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(57) ABSTRACT 

A parallel dynamical system for computing sparse represen­
tations of data, i.e., where the data can be fully represented in 
terms of a small number of non-zero code elements, and for 
reconstructing compressively sensed images. The system is 
based on the principles of thresholding and local competition 
that solves a family of sparse approximation problems corre­
sponding to various sparsity metrics. The system utilizes 
Locally Competitive Algorithms (LCAs), nodes in a popula­
tion continually compete with neighboring units using (usu­
ally one-way) lateral inhibition to calculate coefficients rep­
resenting an input in an over complete dictionary. 
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ANALOG SYSTEM FOR COMPUTING 
SPARSE CODES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application claims the benefit of the filing date 
of U.S. Provisional Patent Application Ser. No. 60/902,673, 
entitled "System Using Locally Competitive Algorithms for 
Sparse Approximation" and filed on Feb. 21, 2007 by inven- 10 

tors Christopher John Rozell, Bruno Adolphus Olshausen, 
Don Herrick Johnson and Richard Gordon Baraniuk. 

The aforementioned provisional patent application 1s 

2 

M 

~nllallo subject to s = I-amcfim, 
m=l 

(1) 

where the ]0 "norm" denotes the number of non-zero elements 
ofa=[a1 , a2 , ... , aM]. While this clearly is not a norm in the 
mathematical sense, the term here will be used as it is preva­
lent in the literature. Unfortunately, this combinatorial opti­
mization problem is NP-hard. 

In the signal processing community, two approaches are hereby incorporated by reference in its entirety. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

15 typically used on digital computers to find acceptable subop­
timal solutions to this intractable problem. The first general 
approach substitutes an alternate sparsity measure to con­
vexify the ]0 norm. One well-known example is Basis Pursuit 
(BP) (Chen eta!., 2001 ), which replaces the ]0 norm with the The present invention was made with government support 

under the following government grants or contracts: Office of 
Naval Research Grant Nos. N00014-06-1-0769, N00014-06-
1-0829 and N00014-02-1-0353, U.S. Department of Energy 
Grant No. DE-FC02-01ER25462, and National Science 
Foundation Grant Nos.ANI-0099148,ANI-0099148 and IIS-
0625717. The government has certain rights in the invention. 25 

20 11 norm 

BACKGROUND OF THE INVENTION 

M 

~nllall1 subject to s = I-amcfim· 
m=l 

(2) 

1. Field of the Invention 
The present invention relates to a system for computing 

sparse representations of data, i.e., where the data can be fully 
represented in terms of a small number of non-zero code 
elements, and for reconstructing compressively sensed 
images. 

Despite this substitution, BP has the same solution as the 
optimal sparse approximation problem (Donoho and Elad, 
2003) if the signal is sparse compared to the nearest pair of 

30 
dictionary elements 

2. Brief Description of the Related Art 
35 

Natural signals can be well-approximated by a small subset 
of elements from an over complete dictionary. The process of 
choosing a good subset of dictionary elements along with the 
corresponding coefficients to represent a signal is known as 
sparse approximation. Sparse approximation is a difficult 

40 
non-convex optimization problem that is at the center of much 
research in mathematics and signal processing. Existing 
sparse approximation algorithms suffer from one or more of 
the following drawbacks: 1) they are not implementable in 
parallel computational architectures; 2) they have difficulty 

45 
producing exactly sparse coefficients in finite time; 3) they 
produce coefficients for time-varying stimuli that contain 
inefficient fluctuations, making the stimulus content more 
difficult to interpret; or 4) they only use a heuristic approxi-
mation to minimizing a desired objective function. 

50 
Given anN-dimensional stimulus sERN, we seek a repre­

sentation in terms of a dictionary D composed of M vectors 
{ <Pm} that span the space RN. Define the IF norm of the vector 
x to be llxlb =(~lxm1P) 11P and the iuner product (projection) 
between x andy to be <x, y>=~xmy m· Without loss of gener-

55 
ality, assume the dictionary vectors are unit-norm, II<Pmlb=l. 
When the dictionary is overcomplete (M>N), there are an 
infinite number of ways to choose coefficients {am} such that 

In practice, the presence of signal noise often leads to using a 
modified approach called Basis Pursuit De-Noising (BPDN) 
(Chen eta!., 2001) that makes a tradeoff between reconstruc­
tion mean-squared error (MSE) and sparsity in an uncon­
strained optimization problem: 

(3) 

where A is a tradeoff parameter. BPDN provides the 11-spars­
est approximation for a given reconstruction quality. There 
are many algorithms that can be used to solve the BPDN 
optimization problem, withinteriorpoint-typemethods being 
the most common choice. 

The second general approach employed by signal process­
ing researchers uses iterative greedy algorithms to construc­
tively build up a signal representation (Tropp, 2004). The 
canonical example of a greedy algorithm is known in the 

60 
signal processing community as Matching Pursuit (MP) 
(Mallat and Zhang, 1993). The MP algorithm is initialized 
with a residual r0 =s. At the k'h iteration, MP finds the index of 
the single dictionary element best approximating the current 

In optimal sparse approximation, we seek the coefficients 65 

having the fewest number of non-zero entries by solving the 
minimization problem 

residual signal, 8k=arg maxml(rk_ 1 , <Pm)· The coefficient 
dk=(rk-JO <Pe) and index 8k are recorded as part of the recon­
struction, and the residual is updated, rk=rk_ 1 -<jl8 kdk. After K 
iterations, the signal approximation using MP is given by 
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K 

s= ~1/Je,d,. 
k=l 

3 4 
nificant stimulus changes, thereby complicating the process 
of understanding the changing stimulus content. 

There are several sparse approximation methods that do 
not fit into the two primary approaches of pure greedy algo­
rithms or convex relaxation. Methods such as Sparse Baye­
sian Learning, FOCUSS, modifications of greedy algorithms 
that select multiple coefficients on each iteration and MP 
extensions that perform an orthogonalization at each step 
involve computations that would be very difficult to imple-

Though they may not be optimal in general, greedy algo­
rithms often efficiently find good sparse signal representa­
tions in practice. 

Recent research has found compelling evidence that the 
properties ofVl population responses to natural stimuli may 

10 ment in a parallel, distributed architecture. For FOCUSS, 
there also exists a dynamical system implementation that uses 
parallel computation to implement a competition strategy 
among the nodes (strong nodes are encouraged to grow while 
weak nodes are penalized), however it does not lend itself to 

be the result of a sparse approximation. For example, it has 
been shown that Vl receptive fields are consistent with opti­
mizing the coefficient sparsity when encoding natural 
images. Additionally, Vl recordings in response to natural 
scene stimuli show activity levels (corresponding to the coef­
ficients {am}) becoming sparser as neighboring units are also 
stimulated. These populations are typically very overcom­
plete, allowing great flexibility in the representation of a 20 
stimulus. Using this flexibility to pursue sparse codes might 
offer many advantages to sensory neural systems, including 
enhancing the performance of subsequent processing stages, 
increasing the storage capacity in associative memories, and 
increasing the energy efficiency of the system. 

15 forming smooth time-varying representations because coef­
ficients cannot be reactivated once they go to zero. 

There are also several sparse approximation methods built 
on a parallel computational framework that are related to our 
LCAs. These algorithms typically start with many super­
threshold coefficients and iteratively try to prune the repre­
sentation through a thresholding procedure, rather than 
charging up from zero as in our LCAs. In addition, most of 
these algorithms are not explicitly connected to the optimi-

25 zation of a specific objective function. 

However, existing sparse approximation algorithms do not 
have implementations that correspond both naturally and effi­
ciently to parallel computational architectures such as those 
seen in neural populations or in analog hardware. For convex 
relaxation approaches, a network implementation of BPDN 30 

can be constructed, following the common practice of using 
dynamical systems to implement direct gradient descent opti­
mization. Unfortunately, this implementation has two major 
drawbacks. First, it lacks a natural mathematical mechanism 
to make small coefficients identically zero. While the true 35 

BPDN solution would have many coefficients that are exactly 
zero, direct gradient methods to find an approximate solution 
in finite time produce coefficients that merely have small 
magnitudes. Ad hoc thresholding can be used on the results to 
produce zero-valued coefficients, but such methods lack thea- 40 

retical justification and can be difficult to use without oracle 
knowledge of the best threshold value. Second, this imple­
mentation requires persistent (two-way) signaling between 

SUMMARY OF THE INVENTION 

In a preferred embodiment, the present invention is a par­
allel dynamical system based on the principles of threshold­
ing and local competition that solves a family of sparse 
approximation problems corresponding to various sparsity 
metrics. In our Locally Competitive Algorithms (LCAs), 
nodes in a population continually compete with neighboring 
units using (usually one-way) lateral inhibition to calculate 
coefficients representing an input in an overcomplete dictio-
nary. Our continuous-time LCA is described by the dynamics 
of a system of nonlinear ordinary differential equations 
(ODEs) that govern the internal state and external communi­
cation of units in a parallel computational environment. These 
systems use computational primitives that correspond to 
simple analog elements (e.g., resistors, capacitors, amplifi­
ers), making them realistic for parallel implementations. 
These systems could be physically implemented in a variety 
of substrates, including analog hardware elements, organic 
tissue (e.g., neural networks) or in nanophotonic systems. 
Each LCA corresponds to an optimal sparse approximation 
problem that minimizes an energy function combining recon­
struction mean-squared error (MSE) and a sparsity-inducing 

all units with overlapping receptive fields (e.g., even a node 
with a nearly zero value would have to continue sending 45 

inhibition signals to all similar nodes). In greedy algorithm 
approaches, spiking neural circuits can be constructed to 
implement MP. Unfortunately, this type of circuit implemen­
tation relies on a temporal code that requires tightly coupled 
and precise elements to both encode and decode. 50 cost function. 

Beyond implementation considerations, existing sparse 
approximation algorithms also do not consider the time-vary­
ing signals common in nature. A time-varying input signal 
s(t) is represented with a set of time-varying coefficients 
{ am(t)}. While temporal coefficient changes are necessary to 55 

encode stimulus changes, the most useful encoding would use 
coefficient changes that reflect the character of the stimulus. 
In particular, sparse coefficients should have smooth tempo-
ral variations in response to smooth changes in the image. 
However, most sparse approximation schemes have a single 60 

goal: select the smallest number of coefficients to represent a 
fixed signal. This single-minded approach can produce coef­
ficient sequences for time-varying stimuli that are erratic, 
with drastic changes not only in the values of the coefficients 
but also in the selection of which coefficients are used. These 65 

erratic temporal codes are inefficient because they introduce 
uncertainty about which coefficients are coding the most sig-

In another embodiment, the present invention is a neural 
architecture for locally competitive algorithms ("LCAs") that 
correspond to a broad class of sparse approximation problems 
and possess three properties critical for a neurally plausible 
sparse coding system. First, the LCA dynamical system is 
stable to guarantee that a physical implementation is well­
behaved. Next, the LCAs perform their primary task well, 
finding codes for fixed images that are have sparsity compa­
rable to the most popular centralized algorithms. Finally, the 
LCAs display inertia, coding video sequences with a coeffi­
cient time series that is significantly smoother in time than the 
coefficients produced by other algorithms. This increased 
coefficient regularity better reflects the smooth nature of natu­
ral input signals, making the coefficients much more predict­
able and making it easier for higher-level structures to iden­
tify and understand the changing content in the time-varying 
stimulus. 
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The parallel analog architecture described by our LCAs 
could greatly benefit the many modern signal processing 
applications that rely on sparse approximation. While the 
principles we describe apply to many signal modalities, we 
will focus on the visual system and the representation of video 
sequences. 

6 
other and different embodiments and its several details can be 
modified in various obvious respects, all without departing 
from the spirit and scope of the present invention. Accord­
ingly, the drawings and descriptions are to be regarded as 
illustrative in nature, and not as restrictive. Additional objects 
and advantages of the invention will be set forth in part in the 
description which follows and in part will be obvious from the 
description, or may be learned by practice of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

For a more complete understanding of the present inven­
tion and the advantages thereof, reference is now made to the 
following description and the accompanying drawings, in 
which: 

FIG. 1 (a) illustrates LCA nodes in accordance with a pre­
ferred embodiment of the present invention behaving as leaky 
integrators, charging with a speed that depends on how well 
the input matches the associated dictionary element and the 
inhibition received from other nodes. 

FIG. 1(b) is a diagram of a system in accordance with a 
preferred embodiment of the present invention showing the 
inhibition signals being sent between nodes. In this case, only 
node 2 is shown as being active (i.e., having a coefficient 
above threshold) and inhibiting its neighbors. Since the 
neighbors are inactive then the inhibition is one-way. 

FIG. 1 (c) illustrates a source of electrical energy in a node 
in accordance with a preferred embodiment of the present 
invention. 

In a preferred embodiment, the present invention is an 
analog system for sparsely approximating a signal. The sys­
tem comprises a matching system for calculating and output­
ting matching signals representative of how well-matched 10 

said signal is to a plurality of dictionary elements and a 
plurality of nodes. Each node receives one of said matching 
signals from said matching system. Each node comprises a 
source of an internal state signal and a thresholding element. 
The internal state signal in each node is calculated as a func- 15 

tion of said matching signal received at said node and 
weighted outputs of all other nodes. The source of an internal 
state signal may comprise a low pass averaging system. The 
matching system may comprise a projection system for pro­
jecting a signal vector onto the plurality of dictionary ele- 20 

ments. Each node may further comprise a plurality of weight­
ing elements, each weighting element receiving an output 
from another one of the plurality of nodes and providing the 
weighted outputs to the source of an internal state signal. The 
internal state signal may be derived from the matching signal 25 

less a sum of weighted outputs from the other nodes. Alter­
natively, each node may further comprise a plurality of 
weighting elements for receiving an output of the threshold­
ing element and providing a plurality of weighted outputs. 
The inputted signal may be a video signal or other type of 30 

signal. The source of an internal state signal may be a voltage 
source, current source or other source of electrical energy. 
The low pass averaging system may comprise a low pass 
averaging circuit such as a resistor and capacitor or any other 
type of! ow pass averaging circuit. 

In another embodiment, the present invention is a parallel 
dynamical system for computing sparse representations of 
data. The system comprises a projection system for projecting 
the data onto projection vectors and a plurality of nodes. Each 
node receives one of the projection vectors from the projec- 40 

tion system. Each node comprises a source of electrical 
energy, a low pass averaging circuit and a thresholding ele­
ment. The source of electrical energy in each node comprises 

FIGS. 2(a)-(j) illustrate the relationship between the 
threshold function Tea. y. >i•) and the sparsity cost function 
C( • ). Only the positive half of the symmetric threshold and 
cost functions are plotted. FIG. 2(a) illustrates a sigmoidal 
threshold function. FIG. 2(b) illustrates a cost function for 

35 y=5, a=O and A.=l. FIG. 2(c) illustrates the ideal hard thresh­
olding function (y=oo, a=O. A.=l) and FIG. 2(d) illustrates the 
corresponding cost function. The dashed line shows the limit, 
but coefficients produced by the ideal thresholding function 

a projection vector received at the node less weighted outputs 

cannot take values in this range. FIG. 2(e) illustrates the ideal 
soft thresholding function (y=oo, a=l, A.=l) and FIG. 2(j) 
illustrates the corresponding cost function. 

FIGS. 3(a) and (b) respectively illustrate the top 200 coef­
ficients from a BPDN solver sorted by magnitude and the 
same coefficients, sorted according to the magnitude ordering 
of the SLCA coefficients. While there is a gross decreasing 
trend noticeable, the largest SLCA coefficients are not in the 
same locations as the largest BPDN coefficients. While the 
solutions have equivalent energy functions, the two sets of 

of all other nodes. Each node further comprises a plurality of 45 

weighting elements, each weighting element receiving an 
output from another one of the plurality of nodes and provid­
ing the weighted output to the source of electrical energy. 
Other arrangements of the weighting elements may be used 
with the present invention and with this embodiment. 50 

coefficients differ significantly. 
FIG. 4(a) illustrates an example of a dictionary having one 

"extra" element that comprises decaying combinations of all 
other dictionary elements. 

In still another embodiment, the present invention is a 
parallel dynamical system for computing sparse representa­
tions of data. The system comprises a plurality of nodes, each 
node being active or inactive. Each node comprises a leaky 
integrator element, wherein inputs to the leaky integrator 55 

element cause an activation potential to charge up, and a 
thresholding element for receiving the activation potential 
and for producing an output coefficient. The output coeffi­
cient is the result of an activation function applied to the 
activation potential and parameterized by a system threshold. 60 

Active nodes inhibit other nodes with inhibition signals pro­
portional to both level of activity of the active nodes and a 
similarity of receptive fields of the active nodes. 

Still other aspects, features, and advantages of the present 
invention are readily apparent from the following detailed 65 

description, simply by illustrating a preferable embodiments 
and implementations. The present invention is also capable of 

FIG. 4(b) illustrates an input vector having a sparse repre­
sentation in just a few dictionary elements. 

FIG. 4(c) illustrates an MP initially choosing an "extra" 
dictionary element, preventing it from finding the optimally 
sparse representation (coefficients shown after 100 itera­
tions). 

FIG. 4( d) illustrate that, in contrast, the HLCA system finds 
the optimally sparse coefficients. 

FIG. 4(e) illustrates how the time-dynamics of the HLCA 
system illustrate its advantage. The "extra" dictionary ele­
ment is the first node to activate, followed shortly by the nodes 
corresponding to the optimal coefficients. The collective inhi­
bition of the optimal nodes causes the "extra" node to die 
away. 
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FIG. 5 illustrates SLCA and BPDN coefficients for a series 
of standard test images. Each line on the plot indicates the 
tradeoff between MSE and 11 coefficient norm as A is varied. 
The results for SLCA and BPDN overlap exactly, illustrating 
that the systems are finding equivalent minima of the energy 
function. 

8 
DETAILED DESCRIPTION OF THE PREFERRED 

EMBODIMENTS 

Digital systems waste time and energy digitizing informa­
tion that eventually is thrown away during compression. In 
contrast, the present invention is an analog system that com­
presses data before digitization, thereby saving time and 
energy that would have been wasted. More specifically, the 
present invention is a parallel dynamical system for comput-

FIGS. 6(a)-(d) illustrates the time response of the HLCA 
and SLCA (t= 1 0 ms) for a single fixed image patch. FIG. 6( a) 
shows the MSE decay and FIG. 6(b) shows the ]0 sparsity for 
HLCA. FIG. 6(c) illustrates the MSE decay and FIG. 6(d) 
illustrates the ]0 sparsity for SLCA. The error converges 
within 1-2 time constants and the sparsity often approxi­
mately converges within 3-4 time constants. In some cases 
sparsity is reduced with a longer running time. 

10 ing sparse representations of data, i.e., where the data can be 
fully represented in terms of a small number of non-zero code 
elements. Such a system could be envisioned to perform data 
compression before digitization, reversing the resource wast-

15 

ing common in digital systems. 
A technique referred to as compressive sensing permits a 

signal to be captured directly in a compressed form rather 
than recording raw samples in the classical sense. With com­
pressive sensing, only about 5-10% of the original number of 
measurements need to be made from the original analog 

FIG. 7 illustrates the mean tradeoff between MSE and 
]
0 -sparsity for normalized (32x32) patches from a standard 

set of test images. For a given MSE range, the mean (a) and 
standard deviation (b) of the ]0 sparsity are plotted. 

20 image to retain a reasonable quality image. In compressive 
sensing, however, reconstruction involves solving an optimal 
sparse approximation problem which requires enormous cal­
culations and memory. The present invention employs a 
locally competitive algorithm ("LCA") that stylizes interact-

FIGS. S(a)-(d) shows the HLCAand SLCA systems simu­
lated on 200 frames of the "foreman" test video sequence. For 
comparison, MP coefficients and thresholded BPDN coeffi­
cients are also shown. Average values for each system are 
notated in the legend. FIG. S(a) shows Per-frame MSE for 
each coding scheme, designed to be approximately equal. 
FIG. S(b) shows the number of active coefficients in each 
frame. FIG. S(c) shows the number of changing coefficient 
locations for each frame, including the number of inactive 
nodes becoming active and the number of active nodes 30 
becoming inactive. FIG. S(d) shows the ratio of changing 
coefficients to active coefficients. A ratio near 2 (such as with 
MP) means that almost 100% of the coefficient locations are 
new at each frame. A ratio near 0.5 (such as with HLCA) 
means that approximately 25% of the coefficients are new at 35 
each frame. 

25 ing neuron-like nodes to solve the sparse approximation prob­
lem. 

FIG. 9(a) shows the marginal probabilities denoting the 
fraction of the time coefficients spent in the three states: 
negative, zero and positive ( -, 0, and+). 

FIG. 9(b) shows the transition probabilities denoting the 40 

probability of a node in one state transitioning to another state 
on the next frame. For example, P (01 +)is the probability that 
a node with an active positive coefficient will be inactive (i.e., 
zero) in the next frame. 

FIG. lO(a) illustrates an example time-series coefficient 45 

for the HLCA and MP (top and bottom, respectively) encod­
ings for the test video sequence. HLCA clusters non-zero 
entries together into longer runs while MP switches more 
often between states. 

50 
FIG. lO(b) illustrates the empirical conditional entropy of 

the coefficient states ( -,0,+) during the test video sequence. 

FIG. lO(c) illustrates the conditional entropy is calculated 
analytically while varying P (+I+) and equalizing all other 
transition probabilities to the values seen in HLCA and MP. 55 
The tendency of a system to group non-zero states together is 
the most important factor in determining the entropy. 

FIG. 11 is a diagram illustrating an LCA network for 
compressive sensing reconstruction and the nonlinear trans­
formation applied to the state variable in each node in accor- 60 

dance with a preferred embodiment of the present invention. 
Originally, the LCA network found the best sparse appro xi­
mation for the data vector x. In this case, the network input m 
equaled the data x directly and the interconnection strengths 
were given by ('¥,, 1¥1 ). The LCA structure was modified as 65 

indicated so that it could solve the compressive sensing 
reconstruction problem. 

More specifically, the present invention uses thresholding 
functions to induce local (possibly one-way) inhibitory com­
petitions among units, thus constituting a locally competitive 
algorithm (LCA). The LCA can be implemented as a circuit 
and can be shown to minimize weighted combination of 
mean-squared-error in describing the data and a cost function 
on neural activity. It demonstrates sparsity levels comparable 
to existing sparse coding algorithms, but in contrast to greedy 
algorithms that iteratively select the single best element, the 
circuit allows continual interaction among many units, allow­
ing the system to reach more optimal solutions. Additionally, 
the LCA coefficients for video sequences demonstrate iner­
tial properties that are both qualitatively and quantitatively 
more regular, i.e., smoother and more predictable, than the 
coefficients produced by greedy algorithms. 

The LCAs associate each node with an element of a dic­
tionary <PmED. When the system is presented with an input 
image s(t), the collection of nodes evolve according to fixed 
dynamics (described below) and settle on a collective output 
{ am(t) }, corresponding to the short-term average firing rate of 
the nodes. For analytical simplicity, positive and negative 
coefficients are allowed, but rectified systems could use two 
physical units to implement one LCA node. The goal is to 
define the LCA system dynamics so that few coefficients have 
non-zero values while approximately reconstructing the 
input, s(t)=~mam(t)<Pm""s(t). 

The LCA dynamics follow several properties observed in 
neural systems: inputs cause the membrane potential to 
"charge up" like a leaky integrator; membrane potentials over 
a threshold produce "action potentials" for extra cellular sig­
naling; and these super-threshold responses inhibit neighbor­
ing nodes through lateral connections. Each node's sub­
threshold value is represented by a time-varying internal state 
um(t). The node's excitatory input current is proportional to 
how well the image matches with the node's receptive field, 
bm(t )= (<Pm,s(t) ). When the internal state um of a node becomes 
significantly large, the node becomes "active" and produces 
an output signal amused to represent the stimulus and inhibit 
other nodes. This output coefficient is the result of an activa­
tion function applied to the membrane potential, am =T "-Cum), 
parameterized by the system threshold A. Though similar 
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activation functions have traditionally taken a sigmoidal 
form, we consider activation functions that operate as thresh­
olding devices (e.g., essentially zero for values below A and 
essentially linear for values above A). 

The nodes best matching the stimulus will have internal 5 

state variables that charge at the fastest rates and become 
active soonest. To induce the competition that allows these 
nodes to suppress weaker nodes, we have active nodes inhibit 
other nodes with an inhibition signal proportional to both 
their activity level and the similarity of the nodes' receptive 10 

fields. Specifically, the inhibition signal from the active node 
m to any other node n is proportional to amGm n' where 
Gm,n =(<jlm,<Pn)· The possibility of unidirectional inhibition 
gives strong nodes a chance to prevent weaker nodes from 
becoming active and initiating counter-inhibition, thus mak- 15 

ing the search for a sparse solution more energy efficient. 
Note that unlike the direct gradient descent methods 
described above that require two-way inhibition signals from 
all nodes that overlap (i.e., have Gm n =0), LCAs only require 
one-way inhibition from a small sel~ction of nodes (i.e., only 20 

the active nodes). Putting all of the above components 
together, LCAnode dynamics are expressed by the non-linear 
ordinary differential equation (ODE) 

25 

(4) 

This ODE is essentially the same form as the well-known 30 

continuous Hop field network. FIG. 1 (a) shows an LCA node 
circuit schematic and FIG. 1(b) is a system diagram illustrat­
ing the lateral inhibition. As shown in FIG. 1(a), the node 100 
has a source of electrical energy 110, a low pass averaging 
circuit 120 comprised of a resistor and a capacitor, and a 35 

thresholding element 130. While the source of electrical 
energy 110 is shown in FIG. 1(a) as a voltage source, other 
arrangements such as a current source may be used in the 
present invention and such alternatives will readily apparent 
to those of ordinary skill in the art. Likewise, while the low 40 

pass averaging circuit 120 is shown as a simple resistor and 
capacitor arrangement in FIG. 1(a ), other arrangements may 
be used with the present invention and will be readily appar­
ently to those of ordinary skill in the art. 

An embodiment of the source of electrical energy 110 is 45 

shown in greater detail in FIG. 1 (c). As can be seen from FIG. 
1(c), the source 110 is not a "source" in the sense that it 
generates electrical energy, but rather, it uses received signals 
to produce or "compute" the output provided to the low pass 
averaging circuit 120 and the thresholding element 130. More 50 

specifically, the source 110 receives a projection 
vector (<Pms(t)) from a projection system 200 (shown in FIG. 
1(b)) and an output an(t) from each other node 100. In the 
embodiment shown in FIG. 1 (c), the source 110 in each node 
100 has a weighting element 112 corresponding to the output 55 

received from each other node for weighting that output. The 
source 110 outputs the difference 

Vm(t) = (1/!m, s(t))-~ T;c(un(t))(cfim, !/in)· 
60 

Mm 

10 
are then provided to a plurality of nodes 100. In the embodi­
ment showninFIG.1(b), each node 100 receives a projection 
vector (<Pn, s(t)) and also the output an(t) of each other node. 

Other arrangement of the system of the present invention 
may be used and will be apparent to those of skill in the art. 
For example, while the embodiment of FIGS. 1(a)-(c) show 
the output of each node being pass directly back to each other 
node and the weighting of such outputs being performed 
inside the receiving node, each node could calculate the 
weighting of its own output an(t) and could then pass its own 
weighted output an(t) (<Pn, <Pm) to the other nodes. 

To express the system of coupled non-linear ODEs that 
govern the whole dynamic system, we represent the internal 
state variables in thevectoru(t)=[u1 (t), ... , u~t)]', the active 
coefficients in the vector a(t)=[ a1 (t), ... , a~t)]'=T "-(u(t)), the 
dictionary elements in the colunms of the (NxM) matrix 
<I>=[ <Pu ... , <jJM] and the driving inputs in the vector b(t)=[b 1 

(t), ... , b~t)]'=<I>'s(t). The function T"-(•) performs element­
by-element thresholding on vector inputs. The stimulus 
approximation is s(t)=<I>a(t), and the full dynamic system 
equation is 

1 
it(t) = f(u(t)) = - [b(t)- u(t)- (<t>'<t> -l)a(t)], 

T 

(5) 

a(t) = T;c(u(t)). 

The LCA architecture described by equation (5) solves a 
family of sparse approximation problems corresponding to 
different sparsity measures. Specifically, LCAs descend an 
energy function combining the reconstruction MSE and a 
sparsity-inducing cost penalty C(•), 

1 2 '\' 
E(t) = 2:lls(t)- s(tJII + ,l. LJ C(am(t)). 

(6) 

m 

The specific form of the cost function C( •) is determined by 
the form of the thresholding activation function T"-(•). For a 
given threshold function, the cost function is specified (up to 
a constant) by 

(7) 

This correspondence between the thresholding function and 
the cost function can be seen by computing the derivative of 
E with respect to the active coefficients, {am}. If equation (7) 
holds, then letting the internal states {urn} evolve according to 

As illustrated in FIG. 1(b), a preferred embodiment of the 
analog system for compressing signals of the present inven­
tion has a projection system 200 for projecting a received 
signal s(t) onto a plurality of projection vectors (<Pm s(t))that 

yields the equation for the internal state dynamics above in 
65 equation (4). Note that although the dynamics are specified 

through a gradient approach, the system is not performing 
direct gradient descent 
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( e.g .• itm *- !!..!!.._). 
aum 

As long as am and um are related by a monotonically increas­
ing function, the {am} will also descend the energy function 
E. 

12 
cally zero (especially when M>N). However, most numerical 
methods (including direct gradient descent and interior point 
solvers) will drive coefficients toward zero but will never 
make them identically zero. While an ad hoc threshold could 
be applied to the results of a BPDN solver, the SLCA has the 
advantage of incorporating a natural thresholding function 
that keeps coefficients identically zero during the computa­
tion unless they become active. In other words, while BPDN 
solvers often start with many non-zero coefficients and try to 

We focus specifically on the cost functions associated with 
thresholding activation functions. Thresholding functions 
limit the lateral inhibition by allowing only "strong" units to 
suppress other units and forcing most coefficients to be iden­
tically zero. For our purposes, thresholding functions T>..(•) 
have two distinct behaviors over their range: they are essen­
tially linear with unit slope above threshold A, and essentially 
zero below threshold. Among many reasonable choices for 
thresholding functions, we use a smooth sigmoidal function 

10 force coefficients down, the SLCA starts with all coefficients 
equal to zero and only lets a few grow up. This advantage is 
especially important for systems that must expend energy for 
non-zero values throughout the entire computation. 

Another important special case is the hard thresholding 
15 function, corresponding to a=O and shown graphically in 

FIGS. 2c and 2d. Using the relationship in (7), we see that this 
hard-thresholding locally competitive algorithm (HLCA) 
applies an 1°-like cost function by using a constant penalty 
regardless of magnitude, 

20 

(8) 

where y is a parameter controlling the speed of the threshold 25 

transition and aE[0,1] indicates what fraction of an additive 
adjustment is made for values above threshold. An example 
sigmoidal thresholding function is shown in FIG. 2a. We are 
particularly interested in the limit of this thresholding func­
tion as y~oo, a piecewise linear function we denote as the 30 

ideal thresholding function. In the signal processing litera­
ture, Tco,=,>..J(•)=lillly~= Tco,y,>..J(•) is known as a "hard" thresh­
olding function and T(l,=,>..l•)=lillly~= T(l,y,>..l•) is known as 
a "soft" thresholding function. 

Combining (7) and (8), we can integrate numerically to 35 

determine the cost function corresponding to the Tca,y,>..J(•) 
shown in FIG. 2b. For the ideal threshold functions we derive 
a corresponding ideal cost function, 

40 

(9) 

Note that unless a=1 the ideal cost function has a gap 45 
because active coefficients cannot take all possible values, 
laml$[0,(1-a)J....] (i.e., the ideal thresholding function is not 
technically invertible). 

As shown above, a LCA can optimize a variety of different 
sparsity measures depending on the choice of thresholding 50 

function. One special case is the soft thresholding function, 
corresponding to a= 1 and shown graphically in FIGS. 2e and 

where I(•) is the indicator function evaluating to 1 if the 
argument is true and 0 if the argument is false. As with the 
SLCA, the HLCA also has connections to known sparse 
approximation principles. If node m is fully charged, the 
inhibition signal it sends to other nodes would be exactly the 
same as the update step when the m'h node is chosen in the MP 
algorithm. However, due to the continuous competition 
between nodes before they are fully charged, the HLCA is not 
equivalent to MP in general. 

As a demonstration of the power of competitive algorithms 
over greedy algorithms, consider a canonical example used to 
illustrate the shortcomings of greedy algorithms. For this 
example, specifY a positive integer K <N and construct a dic­
tionary D with M=N+1 elements to have the following form: 

if msN 

if m = N + 1, 

where em is the canonical basis element (i.e., it contains a 
single 1 in the m'h location) and k is a constant to make the 
vectors have unit norm. In words, the dictionary includes the 
canonical basis along with one "extra" element that is a 
decaying combination of all other elements (illustrated in 
FIG. 4, with N=20 and K=5). The input signal is sparsely 
represented in the first K dictionary elements, 

The first MP iteration chooses <jJ M• introducing a residual with 
decaying terms. Even though s has an exact representation in 
K elements, MP iterates forever trying to atone for this bad 

2f The soft-thresholding locally competitive algorithm 
(SLCA) applies the 11 norm as a cost function on the active 
coefficients, Cc1,=,>..J(am)=laml. Thus, the SLCA is simply 55 

another solution method for the general BPDN problem 
described above. Despite minimizing the same convex energy 
function, SLCA and BPDN solvers will find different sets of 
coefficients, as illustrated in FIG. 3. The connection between 
soft-thresholding and BPDN is well-known in the case of 60 

orthonormal dictionaries (Chen et a!., 2001), and recent 
results have given some justification for using soft-threshold­
ing in over complete dictionaries. The SLCA provides 
another formal connection between the soft-thresholding 
function and the 11 cost function. 65 initial choice. In contrast, the HLCA initially activates the 

M'h node but uses the collective inhibition from nodes Though BPDN uses the 11-norm as its sparsity penalty, we 
often expect many of the resulting coefficients to be identi- 1, ... , K to suppress this node and calculate the optimal set of 
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coefficients. While this pathological example is unlikely to 
exactly occur in natural signals, it is often used as a criticism 
of greedy methods to demonstrate their shortsightedness. We 
mention it here to demonstrate the flexibility of LCAs and 
their differences from pure greedy algorithms. 

To be a reasonable for physical implementation, LCAs 
must exhibit several critical properties: the dynamic systems 
must remain stable under normal operating conditions, the 
system must produce sparse coefficients that represent the 
stimulus with low error, and coefficient sequences must 10 

exhibit regularity in response to time-varying inputs. We 
show that LCAs exhibit good characteristics in each of these 
three areas. We focus our analysis on the HLCA both because 
it yields the most interesting results and because it is nota­
tionally the cleanest to discuss. In general, the analysis prin- 15 

ciples we use will apply to all LCAs through straightforward 
(through perhaps laborious) extensions. 

Any proposed physical system must remain well-behaved 
under normal conditions. While linear systems theory has an 
intuitive notion of stability that is easily testable, no such 20 

unifYing concept of stability exists for non-linear systems. 
Instead, non-linear systems are characterized in a variety of 
ways, including their behavior near an equilibrium point u* 
where f(u*)=O and their input-output relationship. 

The various stability analyses below depend on common 25 

criteria. Define Mu(t)-'=._[ 1, ... , M] as the set of nodes that are 
above threshold in the internal state vector u(t), Mu(t)= 

14 
encompass the ideal thresholding functions used in the LCAs 
(e.g., they are continuously differentiable and/or monotone 
increasing). As the stability criteria is met, the HLCA: 

has a finite number of equilibrium points; 

has equilibrium points that are almost certainly isolated (no 
two equilibrium points are arbitrarily close together); 
and 

is almost certainly locally asymptotically stable for every 
equilibrium point. 

The conditions that hold "almost certainly" are true as long 
as none of the equilibria have components identically equal to 
the threshold, (u* m"'"-, 'v'm), which holds with overwhelming 
probability. With a finite number of isolated equilibria, we can 
be confident that the HLCA steady-state response is a distinct 
set of coefficients representing the stimulus. Asymptotic sta­
bility also implies a notion of robustness, guaranteeing that 
the system will remain well-behaved even under perturba­
tions. 

In physical systems it is important that the energy of both 
internal and external signals remain bounded for bounded 
inputs. One intuitive approach to ensuring output stability is 
to examine the energy function E. For non-decreasing thresh­
old functions, the energy function is non-increasing 

for fixed inputs. While this is encouraging, it does not guar­
antee input-output stability. To appreciate this effect, note that 
the HLCA cost function is constant for nodes above thresh-

{ m: lum(t)l ~A}. We say that the LCA meets the stability cri­
teria if for all time t the set of active vectors { <Pm} mEM is 
linearly independent. It makes some intuitive sense that"tbs 30 

condition is important to an LCA: if a collection of linearly 
dependent nodes are active simultaneously, the nodes could 
have growing coefficients but no net effect on the reconstruc­
tion. 

35 old-nothing explicitly keeps a node from growing without 
bound once it is active. 

The stability criteria are likely to be met under normal 
operating conditions for two reasons. First, small subsets of 
dictionary elements are unlikely to be linearly dependent 
unless the dictionary is designed with this property. Second, 
sparse coding systems are actively trying to select dictionary 
subsets so that they can use many fewer coefficients then the 
dimension of the signal space, IMu(t)I<<N<<M. While the 
LCA lateral inhibition signals discourage linear dependent 
sets from activating, the stability criteria could be violated 
when a collection of nodes becomes active too quickly, before 
inhibition can take effect. In practice, this situation could 
occur when the threshold is too low compared to the system 
time constant. 

While there is no universal input-output stability test for 
general non-linear systems, we observe that the LCA system 
equation is linear and fixed until a unit crosses threshold. A 

40 branch of control theory specifically addresses these switched 
systems. Results from this field indicate that input-output 
stability can be guaranteed if the individual linear subsystems 
are stable, and the system doesn't switch "too fast" between 
these subsystems. The HLCA linear subsystems are individu-

45 ally stable if and only if the stability criteria are met. There­
fore, the HLCA is input-output stable as long as nodes are 
limited in how fast they can change states. The infinitely fast 
switching condition is avoided in practice either by the physi­
cal principles of the system implementation or through an 

In a LCA presented with a static input, we look to the 
steady-state response (where u(t)=O) to determine the coeffi­
cients. The character of the equilibrium points u*(f(u*)=O) 
and the system's behavior in a neighborhood around an equi­
librium point provides one way to ensure that a system is well 
behaved. Consider the ball around an equilibrium point 
BE(u*)={u:llu-u*II(E}. Nonlinear system's analysis typically 
asks an intuitive question: if the system is perturbed within 55 

this ball, does it then run away, stay where it is, or get attracted 
back? Specifically, a system is said to be locally asymptoti­
cally stable at an equilibrium point u* if one can specify an 
E>O such that 

50 explicit hysteresis in the thresholding function. 

Viewing the sparse approximation problem through the 
lens of rate-distortion theory, the most powerful algorithm 
produces the lowest reconstruction MSE for a given sparsity. 
When the sparsity measure is the 11 norm, the problem is 
convex and the SLCA produces solutions with equivalent 
11-sparsity to interior point BPDN solvers (demonstrated in 
FIG. 5). Despite the analytic appeal of the 11 norm as a sparsity 
measure, many systems concerned with energy minimization 
(including neural systems) likely have an interest in minimiz-

u(O) E Bs(u') => limu(t) = u'. 
H= 

Previous research has used the tools ofLyapunov functions 
to study a Hop field network similar to the LCA architecture. 
However, all of these analyses make assumptions that do not 

60 ing the 1° norm of the coefficients. The HLCA is appealing 
because of its 1° -like sparsity penalty, but this objective func­
tion is not convex and the HLCA may find a local minimum. 
We will show that while HLCA cam10t guarantee the L 0 

sparsest solution, it produces coefficients that demonstrate 
65 comparable sparsity to MP for natural images. Insight about 

the HLCA reconstruction fidelity comes from rewriting the 
LCA system equation 
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1 
it(t) = -;: [<1>1 (s(t)- s(t))- u(t) + T(a,=,,t)(u(t))]. 

(10) 

16 
ms. We simulated the system using a simple Euler's method 
approach (i.e., first order finite difference approximation) 
with a time step of 1 ms. 

FIG. 6 shows the time evolution of the reconstruction MSE 
and 1° sparsity for SLCA and HLCA responding to an indi­
vidual image, and FIG. 7 shows the mean steady-state 
tradeoff between 1° sparsity and MSE. For comparison, we 
also plotted the results obtained from using MP, a standard 
BPDN interior point solver followed by thresholding to 

For a constant input, HLCA equilibrium points (u(t)=O) 
occur when the residual error is orthogonal to active nodes 
and balanced with the internal state variables of inactive 
nodes. 10 enforce 1° sparsity (denoted "BPDNthr") and SLCA with the 

same threshold applied (denoted "SLCAthr"). Most impor­
tantly, note that the HLCA and MP are almost identical in 
their sparsity-MSE tradeoff Though the connections 
between the HLCA and MP were pointed out above, these are 

Therefore, when HLCA converges the coefficients will 
perfectly reconstruct the component of the input signal that 
projects onto the subspace spanned by the final set of active 
nodes. Using standard results from frame theory (Chris­
tensen, 2002), we can bound the HLCA reconstruction MSE 
in terms of the set of inactive nodes 

15 very different systems and there is no reason to expect them to 
produce the same coefficients. Additionally, note that the 
SLCA is producing coefficients that are nearly as 1° -sparse as 
what we can be achieved by thresholding the results of a 
BPDN solver even though the SLCA keeps most coefficients 

20 zero throughout the calculation. 
Systems sensing the natural world are faced with con­

stantly changing stimuli due to both external movement and 
internal factors (e.g., sensor movement, etc,), As discussed 
above, sparse codes with temporal variations that also reflect 

1 (M -IMu, I)A2 

lls(tJ- s(tJII2 s - ~ l(t/>m, s(tJ- s(tJ)I 2 s ( 1 

lJmin mEt=Mu(t) lJrrrin 

where 'llmin is the minimum eigenvalue of <I><I>'. 

25 the smooth nature of the changing signal would be easier for 
higher level systems to understand and interpret. However, 
approximation methods that only optimize sparsity at each 
time step (especially greedy algorithms) can produce "brittle" 
representations that change dramatically with relatively small 

30 stimulus changes. In contrast, LCAs naturally produce 
smoothly changing outputs in response to smoothly changing 
time-varying inputs. Assuming that the system time constant 
1: is faster than the temporal changes in the stimulus, the LCA 
will evolve to capture the stimulus change and converge to a 

Though the HLCA is not guaranteed to find the globally 
optimal 1° sparsest solution we must ensure that it does not 
produce unreasonably non-sparse solutions. While the sys­
tem nonlinearity makes it impossible to analytically deter­
mine the LCA steady-state coefficients, it is possible to rule 
out some coefficients as not being possible. For example, let 
M_.<::_[1,,,,, M] bean arbitrary setofactive coefficients. Using 
linear systems theory we can calculate the steady-state 
response assuming that M stays fixed. If lilm MI<A for any 

40 
mEM or if lilm MI>A for any mEM, then M cannot describe the 

35 new sparse representation. While local minima in an energy 
function are typically problematic, the LCAs can use these 
local minima to find coefficients that are "close" to their 
previous coefficients even if they are not optimally sparse. 
While permitting suboptimal coefficient sparsity, this prop­
erty allows the LCA to exhibit inertia that smoothes the 

set of active nodes in the steady-state response and we call it 
inconsistent. When the stability criteria are met, the following 
statement is true for the HLCA: Ifs=<jlm, then any set of active 
coefficients M with mEM and IMI> 1 is inconsistent In other 45 
words, the HLCA may use the m'h node or a collection of 
other nodes to represent s, but it cannot use a combination of 
both. This result extends intuitively beyond one-sparse sig­
nals: each component in an optimal decomposition is repre­
sented by either the optimal node or another collection of 50 
nodes, but not both. While not necessarily finding the optimal 
representation, the system does not needlessly employ both 
the optimal and extraneous nodes. 

It can also be verified numerically that the LCAs achieve a 
combination of error and sparsity comparable with known 55 

methods. For example, we employed a dictionary consisting 
of the bandpass band of a steerable pyramid with one level 
and four orientation bands (i.e., the dictionary is approxi­
mately four times overcomplete). Image patches (32x32) 
were selected at random from a standard set of test images. 60 

The selected image patches were decomposed using the steer­
able pyramid and reconstructed using just the bandpass band. 
The bandpass image patches were also normalized to have 
unit energy. Each image patch was used as the fixed input to 
the LCA system equation (5) using either a soft or hard 65 

thresholding function (with variable threshold values) and 
with a biologically plausible membrane time constant of-t= 10 

coefficient sequences, The inertia property exhibited in LCAs 
can be seen by focusing on a single node in the system 
equation (10): 

, - 1 { (t/>m, (s(t)- s(t)))- Um(t) when lum(tll <A 
Um(t)- -

T (t/>m, (s(t)- s(t)))- CYA when lum(tll 2 A, 

A new residual signal drives the coefficient higher but suffers 
an additive penalty. Inactive coefficients suffer an increasing 
penalty as they get closer to threshold while active coeffi­
cients only suffer a constant penalty aA that can be very small 
(e.g., the HLCA has a"-=0). This property induces a "king of 
the hill" effect: when a new residual appears, active nodes 
move virtually unimpeded to represent it while inactive nodes 
are penalized until they reach threshold. This inertia encour­
ages inactive nodes to remain inactive nnless the active nodes 
cannot adequately represent the new input. 

To illustrate this inertia, we applied the LCAs to a sequence 
of 144x 144 pixel, bandpass filtered, normalized frames from 
the standard "foreman" test video sequence. The LCA input is 
switched to the next video frame every (simulated) %o sec­
onds. The results are shown in FIG. 8, along with compari­
sons to MP and BPDN applied independently on each frame. 
The changing coefficient locations are nodes that either 
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became active or inactive at each frame. Mathematically, the 
number of changing coefficients at frame n is: 
IMu(n-l)C±)Mu(n)l, where(±) is the "exclusive OR" operator 
and u(n) are the internal state variables at the end of the 
simulation for frame n. 

This simulation highlights that the HLCA uses approxi­
mately the same number of active coefficients as MP but 
chooses coefficients that more efficiently represent the video 
sequence. The HLCA is significantly more likely to re-use 
active coefficient locations from the previous frame without 10 

making significant sacrifices in the sparsity of the solution. 
This difference is highlighted when looking at the ratio of the 
number of changi~ coefficients to the number of active coef­
ficients, IMu(n-l)\±JMu(n)I/IMucn/ MP has a ratio of 1.7, 
meaning that MP is finding almost an entirely new set of 15 

active coefficient locations for each frame. The HLCA has a 
ratio of0.5, meaning that it is changing approximately 25% of 
its coefficient locations at each frame. SLCA and BPDNthr 
have approximately the same performance, with regularity 
falling between HLCA and MP. Though the two systems can 20 

calculate different coefficients, the convexity of the energy 
function appears to be limiting the coefficient choices enough 
so that SLCA caunot smooth the coefficient time series sub­
stantially more than BPDNthr. 

The simulation results indicate that the HLCA is producing 25 

time series coefficients that are much more regular than MP. 
This regularity is visualized in FIG. 10 by looking at the 
time-series of example HLCA and MP coefficients. Note that 
though the two coding schemes produce roughly the same 
number of non-zero entries, the HLCA does much better than 30 

MP at clustering the values into consecutive runs of positive 
or negative values. This type of smoothness better reflects the 
regularity in the natural video sequence input. We can quan­
tify this increased regularity by examining the Markov state 
transitions. Specifically, each coefficient time-series 1s 35 

Markov chain with three possible states at frame n: 

if Um(n) <-A 

18 
entropy for the HLCA, while SLCA is again similar to 
BPDNthr. The principle contributing factor to the conditional 
entropy appears to be the probability a non-zero node remains 
in the same state (i.e., P(+l+) andP(-1-)). To illustrate, FIG. 
10 shows the change in conditional entropy is almost linear 
with varying P(+l+) (assuming P(-1-)=P(+I+) and all other 
transition probabilities are kept fixed). 

The substantial decrease in the conditional entropy for the 
HLCA compared to MP quantifies the increased regularity in 
time-series coefficients due to the inertial properties of the 
LCAs. The HLCA in particular encourages coefficients to 
maintain their present state (i.e., active or inactive) if it is 
possible 

Sparse approximation is an important paradigm in modem 
sensing and signal processing, though mechanisms to calcu­
late these codes using parallel analog computational elements 
instead of digital computers have remained unknown. In the 
present invention, a locally competitive algorithm that solves 
a series of sparse approximation problems (including BPDN 
as a special case). These LCAs can be implemented using a 
parallel network of simple elements that match well with 
parallel analog computational architectures, including analog 
circuits and sensory cortical areas such as Vl. Though these 
LCA systems are non-linear, we have shown that they are 
well-behaved under nominal operating conditions. 

While the LCA systems (other than SLCA) are not gener­
ally guaranteed to find a globally optimal solution to their 
energy function, we have proven that the systems will be 
efficient in a meaningful sense. The SLCA system produces 
coefficients with sparsity levels comparable to BPDN solvers, 
but uses a natural physical implementation that is more 
energy efficient (i.e., it uses fewer non-zero inhibition signals 
between nodes). Perhaps most interestingly, the HLCA pro­
duces coefficients with almost identical sparsity as MP. This 
is significant because greedy methods such as MP are widely 
used in signal processing practice because of their efficiency, 
but HLCA offers a much more natural parallel implementa­
tion. 

LCAs are particularly appropriate for time-varying data 
if -Asum(n)sA 

if Um(n) >A 

FIG. 9 shows the marginal probabilities P(•) of the states 
and the conditional probabilities P(•l•) of moving to a state 
given the previous state. The HLCA and MP are equally likely 
to have non-zero states, but the HLCA is over five times more 
likely than MP to have a positive coefficient stay positive 
(P (+I+)). Also, though the absolute probabilities are small, 
MP is roughly two orders of magnitude more likely to have a 
coefficient swing from positive to negative (P( -I+)) and vice­
versa (P( -I+)). To quantifY the regularity of the active coef­
ficient locations we calculate the entropy of the coefficient 
states at frame n conditioned on the coefficient states at frame 
(n-1): 

40 such as video sequences. The LCA ODE not only encourages 
sparsity but also introduces an inertia into the coefficient 
time-series that we have quantified using both raw counts of 
changing coefficient location and through the conditional 
entropy of the coefficient states. By allowing suboptimal 

H(a-m(n) I <Tm(n -1)) = -P(+ )[P(- I+)+ P(O I+)+ P(+ I+)]­

P(O)[P(- I 0) + P(O I 0) + P(+ I 0)]­

P(-)[P(-1-J + P(O 1-J + P(+ 1-J], 

(11) 

plotted in FIG. 10. This conditional entropy indicates how 
much uncertainty there is about the status of the current 
coefficients given the coefficients from the previous frame. 
Note that the conditional entropy for MP is almost double the 

45 sparsity in exchange for more regularity in the set of active 
coefficients, the LCAs produce smoother coefficient 
sequences that better reflect the structure of the time-varying 
stimulus. This property could prove valuable for higher levels 
of analysis that are trying to interpret the sensory scene from 

50 a set of sparse coefficients. 
By using simple computational primitives, LCAs also have 

the benefit of being implementable in analog hardware. An 
imaging system using VLSI to implement LCAs as a data 
collection front end has the potential to be extremely fast and 

55 energy efficient. Instead of digitizing all of the sensed data 
and using digital hardware to run a compression algorithm, 
analog processing would compress the data into sparse coef­
ficients before digitization. In this system, time and energy 
resources would only be spent digitizing coefficients that are 

60 a critical component in the signal representation. 
Since the LCA network represents an analog way of find­

ing sparse representations, it can be modified it for the com­
pressive sensing reconstruction problem. As shown in FIG. 
11, the compressed input signal is received by a projection 

65 system 300 which passes projection vectors to a plurality of 
nodes 400. Mathematically, the compressive sensing recon­
struction problem amounts to a constrained optimization 
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problem that can be recast with Lagrange multipliers into an 
unconstrained optimization problem. 

rnjnCIIY- 0sll~ +"I lsi II J 

20 
<I>, which must have specific properties to enable compressive 
sensing. Because W is an orthogonal matrix, <1>=81¥', an 
easily computed quantity. We propose choosing this matrix 
according to desirable properties we wish to impose on 8. 
One very effective choice is a random binary 8 (values -1 and 
1) with all elements subsequently divided by v'N so that the 
diagonal matrix D=I. The compressive sensing constraints 
are not violated because an orthogonal transformation of a 
matrix of white noise is also white noise. Since D=I, equation 

10 (13) becomes 

The network's inputs must now equal 8'y and the inner 
products (8,, 81) determine the connection strengths between 
nodes i and I. When presented with the input, m=8'y, the LCA 
dynamically evolves to a steady state, producing as a result 
the set of sparse output coefficients. Unlike in the original 
applications of LCA, in compressively sensed image recon­
struction the diagonal values of 8'8 are not all equal to 1, 
which is required to find the optimal solution without error. 15 

As a result, the following equation accommodates this prob­
lem. 

it(t)- ~ [m- Du- (0'0- D)s(t)] 
(12) 20 

T 

(14) 

Using the binary 8 in our simulations, error was typically 
5-10%. Although the reconstruction error is approximately 
the same as before, the D term's influence has been elimi­
nated, simplifying the error expression and permitting greater 
control. As for the "many wires" problem, we want to choose 
the matrix 8 to have as many orthogonal colunms as possible. 
In the way, the connection strength between nodes corre-
sponding to these colunms will be zero. 

The foregoing description of the preferred embodiment of 
the invention has been presented for purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed, and modifications Here, D is a diagonal matrix whose entries equal those of 

the diagonal of 8'8. Considering the above-threshold com­
ponents and taking into account the thresholding function, we 
have shown that the steady-state solution becomes 

(13) 

25 and variations are possible in light of the above teachings or 
may be acquired from practice of the invention. The embodi­
ment was chosen and described in order to explain the prin­
ciples of the invention and its practical application to enable 

Thus, A.D(8'8t 1 represents error. Notethatthis bias could be 30 

removed because it is data-independent. However, calculat­
ing it would require inverting a large matrix. Our goal is to 
reduce and control it as much as possible by other means. 

The state equation (12) was simulated in Matlab using the 
ode45 ordinary differential equation solver over a simulated 35 

time of 1.0 second with a time constant 1: of 0.1. Test 8 
matrices were derived from the product of a randomly gen­
erated <I> matrix (Gaussian independent and identically dis­
tributed random variables with zero mean) and a W basis 
matrix (2D Haar or Daubechies 4 wavelets). Test measure- 40 

ment vectors denoted by y, were initially calculated by ran­
domly choosing a sparse set of numerical values of predeter­
mined sparsity K and then computing y=8s. The nonzero 
elements of s were in known positions and of known values, 
permitting the § (reconstructed) coefficients determined by 45 

the LCA network to be compared against the originals vector. 
Other measurement vectors were computed by taking natural 
images, computing the wavelet transform (known to sparsify 
natural images), removing a set number of small-magnitude 
coefficients to achieve a target sparsity, and then computing 50 

the inverse wavelet transform. A soft threshold function was 
used for T"-(u(t)) with an initial threshold of one that was 
optimized for the target sparsity and PSNR of the result (see 
FIG. 11). Experimental simulations of the LCA typically 
produce all or nearly all nonzero coefficients in the correct 55 

locations, but error in the actual coefficient values averages 
5-10% increasing with higher K. For example, forK= 1, error 
is usually close to 1%, but for K = 10, error averages 8%. 

Two issues arise in using the LCA network for compressive 
sensing reconstruction. The essential error that it introduces 60 

has already been mentioned. A second issue is the network's 
connectivity: all nodes must be connected to all others, what 
we cal the "many wires" problem. A key insight into mitigat­
ing both of these problems revolves around choosing 8 
directly to have several desired properties. Because the basis 65 

matrix W is predetermined, the relationship 8=<I>W shows 
that choosing 8 amounts to choosing the measurement matrix 

one skilled in the art to utilize the invention in various 
embodiments as are suited to the particular use contemplated. 
It is intended that the scope of the invention be defined by the 
claims appended hereto, and their equivalents. The entirety of 
each of the aforementioned documents is incorporated by 
reference herein. 

What is claimed is: 
1. An analog system for sparsely approximating a signal 

comprising: 
a matching system for calculating and outputting matching 

signals representative of how well-matched said signal 
is to a plurality of dictionary elements; and 

a plurality of nodes, each node receiving one of said match­
ing signals from said matching system, wherein each 
node comprises: 
a source of an internal state signal; and 
a thresholding element; 
wherein said internal state signal in each node is calcu­

lated as a function of said matching signal received at 
said node and weighted outputs of all other nodes. 

2. An analog system for sparsely approximating a signal 
according to claim 1, wherein said matching system com­
prises a projection system for projecting a signal vector onto 
said plurality of dictionary elements. 

3. An analog system for sparsely approximating a signal 
according to claim 1 wherein said source of an internal state 
signal comprises a low pass averaging system. 

4. An analog system for sparsely approximating a signal 
according to claim 1 wherein each node further comprises a 
plurality of weighting elements for receiving an output of said 
thresholding element and providing a plurality of weighted 
outputs. 

5. An analog system for sparsely approximating a signal 
according to claim 1 wherein each node further comprises a 
plurality of weighting elements, each weighting element 
receiving an output from another one of said plurality of 
nodes and providing a weighted output to said source of an 
internal state signal. 
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6. An analog system for sparsely approximating a signal 
according to claim 1 wherein said internal state signal is 
derived from said matching signal less a sum of weighted 
outputs from said other nodes. 

7. An analog system for sparsely approximating a signal 
according to claim 1 wherein said signal comprises a video 
signal. 

22 
a thresholding element; 
wherein said source of electrical energy in each node 

comprises a projection vector received at said node 
less weighted outputs of all other nodes. 

13. A parallel dynamical system for computing sparse rep­
resentations of data according to claim 12 wherein each node 
further comprises a plurality of weighting elements, each 
weighting element receiving an output from another one of 
said plurality of nodes and providing said weighted output to 

8. An analog system for sparsely approximating a signal 
according to claim 1 wherein said source of an activation 
signal comprises a voltage source. 10 said source of electrical energy. 

9. An analog system for sparsely approximating a signal 
according to claim 3 wherein said low pass averaging system 
comprises a low pass averaging circuit. 

10. An analog system for sparsely approximating a signal 
according to claim 8 wherein said low pass averaging circuit 15 

comprises a resistor and a capacitor. 
11. An analog system for sparsely approximating a signal 

according to claim 1 wherein said source of an activation 
signal comprises a current source. 

12. A parallel dynamical system for computing sparse rep- 20 

resentations of data comprising: 
a projection system for projecting said data onto projection 

vectors; and 
a plurality of nodes, each node receiving one of said pro­

jection vectors from said projection system, wherein 25 

each node comprises: 
a source of electrical energy; 
a low pass averaging circuit; and 

14. A parallel dynamical system for computing sparse rep­
resentations of data comprising: 

a plurality of nodes, each node being active or inactive and 
each said node comprising: 
a leaky integrator element, wherein inputs to said leaky 

integrator element cause an activation potential to 
charge up; and 

a thresholding element for receiving said activation 
potential and for producing an output coefficient, said 
output coefficient being the result of an activation 
function applied to said activation potential and 
parameterized by a system threshold; 

wherein active nodes inhibits other nodes with inhibition 
signals proportional to both level of activity of said 
active nodes and a similarity of receptive fields of said 
active nodes. 

* * * * * 


