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ABSTRACT

The Effects of Interconnection Networks on the
Performance of Shared-Memory Multiprocessors

by

Usha Rajagopalan

This thesis presents the results of a study of the effect of various interconnection
network parameters on the performance of applications running on a scalable shared-
memory multiprocessor. We developed a modular simulator for shared-memory mul-
tiprocessors called MEMSIM. This simulator, which was developed as a part of the
Rice Parallel Processing Testbed, was used in all the experiments described in this
thesis. The architecture simulated was a shared-memory multiprocessor with 64 pro-
cessing nodes, with full bit-map directory-based coherence protocol. The performance
of four network topologies: mesh, hypercube, and two shuffle-exchange networks were
compared in our experiments. Four applications were used in our experiments: Fast

Fourier Transform, Bimerge, Matrix Multiply and Successive Over Relaxation.

The main results of our study can be summarized as follows:

¢ With constant bisection width, the mesh network outperforms all the other

network topologies

¢ Cache miss rate largely influences the relative performance of different network

configurations
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Chapter 1

Introduction

This thesis studies the effect of various interconnection networks and interconnection
network parameters on the performance of applications running on a scalable shared-
memory multiprocessor. We developed a modular simulator for shared-memory mul-
tiprocessors called MEMSIM. This simulator, which was developed as part of the
Rice Parallel Processing Testbed (RPPT), was used in all the experiments described
in this thesis.

It is becoming increasingly more difficult to satisfy the demand for high per-
formance computer systems by using uniprocessors. As a result, most new high
performance computing systems are multiprocessors constructed from commercial
microprocessors. 'Two programming models have been developed for these systems,
the distributed-memory programming model and the shared-memory programming

model.

Programming for a distributed-memory programming model is felt to be harder
than for a shared-memory model, since the programmer has to provide explicit state-
ments to facilitate data communication between processors. Examples of multipro-
cessors which support the distributed-memory programming model include the Intel
Paragon [9], the Thinking Machine Corpc;ra,tion’s CM-5 [12], and the Cray T-3D [31].
Shared-memory multiprocessors have received a lot of attention because the shared-
memory programming model is felt to be easier to use. A majority of available
shared-memory multiprocessors use a single-bus and are not scalable. Examples of
such systems include the Sequent Symmetry [33] and the Encore Multimax [10]. The

1



bus, which is a central resource, becomes a bottleneck when too many high perfor-
mance processors use the bus to access memory. A single-bus shared-memory system
can only support about 30 processors.

Multiprocessors can be scaled to more than a few tens of processors, by using
an interconnection network that can connect a few hundred or even a few thousand
processors without becoming a bottleneck. Such large-scale multiprocessors can sup-
port the shared-memory programming model by using a directory-based coherence
protocol [6]. A simple directory-based coherence protocol has a directory entry as-
sociated with each cache line-sized block in memory. This directory keeps track of
nodes that have cached a copy of that line and the current state of the line. This
information can be used to send messages to the caches involved in a specific trans-
action instead of broadcasting information about each transaction to all caches. The
Stanford DASH multiprocessor [32] and MIT’s Alewife [3] use the directory-based
coherence protocol. This thesis studies the performance of interconnection networks
in a large-scale shared-memory multiprocessor using a directory-based coherence pro-
tocol. This study is conducted by simulating the execution of parallel applications
on such a multiprocessor.

The performance of four network topologies: mesh, hypercube, and two shuffle-
exchange networks is compared. The various components of the network latency is
analyzed and the factors in the application that affect these components is studied.
The tradeoff between time to run a detailed network simulation and the accuracy of
the results predicted by the simulation is also studied.

Chapter 2 gives some background information, an overview of the project, and
related work. Chapter 3 describes the MEMSIM simulator. Chapter 4 describes
the simulated architecture and the parameters used in the experiments. Chapter 5
presents and discusses our results. Chapter 6 provides conclusions and future direction

of this research.



Chapter 2

Overview

This chapter provides an overview of interconnection networks, describing the differ-
ent topologies, switching methods and the routing algorithms used in networks. It
also describes the network types that are studied in this thesis, a motivation for study-
ing these particular networks and the motivation for studying the effect of networks
on the performance of shared-memory multiprocessors. This chapter also describes

related work done in the study of interconnection networks.

2.1 Overview of Interconnection Networks

The interconnection network is a very important component in a multiprocessor. The
purpose of an interconnection network is to provide communication paths between the
modules of a parallel system. The different parameters to be considered during the
design of an interconnection network are the network topology, the routing algorithm,

switching mechanism and the bandwidth of the network.

2.1.1 Overview of Interconnection Network Topologies

The simplest network topology is a bus, a single path that all the modules must share.
This is not scalable in terms of performance, since only one module can send data at
a time. The crossbar network represents the other extreme where each module has a
direct connection to every other module in the system. This is not scalable in terms
of cost since it requires N2 switches to connect N modules. In between these two
extremes there are a variety of network topologies that one can choose from. They

3



are generally classified as direct networks or indirect networks. In direct networks
every switch in the network is also connected to a processing node. The direct k-ary
n-cube networks have n dimensions with % nodes in each dimension. The 2-D torus
and the hypercube, which is a binary n-cube, represent two extremes of this class of
networks. Indirect networks, also known as multistage interconnection networks, have
the characteristic that all modules connected to the networks are equidistant from
each other. The bisection width of a topology is the minimum number of channels
that must be cut to divide the network into two equal halves. It is used as a measure
of network cost, since the complexity of a connection is wire-limited. The different
network topologies studied in this thesis are mesh, hypercube and the shuffle-exchange

network.

2.1.2 Overview of Interconnection Network Switching Mechanisms

Switching methods include packet-switching, circuit-switching, virtual cut-through [30]
and wormhole routing {14]. In packet-switching, also known as store-and-forward, the
entire packet is stored in the buffer of an intermediate node before it is forwarded
to the next node determined by the routing algorithm. In this case the latency of a
packet to traverse the network is proportional to the product of the size of the packet
and the distance (number of hops) traversed by the packet. In circuit-switching a
path is first established between the source and destination nodes and this path is
reserved for the packet. The tail of the packet tears down the path. This can achieve
better performance than packet-switching for long packets. Virtual cut-through sends
a packet through the network without first establishing a circuit. As long as there is
no blocking the head of the packet makes progress through the network. The othér
flits (smallest unit of data that can be transferred between two switches) of the packet
can be spread out along the path, depending on the length of the packet. When the
packet is blocked at a node, trailing flits catch up and are buffered at that node. |
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The difference between this and wormhole switching is that in the latter, the switch
buffers do not have to be large enough to hold a whole packet. The flits of a blocked
packet are distributed along the network in different buffers. The routing algorithms
are more limited for wormbhole routing, due to the possibility of deadlock. Wormhole
routing is being used widely in current generation multiprocessors. This thesis studies

the performance of wormhole-routed networks.

2.1.3 Overview of Interconnection Network Routing Algorithms

Routing determines the path selected by a packet in order to reach its destination.
Routing can be classified as deterministic or adaptive. In deterministic routing, also
known as oblivious routing, the path is completely determined by the source and
destination pair. Adaptive routing takes the state of the network into consideration
and can alter the path of a packet to avoid congestion in the network. The rout-
ing algorithm is minimal if the path selected is a shortest path between the given
source and destination pair. One deterministic routing scheme that is guaranteed
deadlock-free for wormhole routing is a dimension-ordered routing scheme called e-
cube routing [35]. Adaptive routing algorithms for wormhole-routed networks, which
are deadlock-free, are complicated and can be expensive and slow to implement [35].

In this thesis, the study of networks is restricted to deterministic routing.

2.2 Motivation

Shared-memory multiprocessors that scale up to a few thousand processors seem vi-
able. Much research is focused on making such systems efficient. In particular, efforts
are made to hide or tolerate the high memory access latencies involved in such systems.
One technique is to provide fast context switching in hardware. Several threads can
be kept active on each processor at the same time and a processor can switch among

these threads to hide individual access latency [44]. Dynamic instruction scheduling



at the processor can increase processor utilization, by allowing instructions to execute
out of sequence whenever earlier instructions are waiting on a data access, provided
there is no data dependency [21]. Such techniques attempt to increase processor and
network utilization. Previous simulation experiments used to evaluate these tech-
niques typically have ignored contention in the network. While this could give an
estimate of the best performance gain possible, if the network performance does not

match the performance of the rest of the system, these gains will be unattainable.

Interconnection networks are important components of multiprocessors. The rate
of execution by a single processor is increasing, through increased clock speed, instruc-
tion pipelining and the use of multiple functional units with super-scalar execution.
Without the proper design of interconnection networks the communications among
paralle] threads may result in significant performance degradation due to network

latencies and throughput limitations.

Interconnection networks have been studied for a long time. Much attention
has been given to the design and performance analysis of interconnection networks.
Numerous network topologies have been proposed and evaluated. A survey can be
found in [18]. The performance analysis of networks has mostly been done using
mathematical models and stand-alone simulations ([16, 1, 2, 13]). However, such
performance evaluation techniques do not always capture the access patterns of real
programs. One of the motivating factors in this work is to study the performance of
networks driven by the execution of an application on a shared-memory multiproces-

SOT.

This thesis compares the performance of four different network topologies, the
mesh, the hypercube and two shuffie-exchange network configurations. These topolo-
gies were chosen because commercial multiprocessors have been built using mesh,
hypercube and multistage interconnection networks. The hypercube has been used

in several multiprocessors, starting with a research machine from Caltech called the
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Cosmic Cube [40]. Other multiprocessors with hypercubes include the iPSC and
iPSC/2 [8] from Intel, NCUBE/ten [11], and CM-2 [25], an SIMD machine from
Thinking Machines Corporation. More recently Intel has abandoned the hypercube
architecture and is using a mesh network in the Paragon [9]. The Cedar parallel
processor from the University of Illinois [19] uses a shuffle-exchange network with an
8x8 crossbar at each switching node.

The performance of the different network topologies are compared when they have
an equal link width and when they have a constant bisection width. Also, the per-
formance of each network topology is studied for different link widths and in order to
find an optimal bandwidth for a particular network topology. For all of these experi-
ments the other parameters of the system, such as speed of the processor and memory
sub-system and size of the caches, are fixed and the network performance is studied
under these fixed parameters. All the system parameters reflect current technology
and the technology trends expected. The network performance is also studied at dif-
ferent ratios of processor speeds to memory speeds, since we do not expect DRAM
performance to keep up with the improvements in processor performance. All our
experiments use wormhole-routed networks since this is the routing scheme of choice

in most commercial multiprocessors.

2.3 Related Work

Interconnection networks have been studied for a long time. The performance anal-
ysis of networks has mostly been done using mathematical models and stand-alone
simulations ([16, 1, 2, 13]). [29] presents an algebraic theory based on tensor prod-
ucts for modeling direct interconnection networks. Ponnuswamy et al. evaluate the
performance of the network in the CM-5 multiprocessor experimentally [37]. Chittor
and Enbody evaluate the performance of wormhole routed meshes with the use of the

Symult 2010 multiprocessor [7]. They use experimental results to show that the path



length of the message does not adversely affect performance, but that contention for
network resources does. Neither of these studies use complete applications, but drive

the network with messages of varying sizes and different network traffic patterns.

There has been a lot of work to improve a particular algorithm for a specific
network topology. Examples include the implementation of FFT on hypercubes [45]
and an implementation of FFT on the butterfly network [34]. Such work studies the
network performance with respect to a specific algorithm and may not be useful in
the design of a general-purpose multiprocessor. [4] presents the results of running the
NAS benchmarks on several parallel processors and supercomputers, including the
iPSC/860, which has a mesh network and the BBN T'C2000, which has a butterfly
interconnection network. However, no attempt is made to analyze the results and
determine whether the differences are due to the network or due to other differences
in the two systems. In fact, it is very difficult to separate the performance effect
of networks from other factors and might require some diagnostic hardware to be

installed in the machines.

Abraham and Padmanabhan compared the performance of the direct binary n-
cube with the indirect binary n-cube network [1]. The performance evaluations are
done for equiprobable distribution of message destinations. They also evaluated the
network under special conditions such as broadcasts and hot-spots. The performance
analysis was done for packet-switched networks. They found that the direct network
performs better. Dally compared the performance of networks belonging to the class
of direct k-ary n-cube [13]. He compared the networks for wormhole routing under a
constant bisection width constraint for a network size of 256, 16 K, and 1 M nodes.
He arrived at values for the actual latency and latency with contention when the
traffic in the network is a certain fraction of the total network bandwidth. His results
show that the 2D-torus network performs best. Agarwal expanded on this work in

2], by calculating the latency of k-ary n-cube networks when the switch latency is



greater than the link latency. He found that when the switch delay is higher, 3D and
4D tori perform better than the 2D-torus.

The simulator used in the experiments described in this thesis is an execution-
driven simulation testbed called the Rice Paraliel Processing Testbed (RPPT). As
a part of this thesis we extended RPPT to support shared-memory simulation, by
developing a cache-memory hierarchy simulator called MEMSIM. A detailed network
simulator called NETSIM [27] is a part of RPPT and is used in our experiments.
Tango [15], Proteus [5] and an earlier RPPT shared memory simulator [17] are other
execution-driven simulators running on uniprocessors. The Wisconsin Wind Tunnel
(WWT) [39] executes on a CM-5 using a form of distributed discrete-event simulation.
A major difference between MEMSIM and the above mentioned simulators is that
MEMSIM interfaces to a detailed and versatile interconnection network simulator
(NETSIM). NETSIM can simulate different types of routing such as virtual cut-
through, worm-hole routing and store-and-forward. Most interconnection networks
can be built from the modules provided by NETSIM. The WWT and DASH [32] sim-
ulator (using Tango) approximate the effect of the network with constant latency to
reach any destination. Proteus allows the user to simulate interconnection networks
with store-and-forward routing or approximate the effects of the interconnection net-
work using an analytical model. Store-and-forward routing is not used in newer par-
allel machines since cut-through routing techniques have lower latency. The WWT
simulates one target processor per host processor of the CM-5, limiting the number

of simulated processors to the size of the CM-5.



Chapter 3

Simulation Environment

The simulator used in the experiments described in this thesis is an execution-driven
simulation testbed called the Rice Parallel Processing Testbed (RPPT). As a part of
this thesis we extended RPPT to support shared-memory sin;ulation, by developing
a cache-memory hierarchy simulator called MEMSIM. A detailed network simulator
called NETSIM [27] is a part of RPPT and is used in our experiments to model the

interconnection networks. This chapter provides an overview of MEMSIM.

In the design of parallel machines, simulators provide an effective tool to evaluate
different architectural features. Simulations driven by the execution of applications
have proven to be fairly accurate and are cost-effective when compared to building
hardware prototypes. Simulators that are not driven by real programs, but instead
use analytical models or are distribution-driven, are not sufficiently accurate for many
purposes, because they do not accurately model the behavior of real programs in this
way. Different techniques used in the simulation of the execution of an application
on 2 target architecture are instruction-level emulation, trace-driven simulation and

execution-driven simulation.

Trace-driven simulations use address traces collected from a run of the program
on a hardware machine. Traces are collected from a machine when an application is
running in that machine. The traces are then input to a simulator modeling the tar-
get architecture. This simulation technique has been used for a long time. One of the
advantages of trace-driven simulation is that one does not need to have access to the
source code of the application. However, trace-driven simulation is not very accurate

10
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in the case of multiprocessors because it is difficult to obtain accurate interleaving
of address traces from different processors in the multiprocessor. Any interleaving
inherent in the trace may not be valid for the execution on the target architecture.
Another disadvantage of this technique is that the address traces generated for an
application will generally require large amount of storage space. Instruction-level sim-
ulators emulate each instruction of the target machine in software. Such simulations

can be quite expensive in terms of the time taken to simulate the target architecture.

In the execution-driven simulation approach, the machine language instructions of
the application-program are executed directly on the simulation host. The program is
modified using a profiler that inserts instructions in every basic block of the program
to increment the simulation time as the program executes. In systems with caches,
the simulator has to determine whether each access is a hit or a miss in the cache,
and in the case of a miss, simulate a new cache line fetch. The global clock of the
simulation is updated during cache accesses and other potential processor interaction
points. When the memory address can be determined statically, the profiler generates
these addresses and writes them to a trace file. The profiler inserts code into the user

program to generate all other addresses dynamically.

The overhead of emulating each instruction is avoided in execution-driven simu-
lation, making it faster than instruction-level simulators. Since the execution-driven
simulation executes all instructions on the host machine, the cache data structure in
the simulator does not maintain a copy of the cache line. The simulator only main-
tains the tags and state of the simulated cache. This makes this type of simulator

more space efficient than instruction-level simulators.

MEMSIM is a modular execution-driven simulator for shared memory architec-
tures. It is implemented as an extension to a discrete-event simnulator called YACSIM
[26], which was developed as part of the Rice Parallel Processing Testbed (RPPT).
MEMSIM can also be driven by traces. MEMSIM was used to obtain all results pre-
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sented in this thesis. MEMSIM interfaces with NETSIM [27), a general-purpose inter-
connection network simulator that is also implemented as an extension to YACSIM.
The different modules provided by MEMSIM are cache, write buffer, bus, directory,
memory, network interface and processor. The features of these modules are explained
in the following sections. The user specifies a target architecture in MEMSIM by
initializing the necessary modules and then connecting them to configure the archi-
tecture. These modules may be chosen from the set of modules already implemented,

or may be supplied by the user.

3.1 TImplementation of MEMSIM

All modules in MEMSIM are implemented using YACSIM activities. YACSIM im-
plements two types of activities, events and processes. Activities can be scheduled
to “happen” in the future. Each YACSIM activity when created is assigned a C-
procedure that specifies its action. This procedure is called the body of the activity.
A YACSIM process can temporarily suspend execution and continue execution at the
next line of the process body when it is reactivated. This is achieved by saving the
current context when the process is suspended and restoring the context when it is
rescheduled. A YACSIM event starts executing in the beginning of the event body
each time it suspends and is reactivated. If MEMSIM modules are implemented as
processes, the overhead associated with suspending and reactivating the process can
get quite expensive when several MEMSIM modules have to be scheduled to com-
plete one remote memory access. The modules in MEMSIM are implemented using
YACSIM events. By changing the structure of the event body to keep track of the
last line executed before suspension, events can be as flexible to use as processes.
During the design and development of MEMSIM much emphasis was given to
modularity. While developing such a simulator, the developer cannot foresee all the

different architectures that are going to be evaluated using the simulator. Therefore
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it is important that the tools are provided for the user to customize a module or
implement a new module altogether and have it work with existing modules.

Each module in MEMSIM has a data structure that is a derivative of a base module
type. The user sets up the architecture to be simulated, by creating the necessary
number of modules and then connecting the modules together using MEMSIM calls
(see Fig. 3.1). When a module is created a YACSIM event is initialized and associated
with that module. The body of the event is the main function that acts on the data
structure of that module in order to update it. Scheduling the event associated with
a module does not have any undefined side-effects on other modules. This makes
it possible for the user to connect modules as necessary or to define and use new
modules connected to existing MEMSIM modules.

A request packet is created and initialized at the processor module, which is the
first module entered during simulation. From there the request is sent from one

module to another until it is satisfied. For example, a request would be satisfied in

Prer1 = NewProcessor (parameters)
Prer1 Prcr2

Cache1 = NewCache (parameters)

Prer2 = NewProcessor (parameters) 0 0
Cache2 = NewCache (parameters) 0 0
Bus = NewBus (parameters) Cache1 Cache2
Memory = NewMemory (parameters) 1 1
Connect (Prert,  port=0, Cachet, port=0) 0 1
Connect (Prcr2, port=0, Cache2, port=0) Bus
Connect (Cachel, port=1, Bus,  pori=0) 2

Connect (Cache2, pori=1, Bus,  port=1) 0
Connect (Bus,  port=2, Memory,port=0) Memory

Figure 3.1: Routines used to specify architectures in MEMSIM
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the cache if there is a cache hit. Otherwise, the request would have to be sent to the
next level in the memory hierarchy. When a request is satisfied, it travels back to the
processor and control is returned to the user program. If a module is connected to
several modules, a routing function is used to determine the next module requested.

The different modules supported by MEMSIM include Processor, Cache, Write
Buffer, Bus, Directory, NETSIM interface and Memory. A short description of the

features of each module follows.

3.2 Processor Module

In execution-driven simulation the application program is executed directly on the
machine on which the simulation runs. The application program is initially aug-
mented with lines of code by a program called the profiler. The code added to the
application program by the profiler helps the simulation to keep track of the number of
cycles executed and provides hooks to simulation modules such as caches. Currently
RPPT supports a profiler for the SPARC architecture when used as a shared-memory
multiprocessor simulator. Therefore the processor module in MEMSIM simulates the

SPARC architecture. The next section provides an overview of the MEMSIM profiler.

3.3 Profiling

The profiler works on the assembly code of the application program. In order to ac-
count for the time taken to execute the program the profiler inserts a few instructions
at the end of each basic block to increment the timing variable of YACSIM by the
number of cycles it takes to execute that basic block. Two versions of the profiler are
available for use with MEMSIM. The user can choose to simulate both instruction
and data accesses to the cache, or simulate the data accesses alone (assuming in this

case that all instruction accesses hit in the cache).
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In order to simulate the data accesses to the cache the profiler inserts code before
each instruction that has a data access (various load and store instructions in the

case of the SPARC), to do the following:

save global registers

extract the address for the data access and write the address to a variable

determine the type of access

call the cache module with this information

restore global registers after the return from the cache module

The profiler saves the global registers into the data structure for the current process.

When instruction accesses are also simulated, the profiler determines the instruc-
tion addresses at profile time. The user provides the profiler with assembly code of
the application program as well as an executable of the program. This executable is
compiled by the user from the application program before the profiler augments the
code. This gives the profiler an access to the accurate address trace of the program.
However, this executable is only used by the profiler and the profiled application

program is the one that is actually executed.

The profiler extracts the instruction addresses from the symbol table of this ex-
ecutable and writes the static address trace into a file. Labels are inserted into the
static trace to indicate basic block boundaries. It must be mentioned here that static
address traces are usually much shorter than dynamic address traces that are gen-
erated in a trace-driven simulation environment. This is because programs usually
spend about ninety percent of their time looping in ten percent of the code. Tﬂe
Instruction accesses are simulated at the beginning of each basic block for all instruc-
tion addresses in that basic block. The profiler inserts code similar to that mentioned

above for the data accesses, at the beginning of each basic block. During each call,



16

MEMSIM simulates all instruction accesses for the basic block (by reading the address

trace produced by the profiler) before returning to the user program.

3.4 Cache Module

The cache module simulates a processor cache. It can be a unified cache, a data
cache, or an instruction cache. It can also be used at any level in a hierarchy of
caches. The cache module is implemented as a data structure that stores the tag
and state for each cache line. The user can set the size of the cache, the line size,
the set associativity, the replacement policy, and the coherence protocol when the
module is initialized. It supports any cache size starting from 1 KB, limited only by
the amount of memory available for the simulation. The module can also be used
to model an infinite cache. Set size may be any power of two, making MEMSIM
capable of simulating a direct-mapped cache, a fully associative cache or any set
size in between. The replacement policies supported by the cache module are Least
Recently Used (LRU) and First In First Out (FIFO). The cache module can be
customized to support any coherence protocol desired. When the cache module is
initialized, the coherence protocol is supplied to it as a pointer to a function. The
user can simulate one of the coherence protocols supported by MEMSIM or provide
a function to simulate any other coherence protocol.

The coherence protocols supported by MEMSIM include Write-Through with
Update, Write-Through with Invalidate, Write-Back with Invalidate and Write-Through
when Shared. The Write-Through caches update the main memory each time there
is a write to the cache. The Write-Through with Update protocol updates other
caches that have a copy of the data when one node writes through to memory. The
Write-Through with Invalidate protocol invalidates other cached copies when one
node writes through to memory. to memory. In Write Back caches, on a write access

to a shared line, the cache sends a request to invalidate all other cached copies and
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obtain an exclusive copy. Subsequent writes to the line are completed at the cache.
This cache has the only valid data in the system, and the line is in the dirty state.
When the cache wants to replace the line or another processor wants to read or write
this line, the data is written back to main memory. With the Write-Through when
Shared protocol, if the line is in shared state, on a write access the data is written
through to memory. At this time all other copies are updated. When this cache has
the only copy of the line, writes are completed locally. In this case also, the line is
dirty and transferred to memory later.

Caching is said to be adaptive, if the programmer has control over the coherence
protocol. MEMSIM supports adaptive caching by allowing the user to inform the
simulator that certain address ranges are associated with a particular coherence pro-
tocol. The cache type must also be initialized to be adaptive and given a default
coherence protocol. The cache module checks for the coherence type of each access
when it is referenced for the first time. If there is no entry for that particular address,
the default coherence protocol is used. The user can also specify that certain data

items are non-cacheable.

3.5 Write Buffer Module

A write buffer is used to buffer a write accesses, so that the processor requesting a
write can proceed without waiting for the write to complete. Buffering can improve
performance of the system when there is significant delay between processors and
memory modules, due to network latency and/or contention. The write buffer sends
the write transaction to the appropriate next module when the interconnection is
free. It also keeps track of forwarded write transactions until an acknowledgment
comes back. The write buffer has to be concerned with the ordering among reads
and writes and when the accesses can be issued. The implementation of the write

buffer largely determines the consistency model of the system. A brief description of
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different consistency models are given in [20]. The weaker consistency models take
advantage of the synchronization statements inserted by the programmer and attempt
to keep the system consistent only at the synchronization points. The implementation
of different consistency models in MEMSIM are confined to the write buffer module.

When MEMSIM is used without write buffer modules, the system is sequentially
consistent. The write buffer module implements two types of consistency models, pro-
cessor consistency and release consistency. When initializing the write buffer module,
the user can choose the size of the buffer and the consistency model, and supply the
module with a pointer to the function implementing the coherence protocol. The
write buffer must refer to a coherence function since there can be a coherence request
for a cache line that is waiting at the write buffer and the transaction type for this

line could change as a result of that coherence request.

3.6 Bus Module

The bus module simulates the bus connecting multiple processor nodes. The bus
module simulates the time to complete a transaction and the time spent waiting for
the bus. It can also simulate a snooping coherence protocol when the user initializes
this module with a pointer to a coherence function.

MEMSIM implements two type of bus modules, one that supports split transaction
and one that does not. A non-split transaction bus sends a request to the next
module (usually the memory) and the bus is held until the reply is sent back. A
split transaction bus sends a request to the next module and does not wait for the
reply. The bus may transfer another reqﬁest while the memory module completes the
access. The memory module will then have to arbitrate for the bus to send the repiy
back.

If the bus module is initialized with a pointer to a coherence function, the bus

module has to also complete the coherence actions of each transaction (such as in-
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validating or updating other caches). It is more inefficient to simulate snooping as
it occurs in a real system since this involves each cache module having knowledge of
every transaction on the bus. Instead, for each transaction the bus module updates a
data structure that keeps track of all the caches that have a copy of each line. When
the cache replaces a line, it calls a sub-routine to update the bus data structures.
Therefore the bus module always has the current list of caches that have a copy of a
line.

On each transaction the bus module calls the coherence routine of the bus with
the transaction type. The coherence routine returns a list of caches (if any) that
must receive a coherence message in order to complete the current transaction. For
instance when implementing the Write-Back with Invalidate coherence protocol, a
write request to a shared line will have to invalidate all copies of the line. When
such a write transaction is sent on bus, the bus module sends an invalidation message
to the caches on the list returned by the coherence routine. The write transaction
completes only after all the necessary caches have been invalidates. This achieves the

same result as a snooping coherence protocol.

3.7 Memory Module

The memory modules in MEMSIM simulate the time to access the module. The user
can specify the time to complete a read or a write access to a word in the burst mode
and in the individual access mode when the module is initialized. When the memory
module is accessed, the data is always assumed to be present. That is, page faults
are not simulated. If the user wanted to simulate virtual memory, some of the cache
data structures, could be used to maintain page tables. Also the cache routines used
to determine a hit or a miss in the cache can be adapted to determine the hit or miss

of a page in memory.
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3.8 Directory Module

The directory module is used in systems that implement directory-based coherence
protocols. This module is used in systems where processors communicate with one
another through an interconnection network that does not support an efficient broad-
cast mechanism. It may also be impossible to achieve atomic broadcasts in such
systems. Therefore a directory entry is maintained for each cache line-sized block in
memory. This entry maintains the state of the line and either a list of caches that
have a copy of the line or a pointer to such information. A more detailed description

of various directory schemes can be found in [6]

MEMSIM implements a full-map directory scheme. Each directory entry consists
of a bit vector and some state bits. The size of the vector is equal to the number of
processors in the system. Each bit in the vector is set or cleared depending on whether
or not that particular processor cache has a copy of the line. Currently Write-Back
with Invalidate coherence protocol is supported in this module. Other protocols can

be supplied by the user as a pointer to a function when the module is initialized.

MEMSIM aliows the user to map program data to a specific memory module. The
user can also classify data as private, in which case it is assumed to be mapped to
the local memory of that node. The user can map the program data by making calls
in the user program to associate a certain address range with a particular memory
module. From this information, the cache module determines the home node of a
given request, when it misses in the cache. The request is routed to the appropriate
directory module, and the directory module follows the coherence protocol to keep

the data coherent.



21

3.9 Network Interface

NETSIM is a general-purpose interconnection network simulator. The Network Interface
module is the interface between MEMSIM and NETSIM. This module essentially sim-
ulates the network ports. It converts MEMSIM packets into NETSIM packets and
vice versa. When this module is created, the user must provide the buffer size of the
network ports. There are two type of network interface modules in MEMSIM. One
of them can be used to send packets into the network and the other can be used to
receive packets from the network. .

This module is specially designed to work with directory-based architectures that
require two networks in order to avoid deadlocks. The necessity for two networks
is described in the Section 4.5. One of the two networks is used to send memory
or coherence requests to a remote node or to receive requests from a remote node
to the memory or cache module in this node. The other network is used to send
(receive) replies. Therefore each network interface module also requires pointers to

two NETSIM ports when initialized.

3.10 NETSIM

NETSIM is a general-purpose interconnection simulator. It can be used to construct
and simulate a wide range of network models, including both direct and indirect net-
works. It is designed to simulate large networks that use modern routing techniques,
such as worm-hole and virtual-cut-through routing, but can also simulate networks
that use store-and-forward routing. All the experiments described in this thesis were
done for networks using worm-hole routing. The NETSIM Reference Manual [27] and

a related paper [28] provide more details about this simulator.



Chapter 4

Experimental Setup

This chapter describes the architecture simulated. The architecture of the shared-
memory multiprocessor studied is shown in Figure 4.1. The figure shows the mesh
network, although we simulate different network topologies. A 64-node system is
simulated, with each processing node consisting of a processor, a cache, a memory, a
directory module, and a network interface. Each of these modules and the parameters

pertaining to each module are described in the following sections.

4.1 Processor

As described in Section 3.3, the processor is not simulated in detail in an execution-
driven simulation. The profiler for the SPARC architecture (which is not super-scalar)
1s used with all simulations presented in this thesis. The simulator keeps track of
simulated time in terms of the number of processor cycles executed instead of in
seconds. Therefore the processor cycle time is not directly relevant. However in order
to determine the access time of other modules in the system in terms of processor

cycles, it 1s necessary to determine the processor speed. We assume a processor speed

of 50 MHz.
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Figure 4.1: Scalable Shared-Memory Multiprocessor
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4.2 Cache

Each processing node has one cache module. The caches are 32 KB in size, 2-way set
associative and have a cache line size of 32 bytes. A survey of current workstations
shows that cache sizes vary between 16 KB and 4MB, with 256 KB being the most
common configuration. We chose to simulate a smaller cache, in order to scale down
the problem sizes and be able to run experiments in a reasonable amount of time.
Although larger set sizes in the cache can lead to better performance, it has been
shown that the maximum performance gain is obtained when going from a direct-
mapped cache to a set size of two [41]. Therefore we simulate a 2-way set associative
cache. Only data accesses to the cache are simulated. We assume that all instruction
accesses hit in the cache. This is a reasonable assumption, since experiments have

shown that even small instruction caches have very high hit rates [42].

4.3 Memory

Each processing module has one memory module. When the memory module is
accessed for a given address, the page is always assumed to be present. That is,
virtual memory is not simulated. We simulate a memory module with a 60ns access
cycle and a fast page mode access time of 40ns. This is equivalent to 3 processor
cycles for the initial access and 2 cycles for each additional word accessed. The data
paths inside each node are 64 bits wide. Therefore the memory module takes 9 cycles
to return a 32-byte cache line on a read. For simplicity we assume that the writes
take just as long. Wherever possible, the program data of applications is mapped to
the memory module close to the processor that uses the data. In Section 5.1, when
the applications used in this thesis are described, the data mapping used for that

application is also described.



4.4 Directory

The directory module is used to maintain coherence in the system. A directory module
is associated with the memory module in every node. Each cache line in memory has
a directory entry associated with it. A full bit vector directory scheme is simulated
in all our experiments. In this scheme, each directory entry consists of a vector and
some state bits indicating the state of the line. The size of the vector is equal to the
number of processors in the system. Each bit in the vector is set if the corresponding
processor cache has a copy of the line. This type of directory scheme is not as scalable
as chained directories, or a limited directory with software extensions. However, this
scheme is the most efficient in terms of the number of messages sent and the overall
access time. It has been shown that this scheme can be made more scalable by using
a cache of directory entries instead of having a directory entry for every line in the
physical memory [23].

Since the directory module is associated with the memory module, it will most
probably be implemented in DRAM technology. Most accesses to the directory data
structure are Read-Modify-Write (RMW). This can take as much as 115 ns in a
DRAM with a 60 ns access time. This translates to approximately 6 processor clock
cycles for each access. The directory also has to create and send out invalidation
messages. We assume a packet creation time of 6 cycles for the first packet and 2

cycles for each additional invalidation packet that is sent out for the same request.

4.5 Interconnection Networks

The various parameters that relate to the interconnection network include the topol-
ogy of the network, the bandwidth of the network, the size of buffers in the various
switches within the network and in the ports of the network, the speed of the network

and the type of routing.
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The different network topologies that we studied are the mesh, the hypercube and
the shuffle-exchange network. The performance of the multiprocessor is measured as
the network topology is varied. The networks are compared for two cases: (i) all the
networks have the same channel bandwidth, and (ii) all the networks have the same
bisection width. The channel width is varied between 4 bits and 64 bits (8 bytes),
for all three network topologies. The bisection width of a network is the minimum
number of wires that must be cut to divide the network into two equal halves [13].
Bisection width is a measure of network cost since the complexity of a connection
topology is wire-limited. A 64-node mesh (8 x 8 grid), has a bisection width of 16
channels. A 64-node hypercube (6 dimensions), has a bisection width of 64 channels.
A 64-node shuffle-exchange network, with a switch degree of 4 and a depth of 2, has
a bisection width of 32 channels. In order to have the same bisection width in all
network topologies, the channel width of the mesh can be four times the channel

width of the hypercube and twice the channel width of the shuffie-exchange network.

We use the wormhole routing technique to route packets between nodes. For the
mesh and the hypercube network we use the e-cube routing algorithm which is guaran-
teed to be deadlock-free and is deterministic [35]. The routing in the shuffle-exchange
network is also deterministic. Deadlock-free adaptive routing algorithms have been
proposed for wormbhole routing [35]. These algorithms use extra channels. These
may be extra physical channels or multiple virtual channels that share one physical
channel. Both of these options are more expensive to implement when compared to
deterministic routing. It remains to be seen whether adaptive routing gives better

performance for realistic workloads.

The e-cube routing is dimension-ordered routing. For example, in the mesh net-
work a packet is first routed in the X-direction until it reaches some node on the
column on which the destination node is located. Then the packet travels in the Y-

direction until it reaches the destination. In the case of the hypercube there are two
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nodes in each dimension. Starting with the lowest dimension, the packet is routed to
the other node if the bits in the position corresponding to the current dimension in
the source and destination node address differ. In the shuffle-exchange network the
routing algorithm depends on the switch size. With a switch size of 4, the routing
algorithm examines the destination address 2 bits at a time starting with the most
significant bits first. The packet is routed to the output link selected by the two bits

that is examined.

The network ports can buffer four packets. The directory module has buffer space
that is used for packets waiting for a service to be completed, and also for packets
waiting to enter the network when the port buffers are full. This in effect increases
the port buffer space. In all our experiments we use a buffer space of 64 packets in

the directory modules. The switch buffer size used in all experiments is 2 flits.

The speed of the network is assumed to be half that of the processor. That is, it
takes two processor cycles to transfer a flit between two switches. The architecture
simulated uses a pair of interconnection networks. One of them sends request packets
and other receives replies. The two networks are necessary in order to avoid deadlocks.
The network and the routing protocol in the network are guaranteed to be deadlock-
free if the messages are consumed at the output. However, due to limited buffering
in the directory module it cannot be guaranteed that the messages will always be
consumed. The use of two networks avoids deadlocks by the following mechanism.
First, the reply messages are always consumed because they are allocated dedicated
buffer space when the request is sent out. Second, the request messages are serviced
if there is buffer space in the module. The request messages are sent back as a reply
with a negative acknowledgment if there is no buffer space in the module. Since there
is not an infinite supply of requests (requests need to pre-allocate buffer space to

receive the replies), and requests are turned into replies if they cannot be serviced



28

due to lack of buffer space and replies are always received from the network, there

cannot be a deadlock.

The use of two physical networks can be avoided by multiplexing packets on a
single network or by dropping packets that cannot be delivered and using a time-
out mechanism to re-send these packets. Neither of these options are used in our

simulation for the sake of simplicity.

4.6 Coherence Protocol

The coherence protocol simulated is write-back with invalidate. All simulations are
sequentially consistent. It has been shown that better performance can be obtained
with weaker consistency models. We feel that the performance of the network under
sequential consistency should be studied, in order to understand the performance of
the network when using various weaker consistency models. The study of the effect
of network performance for a weakly consistent system is for future work.

The Figure 4.2 shows the states of a line in the cache and the transactions involved.
Each line in the cache can be in one of five states: Invalid (Inv), Shared-Clean
(ShCl), Private-Dirty (PvtDy), Shared-Clean Pending (Pnd_ShCl), and
Private-Dirty- Pending (Pnd_PvtDy). When the application is started all cache
lines are invalid. The Figure 4.3 shows the states of a line in the directory module
and the transactions involved. Each line in a directory module can be in one of four
states: Uncached, Shared, Dirty, and Pending.

In both figures the transactions are labeled as follows: a prefix P_is used when the
transaction originates at the processor. The prefix N_is used when the transaction
originates at the cache and is sent through the network to the directory and the
corresponding acknowledgment comes back from the directory. The prefix C_ is used

for all coherence requests originating from the directory module and sent to the caches.
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Figure 4.2: State Diagram of the Write-Back Coherence Protocol

All transactions are labeled either X/Y or X, where X is the incoming request, and
Yis the response.

The cache lines are initially invalid. On a read from the processor, a read request
is sent to the directory module. When the read transaction is completed, the line is in
the state Shared-Clean. On a write or a read-modify-write access from the processor,
a write transaction is sent to the directory module. If a line in the directory module is
in Uncached state, the read or the write transaction completes immediately. I the line
1s in Shared state, a read transaction can complete, whereas a write transaction will
wait until all the copies of the cache line are invalidated. If the line in the directory
module is in Dirty state, then the read or the write access cannot complete until a
coherence access to the current owner of the line is completed. This access fetches
the most recent copy of the data and also updates the state of the line at this cache

to Shared-Clean or Invalid in the case of read or a write access respectively.
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Figure 4.3: State Diagram Showing Different States of a Directory Line

There are certain coherence accesses that can happen in a system with a directory-
based coherence protocol that will not happen in a snoopy coherence protocol imple-
mented on a bus. This is due to the lack of global knowledge in a system with
distributed memory. When a cache line load is pending from a read access, the cache
can get a coherence access to invalidate the line. This can happen if the network does
not guarantee ordered delivery, which is not the case in our simulation. This can also
happen due to the presence of two networks in the systems. In this case the line is
invalidated. When the reply arrives, the pending read is allowed to proceed but the
line is not loaded in the cache. Any subsequent access to the same line would miss
because the line was already invalidated.

When the cache is pending due to a write access, it can get an invalidate request.
The directory might have sent the invalidate request before the directory processed
this pending write or after. In the coherence protocol simulated, the directory tags
the request such that the cache can determine whether this request came before or

after the directory sends a reply to this module. In the former case it acknowledges
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the coherence request and does not change its state (transaction 16 in Figure 4.2).
This is because, the cache is certain that when the pending write returns the cache
state will be restored. In the case that the request to invalidate the cache line was
sent by the directory after the reply to this cache was sent out, the cache cannot
acknowledge the invalidate access (transaction 17 in Figure 4.2). This is because the
pending write access will change the data in the cache line. In this case the cache
sends a message to the directory to retry the invalidate access.

This chapter has described the various parameters used in the simulations. The
architecture simulated has 64 nodes, with a processor, a cache, a directory, and a
memory module in each node. The system supports a write-back with invalidate

coherence protocol, a full bit map directory, and sequential consistency.



Chapter 5

Results

This chapter presents the results of our study on the effect of the interconnection
network on the performance of shared-memory multiprocessors. The architecture
simulated and all the parameters of the architecture were presented in Chapter 4. Four
network topologies: the mesh, the hypercube and two shuffle-exchange configurations,
are studied at various network bandwidths. Section 5.1 gives a brief description of the
applications used in our study. The following sections present the results obtained

and a discussion of these results.

5.1 Benchmarks

The benchmarks used should be representative of the projected workloads for the
described architecture. The architecture is a scalable shared-memory multiprocessor.
We expect the architecture, to be used like current message-passing multiprocessors,
for compute intensive applications. The following algorithms were chosen from the
numerical and non-numerical domains of study: Matrix Multiplication, Successive
Over Relaxation, Fast Fourier Transform and Sorting.

Most of these algorithms use barriers for synchronization. Tournament barriers
were implemented since they have rela,ti:vely lower latency for the completion of the
barrier ([24]). Conceptually, to achieve a barrier using this algorithm, processo'rs
start at the leaves of a binary tree with a fan-in of two. One processor from each
node continues up the tree to the next “round” of the tournament. The processor
reaching the root of the tree writes to a global ﬂag on which all the other processors |

32
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are spinning. By contrast, the central barrier is implemented by having all processes

increment a single global counter, which causes a lot of network traffic.

5.1.1 Matrix Multiplication (MMULT)

The multiplication of two matrices involves mostly read-only sharing of data. Each
process calculates the result for a square portion of the result matrix. Each process
reads an eighth of each of the two input matrices in order to calculate a sixty-fourth
of the result matrix. In this program one of the input matrices is transposed before
the multiplication in order to increase locality in the caches. This way both matrices
are accessed across rows. Multiplication of two 128x128 matrices is simulated.

The portion of the result matrix that is computed by each processor is also al-
located to the memory module associated with that node. The two input matrices
are allocated in similar sized blocks to each node. About seven-eighths of the total
portion of the two input matrices read by a process are allocated on nodes that are
remote to that process. A single barrier is used in the program to synchronize the

processes after the transpose is completed.

5.1.2 Successive Over Relaxation (SOR)

This is an iterative method of solving partial differential equations (see [38] for a de-
scription of the algorithm). Each computation depends only on its nearest neighbors.
Hence active sharing is limited to the boundary elements. The program partitions
data by blocks of rows. This program uses two matrices. During each iteration the
data is read from one matrix and the results written to the next. During the next
iteration the roles of the two matrices are switched, reading from the matrix previ-
ously written to and writing to the other matrix. We ran this program for a 256

x 256 matrix. Each data item is a double-precision floating point value. We ran



34

ten iterations of the program. While this is not enough to obtain convergence, the
behavior of the algorithm is identical in all iterations after the cache has been filled.

The two matrices are partitioned by rows and allocated to the different memory
modules. Four rows of each matrix are allocated to each memory module. Data
is shared between neighboring processors in SOR. The synchronization is achieved
by the use of locks. There is a lock associated with each shared row. Each lock is
accessed by only two processors. This makes the lock-based implementation faster

than having a barrier at the end of each iteration.

5.1.3 Fast Fourier Transform (FFT)

The FFT program is based on the Cooley Tukey Radix-2 Decimation in Time algo-
rithm. A general description of the algorithm can be found in [38]. The computation
has logs N stages, where N is the number of data points for which the FFT is com-
puted. The processors synchronize with the help of a barrier at the end of each stage,
for the first log, P stages, where P is the number of processes doing the computa-
tion. The last logoN — log, P stages do not need synchronization since each process
operates on the same data in every stage thereafter. Each data point consists of
two double precision numbers, one for the real part and the other for the imaginary
part. The experiments in this thesis were conducted for a data set size of 32,768 (21%)
complex numbers.

The program uses two data sets, one of them holding the actual numbers to be
transformed and the other holding a pre-computed set of sine values that is used
during the computation. The entire data set is divided into sixty-four portions and
the first portion is allocated to node zero and so on. During the first log, P stages of
the program, the processes are computing the transform on data that is not allocated
at the local node. In this phase there is a lot of data movement across the network.

During the remaining log. N — log, P stages of the FFT, the processes are operating
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Figure 5.1: Communication Pattern of the FFT Algorithm

on data allocated to the local node. If this data fits in the cache, it will have a very
high hit rate. Even if it does not, the miss penalty will be quite low. Figure 5.1 shows
the communication pattern of the algorithm. One can see how this would map very
well on a hypercube. The figure does not show the communication pattern of the

pre-computed sine values.
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5.1.4 Sorting (Bimerge)

Each process in this program sorts a pre-allocated sublist. The processes then proceed
to merge the sorted sublists two at a time. A description of the algorithm can be found
in [43]. During the merge phase all processors participate in the merging instead of
a naive algorithm where in each subsequent merge phase only half the number of
processors are involved in merging two previously merged sublists. The merge phase
involves log, P stages and there is a barrier synchronization after each stage. During
each merge phase, the two lists that are being merged are split into as many sublists
as there are processors participating in that merge phase. Then the cross over points
between the sublists are determined and a parallel algorithm determines a pair of
sublists that need to be merged. The merging of the pair of sublists that crossover is

straightforward. We ran simulations for a data set size of 65,536 (2!%) data points.

The data set is partitioned into 64 portions. The first portion is allocated to the
memory module in node 0, etc. Each processor first sorts the array local to that
processor. During the merging the amount of data communicated and the distance
traveled by the data is dependent on the data itself. Since the merge phase does not

update in place, there are actually two arrays used in the program.

The Table 5.1 gives a brief description of each program and the data set size.

Application| Problem Shared Data Program Description
Size Space
MMULT 128 x 128 196608 bytes Matrix Multiplication
SOR 256 x 256 1048576 bytes | Successive Over Relaxation
BIMERGE 2!¢ (65536) | 524288 bytes | Merge Sort
FFT 21% (32768) | 786432 bytes | Fast Fourier Transform

Table 5.1: Applications Used in Study



5.2 Effect of Network Topology

This section presents the results of our study on the effect of the interconnection
network topology on the performance of shared-memory multiprocessors. A 64-
processor system was simulated. The network topologies studied were the hypercube,
the mesh and the shuffle-exchange network. We ran experiments for two types of
shuffle-exchange networks. In one case each switch was a 4x4 crossbar (SE4). This
reduced the total number of stages in the network to 3. The other network used a
2x2 crossbar switch (SE2), making the total number of stages equal to 6 for a 64-
processor network. These particular topologies were chosen because we feel that they
represent three very different types of networks. The mesh and hypercube are direct
networks. They represent two ends of the spectrum of the group of networks called
direct k-ary n-cubes. The shuffle-exchange network is an indirect network. It was
chosen to see how it compared to some direct networks. The switch size of the net-
work in a shuffle-exchange network trades contention against latency. We simulated
two different switch sizes to see how this fares in a shared-memory multiprocessor.
The performance of multiprocessors having different network topologies, each with
constant channel width, were studied. The performance of the multiprocessor when

the networks have a constant bisection width was also investigated.

5.2.1 Simulation of Networks with Constant Channel Width

The Figures 5.2 to 5.5 show the performance of the four different programs for differ-
ent network topologies. Each graph has four curves showing the performance for the
hypercube, mesh and the two shuffle-exchange networks. Each curve shows the execu-
tion cycles taken for each network topology when the channel width is varied between
4 bits and 64 bits. Table 5.2 shows the relative performance of these applications at

a channel width of 4, 16 and 64 bits for the different network topologies.
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Program | HCube / | HCube / | HCube / SE4 / SE2 /| SE4 /

Mesh (%) | SE4(%) | SE2(%) | Mesh(%) | Mesh(%) | SE2(%)

Link FFT 56.90 15.23 12.82 26.56 28.09 | -2.09
Width BIMERGE 14.00 18.03 11.44 -3.53 2.25 | -5.58
4 bits | SOR 0.85 24.32 2.93| -23.28 =2.07 { -17.20
MMULT 2.28 2.33 4.09 -0.04 -1.73 1.68

Link FFT 41.72 4.71 9.48 26.11 22.75 4.50
Width BIMERGE 3.60 2.56 4.87 1.00 -1.23 2.20
16 bits | SOR 1.57 0.75 2.48 0.81 -0.90 1.72
MMULT 0.57 0.05 0.12 0.51 0.44 0.07

Link FFT 18.47 ~-2.91 6.38 18.04 10.20 9.56
Width BIMERGE 0.26 ~-1.06 | 4.34 1.32 -4.70 5.46
64 bits | SOR 2.31 -1.94 0.99 14.15 1.29 2.99
MMULT 0.70 0.01 0.01 0.68 0.68 0.00

Table 5.2: Comparing the Performance of Shared-Memory

Multiprocessors with Different Network Topologies

Execution Cycles
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Figure 5.5: Performance of Different Network Topologies for MMULT

The following paragraphs first give an overview of the trends seen in the graphs.
Then we provide a detailed explanation on a per application basis as to the causes of

these trends.

The following is obvious from examining the four graphs

e Overall the hypercube network does better than the other two networks. Even
when SE4 does better than the hypercube, the difference in performance is

under 3%.

e The differences among the three networks are the most pronounced at a link

width of 4 bits.

e When the link width goes up to 16 bits and higher, in three out of the four
applications the differences in performance among the networks reduce to less

than 3%.
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Hypercube Versus Mesh: A hypercube network with the same channel width
as a mesh network has a comparatively lower diameter and higher bisection width.
However, only two out of the four programs that we ran, FFT and Bimerge, showed
significant improvement when using a hypercube network over a mesh. SOR and
MMULT show almost no performance improvement in using the hypercube. This is
because the FFT and Bimerge have communication patterns that are able to use the
hypercube effectively. SOR, on the other hand has nearest neighbor type communi-
cation. In the case of MMULT, every eight processors read the same sixteen rows of
the two input matrices, which is distributed evenly across the eight memory modules.
The communication pattern of MMULT for the hypercube and the mesh networks are
shown in Figures 5.8 and 5.9 respectively. This pattern does not map well on any of
the network topologies. The amount of communication with respect to computation
is also lower for MMULT. Therefore, MMULT performance is almost the same in all

the networks.

Hypercube Versus Shuffle-Exchange Network: The SE4 does worse than
the hypercube when the channel widths are small. The difference in performance is
significant for the FFT, Bimerge and SOR. The hypercube network is better able to
handle contention. When channel width is increased to 32 or 64 bits, the shuffle-
exchange network does slightly better than the hypercube. This is because at this
bandwidth there is hardly any contention in the network. The number of hops taken
by the packet is higher on the hypercube for some applications and due to the dif-
ference in latency the shuffle-exchange network starts performing better. This shows
that the SE4 performance degrades faster than that of the hypercube as the band-

width is reduced.

The SE2 also performs worse than the hypercube for all of the applications. The
difference in. performance is significant for FFT and Bimerge. Unlike the SE4 network,

the SE2 network never outperforms the hypercube. The maximum number of hops
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in the hypercube is 6. The average number of hops can be expected to be lower. The
number of hops taken by a packet in this shuffle-exchange network is 5. With negligent
contention in networks with higher bandwidths, the network latency depends on the
size of the packet (same for all network topologies) and the number of hops taken by

the packet.

Shuffie-Exchange Network Versus Mesh: There is a significant difference
in performance between these two networks only for FFT and SOR. In the case of
the FFT, SE4 and SE2 both perform better than the Mesh. In the case of SOR the
mesh network performs better. We will discuss this program dependent behavior in

the following paragraphs.

FFT: Asseen in Figure 5.2, the hypercube out performs all the other networks.
The mesh network performs the worst. Analyzing the program behavior, we find that
a significant fraction of the misses are due to accesses to the sine and cosine values. A
single array is initialized at the start of the program and the sine values are accessed
from the beginning of this array and the cosine values start at a quarter of the way
down this array. During the first stage a process reads consecutive locations of the
sine and cosine array. Therefore each cache line fetch services four sine or cosine
values. During the next stage the process reads every other sine value and so on. In
the final stage it is reading values 16 K apart in the array and there are only 32 K
data items. At this point there is high reuse of data. However, in the middle few
iterations the process has to access almost all the nodes in order to complete all the
sine and cosine accesses. Qut of the four applications, FFT has the lowest cache hit

rate (84%).

The request of each process to fetch these sine and cosine values is distributed
across nodes 0 through 47. Since the latency of a cache line fetch in the case of a

miss varies between 1600 cycles (channel width of 4) and 60 cycles (channel width of
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64), it might be more efficient in this architecture to calculate the sine values instead

of using pre-computed values.

There is also remote accesses for the actual data on which the transforms are
calculated. In this program, there is a large amount of data movement in the first
logs P stages of the program. In each stage each process may work on data that is
completely different from the data it worked on in the previous stage. The datais also
dirty at some other cache node and has to be fetched from there before the process can
proceed. There is a barrier at the end of each stage. After a barrier most processes
have a miss and they all send out a request at the same time, loading the network.
Due to the global nature of the data accesses (i.e. each process sends data requests
to almost every memory module in the system), the mesh network performs poorly
for this application. The shuffle-exchange does not perform as well as the hypercube,
because the accesses are not equally distributed to all nodes. The cosine array starts
a quarter of the way into the entire array. Sine values are accessed from nodes 0-31
and cosine values are accessed from nodes 16-47. Therefore there are more accesses
to nodes 16-31. Even among these nodes access is not uniform. The shuffle-exchange

network suffers from hot-spot contention.

Bimerge: As seen in the Figure 5.3 the hypercube network performs better than
the other networks. The SE4 does slightly worse than the mesh at lower channel
widths. The SE2 does slightly better than the mesh at the lower channel widths.
Both of these trends reverse at higher channel widths. But mesh, SE4 and SE2

network performance is within 5% of each other.

The amount and distance of data movement in this application is dependent on the
data. For all the simulations the same data set was used, by using the same ra,ndo.m
number generator with the same seed. Due to the global communication pattern in
this program, we expected the shuffle-exchange networks to perform better than the

mesh networks as it did in FF'T. But this was not the case. Examining the simulation
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more closely we find that memory module 0 has four times as many accesses as any
other module. The program uses some index arrays that are the size of the number of
processors. We did not allocate these small data structures to a specific node and by
default it was allocated to node 0. We could not allocate one element of each array
to a specific memory module, since the data has be allocated on cache line size blocks
in the simulation. In a real system we expect this to be allocated in page size blocks,
in which case this particular program would run as it did in our simulation. Since all
nodes are trying to reach node 0, the shuffie-exchange networks experience hot-spot
contention and the performance is not as good as the mesh. Pfister and Norton show
in [36] that hot-spot traffic in multistage networks can produce effects that severely
degrade all network traffic. This effect is shown to be independent of switching mode

and topology of the multistage network.

SOR: As seen in the Figure 5.4, the performance of the hypercube, mesh and SE2
networks are close. The Figure 5.6 shows the nearest neighbor communication on 64-
processor mesh. While most network accesses take one hop, accesses from processes
on the edge of the mesh have to take 8 hops to get to its nearest neighbor. The
Figure 5.7 shows the communication pattern of the SOR on a hypercube network.

The figure shows a 8-processor sub-cube.

The performance of SE4 is worse than mesh, hypercube and SE2 for lower chan-
nel widths. As the channel width increases, SE4 starts to perform better than mesh
and SE2. This application has nearest neighbor communication and uses locks for
synchronization. The locks are also shared only by nearest neighbors. This applica-
tion maps very well on the mesh network. Therefore in this case the mesh network
performs as well as the hypercube network. In fact the average number of hops taken
by a packet is slightly higher for the hypercube than the mesh. However, this near-
est neighbor communication affects the SE4 very adversely. There is a high level of

contention in each switch for the smaller networks (4 bits and 8 bits). This network
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Figure 5.6: Communication Pattern of SOR on a Mesh Network
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Figure 5.7: Communication Pattern of SOR on a Hypercube Network

does worse than the mesh network for these two cases. In SE4, all messages going
to the first quarter of the destination nodes (nodes 0-15), leave the first stage switch
on link 0, the second quarter (16-31) use link 1 and so on. With nearest neighbor
communication, all four input processors at a switch will want to take the same link

out, causing contention. In SE2, only two processors contend at each switch.
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It is interesting that the shuffle-exchange network starts performing better than
the mesh at a channel width of 16 bits. The average number of hops in the mesh
is 1.9, which is slightly less than that of the shuffle-exchange. Our simulation shows
that the average network time for the mesh is less than that of SE4 while the standard
deviation is higher. Also, the average number of accesses is lower in the simulation
with the SE4 network, implying that the processes spin-waiting on a lock gain access
to the lock faster in the case of the simulation with the SE4 network. Therefore, it

starts performing better than the mesh network.

MMULT: As seen in Figure 5.5, SE2 performs worse than the other networks.
SE4 and MESH are clustered close together, and as usual the hypercube network
does better. However, the difference in performance between hypercube and SE2 is
only 4% even at the 4-bit link width. Figure 5.8 shows the traffic pattern to fetch
one row of the first input matrix in a 8x8 mesh network. The figure shows only the
first row of the mesh. Each arrow in the figure involves a fetch of 16 data values or
two 32-byte cache lines. Figure 5.9 shows the traffic pattern in a hypercube network.
The figure shows the first 8 nodes of the 64-node hypercube and shows only the fetch
from processors 0 and 1. It should be noted that all the communication is within a
sub-cube of size 8. The connectivity of the hypercube is not useful in this case. Due

to deterministic routing the Z-dimension of the sub-cube is congested.

The traffic pattern for this program does not map particularly well on any one
network. SE2 does worse than the other networks because of the higher number of
hops. At a link width of 8 the differences among the different networks are negligible.
The reason these differences seem more inflated in the graph is because MMULT hz;,s
the least gain in increasing the link width. Therefore the range of the y-axis in the
MMULT graph is lower than in the other graphs. We will discuss the performance of

different link widths in Section 5.3.
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In all our programs at least a sixty-fourth of the entire data set fit in the cache. If
the program accesses the entire data set then it is going to have some misses. Also,
care was taken to place the data close to where it might be used. This was done
wherever obvious and for the larger data sets. Whenever a significant performance
penalty was observed in the program, an effort was made to correct this. Examples
include, the use of locks instead of barriers in the SOR program, the transposition
of one of the input matrices in MMULT, and the use of an FFT program that was

analyzed and optimized for shared-memory multiprocessors.

We did not implement an adaptive caching scheme which could potentially improve
performance. In such a scheme, each data object in the program is associated with
a different coherence protocol that is most efficient for the sharing pattern of that
object. We did not implement this because in general it would take a significant effort
by the programmer to analyze the program and associate certain data objects with a
particular coherence protocol. Also, few systems currently support adaptive caching

protocols.

Even using such optimized programs the hypercube network performs better. We
believe that in the use of a shared-memory multiprocessor, there will be some pro-
grams that do not always hit in the cache and programs that are not optimized
to perform well for that particular architecture (in the interest of having portable

programs). In such cases we expect the difference in performance to increase.

In order to test this we looked at execution times for the matrix multiply algorithm
in which the second input matrix was not transposed. In this case the hit rate of the
cache is very low (66%). This is because the second input matrix is accessed column-
wise. By contrast the hit rate when the matrix is transposed is 99.4%. Figure 5.10
shows the performance of the application for three network types: hypercube, mesh
and SE4. The performance difference between hypercube and mesh is 59% at a

link width of 4. The hypercube also performs better than the SE4 by 17 %. For
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Figure 5.10: Performance of Different Network Topologies for Inefficient
MMULT

the optimized program the improvement in performance with the hypercube was 2%
compared to both mesh and SE4. The hypercube network is better able to tolerate
the sustained high load. The performance are quite disparate even at a 64-bit link
width (28% performance improvement for the hypercube over mesh).

We summarize the results for the effects of different network topologies when the

channel bandwidth is constant as follows:

e The performance difference between the different networks is primarily due to
difference in throughput or contention in the network. The average number of
hops taken by a packet is 5 or below for all applications in all networks. The
difference, between various network topologies, in average number of hops is 3
or less. We expect this difference to increase as the number of processors in the

system increases, also increasing the performance difference.



o The hypercube network outperforms all the other networks.

o The difference in performance is significant only for 4-bit and 8-bit channel

widths for three of the programs.

o The performance of a shuffle-exchange network with a switch size of 4 is sus-
ceptible to hot-spot contention when there is nearest neighbor communication

or when all processors are trying to access a single memory module.

o The shuffle-exchange with a switch size of 2 is not as susceptible to hot-spot

contention as the one with a switch size of 4.

o We expect these performance differences to increase when the cache hit rate is
lower, due to capacity misses or because the application is not optimized for

this architecture.

o The latency of a cache miss varies between 1500 cycles and 50 cycles for the
different programs at the various channel widths. Due to these large latencies,
the network performance affects the system performance significantly even when

the cache miss rate is quite low.

5.2.2 Simulation of Networks with Constant Bisection Width

In the previous sub-section we compared the performance of shared-memory multipro-
cessors with mesh, hypercube and shuffle-exchange networks. The cost of building
each of these networks is very different. The bisection width is a measure of the
network cost. Since VLSI is wire-limited, the bisection width accounts for the wire
density of the network. In this case assuming the width of the channel is 1 bit, the
bisection width of the mesh network is 16, the bisection width of the hypercube is
64, and the bisection width of SE4 and SE2 is 32. In order to make bisection widths
equal, the width of each link of the mesh must be four times the link width of the
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hypercube and two times the link width of the SE2 and SE4. Table 5.3 shows the
width of the mesh and the link width in other networks.

Figures 5.11 to 5.14 show the comparison of network performance of the different
networks when the bisections widths are constant. The x-axis in the figure shows
the link width of the mesh network. As seen in these figures when the cost of the
network is considered, the mesh network performs much better than the hypercube or

the shuffle-exchange network. The difference in performance is least when the mesh

Mesh | HCube | SE4 | SE2
8 2 4 2

16 4 8 4
32 8 16 i6
64 16| 32| 32

Table 5.3: Equivalent Link Widths
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Figure 5.11: Performance of Different Network Topologies with Constant
Bisection Width for FFT



3 T T
X

\

\

\

2.5+ \
\
Y
A
\Y
s \
g '
S %
2 .
=3
5
Q
21.5p
1 -
0.5, 4 .

= % - Heube
*—+= Mesh

Figure 5.12: Performance of Different Network Topologies with Constant

Bisection Width for Bimerge

o
N

30 40
Link Width in bits

70

Execution Cycles
2 2 o . b
[N [2) a n o

T T T T T
»
-
-~
-

-
=y
T

=~ %= Hcube |

r=+= Mesh
X SE4
—6— SE2

Figure 5.13: Performance of Different Network Topologies with Constant

Bisection Width for SOR

30
Link Width in bits

70



16¢ \ — %= Heube |

\ ‘=+- Mesh
\ X SE4

Executlon Cycles
-
[4;]

: L L L
0 10 20 30 40 50 60 70
Link Width in bits

Figure 5.14: Performance of Different Network Topologies with Constant
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has a link width of 64 bits. This corresponds to the flattening of the curve at higher
link widths in the earlier graphs with constant link widths. However, even though
the performance gap is closing, the corresponding mesh network still performs better
than the corresponding hypercube network. The mesh network will perform better if
for the same cost one can build a mesh with wider links than a hypercube.

As the number of processors increases, the bisection width of the hypercube and
the shuffle-exchange grows proportional to P, the number of processors. The bisection
width of the mesh grows as v/P. Therefore for a system with a larger number of
processors, the differences in performance among these networks for the same bisection

width are going to increase.



5.3 Components of Latency of a Cache Line Fetch

In this section we analyze the various components of the total latency of a cache line
fetch and the effect of the network link width on these components. In the previous
section, when comparing the performance of different network topologies, we saw that
when network cost is taken into consideration the mesh network performs better than
the other networks. Therefore in this section we will only analyze message latency
for the mesh network. The latency seen at the cache on a miss may include one or

more of the following.

o In the case of a remote access, the time to send request through the request
network. This includes waiting time in the queue to enter the network, blocking

time in the network, and the network latency.

e Time spent in the queue waiting for service at a directory module and time

spent accessing directory data structures.

o In case there is a pending access to this line, the time spent in the directory

module buffer for this access to complete.

o In case a coherence transaction is needed before this access can complete, the
time spent waiting in the directory module while it creates a packet, sends it

to the cache module, and awaits a reply.

e In case a transaction needs a memory access, time spent in the queue waiting

for service at the memory module and time spent accessing the memory module.

e Time taken to get the reply back to the cache module. This involves another

network access in the case of a remote access.

e In case there is no buffer space in the directory module, the time spent re-trying

the request.
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e In case this request replaced a dirty line in the cache, the time spent in flushing
out the dirty line before this access can be forwarded. In our simulation, since
we did not use a write buffer, this request is not forwarded until the dirty line

has been returned to memory and an acknowledgment is received.

As explained in Section 4.5, the architecture simulated uses a pair of networks
in order to avoid deadlocks. One of the networks is used to carry requests and the
other is used to carry replies. The request network carries requests for a cache line,
coherence requests, and the dirty line on a cache line flush. The reply network carries
replies from the directory to the cache and coherence replies from the cache. All
packets in the network are one of two sizes. The larger packets carry data back from
memory or carry da.ﬁa from cache to memory on a line flush or in response to a
coherence request. The size of this packet is 39 bytes: 32 bytes for the data, 4 bytes
for the address, and 3 bytes for the request type, source id, and destination
id. The small packets carry a request or just an acknowledgment in reply. This packet
is 7 bytes long.

The average packet size going through a network varies for each application, de-
pending on the amount of coherence needed for the application. Table 5.4 shows the
the number of flits in the large and small packets for the various link widths. This
table also shows the latency of the packet when the packet travels one hop. Each
additional hop increases the latency by 2 cycles. The latency includes 2 cycles to
enter the network and 2 cycles to leave the network. Since the latency is proportional
to the sum of the size of the packet and the number of hops, the latency decreases by
less than half as the network link width is doubled.

Figure 5.15 shows the sum of average network latency for the request and reply of
each cache miss accessing a remote node, for the four applications. This includes the
blocking times in the network. Overall the network latencies for the different appli-

cations are close to each other. The differences in these curves are due to differences



Link Width Small Packet Large Packet
Num Flits | Latency | Num Flits | Latency
4 14 32 78 160
8 7 18 39 82
16 4 12 20 44
32 2 8 10 24
64 1 6 5 14

Table 5.4: Latency of the Two Packet Sizes at Various Link Widths
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Figure 5.15: Sum of Average Network Latency For Request and Reply in
a Mesh Network

in the average number of hops and the differences in blocking time. The change in
latency decreases as the link width increases. At lower network link widths, networks
are more likely to have contention inside the network. As the link width increases,
the network contention and the size of the packet reduces. The latency due to the

number of hops becomes a significant fraction of the total latency.
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Figure 5.16: Sum of Average Network Latency and Port Waiting Time
For Request and Reply in a Mesh Network

Total network time includes the network latency shown in Figure 5.15 and the
network port waiting time, which is the time spent by the request waiting to enter the
network. The effect of the average network time of a packet on the overall performance
of an application, depends on the percentage of packets that access a remote node.
Figure 5.16 shows the total network time which accounts for the percentage of requests
that are to remote nodes. This is done by multiplying the total network access time
(latency + port waiting time) by the fraction of accesses to a remote node. The
fraction of accesses to a remote node is 85% in FFT, 44% in Bimerge, 78% in MMULT
and 42% in SOR. While the network latency of all applications are close to each othe'r
in Figure 5.15, Figure 5.16 shows that the access times are quite disparate at the lower
link widths. The FFT has the highest latency and SOR has the lowest latency. This
is because the packets in SOR face almost no blocking either at the ports or in the
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network. FF'T on the other hand has higher blocking times and higher wait times at
the port. For FFT at a link width of 4 bits, the port waiting time is almost three
times the average network latency. Accesses to local node may also wait at the port
queues. The directory puts its replies in a FIFO buffer. When the port buffer is free,
the packet at the head of the FIFO is moved to the port queue. A reply to the cache
in the same node as the directory is also added to the FIFO and can reach the cache
only when it reaches the head of the FIFO.

We discuss the effect of increasing the link widths on the remaining components

of the cache miss access:

o We find that the time spent waiting for service at the memory module and the
directory module is quite small. But there is a trend in all applications for
these waiting times to increase as the link widths are increased. This is because
the network becomes less of a bottleneck in the system as the link widths are

increased.

o The decrease in the average waiting time for a cache line flush, as the link width
increases, depends on the percentage of remote accesses. FFT has the highest
percentage of accesses (13%) that have to wait for a cache line flush before

sending out the current access.

o The time spent in the directory module for a coherence access to complete
depends on the network latency. It also depends on whether the coherence
request has to bring back a dirty line and write it to memory. In Bimerge and
SOR a large percentage of the accesses (64% and 71% respectively) have to wait
for a coherence access to complete. In FFT and MMULT less than 10% of the

accesses have to wait for a coherence request.

o When a request has to wait for a conflicting access to complete, the earlier access

could be accessing memory or it could be waiting in the directory module queue
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waiting for a coherence request to come back. MMULT has mostly read sharing
and all processes sharing a data item access it in the same order. Even for this
program, the percentage of accesses that have to wait for a conflicting access is
quite low at a link width of 4 bits. This value goes up to 10% at a link width
of 16 bits and 29% at a link width of 64 bits. At the smaller link widths, the
request spends most of its time in the network and it is less likely to conflict in
the directory module. All other applications have a low percentage of conflicts

at all link widths except 64 bits.

o The time spent to re-try a request because of a full directory buffer is low.
Bimerge has the highest percentage of retries (1%). This is because bimerge
has a disproportionate number of accesses going to module 0. However, even
this value is only 1%, indicating that there is sufficient buffer space allocated in
the system. This percentage goes up slightly at a link width of 64 bits.

Figure 5.17 shows the sum of the time spent in all of the above mentioned com-
ponents for the 4 applications. As seen in the figure, bimerge has a higher memory
access latency than the other applications. All processes in this application read and
write to a few small arrays, and this conflict causes the high access time. The accesses
have to wait at the memory module while a coherence request is sent to the current
owner of the cache line. We also see in the figure that all applications show increased
memory access latency when the link width is increased from 32 bits to 64 bits. For
MMULT the latency starts increasing at 16 bits. When the network access latency
decreases, the rate of request at the memory module goes up. Therefore the waiting
time in all the queues in the directory and memory sub-system increases. We expect
this trend to get worse if the memory module gets slower. Although the FFT curve
seems flat, there is a 3-cycle increase in latency for a link width of 64 bits compared

with a link width of 32 bits.
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Figure 5.17: Average Service Time and Waiting Time at Directory and
Memory Module in a Mesh Network
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Figure 5.18: Overall Cache Miss Access Latency in a Mesh Network
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Link FFT | BIMERGE | SOR MMULT
Width b (% 9 )]
8/ 103.90 | 99.12] 57.06| 90.97
4

16 / 100.58 | 82.74| 43.51| 63.44
8

32/ 86.43 | 52.27| 21.46| 39.13
16

64 / 75.13| 29.07 6.14| 18.84
32

Table 5.5: Percentage Improvement in Cache Miss Latency with a Mesh
Network When Link Width is Increased

Link FFT | BIMERGE | SOR MMULT
Width (0 )| B 63
8/ 96.63 | 69.24| 15.29| 10.46
4

16 / 85.56 | 45.51| 10.02 4.80
8

32/ 64.05 | 22.84 3.31 2.17
16

64 / 46.06 9.68 1.12 0.76
32

Table 5.6: Percentage Improvement in Performance with a Mesh Network
When Link Width is Increased

Figure 5.18 shows the latency seen at the cache module on a miss. All the curves
in this figure are obtained by a sum of the corresponding points in Figures 5.16 and
5.17. Table 5.5 gives the percentage improvement for this latency as the link width
is increased. Table 5.6 gives the percentage improvement in the overall execution
times. As seen in Table 5.5, FFT has the most improvement in latency when the link
width is increased. This is followed by Bimerge, MMULT and then SOR. Table 5.6
shows that SOR has a greater overall performance improvement than MMULT when
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the link widths are increased. Also, the percentage improvements seen for the cache
latency are not reflected in the overall performance. The improvement in the overall
performance depends on both the cache hit rate and the cache miss latency.

Cache miss rate is calculated as the ratio of the number of accesses that cause
a cache miss to the total number of accesses to the cache. However, because the
processes spin on the lock variable while another process owns the lock, the total
number of accesses to the cache is not entirely program-dependent. When the network
has a smaller link width and hence longer network access latencies, it takes longer to
propagate the cache line invalidates caused by unlock. The processes spin for longer
time and cause total number of accesses to be higher. These accesses almost always
hit in the cache and the hit rate in such cases will seem high. In order to determine
the cache miss rate independent of the network architecture, we ran a simulation with
0 network latency and 1 cycle to access the memory module and directory module.

From our experiment we determined that when running FFT, caches have an
average hit rate of 84%. The hit rate for BIMERGE is 96.7%, the hit rate for SOR
is 94.9% and the hit rate for MMULT is 99.3%. Since MMULT has the very high hit
rate, its overall performance is not as affected by changes in cache miss latency. FFT
which has the lowest cache hit rate is most affected by the cache miss latency and
hence the changes in link width.

Irn conclusion

o The link width of 4 bits does not perform well. All applications show a signifi-

cant improvement in performance when the link width is increased to 8 bits.

o There does not seem to be a case to use 64-bit wide links in a system with a
32-byte cache line. With a link width of 64 bits the network is no longer the
bottleneck. The requests spend more time waiting in queues in directory or
memory modules than with the network with 32-bit wide links. There is little

net gain in performance when going from 32 bits to 64 bits. The performance
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improvement of 64-bit links over 32-bit links is greater than 10% only for one

application.

o With 8-bit wide links, there is a significant amount of blocking in the network
and at the ports for some applications. FFT and Bimerge show an 85% and a
45% improvement respectively, and SOR shows a 10% improvement when the

link width is increased from 8 bits to 16 bits.

@ The choice between 16-bit wide links and 32-bit wide links is not as clear.
For two out of the four applications (SOR and MMULT), the performance
improvement in going to 32-bit links from 16 is less than 5%, while the other
two applications have a 22% and a 64% improvement. When we look at the
increase in time spent in the memory sub-system (see Figure 5.17), it is again
split along the same lines. For two applications, this waiting time goes up when
we increase link width from § bits to 16 bits. For the other two applications,
this value does not start increasing until the link width is 32 bits. We need
to study more applications before any conclusion can be made about these two

link widths.

e A weakly consistent system will increase the load in the system, in which case
a larger network bandwidth will be more useful. On the other hand, if the
relative speed of memory with respective to the processor is lower, then lower

bandwidths are adequate.

5.4 Effect of Memory Speeds on Performance

In the previous section, we saw that at a link width of 64 bits the performance of
the multiprocessor is limited by the memory sub-system rather than the network.
This motivated us to investigate what happens if the memory subsystem gets slower

with respect to the network. In the previous section, we used a processor speed
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of 50 MHz and a memory with an access time of 60 ns. With 64-bit wide data
paths inside a node, this meant a cache line of 32 bytes could be read in 10 cycles.
While 60 ns DRAMs are available in current workstations, the processor speeds in
current workstations are around 100 MHz. There are also some 150 MHz processors
in workstations using the same speed DRAMs. We ran two sets of simulations, one
with 20 cycles latency to fetch a cache line from memory and the other with 40 cycle
latency. We kept the proportion of network to processor speeds the same as before
(2:1). The directory access time was also increased since the directory module is also
implemented in DRAM technology.

Figures 5.19 and 5.20 show the execution times for the three memory speeds for
the mesh network for FFT and SOR, respectively. FFT does not show significant

differences in performance for the different memory speeds at link widths of 4 and
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Figure 5.19: Performance Difference in FFT as the Memory Speeds are
Increased
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Figure 5.20: Performance Difference in SOR as the Memory Speeds are
Increased

8 bits, whereas for SOR the performance difference is substantial at all link widths.
MMULT and Bimerge have performance differences which are between these two
extremes.

Comparing the performance with slower memory with the original performance,
we find that as long there is a significant blocking time in the network and the ports,
this time is redistributed when the memory is slower. The network blocking time
decreases and the requests spend more time waiting or in service at the memory
module. Therefore there is no change in performance with slower memory. However,
if the blocking time is not too high, then the slower memory affects the overall per-
formance. Not only is the memory service time longer, but the time waiting to get

memory service also increases. The corresponding percentages of re-tries and requests
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waiting due to access conflicts also go up. As a result the overall execution time is
higher.

Table 5.7 shows the relative improvement in performance as the link width is
increased, for the four applications and the two slower memory speeds. When the
link width is increased to 16 bits from 8 bits, FFT and Bimerge see significant im-
provements in performance at both of the slower memory speeds. As the link width
is increased to 32 bits, only FFT still has significant performance improvements.
Therefore if the memory sub-system is slower the architecture may be able to make

the best use of a network with 16-bit wide links.

5.5 NETSIM Simulation Complexity

In this section we report the change in execution time predicted by the simulator,
when the network-related contention is not modeled. We also discuss our results on
the overhead involved in the detailed simulation of networks when simulating a shared-
memory multiprocessor. In the design of a parallel processor, several components in

the system have to be evaluated to design a system with an optimal configuration.

Link FFT BIMERGE SOR MMULT
Width Slw Siwr Slw Slwr Slw Slwr Slw Slwr
8/ 93.6 90.2 65.5 51.9 16.0 14.1 9.6 9.7
4

16 / 81.4 82.6 37.5 19.5 7.7 6.4 4.7 4.0
g .

32/ 61.0 18.6 13.5 2.9 4.6 3.1 1.8 1.2
16 )

64 / 18.3 2.8 2.0 1.0 1.4 1.5 0.6 0.7
32

Table 5.7: Percentage Improvement in Performance as the Link Widths
Are Increased. (2 Memory Speeds)
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Figure 5.21: Execution Time Predicted by Detailed Network Simulation
and Approximate Network Simulation for FFT

Simulation is often used to evaluate the tradeoffs in the design of these components.
There have been many experiments evaluating the performance of shared-memory
multiprocessors that ignore the contention in the network ([44, 22, 21]). Most of this
work concentrated on increasing processor utilization by either tolerating latency or
reducing the latency of remote fetches. Latency hiding techniques such as context
switching to another thread while waiting on a remote access or weaker consistency
models that allow multiple accesses to be outstanding, increase the utilization of
the network and could potentially lead to more contention in the network. When
studying one such new technique, it is important to understand its effect on the
system. In order to keep the analysis simple it might be nécessary to initially run
these experiments without simulating network contention. However, eventually the

network contention must be simulated, since the potential performance of a system
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Figure 5.22: Execution Time Predicted by Detailed Network Simulation
and Approximate Network Simulation for Bimerge

could never be realized if the network performance does not match the rest of the
system.

In seeing the results presented so far, one can see that there is a significant
amount of blocking time in the network, especially at smaller network link widths.
Nevertheless, we ran a set of experiments that do not simulate the network in detail.
In these experiments all the directory and cache modules were connected to each other
by a full crossbar. In order to send a message from a cache to a specific directory
or memory module, the simulator creates a YACSIM event for 'that packet. It delays
for the latency of the packet and at the end of that time adds the packet to the port
of the directory module. The latency is calculated as follows. Given the source and
destination address of the packet, the simulation calculates the number of hops the

message would have taken in the target network. Using this number of hops and the
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Figure 5.23: Execution Time Predicted by Detailed Network Simulation
and Approximate Network Simulation for SOR

size of the packet, it calculates the latency of the packet for a given bandwidth of the
network. By contrast, when the network is simulated in detail using NETSIM, an
event is associated with the head and tail of the packet. These events are rescheduled
at every buffer along the route in the network.

Figures 5.21 to 5.24 show the execution times predicted by the detailed simulation
using NETSIM and approximate simulation at various link widths of the mesh net-
work. Since the approximate simulation does not model contention, the applications
that have a high contention also show a significant difference in performance. For
FFT there is a 79% difference in execution times at a link width of 4 bits. This goes
down to 16% at a link width of 64 bits. The difference in execution times is a little

closer in Bimerge than in FFT. The difference in this case starts at 58% and goes
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Figure 5.24: Execution Time Predicted by Detailed Network Simulation
and Approximate Network Simulaticn for MMULT

down to 1%. MMULT follows Bimerge with a difference in execution time varying
between 11% and 0.67%.

It is interesting that the approximate simulation predicts a higher execution time
than the detailed simulation for SOR. Examining the results, we find that the average
cache latency is lower in the approximate simulation, but the average number of
accesses is higher. The directory module accesses the data in a FCFS basis for the
detailed simulation. In the approximate model the requests are added to individual
ports and the directory services requests in a round-robin fashion. We believe that
these differences in request service pattern at the directory module change the overall
execution time somewhat. The key point to observe here is that the difference in
performance between the two simulations is only + 2%, because SOR has very little

blocking time in the network.
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Figure 5.25: Simulation Time Taken by Detailed Network Simulation and
Approximate Network Simulation for FFT

Figures 5.25 to 5.28 show the time taken to run the simulations. The simulation
times are measured by using the UNIX ¢ime command. The simulations were not
run under controlled conditions and therefore the absolute values are questionable.
However, the general trend that is observed will hold even if the simulations are
run under controlled conditions. As can be seen in these figures, the approximate
simulation takes about just as long to run simulations of all link widths. This is
because the time to simulate a packet is independent of the number of flits in the
packet. For Bimerge and FFT it takes slightly longer to run the simulation at a link
width of 4 bits. At these link widths, the longer latencies cause some processors to
spin wait longer for synchronization. Each access to the cache causes a trap from the

simulator, and these cases take slightly longer to run.
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Figure 5.26: Simulation Time Taken by Detailed Network Simulation and
Approximate Network Simulation for Bimerge

In the case of the detailed simulation, the lower link widths always take longer
to run than the higher link widths regardless of the amount of blocking, since there
1s a greater number of flits in the packet at the smaller link widths. The tail event,
which manages the distribution of flits between the head flit and tail flit, has more
flits to manage. In addition to this, NETSIM takes longer when there is blocking in
the network. However, all the differences in time between the two simulations cannot
be attributed to NETSIM. When the directory module is ready to send out a reply
and the port buffer is full, the reply is queued in the directory buffer space. When the
port buffer later can accept the reply, the event associated with the directory module
1s woken up and it transfers the reply to the port buffer. This potentially repeated

re-scheduling of the directory module is avoided in the approximate simulation.
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Figure 5.27: Simulation Time Taken by Detailed Network Simulation and
Approximate Network Simulation for SOR

In conclusion, the performance difference can be significant in some cases if the
network contention is ignored. We found a difference in execution times of up to 78%
depending on the network parameters and the application considered.

The difference in time to run the two types of simulations can also be significant.
We found this difference to vary between 75% and 8% depending on the network
parameters and the application considered. In the case of SOR this difference is rela-
tively low, varying between 9% and 25%. Significant savings in time are only achieved
when there is a lot of blocking in the network. The detailed network simulation is

quite efficient when there is no contention in the network.
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Chapter 6

Conclusions

This thesis has examined the effect of the choice of interconnection networks on the
performance of shared-memory multiprocessors. The network performance was stud-
ied using execution-driven simulation. The performance of four network topologies -
mesh, hypercube and two shuffle-exchange configurations - were studied. The perfor-
mance of each network topology was studied at different link widths varying between
4 bits and 64 bits. Four applications were used in our experiments: Fast Fourier
Transform (FFT), Bimerge (a version of merge-sort), Matrix Multiply (MMULT)
and Successive Over Relaxation (SOR).

The main results of our study can be summarized as follows:

e With constant bisection width, the mesh network outperforms the other network

topologies

e Cache miss rate largely influences the relative performance of different network

configurations

e When memory speeds relative to the processor speed is reduced, the network

bandwidth available can also be reduced without significant loss in performance

e Time taken for detailed network simulation is proportional to the amount of

contention in the network

e Performance results obtained with the approximate network simulation (as-
suming zero contention in the network) can be significantly different from the

73
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results obtained with detailed network simulation (up to 80% difference in our

experiments)

6.1 Conclusions on Network Topology Experiments

When comparing the different network topologies with constant link widths, we find
that the difference in performance depends on the difference in the average block-
ing time in the port and in the network. The average number of hops taken by a
packet does not affect the overall performance significantly. This indicates that the
bandwidth of the network is critical for performance, as expected with wormhole
routing.

When comparing networks with 64 nodes and constant link widths, the hypercube
outperforms all the other networks and the shuffie-exchange outperforms the mesh.
The mesh network performs comparatively poorly for FFT and Bimerge. Both of
these applications have non-local communication. In the case of FFT, all processors
access all nodes in the machine heavily (if not equally) in order to fetch some pre-
computed sine values. In each iteration of Bimerge, every processor updates its
respective entry in a small array, which is stored in node 0. Although the average
number of hops in the mesh network is not much higher than in the hypercube, even
for such global communication patterns, the mesh network pays a penalty in higher
blocking time. For both of these problems, the mesh network has higher network
blocking time and higher port blocking time.

The performance of the shuffie-exchange is interesting, especially when the per-
formance of the two configurations, one with a switch size of 2 and the other with
a switch size of 4, are compared. Selecting the switch size of a multistage network
involves a tradeoff between the contention at the switch and the latency involved
in having multiple stages. For wormhole routed networks, the impact of latency on

performance is low. When there is no blocking SE4 does slightly better than SE2.
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When there is contention at the switch, sometimes the traffic pattern is such that
both networks have about the same amount of blocking time. However, when there is
nearest neighbor communication as in SOR, the SE4 does worse. In this case all input
links try to use the same output link. In SE4 four nodes are contending for a link,
whereas in SE2 only two nodes are contending for a link. As a result, for lower link
widths SE4 does worse than all the other networks for SOR. When the networks with

equal bisection width are compared, the mesh far outperforms the other networks.

6.2 Conclusions on Comparing Different Link Widths

The performance difference is insignificant for most applications when the link width
is increased from 32 bits to 64 bits. The FFT is the only application to see a sig-
nificant performance gain (46%) when the link width is increased from 32 bits to 64
bits. Networks with link widths of 4 bits and 8 bits experience significant blocking.
While link width of 16 bits and 32 bits appear to offer a reasonable tradeoff between
performance and cost, the choice between these two bandwidths is not clear.

The cache hit rate is one of the factors that determines the load on the network.
The relative performance of different network bandwidths for a particular application
depends on the cache hit rate for the application, the fraction of the miss accesses
that are to remote nodes, the average distance traveled in the network by a packet,
and the average size of these packets. Among these factors, cache hit rate is the
most significant. For the applications with higher cache hit rate (above 90%), the
differences in performance is insignificant when the link width is increased from 32
bits to 64 bits. The FFT has the lowest hit rate (84%) and has the most significant
performance gain when the link width is increased from 32 bits to 64 bits. The hit rate
of the application is very important in architectures such as this with large latencies

on a cache miss.
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We also studied the relative performance of each network topology at different
link widths when the memory sub-system is slower. We ran one set of experiments
with the memory twice as slow as before(Slow) and one set of experiments with the
memory four times as slow as before(Slower). With a Slow memory the tradeoffs are
still somewhat similar to those for the original memory, although in this case one
would probably choose a 16-bit wide network over the 32-bit wide network. With the

Slower memory, it is clearly sufficient to use a 16-bit wide links in the network.

6.3 Conclusions on Network Complexity

In order to avoid detailed simulation of the network, the traversal of each packet
through the network can be simulated by delaying for the minimum latency for this
packet to traverse the network, calculated from the distance between source and
destination nodes and the size of the packet. This does not model the contention in
the network and waiting time at the ports. When results from a run of the applications
using the approximate simulation are compared to the detailed simulation results, we
find that they are significantly different (up to 80%) when the blocking time in the
network and port is high. For SOR the difference is low at almost all link widths, since
the network packets in SOR do not have high contention due to the nearest neighbor
communication pattern. For the other applications, the results do not become similar

until we reach Iink widths of 32 and 64 bits.

When the times to run the detailed and approximate simulations are compared,
thereis a difference ranging from 8% to 75% depending on the network parameters and
the applications considered. While this might seem like a significant improvement, the
performance difference can also be quite significant, making it inadvisable to simulate

the system without the detailed network simulator.



6.4 Future Work

The experiments in this thesis were conducted for four applications chosen from nu-
meric and non-numeric domains of study. While these applications are representative
of the workload in multiprocessors, it is also desirable to run the experiments on more
applications and confirm the results observed in this thesis.

In all applications that we studied the size of the active data set in any phase
during execution was smaller than the cache size, resulting in cold start, conflict,
and coherence misses, but not capacity misses. The results presented here study the
performance of different network parameters due to traffic from cold start, coherence
and conflict misses. It is desirable to determine the effect of capacity misses on the
relative performance of different network parameters. The problem sizes and the cache
sizes were scaled down in our experiments, in order to complete the large number of
simulations in a timely manner. Although the traffic pattern of an application does
not change with problem sizes, it is still desirable to run these experiments with more
realistic problem sizes in order to obtain a greater level of confidence in our results.

Three network topologies, hypercube, mesh and shuffle-exchange, were chosen for
two reasons: they are substantially different, and they have all been used in commer-
cial multiprocessors. A fat-tree is quite different in topology from these networks and
is used in the CM-5 MIMD machine. It will be interesting to see how the fat-tree
fares in comparison to the other networks. The effect of other cache line sizes should
be studied, since the size of the network packet and the cache hit rate depend on the
cache line size.

All the experiments in this thesis were on systems with séquentia,l consistency.
With such a consistency model, at most a processor can have a single access out-
standing. When the consistency is weakened, each node can proceed after issuing a
write by buffering the data and writing to memory when possible. Therefore there

can be multiple outstanding writes in a node at a time. This increases the processor
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utilization. It also increases the load on the network and the network performance
under such circumstances deserves more investigation.

The network itself was studied with wormhole routing and deterministic routing,
where the routing does not take into account the current state of the network. Several
different adaptive routing schemes that use virtual channels to avoid deadlock have
been proposed in the literature. Adaptive routing can potentially make better use
of the network. It remains to be seen whether significant gains can be achieved
from using an adaptive routing protocol to overcome the cost and complexity of
implementation. Currently the architecture simulated uses a pair of networks in
order to avoid deadlock between directories. With the use of virtual channels, the
two networks can be multiplexed onto a single network. The performance of such an
architecture must also be studied, since the use of two networks, where one of them
is highly under-utilized (the request network carrying mostly smaller packets) seems

wasteful.



Bibliography

[1] S. Abraham and K. Padmanabhan. Performance of the direct binary n-cube

network for multiprocessors. JEEE Transactions on Computers, 38(7):1000-1011,
July 1989.

[2] A. Agarwal. Limits on interconnection network performance. JEEE Transactions

on Parallel and Distributed Systems, 2(4):398—412, October 1991.

8] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A processor archi-
tecture for multiprocessing. In Proceedings of the 17th International Symposium

on Computer Architecture, pages 104-114, May 1990.

[4] D.H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS parallel benchmark
results. In Supercomputing, 92, pages 386-393, 1992.

[5] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A high-
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-
516, Massachusetts Institute of Technology, September 1991.

[6] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-based cache

coherence in large-scale multiprocessors. Computer, 23(6):49-58, June 1990.

[7] S. Chittor and R. Enbody. Performance evaluation of mesh-connected wormhole-
routed networks for interprocessor communication in multicomputers. In Pro-

ceedings of Supercomputing ’90, pages 647-656, 1990.

[8] Intel Scientific Computers. :PSC2. 1988.
81



82

[9] Intel Scientific Computers. The Paragon XP/S Architecture. 1992.
[10] Encore Computer Corporation. Multimaz technical summary. 1990.
[11] Ncube Corporation. The nCUBE? technical reference manual. 1988.

[12] Thinking Machines Corporation. The Connection Machine CM-5 technical sum-
mary. 1991.

[13] W.J. Dally. Performance analysis of k-ary n-cube interconnection networks.

IEEE Transactions on Computers, 39(6):31-58, June 1990.

[14] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on Computers, C-36(5):547-553,

May 1987.

[15] H. Davis, S.R. Goldschmidt, and J. Hennessy. Tango: A multiprocessor simula-
tion and tracing system. Technical Report CSL-TR-90-4399, Computer Systems
Laboratory, Stanford University, 1990.

[16] D.M. Dias and J.R. Jump. Analysis and simulation of buffered delta networks.
IEEFE Transactions on Computers, C-30(4):273-282, April 1981.

[17] S. Dwarkadas, J.R. Jump, and J.B. Sinclair. Efficient simulation of cache mem-
ories. In 1989 Winter Simulation Conference Proceedings, pages 1032-1041, De-
cember 1989.

[18] T.-Y. Feng. A survey of interconnection networks. Computer, 14(12):12-27,
December 1981.

[19] D. Gajski, D. Kuck, D. Lawrie, and A. Saleh. Cedar - A large scale multiproces-
sor. In Proceedings of the International Conference on Parallel Processing, pages

524-529, 1983.



83

[20] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance evaluation of memory
consistency models for shared-memory multiprocessors. In ASPLOS-IV, pages

245-257, 1991.

[21] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding memory latency using
dynamic scheduling in shared-memory multiprocessors. In ASPLOS-V, pages
22-33, 1992.

[22] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber. Compar-
ative evaluation of latency reducing and tolerating techniques. In 18th Annual

International Symposium on Computer Architecture, pages 254—263, 1991.

[23] A. Gupta, W.-D. Weber, and T. Mowry. Reducing memory and traffic require-
ments for scalable directory-based cache coherence schemes. In International

Conference on Parallel Processing, pages 312-321, 1990.

[24] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchroniza-
tion. International Journal of Parallel Programming, 17(1):1-17, 1982.

[25] W.D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[26] J.R. Jump. YACSIM Reference Manual. Electrical and Computer Engineering
Department, Rice University, 1992.

[27] J.R. Jump. NETSIM Reference Manual. Version 1.0. Electrical and Computer
Engineering Department, Rice University, 1993.

[28] J.R. Jump and S. Lakshmanamurthy. NETSIM - A general-purpose intercon-
nection network simulator. In MASCOTS’93, pages 121-125, 1993.

[29] S.D. Kaushik et al. An algebraic theory for modeling direct interconnection

networks. In Supercomputing,’92, pages 488-497, 1992.



84

[30] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communi-

cation switching technique. In Computer Networks, pages 267-286, 1979.

[31] R.E. Kessler and J.L. Schwarzmeier. CrayT3D: A new dimension for Cray Re-
search. In COMPCON, pages 176-182, 1993.

[32] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M.S. Lam. The Stanford DASH multiprocessor. Computer,
25(3):63-79, March 1992.

[33] T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In Proceed-
ings of the 1988 International Conference on Parallel Processing, pages 303-310,
August 1988.

[34] K. Nakayama. New discrete fourier transform algorithm using butterfly structure
fast convolution. IEEE Transactions on Acoustics, Speech, and Signal Processing,

33(5):1197-1208, October 1985.

[35] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62-76, February 1993.

[36] G.F. Pfister and V.A. Norton. “Hot Spot” contention and combining in multi-
stage interconnection networks. In Proceedings of the 1985 International Con-

ference on Parallel Processing, pages 943-948, 1985.

[37] R. Ponnusamy, A. Choudhary, and G. Fox. Communications overhead on the

CM5: An experimental performance evaluation. In Frontiers, 92, pages 108-115,

1992.

[38] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in C. Cambridge University Press, Cambridge, 1988.



85

[39] S.K.Reinhardt, S.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis, and D.A. Wood.
The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. In Pro-
ceedings of the 1993 ACM SIGMETRICS Conference on Measuring and Modeling
of Computer Systems, May 1993.

[40] C.L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22-33, Jan-
uary 1985.

[41] AJ. Smith. Design of CPU cache memories. In Proceedings of IEEE TEN-
CON’87, Region 10 Conference, pages 1-10, 1987.

[42] J.E. Smith and J.R. Goodman. A study of instruction cache organizations and

replacement policies. In 10th Annual International Symposium on Computer

Architecture, pages 132-137, 1983.

[43] P.J. Varman, B.R. Iyer, D.J. Haderle, and S.M. Dunn. Parallel merging: Algo-
rithm and implementation results. Parallel Computing, 15(1):165-177, 1990.

[44] W.-D. Weber and A. Gupta. Exploring the benefits of multiple hardware contexts
in a multiprocessor architecture: Preliminary results. In 16th Annual Interna-

tional Symposium on Computer Architecture, pages 273-280, 1989.

[45] M.-l. Woo and R.A. Renaut. Parallel power-of-two FFTs on hypercubes. In
Supercomputing, ’91, pages 754-763, 1991.



