INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication
and microfilming. While the most advanced technology has been used to pho-
tograph and reproduce this manuscript, the quality of the reproduction is heavily
dependent upon the quality of the material submitted. Pages in any manuscript
may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which
may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain
missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap-
pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec-
tioning the original, beginning at the upper left hand corner and continu-
ing from left to right in equal sections with small overlaps. Each oversize
page is also filmed as one exposure and is available, for an additional
charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or micro-
fiche but lack clarity on xerographic copies made from the microfilm. For
an additional charge, all photographs are available in black and white
standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions,
please contact the Dissertations Customer Services Department.

l ]M Dissertation
Information Service
University Microfilms International

A Bell & Howell Information Company
300 N. Zeeb Road, Ann Arbor, Michigan 48106







8617442
Ganapathy, Nirmala

VOLUME CONDUCTED CURRENTS AND POTENTIALS FROM EXCITABLE
CELLS OF CYLINDRICAL GEOMETRY

Rice University PH.D. 1986

University
Microfilms
International o n. zeeb Road, Ann Arbor, Mis106






RICE UNIVERSITY

VOLUME CONDUCTED CURRENTS AND POTENTIALS FROM EXCITABLE CELLS
OF
CYLINDRICAL GEOMETRY

by
NIRMALA GANAPATHY

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

DOCTOR OF PHILOSOPHY

APPROVED, THESIS COMMITTEE:

b tludye

(. w. Clark
Professor of Electrical & Computer
Engineering, Chairman

@ TP de Yigg ool

R. J. P. deFigueiredo
Professor of Electrical & Computer
Engineering & Mathematical Sciences

Koy .l

2
R. M. Glantz ~
Professor of Biology

HOUSTON, TEXAS
APRIL, 1986



ABSTRACT

Volume Conducted Currents and Potentials from Excitable Cells of Cylindrical Geometry
by

Nirmala Ganapathy

The dissertation deals with the evaluation of currents and potentials from a variety of excitable
cells of cylindrical geometry. Specifically, the cells considered are the unmyelinated and myelinated
nerve fibers and the active skeletal muscle. The electrical behavior of these cylindrical cells is
modeled in terms of a distributed parameter network resulting in a parabolic partial differential equa-
tion describing the propagation of electrical activity along the cell. The partial differential equation is
numerically integrated using an implicit, finite difference technique, the Crank-Nicholson method.
The immediate environment of the cell is characterized by an electromagnetic field theory model, the
result of solving Laplace’s equation in the medium around the cell. The field theory model is treated
as an equivalent filtering problem, the one and two dimensional Fourier transforms being used to per-
form the resulting linear convolution. Conduction under normal and diseased states is investigated for
the myelinated nerve fiber, and attempts are also made to simulate complex motor unit action poten-

tials from motor units consisting of several individual skeletal muscle fibers.

A rigorous evaluation of the core conductor model of a single active nerve fiber and its distri-
buted electrical equivalent circuit is undertaken, based on principles of electromagnetic field theory.
The core conductor model is found to be a fairly inaccurate representation of events in the extracellu-
Iar medium except in cases where the volume conductor is extremely small in extent. On the other
hand, the core conductor model is a very good representation of electrical events occurring in the intra-

cellular medium.

It is possible to reconstruct the extracellular currents and potentials of the myelinated nerve fiber
as functions of time using a simple and efficient filter theory approach. The resulting currents and

potential waveform correspond well with experimental values in literature. The effects of slowed con-



duction are seen in the transmembrane potential, the transmembrane current, the external longitudinal
current and the calculated extracellular potential waveforms. Also simulated is the experimental tech-
nique that is used to measure currents in practice. The results of the simulation indicate that electrode
separation and placement are critical factors when such measurements are made. Decreasing the

extent of volume conductor makes these factors less critical.

A technique for evaluating extracellular potentials from either a single active muscle fiber or an
active motor unit, located in a finite, anisotropic volume conductor is also demonstrated in this work.
The motor unit may also have an arbitrary distribution of component fibers, and these fibers may be
activated either synchronously or asynchronously with an arbitrary excitation pattern. The model is
shown useful in the prediction of surface electromyographic (EMG) waveforms due to the activity of
bioelectric sources lying within the anisotropic muscle medium that comprises the volume conductor.
As such, this field theoretic model represents a first approximation to the study of multifiber activity

and its contribution to surface EMG.
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Introduction

It is a well established fact that all living creatures are made up of cells. The simplest organisms
of our world are unicellular while higher organisms such as mammals are the result of a complex
interaction between several types of cells, each of which is assigned a specific task to perform. Cells
can communicate with each other by subtly altering the environment around them either chemically or
electrically. Cells that are capable of genefau'ng action currents around them may be termed "excitable
cells". Such cells fall into two broad categories namely nerve cells and muscle cells. As early as 1786
Galvani’s famous experiments on frog legs had demonstrated the presence of electric currents around
nerve and muscle fibers [Green, 1953). Galvani wrongfully attributed his findings to animal electricity
stored in the muscles. It was only fifty years or more later that experiments were performed that
showed a correlation between changes in the cell membrane resting potential and the changes in the
currents flowing in the fluid around the cell [Bemstein, 1871]. In 1879 Hermann proposed what is
now the celebrated core conductor model in an attempt to account for the electrical phenomena in

excitable cells in terms of a mathematical model.

The cells that can be modeled using the core conductor model are elongated cells, cells that have
one dimension which is considerably larger than their other dimensions. These cells may be viewed as
cylindrical structures where the length of the cylinder is nearly infinite when compared with the radius
of the cylinder. Long muscle and nerve cells may be justifiably approximated by this geometrical
abstraction. The classical core conductor model assumes that these cylindrical cells posses a uniform,
homogeneous, isotropic core of intracellular fluid, whose electrical properties are completely defined
by its specific conductivity (S/cm). The conductive fluid core is enclosed within a surface membrane
whose electrical description is in terms of a specific capacity in pF/cm ? and specific conductivity in
S/cm 2, The uniform, homogeneous and isotropic medium outside the cell, the so called volume con-
ductor medium, is also characterized by its specific conductivity. Such a characterization of the cell

leads to a cable-like network of the cell where the intra- and extracellular media are represented by



lumped resistances whose value is only dependent on the geometry and specific conductivity of the
media, with the membrane forming the shunt element between the resistances representing the two
regions. One such network is illustrated in fig. 1.1 of chapter 1. Implicit in this characterization of the
intra- and extracellular media by lumped resistances, depending only on the volume and resistivity of
the region being characterized, is the assumption that the current flow both inside and outside the cell
is purely axial.

In the first quarter of the twentieth century a powerful electronic device was invented which
made it i)ossible to experimentally record action potentials and their spread in volume conductors.
This device was the vacuum tube amplifier which enabled researchers to extract and amplify smatl
biological signals emanating from nerve and muscle cells. Craib and Canfield (1927) pioneered such
work by studying heart and skeletal muscle immersed in a saline solution. Their results showed the tri-
phasic nature of the action potential in the volume conductor. Several investigators followed in their
wake, studying different experimental preparations under a variety of experimental conditions.
Lorente de No (1947) studied the frog sciatic nerve in situ, Tasaki and Tasaki (1950) recorded action
potentials from a toad motor nerve fiber in a thin layer of Ringer, Buchthal and his group (1957, 1962,
1966) did an extensive study of small bundles and single fibers of human muscle, and the list goes on

and on.

The explanations that were given to account for the experimental results made use of the core
conductor model and the resulting cable equations. Another quantitative description of the spread of
the action potential was the classical account of Lorente de No (1947) that modeled the biological
source as a dipole generator. A more elegant formulation of a mathematical description of the cylindr-
ical equivalent cell and its immediate environment can be obtained on applying the principles of elec-
tromagnetic field theory. Such a formulation is the analysis of Clark and Plonsey (1966, 1968) for the
single unmyelinated axon. A drawback of this formulation is the necessity of specifying all potential
distributions as functions of the spatial variable z rather than in the conventional manner as functions
of time. This could be difficult in situations where the action potential does not propagate with a con-

stant propagation velocity. The present work seeks to rectify this drawback and to investigate the



effects of the various assumptions implicit in the different forms of mathematical models used to pro-
vide explanations for experimentally observed phenomenon in excitable cells that could be said to con-

form to a cylindrical geometry.

This thesis is an investigation of the volume conducted currents and potentials from three types
of excitable cylindrical cells, namely the unmyelinated nerve fiber, the myelinated nerve fiber and the
skeletal muscle fiber. First, a detailed analysis of the core conductor model is performed for both
myelinated and unmyelinated nerve fibers. This is done using a three dimensional field theory descrip-
tion of the currents and potentials around a cylindrical cell in a finite volume conductor. The spatial
distributions of the potentials are explicitly calculated by solving the partial differential equations
describing propagation along a fiber and Chapter 1 provides a detailed description of the mathematical
techniques used in this process. Chapter 2 contains the analysis of the one dimensional core conductor
model where the effects of the volume conductor extent on the assumptions of the core conductor
model are also examined. The time waveforms for the currents and potentials may also be recon-
structed from the values calculated by the field theory model. This is done in chapter 3 for the myel-
inated fiber where the velocity of propagation is definitely non-uniform and this necessitates the utili-
zation of special temporal reconstruction techniques. Also in chapter 3, experimental techniques of
measuring extracellular currents and potentials are simulated and possible sources of error are pointed
out. In the same chapter a brief investigation is also carried out on the effects of slowed conduction

induced by the demyelination of a single node, on the extracellular currents and potentials.

Chapter 4 is an investigation of the extracellular potentials from skeletal muscle. The field
theory model employed, is one that permits an arbitrary location of the source within a cylindrical
volume conductor. Here an attempt is made to simulate a surface electromyogram recorded from a
muscle containing a single active motor unit consisting of nine identical skeletal muscle fibers. The
effects of anisotropy of the medium and the results of synchronized and desynchronized firing of the
individual fibers of the motor unit are also investigated. Chapter 5 both summarizes the work done
here and suggests feasible extensions. Finally, an initial attempt to postulate a more complete

mathematical model describing the myelinated nerve fiber is also made, the proposed form of the



model along with the mathematical equations that describe it being specified in Appendix I. Such a
model would be required before a detailed study into topics such as slowed conduction in the myel-

inated nerve could be undertaken.



CHAPTER 1

Mathematical Formulation of the Problem

1.1 Introduction

The classical core conductor model of Hermann (1879) and its distributed electrical equivalent
circuit model are very fundamental concepts in the area of nerve electrophysiology, where they are
used to explain both the passive and active properties of a cable-like nerve fiber lying within a cylindr-
ical volume conductor. Theoretician and experimentalist alike, have called upon the logic of this
model in many practical situations to explain observed phenomena. In this project the core conductor
model and the celebrated cable equations that are derived from its electrical equivalent circuit are
revisited, for a rigorous evaluation of these equations based on the principles of electromagnetic field
theory; a procedure that is greatly facilitated by the Fourier transform approach introduced earlier by
Clark and Plonsey (1966) and made fast, efficient and practical by means of the discrete Fourier
Transform (DFT) approach of Greco and Clark (1977). The associated volume conductor field prob-
lem is viewed as an equivalent filter problem, so that many variables of interest in the core conductor
model may be easily calculated using the DFT approach, including those that are not frequently meas-
ured such as transmembrane current per unit length (i,(z)) and total longitudinal current (/,(z)). An
earlier mathematical analysis of the core conductor model was made by Clark and Plonsey (1966),
however the computational methods employed were laborious, the external bathing medium of the
fiber was assumed to be of infinite extent and only the case of the unmyelinated nerve fiber was inves-
tigated. These conditions are rectified in the present study and conclusions are drawn regarding the
accuracy of the cable equations, particularly as they are applied to the extracellular medium of the
fiber. The DFT approach greatly simplifies the calculation of all field quantities involved, making it a

useful tool in problems where a cable equation analysis is justifiably performed.



The study of currents and potentials in and around active myelinated nerve fibers is also a sub-
Ject of great interest in electrophysiology. The effects of demyelination on the nerve fiber’s ability to
conduct an action potential and the nature of conduction after the myelin sheath grows back some days
after the nerve fiber is demyelinated, are but a few of the many aspects of myelinated nerve fiber con-
duction that are studied using extracellular current and potential measurements from an excised fiber
situated in a finite volume conductor (Paintal (1965), Paintal (1966), Rasminsky & Sears (1972), Bos-
tock & Sears (1978), Bostock (1983)). As stated before, the model based on the principles of elec-
tromagnetic field theory, can be utilized to rapidly and accurately calculate the potential and current
density distribution, everywhere in the finite cylindrical volume conductor bathing the active nerve
fiber. The input data required for the calculation consists of the transmembrane potential distribution
®,.(2) and the specific conductivities of the intra- and extracellular media. Simulated transmembrane
potential data, the result of solving the partial differential equations associated with the distributed
parameter model of the myelinated nerve fiber is employed in this theoretical study into the nature of
the potentials and currents flowing around the single myelinated fiber under conditions of normal and

abnormal conduction.

The study of extracellular potentials from an active muscle fiber in a muscle bundle is of consid-
erable interest in the area of electromyography. In this project an active skeletal muscle fiber is also
modeled as a distributed parameter model of resistive and capacitive elements, and the transmembrane
potential distribution across the cell membrane of the fiber is obtained using an implicit numerical
integration technique for the solution of the parabolic partial differential equation associated with the
cable-like model of the fiber. Once again the extracellular potentials are evaluated using a field theory
model. In this case however, the fiber is treated as lying eccentrically in a finite muscle medium

volume conductor and a two-dimensional Fourier transform technique is employed.

More than one fiber may be active in the muscle at any time and the resulting potential at a field
point on the surface of the muscle may be evaluated using principles of superposition. Variation in the
time of activation of the various muscle fibers within the muscle would lead to desynchronization of

the components of the compound action potential recorded at the surface of the muscle. The effects of



multiple fibers being active at slightly different times are studied in this work using a muscle consist-
ing of nine individual muscle fibers. The muscle fibers considered are all assumed to be characterized

by the same geometrical and electrical parameters and belong to the same motor unit.

1.2 Potential Field of the Single Active Fiber centrically located in a finite volume conductor

In the core conductor model an idealized, infinite circular cylindrical axon of radius @ and
specific axoplasmic conductivity o, is located centrically in a finite, homogeneous volume conductor
of radius b and specific conductivity ,. This is shown in fig. 1.1. The general form of the solutions

to Laplace’s equation in the intracellular and extracellular media under conditions of quasistationarity

are ©
(o) = - [ Ak Ik p<a (L)
AT R e )
®(p2) = 5 [ BRI K1p) + CRKKIpe ™tk a<p<b (12)

where /, and K, are modified Bessel functions of the first and second kind order n. Since axial sym-
metry (3/9¢ = 0) is assumed, only order n = 0 is of interest here. The coefficients A(k), B(k) and C(k)

can be solved for by applying the following boundary conditions atp=a and p=b.

Atp=a
P’ D°
-G | =-0,—/— 1.3
% |a P |a @)
Di(a"2) = D,{2) (1.4)
D°(a*,2) = B, (2) (1.5)

where @, (z) and @, (z) are potential distributions in z along the inner and outer surfaces of the mem-

brane, respectively.



‘/Volume Conductor

‘/ Membrane

._9 __"| - _ Tal_ - - 1

Figure 1.1 Fiber geometry. The external medium is considered uniform, homogeneous and isotropic
with a specific conductivity o, (S/cm); the internal medium is assumed to be uniform,
homogeneous and isotropic and is characterized by a specific conductivity o;. The fiber

radius is denoted by a and the volume conductor radius is b.



At p=b, the sheath-like boundary may be either conductive or non-conductive. In our con-

sideration of the core conductor model we will consider it to be non-conductive, that is

a |
% =0 . (1.6)

Applying the boundary condition expressed in (1.6), C(k) can be solved for in terms of B(k) as :

1, (1k|b)

O = X (k1b)

B(k) . (L.7)

Thus, expression for external potential ®°(p,z) may be rewritten as

I1(1k1b)

—jkz
K(IkI6) Ko(lklp)]B(k)e dk (1.8)

*(p) =5 [lo(lklp)+

Similarly, upon considering the boundary conditions at p =a we have the following relations :
(a) at the inner membrane surface (p=a”):

<I>_,,-(z)=ﬁ | A(k)lo(lkla)e‘j"‘dk— — [ Fue (19)

where F (k) is the Fourier transform of the inner membrane surface potential, &,4z). Thus,

F (k)
A= I(lk|a)

(1.10)

(b) at the outer membrane surface (p=a™) :

I(1k[b) P i
O =5- | [lo(l 1+ Zei b)Ko(lkla)]B(k)e kw5 [Fre ™k (L1D

where F (k) is the Fourier transform of the outer membrane surface potential, @, (z).
Thus,

Fo(k)
Li(1k1b)K(1k|a) (1.12)
Io(1k| @)K (1 k| b)

Bk)=
I(lkla) [l +
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It may also be shown via the current continuity condition at p = @, namely equation (1.3) that

O; A(k)
B(k)=
® O 5i(1 k|b)K (| k|a) (1.13)

~ I(lkla)Ky(|k1b)

From (1.10), B(k) may also be expressed as :

Gi F.n(k)
PO=3, L(1kIB)K([k|a) (1.14)
* Io(lkla) ft - = : '
o« '“’[ Ilukla)Kluklb)J
Letting
c, I(1k1BK (k] a)
k|)=—Iy(k 1-—
n(lkl) p ol Ia)[ Ix(lkla)K1(lk|b)J (1.15)
it follows that
Bk = 29 (1.16)
T (k) )

Thus, from equations (1.11) and (1.16), the extracellular potential at an arbitrary field point (p,z) may

be expressed as :

I I(|k1b) Fb)
(p,7) = 21:1 To1K19) + = Ko klp) 2 ek 1.17)

The transmembrane potential ®,(z) may be defined according to
D,,(2) = Dpi(2) — D,(2) (1.18)

and taking the Fourier transforms of each of these terms, it follows that
F (k) = F,(k) — F,,(k) (1.19)

where F (k) is the Fourier transform of ®,(z) defined in a fashion similar to (1.9) and (1.11). Conse-

quently, using the two relations for B(k) seen in equations (1.12) and (1.14) it can be shown that
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F (k)= Fnl®) (1.20)
T A(1kD) )
where A(]k}) is defined as
. 51 k1b)Ko(| k|a)
- I(k|a)Ky(1 kb
A(lkl)sl—i ol | k|@)K ([ k|b) 121

S . L(lk|6)K\(1kla)
I(1k1a)K (1 k|b)

The final expressions for intra- and extracellular potential in terms of the Fourier transform of

the transmembrane potential are therefore obtained from equations (1.1), (1.2), (1.10), (1.15), (1.17)

and (1.21) as:
i _._l_- IO(IkIp) ~fkr -
(p,2) = 2m | TR BAUED kI)F,,,(k)e = p<a 1.22)
and
o 1% I(|k|b) F by . .
°(p,2) = mi ToIkip) + L Kol Ik | S e ™de a*spsh, (123)

respectively.

A set of filter functions may be defined as :

_ Ilklp)

W{lkip,a) = Tk DAOKD (1.24)

W(1klpb) = [Io(lk1p) + 2412 ki) L (125)
K.(1k[5) AR - A(KD}

M(lk])= A(llkl) -1 (1.26)

where W{|k|p,a) and W,(|k|p,b) are the medium filter functions for the intra- and extracellular

media respectively and M(|k|) is called the membrane filter function.

Using the filter functions defined above the expressions for potential may be rewritten as :
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V)= 5 [ WA IkIp.a)F e dk p<a (1.27)
and

<x>"<p,z)=2—1,t [WAIklpMUKDF (e e a*<psh . (1.28)

1.3 Volume Conductor Currents Associated with the Core Conductor Model

The electrical equivalent network that characterizes a unit segmental length (Az) of an active
nerve fiber in a homogeneous cylindrical volume conductor, consistent with the core conductor model
of Hermann (1879) is shown in figure 1.2. The fiber is characterized as an iterative structure of this
same basic form. The axial resistance per unit length r;, accounts for the resistive electrical properties
of the axoplasm, while r, is the resistance per unit length that characterizes the lumped resistive pro-
perties of the extracellular medium. The shunt elements represent the electrical properties of the mem-

brane. Applying Kirchoff’s laws to the electrical network in fig. 1.2, the following cable equations

result
i ()= a"é:(z) (1.29)

@) =-1z) (1.30)

PG i) (131)

a—‘;iz(i) =-ri @) (1.32)

where 1,°(z) and I,’(z) are the total longitudinal currents in the extra- and intracellular media respec-
tively, i,(z) is the transmembrane current per unit length and V°(z) and V'(z) are the extra- and intra-
cellular potential distributions respectively, (Clark and Plonsey,(1966)). At this point we will derive

expressions for the transmembrane and total longitudinal currents.
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r, Az/2 r, Az/2
Ve e M AAA- .
—>

Z./Az
I
—>
Vi e— AN AAA————o
r; Az/2 r; Az/2
< Az —>

Figure 1.2 The electrical equivalent network of an active nerve fiber in a homogeneous cylindrical

volume conductor, consistent with the classical core conductor model of Hermann (1879).
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Utilizing the definition of the extracellular field potential (1.23) the expression for transmem-

brane current per unit length i,,(z) may be expressed as :

AU il I _ h(Ik1®) kIFu®)
i,(z) = - 27ag, 3 |, Goai[ll(lkla) Kl(lklb)K‘(lkla)]A(Ikl)n(lkl)eJ dk (1.33)

An alternate expression for i,(z) may be obtained using the expression for intracellular potential

&'(p,2) given by (1.22) :

inte)=— —ca —UKD__ e e (134)

Io(tk|@)A([ k1)

The derived expressions for potential given by equations (1.22) and (1.23), allow one to deter-
mine the potential everywhere in the intra- and extracellular media. Based on these expressions, it is
possible to compute the current density field anywhere in these media and hence the total longitudinal
currents J(z) and I{(2), associated with the cable equations. In general, the current density field J in

each of these media consists of a radial and axial component, that is

T°(p.2)=I3(p,2)@, + J(p,2)2, (1.35)
Tip2) =Jip)a, +Ji(p,)a, (1.36)
where
Jp) =~ o,,ai;g’ﬁ (137)
J2(pa) == 0, 2202 (138)
p(P,Z) == 0',_Lad);(p 2) (1.39)
Tipa) = -0, 2202) (140)

and a, and a, are the unit directional vectors.
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The expressions for total longitudinal current in each of these media is :

)= jzan."(p,zwp- 2o, pMdp (141)
1i(2) = [orpTi(p,dp =~ 2morfp 222 4o (142)
[ 0

We proceed by utilizing the expressions for potential (1.22) and (1.23), differentiating them with

respect to z and interchanging the order of integration. The result is :

o [ KFm 18 I(1k1b)
I (Z)-Jﬁoime / _!{Io(lklp)+K—l(|—kl—b)-Ko(lklp)}Ddek (1.43)

and

. PO (5
1j(2) = jo; ©

e % ||Io(| k| p)pdp |dk _
[ rmianin e [Fikiowdp 144

In each case the integration in p is a relatively simple one, wherein the following identities for

the modified Bessel functions of order n are employed (Abramowitz and Stegun, 1965)

]

[ e = - [, 0)| (145)
x
fxtsade= [ern,e0)’ (1.46)

Xy

The results for the total longitudinal currents are :

A0 L(1k15)
—— = | | (lkla) - ————K (| k| @) |——e/*dk .
12900 ey [“' ' Fyqierny )} N .

and

= kR [afl(lkla)

iy — e, —ik
0= rraamy | 1k ]e"”‘ (148



A set of filter functions may now be defined as

Ii(|k|b
C.w(lkla,b)E{11(|k|a>——K‘l(('|T'|b))Klukla)} |]
 IkUIkla)
CnlIk19) = B N Tk1®)
L(|k|b
Cu(lkla,b)E{ll(lkla)—K—ll((l'l';ll'g))'Kl(lkla)} L
L(lk
C(kla) = i(1kla)

A(lk)(Ik1a)

A(lk(1 k1)

A(l&1n(1k1)

16

(1.49)

(1.50)

(1.51)

(1.52)

where C,,,(|k|a,b) and C,{|k|a) are two forms of the transmembrane current filter function. Here

Cni(|k1a) is the form used when the potential inside the fiber is known while C,, (| k| a,b) is the form

used when the potential outside the fiber is specified. Similarly C; (|k|a,b) is the external and

C{| k| a) the internal longitudinal filter function.

Using the filter functions defined above the expressions for transmembrane current per unit

length i,,(z) may be written as either :
in(2) == 0,8 | Ful)Cro( | K| a,b)e
or

in(z) == O [ Fp(k)C,u{ 1 | a)e ™ dl

while the expressions for total longitudinal current (I2(z), I}(z)) are written as :

I2() =~ ac, [ j F(0Cy( |kl a,b)e Mk

and

(1.53)

(1.54)

(1.55)
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I{(2)=ac; [ j F()C (| k| @)e P dk . (1.56)

At this point we define the following Fourier transform pairs for the transmembrane current per

unit length :
i(2)=—2n0,a #i]m(k)e‘j"dk (1.57)
L#®= 21‘;0‘1 ii,.(z)ej"dz = F(KIC.n (k| 2,b) (1.58)

and
i(2)=-2nca -El;-t-il'm(k)e'j"dk (1.59)
k)= T;z-lim(z)ej"dz = F,(KCfk|a) (1.60)

A similar Fourier transform pair for the external total longitudinal current is defined as :

I8(2) = - 2ac,n % [Fite (1.61)
Fi(k)= Za; - [ I2@edz = jF()CL( 1 k|a,b) (1.62)

while the Fourier transform pair for the internal total longitudinal current is similarly defined as :

1i(2) =2a0 |- [Fitoe (163)
Fithy= o= [ 1i()e*dz = jF,()CL I 10) (1.64)

240, R
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In each case, the Fourier transforms may be rapidly evaluated once they are discretized into
discrete Fourier transforms (DFTs) and then evalvated using the fast Fourier transform (FFT) algo-

rithm.

1.4 Discrete Fourier Methods of Solution for Cable Equation Variables

In the preceding sections, Fourier integral expressions have been developed for a number of
variables including extracellular potential ®°(p,z), transmembrane current per unit length i, (z), and the
total intracellular and extracellular longitudinal current, I{(z) and I7(2) respectively. Computation of
these quantities is greatly facilitated by reformulation of these integral expressions in terms of the
methodology of the discrete Fourier Transform (DFT) technique. Reformulation of these equations for
representation in the discrete spatial (z) and spatial frequency (k) domains will be illustrated using the
transmembrane current per unit length as an example

1

- . pw/N P .
I1.(Pq) o on,.(zn)e pr— DFTTi,(Zn)] (1.65)
1 N-1
1(Zn) =-2n0a+; > 1(Pg)e*™¥N = —2n5,a IDFTI,(Pg)] (1.66)
¢=0
where
=2n
P=1= (1.67)

Here Z and P are the sampling intervals in the z- and k-domains, respectively, and » and g are
integers. The function i,(z) is normally limited in both the z- and % -domains, meaning that i,,(z) is
nonzero for a small finite range of z values (-Z; <z <Z,) and essentially zero outside this range.
Similarly, i,(z) is limited with respect to frequency content; therefore 7,(k) is nonzero only within a
small range }k| <M (a constant) and zero elsewhere. Thus, the discrete functions i,,(Z») and /,(Pq)
approach zero as Zn and Pq, respectively, become large. The sampling interval Z is chosen to be
small enough so that no aliasing occurs in the k-domain, and the number of samples or sampling dura-

tion, NZ, is chosen to include the entire signal. Relationships similar in form to the DFT pair of equa-
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tions (i.e., (1.65) and (1.66)) exist for I2(z) and F£(k) as well as I}(z) and Fi (k).

Thus the various cable equations can be evaluated as products of DFTs (equivalent to linear con-

volution). Once again the transmembrane current is given as an example.

1n(Pq) = F(Pq)C,,(Pg,2,b) (1.68)

The transmembrane current itself is given by

in(Zn) = -2n0,a IDFTI,(Pq)] (1.69)
The other cable equations are also evaluated in a similar fashion using FFTs.

1.5 Models for the Active Source Fiber

Our study involves an investigation of the nature of the potential and current density fields in a
cylindrical volume conductor surrounding an active nerve fiber. In previous studies of Clark and Plon-
sey (1966,1968), rather simple simulated action potential distributions were used as membrane source
potential waveforms for the volume conductor problem. In the present study, spatial distributions of
transmembrane potential ®,(z) are obtained from a distributed parameter model simulation of active
unmyelinated and myelinated nerve fibers. These simulations yield much more realistic action poten-
tials and the model parameters may be conveniently varied so as to represent a variety of experimental
conditions. Figures 1.3a and b show the equivalent circuit model for the representative unmyelinated
and myelinated nerve fiber, respectively. The equivalent circuit model for the representative skeletal
muscle fiber is identical to that of the unmyelinated nerve fiber in fig. 1.3a. The model is characterized
by patches of membrane, coupled by resistances r,Az and r,Az, where Az represents a unit segment
along the fiber; r; and r, are resistances per unit length. In the case of the unmyelinated fiber, the shunt
elements in the network model, representing membrane patches, are characterized by Hodgkin-Huxley
models of the squid giant axon (Hodgkin et al, 1952). The shunt elements of the skeletal muscle fiber
model are characterized by Adrian-Peachey models of frog skeletal muscle fiber (Adrian et al, 1973), a

model that is identical in form to that used for the squid axon by Hodgkin and Huxley but with dif-
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Figure 1.3 The distributed parameter models of the (a) unmyelinated and (b) myelinated nerve fibers.

The patches of membrane in (a) are characterized by Hodgkin-Huxley models of the squid

giant axon while in (b) a modified Frankenhaeuser-Huxley model is used to describe the

nodes and a parallel RC network describes the internodal region.
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ferent model parameter values. The shunt elements representing nodes of Ranvier are characterized by
the Frankenhaeuser-Huxley model of the myelinated nerve (Frankenhaeuser et al, 1964), with an addi-
tional shunt element to account for the myelin sheath adjoining the node of Ranvier on either side.
The internodal region between two nodes of Ranvier is represented by a parallel RC circuit. The con-
ductance and capacitance values used are those in accordance with the specific conductance and the
specific capacitance of the myelin sheath. This representation of the myelinated nerve fiber is based
on the work of Goldman and Albus (1968). The network models are discussed in more detail in

chapter 2.

The parabolic partial differential equation describing the propagation of a nerve impulse along

these distributed parameter networks is given as :

OV (2t s c WVn(zf) 170
azz - M(rﬁ'ro) m ot bion|- (‘ )

where V,, is the transmembrane voltage, C,, is the membrane capacitance and i, the total ionic
current. The parabolic partial differential equation is numerically integrated by a stable, implicit tech-
nique known as the Crank-Nicholson method (Crank, 1947). In accordance with this scheme, the
finite difference representation of (1.70) about the point (i, j+1/2) is
1 Cn

'é'(;){[Vi-l.j+1‘2Vi.,'+1+V.'+1.,'+1+V5-1‘,—2V.'.,+V;+1,,~] =2ra(r; +r,) [E(V.-JH—V,- HHioalin D] (1.71)
where the indices in the time and z domain are j and i respectively. The terms with an index j+1 can
therefore be considered to be the unknowns, denoting as they do, values at the next time instant. Equa-
tion (1.71) may be rearranged in such a manner as to have all terms representing unknown quantities
appear on the left side of the equation. Certain quantities are defined, in order to facilitate this rear-

rangement of terms, as follows.

2
a =4na(r; +1,)Cy (AI;) (1.72)

Yo = 4na(r; + 7Y B2V ipm ) (1.73)
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8=-2+0q) (1.74)
The resulting rearrangement yields
Vi it + 0V + Vi s = 035 (1.75)
where
0ij==Viq i+ @- )V~ Vi j+¥ij (1.76)

The result is a set of linear algebraic equations for each time instant j. The formulation must
include boundary conditions at either ends of the fiber, and in this case the ends are considered to be

sealed, representing an infinite resistance to longitudinal current flow and hence,

aV"‘o —aV"'L =0 1.77
az (")_ az (!t)_ (' )

where L is the length of the fiber.

In discrete form the differential boundary conditions become

—3V0J+l +4Vl.j+l - V2J+l =0 (1.78)
3VNJ+1 - 4VN—1.}+1 + VN—ZJ’H =0 (1.79)

The resulting set of N+1 equations for a cable with N segments is reproduced in matrix form,

thus
24060000 0 o] |Vom 01
1 6 1000 0 0 Vi ¢y
0 1 100 0 0 Vain 62
S = (1.80)
0 00001 0 1] |v.,. Onr
0 0 0000 46 -2| (}:'v;’;‘J 4,:‘_:;

The tri-diagonal form of the matrix on the left hand side of (1.80) may be easily inverted to solve for
the vector V, which is the transmembrane voltage at every point along the fiber, for each instant of

time.
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1.6 Summary

In this chapter an introduction to the nature of the problem which is considered in this study has
been provided, together with the mathematical model which is used to characterize the different kinds
of cells studied. All the expressions developed here will be used in the succeeding chapters, each of
which is devoted to a particular aspect of the present study. The next chapter deals with the thorough
analysis of the core conductor model that is undertaken for the nerve fibers, and following chapters
deal with the reconstruction of the extracellular currents and potentials of the myelinated fiber as func-
tions of time and the investigation of extracellular potentials from an eccentric skeletal muscle fiber

located in a finite volume conductor.



CHAPTER 2

Evaluation of the Core Conductor Model for Active Nerve Fibers

2.1 Introduction

In this chapter a detailed evaluation of the core conductor model and the cable equations associ-
ated with it, is undertaken for the myelinated and unmyelinated nerve fibers. The mathematical
expressions developed in the previous chapter are used to perform the evaluation. As described in the
previous chapter, the active nerve fiber is characterized by a distributed parameter model of the form
shown in fig. 1.3 and the associated parabolic partial differential equations are solved using the

Crank-Nicholson numerical integration technique.

2.2 Modeling Aspects

The distributed parameter models for the unmyelinated and myelinated nerve fibers were intro-
duced in the previous chapter. The patches of membrane that are represented by the shunt elements of
the cable in fig. 1.3a are characterized by Hodgkin-Huxley models of the squid giant axon (Hodgkin et
al, 1952). The network model is shown in detail in fig. 2.1 where C), is the membrane specific capa-
city in pF/cm?, gy, gk and g are the specific conductances (mS/cm ) of the sodium, potassium and
leak channels respectively and Ey,, Ex and E; are the Nemnst potentials (mV) of the sodium, potassium
and the leak channel, respectively. The propagation of electrical activity along the myelinated nerve
fiber is simulated using the distributed parameter model based on the work done by Goldman and
Albus (1968). The model in turn incorporates a nodal membrane model attributed to Frankenhaeuser-
Huxley (1964). The Frankenhaeuser-Huxley model consists of three ionic currents and one leak
current that are assumed to be present in the nodal membrane of the myelinated fiber. The three ionic
currents consist of a fast inward sodium current, a delayed outward potassium current and a very small
inward current that is considerably slower than the fast sodium current. This later current is said to be

due to non-specific ions but is characterized in the model as a sodium current. Since experimental

24
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Figure 2.1 The electrical network describing the membrane patches in the distributed parameter

models for the unmyelinated fiber.
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evidence (Horakova, Nonner & Stampfli (1968); Chiu, Ritchie, Rogart & Stagg (1979); Brismar
(1980); Kocsis & Waxman (1980)) has proved the existence of potassium channels in the paranodal
region and their almost complete absence in the node, it was decided to associate the potassium and
the non-specific inward current in the membrane model with the paranodal region. The segments in
the internodal region of the fiber are characterized by lumped parallel resistive capacitive elements as
in Goldmann and Albus (1968). An equivalent circuit model of the nodal, paranodal and internodal
regions of the myelinated nerve fiber is shown in fig. 2.2. In fig. 2.2 Ep and gp denote the Nernst
potential and specific conductance of the non-specific channel, respectively, while the nodal, paranodal
and internodal regions are the regions labeled as a, b, and ¢ respectively, on the drawing of the myel-

inated fiber.

As stated in the chapter 1, the technique employed to numerically integrate the partial differen-
tial equation describing the propagation of the electrical impulse along the fiber, results in a set of

equations that may be written in matrix form as :

AV=B @.1)

where the matrix on the left hand side of (2.1), A is a tridiagonal matrix, V and B both being vectors.
Recalling the form of the tridiagonal matrix A from equation (1.80), it can be noticed that the diagonal
element of the matrix is the term defined as 0 in equation (1.74). In the present study using the various
parameter values specified in tables 2.1 through 2.3, the resulting value of 6 is approximately 12, a
number which is always an order of magnitude greater than the off diagonal elements in the matrix A .

The tridiagonal matrix A is of the following form.

(b, -1 0 o
—-a, bZ —Cy 0
0 -a b ~5 L
A= | - . . 22)

[=J=Y el
OO0
(=R Y o)
[=J =N

. . . . . _ : b _ c
0O o0 0 0 0 -ayv U N
0 0 0 0 0 0 -aw bya J

The set of equations represented by the matrix equation (1.80) and (2.1) can therefore be written in a

very general form as :
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Figure 2.2 The electrical network describing the membrane patches in the distributed parameter
models for the nodal, paranodal and internodal regions of the myelinated fiber. The myel-
inated fiber is shown on top where the regions are labeled as a for the nodal region, b for

the paranodal region and ¢ for the internodal region.
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bV, -V = 4
- a2V0 + bZVl - CZVZ = d2
—_ a3Vl -+ b3V2 bt 03V3 = d3
—aWna2 W -aVv = g,
—avuaVya beaVv = g4,

The first equation may be used to eliminate V;, from the second equation, the new second equation
being then used to eliminate V) from the third equation and so on, till finally one equation with one
unknown Vy remains. The equation in Vy can be solved to evaluate Vy which can then be back-
substituted to find Vy_;, which in its turn is back-substituted to solve for Vj._, and so on. This is known
as Gauss’s elimination method and is very stable provided the following conditions hold [Smith,
1978].

(i) a;>0,b;,>0and c; >0,

and

(ii) b; > a; + c; fori=1, 2,........ N+1

In all the cases studied here both conditions hold true, because as stated before the diagonal element in
the matrix A, denoted by 6 in equation (1.80) and b; in equation (2.2), is always an order of magnitude
greater than the sum of the off diagonal elements. The method of numerical integration employed is

therefore very stable and the partial differential equation can be solved with ease.

2.3 Computational Aspects

The two types of fiber considered in this study are the myelinated nerve fiber, that uses the myel-
inated nerve model due to Frankenhaeuser and Huxley (1964) as the membrane model, and the
unmyelinated nerve fiber that follows the development of Hodgkin and Huxley (1952). The values of
the model parameters in both cases are listed in tables 2.1 through 2.3. Table 2.1 is a list of the
geometric parameters needed in the two models, table 2.2 lists the values of the parameters in the net-
work models shown in figures 1.3, 2.1 and 2.2, and table 2.3 gives the different forms of the terms
defined in equations (1.72) through (1.76). Typical transmembrane potential spatial distributions

®,.(z) for the unmyelinated and myelinated fibers described in terms of the parameters given in tables
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2.1, 2.2 and 2.3 are shown in figure 2.3a and b, respectively. These transmembrane potential distribu-

tions &,,(z) then serve as input to the volume conductor equations for potential and current.

Table 2.1 : Geometric Model Parameters

Myelinated | Unmyelinated
Fiber Fiber
Fiber radius (a) 0.0005 cm 0.0238 cm
Myelin thickness (at) 0.0002 cm
Length of anode of Ranvier (NL) | 0.0004 cm
Volume conductor radius (b) na na
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Figure 2.3 a Typical action potential distribution ®,(z) for the unmyelinated nerve fiber generated by

the distributed Hodgkin-Huxley model for squid axon.
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Figure 2.3 b Typical action potential distribution ®,,(z) for the myelinated nerve fiber generated by the

distributed Frankenhaeuser-Huxley model for a myelinated nerve fiber.



Table 2.2 : Electrical Model Parameters

Myelinated Unmyelinated
Fiber Fiber
External resistivity (R,) 70Qcm 70Q ém
Internal resistivity (R;) 100Q cm 110Qcm

External resistance per unit length (r,)

R /{na*(n’~1)}

R/ {ma*(n*-1)}

Internal resistance per unit length (r;) Rina’ R/na?
Membrane Capacitance (C,,) 2 pF/cm 2 1 uFiem?
Myelin Capacitance (C,,) 0.00387 uF/cm 2
Myelin Conductance (g,,,) 0.083308 pumho/cm 2
Sodium Nernst Potential (Ey,) 115mV
Potassium Nemst Potential (Ey) -12mV
Leak Potential (Ej) 0.026 mV 10.6 mV
Sodium conductance constant (gy,) 120 m mho/cm 2
Potassium conductance constant (gx) 36 m mho/cm 2
Leak conductance (g;) 30.3 m mho/cm 2 0.3 m mho/cm 2
Sodium permeability constant (Py,) 0.008 cm/sec
Potassium permeability constant (Py) 0.0012 cmv/sec
Non-specific permeability constant (P,) 0.00054 cm/sec
External Sodium concentration ([Na*],) 114.5 mM
Internal Sodium concentration ([Na'],) 13.74 mM
External Potassium concentration ({K*],) 2.5mM
Internal Potassium concentration ([K*];) 120.0 mM

32
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Table 2.3 : Crank-Nicholson Parameter Values

Myelinated Unmyelinated
Fiber Fiber
Step size in time (At) 0.005 msec 0.03 msec
Step size in space (Az) 0.02cm 0.05cm

o for unmyelinated node [CHKINL + (Az -~ NL)C,, K31 /(AzAY) | 4ma(r; + r,)Cn(Az) /At

o for the myelinated node K,C, /At
fioni) (ing + ix + i, + i) (NLIAZ) i+ igt )
¥’y for unmyelinated node V-gmy(Az —NL)/Az
imy fOr myelinated node V-&my
¥;; for the unmyelinated node Kiiiongy + Ko’y ana(r; + r)(Az)%iing,
¥.; for myelinated node Kyipy
0 for unmyelinated node -2+a) -2+ o)
0’ for myelinated node -2+a)

K, =4nalr;+ (n>-1)r,](Az)?
K, =4n(a + a)[r; + (n>-1)r,J(Az)?

Using the potential filter functions defined in equations (1.24) through (1.26) the volume con-
ductor problem may be viewed as an equivalent filter problem as shown in figure 2.4a. The input to
the membrane filter is F,(k) the Fourier transform of the transmembrane potential distribution, and its
output is F,,(k) which is the Fourier transform of the potential distribution along the outer surface of
the membrane. F,,(k) in turn is input to the medium filter and the final output is F°(p,k), the Fourier
transform of the potential distribution at a specified field point P(p,z) in the extracellular medium cal-

culated in accordance with (1.24).

Utilizing the filter function definitions in equations (1.49) through (1.52), the equivalent filter

problem may also be formulated for the core conductor model currents, namely the transmembrane
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Figure 2.4 Representation of the volume conductor problem as an equivalent filtering problem for the
(a) extracellular potential (b) transmembrane current and the (c) total external longitudinal

current.
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current and the total longitudinal current in the intra- and extracellular media. Figure 2.4b illustrates
this procedure using one form of the transmembrane current filter function C,,.(]k|a,b) while figure
24c depicts the problem for the total external longitudinal current filter function C;,(]k|a,b). The
input in both cases is the Fourier transform of the transmembrane potential distribution F,(k). The
output in fig. 2.4b is I,(k) the Fourier transform of the transmembrane current defined in equation
(1.58) while the output in fig. 2.4c is F{(k) the Fourier transform of the external longitudinal current

defined in equation (1.62).

Figure 2.5 shows the characteristics of the membrane and medium filter functions when the
volume conductor radius is varied. The membrane acts as a second derivative filter and so the shape
of the membrane filter characteristic is a family of parabolas as seen from fig. 2.5a. As the outer boun-
dary of the volume conductor is decreased, the membrane filter characteristic no longer approaches
zero as the spatial frequency k tends to zero, as in the infinite medium case. Rather as b becomes
smaller the membrane filter gain at low spatial frequencies increases (see insert fig. 2.5a). The
medium filter characteristic shown in fig. 2.5b is computed at a field radius p = 7a and has the nature

of a low pass filter whose cut off frequency decreases as the volume conductor radius is increased.

2.4 Results

With the source waveforms shown in fig. 2.3 as input to the model, the volume conductor poten-
tials and currents may be calculated for different values of the various model parameters. For a very
large value of volume conductor radius & (e.g. b=3000u) approximating an infinite volume conductor,
the calculated extracellular potential ®°(p,z) is triphasic and falls off in magnitude and frequency con-
tent with increasing values of p. This is clearly seen in fig. 2.6a for the unmyelinated axon where
potential is evaluated at p=a, 7a and 15a, as well as for the myelinated fiber shown in fig. 2.6b. The
general form of the extracellular potential distribution in axial distance z is triphasic for both types of
axons, however the myelinated fiber has high frequency "spikes" superimposed on it, with the spikes
appearing spatially at regular intervals equal to the internodal distance. These spikes correspond to

potential changes associated with current entering or leaving the nodes of Ranvier. The fall-off in fre-
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Figure 2.5 a The characteristics of the membrane filter function M(|k|) vs. k for various values of the
volume conductor radius b. The case chosen is for a cylindrical myelinated fiber having a
radius of 5 um. In fig. 2.5 a the characteristics are labeled in the insert as (1) forb=30a,

2)forb=50a,(3)for 5=9a,(4) forb=150a and (5) for5=800a.
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Figure 2.5 bThe characteristics of the medium filter function W(|k|p,b) vs. k for various values of
the volume conductor radius &. The case chosen is for a cylindrical myelinated fiber hav-

ing a radius of S pm. The medium filter is evaluated at a field radius p=7 a.
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Figure 2.6 a Computed extracellular potential waveforms at several radial distances from the fiber (p =

a, 73, and 15a) for the unmyelinated fiber.
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Figure 2.6 bComputed extracellular potential waveforms at several radial distances from the fiber (p =

a, 7a, and 15a) for the myelinated fiber.
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quency content with potential evaluated at increasing distances from the surface of the fiber is espe-

cially well seen in the attenuation of the current related spikes in fig. 2.6b.

The general shape of the extracellular potential waveform is significantly influenced by the value
of the model parameter b, the radius of the volume conductor medium. As the outer boundary at p=b
is made to approach the surface of the fiber, the extracellular potential ®°(p,z) increases in spatial
extent and undergoes a change in shape. This is illustrated for the case of the outer surface potential
distribution ®,,(z) for the unmyelinated axon in fig. 2.7a and the myelinated axon in fig. 2.7b. When
the extent of the volume conductor is very small i.e. when the outer boundary is very close to the sur-
face of the fiber, the extracellular potential is fairly large in magnitude. In the case of the myelinated
fiber, the spikes are almost obscured by the relatively slow triphasic potential; the magnitude of this

slow potential decreases as the value of b increases.

The peak to peak magnitude of the extracellular potential and the field extent in the volume con-
ductor also depend on the fiber radius @. This variation of peak to peak magnitude at the fiber surface,
for the unmyelinated fiber in an infinite volume conductor, is shown in fig. 2.8a as a function of fiber
radius. The variation is certainly not linear, and a family of curves can be obtained upon varying the
ratio of conductivities 6,/6;, and thereby changing the gain of the membrane filter function in accor-
dance with equations (1.21) and (1.26). The peak to peak magnitude is further increased when the
fiber is enclosed in a finite volume conductor of an extent comparable to the size of the fiber. Fig. 2.8b
shows the fall off in peak to peak magnitude as a function of absolute distance from the fiber surface
for several values of the fiber radius. Once again the nature of the fall off is illustrated for the unmyel-
inated fiber. The general nature of the fall off is the same for fibers of different radii but the field

extent is much smaller for a small fiber, representing a weaker source, than it is for a large axon.

The transmembrane current per unit length i,(z) is shown in fig. 2.9a for the unmyelinated axon
and in fig. 2.9b for the myelinated fiber. Testing has shown that this current is essentially invariant in
magnitude and spatial extent for different values of the volume conductor radius b, a result which
justifies the assumption that the nerve fiber behaves essentially as a constant current source under a

variety of load conditions. The myelinated fiber transmembrane current i,(z) shown in fig. 2.9b
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Figure 2.7 a Computed surface potential waveforms &, (z) for different values of the volume conduc-

tor radius & in the case of the unmyelinated fiber.
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Figure 2.7 bComputed surface potential waveforms &, (z) for different values of the volume conduc-

tor radius b in the case of the myelinated fiber.
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Figure 2.8 a Variation in peak to peak magnitude of the extracellular potential with different fiber radii.
The peak to peak magnitude considered in is at the fiber surface and the family of curves

is obtained upon varying the ratio of conductivity outside the fiber g, to conductivity

inside the fiber ;.
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Figure 2.8 b Variation in field extent of the extracellular potential with different fiber radii. The curves
in are labeled as (1) fora= S5, (2) for a=25y, (3) for a= 55y, (4) for a = 105 1, (5) for

a=155p, (6) fora=205p and (7) fora=238 .
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reflects the nature of that source in that, it peaks at spatial points corresponding to the location of the

nodes of Ranvier in the myelinated fiber,

Figure 2.10 shows the total external longitudinal current I{(z) for the unmyelinated fiber in (a)
and the myelinated fiber in (b). The total internal longitudinal current I}(z) is of the same shape and
magnitude but of opposite sign for both cases. This result is consistent with the assumption of
solenoidal current flow made in the core conductor model (equation (1.30)). For both the unmyel-
inated fiber and the myelinated fiber, the total external longitudinal currents are independent of the
position of the outer boundary b, a result that is not surprising because of the integration that is per-
formed over all values of p at each value of z in order to evaluate them. The integration is equivalent
to an averaging process in a particular z-plane performed on the radial component of the current den-
sity J,(z) over the entire extent of the volume conductor which effectively removes any radial varia-

tions [see equation (1.41)].

A sensitive index of the changes that occur in the volume conductor as its is varied (i.e. as the
position of the outer boundary b is changed) is the ratio of the radial and axial components of the
current density, namely J(z)/J(z). The ratio is a measure of the relative strength of the two com-
ponents of the current density and indicates the orientation of the current density field. A large value
of the ratio indicates a predominantly radial field while a srall ratio indicates an axial field. This ratio
is calculated at a fixed value of p for all values of z. Figure 2.11 shows this ratio as a function of z for
different values of b, calculated at p =2 a for the unmyelinated fiber in fig. 2.11 (a) and the myel-
inated fiber in fig. 2.11 (b). As is apparent from the figure, both the absolute magnitude and the shape
of the ratio change with various values of . When the extent of the volume conductor is very small
(b =3 a for the unmyelinated fiber and b=30a for the myelinated fiber) the ratio is almost zero for

all values of z. This is the point at which the current density field is almost completely axial.

2.5 Discussion of results

The results in fig. 2.7, that show the extracellular potential increasing in both spatial extent and

magnitude when the outer boundary of the volume conductor approaches the fiber surface, can be
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Figure 2.11 a The ratio of the radial component of the current density to the axial component of the

current density J,(z)/J,(2) for the unmyelinated fiber. The ratio is evaluated at p=2a.
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Figure 2.11 b The ratio of the radial component of the current density to the axial component of the

current density J,(z)/J,(z) for the myelinated fiber. The ratio is evaluated at p=2a.
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explained upon consideration of the characteristics of the membrane and medium filter functions.
Referring back to fig, 2.5, the filter characteristics of both filters show an increase in lower spatial fre-
quency gain as the outer boundary of the volume conductor is made smaller. This increase in lower
spatial frequency gain results in a larger signal magnitude of relatively slow components of the signal,
which is reflected in the fairly large slow triphasic component present in the calculated extracellular

potential when the extent of the volume conductor is small.

In the core conductor model it is assumed that the extracellular medium may be characterized by
a lumped resistance per unit length r,. This assumption implies that the current in the extracellular
medium is completely axial, a fact that is made apparent in the cable equations (1.29) through (1.32).
The field theoretic technique employed here for the evaluation of the extra- and intracellular currents
and potentials, does not make use of the assumption of a predominantly axial current flow in any
region of the model. The results of the field evaluation are exact and can be used as a standard of
measurement when evaluating the core conductor model. As is obvious from fig. 2,10 the current den-
sity in the extracellular medium can be considered to be axial only for relatively small values of the
volume conductor radius &. For the most part the extracellular current density field consists of a fairly
large radial component. It can therefore be stated that the core conductor model is a fairly inaccurate
representation of events in the extracellular medium except in cases where the volume conductor is
extremely small in extent, as in the case where a single nerve fiber is immersed in an oil bath, with
only a thin adhering layer of conducting fluid serving as the extracellular medium. On the other hand,
we have found the core conductor model to be a very good representation of electrical events occur-

ring in the intracellular medium.

Besides evaluating the cable equations, the DFT technique employed here is a rapid, accurate
and fairly powerful technique to calculate the complete current and potential fields in the region within
and without the unmyelinated or myelinated nerve fiber. In the method used here the spatial distribu-
tion of the transmembrane potential distribution has been explicitly evaluated at each instant of time.
As will be demonstrated in the next chapter, this fact can be made use of to rapidly calculate current

and potential fields, at a specific pcint in the intra- or extracellular medium, as functions of time. This
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is greatly facilitated because of the fact that the filter functions used in this technique are not functions
of time, depending as they do only on geometric and electrical properties of the medium around the

cell membrane.



CHAPTER 3

Currents and Potentials of the Active Myelinated Nerve Fiber

3.1 Introduction

The previous chapter was concerned in part with the evaluation of the Core Conductor Model
for the active myelinated nerve fiber. This chapter is concemed with the accurate and rapid calculation
of extracellular field potentials and currents from an active myelinated nerve fiber in a volume conduc-
tor, under conditions of normal and abnormal conduction. The neuroelectric source for the problem is
characterized mathematically by using a modified version of the distributed parameter model of Gold-
man and Albus (1968) for the myelinated nerve fiber as described in the two previous chapters. Solu-
tion of the partial differential equation associated with the model, provides a waveform for the spatial
distribution of the transmembrane potential V(z). This model-generated waveform is then utilized as
input to a second model that is based on the principles of electromagnetic field theory, and which
allows one to easily calculate the spatial distribution for the potential everywhere in the surrounding
volume conductor for the nerve fiber. In addition, the field theoretic model may be utilized to calculate
the total longitudinal current in the extracellular medium (/7(z)) and the transmembrane current per
unit length (i,,(z)); both of these quantities being defined in connection with the well-known core con-
ductor model and associated cable equations in electrophysiology. These potential and current quanti-
ties may also be calculated as functions of time and as such, are useful in interpreting measured I2(r)
and i, (¢) data waveforms. An analysis of the accuracy of conventionally employed measurement tech-
niques to determine I/(f) and i,(?) is performed, particularly with regard to the effect of electrode
separation distance and size of the volume conductor on these measurements. Also, a simulation of
paranodal demyelination at a single node of Ranvier is made and its effects on potential and current
waveforms as well as, on the conduction process are determined. The effects on the temporal

waveshape of the field potentials as a result of non-uniform conduction are also demonstrated and dis-
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cussed.

3.2 Modeling Aspects

An expression for the extracellular potential distribution ®°(p,z) from an active nerve fiber of
radius a positioned at the center of a finite volume conductor of radius b (fig. 3.1) is given by equation
(1.23) of chapter 1. This equation is obtained as a solution to Laplace’s equation for the external
volume conductor medium under quasistatic conditions, subject to appropriate boundary conditions at
p=a and p=> (fig. 3.1). Here o, and o; are the specific conductivities (S/cm) of the extra- and
intracellular media. The expressions are also given for the transmembrane current per unit length i, ()
in mA/cm and the total external longitudinal current I£(2) in mA, in equations (1.33) and (1.47) of

chapter 1.

The problem of calculating currents and potential in terms of the integral equations is simplified
via definition of the set of filter functions in equations (1.25), (1.26) for extracellular potential and in

equations (1.49) and (1.51) for extracellular currents. Thus,

(p2) = 5 | WAk nlh)e 7k G.1)
in(2) == G,a [ Cpol | K| @,B)F (k) 7k 32)

and
I2(5)=— 0, [ CLo(| k| ab)F ke dk . (33)

are the expressions for the potential and current in the region around the myelinated fiber.

The equivalent filtering approach is illustrated in fig. 3.1 for the case where extracellular poten-
tial is evaluated; the filters involved in the calculation are the membrane filter M( k) and the medium
filter W,(|k|p,b) for a cylindrical volume conductor of radius &. The input to the membrane filter is

the spatial distribution of the transmembrane potential along the nerve fiber @, (z). This is the poten-
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Figure 3.1 A stylized diagram of the equivalent filtering problem for the extracellular potential where
®,(z), ,o(2) and ®°(z,p") are the spatial transmembrane, outer membrane surface and
field potential distributions, respectively. The membrane filter is M(|k|) and W, (k| p,b)
is the medium filter. Immediately above the block diagram are representative waveforms
of the spatial transmembrane, outer membrane surface and field potential distributions.

Fiber geometry is shown at the top of the figure.
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tial distribution present across the equivalent cell membrane of the nerve fiber, along its entire length
at an instant of time. The membrane filter transforms the spatial transmembrane potential distribution
into the spatial potential distribution on the surface of the nerve fiber ®,,(z), which in tum serves as
input to the medium filter that produces the spatial potential distribution in the volume conductor
medium at a particular radius p". Specifying a number of values of p°, the potential distribution
throughout the external volume conductor medium may be easily determined. The spatial current dis-
tributions 7,(z) and J7(z) associated with the classical cable equations, may be evaluated in a similar
fashion at any instant of time provided the transmembrane potential distribution is specified at that

instant of time.

The filters used in this technique are time-invariant and depend on certain electrical and
geometrical parameters. Only the model input, namely the spatial transmembrane potential d,(z)
changes with time; and it may be different at different instants of time. This fact may be exploited
when the extracellular currents and potentials are reconstructed as functions of time in that, the filter
functions need only be calculated once in the entire process for any given geometric and electrical
configuration. Therefore, the particular spatial transmembrane potential distribution at each instant of
time is presented as input to the field theoretic model and output is returned consisting of the desired

current or potential distribution at that particular time instant.

In order to obtain the spatial transmembrane potential distribution along the fiber at each instant
of time a distributed parameter model characterizing the myelinated nerve fiber is evaluated. This
simulation of the myelinated nerve fiber is run for a predetermined length of time for a given length of
the nerve fiber, which implies that a certain fixed number of "time portraits” of the electrical activity
along the fiber can be generated. Each one of these time portraits is a spatial transmembrane potential
distribution. In order to reconstruct the extracellular currents and potentials, each of these time por-
traits is presented to the field theoretic model and the corresponding extracellular current or potential
distribution is returned. Given an adequate (Nyquist) sampling rate in time, the resulting set of time
portraits of the extracellular currents and potentials completely define the extracellular currents and

potentials as functions of time.
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The process of reconstruction of the time waveform is further simplified by the fact that there
exists a basic set of spatial transmembrane potential distributions that repeat with time. The number of
members in this set depends on the velocity of propagation of the electrical activity along the nerve
fiber, the spatial sampling interval Az, and the sampling interval in time Ar. Under conditions of uni-
form conduction, this set consists of very few members that are needed to completely specify the
extracellular potentials and currents at any given spatial point along the nerve, for any instant of time.
All the time portraits of the transmembrane potential, that are generated by the distributed parameter
model simulation of the myelinated nerve fiber, are therefore not required as input to the field theory
model. During abnormal conduction however, the number of spatial transmembrane potential distribu-
tions required increases several fold, depending upon the extent of the region of abnormality. A large
region of abnormality results in the distortion of several representative spatial waveforms through the

region and most of these need to be included in the basic set for a successful reconstruction.

3.3 Computational Aspects

As discussed in section 2.2 of the previous chapter, the propagation of electrical activity along
the myelinated nerve fiber is simulated using the distributed parameter model based on the work done
by Goldman and Albus (1968). As detailed there, the Frankenhaeuser-Huxley model is employed to
model both the nodal and the paranodal regions of the myelinated fiber. Slowed conduction can then
be introduced by simulating paranodal demyelination which not only changes the myelin specific capa-
citance and conductance on either side of the node, but also strengthens the potassium and non-specific
currents from the exposed area of the paranodal region. Complete conduction block may also be
induced in this manner. The various values of the parameters used in the simulation are given in table
3.1 which lists the standard set for both electrical and geometric parameters. The radius of the volume
conductor b is specified as a multiple of the fiber radius a. The partial differential equation that
describes the propagation of the electrical activity along the nerve is numerically integrated using a

stable, implicit finite difference scheme called the Crank-Nicholson method (Crank, 1947).



Table 3.1 : Electrical & Geometric Model Parameters

Parameter Value Used
Fiber radius (a) 0.0005 cm
Myelin thickness (at) 0.0002 cm
Length of a node of Ranvier (NL) 0.0004 cm
Internodal distance (/NL ) 0.2cm
Radius of the volume conductor (b) n-a
External resistivity (R,) 70Q cm
Internal resistivity (R;) 100 Qcm

External resistance per unit length (r,)

R/{ma*(n*-1)}

Internal resistance per unit length (r;)
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Rima?
Membrane Capacitance (C,,) 2uF/cm?
Myelin Capacitance (C,,,) 0.00387 pF/cm 2
Myelin Conductance (g,y,) 0.083308 pmho/cm 2
Leak Potential (E)) 0.026 mV
Leak conductance (g;) 30.3 m mho/cm 2
Sodium permeability constant (Py,) 0.008 cm/sec
Potassium permeability constant (Px) 0.0012 cm/sec
Non-specific permeability constant (P,) 0.00054 cm/sec
External Sodium concentration ([Na*],) 114.5 mM
Internal Sodium concentration ([Na*];) 13.74 mM
External Potassium concentration ([K*],) 25 mM

Internal Potassium concentration ([K*];) 120.0 mM




3.4 Results

With the parameter values specified in Table 3.1, the distributed parameter network for the
myelinated nerve fiber can be solved to obtain the transmembrane potential difference at every point
along the fiber for any time instant desired. The solution is shown as a three dimensional view in fig.
3.2 where the transmembrane potential is shown along a small length of the fiber, covering five nodes
of Ranvier. The spatial transmembrane potential can be seen along the isochronal lines in the figure;
electrical activity is shown here as propagating in the negative z direction. The familiar action poten-
tial is seen in the transmembrane potential as a function of time, at a fixed point in space. The discon-
tinuous nature of the propagation velocity along the nerve fiber manifests itself as discontinuities in the

spatial waveform which can be traced along each isochronal line.

The extracellular potential calculated at the fiber surface as a function of time, at different points
along the nerve fiber is shown in fig. 3.3. The magnitude of the calculated potential at the nodes of
Ranvier is ten times its value at the internodes (note scale changes in fig. 3.3). The discontinuous
nature of the propagation is illustrated more clearly in this figure where the activity is proceeding from

bottom to top along the fiber.

Fig. 3.4 is a three dimensional view of the transmembrane current per unit length i,. Upward
currents in the figure are inward membrane currents, therefore the current spikes seen pushing out of
the plane are inward currents. The troughs seen in the figure represent outward current. It can be seen
that there is a strong inward current at the nodes of Ranvier followed by a prolonged outward current.
At the internodal points along the fiber the current is completely outward and is ten times smaller in
magnitude than the peak to peak current at the nodes. Once again the propagation is in the negative z

direction which means that the activity is traveling from right to left along the fiber.

A three dimensional view of the total longitudinal current outside the fiber I is presented in fig.
3.5. The longitudinal current has also been reversed in polarity for clarity of view. The total longitu-
dinal current outside the fiber is mostly an inward current both at the nodes and the internodes, how-
ever the strength of the current drops slightly at the nodes of Ranvier where the transmembrane current

per unit length is strongest. This effect is illustrated better in fig. 3.6. Propagation in fig. 3.5 is in the
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Figure 3.2 A three dimensional view of the propagating action potential, propagating from right to
left along the spatial axis (negative z direction). The activity is shown over a time period

of 4 milliseconds and a spatial distance of 0.82 centimeters which includes five nodes of

Ranvier.
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Figure 3.3 The values of extracellular potential as a function of time at several points on the surface
of the nerve fiber. The potentials at the nodes of Ranvier are plotted on a scale ten times
the scale at which the potentials in the internodal region are drawn. The arrow indicates

the direction cf propagation of the electrical activity along the fiber.
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Figure 3.4 A three dimensional view of the transmembrane current per unit length across the
equivalent cell membrane of the fiber. The polarity of the current has been reversed so
that troughs represent outward currents and spikes inward currents. Propagation is from
right to left along the spatial axis and the activity is shown for a time period of 4 mil-

liseconds over five nodes of Ranvier.
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Figure 3.5 A three dimensional view of the total longitudinal current outside the nerve fiber. The
polarity of the current is such that troughs represent outward currents and spikes inward

currents. Propagation is from right to left along the spatial axis (negative z direction).
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same direction as in figures 3.2 and 3.4 i.e. in the negative z direction.

Fig. 3.6a shows the transmembrane current per unit length as a function of time, at several points
along the fiber. These spatial points correspond to those that were considered when the extracellular
potential on the outer surface of the fiber was shown in fig. 3.3. The current waveforms at the nodes
are plotted on a scale ten times the magnitude of the scale used to plot the currents at the internodes.
As can be easily seen on comparing figures 3.3 and 3.6a, the extracellular potential on the outer sur-
face of the fiber follows the transmembrane current per unit length very closely, which is not surpris-
ing when it is recalled that the extracellular medium is treated in this model as a simple resistive

medium.

The total longitudinal current outside the fiber is shown as a function of time at the same spatial
points as those used in figures 3.3 and 3.6a, in fig, 3.6b. As stated before, it can be seen here that the
longitudinal current decreases in magnitude at the nodes; however the difference in magnitude is not as
significant as in the case of the transmembrane current or the extracellular potential. For example, the
total longitudinal current in the internodal region is only twice as much as its value at the nodes. The
discontinuous nature of the propagation of the electrical activity along the myelinated fiber is very

prominent in fig. 3.6 where the electrical activity is shown moving from bottom to top along the fiber.

When experimental measurements of current are made, the procedure is to record the voltage at
two points along the fiber and from this differential voltage measurement, first the total longitudinal
current and then the transmembrane curment per unit length are estimated (Paintal (1965), Paintal
(1966), Rasminsky & Sears (1972), Bostock & Sears (1978)). In order to study the effects of this tech-
nique on the current finally evaluated, we simulated the same approximation scheme in our model.
Fig. 3.7 is an illustration of the total longitudinal current obtained by using the extracellular potential
difference between two points that were 120 microns apart, and dividing the difference by the resis-

tance per unit length of the volume conductor medium (r,). This approximates the well-known cable

0,
equation formula /{(z) = %-Q%Q By taking the difference of two values of the longitudinal current
(4

obtained at points 120 microns apart and dividing the result by the distance between the two points, an
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Figure 3.6 a The calculated current waveforms for the transmembrane current per unit length as func-
tions of time at several points on the surface of the fiber. The current values at the nodes
are on a scale ten times that used for the waveforms at the internodal points. The propaga-

tion of electrical activity is from bottom to top along the fiber as indicated by the arrows.
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Figure 3.6 b The calculated current waveforms for the total longitudinal current outside the fiber as

functions of time at several points on the surface of the fiber. The propagation of electri-

cal activity is from bottom to top along the fiber as indicated by the arrows.
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Figure 3.7 Estimates of total longitudinal current and transmembrane current per unit length as func-

tions of time at several points along the fiber. These estimates were made with an elec-

trode separation of 120 microns. See text for details,
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estimate of the transmembrane current per unit length is found. On the left hand side of fig. 3.7 several
longitudinal current waveforms are plotted in this fashion. To the right of these waveforms is an esti-
mate of the transmembrane current per unit length found using the same differencing technique on the
longitudinal current waveforms at the left. The results obtained in this fashion agree very well with
the results predicted by our model. All the calculations seen in fig. 3.7 were performed for a volume

conductor radius b= 30a.

When the external volume conductor is reduced in extent i.e. when the value of b is made to
approach that of the fiber radius a, the calculated extracellular potential waveforms are considerably
larger in peak to peak magnitude. The same differencing scheme that was used in obtaining the results
in fig. 3.7 may be repeated for different values of the volume conductor radius as well as for different
values of separation distance between the values used to estimate the current waveforms. Changing
the separation distance between the values used to estimate the currents is equivalent to changing the
separation distance of the electrodes used to make the differential recording experimentally. The
results of this simulation are shown in fig. 3.8a for the longitudinal current and fig. 3.8b for the
transmembrane current per unit length. In both fig. 3.8a and fig. 3.8b, the first column corresponds to
an electrode separation of 200 microns, the center column to a separation distance of 400 microns and
the third column to a separation distance of 600 microns. In all cases we found that the estimate made
with an electrode separation of 200 microns agreed very well with the calculated value at that point,
both for the total longitudinal current and the transmembrane current per unit length. When the
volume conductor radius was reduced both the total longitudinal current and the transmembrane
current per unit length increased in magnitude. The estimates made for the current waveforms using
an electrode separation larger than 200 microns resulted in an under-determination of the current mag-
nitude. The extent by which the total longitudinal current was underestimated reduced when the
volume conductor boundary approached the fiber surface. This effect was apparent to a much smaller
extent in the case where the transmembrane current per unit length was estimated. All these estimates

were made with the electrodes centered about the node.
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Figure 3.8 aEstimates of total longitudinal current outside the fiber as functions of time; for different

electrode separations and various volume conductor extents. Column (a) corresponds to
an electrode separation of 200 microns, column (b) to an electrode separation of 400
microns and column (c) to an electrode separation of 600 microns. The various rows

correspond to the different values of volume conductor radius b.
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Figure 3.8 b Estimates of the transmembrane current per unit length as functions of time; for different
electrode separations and various volume conductor extents. Column (a) corresponds to
an electrode separation of 200 microns, column (b) to an electrode separation of 400
microns and column (c) to an electrode separation of 600 microns. The various rows

correspond to the different values of volume conductor radius .
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When the node was not centered between the electrodes the estimate was found to be under-
determined even when the electrode separation was 200 microns. Fig. 3.9 shows the results of a simu-
lation where the pair of measurement electrodes was swept across the node of Ranvier from left to
right, starting with the node centered between the pair of measurement electrodes up to a point when
the left hand side electrode is on the node. The estimated current waveforms are smaller in duration
and amplitude when the node is no longer centered between the electrodes. As the position of the node
moves closer to the electrode on the left the waveform also shifts toward the left leading to an error in
the estimated time of occurrence of the waveform. All three errors, namely the amplitude error, the
duration error and the time of occurrence error decrease with a reduction in the volume conductor
extent. In the case of the estimated transmembrane current per unit length waveform, when the
volume conductor extent is made zero, corresponding to the case where a thin adhering layer of con-
ducting fluid is present around the fiber, the estimated current waveform is error-free even when the
node is off-center by as much as 50 microns. The estimated longitudinal current is more sensitive to
electrode positioning and under the same conditions it can be estimated correctly only when the node
is off-center by less than 25 microns. The estimated transmembrane current per unit length can be
correctly found for a volume conductor of radius b=30a even when the node is off-center by 25
microns, which is certainly not the case for the estimated total longitudinal current, as is clearly seen
from fig. 3.9a. Under all circumstances we found that the estimated transmembrane current per unit
length was less sensitive to electrode positioning than the estimated total longitudinal current

waveform.

The effects of slowed conduction, simulated by inducing paranodal demyelination at one node in
the cable, are shown in fig. 3.10a for the transmembrane potential distribution and in fig. 3.10b for the
calculated transmembrane current per unit length; once again the spikes represent inward current,
troughs represent outward current and conduction is in the negative z direction. As expected, the
transmembrane potential drops in magnitude as it reaches the abnormal region. The transmembrane
current at the abnormal node has a very strong component of outward current as can be seen from the

fairly well pronounced trough at that point (fig. 3.10b). There is also a prolongation of the inward
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Figure 3.9 aEstimates of total longitudinal current outside the fiber as functions of time; for two
volume conductor extents when the pair of measurement electrodes is moved from left to
right across a node of Ranvier. The distance d, is the separation distance between the

node and the electrode on the left of the electrode pair. The electrode separation is 200

microns.
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Figure 3.9 bEstimates of the transmembrane current per unit length as functions of time; for two
volume conductor extents when the pair of measurement electrodes is moved from left to
right across a node of Ranvier. The distance d; is the separation distance between the

node and the electrode on the left of the electrode pair. The electrode separation is 200

microns.
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Figure 3.10 a A three dimensional view of transmembrane potential for slowed conduction induced
by simulating paranodal demyelination at one node. The electrical activity is shown as

propagating from right to left along the spatial axis.
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Figure 3.10 b A three dimensional view of calculated transmembrane current per unit length for
slowed conduction induced by simulating paranodal demyelination at one node. The
electrical activity is shown as propagating from right to left along the spatial axis. The
current polarity is such that the upward spikes are inward membrane currents and the

troughs are outward membrane currents.
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current just before and just after the abnormal region. This is not a surprising result if it is recalled that
one of the effects of slowed conduction is the prolongation of the action potential through the abnor-
mal region. One of the consequences of the broadening of the action potential is to prolong the voltage
drive on the sodium channel, thereby prolonging the inward current. Also as the electrical activity
crosses the abnormal region, there is an abrupt slope change in the spatial waveform through that
region as a consequence of the change in conduction velocity. The resulting strong discontinuity in the

transmembrane potential waveform is emphasised in the transmembrane current record.

The effects of slowed conduction on the transmembrane current per unit length and the total
longitudinal current outside the fiber are seen very distinctly in fig. 3.11a and b. The electrical activity
is shown as propagating from bottom to the top of the fiber. Fig. 3.11 shows that both the transmem-
brane current per unit length and the total longitudinal current waveforms are distorted as the activity
propagates into the abnormal region. The decrease in the velocity of propagation is very prominent in
both figures, and both waveforms are smeared in time as they pass through the abnormal region. The
waveform shapes are restored to normal by the time the activity reaches the node that is distant one
node beyond the abnormal node. The records shown in fig. 3.11 are in general agreement with the
experimental findings of Bostock and Sears (1978). The extracellular potential waveforms faithfully
follow the transmembrane current per unit length waveforms, which is as ii should be for a passive,

resistive external medium.

Fig. 3.12 shows the calculated extracellular field potential as a function of time at a point
directly above a node of Ranvier for normal conduction in (a) and for slowed conduction in (b). With
increasing distance from the fiber surface the extracellular potential falls in magnitude and frequency
content for both normal and abnormal conduction. In the case of abnormal conduction the calculated
extracellular potential has a strong positive peak reflecting the presence of the strong outward current.
The extracellular potential also has a second positive peak that corresponds to the hyperpolarization

seen in the transmembrane potential at the end of the action potential.



Figure 3.11 a The calculated current waveforms for the transmembrane current per unit length as

functions of time at several points on the surface of the fiber for the case of slowed con-

duction.
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Figure 3.11 b The calculated current waveforms for the total longitudinal current outside the fiber as
functions of time at several points on the surface of the fiber for the case of slowed con-

duction.
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Figure 3.12 The extracellular potential as a function of time at a distance equal to twice the fiber

radius and five times the fiber radius from the fiber surface, directly above a node of Ran-
vier. The node considered is the central node in the simulation when the propagation of
electrical activity is (a) normal and (b) slowed. In the case of slowed conduction the node

considered here, is the single node at which paranodal demyelination has been induced.
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3.5 Discussion of results

In this chapter it is shown that it is possible to reconstruct the extracellular currents and poten-
tials as functions of time using a simple and efficient filter theory approach, The resulting currents and
potential waveform correspond well with experimental values in literature. Also simulated is the
experimental technique that is used to measure currents in practice. The results of the simulation indi-
cate that electrode separation and placement are critical factors when such measurements are made,
The node of Ranvier must be centered between the electrodes for the estimate of current magnitudes to
be correct. Decreasing the extent of volume conductor (fig. 3.8) makes electrode separation a less crit-
ical factor for the estimation of the total longitudinal current, but this improvement is not as apparent

for the case of the transmembrane current per unit length,

Electrode positioning (fig. 3.9) was found to be a critical factor for obtaining error free estimates
when relatively large volume conductors were considered. With a decreasing volume conductor
extent, the position of the node relative to the two measuring electrodes was found to be less critical.
This can be explained if it is recalled that with a decreasing volume conductor extent the extracellular
potentials tend to be larger in magnitude and spatial duration (chapter 2, fig. 2.7) The difference
between the potentials at two closely spaced points along the fiber is therefore less significant under

these circumstances, making the effects of slight shifts in electrode positioning negligible.

The effects of slowed conduction are seen in the transmembrane potential, the transmembrane
current, the external longitudinal current and the calculated extracellular potential waveforms (figures
3.10 through 3.12). The method by which paranodal demyelination was simulated results in the
strengthening of the outward potassium currents from the paranodal regions of the abnormal node.
This is reflected in the prolonged trough seen in the transmembrane current per unit length waveform
of fig. 3.10b and 3.12a and also in the strong second positive peak of the extracellular potential
waveform of fig. 3.12 column (b). The calculated extracellular potential waveforms are in general of
the same shape as the transmembrane current per unit length, which is as it should be for a passive,
resistive extracellular medium, and hence both reflect the prolonged outward current that exists at the

abnormal node. The upstroke velocity of the action potential in the abnormal region decreases and this
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is reflected in the extracellular potential and the transmembrane current per unit length waveforms as a

broadening of the first positive and negative peaks.

As stated before, the calculation technique described in this chapter is quite rapid involving a
small fraction of the computational time required by a comparable finite difference or finite element
characterization of the myelinated nerve fiber’s immediate surroundings. The field theory model can
be easily modified to include one or more regions around the nerve fiber, each with varying degrees of
anisotropy. This technique which combines a distributed parameter model of the nerve fiber with a
field theory model of its environment, can therefore be extended to the quantitative study of a number
of intriguing problems in nerve electrophysiology including: (a) the electric field stimulation of myel-
inated nerve and the subsequent determination of excitability thresholds; and (b) a more detailed study

of nerve conduction in demyelination disease.



CHAPTER 4

Extracellular Potentials from Skeletal Muscle

4.1 Introduction

This chapter is devoted to the study of extracellular potentials from an active muscle fiber in a
muscle bundle. Just as in the case of the nerve fiber, the skeletal muscle fiber is modeled as a distri-
buted parameter model of resistive and capacitive elements as shown in fig. 1.3, and a numerical solu-
tion for the transmembrane potential distribution across of the fiber is obtained. The extracellular
potentials are evaluated using a field theory model developed for an eccentric source in a finite volume
conductor.

The potential due to the presence of more than one active fiber in the muscle is evaluated using
principles of superposition. Compound action potentials are generated allowing for a desynchroniza-
tion in the time of activation of the various muscle fibers active in the muscle. The effects of multiple
fibers being active at slightly different times are studied using a motor unit consisting of nine indivi-
dual muscle fibers. The muscle fibers considered are all assumed to have identical geometrical and

electrical parameters.
4.2 Modeling Aspects

4.21 Potential ir 2 &nite volume conductor

The fundamental problem considers a circular cylindrical muscle fiber of radius a (cm) and
specific sarcoplasmic conductivity o; (S/cm), to be located eccentrically in a finite, homogeneous,
anisotropic volume conductor of radius & and specific conductivity o, and G,, in the transverse and
longitudinal directions respectively, as illustrated in fig. 4.1. Under conditions of quasistationarity the
general solution to Laplace’s equation within the cylindrical volume conductor 0 <p < b, a region that

excludes the volume occupied by the source fiber is given as :
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EXTERNAL MEDIUM

Figure 4.1 Fiber geometry. The fiber radius is denoted by a and the muscle radius is b and P(p,0,z) is

the field point at which the potentials are to be calculated.
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@(p,0,2) = B,(p,0,2) + i e~ Mee) j AL\ k| p)edk @.n

R=wce —co

where € is the angle that the radius vector R, from the origin to the center of the source fiber makes
with the horizontal; /, is the modified Bessel function of the first kind, order n; and A is the anisotropy
ratio that represents the anisotropic nature of the medium inside the volume conductor, and is defined

as:

12
= |Des
A= [ oy ] @42

Here the term @, represents the potential distribution outside the source fiber, when it is positioned in
an infinite, homogeneous, anisotropic volume conductor with the specified properties. A suitable
expression for the potential distribution ®,, modified for the particular case of an anisotropic external

medium, is given by :

= _ 17 FuOKoMlkip) .
D,(p,0,2) = Dp,2) = =g WL ik g @3)

where the relationship between p and p, is given by the law of cosines as :

pi=p* + R}~ 2pR,cos(B-¢) 4.4)
and A is given by (4.2). Inequation (4.3) a is the fiber radius, K, is the modified Bessel function of the
second kind, order n; and F,, is the Fourier transform of the transmembrane potential distribution of

the source fiber when it is located in an infinite volume conductor medium. The term o, (Alk|a) is

called the membrane filter function and is defined as :

Ky(Alk| o)1k )
=-|1 .
Onlh k19 +8K0<Mk|a)ll(lk|a)J “
where
Ao,
8=Ti- (4.6)

Using the relationship in (4.4) and the Bessel function addition theorem (Abramowitz and Stegun,
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1965), the modified Bessel function Ky(A | k| p,) may be written as :

KoMlklp)= 3 cos n@-eK.AKIRIMLAIKD)  p<R, @n

A= =—oe

and

KiMklp)= 3 cos n@-el,(AKIR)KAIKI)  p<R, 48)

A=—co

Therefore the general form of the solutions to Laplace’s equation in the cylindrical volume conductor

region 0 < p < b, under conditions of quasistationarity are :

0= T €D [ [A,0)+ PN | ple e 0<p<R, @.9)

R=—c0 —ce

Vo= 3 e JlARLA k) + QK (MkIpe™de  R,<p<b (4.10)

R= 00 —e

where the terms P (k) and Q, (k) are defined as :

by = _Fo®KAMIEIR)

" o (M k@)K A k[a) @.11)

and

Fo(ol, (kIR
k) =
O = kKA k1)

4.12)

The general form for the potential in the external region (p < b) characterized by a specific con-

ductivity o, (S/cm), is given by :

(p,02)= 3, e [ B (WK, |k ple 7k b<p @.13)

A=—ce —e

The coefficients A,(k) and B,(k) can be solved for by applying the following boundary condi-

tionsatp=>5.
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At p=b we have a resistive capacitive sheath and the current crossing the connective tissue

sheath is assumed to be continuous. Hence :

aer| ___ aer|
-G, % ’b_ c, % Ib—J,,,(e,z) @4.19)

where ¢, is the specific conductivity of the medium outside the volume conductor and J, is the trans-

sheath current density given as :

ad)sh(e»z)

oy (4.15)

J :h(e’z) = ash(b:k(eaz) + é;h
where G, is the specific conductivity of the sheath (S/cm?) and C-‘-,,, is the specific capacity of the
sheath (UWF/cm %), The trans-sheath potential ®,,(6,2) is defined as :

D,,(0,2) = D°(5,0,2-(b,0,2) (4.16)

If v is the velocity of propagation of the electrical activity along the fiber in the negative z direction,

all field properties vary as (z + v) and so for any field quantity ¥(p,8,z) we have :

¥(p,0,2) = YIp,6,(z+vt)] . 4.17)
Consequently,
ow _, o
% =¥ s (4.18)

Thus, equation {4.15) may be rewritten as :

- ad)_‘.,,(e,z )

J, ,;.(9,2) = a.rh(b:h(evz) + vc:ll a 2 (4'19)

Upon considering the form of the expressions for potentials ®° and ®° in equations (4.10) and (4.13)
and their dependence on axial distance z, the derivative of the trans-sheath potential with respect to z,
isgivenas:

ad’:h(e»z)

3 =—jkd,(0,2) . 4.20)

Using the above expression equation (4.19) may be rewritten as :
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Ji4(8,2) = (G — JHVC)D,4(6,2) (421)
Defining the complex admittance 6" (k) as :
G°(k) =G, — jbvCyy (422)

and employing equation (4.21), the two equations that specify the boundary condition at p =5 are :

0,0 22| 46" W,=0 4.23)
P |b
and
el
0. 2| L'y, = 424

Applying the mixed boundary condition specified by (4.23) one obtains :

3 €0 [ {0, A MO 1K1 B) + QuK ALK B

A= =00 —co

+0 (AL k[ b) + QKK (A1 k|B) — B (K (| k| b)) }eMdk =0 .(4.25)

Here /I’ and K’ are the first derivatives of the modified Bessel functions /, and K, respectively. For the
integral to equal zero, the terms within parenthesis must be equal to zero, which, after rearrangement

of terms, may be written as :
AR {0, I (A k1b) + & (A k] )} - B,(k){c" (WK ,(1k| b)}
+ 0 (){6, K u(A k| b) + 6" (k)KL k[5)} =0 . (4.26)

Similarly, applying the boundary condition expressed in equation (4.24) results in the following :

3 €09 [ {0 8,00K'(IKI b

R=—eo ——

+ 0 ([ALRI LA k] b) + Qu(k)K (A1 k1 B) = BOK (1 kI D)]}e Bdk=0 .(4.27)

Once again the term within parenthesis must equal zero for the equation to hold. After rearrangement
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of terms, and this results in the expression :
AJR{S (MM k[ B)} + B, (k)G K A(| k| B) — 6" (K)K( 1 K16)} + Qu(E){0"(E)K,(A 1| D)} = O (4.28)

Eliminating B,(k) between equations (4.26) and (4.28) the coefficient A,(k) may be obtained in terms

of Q,(k)as:
A(k) = Q (k)X (k) (4.29)
where
X (k) = 2 (4.30)
(k)

and the terms b, (k) and c,(k) are given as follows.

bu(k) == 6,0, K's(M k| BYK (1 k| B) + G, " (K)K (M| k| B)K (1 k1)
- 06,6 (KK (A k1K' (1| ) 4.31)
cnk) = 6,0, " (M k| BYK (| k| b) - 6, 0" (k) y(A k| B)K (| k| b)

+0,0"(KI,A k| DK (1 k) 4.32)

Eliminating A,(k) between equations (4.26) and (4.28) results in the solution of B,(k) in terms of Q,(k)

as:
B, (k) = Qu(k)Y (k) (4.33)
where
1= 2 (4.34)
cak)
the term d (k) being defined as :

dy(k) = 6,,6° (k) LI, (M k| DK, (A1 k1) = I'n(M 1 K| KA | K | B)] @4.335)



The final expressions for potential are given as :

()= 3 e [WipOHF e dk 0<p<R,
@°(p,0,2) = f; ) [ W(p,00)F (k) Mk R,Sp<b
Y02 = 5 eI [Wip,0JF (ke ok b<p

where the terms denoted by W, are filter functions defined as :

I\l p)
(Al k| a)Ko(A 1 k| a)

Wi(p.0) = [X.(k) 1.(Mk|R,)+K,.<Mk|R,)]

I(MKIR)
oAkl @)Ky(A| k| a)

20,040 = [X LA IKIp)+ KA KIp)]

I (MEIRS)
on(A |kl a)Ko(A k] a)

Wa(p,0.k) = Y (k) K (1k1p) bsp

0<p<R;

90

(4.36)

4.37)

(4.38)

4.39)

R,Sp<b (440)

@4.41)

We now define the two dimensional Fourier transform pairs for the potentials ®° and & for a

specified value of radial distance p* as :

Fomp= 3 e [ 0°(p",0,00edz

A= —co —c0

V0= 3 e [ Fonpredz 0<p <b

R ==00 -0

and

Finby= 3 e [ 00" 0,)e/ds

A=—co —oe

0= T e[ Fenieivdz p'>b

Rz —ee

(4.42)

(4.43)

(4.44)

4.45)
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which are discrete in n, the @ direction spatial frequency and continuous in k, the z direction spatial

frequency.

4.22 Discrete Fourier Methods of Solution

In the preceding sections, Fourier integral expressions have been developed for the extracellular
potentials inside and outside the volume conductor namely ®°(p,0,z) and &*(p,0,z). Computation of
these quantities is greatly facilitated by reformulation of these integral expressions in terms of the
methodology of the two dimensional discrete Fourier Transform (2DFT) technique (Oppenheim and
Schaeffer, 1975). Reformulation of these equations for representation in the discrete spatial (6,z) and
spatial frequency (n,k) domains will be illustrated using the potential outside the volume conductor
@%(p,0,z) as an example. Following the development in previous work (Wilson et al, 1985), the

discretization proceeds as follows :

M-1 N1 . )
FiRuPq)= Y 3 e/*Q'e/miMe/mu = 2DET [&%(p,Sn,Zm)] (4.46)
m==Mnan=N
and
M-1 N-1 ] .
O(p,Sn,Zm)= 3, 3 Fé(p,Ru,Pq)e ™ ¥Ne="N = 2IDFT [F(p,Ru,Pq)] 4.47)
g=-Mu=-N
where
= T
P= V7 (4.48)
and
=T
R= NS (4.49)

Here Z and P are the sampling intervals in the z- and k-domains, respectively, S and R are the
sampling intervals in the 0- and the 6-spatial domains, respectively, m, n, 1 and g are integers. The
function ®*(p,6,z) is normally limited in both the z- and 6-domains, meaning that ®(p,0,z) is nonzero

for a small finite range of z values (-Z; <z < Z,) and a finite range of 0 values (8; < 8 < 8,), and is
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essentially zero outside this range. Similarly, *(p,8,2) is limited with respect to frequency content;
therefore F“(p,n,k) is nonzero only within a small range |k| <X and |#| <N (K and N being con-
stants). Thus, the discrete functions ®“(p,Sn,Zm) and F*(p,Ru,Pq) approach zero as Sn and Zm and
Ru and Pq, respectively, become large. The sampling intervals § and Z are chosen to be small
enough so that no aliasing occurs in the frequency domain, and the number of samples or sampling
duration, NS and MZ, are chosen to include the entire signal. Relationships similar in form to the

2DFT pair of equations (i.e., (4.46) and (4.47)) exist for &°(p,0,z) and F°(p,n,k) as well,

Thus the various integral equations can be evaluated as products of 2DFTs (equivalent to a two

dimensional linear convolution). Once again the potential outside the muscle is given as an example,
F*(p,Ru,Pq) = e/™F (Pq)W3(p,Ru,Pq,a,b) 4.50)

where g=1......... M andr=1............ N.
The external potential itself is given by

O“(p,Sn,Zm) = 2IDFT [®“(p,Ru,Pq)} @s1)

The other integral equations are also evaluated in a similar fashion using two dimensional FFTs.

4.3 Computational Aspects

The type of active fiber considered in this study is the skeletal muscle fiber, that uses the model
due to Adrian and Peachey (1973) as the membrane model. The values of the model parameters in
used in the cable-like simulation and in the electromagnetic field theoretic model (fig. 4.1) are listed in
table 4.1. The resistivity of the sarcoplasm (R,) is assumed to be 125 Q-cm, a value obtained from the
measurements of Elmqvist et al (1960) and Lipicky et al (1971). The nominal value of the anisotropy
ratio A used in the model model is taken from the compendium of data compiled by Geddes and Baker
(1967), specifically it corresponds to a value of 2.78 for A% found by Burger and van Dongen (1960-
61). A typical transmembrane potential spatial distribution @,,(z) for a skeletal muscle fiber described
in terms of the parameters given in table 4.1 is shown in figure 4.2. This transmembrane potential dis-

tribution ®,,(2) then serves as input to the volume conductor mode! for determination of the extracellu-
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Figure 4.2 Typical action potential distribution ®,(z) for the active skeletal muscle fiber generated by

the distributed model of the fiber.



lar field potential.

Table 4.1 : Model Parameters

Parameter Value Used
Fiber radius (a) 0.005
Source radius (R,) 0.0125
Muscle radius (b) na
Muscle medium anisotropy ratio (A) 1.67
Step size in time (Af) 0.01 msec
Step size in space (Az) 0.05 cm
Extracellular resistivity (R,) 70Q cm
Intracellular resistivity (R;) 125Qcm

Extracellular resistance per unit length (r,)

R /{ma*(n>-1)}

Intracellular resistance per unit length (r;) Rina?
External medium conductivity (c,) 0.05 S/cm
Sheath specific conductance (c,;) 0.001 S/cm 2
Sheath specific capacitance (C,;) 0.02 uF/cm 2
Membrane Capacitance (C,,) 1 pF/cm?
Sodium Nernst Potential (Ey,) 145 mV
Potassium Nernst Potential (Ey) 25mVv
Leak Potential (E)) -SmV
Sodium conductance constant (Zy,) 180 m mho/cm 2
Potassium conductance constant (gx) 41.5 m mho/cm ?
Leak conductance (g)) 0.24 m mho/cm 2

94
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Using the potential filter functions defined in equations (4.39) through (4.41) the volume con-
ductor problem may be viewed as an equivalent filter problem as shown in figure 4.3, The input to the
filter is F,(n,k) the Fourier transform of the transmembrane potential distribution and the particular
value of p where the field distribution is to be evaluated (i.e. p=p°). The output of the filter is F°(n,k)
the Fourier transform of the potential distribution in the muscle medium when either filter W or W2 is
used. These filters are defined in equations (4.39) and (4.40) and the value of p* determines which
filter is employed. If the value of p° 2 b the filter W¢ defined in (4.41) is utilized. In this case the out-

put is F“(n,k) the Fourier transform of the field potential distribution in the external medium.

Figure 4.4 shows the characteristics of the various filter functions used in this process. These
filters are "almost real” meaning that the imaginary part of the expressions in equations (4.39) through
(4.41) is very small compared to the real part. This is true for a range of values of the sheath capaci-
tance Cg, from ten times smaller to ten times larger than typical physiological values. Also, all the
filter functions are plotted after the exclusion of the membrane filter from the filter function expres-
sions. The membrane filter is a second derivative filter that serves to convert the monophasic
transmembrane potential into the familiar triphasic extracellular potential waveform (Ganapathy et al,
1985) and its properties depend only on the fiber radius and the ratio of specific conductivities inside
and outside the fiber. The filter function defined in equation (4.39) for the region of the muscle p <R,
is illustrated in fig. 4.4a after excluding the membrane filter term from the expression. Figures 4.4b
and ¢ show the filter function used inside the muscle in the region p > R, and in the external medium,
respectively. All the filter functions have the general characteristics of a low-pass filter; and the
further away from the source the field point moves, the lower the cut off frequency and gain of the
filter. This implies that the potentials decrease both in amplitude and frequency the further away from
the active source fiber they are measured. In all cases the zeroth order filter function, corresponding to
an angular position of 8 =0, is several orders of magnitude higher than the filter functions of all other
orders. This means that there is almost no change in the calculated field potential as the field point is

moved around the muscle at a fixed value of p.
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Fp(n,k) F°(n,k)

—_— Wl? (pae,k) —>

(a)

Fin(n,k) F¢(n,k)
_—‘% W:(P 9e,k) ————>
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Figure 4.3 Representation of the volume conductor problem as an equivalent filtering problem for the
(a) muscle medium potential and the (b) potential in the external medium. Here F,,, F°,
and F* are the two dimensional Fourier transforms of the transmembrane, muscle medium
and external medium field potential distributions respectively, WS(p,6,k) is the muscle

medium filter and W;(p,0,k) is the external medium filter--see text.



- T

-n,—7

745 f
1Wa|
pi% 5
T~ T

97

Figure 4.4 a The characteristics of the muscle medium filter function within the source radius W, vs. k

for A = 1.67 and b = 250 microns.
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Figure 4.4 bThe characteristics of the muscle medium filter function in the region outside the source

radius W2 vs. k for A = 1.67 and b = 250 microns.
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4.4 Results

4.41 Single Fiber Studies

The transmembrane potential distribution shown in fig. 4.2 is converted to a two dimensional
signal by multiplication by the term e/ which is present in all the equations (4.9) through (4.13) that
describe the potential everywhere in the media surrounding the active fiber. This two dimensional sig-
nal is then utilized as input to the field theoretic model; consequently the potential everywhere at a
given radius from the center of the muscle may be determined. The results of one such simulation is
shown in fig. 4.5. The potential fall-off as the field point is moved around the muscle is almost negli-
gible, a result that was predicted by the filter function characteristics of fig. 4.4. The results shown
here are for the general muscle medium (0 <p < b) but outside the volume occupied by the source

fiber for a muscle radius b = 250 microns.

When the volume conductor extent is fairly large compared with the fiber radius (i.e. when
b5=2000 microns), there is a noticeable variation in potential in the 0 direction. These results are
shown in fig. 4.6a and b when the potential is evaluated on the surface of the muscle. The potential
waveform loses both magnitude and frequency content as the field point moves away from the source
in an angular direction. The change in the shape and amplitude of the waveform is most obvious

between the points 8 = 0° and 8 = 45° as shown in fig 4.6b.

This variation in potential with the angular position 0 is predicted by the filter function evaluated
for b= 2000 microns, shown here in fig. 4.7. The shape of the filter function differs from that in fig.
4.4c in that the filter now has a small but significant gain for its first and second order terms. The
zeroth order term still has a maximum gain which implies that the variation in potential with the angu-

lar position 0 is not very significant, a fact that is verified by the results in fig. 4.6.

The magnitude of the calculated potential is dependent on several factors, the anisotropy ratio
and the radius of the muscle being two rather influential parameters. Fig. 4.8 is a calculation of the
potential around the muscle at the same field radius used in fig. 4.5 but for different anisotropy ratios.

The value of b used here is 250 microns. As the muscle medium becomes increasingly anisotropic,
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Figure 4.5 Computed extracellular potential waveforms at a point inside the muscle distant p = 160
microns from the center of the muscle, and for different angular positions around the mus-

cle. All waveforms are computed for a value of A = 1.67 and b = 250 microns.
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Figure 4.6 aComputed extracellular potential waveforms at the muscle surface i.e. for p =5, and for

different angular positions around the muscle. All waveforms are computed for a value of

A = 1.67 and b = 2000 microns.
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Figure 4.6 b Computed extracellular potential waveforms at the muscle surface i.e. for p=>5, and for

different angular positions around the muscle. All waveforms are computed for a value of

A = 1.67 and b = 2000 microns.
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Figure 4.7 The characteristics of the external medium filter function W vs. & for A = 1.67 and

b =2000 microns.
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Figure 4.8 Computed extracellular potential waveforms at same points as in fig. 4.5 for different

values of the anisotropy ratio A.
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the amplitude of the calculated potential decreases; this is not an unusual result if it is recalled that the
anisotropy ratio is a measure of the medium conductivities in the longitudinal and transverse direc-
tions. An increasing value of this ratio implies a preferential increase in the longitudinal conductivity
which in turn results in a corresponding increase in the longitudinal component of the current density
fields. The effect is to confine the field to regions close to the source and thereby increase the rate of

potential fall-off in the volume conductor medium,

The magnitude of the calculated potential in the muscle medium is also profoundly influenced
by the extent of the medium. As can be seen in fig. 4.9, with a decreasing value of the muscle medium
radius b, the magnitude of the calculated potential in the muscle medium increases. The magnitude of
the potential nearly doubles when the value of b is decreased from 250 microns, a value corresponding
to Sa, to 175 microns, a number equal to 3.5a. This increase is true for all values of calculated

potential regardless of their position in 0,

4.42 Muttiple Fiber Studies

Electromyograms (EMG’s) recorded on the surface of a muscle are generally the result of multi-
ple fiber activity within the muscle. Since the basic fundamental element of skeletal muscle is the
motor unit, the fundamental component of the EMG is the combined field potential activity of the mus-
cle fibers comprising a given motor unit; i.e. the motor unit action potential or MUAP. In order to
simulate the contribution of a single motor unit to a surface recorded EMG, we use an arrangement of
nine individual fibers arranged as shown in fig. 4.10. Linear superposition is assumed to apply. The
fibers are considered to be identical as regards the geometric and electric parameters characterizing
them. As a consequence the same distributed parameter model may be used to simulate the individual
fibers and the fibers may be fired synchronously, or in any desired firing pattern. The effects of allow-
ing all nine fibers to fire simultaneously are shown in fig. 4.11. This model would seem to be a good
approximation for surface EMG recordings where the recording point lies in the far field of the active
motor unit. As thc recording point is brought closer to the motor unit, the interference pattern pro-
duced by the geometrical distribution of the individual active fibers would become progressively more

important. Consequently, other mathematical approaches would have to be taken.
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Figure 4.9 Computed extracellular waveforms at a point within the muscle distant p = 160 microns

from the center for various values of the muscle medium radius b.
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MUSCLE

ACTIVE
FIBERS

P(p’,0,7)

Figure 4.10 An arrangement of nine active fibers numbered O through 8 within the muscle, any or all
of which may be active at a given time instant. The point P(p,6,2) is the field point in the

external medium at which the composite potential waveform is evaluated.
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The potential in fig. 4.11 is calculated on the muscle surface at p=>5 and the nine fibers are
labeled as shown in fig. 4.10. Fig. 4.11a shows the calculated potential when the fiber numbered 0 is
the only fiber that is active. Fig. 4.11b is the calculated potential when all nine fibers are simultane-
ously active and are stimulated at the same instant. As is obvious on comparing the two figures the
shape of the calculated potential remains unchanged but there is a nine fold increase in magnitude.
Once again there is a change in potential amplitude and frequency content with angular position 0 as

the results shown are for a value of b= 2000 microns.

There is a marked change in the waveshape of the calculated potential when the fibers are stimu-
lated at different instants of time. Fig. 4.12 illustrates the effects of stimulating the nine individual
fibers within the muscle at slightly different instants of time. These results are displayed as functions
of time and not as functions of the spatial distance z like all the preceding results. The electrical
activity propagates along the fiber with a constant velocity of propagation and therefore the spatial
variable is directly proportional to time, the constant of proportionality being the velocity. To convert
a potential that is a function of the spatial variable z into a potential that is a function of time all that is
required is that the independent variable z be scaled by the constant velocity. All three sets of
waveforms in the figure are calculated at the surface of the muscle ie. at p=5b. The complex
waveforms shown in fig. 4.12a result when the fibers are stimulated in the order 0, 1,2, 3,4, 5, 6, 7, 8
with a 0.5 ms interval between successive stimuli. The same stimulus sequence is repeated with a time
interval of 0.75 ms between successive stimuli, and the result is shown in the waveforms in fig. 4.12b.
The two sets of complex waveforms differ in both shape and duration. Maintaining the same stimulus
sequence but with an interval of 1.5 ms between the individual stimuli, results in the waveform set
shown in fig. 4.12c. This set of waveforms is considerable different both in shape and duration from
the sets shown in figures 4.12a and b. All three sets were calculated for = 2000 microns, and hence
there is a marked loss in frequency content and amplitude with angular position 8. As is apparent from
the figure the shape, amplitude and duration of the composite waveform is dependent on the stimulus

pattern and the time allowed to elapse between successive stimuli.



110

—

0=0°
A4uvV l
0.7 cm
0 =45°
0 =90°
0 =135°
0 = 180°

—

Figure 4.11 a The calculated composite potential at the point P of fig. 3.10 when only fiber 0 is

active.
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Figure 4.11 b The calculated composite potential at the point P of fig. 3.10 when all the nine fibers

are synchronously active.
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Figure 4.12 a The calculated composite potential waveform at the point P of fig. 3.10 when the
stimulus is applied in succession to fiber 0, 1, 2, 3, 4, 5, 6, 7, 8 at 0.5 ms intervals, The

muscle is considered to have a radius = 2000 microns and A = 1.67.



113

0=0°
2uvV I
35 ms
0=45°
0=90°
0=135°
J\/\/J -

Figure 4.12 b The calculated composite potential waveform at the point P of fig. 3.10 when the
stimulus is applied in succession to fiber 0, 1, 2, 3, 4, 5, 6, 7, 8 at0.75 ms intervals. The

muscle is considered to have a radius b = 2000 microns and A = 1.67.
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Figure 4.12 ¢ The calculated composite potential waveform at the point P of fig. 3.10 when the
stimulus is applied in succession to fiber 0, 1, 2, 3, 4, §, 6, 7, 8 at 1.5 ms intervals. The

muscle is considered to have a radius & = 2000 microns and A = 1.67.
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4.5 Discussion of results

In this chapter a technique for evaluating extracellular potentials from either a single active mus-
cle fiber or an active motor unit, located in a finite, anisotropic volume conductor, has been demon-
strated. The method employs a two dimensional Fourier transform technique that allows the active
fiber to be located anywhere within the muscle. Although not demonstrated in this work, an advantage
of the two dimensional Fourier formulation is the ease with which the filter functions may be utilized
to calculate the potential at the membrane surface of the active fiber within the muscle, given the
recorded potential at a point on the exterior of the muscle. Computation time for the Fortran 77 simu-
lation of the single fiber problem on a VAX 11-750 employing a 4.2 Berkeley Standard Unix operating
system was under thirty seconds. The active motor unit (nine fibers) took approximately two minutes.
This represents a considerable savings over the computation time required had a finite difference or a

finite element method been employed.

It has also been shown here that it is possible to obtain compound extracellular potential
waveforms by allowing the individual muscle fibers to conduct action potentials that are not synchron-
ized to the same stimulus. The model developed here may be used to run simulations useful in gaining
an insight into the nature of desynchronized surface EMG waveforms, as well as the more general

problem of the decomposition of surface EMG waveforms into fundamental components.



CHAPTER 5§

Conclusions and Future Extensions of the Model

In the preceding chapters a mathematical technique has been developed to rapidly compute
volume conducted potentials and currents from a variety of excitable cells. The technique that couples
a distributed parameter description of a fiber with a field theory description of its environment is com-
pletely general. The method does not require a constant propagation velocity of the electrical activity
along the fiber, as was necessary in previous work of this nature (Clark and Plonsey, 1968, Greco et al,
1977, Wilson et al, 1985); nor is the field theoretic model in any way restricted by the assumption of
axial current flow, as the equivalent core conductor model is. The present technique as it stands is
very rapid and efficient. The finite difference method employed to solve the distributed parameter
model of the fiber has also been selected with an eye to the rapidity and stability of the numerical
integration scheme. The method used here is the Crank-Nicholson integration scheme which is known
to be stable for time and spatial step sizes that are several orders of magnitude larger than those per-
missible for explicit integration schemes (Smith, 1978). The resulting set of equations is fortunately of
a form that can be rapidly evaluated using a one step Gauss elimination method (chapter 2). No time
consuming iterative schemes or matrix inversion methods are needed anywhere in the entire evaluation
process. The time waveforms are also reconstructed using a simple shifting and sampling method,
which is considerably faster than using a Green’s function description of the time varying current den-
sity and potential fields around the fibers. A discussion of results from the application of the method to

each problem considered in the thesis is contained within the chapter concerned.

Important extensions of the thesis are to two specific areas :
(a) the development of a more complete mathematical model of the myelinated nerve fiber, for the
study of various other aspects of demyelination disease. An initial attempt to develop an expanded,
more adequate model, one containing potassium channels in the internodal region as well as, 2 cleft

space between the myelin sheath and the plasma membrane, is shown in Appendix I;

116
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(b) the expansion of the skeletal muscle motor unit mcdel to study the field distribution in the immedi-
ate vicinity of the motor unit, considering such topics as muscle fiber interaction and the effect on the
local field distribution of having some fibers in the field active, and others inactive. The guide for that

study would be the work of Clark and Plonsey (1970).
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APPENDIX I

An Improved Source Description of the Active Myelinated Nerve

The complete network equivalent circuit for a small Az increment of the myelinated fiber is
shown in fig. Al.1. The entire fiber consists of several such elements in series. If the series element
r., which is the resistance per unit length of the cleft region between the myelin sheath and the cell
membrane, is considered to be very large, an assumption that is probably justified because of the very
small cross section area of the cleft space, the series link interconnecting the consecutive nodes in the
cleft space can be approximated by an open circuit. Under these circumstances, the two resistive-
capacitive parallel networks, one describing the myelin sheath and the other the cell membrane
beneath it, are in series with each other. Typical values for the circuit parameters indicate that the
myelin conductance and capacitance are both two to three orders of magnitude lower than the
corresponding membrane conductance and capacitance in series with them. To a first approximation
therefore the membrane capacitance and conductance can be neglected in comparison to the myelin
capacitance and conductance. This results in the network characterization of the myelinated fiber that

is used in this study, and is shown in figures 1.3 and 1.4,

The model used will therefore approximate the actual conditions present in a myelinated fiber
under normal conditions and for one sweep of an action potential. This model cannot be used to simu-
late the situation where the myelinated fiber is stimulated repeatedly. This is so because under condi-
tions of repeated stimuli there may quite possibly be a build up of potassium concentration in the cleft
region which may have a profound influence on the excitability of the nerve. Under these conditions
the full blown network characterization of the myelinated fiber will have to be used coupled with a
compartmental system that allows for potassium exchange between the various regions of the model.
The general equations that characterize the more complicated network of the myelinated fiber model

and the compartmental model that is coupled with it are developed below.
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Figure Al.1The electrical equivalent network of an active myelinated nerve fiber in a homogeneous
cylindrical volume conductor, consistent with the classical core conductor model of Her-

mann (1879).
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Al.1 A modified network model for the myelinated fiber
For a single external network branch in fig. A1.1 we have :

V°(z) - V°(z + Az)

I[(2)= T Az (AL1)
In the limit when Az — O we have :
0l0Y — L avo(z)
I{(2)= N (Al1.2)

Similarly for the cleft space current /f(z) and the internal longitudinal current /}(z) the following rela-

tions may be obtained.

1 3V2)

li@)=- r, oz

(AL3)

and

LiG)=- %%l (AL4)

Applying Kirchoff’s current law at the external node results in the following relation between Iy

and 7{(z).
I[(z+Az)= i,,,Az +10(2) (Al.5)

or

IR+ A) - I20)

iy — (AL6)
which reduces to
fpy= afg:z) (AL7)
in the limit when Az — 0. Similarly analyzing the internal node results in
__ ) (A18)

m dz



Applying Kirchoff’s current law to the central node results in the following expression.
iz +If(2) = Az + I(z + A2)
which in the limit when Az — 0 is given by

. dlf(@)
i, =——

tm = by 0z

=
or

A 3lf(z) _ AL
oz 0z 0z

Defining the potential difference V,,;(z) across the element Z /Az as
Vm(2)=Vi(2) - V¥(2)
it follows that

Vm@) _ Vi) V()
9z oz oz

or, upon rewriting (A1.13) using equations (A1.3) and(A1.4)

anl(z)

=A@+
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(A1.9)

(A1.10)

(AL1D)

(Al.12)

(Al1.13)

(A1.14)

Differentiating the above equation with respect to z, and substituting equation (A1.11) into it results in

FVm(@) _ G AE)
a2 it Ty,
or
azvml(z)

=(ri+rc)im_rcimy

922
Similarly defining the potential difference V,,;(z) across the shunt element Z,, /Az as
Ve (2) =V4) - V(2)

it follows that

(AlL.15)

(A1.16)

(AL17)
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WVan(2) _ aViz) V()
) _ v _ v (A1.18)

or, upon rewriting (A1.18) using equations (A1.2) and(A1.3)

avmyl (Z)
0z

=—rdi(2) + 1,J2() (A1.19)

Differentiating the above equation with respect to z, and substituting equation (A1.11) into it results in

az‘;’:’z‘ ® ., algiiz) +(r+r) a’g:z) (A1.20)
or
0%V 1 (2) . .
T R (P + )iy (A1.21)
Finally the total transmembrane potential V,,(z) is defined as :
V(2) =V + V. (A1.22)
The finite difference forms of equations (A1.16) and(A1.21) are given as follows.
Vi = Q@+ o)V + Vi s + BmyViZ
=—V8i+ Q- a)VG= VT j+ BV + Y + Yy (A1.23)
and

V8 1 — 2+ )V + VEY 1 + BV
==V + @2 -0V -V ;+ BV + 8y + 8,y (A1.24)

where V™ and V™ denote the discrete forms of the potential differences V,, and V,,, respectively and
the various terms in (A1.23) and (A1.24) are defined as follows

C,h?
o, =4mna(r;+r.) k (A1.25)
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Oy = 4ma'(r, + r¢,)£"z—i-l-i (A1.26)
Bm= 4mrcc—';:l-2- (A1.27)
By = 47ra'r,,cmyTh2 (A1.28)

Y = dTa(r; + ro)h%i,, (A1.29)
Yomy = 47’ 1%,y (A1.30)
3, = 4nar h’i;, (A1.31)
Sy =4nd'(r + r )b %, (A132)

Here a is the axonal radius and a is the fiber radius i.e. the radius of the axon and its myelin sheath.
The specific capacitance C,, is associated with the axon membrane while the specific capacitance Coy

is associated with the myelin sheath.

Equations (A1.23) and (A1.24) may be rewritten upon defining certain terms as follows.

"=-(2+a,) (A1.33)
0™ == (2 + Ctyy) (A1.34)
" == VD i+ Q-0 V=V i+ B ViP + Y + Yy (A1.35)
O == VI j+ 2= VP = VI + BV + 8+ By, (A1.36)

The ends of the fiber are considered to be sealed, representing an infinite resistance to longitudi-

nal current flow. Thus,

Vo 3
O =

. ,
= ;’" €LH=0 (A1.37)

)
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v,

= Lo z)_ = = Ly=0 (A1.38)
and

Vit

= ’0:)- = ™ L=0 (A1.39)

WVt V

. (0 H= (L =0 (A1.40)

where L is the length of the fiber. The boundary conditions may be represented in discrete form as fol-

lows.
=3V + 4V = Vi1 =0 (Al41)
=3V + 4V — V2,41 =0 (A142)
and
“3Ved + 4V - Vi =0 (A1.43)
—3VN‘,+1 + 4 N—l,ﬂ'l - VNM_ysz = 0 (Al.44)

Therefore, for a cable with N segments a set of N+1 equations exists for each of the potential

differences V,,y and V,,;, which are of the following form.

AX+C*=b (A145)
where
(2 456m 0 000 0 o
1 o# 1 000 O 0
0 1 e 100 O 0
A= - : (A1.46)
0 0O 0001 o 1
0 0 0 000 4+0™ -2
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1>
Il

(A147)

I~
Il

(A148)

91,
67
‘ (A1.49)

19
I

Oy

b )

and the constant C is
C= B,,,, (A1.50)

for the potential difference V,,;. The set of equations for the potential difference Vet is of the same
form where the 8™ in equation (A1.46) is substituted by 6™, V™ in equation (A1.47) is replaced by
V™, V™ in equation (A1.48) by V™ and ¢" takes the place of ¢™ in (A1.49). For the case of the

potential difference V,, the constant C is equal to B,,.

The set of simultaneous equations that arise can be uncoupled as follows. The two sets of equa-

tions to be solved simultaneously are
A V4B V7 =b (A1.51)

and
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AV™P+B,V"=b (A1.52)

V™ can be found in terms of V™ from equation (A1.51) as
™= L{'zx -4 L""} (A1.53)

my

Substituting V™ from (A1.53) into (A1.52) we have

{Bmme = 42 ‘il}‘_,”l = Bmy éz - “_12 ..b.l (Al.54)

The product A, A, is a diagonally dominant matrix given as :

[210m —g+20m0™0™ 440™ 0 0 0 0 ]
—2+48™ 5+0™+0™0™  @™+0™ 1 0 0 0
1 o™+0™  o™e™2 6™+0™ 1 0 0
0 1 g™+e™ 6™0™2 6™+0™ 1 0
AyA = ' ' ' : (A1.55)
0 0 1 @magm 6™O™2  0™46” 1
0 0 0 1 0™+06™  5+0™+0™Q™ -2+0™
0 0 0 0 4+0™  ~8+20™+0™O™ 240" |
Equation (A1.54) may be rewritten in the formAx=» as :
AVr=b (A1.56)
where A’ is the matrix given by
A'=BpBn— A2 A (A1.57)
and
[ Ba0I-207 00T,
Bmy¢g_¢ﬁ~em¢ﬁ;—¢£[
Bryd2 707007~
b= . (A1.58)

ﬁmyq’l'\;‘-y 1 J_¢§l-2.’_emy¢;¢n-l J—¢ﬁ|-l J
i Bmy0nt 2081, 0™ Of1
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The matrix equation (A1.57) is no longer a simple one where the coefficient matrix A” is a tridi-
agonal matrix. In fact A is not even a sparse matrix that could be easily inverted using some form of
an elimination technique. The (N+1)x(N+1) coefficient matrix has to be explicitly inverted in order to
obtain the required solution of the transmembrane potential across the membrane of the equivalent cell
characterizing the myelinated fiber. The resulting mathematical modeling technique is neither rapid

nor efficient.

Al.2 A compartmental model for the myelinated fiber

The current i,, that flows across the shunt element Z,/Az is dependent on voltage, time, and ionic
concentrations on either side of the fiber membrane. The compartmental model that is needed to
characterize the concentration changes of potassium in the region around the cell membrane must
include all the three relevant regions namely, the intracellular region, the cleft space and the extracel-
lular region. The model used is shown in fig. A1.2 where the flows between compartments are donor-
controlled flows, depending only on the mass or concentration present in the donor compartment. In
this figure V denotes the volume of the compartment in cm 3, C is the concentration in mg/cm ? and
the terms &y, k5, etc. are rate coefficients in cm/msec, such that k;; is the rate coefficient for the flow to

compartment i from compartment j. The following mass balance equations may be written for each

compartment.
dc,
Vi = kA~ kaAnCy (A1.59)
dcC,
Vz d_t = k21A12C1 - klelzcz - k32A23C2 + kBAZBCB (A1.60)
dac
V373 = k3A23C5 — kp3A 5, C5 (AL.61)

where A;; is the area of the membrane between the two compartments i and j. Equations (A1.59)

through (A1.61) may be rewritten in conventional form as :
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Figure Al.2 A compartmental model to account for potassium ion movement across the membrane and

into the cleft space between the cell membrane and the myelin sheath.
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dC;  |kaAr2 iz,
P akain [ V. Ci+ v, G, (A1.62)
dC;, | knAp ki2Az + k3ol ka3
ke [ 7 C - 7 C+ v Cs (A1.63)
dCy | k3Ap kyhz
Z - [ A Cy,- 7 Cs (Al.64)

The set of equations (A1.62) through (A1.64) may be rewritten in matrix form upon defining the fol-

lowing terms.
810)]
Xo= |G (A1.65)
G0
_ knArz kA 0
Vi Vi
kyAry koA + kppdzs  kazéss
G= 7 7 7 (A1.66)
0 k3Ax _ kyAy
Vs V3
The describing equations of the system are therefore written as
X=GX (AL67)

which is to be solved for the concentrations in each of the compartments as a function of time, subject

to the initial conditions
Ci(0)

X0 = |C,0) (AL68)
C5(0)

where C{0) is the initial concentration in the i** compartment.
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Al.3 Summary

Since in this study only one action potential is allowed to propagate along the fiber, the
simplified model that results in a set of matrix equations that can be solved for rapidly and efficiently is
adequate. The neglected potassium channels beneath the myelin sheath may at most cause an error in
the propagation velocity of the electrical activity along the myelinated nerve fiber. A thorough investi-
gation is needed of the parameters that characterize the cleft space before the full blown network

model can be used in a simulation,

A better source characterization will definitely extend the scope of the present technique but will
in no way change the field theory techniques used to compute the extracellular currents and potentials
from the myelinated fiber. A better source characterization is also necessary before a study of the

effects of different stimulation strengths and patterns can be studied.



APPENDIX I

Source Code of Major Computer Programs

The following is a listing of some of the source code used to simulate

the various problems in the thesis.

The following is a driver program to simulate a propagating
action potential using the Frankenhaeuser-Huxley model for
the myelinated nerve. Various subroutines are called in

the proper succession to calculate the voltages at the nodes
along the cable as a function of time and space.

Subroutines used ::
finput :: the subroutine that is used to
input initial values of various
parameters
crnknic :: the subroutine that sets up the
partial differential equation
model, solves it and outputs the
results

Subroutine call formats ::
finput :: call finput(par)
where par is the length 36
parameter vector
cmknic :: call crknic(v,par)
where v is the length 190
voltage vector
and par is the length 36
parameter vector

Input files :: none required

Output file :: File fort.10 containing the voltage array stored
in the format 5f13.6 as a succession of the
voltages (in millivolts) at all segment nodes
for each time point

File fort.11 containing the ionic current density

stored in the format 5f13.6 as a succession of
the current densities (in microamps per square
centimeter) at all segment nodes for each time
point

OOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOOOOO

implicit real*8 (a-h,0-z)
dimension v(190),par(36)

(2]

call the input subroutine to input the values of the various
c parameters of the model

o
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call finput(par)
initialize all the segment voltages to the resting potential

k=ifix(par(1))+1
do 10i=1k
v(i)=par(4)

call the subroutine to set up and solve the partial differential
equation model and output the results

call crnknic(v,par)
the end of the program

stop
end

The following is the subroutine to input various parameter
values to the simulation of a propagating action potential
in a myelinated nerve

Subroutines used :: none
Input files :: none required
Output files :: none required

Calling format of the present subroutine ::
finput :: call finput(par)
where par is the length 36
parameter vector

NOTE :: ALL. VOLTAGES ARE NORMALIZED WITH RESPECT TO THE RESTING
POTENTIAL i.e. RESTING POTENTIAL IS TAKEN TO BE 0. mV

Parameters in the program ::

par(1) : Number of segments in the cable

par(2) : Number of time points used

par(3) : Number of myelinated nodes between
two active nodes

par(4) : Membrane resting potential in
microvolts

par(5) : Stimulus current strength in microamps

par(6) : Stimulus starting time in millisecs

par(7) : Stimulus ending time in millisecs

par(8) : Node that is to be stimulaied

par(9) : Step size in time (dt) in millisecs

par(10): Step size in space (dx) in centimeters

par(11): Node specific capacitance (cm) in

millifarads per square centimeter
par(12): Outside sodium concentration in
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millimoles per litre

par(13): Outside potassium concentration in
millimoles per litre

par(14): Inside sodium concentration in
millimoles per litre

par(15): Inside potassium concentration in
millimoles per litre

par(16): Leak potential in millivolts

par(17): Leak conductance in millimhos per
square centimeter

par(18): Sodium permeability constant in
centimeters per second

par(19): Potassium permeability constant in
centimeters per second

par(20): Non-specific permeability constant in
centimeters per second

par(21): Axon radius (a) in centimeters

par(22): Myelin sheath thickness (at) in
centimeters

par(23): Specific resistance of axoplasm i.e.
inside cell (Ri) in ohms cm

par(24): Specific resistance outside cell
(Ro) in ohms centimeter

par(25): Myelin specific capacitance (cmy) in
millifarads per square cm

par(26): Myelin specific conductance (gmy) in
millimhos per square centimeter

par(27): Node length (nl) in centimeters

par(28): Number n2 given as n**2, where the
extent of the volume outside the
cell is a cylinder of radius n*a

par(29): A constant C given as equal to

2.*((n2-1)*Ri+Ro)*(dx**2)/((n2-1)*a)

par(30): A constant C1 given as equal to
C*(a+atya

par(31): A constant alpha given as equal to

2.*¥(cm*C*nl+cmy*(dx-nl)*C1)/(dt*dx)

par(32): A constant alphal given as equal to
2.*(cmy/dt)*C1

par(33): A constant theta given as equal to
-(2.+alpha)

par(34): A constant thetal given as equal to
-(2.+alphal)

par(35): A number that scales the myelin
capacitance and conductance when
the myelin thickness is changed
by p% and is given as equal to
In{(a+at)/a}/In{(a+p*at)/a}

par(36): An integer set to 1 if an abnormal
central node is desired but is
set to 0 otherwise

subroutine finput(par)
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implicit real*8 (a-h,0-z)
dimension par(36)

specify the values of the various parameters

par(1)=189.
par(2)=800.

par(3)=10.

par(4)=0.0

par(5)=.075

par(6)=0.01

par(7)=0.02

par(8)=189.

par(9)=0.005

par(10)=0.02

par(11)=0.002

par(12)=114.5

par(13)=2.5

par(14)=13.74

par(15)=120.

par(16)=0.026

par(17)=30.3

par(18)=0.008

par(19)=0.0012

par(20)=0.00054

par(21)=0.0005

par(22)=0.0002

par(23)=100.

par(24)=10,

par(25)=0.00000387
par(26)=0.000083308

par(27)=0.0004

par(28)=900.
par(29)=2.0*(((par(28)-1)*par(23))+par(24))* (par(10)**2)
par(29)=par(29)/((par(28)-1)*par(21))
par(30)=par(29)*(par(21)+par(22))/par(21)
par(31)=par(25)*(par(10)-par(27))
par(31)=(par(31)*par(30))+((par(11)*par(27)*par(29)))
par(31)=2.0*par(31)/(par(9)*par(10))
par(32)=2.0*(par(25)/par(9))*par(30)
par(33)=-(2.0+par(31))
par(34)=-(2.0+par(32))
par(35)=dlog((par(21)+par(22))/par(21))
par(35)=par(35)/dlog((par(21)+(0.008 *par(22)))/par(21))
par(36)=0

retum

end

The following is the subroutine that sets up and solves the
partial differential equation model for the simulation of the
proapagating action potential. It also outputs the solution of
the partial differential equation.
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Subroutines used ::
fmmodel :: the subroutine that is used to solve
for the membrane model
bandmat :: the subroutine that solves the set
of equations of the form Ax=b
where A is a tri-diagonal matrix

Subroutine call formats ::
fmmodel :: call fmmodel(v,par,xm,xh,xn,,xp,curden,mode)
where v is the length 190 voltage vector
par is the length 36 parameter vector
xm is the length 20 vector containing
the sodium activation variable
m, for each active node
xh is the length 20 vector containing
the sodium inactivation variable
h, for each active node
xn is the length 20 vector containing
the potassium activation
variable n, for each active node
xp is the length 20 vector containing
the gating variable p for each
active node
curden is the length 190 vector that
has the values of the voltage
due to the ionic current density
at each node
and mode is the value of the time point at
which the evaluation is being
done
bandmat :: call bandmat(v,par,phi,mode)
where v is the length 190 voltage vector
par is the length 36 parameter vector
phi is the right hand side of the set
of equations Ax=b
and mode is the value of the time point at
which the evaluation is being
done

Input files :: none required

Output file :: File fort.10 containing the voltage array stored
in the format 5f13.6 as a succession of the
voltages (in millivolts) at all segment nodes
for each time point

Calling format of the present subroutine ::
crnknic :: call cmknic(v,par)
where v is the length 190
voltage vector
and par is the length 36
parameter vector
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subroutine crnknic(v,par)

implicit real*8 (a-h,0-z)

dimension v(190),par(36),xm(20),xh(20),xn(20),xp(20)
dimension curden(190),phi(190)

initialize loop variables

pi=3.141592653589793
t=0.

k=par(1)

l=par(2)

begin set up and solution of the partial differential equations

do 30j=1,
=t+par(9)
mode=j
call fmmodel(v,par,xm,xh,xn,xp,curden,mode)

specify the location of the first active node
inode=9
set up the partial differential equations

do 10i=2k
xstim=par(5)
if(t.1t.par(6)) xstim=0.0
if(t.gt.par(7)) xstim=0.0
if(i.ne.par(8)) xstim=0.0
gl=xstin/(4.0*pi*par(21)*par(10))
if(i.ne.inode) go to 2
gamma-=2.0*(curden(i)-(par(29)*g1))

check to see if an abnormal central node is desired, if so
simulate paranodal demyelination at that node

if(par(36).eq.1.and.inode.eq.99) go to 11

phi(i)=-v(i-1)+(2.0-par(31))*v(i)-v(i+1)+gamma

goto 111

alpha=par(11)*par(29)*8.d0*par(27)

alpha=alpha+par(25)*par(30)*(par( 10)-(8.d0*par(27)))

alpha=2.d0*alpha/(par(10)*par(9))

phi(i)=-v(i-1)+(2.0-alpha)*v(i)-v(i+1)+gamma

inode=inode+ifix(par(3))

goto 10

gamma=2.0*(curden(i)-(par(30)*g1))

phi(i)=-v(i-1)+(2.0-par(32))*v(i)-v(i+1)+gamma
continue

divide the voltage by 1000 to put it in units of millivolts

do20i=1,k+1
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v(i)=v(1)/1000.d0
continue

write the voltage to the output file

write(10,1) (v(i),i=1,k+1)
format(5f13.6)

solve the set of partial differential equations to evaluate
the voltage at the next time point, except when the last time
point is being evaluated

if(mode.eq.l) goto 30

call bandmat(v,par,phi,mode)
continue
return
end

The following is a subroutine that solves the membrane model
for the myelinated nerve. The model used is the Frankenhaeuser
and Huxley model for myelinated nerve.

Subroutines used ::
fgvar :: the subroutine that evaluates the rate
constants associated with the
gating variables of the membrane
model

Subroutine call formats ::
fgvar :: call fgvar(vm,xinf,tinf)

where vm is the membrane voltage at which the

gating variables are to be found
xinf is a length 4 vector that contains
the infinity values of m, h, n,
and p, respectively
and tinf is a length 4 vector that contains

the time constants of the gating
variables

Input files :: none required

Output file :: File fort.11 containing the ionic current density
stored in the format 5f13.6 as a succession of
the current densities (in microamps per square
centimeter) at all segment nodes for each time
point

Calling format of the present subroutine ::
fmmodel :: call fmmodel(v,par,xm,xh,xn,xp,curden,mode)
where v is the length 190 voltage vector
par is the length 36 parameter vector
xm is the length 20 vector containing
the sodium activation variable
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m, for each active node

xh is the length 20 vector containing
the sodium inactivation variable
h, for each active node

xn is the length 20 vector containing
the potassium activation
variable n, for each active node

xp is the length 20 vector containing
the gating variable p, for each
active node

curden is the length 190 vector that
has the values of the voltage
due to the ionic current density
at each node

and mode is the value of the time point at

which the evaluation is being
done

subroutine fmmodel(v,par,xm,xh,xn,xp,curden,mode)
implicit real*8 (a-h,0-z)

dimension v(190),par(36),xm(20),xh(20),xn(20),xp(20)
dimension curden(190),xinf(4),tinf(4)

initialize loop variables
k=par(1)+1

specify physical constants to be used in the program i.e. R,

the universal gas constant in Joules per mole degree Kelvin, and
F, Faraday’s constant in Coulombs per gram equivalent; the
temperature, Te is in degree Kelvin (nominal value of which is
293 deg K or20 deg C)

F=96487.
R=8.31
Te=273.0+20.0
frt=F/(R*Te)
f2rt=(F**2)/(R*Te)

check to see if routine is called for the first time, if so
initialize everything to the resting values, otherwise do not
initialize

if(mode.ne.1) goto 11

vm=par(4)/1000.

call fgvar(vm,xinf, tinf)

do 10i=1,20
xm(i)=xinf(1)
xh(i)=xinf(2)
xn(i)=xinf(3)
xp(i)=xinf(4)

continue
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evaluate the gating variables by integrating their differential
equations using Rush-Larsen approximations and evaluate the
current density at each node whether it be an active node or

a passive node due to the myelin sheath, after specifying the -
location of the first active node

inode=9
ig=0
do20i=1k

check to see if the node is active or not, if the node is

passive then evaluate the constant current density, otherwise
solve the membrane model to evaluate the current density and the
voltage due to it (the current density is calculated after

correcting the various permeability constants for the nodal area
being used i.e. the constants get multiplied by nl/dx where nl

is the node length and dx is the segment length)

vm=v(i)/1000.

if(i.ne.inode) go to 12

call fgvar(vm,xinf,tinf)

ig=ig+l1
xm(ig)=xinf(1)-(xinf(1)-xm(ig))*exp(-par(9)/tinf(1))
xh(ig)=xinf(2)-(xinf(2)-xh(ig)) *exp(-par (9)/tinf(2))
xn(ig)=xinf(3)-(xinf(3)-xn(ig))*exp(-par(9)/tinf(3))
xp(ig)=xinf(4)-(xinf(4)-xp(ig))*exp(-par (9)/tinf(4))

evaluate the various currents using the absolute membrane
voltage, e, (in volts) and vm, the membrane voltage normalized
with respect to the resting potential

e=(vm-70.0)/1000.

expo=exp(e*frt)

denom=1.-expo

prod=e*f2rt
pna=par(18)*(par(27)/par(10))*(xm(ig)**2)*xh(ig)
pk=par(19)*(par(27)/par(10))*(xn(ig) **2)
pp=par(20)*(par(27)/par(10))*(xp(ig) **2)
cna=(pna*prod*(par(12)-(par(14) *expo)))/denom
ck=(pk*prod*(par(13)-(par(15)*expo)})/denom
cp=(pp*prod*(par(12)-(par(14)*expo)))/denom
cl=par(17)*(par(27)/par(10))*(vm-par(16))
cmy=(par(26)*(par(10)-par(27) )/par(10))*vm

check to see if an abnormal central node is desired, if so
simulate paranodal demyelination at that node

if(par(36).eq.1.and.inode.eq.99) go to 15

goto 16

ck=8.d0*ck

cp=8.d0*cp
cmy=cmy*(par10-(8.d0*par(27)))/(par(10)-par(27))
curden(i)=(par(29)*(cna+ck+cp+cl))+(par(30)*cmy)
inode=inode+ifix(par(3))
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store the value of the ionic current density at each node in the
appropriate output file

curtot=cna+ck+cp+cl+cmy
write(11,*) curtot
goto20

evaluate constant current density for the passive node and the
voltage due to it

curden(i)=par(30)*par(26)*vm

store the value of the ionic current density at each node in the
appropriate output file

curtot=curden(i)/par(30)
write(11,*) curtot
continue
return
end

The following is the subroutine that evaluates the rate
constants of the various gating variables associated with the
Frankenhaeuser-Huxley myelinated nerve model

Subroutines used :: none
Input files :: none required
Output files :: none required

Calling format of the present subroutine ::
fgvar :: call fgvar(vm,xinf,tinf)
where vm is the membrane voltage at which the
gating variables are to be found
xinf is a length 4 vector that contains
the infinity values of m, h, n,
and p, respectively
and tinfis a length 4 vector that contains
the time constants of the gating
variables

subroutine fgvar(vm,xinf,tinf)
implicit real*8 (a-h,0-z)
dimension xinf(4),tinf(4)

rate equations for the model

am=(.36*(22.-vm))/(exp((22.-vm)/3.)-1.)
bm=(.4*(13.-vm))/(1.-exp((vm-13.)/20.))

140
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ah=(.1*(-10.-vm)¥(1.-exp((vm+10.)/6.))
bh=4.5/(exp((45.-vm)/10.)+1.)
an=(.02*(35.-vm))/(exp((35.-vm)/10.)-1.)
bn=(0.05*(10.-vm))/(1.-exp((vm-10.)/10.))
ap=(0.006%(40.-vm))/(exp((40.-vm)/10.)-1.)
bp=(0.09*(-25.-vm))/(1.-exp((vm+25.)/20.))
tinf(1)=1.0/(am+bm)

tinf(2)=1.0/(ah+bh)

tinf(3)=1.0/(an+bn)

tinf(4)=1.0/(ap+bp)

xinf(1)=am*tinf(1)

xinf(2)=ah*tinf(2)

xinf(3)=an*tinf(3)

xinf(4)=ap*tinf(4)

return

end

The following is the subroutine that solves a set of equations
of the form Ax=b when A is a tri-diagonal matrix. The method
used is backward substitution

Subroutines used :: none
Input files :: none required
Output files :: none required

Calling format of the present subroutine ::
bandmat :: call bandmat(v,par,phi,mode)
where v is the length 190 voltage vector

par is the length 36 parameter vector

phi is the right hand side of the set
of equations Ax=b

and mode is the value of the time point at

which the evaluation is being
done

subroutine bandmat(v,par,phi,mode)

implicit real*8 (a-h,0-z)

dimension v(190),par(36),phi(190),c(190),d(190)

initialize loop variables

k=par(1)

j=mode

the value of theta for the node with paranodal demyelination
alpha=par(11)*par(29)*8.d0*par(27)

alpha=alpha+par(25)*par(30)*(par( 10)-(8.d0*par(27)))
alpha=2.d0*alpha/(par(10)*par(9))
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theta=-(2.d0+alpha)
evaluate the constants ¢ and d

c(1)=(4.0+par(33))/(-2.0)
d(1)=phi(2)/(-2.0)

specify the location of the first active node

inode=9
do 10i=2,k

check to see if the node being evaluated is active, passive or
abnormal and use the appropriate value of the constants

if(i.ne.inode) b=par(34)
if(i.eq.inode) b=par(33)
if(i.eq.inode.and.inode.eq.99.and.par(36).eq.1) b=theta
if(i.eq.inode) inode=inode+ifix(par(3))
c(i)=1.0/(b-c(i-1))
d(@@)=(phi(i)-d(i-1))/(b-c(i-1))

continue

c(k+1)=0.0

use the correct value of the constant for passive or active
node

if((k+1).eq.inode) b=par(33)
if((k+1).ne.inode) b=par(34)
d(k+1)=(phi(k)-(4.0+b)*d(k))/(-2.0-c(k)*(4.0+b))

evaluate the voltages at the various nodes at the next time
point

v(k+1)=d(k+1)
do 20ii=1k
kk=k+1-ii
_ v(kk)=d(kk)-c(kk)*v(kk+1)
continue
return
end

This is the program to calculate the field potentials.
The model is a eccentric one with one boundary.

Subroutines used ::

ibessel :: the subroutine that returns the I
bessel functions of all orders needed
and their derivatives

kbessel :: the subroutine that returns the K
bessel functions of all orders needed
and their derivatives

dffi2d :: the two dimensional Fast Fourier
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Transform routine

Subroutine call formats ::
ibessel :: call ibessel(arg,x,n,array,m1,m2,rlt)
where arg is the argument of the
bessel function
x is the parameter in arg
with respect to which
the first and second
derivatives are found
n is the maximum order of
bessel function needed
array is the array into
which the bessel
functions and their
derivatives are returned
m1 is the first dimension
of array
m?2 is the second dimension
of array
and rlt is the array column for
I function insertion
kbessel :: same format as ibessel and similar
routine parameters
dffe2d :: call dfft2d(array,x,y,i,m1,j,m2,id,iw)
where array is the complex array
in which the input is
passed to the routine
and the output returned
from the routine
x and y are work space
real vectors, dimension
ior j which ever is
larger
iis the first dimension
of the complex array
m1 is the power to which 2
must be raised to get i
j is the second dimension
of the complex array
m?2 is the power to which 2
must be raised to get j
id is a positive integer
if a forward fft is
desired and negative
otherwise
and iw is the dimension of the
work vectors x and y

implicit real*8 (a-h,p-z)

implicit complex*16 (o)

dimension ohw(32,256),x(4100),y(4100),alri(19,3),alrk(19,3)
dimension fx(2050),0hws(32,256),alak(1,3),albi(19,3),albk(19,3)
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dimension rk(19,3),bk(19,3),alrsk(19,3),alrsi(19,3)
pi=3.141592653589793

input the various electrical and geometrical parameters of the model

read(5,12) npts,nstage,mpts,mstage
read(5,10) ra,delz,delt,rr,rb
read($,10) rs,anise,anisr,sigoz,sige
read(s, 10) sigsh,csh,delr
format(5f13.6)

format(4i6)

compute various multiples of the input integers

nh=npts/2
nhpl=nh+1
n4pl=4*npts+1
n8=8*npts
n8p2=n8+2
np2=npts+2
npl=npts+1
n2=2*npts
n2p2=n2+2
nml=npts-1
nm40=npts-40
np40=npts+40
mh=mpts/2
mhpl=mh+1
mhp2=mh+2
mpl=mpts+1
mp2=mpts+2
m2=2*mpts
m2pl=m2+1
m2p2=m2+2

calculate the anisotropy ratios and other constants

alam=dsqrt(anisr)
sigo=sigoz/anisr
vel=delz/delt
zt=delz*float(npts)
zt8=8.d0*zt
tpi=2.d0*pi
cshv=csh*vel

read in the input source potential

read(5,10) (fx(i),i=1,n2)

remove dc component from source potential
avem=0.d0

1=1
do 121 i=nm40,npts

144



121
122

125

130

135
150

(¢}

(¢}

avem=avem+fx(i)
if(l.gt.npts) go to 122
1=1+1
avem=avem/float(l)
do 125 i=1,n2
x(i)=fx(i)
xm=0.d0
do 130 i=1,n2
xm=xm+x(i)
xm=xm/dfloat(n2)
do 135 i=1,n2
x(1)=x(i)-xm
do 150 i=1,n2
y(i)=0.d0

calculate the Fourier transform of the source potential

do 160 i=1,n2
ohws(1,i)=demplx(x(i),y(i))
call dfft2d(ohws,x,y,32,5,256,8,1,256)

find fir filter for medium potential filter

do 275 i=2,npl
arg=pi*dfloat(i-1)/(zt*2.d0)
rarg=arg*m
call kbessel(rarg,rr,mp2,1k,19,3,1)
alrarg=alam*arg*m
call ibessel(alrarg,rr,mp2,alri, 19,3,1)
call kbessel(alrarg,rr,mp2,alrk,19,3,1)
alrsarg=alam*arg*rs
call ibessel(alrsarg,rs,mp2,alrsi, 19,3,1)
call kbessel(alrsarg,rs,mp2,alrsk,19,3,1)
alaarg=alam*arg*ra
call kbessel(alaarg,ra,0,alak,1,3,1)
barg=arg*rb
call kbessel(barg,rb,mp2,bk,19,3,1)
albarg=alam*arg*rb
call ibessel(albarg,rb,mp2,albi,19,3,1)
call kbessel(albarg,rb,mp2,albk, 19,3,1)
cter=-cshv*arg
osig=dcmplx(sigsh,cter)

form complex filter function for all values of theta for each k

do 250 j=1,mpl
adl=sige*sigo*bk(j,2)*albi(j,2)
oad2=sigo*osig*bk(j,1)*albi(j,2)
cad3=sige*osig*bk(j,2)*albi(j,1)
adxp=bk(j,3)+albi(j,3)
oad=adl-oad2+o0ad3
if(rr.gerb) go to 222

form the filter function inside the volume conductor medium
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c
atl=sige*sigo*bk(j,2)*alrsi(j,1)*albk(j,2)*alri(j,1)
oat2=sigo*osig*bk(;, 1) *alrsi(j, 1 )*albk(j,2)*alri(j, 1)
oat3=sige*osig*bk(j,2)*alrsi(j,1)*albk(j, 1)*alri(j,1)
atxp=bk(j,3)+alrsi(j,3)+albk(j,3)+alri(j,3)
oat=-atl+oat2-oat3
owl=o0at/oad
wlxp=atxp-adxp
w3=alak(1,1)
w3xp=-alak(1,3)

c

c filter function when field radius is less than source radius

c
if(rr.ge.rs) go to 1111
w2=alrsk(j,1)*alri(j,1)
w2xp=alrsk(j,3)+alri(j,3)
goto 1222

c

c filter function when field radius is greater than source radius

c

1111 w2=alrk(j,1)*alrsi(j,1)
w2xp=alrk(j,3)+alrsi(j,3)

1222 if(wlxp.gt.w2xp) wxp=wlxp
if(w2xp.gt.wlxp) wxp=w2xp
ohw(j,i)=(ow1*dexp(w1xp-wxp))+(w2*dexp(w2xp-wxp))
ohw(j,i)=(ohw(j,i)/w3)*dexp(wxp+w3xp)
got0 250

c

c form filter function outside the volume conductor medium

c

222 btl=albk(j,2)*albi(j,1)
bt2=albk(j, 1)*albi(j,2)
btxp=albk(j,3)+albi(j,3)
bt=bt1-bt2
owl=sigo*osig*bt*alrsi(j,1)*rk(j,1)/(oad*alak(1,1))
w1xp=alrsi(j,3)+rk(j,3)+btxp-adxp-alak(1,3)
ohw(j,i)=ow1*dexp(w1xp)

250 continue

275 continue

c

c form the product of Fso and the filter function

c

do 300 i=1,npl
do 300 j=1,mnl
300 ohw(j,i)=ohw(j,i)*ohws(j,i)

c fill in the filter function array

do 350 j=1,mp1
do 350 i=2,npts
350 ohw(j,n2p2-i)=dconjg(ohw(j,i))
do 375 j=2,mpts
do 375i=1,n2
375 ohw(m2p2-j,i)=chw(j,i)



c
c find the best estimate of the field potential
c
call dfft2d(ohw,x,y,32,5,256,8,-1,256)
c
c print output
c
do 450 j=1,m2
do 400 i=1,n2
400 x(i)=1000.d0*dreal(ohw(j,i))
write(6,10) (x(i),i=1,n2)
450 continue
1000  stop
end
Subroutine IBESSEL
Purpose
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To compute the modified bessel functions i and their first
derivatives for orders 0 to n and arguments > 0

Usage
call ibessel(arg,x,n,array,m1,m2,rlt)

Description of Parameters
arg - argument of the bessel functions i which is assumed

n

to be in the form arg = alpha*x, REAL*8 (input)

X - parameter in ARG with respect to which the first and
second derivatives are to be found, such that
arg = alpha*x. If x=arg, derivatives are with
respect to the argument itself. REAL*8 (input)

- maximum order of bessel functions i INTEGER (input)

array - array into which bessel functions and derivatives
are to be inserted. This array is REAL*8 dim(m1,m2)
and insertion is down columns for increasing orders
of bessel function. The mantissa of I(p,arg) is in

ARRAY(p+1,rlt); of I'(p,arg) in ARRAY (p+1,rlt+1);

and the exponent in ARRAY (p+1,rlt+2) such that the

bessel function value is MANTISSA*exp(EXPONENT).

ml - 1st dimension (# rows) of ARRAY, >=n+1. INTEGER
m2 - 2nd dimension (# cols) of ARRAY, >= 3. INTEGER
rit - ARRAY column for I function insertion. INTEGER.

Modifications
The basis of this routine was obtained from the IBM SSP
package programs I0 and INUE. These routines were combined
and extensively modified by O.B. Wilson, Rice University,
1985 to enhance readability and to extend the range of
argument which can be used. This extension is by means of
the "mantissa-exponent” notation, whereby the actual value
of any bessel function evaluation is expressed as a mantissa
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plus exponent. Use of this notation removes all practical
restrictions on the argument range.

Subroutines Required
None.

Method
Values of the bessel functions are obtained by a
backward recurrence relation. Starting with the highest
order required, the ratio i(n+1,arg)/i(n,arg) is obtained
from a continued fraction. The zeroth order terms is then
found explicitly. (Forward recursion fails because the
I functions are an increasing family and the error term
would grow without bound. Consequently, a backward
relationship is used to obtain the relationship between the
different function orders; then multiplication by i0 gives
actual function values.) For reference see
G. Blanch, "Numerical Evaluation of Continued Fractions,"
SIAM Review, Vol. 6, no.4, 1964 383-421.
Evaluation of first and second derivatives of orders 0
through n is obtained by means of the formulae:
I'(n,z) = I(n-1,z) - nl(n,z)/z
I'(n,z) = I'(n-1,z) - nI’(n,z)/z + nl(n,z)/z*z
These formulae may be derived from the general derivative
expression for Bessel functions. See eg.
Abramowitz & Stegun, "Handbook of Math. Functions," Dover
Press. TheI" values are not computed or output, but the
arithmetic is correctly implemented in commented-out lines.

Error handling:
The following conditions lead to a diagnostic and halt
execution. No other conditions are tested for.
n<0 (Function order may not be negative)
arg <=0 (Argument may not be O or negative)
x<=0 (Parameter may not be 0 or negative)
ml <n+l (Col. length of array may not be < n+1)
m2 <rlt+2 (Row length may not be < RLT+2)

subroutine ibessel(arg,x,n,array,m1,m2,rlt)

integer n,m1,m2,rlt
implicit real*8 (a-h)
implicit real*8 (0-z)
dimension array(m1,m2)

test for invalid input parameters--automatic program abort in
case of errors. No argument range testing is performed.
if (n) 10,20,20

10  write(6,*) "I Bessel function order ",n,” should be positive"

write(6,*) "Program aborted by routine IBESSEL"
stop

20 if (arg) 30,30,40



30 write(6,*) "I Bessel argument ",arg,"” should be positive"
write(6,*) "Program aborted by routine IBESSEL"

stop
40 if (x) 50,50,60
50 write(6,*) "I Bessel parameter ",x," should be positive"
write(6,*) "Program aborted by routine IBESSEL"
stop
60 if (ml - (n+1)) 70,80,80
70 write(6,*) " Array too small for ",n," Bessel function orders”
write(6,*) "Program aborted by routine IBESSEL"
stop
80 if (m2 - (r1t+2)) 90,99,99
90 write(6,*) "Not enough columns in Array, dimension",m2
write(6,*) "Program aborted by routine IBESSEL"
stop

¢ evaluate zeroth order function mantissa ri0, exponent xi0, used

¢ in determining all other orders

99 xi0=0.0
if (arg - 3.75) 100,100,200

100 z = arg*arg*7.111111e-2

ri0 = (((((4.5813e-3*z + 3.60768e-2)*z + 2.659732¢-1)*z
1 +1.206749¢0)*z + 3.089942e0)*z + 3.515623e0)*z + 1.0
gotol

200 z = 3.75/arg
xi0 = arg
ri0 = 1.0/dsqrt(arg)*((((((((3.92377e-3*z - 1.647633e-2)*z
1 +2.635537e-2)*z - 2.057706e-2)*z + 9.16281e-3)*z
2 - 1.57565e-3)*z + 2.25319e-3)*z + 1.328592e-2)*z
3 +3.989423e-1)

¢ select either small or large argument approximation regime for
¢ determining backward ratios of functions starting at nth order
1 fn=2.0*dfloat(n)
ql = arg/fn
if (arg - 5.0e4) 6,6,2

2 a0=10
al =0.0
b0 =0.0
bl =1.0
fi=fn
3 fi=fi+20
an = fi/arg
a = an*al +a0
b =an*bl + b0
a0 =al
b0 =bl
al=a
bl=>b
q0=q1
ql =a/b
if (dabs((q1-q0)/q1) - 1.0e-6) 6,6,3
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Ratios of I(k,arg)/I(k-1,arg) are placed in ARRAY(X,RLT), k>0
If n orders of I are required, n ratios must be found
k =n
ql = arg/(fn+arg*ql)
array(k+1,rlt) = q1
fn=fn-20
k =k-1
if (k) 8,8,7

forward substitution of zero function into series relationship
to obtain correct function values for all orders through n.
commented line calculates 2nd derivative, zeroth order.
const = arg/x

array(l,rlt) =ri0

array(1,rlt+2) = xi0

array(1,rlt+1) = const*riO*array(2,rlt)

array(1,**) = const*const*ri0*(1 - array(2,rlt)/arg)

if (n .eq. 0) return

last two commented statements calculate 2nd derivative, ith order
do9i=1,n
fli = dfloat(i)
fi = array(i,rity*array(i+1,rlt)
temp = dlog(fi)
array(i+1,1lt) = 1.0
array(i+1,rlt+2) = array(i,rlt+2) + temp
array(i+1,rlt+1) = const*( array(i,rlt)*dexp(-temp) - fli/arg )
array(i+1,**) = const*( array(i,rit+1)*dexp(-temp)

z - fli*array(i+1,rlt+1)/arg + fli*const/(arg*arg) )
continue
return
end
Subroutine KBESSEL
Purpose

To compute the modified bessel functions K and their first
derivatives for orders O to n and arguments > 0

Usage
call kbessel(arg,x,n,array,m1,m2,rlt)

Description of Parameters
arg - argument of the bessel functions k which is assumed
to be in the form arg = alpha*x. REAL*8 (input)
x - parameter in ARG with respect to which the first and
second derivatives are to be found, such that
arg = alpha*x. If x=arg, derivatives are with
respect to the argument itself, REAL*8 (input)
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n - maximum order of bessel functions k. INTEGER (input)
array - array into which bessel functions and derivatives
are to be inserted.
Insertion is down columns for increasing orders
of bessel function. The mantissa of K(p,arg) is in
ARRAY(p+1,mt); of K'(p,arg) in ARRAY(p+1,rlt+1);
A common exponent of K,K’ such that the value of the
bessel function is MANTISSA*exp(EXPONENT) is in
ARRAY(p+1,51t+2). dim(ml,m2). REAL*8
ml - Istdimension (# rows) of ARRAY, >= n+1. INTEGER.
m2 - 2nddimension (# cols) of ARRAY, >= 3. INTEGER.
rit - ARRAY column for insertion of K functions. INTEGER.

Modifications
The basis of this routine was obtained from the IBM SSP
package program BESK. This routine was extensively
modified by O.B. Wilson, Rice University, 1985, to enhance
readability and to extend the range of argument which can
be used. This extension is by means of the "mantissa-
exponent” notation, whereby the actual value of any bessel
function evaluation is expressed as a mantissa plus
exponent. Use of this notation removes all practical
restrictions on the argument range.

Subroutines Required
None.

Method

Values of the bessel function are obtained by a forward
series relationship after explicit evaluation of the
zeroth and first order functions using recurrence relations
or polynomial approximation techniques. Reference:
A.J.M. Hitchcock, "Polynomial Approximations to Bessel
Functions of Order Zero and One and to Related Functions,"
MTAC, v11, 1957, pp86-88, and G.N. Watson,
"A Treatise on the Theory of Bessel Functions,” Cambridge
University Press, 1985, p62.

Evaluation of first and second derivatives of orders 0

through n is obtained by means of the formulae:

K’(n,z) = -K(n-1,z) - nK(n,z)/z]

K"(n,z) = -K’(n-1,z) - nK’(n,z)/z + nK(n,z)/(z*z)
These formulae may be derived from the general derivative
expressions for Bessel functions. See eg.
Abramowitz & Stegun, "Handbook of Math. Functions,” Dover
Press. The second derivatives are evaluated correctly
in commented-out lines, and are not output.

Error handling:
The following conditions lead to a diagnostic and halt
execution. No other conditions are tested for.

n<0 (Function order may not be negative)

arg <=0 (Argument may not be 0 or negative)

x<=0 (Parameter may not be O or negative)
ml <n+l (Col. length of array may not be < n+1)
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c m2 <rlt+2 (Row length may notbe <RLT+2)

(2]

subroutine kbessel(arg,x,n,array,m1,m2,rlt)

integer n,m1,m2,rlt
implicit real*8 (a-h)
implicit real*8 (0-z)
dimension t(12),array(m1,m2)

¢ test for invalid input parameters--automatic program abort in
¢ case of errors. No argument range testing is performed.
if (n) 10,11,11

10 write(6,*) "K Bessel function order ",n," should be positive"
write(6,*) "Program aborted by routine KBESSEL"
stop

11 if (arg) 12,12,13

12 write(6,*) "K Bessel argument ",arg,” should be positive"
write(6,*) "Program aborted by routine KBESSEL"
stop

13 if (x) 14,14,15

14 write(6,*) "K Bessel parameter ",x," should be positive"
write(6,*) "Program aborted by routine KBESSEL"
stop

15 if (m1 - (n+1)) 16,17,17

16 write(6,*) " Array columns too short for",n,"Bessel orders”
write(6,*) "Program aborted by routine KBESSEL"
stop

17 if (m2 - (r1t+2)) 18,20,20

18  write(6,*) "Not enough columns in Array, dimension”,m2

write(6,*) "Program aborted by routine KBESSEL"

stop

¢ select small or large argument approximation regime
20 if (arg - 1.0) 36,36,25

¢ compute KO and K1 using larger argument approximation
25 b=1.0/arg
¢ = dsqrt(b)
t(l)=b
do 261=2,12
(1) = t(I-1)*b
26 continue

¢ compute KO using polynomial approximation
xg0 = -arg
g0 = (1.2533141-0.1566642*(1)+0.08811128*(2)-0.09139095*((3)
2 +0.1344596*1(4)-0.2299850*1(5)+0.3792410*1(6)-0.5247277*1(7)
3 +0.5575368*1(8)-0.4262633*1(9)+0.2184518*1(10)-0.06680977*1(11)
4 +0.009189383*1(12))*c

¢ compute K1 using polynomial approximation
gl = (1.2533141+0.4699927*1(1)-0.1468583*1(2)+0.1280427*1(3)



C

c

2 -0.1736432*1(4)+0.2847618*(5)-0.4594342*1(6)+0.6283381*(7)

3 -0.6632295*1(8)+0.5050239*(9)-0.2581304*t(10)+0.07880001*(11)

4 -0.01082418*t(12))*c

skip over small argument approximation: go to nth order iterations
go to 100

small argument evaluation: series expansion, first for kO

36 b =arg2.0

a=0.5772157 + dlog(b)
c=b*
g0=-a
xg0=0.0
x2j=10
fact =1.0
hj = 0.0
do 40 j=1,6
1j = 1.0/dfloat(j)
x2j = x2j*c
fact = fact*rj*sj
hj = hj+1j
20 = g0 + x2j*fact*(hj - a)

40 continue

Cc

compute k1 using series expansion
x2j=b
fact = 1.0
hj=1.0
gl = 1.0/7arg + x2j*(0.5 + a - hj)
do 50 j=2,8
x2j = x2j*c
1j = 1.0/dfloat(j)
fact = fact*rj*rj
hj = hj +1j
gl =gl + x2j*fact*(0.5 + (a-hj)*dfioat(j))

50 continue

¢ Compute the derivatives of KO and K1; set loop variables for
c iterative procedure for Kn and derivatives. 2nd derivative values
¢ are calculated in commented lines.

100 const = arg/x
array(1,rit) = g0
array(1,rlt+2) = xg0
dg0 = -const*gl
array(1,rit+1) = dg0

c array(1,**) = const*const*(g0 + gl/arg)

if (n .eq. 0) return

array(2,11t) = gl
array(2,rit+2) = xg0

dgl = -const*(g0 + gl/arg)
array(2,rlt+1) = dgl

c amray(2,**) = const*const*(g1 + g0/arg + 2.0*gl/(arg*arg))
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if (n .eq. 1) return

Compute Kn and derivatives. Throughout this loop, the current jth
order function (gj), current order derivatives (dgj and ddgj) and
the previous order function and its first derivative (g1,dg1)
are maintained. The exponent for all these
the same, and is modified once per iteration only for those
functions which will survive into the next iteration.
Note that dg1 and dgj incorporate a factor CONST already; this
is accounted for in the calculation of ddgj. Calculations of the
2nd derivatives are commented out.
do 35j=2,n
dflj = dfloat(j)
gj =2.0%(dflj - 1.0)*gl/arg + g0
dgj = -const*(gl + dflj*gj/arg)
c ddgj = const*(-dg1 - dflj*dgj/arg + const*dflj*gj/(arg*arg))
test = dlog(gj)
exptest = dexp(-test)
gi =10
dgj = dgj*exptest
c ddgj = ddgj*exptest
gl =gl*exptest
xg0 = xg0 + test
g0 =gl
gl =gj
dgl = dgj
array(j+1,rt) = gj
array(j+1,rt+2) = xg0
array(j+1,rt+1) = dgj
c array(j+1,**) = ddgj

35 continue

OO0 00O0000O0

return
end

This program evaluates a two dimensional fft by performing a
one dimensional fft row by row and then column by column. If id
is a positive number then the forward fft is evaluated otherwise
the inverse fft is found. Double precision is used throughout.

The complex*16 array array(i,j) contains the complex signal
whose fft is to be found. Real*8 arrays x and

y are for work space and have dimension equal to the
greater of i and j. ml is the power to which 2 has to

be raised to get i and m2 is the power to which 2 has to be
raised to get j. The output is returned in array(i,j). iw is

the dimension of the work arrays x and y and must be greater
than either i or j whichever is larger.

Subroutines used ::
fftd2 :: the one dimensional fft routine

0000000000000 06
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Subroutine call format ::
fftd2 :: call fftd2(x,y,n,n2,id)
where x is the real part of the
input data and the
Fourier transform
y is the imaginary part of
the input data and the
Fourier transform
n the fft length
n2 is the power to which 2
must be raised to obtain
n
and id is a positive integer if
the forward fft is
desired and is negative
otherwise

subroutine dfft2d (array,x,y,i,m1,j,m2,id,iw)
integer i,m1,j,m2,id,iw

complex*16 array(i,j)

real*8 x(iw),y(iw)

implicit real*8 (b-h,0-z)

Perform row by row ffts working from (i,1) to (i,j)

do 5k=1,i

10

do 10 1=1,j
x(l) = dreal(array(k,1))

_y(l) = dimag(array(k,1))
continue
call fftd2(x,y,j,m2,id)
do 15 I=1,j

_array(k,]) = demplx(x(1),y())
continue

continue

Perform col by col ffts working from (1,j) to (i,j)

do20k=1,j

25

30
20

do 25 I=1,i
x(I) = dreal(array(l,k))
_y(l) = dimag(array(Lk))
continue
call fftd2(x,y,i,m1,id)
do 30 1=1,i
_array(l,k) = demplx(x(1),y(1))
continue
continue
return
end

subroutine to compute n point complex dft for n=2**m.
the algorithm is the radix 2 common factor with decimation
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in frequency.
the maximum value of n is 8192.

Subroutines used :: None required

the call is fftd2(x,y,n,mi,inv)
where x is the real part of the input array
y is the imaginary part of the input array
n is the length of the fft
mi is the power to which 2 is raised to get n
inv is the flag which is negative for an inverse

ffe and positive otherwise

the output is returned in arrays x and y.

subroutine fftd2(x,y,n,mi,inv)
implicit real*8 (a-h,0-z)
dimension fcos(4100),x(n),y(n)
fn=n

confn=1.d0/float(n)
fm=dlog(fn)/dlog(2.d0)
m=ifix(fm+.1)

nt=2**m

if(nt.ne.n) go to 1000
if(mi.ne.m) go to 1000

calculate table of sines and cosines

pi=3.14159265

angle=2.d0*pi*confn

if(inv.1t.0) angle=-angle

n3q=(3*n)y/4

do 10 i=1,n3q
angk=angle*float(i-1)
fcos(i)=dcos(angk)

continue

start fft computation

use | as counter for stages 1-m
do 100 I=1,m
#*%4+%  define parameters that change with 1
121=2*%
n21=n/121
1212=2%*(1-1)
n212=n/1212
*+¥** use j counter for each sub-stage of consecutive
butterflies.
do 200 j=1,1212
ioffse will define number of indices to jump from one
sub-stage to another.
ioffse=(j-1)*n212
use k counter for consecutive butterflies in sub-stage j.
do 300 k=1,n21
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333
300
100

350

c
390

400

1000
1010
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define both indices for input to butterfly.
index1=k+ioffse
index2=index1+n21

calculate index indw for accessing sines and cosines.
indw=1+(k-1)*212
indwl=indw+(n/4)

start butterfly

tr=x(index1)-x(index2)
ti=y(index1)-y(index2)
x(index1)=x(index1)+x(index2)
y(index1)=y(index1)+y(index2)
if(inv.1t.0) go to 333
x(index2)=tr*fcos(indw)-ti*fcos(indw1)
y(index2)=ti*fcos(indw)+tr*fcos(indw1)
go to 300
x(index2)=tr*fcos(indw)+ti*fcos(indw1)
y(index2)=ti*fcos(indw)-tr*fcos(indw1)
continue
continue
continue

scale by 1/n if inverse fft is being found

if(inv.ge.0) go to 390

do 350 k=1,n
x(k)=x(k)*confn
y(k)=y(k)*confn

continue

start bit reversing

do 400 k=1,n-1
km=k-1
get bit reversed value of counter (minus 1) k
I=nbitre(km,m)+1
if(Lle.k) go to 400
interchange if above condition is not satisfied
tr=x(1)
ti=y(h)
x()=x(k)
y(h=y(k)
x(k)=tr
o y(k)=d
continue

return
write(6,1010) n

format(’ error in fftd2 size n =’,i5)
stop

end



(2]

10

function to calculate bit reverseed value of k for m bit

representation.

integer function nbitre(k,m)

initialize sum to O

kbr=0

io=k

do 10 j=1,m

get least significant bit
ibit=i0-2*(i0/2)

shift to the right for next time
io=io/2

add contributions of this bit to total
kbr=kbr+ibit*2**(m-j)

continye

nbitre=kbr

return

end
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