

The optimal Kalman gain of Eq. (3.12) is partitioned as

Kopt =

Kθ,opt

Ks,opt

 =

P−θθH
T
θ

P−sθH
T
θ

W−1, (3.17)

where

W = HθP
−
θθHθ

T + R. (3.18)

Following Eq. (3.6) the attitude partition of the update is given by

θ̂
+

= θ̂
−

+ Kθ

(
y −Hθθ̂

−)
(3.19)
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and define the residual as

ε = y −Hθθ̂
−
. (3.20)

The residual may be determined as a function of the attitude update and the Kalman

gain (for this work the optimal gain of Eq. (3.17) is used)

ε = K−1
θ,opt∆θ (3.21)

where ∆θ = θ̂
+
− θ̂

−
is the optimal attitude update. Switching now to the non-

attitude states partition, the state update is

ŝ+ = ŝ− + Ks

(
y −Hθθ̂

−)
. (3.22)

Substitute the optimal gain from Eq. (3.17) and the alternative expression of the

residual from Eq. (3.21) to produce an alternative equation for the optimal non-

attitude state update in the form

ŝ+ = ŝ− + Ks,optK
−1
θ,opt∆θ (3.23a)

= ŝ− + P−sθ
(
P−θθ

)−1
∆θ. (3.23b)

For the covariance analysis the same method as given in section (3.1) may be used.

The attitude and non-attitude state estimation errors are given by

e+
θ = (I−KθHθ) e−θ −Kθη (3.24a)

and e+
s = (I−KsHs) e−s −Ksη. (3.24b)

The error covariance update for the full state is given by the Joseph formula given in
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Eq. (3.9) and repeated

P+ = E
{

e+
(
e+
)T
}

= (I−KH) P− (I−KH)T + KRKT

Partitioning the full state covariance update using Eqs. (3.14), (3.15), and (3.16)

results in

P+
θθ = P−θθ −KθHθP

−
θθ −P−θθH

T
θKT

θ + KθWKT
θ , (3.25a)

P+
θs = P−θs −KθHθP

−
θs −P−θθH

T
θKT

s + KθWKT
s , (3.25b)

P+
sθ = P−sθ −KsHθP

−
θθ −P−sθH

T
θKT

θ + KsWKT
θ , (3.25c)

and P+
ss = P−ss −KsHθP

−
θs −P−sθH

T
θKT

s + KsWKT
s . (3.25d)

Substituting the optimal gains from Eq. (3.17) further simplifies the partitioned

covariance updates to

P+
θθ = P−θθ −Kθ,optWKT

θ,opt

= P−θθ (I−Kθ,optHθ)T , (3.26a)

P+
θs = P−θs −P−θθH

T
θKT

s,opt, (3.26b)

P+
sθ = P−sθ −Ks,optHθP

−
θθ, (3.26c)

and P+
ss = P−ss −Ks,optWKT

s,opt. (3.26d)

3.2.2 Attitude Measurement Update Equations

Returning to the main objective of this thesis, the qEKF seeks to integrate the Wahba

problem into the framework of a Kalman filter capable of estimating the attitude and
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other states. In Section 2.4 an optimal update for the attitude and associated covari-

ance in the presence of new measurements was derived as the nonlinear solution to the

Wahba problem incorporating the a priori attitude information. After updating the

attitude, the remaining task for the Kalman filter under development is to determine

the appropriate update for the non-attitude states. This is accomplished by updating

the non-attitude states from the corresponding attitude update which appropriately

incorporates the new information gained from the new measurements. As a result,

consider the case of partitioned update equations above except now using the updated

attitude, θ̂
+

, as the measurement. With this new pseudo-measurement (pseudo so as

not to be confused with processing the updated attitude as an entirely new measure-

ment), the attitude observation partial is identity H?
θ = I3×3 and the non-attitude

state observation partial is zero, H?
s = 0. Therefore, the pseudo-measurement is given

by

y? = θ̂
+

= θ + η? (3.27)

and η? = −e+
θ . (3.28)

Note that for the remainder of this section quantities with the superscript (·)? corre-

spond to the pseudo-measurement.

In the standard Kalman filter it is assumed that the process noise and the mea-

surement noise are uncorrelated. However, in the case of this pseudo-measurement

the measurement noise is the a posteriori attitude estimation error, −e+
θ , which is

certainly correlated with the a priori estimation errors, e−θ and e−s . This additional
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correlation must be properly accounted for in the derivation of the update equations

and for the partitioned state the correlation covariance matrix is defined as

C? =

C?
θ

C?
s

 =

E
{

e−θ (η?)T
}

E
{

e−s (η?)T
}
 . (3.29)

Substitute for e+
θ from Eq. (3.24a) for η?

C?
θ = −E

{
e−θ
(
e+
θ

)T
}

= −E
{

e−θ
(
e−θ
)T
}

(I−KθHθ)T

= −P−θθ (I−KθHθ)T (3.30a)

and

C?
s = −E

{
e−s
(
e+
θ

)T
}

= −E
{

e−s
(
e−θ
)T
}

(I−KθHθ)T

= −P−sθ (I−KθHθ)T , (3.30b)

where the process noise and the measurement noise, η not to be confused with η?,

remain uncorrelated. Recalling the optimal attitude covariance update from Eq.

(3.26a)

(I−Kθ,optHθ)T =
(
P−θθ

)−1
P+

θθ, (3.31)

with the assumption of an optimal attitude gain, Kθ,opt, the correlation covariance

matrices are simplified to

C?
θ = −P+

θθ (3.32a)

and C?
s = −P−sθ

(
P−θθ

)−1
P+

θθ. (3.32b)
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Taking into account this additional correlation, the same procedure as in Section 3.1

can be used to derive the covariance update equation as well as the optimal gain

which minimizes the trace of the updated covariance. A detailed derivation of these

equations is presented in [20]. The resulting optimal gain is given by

K? =
(
P−H?T + C?

) (
H?P−H?T + R? + H?C? + C?TH?T

)−1
. (3.33)

For the partitioned case with H? selected as previously determined according to the

pseudo-measurement model

H? =

[
H?

θ H?
s

]
=

[
I 0

]
(3.34)

and the pseudo-measurement noise

R? = E
{
η? (η?)T

}
= P+

θθ. (3.35)

The partitioned optimal gains are given by

K? =

K?
θ

K?
s

 , (3.36a)

where K?
θ =

(
P−θθ + C?

θ

) (
P−θθ + P+

θθ + C?
θ + C?T

θ

)−1
(3.36b)

and K?
s =

(
P−sθ + C?

s

) (
P−θθ + P+

θθ + C?
θ + C?T

θ

)−1
. (3.36c)

By substituting for C?
θ from Eq. (3.32a), K?

θ is reduced to

K?
θ =

(
P−θθ −P+

θθ

) (
P−θθ + P+

θθ −P+
θθ −P+

θθ

)−1

= I. (3.37)
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This result is intuitively pleasing as the attitude has already been updated through the

q-method. The use of θ̂
+

as a pseudo-measurement provides no additional information

pertaining to the attitude and should result in no additional update from the Kalman

filter. The resulting attitude state update from the Kalman filter is given by

θ̂
?

= θ̂
−

+ K?
θ

(
y? − θ̂

−)
= θ̂

−
+ K?

θ

(
θ̂

+
− θ̂

−)
= θ̂

+
. (3.38)

The optimal K?
s is reduced in an identical manner by substituting the appropriate

values for C?
θ, C?

s, and P+
θθ from Eqs. (3.32a), (3.32b), and (3.26a).

K?
s =

(
P−θθ −P−sθ

(
P−θθ

)−1
P+

θθ

) (
P−θθ + P+

θθ −P+
θθ −P+

θθ

)−1

= P−sθ

[
I− (I−Kθ,optHθ)T

] [
P−θθ

(
I− (I−Kθ,optHθ)T

)]−1

= P−sθH
T
θKT

θ,opt

(
P−θθH

T
θKT

θ,opt

)−1

= P−sθ
(
P−θθ

)−1
. (3.39)

The non-attitude state update is given by

ŝ? = ŝ− + K?
s

(
y? − θ̂

−)
= ŝ− + K?

s

(
θ̂

+
− θ̂

−)
= ŝ− + P−sθ

(
P−θθ

)−1
∆θ. (3.40)

Assuming that the residual for this case is the optimal attitude update, the non-

attitude state update for the pseudo-measurement is identical to the linear optimal
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state update given in Eq. (3.23b). In summary, the pseudo-measurement state update

Eqs. (3.38) and (3.40) are equivalent to the linear optimal update Eqs. (3.19) and

(3.22) when the gains are chosen as

K?
θ = I (3.41a)

and K?
s = Ks,optK

−1
θ,opt. (3.41b)

The estimation error is calculated in like manner as before, this time beginning

with the full state

e? = (I−K?H?) e− −K?η? (3.42)

where

e =

eθ

es

 . (3.43)

The partitioned equations are

e?θ = (I−K?
θ) e−θ + K?

θe
+
θ (3.44a)

and e?s = e−s −K?
se
−
θ + K?

se
+
θ . (3.44b)

Note that the measurement noise for this case is −e+
θ and unlike the previous exam-

ples, this measurement noise is clearly correlated with the process noise
(
e−θ and e−s

)
.

As a result, the covariance update calculated in the manner of the Joseph formula,

E
{

e? (e?)T
}

, yields

P? = (I−K?H?) P− (I−K?H?)T + K?R?K?T

− (I−K?H?) C?K?T −K?C?T (I−K?H?)T (3.45)
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where C?, H?, R?, and K? are defined by Eqs. (3.29), (3.34), (3.35), and (3.36a).

Recall that this definition of the covariance update is independent of the choice of

the Kalman gain K? and a detailed derivation of the update equations for a Kalman

filter with correlated noise is given in [20].

Using Eqs. (3.29), (3.34), (3.35), and (3.36a) the full state covariance update is

partitioned just as with the linear optimal case. The resulting attitude covariance

update is

P?
θθ = P−θθ −K?

θP
−
θθ −P−θθK

?T
θ + K?

θP
−
θθK

?T
θ + K?

θP
+
θθK

?T
θ

−C?
θK

?T
θ + K?

θC
?
θK

?T
θ −K?

θC
?T
θ + K?

θC
?T
θ K?T

θ (3.46)

and substituting for C?
θ and K?

θ from Eqs. (3.32a) and (3.41a) respectively reduces

the attitude error covariance to

P?
θθ = P+

θθ. (3.47)

This result indicates the attitude covariance update for the pseudo-measurement is

equivalent to the linear optimal case of Eq. (3.25a) and is intuitively pleasing. Just as

for the attitude state update where no additional attitude update is desired from the

Kalman filter using the pseudo-measurement, no additional update to the attitude

covariance is expected or desired.

The non-attitude state covariance update partition is given by

P?
ss = P−ss −K?

sP
−
θs −P−sθK

?T
s + K?

sP
−
θθK

?T
s + K?

sP
+
θθK

?T
s

−C?
sK

?T
s + K?

sC
?
θK

?T
s −K?

sC
?T
s + K?

sC
?T
θ K?T

s (3.48)
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and substituting for C?
θ, C?

s, and K?
s from Eqs. (3.32a), (3.32b), and (3.41b) respec-

tively reduces to

P?
ss = P−ss −P−sθ

(
P−θθ

)−1
P−θs + P−sθ

(
P−θθ

)−1
P+

θθ

(
P−θθ

)−1
P−θs. (3.49)

Now substitute for the optimal attitude update, P+
θθ, using Eq. (3.26a) and recall

the definitions of the optimal gains Kθ,opt and Ks from Eq. (3.17) to produce

P?
ss = P−ss −P−sθH

T
θW−1HθP

−
θs

= P−ss −Ks,optWKT
s,opt (3.50)

which is identical to the non-attitude state covariance update Eq. (3.26d) from the

general partitioned case.

Finally, the cross-covariance partition of the covariance update is

P?
θs = P−θs −K?

θP
−
θs −P−θθK

?T
s + K?

θP
−
θθK

?T
s + K?

θP
+
θθK

?T
s

−C?
θK

?T
s + K?

θC
?
θK

?T
s −K?

θC
?T
s + K?

θC
?T
θ K?T

s (3.51)

and again substituting for P+
θθ, C?

θ, C?
s, K?

θ, and K?
s from Eqs. (3.26a), (3.32a),

(3.32b), (3.41a), and (3.41b) respectively reduces to

P?
θs = P+

θθ

(
P−θθ

)−1
P−θs

= (I−Kθ,optHθ) P−θs

= P−θs −P−θθH
T
θW−1HθP

−
θs

= P−θs −P−θθH
T
θKs,opt. (3.52)
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This result is likewise identical to the general partitioned case given in Eq. (3.26b).

The same procedure can by applied to P?
sθ, but it is more straightforward to note

that it is by definition the transpose of P?
θs. Therefore, the corresponding covariance

update is also identical to the general partitioned case.

Section 3.2.1 outlines the optimal update for the case of linear measurements

where the measurements are only a function of part of the state. Recall that it is

optimal in the sense of minimizing the trace of the error covariance matrix which

can alternatively be derived as the minimum mean square error (MMSE) best es-

timate. This section demonstrates that it is equivalent to first update the attitude

and subsequently use this updated portion of the state as a pseudo-measurement in

order to update the remainder of the state. While presented in the context of space-

craft attitude, this method is valid for any linear measurement model where the state

is correspondingly partitioned. It is also important to note that while the Joseph

form of the covariance update equations are valid for any choice of the gains, in the

derivation of K? as selected as in Eq. (3.41a) and Eq. (3.41b), the assumption of

linear optimal Kalman gains was made from Eq. (3.17). As a result, the covariance

update equations from the pseudo-measurement case of this section may be equiva-

lently expressed as the optimal covariance update equations given by Eqs. (3.26a),

(3.26b), (3.26c), and (3.26d). Alternatively, with this selection of the gains, the cor-

relation covariance terms of Eq. (3.45) are zero and the covariance update due to the
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pseudo-measurement may be obtained directly from the standard Joseph formula.

P+ = (I−K?H?) P− (I−K?H?)T + K?R?K?T (3.53)

Here the methodology is expanded to the attitude estimation case where the mea-

surements are solely a function of the attitude and the q-method is used to update

the attitude partition of the state as derived in section 2.4. Recall that for this case

the measurements are related to the attitude as described in the Wahba problem in

Eq. (2.1) which is nonlinear. Consequently, the non-attitude state update derived in

this equation is no longer guaranteed to be optimal in the MMSE sense (in fact it

will almost certainly not be optimal). However, the q-method is an optimal nonlinear

solution to the nonlinear Wahba problem and the resulting non-attitude state update

will be near-optimal. This consequence is consistent with the well established and

ubiquitous extended Kalman filter. While the Kalman filter is only optimal for linear

measurements, most real-world applications are nonlinear. The extended Kalman

filter linearizes the measurements by a Taylor series expansion about a nominal state

thereby sacrificing the optimality of the Kalman filter for application to real-world

systems. In like manner, the qEKF sacrifices optimality in the non-attitude state up-

date for a nonlinear update to the attitude. Whether the choice of the qEKF or other

methods are better suited to a particular application is a trade to be accomplished

by the designer depending on the dynamics and priorities of the application.

In summary the qEKF filter has a propagation phase exactly the same as in the

MEKF and an update phase as follows
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1. Calculate the Davenport matrix K from Eq. (2.15) associated with all attitude

vector measurements

2. Calculate A0 = 2
(
P−θθ
)−1

3. Calculate the updated attitude quaternion as the unit eigenvector associated

with the maximum eigenvalue of

Kaug = −Ξ
(
ˆ̄q−
)

A0Ξ
(
ˆ̄q−
)T

+ K

4. Calculate the updated attitude covariance partition P+
θθ of the full covariance

P from Eqs. (2.27), (2.33), (2.61), (2.63), and (2.66)

5. Update the non-attitude states using

ŝ+ = ŝ− + P−sθ
(
P−θθ

)−1
∆θ (3.54a)

∆θ = 2Ξ
(
ˆ̄q−
)T ˆ̄q+ (3.54b)

6. Calculate the total covariance update using Eq. (3.45), (3.36a), (3.34), and

(3.35)

3.3 Comparison with Filter QUEST

Recall that Filter QUEST [24] is a recursive implementation of the QUEST algorithm

[8] into a Kalman filter where QUEST is simply a numerical solution of the q-method.

It is among the first methods which seek to implement the q-method in a recursive
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algorithm. Filter QUEST relies on the fundamental property that the attitude profile

matrix Eq. (1.4), contains all the information necessary to compute the attitude and

attitude covariance. In Filter QUEST only the attitude profile matrix is propagated

and updated by adding new measurements as they become available. The attitude or

the covariance is not available at each time step, but may be obtained by forming the

Davenport matrix from the attitude profile matrix and solving the eigenvalue problem

using the desired method such as QUEST. Like Filter QUEST, qEKF also solves for

the attitude estimate without making any linearization assumptions. QUEST or any

other numerical method may also be used to solve the eigenvalue problem in the

qEKF. However, Filter QUEST is only capable of processing vector measurements

and does not include a priori attitude estimates other than what is available from

previous measurements. Furthermore, Filter QUEST does not incorporate process

noise which is accounted for by using a fading memory factor. The computation of

the optimal fading memory factor is difficult. Finally, Filter Quest is only capable

of estimating the attitude and no other states. The proposed qEKF resolves all of

these shortcomings by incorporating an initial attitude estimate using the method

of averaging quaternions [2], allowing for the inclusion of process noise just as in

an extended Kalman filter, and expanding the capability to estimating non-attitude

states. Both methods rely on the q-method to obtain a nonlinear estimate of the

attitude, but the q-method extended Kalman filter presents an algorithm capable of

meeting a much expanded range of attitude estimation requirements in a single filter.
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3.4 Comparison With The SOAR Filter

The proposed qEKF filter is most similar to the SOAR filter developed by Christian

and Lightsey [3]. The SOAR filter also integrates the q-method to update the attitude

into the framework of the Kalman filter and is capable of estimating other states.

The initial condition is incorporated into SOAR in a different manner than qEKF

and SOAR is derived from the information matrix formulation of the Kalman filter

whereas qEKF is derived from the covariance formulation. Otherwise, the next section

demonstrates that the qEKF and SOAR filters are equivalent to second-order in the

attitude update and identical in the non-attitude update.

3.4.1 Equivalence of the Attitude Update

In the SOAR filter, the a priori attitude is incorporated into the Davenport matrix

by the creation and addition of an a priori Davenport matrix, K−. Recall that this

is the method proposed by Shuster [9]. The a priori attitude profile matrix is given

by

B− =

(
1

2
trace

[(
P−θθ

)−1
]

I3×3 −
(
P−θθ

)−1
)

T
(
ˆ̄q−
)

(3.55)

from which the a priori Davenport matrix is calculated resulting in the following

term from the objective function

− trace
[
T
(
B−
)T
]

= −ˆ̄qTK− ˆ̄q. (3.56)
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In [3] it is also shown that after a second-order expansion of the matrix exponential

of [δθ×] about the a priori attitude, this objective function may be rewritten as

− ˆ̄qTK− ˆ̄q = −
(
ˆ̄q−
)T

K− ˆ̄q− +
1

2
δθTFθθδθ. (3.57)

In the computation of the optimal attitude, the first differential is taken with respect

to the a posteriori attitude. As a result the first term is a constant and may be

ignored and the a priori attitude is incorporated into the SOAR filter by 1/2δθTFθθδθ

to second-order.

Recall from the a priori attitude term given in the objective function for the

qEKF from Eq. (2.50)

Ξ
(
ˆ̄q−
)T ˆ̄q = δqv = sin

(
δθ

2

)
. (3.58)

Taking the Taylor Series expansion of sin (δθ/2) and approximating to second-order

δqv = sin

(
δθ

2

)
=
δθ

2
− 1

3

(
δθ

2

)3

+
1

5

(
δθ

2

)5

. . . ≈ δθ

2
. (3.59)

Therefore, the first term in Eq. (2.50) may be rewritten as,

ˆ̄qTΞ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

4
δθTA0δθ. (3.60)

Noting from before that A0 was chosen as A0 = 2
(
P−θθ

)−1 ≈ 2Fθθ, this directly

yields

ˆ̄qTΞ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

2
δθTFθθδθ. (3.61)

Therefore, the a priori attitude is added to the objective functions of both SOAR

and qEKF in an equivalent manner to second-order.
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3.4.2 Equivalence of the Non-Attitude Update

The non-attitude state update in the SOAR filter is identical to that derived in the

qEKF. In SOAR the optimal update of the non-attitude states is given by [3]

s+ = s− − 2
(
F−ss
)−1

F−sθΞ
(
ˆ̄q−
)T ˆ̄q+ (3.62a)

≈ s− −
(
F−ss
)−1

F−sθδθ. (3.62b)

Recall that the Fisher information matrix is approximately equal to the inverse of

the covariance matrix as the number of observations becomes large. The partitioned

Fisher information and covariance matrices are related by

P−1 =

Pss Psθ

Pθs Pθθ


−1

≈ Fxx =

Fss Fsθ

Fθs Fθθ

 . (3.63)

Using the relationships for the inversion of a partitioned matrix,

Fss =
(
Pss −PsθP

−1
θθPθs

)−1
, (3.64a)

Fsθ = −
(
Pss −PsθP

−1
θθPθs

)−1
PsθP

−1
θθ , (3.64b)

Fsθ = −FssPsθP
−1
θθ , (3.64c)

and F−1
ss Fss = −PsθP

−1
θθ , (3.64d)

a simple substitution is used to show the equivalence of the SOAR and the qEKF

non-attitude state update. Substitute the above relationship from the partitioned

Fisher information and covariance matrices into the SOAR update Eq. (3.62a)

s+ = s− + 2P−sθ
(
P−θθ

)−1
Ξ
(
ˆ̄q−
)T ˆ̄q+ (3.65)
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which is exactly the same as the qEKF non-attitude state update given in Eq. (3.54b).

In summary, both qEKF and SOAR select the non-attitude state Kalman gain

according to the linear optimal value and produce identical non-attitude state up-

dates where qEKF uses the covariance formulation and SOAR uses the information

matrix approach. However, the covariance formulation used in qEKF is advantageous

over the information matrix formulation when the state vector becomes large. Re-

gardless of the number of states, the qEKF algorithm requires the inversion of 3× 3

matrices related to the attitude. The computation of the information matrix for the

SOAR algorithm requires the inversion of the full state covariance. Therefore, for an

estimation algorithm consisting of n total states, the SOAR algorithm requires the

inversion of an n × n matrix while the qEKF algorithm only requires the inversion

of a 3 × 3 matrix. This results in an increasing computational savings as the state

vector becomes large.



Chapter 4

Numerical Simulation

Numerical simulations are used to verify the approach proposed by the q-method

extended Kalman filter. A simple spacecraft model is used with magnetometers and

sun sensors for attitude determination and a rate gyro which eliminates the need for

modeling the spacecraft attitude dynamics. Vector measurements are simulated by

perturbing the true values with simulated measurement noise. In order to demon-

strate the capability of the qEKF to estimate attitude as well as non-attitude states,

the state vector used by the Kalman filter for the numerical simulations consists of

the spacecraft attitude θ, and the gyro bias, β. That is,

x =

θ
β

 . (4.1)

Here the attitude is again represented by the three-component angles (roll, pitch, and

yaw). Monte Carlo analysis is used to validate the convergence and performance of

qEKF. SOAR is also implemented into the same simulations in order to demonstrate
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the equality between SOAR and qEKF.

4.1 Selection of Orbit

For the numerical examples in this work a common orbit is used. The only orbital

requirements for this work are such that the orbit provides sufficient observability

properties. For simplicity, a circular orbit with a semi-major axis of 7,000 km is

selected. The inclination is selected as 45 degrees so that the spacecraft will experience

a sufficient variation in Earth’s magnetic field vector throughout the course of its orbit

such that there is adequate variation in the magnetometer measurements. The rest

of the orbital parameters are arbitrarily assigned for simplicity. At the beginning of

the simulation the Earth is at vernal equinox, 20 March 2012, and the spacecraft is

located at the ascending node. The simulation spans a time period of 6,000 seconds

which is slightly more than one orbital period for the selected orbit. For a circular

orbit the dynamics is sufficiently modeled by a simple rotation

r = Cr0, (4.2)

where r is the current spacecraft position vector, r0 is the a priori position vector,

and C is the rotation matrix given by

C = I3×3 cos (n ·∆t) + eeT (1− cos (n−∆t))− [e×] sin (n ·∆t) , (4.3)

where n is the orbital mean motion, ∆t is the time step, and e is the axis of rota-

tion. This dynamic model is only valid for circular orbits according to the restricted
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two-body equation where the mass of the orbiting body is insignificant compared to

the mass of the primary body and no other perturbational effects are considered.

Throughout its orbit the spacecraft is oriented such that the body-fixed X axis is

directed in track and the Z axis is Earth-pointing with the Y axis following a right

handed coordinate system. As a result the spacecraft has a constant angular velocity

equal in magnitude and opposite in direction to the orbital mean motion as expressed

in the spacecraft body frame. That is,

ω =

[
0 −n 0

]T

. (4.4)

The orbital mean motion, n, for a circular orbit is simply the average orbital angular

velocity which is given by 2π divided by the orbital period. This attitude orientation,

also referred to as nadir pointing, is common for many satellites such as telecommu-

nication or remote sensing satellites.

4.2 Attitude Sensors

Two types of vector measurements are considered for this thesis, sun sensor and

magnetometer measurements. Sun sensors provide a unit vector measurement from

the spacecraft body frame (related through a fixed sensor frame) to the sun. For

Earth orbits, the sun is sufficiently approximated as a point source which greatly

simplifies sensor design and data processing. Varying types of sun sensors may have

a field of view as large as 128 degrees and have typical performance accuracies between
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0.005 and 3 degrees for attitude determination. Furthermore, the sun is of significant

interest with regards to mission design for the vast majority of spacecraft, particularly

for power generation and thermal constraints. All of these factors contribute to the

selection of sun sensors as the most widely used sensor type [5, 33]. For this example

with the Earth at vernal equinox, the inertial reference vector for the sun sensor is

given in the Earth-centered inertial (ECI) frame by

nsun =

[
1 0 0

]T

, (4.5)

and may sufficiently be assumed to remain constant for the simulation time span of

6,000 seconds. Sun sensor measurements in the spacecraft body frame are generated

in 1 second intervals by rotating the reference sun vector according to the true attitude

and corrupted by simulated sensor noise.

Magnetometers are vector sensors that provide both the magnitude and direction

of Earth’s magnetic field at the spacecraft. They are simple, inexpensive, lightweight,

and reliable sensors with no moving parts and low power requirements. As a result,

they are widely used, especially with spacecraft that rely on magnetorquers or torque

rods as an attitude control actuator or small, inexpensive spacecraft which lack tight

attitude determination tolerances. However, magnetometers are often less accurate

for attitude determination than alternative attitude sensors largely due to the dif-

ficulty of modeling Earth’s magnetic field and yield a typical accuracy range of 0.5

to 3 degrees. While often approximated as a simple dipole, Earth’s magnetic field is

time varying and not completely known resulting in errors in the inertial reference
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model. Higher fidelity models of Earth’s magnetic field use spherical harmonics based

on empirical data, but can become considerably more complex which results in an

increased demand on the computing resources of the spacecraft’s attitude determi-

nation system. Furthermore, the strength of Earth’s magnetic field drops according

to an inverse cubed relationship with increased distance from Earth restricting the

practical use of magnetometer measurements in most cases to orbits less than 1,000

kilometers in altitude [5, 33].

Earth’s magnetic field remains relatively constant in magnitude and direction

around the equator and experiences the most variation over the poles. The orbital

inclination is selected as 45 degrees in order to increase the variation of Earth’s

magnetic field throughout the spacecraft’s orbit, thus increasing the observability.

In the examples for this thesis, the inertial magnetic field vectors are obtained in

1 sec intervals from the orbital position, time, and date using the World Magnetic

Model (WMM) produced by the National Geospatial-Intelligence Agency (NGA) of

the United States and the Defence Geographic Center (DGC) of the United Kingdom.

The magnetometer measurements are also simulated by rotating the reference field

vector according to the true spacecraft attitude and then corrupting with simulated

measurement noise.

Another common sensor is the rate gyroscope or gyro. Rate gyros are not used

to measure the spacecraft’s attitude, but rather its angular velocity. Gyros come in

a large range of accuracies, complexity, size, and capabilities in order to meet the
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Error Source Symbol Value

Sun-sensor Noise (ηsun) σsun 0.1 deg

Magnetometer Noise
(
ηmag

)
σmag 220 nT

Angular Random Walk (ηv) σv
√

10× 10−7 rad/sec1/2

Gyro Bias Random Walk (ηu) σu
√

10× 10−10 rad/sec3/2

Table 4.1: Sensor Errors

requirements for a particular mission. Rate gyros represent the most simple and

least expensive type. The use of gyros eliminates the need for modeling complicated

attitude dynamics resulting in significant computational savings for the attitude de-

termination and control system. Gyros operate at a much higher sampling frequency

than the attitude sensors and can therefore be used to accurately propagate the state

and covariance between attitude sensor measurements. Rate gyros suffer from errors

due to nonlinearity, drift, and hysteresis [5, 33]. For this work, the rate gyro is defined

according to the following sensor model [34]

ω = ω̃ − β − ηv (4.6a)

and β̇ = ηu, (4.6b)

where ω is the true angular velocity, ω̃ is the measured angular velocity, β is the

gyro bias vector, and ηv and ηu are zero-mean, Gaussian, white-noise processes. The

noise parameters used in the simulations are summarized in Table 4.1.
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4.3 Propagation

The Kalman filter is a two-step process. One step consists of updating the state and

covariance estimates by incorporating information from measurements at the current

time. For optimal Kalman filters, this update is done in a statistically optimal manner

to produce the minimum mean square error estimate of the state vector and associated

covariance. The update phase has been discussed extensively in this work. The second

step of the Kalman filter is the propagation phase. This phase moves the state and

covariance forward in time with a penalty on the covariance due to the process noise

which causes it to grow as time goes on. This thesis uses a propagation step identical

to MEKF with more detailed derivations available in literature [22, 11]. The attitude

kinematics equation for quaternions is given by

˙̄q =
1

2
Ξ (q̄)ω. (4.7)

Recall that for MEKF, the three component error angle vector δθ is the attitude

portion of the state which is passed into the Kalman filter as opposed to the full

quaternion. This substitution is valid for small angles which is accomplished by using

a sufficiently small step size, 1 second for this thesis. Including the gyro model from

Eq. (4.6a), the attitude dynamics model is given by

δθ̇ = [−ω̂×] δθ − δβ, (4.8)

where the estimated angular velocity, ω̂ = ω̃ − β̂, is obtained directly from the gyro

measurement estimated bias. As a result, integration of the dynamics is not necessary.
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Using Eqs. (4.6b) and (4.8) The state resulting full state dynamic model in state is

given by

δẋ = Fδx + Gν (4.9a)δθ̇
δβ̇

 =

[−ω̂×] −I3×3

03×3 03×3


δθ
δβ

+

−I3×3 03×3

03×3 I3×3


ηv
ηu

 , (4.9b)

where F is the Jacobian for the state space model. The process noise, ν, is used to

calculate the covariance parameter, Q, which is related to the process noise covariance

matrix by

Qk = GQGT∆t =

σ2
uI3×3 03×3

03×3 σ2
vI3×3

 (4.10)

noting that a unit step size is used for this thesis. The process noise defined in Eqs.

(4.6a) and (4.6b) are assigned values as in Table 4.1. The propagated covariance

matrix is therefore given by

Pk+1 = ΦPkΦ
T + Qk, (4.11)

where Φ is the state transition matrix that maps from time tk to time tk+1. The

state transition matrix is obtained using the dynamics Jacobian, F, which is assumed

constant during the interval of the time step and approximated to first-order by

Φ = eF∆t ≈ I6×6 + F∆t. (4.12)

Since gyro measurements are available and are typically sampled at a high rate,

the estimated angular velocity may be assumed to remain constant for the duration
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of the step size. Using the small angle assumption, the quaternion a the next time

step is obtained by

∆θ = ω̂∆t (4.13a)

and ˆ̄qk+1 =

∆θ/2

1

⊗ ˆ̄qk. (4.13b)

Detailed derivations of the state and covariance propagation for extended Kalman

filters are available in literature [20, 11, 21].

4.4 Simulation Results

For the each simulation the initial attitude error covariance is 0.12 deg2 in each axis

and the initial gyro bias error covariance is 0.22 (deg/hr)2 in each axis. There is no

initial cross covariance and the initial gyro bias is assumed to be zero mean. A 100

run Monte Carlo simulation is performed for each test case varying the measurement

noise, process noise, and initial state estimate. Each figure displays the estimation

error for the roll, pitch, and yaw axes. The estimation error for each Monte Carlo run

is shown in red for qEKF and green for SOAR. The 3 − σ bounds of the estimated

covariance for each axis is shown in blue with the corresponding statistical covariance

from the Monte Carlo estimation errors shown in black.
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4.4.1 Test Case #1: Synchronized Sun Sensor and Magne-

tometer Measurements

Initially a simulation is performed for a simple and observable test case. In this first

simulation synchronized sun sensor and magnetometer measurements are available

for the entire orbit. This is not the case in reality for the selected orbit as it will

be behind Earth’s shadow for approximately one third of the orbit, but it provides

a good test case to ensure the qEKF converges properly. The SOAR filter is run

simultaneously using the exact same inputs for comparison.

Figure 4.3 displays the attitude estimation error as expressed in the spacecraft

body frame for the roll, pitch, and yaw axes using the qEKF and SOAR algorithms.

As expected, both filters yield identical results. Note that the attitude converges to

an accurate estimate very quickly. One of the primary advantages of the q-method

based qEKF is the globally optimal nonlinear attitude update. In contrast, standard

extended Kalman filter techniques provide a linear best estimate and can be subject

to convergence issues for nonlinear systems. Figure 4.2 shows the corresponding gyro

bias estimation error which also converges to an appropriate steady state value. Notice

that the performance in the pitch axis exceeds that of the roll and yaw axes. This is

a direct consequence of the dynamics of the system. Recall that the modeled satellite

remains Earth-pointing throughout its orbit and as a result, only rotates about the

spacecraft pitch axis. Therefore the greatest variation in measurements is in the

pitch axis making it the most observable which leads to the increased performance.
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Figure 4.1: Attitude Estimation Error 100 Run Monte Carlo
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Figure 4.2: Gyro Bias Estimation Error 100 Run Monte Carlo
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The sinusoidal fluctuations in the attitude error for the roll and yaw axes are also

consequences of the spacecraft dynamics.

4.4.2 Test Case #2: Only Magnetometer Measurements

Another case of interest consists of attitude estimation using only magnetometer mea-

surements. An advantage of the qEKF is that by incorporating the a priori attitude

estimate, only a single vector measurement is required to determine the attitude from

the q-method as opposed to the customary requirement of at least two non-collinear

vector measurements. As a result, the qEKF is capable of estimating the attitude

and gyro bias from magnetometer measurements alone. This case has practical ap-

plications for small, inexpensive satellites, such as CubeSats, or as a backup attitude

estimation method for larger and more complex satellites. The results are again

compared with the results from the SOAR filter subject to the same measurement

inputs. Figure 4.3 presents the attitude estimation error using only magnetometer

measurements and Figure 4.4 presents the associated gyro bias estimation error.

The qEKF again produces identical results to SOAR and both the attitude and

gyro bias converge to appropriate values. Comparing with the results from the case

using sun sensor and magnetometer measurements, the magnetometer only case takes

longer to converge and results in a larger steady state estimation error. This behavior

is expected as attitude information is lost from the lack of sun sensor measurements

resulting in larger errors in the system.
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Figure 4.3: Attitude Estimation Error for Only Magnetometer Measurements 100

Run Monte Carlo
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Figure 4.4: Gyro Bias Estimation Error for Only Magnetometer Measurements 100

Run Monte Carlo
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4.4.3 Test Case #3: Asynchronous Sun Sensor and Magne-

tometer Measurements with Eclipse

In actuality, the measurements from different sensors on a spacecraft are never ob-

tained at the exact same time. Recall that two independent vector measurements are

required to determine the attitude. For single-point solutions the measurements are

either propagated to a mutual time or assumed to be close enough together that the

difference may be ignored. The qEKF filter incorporates an initial attitude estimate,

therefore, the attitude may be determined from a single vector measurement. As a

result, it is advantageous to process each measurement as soon as it becomes avail-

able. To represent this capability, in this test case the sun sensor and magnetometer

measurements are alternately available at each step in the simulation. During the

period of eclipse, when the satellite is behind the Earth’s shadow and sun sensor

measurements are unavailable, they are replaced with magnetometer measurements

instead. The eclipse period occurs between simulation time 2,000 and 3,800 seconds.

The attitude estimation error for the case including eclipse is shown in Figure

4.5 and the corresponding gyro bias estimation error is shown in Figure 4.6. Again,

both the attitude and non-attitude states converge to appropriate steady state errors

with a performance that fits in between the magnetometer only case and the case

with sun sensor and magnetometer measurements available simultaneously for the

entire orbit. The sun sensor provides additional attitude information that improves

the performance over the magnetometer only case, but less than the first test case as
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Figure 4.5: Attitude Estimation Error for Eclipse 100 Run Monte Carlo

Figure 4.6: Gyro Bias Estimation Error for Eclipse 100 Run Monte Carlo
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the measurements are staggered every other second. During the period of eclipse in

between 2,000 and 3,800 seconds when the sun sensor measurements are not available,

the performance mirrors the magnetometer only case and tighter convergence is shown

once the sun sensor measurements again become available.

4.4.4 Test Case #4: Only Magnetometer Measurements with

Large Initial Errors

Recall that the primary advantage of the q-method extended Kalman filter over stan-

dard Kalman filtering techniques is that qEKF provides a nonlinear attitude estimate.

In the previous test cases, a standard method such as the multiplicative extended

Kalman filter (MEKF) yields identical results. However, the linearization assump-

tions implicit in the extended Kalman filter become less appropriate for highly nonlin-

ear dynamics or poor initial estimates. In order to demonstrate the advantage of the

nonlinear attitude update of qEKF over MEKF, this case uses large initial errors. For

this example, all parameters are the same as in test case #2 using only magnetometer

measurements except that the sensor errors from Table 4.1 have been increased by

one order of magnitude, the initial attitude error covariance is now 2002 deg2 in each

axis and the initial gyro bias error covariance is 202 (deg/hr)2 in each axis. The same

simulation is performed using the qEKF and the MEKF in order to compare the

effects of the nonlinear attitude update.

The attitude estimation error for the case of large initial errors is shown in Figure
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Figure 4.7: Attitude Estimation Error for Only Magnetometer and Large Initial Er-

rors 100 Run Monte Carlo
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Figure 4.8: Gyro Bias Estimation Error for Only Magnetometer and Large Initial

Errors 100 Run Monte Carlo
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4.7 and the gyro bias estimation error is shown in Figure 4.8. For this case the results

from the qEKF are shown in red and from the MEKF in green. For both the attitude

and the gyro bias the qEKF converges quickly to achieve an appropriate steady state

error. The resulting steady state error remains larger than the previous test cases

as the sensor errors are an order of magnitude larger for this case. As a result, the

qEKF is able to accurately estimate the attitude even with an extremely poor initial

estimate. While it does eventually converge, the MEKF significantly under-performs

when presented with the same large errors. The overshoot visible in Figure 4.7 is

a direct consequence of the linearization in MEKF which attempts to over-correct

based on the poor initial estimate. Furthermore, a significant number of the Monte

Carlo runs for both the attitude and gyro bias estimation errors remain outside of the

3− σ bounds of the predicted covariance. The practical implication is that in a real

system where the true values are unavailable, MEKF would predict a more accurate

estimation of the states than is true for this case. Finally, the steady state estimation

error is approximately twice as large for the MEKF as opposed to the qEKF. As a

result, the nonlinear attitude estimation provided by qEKF performs much better

than MEKF in the presence of large initial errors.



Chapter 5

Concluding Remarks

5.1 Conspectus

In this thesis the q-method is successfully integrated into the extended Kalman fil-

ter in order to provide the capability of nonlinear attitude estimation along with

the estimation of non-attitude states. The a priori attitude is combined with the

Wahba problem performance index and the q-method solution to the Wahba problem

is appropriately modified. Covariance analysis is performed to determine the corre-

sponding attitude error covariance update from the q-method solution. For the linear

case, it is shown to be equivalent to update the attitude first and subsequently update

the non-attitude states as to using standard linear Kalman filter to update the entire

state. Just as with the extended Kalman filter, the qEKF sacrifices optimality in

the non-attitude update from the linear case in order to process nonlinear systems.
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However, a nonlinear attitude update is preserved through the q-method.

The first proposed methods of recursive attitude estimation based on the Wahba

problem are only capable of estimating the attitude and cannot include other states.

Subsequent extensions add this capability, but require iteration to estimate the non-

attitude states. In contrast, extended Kalman filter methods such as MEKF are

capable of estimating any number of observable states. However, due to the required

linearization extended Kalman filters are sensitive to initial conditions and proper

tuning in order to converge properly and can fall victim to divergence issues in the

presence of large errors or large nonlinearities in the system. The q-method Kalman

filter provides an ideal algorithm for on-board attitude estimation by merging the

best of these two classes of filters. A globally optimal, nonlinear attitude update is

obtained using the q-method and non-attitude states are simultaneously estimated

with a Kalman filter. By integrating the q-method into the framework of the Kalman

filter, the a priori attitude information is maintained. For increased speed, any

number of numerical solutions to the eigenvalue problem from the q-method such as

QUEST may be used to calculate the optimal attitude.

The q-method extended Kalman filter is compared with the Sequential Optimal

Attitude Recursion filter and shown to be equivalent to second-order in the attitude

update and identical in the non-attitude state update. The qEKF may be viewed

as the covariance formulation of integrating the q-method into an extended Kalman

filter whereas SOAR is the information matrix formulation. This distinction becomes
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important as the size of the state vector increases because the covariance formulation

will typically require smaller matrix inversions than the information matrix formula-

tion. Numerical simulations of a satellite equipped with sun sensors, magnetometers,

and a rate gyro demonstrate the ability of the qEKF algorithm to accurately estimate

the attitude and gyro bias. Three test cases are examined consisting of synchronized

magnetometer and sun sensor measurements available throughout the orbit, only

magnetometer measurements, and a more realistic case with asynchronous sun sensor

and magnetometer measurements accounting for a period of eclipse. In all cases the

qEKF converges to an accurate estimate with identical results as obtained by the

SOAR filter for the same test cases. A final test case demonstrates the advantage of

the qEKF over a standard extended Kalman filter represented by MEKF when the

initial errors are large.

5.2 Future Work

The most significant task that remains is the expansion of the q-method extended

Kalman filter to allow the vector measurements, yi and ni, to be functions of non-

attitude states. Examples of interest include attitude sensor biases and misalignments

which affect the measurement vectors, yi, and the spacecraft orbital position which

is used to obtain the the magnetometer reference vector, nmag. First, the attitude

covariance obtained from the q-method and given in Eq. (2.62) must be modified to

incorporate the additional uncertainty added to the measurements by the associated
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non-attitude states. This is accomplished by appropriately modifying the measure-

ment error given by Eqs. (2.28) and (2.33). In the derivations of Sections 3.2.1 and

3.2.2 it was assumed that the measurements are only a function of the attitude and

not any other states. This restriction results in the measurement sensitivity or obser-

vation partial matrix for the non-attitude states equal to the zero matrix, Hs = 0.

For the case of measurements dependent on non-attitude states, this assumption is

no longer true and the observation partial matrix, Hs 6= 0. As a result, additional

terms will be present in the derivation of the linear optimal Kalman gains from Eq.

(3.17). This necessitates appropriate modifications to the non-attitude state Kalman

gain, Ks, and the full state covariance update. Finally, a new selection criteria for the

scalar weights of the Wahba problem, ai, must be derived as the QUEST measurement

model does not account for the additional uncertainty in the measurements due to the

related non-attitude states. Attempts to select the weights which minimize the trace

of the attitude error covariance do not appear feasible. Potential solutions include

bounding the maximum error from the maximum eigenvalue of the measurement co-

variance. A trade study may then be performed by ranging the scalar weight from

zero to this maximum value in order to identify the choice that gives best performance

on a case by case basis. These extensions to the q-method extended Kalman filter

will provide the capability of estimating the nonlinear attitude and any observable

state without the need for iteration and in a single Kalman filter.
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