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CHAPTER 1 

Introduction and Synopsis 

1.1, Introduction 

In this thesis we will be concerned with nonlinear programming problems 

having a particular form. In the unconstrained case, they can be written 

minimize f (x ,o:), 
seR•, aER1 (1.1) 

indicating that there is some natural distinction between the groups of variables. 

The variables which will comprise the vector x are chosen by the requirement 

that, given a fixed k-vector &, we must be able to solve the (n-dimensional) 

problem 

minimize f (x,&) 
sen· 

(1.2) 

cheaply and accurately. For certain functions /, the solution of problem (1.2) 

provides an explicit formula expressing :r. in terms of o:, and we may use it to 

eliminate x from the original problem entirely. 

In a general minimization problem, every feasible vector Is a candidate for a 

minimizer. The particular solution technique chosen to perform the 
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minimization will determine which of these points will be investigated. For our 

special case, we can use problem (1.2) to specify a relationship between the x­

variables and the a-variables at the solution. It seems reasonable, then, to 

restrict our search for a minimizer to only those points (x,o:) in R•H at which 

x and a satisfy the given relationship. This is equivalent to adding a constraint 

to the problem. In the simplest cases, x can be written as an explicit function 

of o:, and the requirement x = g(a:) can be used to rewrite the problem as a 

function of a alone. In the more general case, the relation between x and a is 

implicit, and it may not even be possible to express it in the form of a nonlinear 

programming problem constraint. Yet, under suitable conditions, the original 

problem may still be reduced to a problem in o: alone. 

A problem of the form (1.1) for which it is possible to define a relationship 

expressing x in terms of a will be called reducible. To solve a problem of this 

type, we solve instead the reduced problem 

mmmuze f(a) = /(x(a),o:) 
aER1 (1.3) 

This is a problem in fewer variables, but now every function evaluation requires 

the solution of a subproblem of the form (1.2). 

The existence of a minimization subproblem in the function evaluation does 

not require any modifications in the routine used to solve problem (1.3). If this 

routine requipes derivative information, however, we must be able to compute 

the gradient and possibly the Hessian of the reduced functional r. We will give 
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conditions under which this can be done and derive expressions for the gradient 

and Hessian of r. The expression for the gradient will be shown to be 

particularly simple. In fact, for unconstrained problems and for constrained 

problems of a certain type, we will prove that 

v7r(a) = v'0r/(x(a),a). 

Since the determination of :,;(a) is required by the function evaluation, the 

gradient of r is available for only the amount of work required to evaluate the 

partial derivatives of/ with respect to a at the point (x(a),a). 

Although the expressions for the g_radient and Hessian of the reduced 

functional allow us to use existing software immediately, they can also be used 

to suggest modified algorithms which take fuller advantage of the special 

structure of specific problems. This can be important if these problems are to 

be solved repeatedly or if they are hard to solve using standard techniques. 

1.2. Example 

Note: We include this example mcrciy to illustrate our suggested approach. 

We do not mean to imply that ,such dramatic success is to be expected. 

Suppose that we need to solve the following problem and that the only 

minimization routine available is an implementation of the steepest descent 

method. 

• 
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original problem: 

mi'!imize. f (x,a) = 'j:, [100 (:i:;-a,2)2 + (l-a;)2] 
sER ,oER J=l 

This is Rosenbrock's function [51), extended to the case of 2m variables. It is 

well known to be an extremely difficult problem for steepest descent. 

Instead of solving the problem directly, we will take advantage of its special 

structure. Since / is quadratic in x, it would be very easy to determine the 

optimal x if the optimal a were known. If we require that x and a always 

satisfy the relationship that x(a) is the value of x that minimizes / for the 

given value of a, then we can rewrite the problem as a function of a alone, 

hiding the computation of x in the objective function evaluation . 

alternate formulation: 

minimize f (a) 
oER• 

where x(o) solves 

tll [ ] ~ IOO(x(oj)-o/]2 + (l-o;)2 
J=l . 

minimize t(x) = / (x;o) = (100 (:i:;-a2}2 + (t-af] 
sER• 
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For a given value of a, define !z(a)J; = a/. Then z(a) satisfies the 

second-order sufficient conditions for a minimizer or the subproblem. Since the 

dependence of z on a is explicit, we may simply substitute a/ for !z(a}J; to 

avoid excess computation. 

After this substitution, the alternate problem reduces to 

minimize f(a) 
aeR• 

m ~ - E (1-a,-)· 
j=l 

which can be solved by steepest descent in a single iteration. 

The two-variable Rosenbrock function is difficult for certain methods 

because it has a curved valley following the parabola z = a 2• In our alternate 

formulation, we have constrained our search so that the only candidates for 

minimizers which we will consider are precisely those which lie on this curve. 

In this problem, forming the alternate problem not only reduced the 

problem dimension but simplified its form. Unfortunately, this is an extremely 

rare occurrence. In general, expressing the problem as a function of a alone 

makes it more complicated and more nonlinear. 
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1,3. Synopsis 

Chapter 2 contains the mathematical background material which will be 

used in subsequent chapters. 

Chapter 3 is an introduction to the semilinear (or separable) least squares 

problem. This problem has been studied by a number of authors, l3J, !SJ, 1211, 

1221, (23J, (241, (27), (28), (20), (30], (35), (36], [43], 146), (40), (50), (52), [54), (57], 

!SS], ISO] We will use the simple Gauss-Newton method to provide a framework 

for the characterization of several of these solution techniques. We will show 

that certain or these methods can be considered either in terms or solution of 

the full problem or of the reduced problem. Two methods, that of Barham and 

Drane l3J and that or Kaufman [27], which appear dissimilar and which were 

derived from quite different viewpoints, will be shown to be based on identical 

local quadratic models. If these two methods were to be implemented using the 

same globalization strategy for handling poor initial guesses, then they would 

generate the same iterates. 

The idea of a reduced problem was introduced for the unconstrained case in 

section 1.1. In chapter 4, we make a more rigorous definition and extend it to a 

general nonlinear programming problem. A theorem from sensitivity theory for 

nonlinear programming problems will be used to provide conditions under which 

there exists a unique differentiable function z(a) defined in a neighborhood of a 

given &. We -then derive an expression for :: and use it to express the 

gradient and Hessian of the reduced functional in terms of information from the 
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original problem and from the subproblem which defines z(a). 

The development in chapter 4 is entirely theoretical and ignores our 

original stipulation that it must be easy to determine z(a). Chapter 5 contains 

aome special cases of the general reducible nonlinear programming problem. 

These are chosen to provide examples of the application of the equations of 

chapter 4 and are cases in which the structure of the subproblem defining x(a) 

makes it easy to solve. 

In chapter 6, we return to the semilinear lea.5t squares problem, defining a 

general constrained version and analyzing it using the techniques of chapter 4. 

We first demonstrate that the reduced f1rnctional in the constrained case ha.5 the 

same form as the reduced functional in the unconstrained case. The gradient 

and Hessian of r are easily represented as special cases of the formulas from 

chapter 4. In addition we will derive an expression for the Jacobian of the 

residual of the reduced problem. The Jacobians of the unconstrained and 

constrained semilinear lea.5t squares problems will be shown to have the same 

basic structure. This will suggest direct extension of the solution techniques for 

unconstrained problems to the constrained case. 

Chapter 7 contains a modification of the problem formulation ideas 

presented In previous chapters. We 'will drop the assumption that there is a 

natural partition of the variables and allow the partitioning to be redefined at 

any iteration. We will, however, impose sufficient restrictions on the 

partitioning to maintain our requirement that the subp1-oblem be easy to solve. 
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This modification will be shown to be the problem formulation used by the 

generalized reduced gradient method. Hence, the generalized reduced gradient 

method may be thought of as defining a sequence of locally reducible problems. 

Finally, in chapter 8, we consider the application of the concepts of the 

previous chapters to the solution of nonlinear programming problems. 

1.4. Notation 

Throughout the paper II · II will refer to the usual 2-norru. 



CHAPTER 2 

Mathematical Background 

2,1, Rate or Convergence 

(See Ortega and Rheinholdt [441). 

Let {xk} be a sequence of vectol's in R". 

{xd converges to x, if 

lim II x1; - x. II = 0. 
k ""'00 

Let {zk} be a sequence which converges to x,. 

2.1.1. Root Convergence Rates 

A sequence {zk} convel'ges with r-order ,, if 11 is the largest number such that 

0 < I
. II J'1;+1- 3·• II < 
Jlll 00. 

...... 00 II l'k - X. II ' 

The value of p that occurs in that limit is the asymptotic convergence rate. 

It p = 1, the convergence is r-linear. If p = 2, the convergence is r­

quadratlc. 

0 

• 

The sequence {xk} converges r-superlinearly if 

I 

limsup II l'k -x, II "'i = 0 . 
...... 00 

2.1.2. Quotient Convergence Rates 
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{xk} converges q-linearly if there is some constant c E (0,1) and an integer 

f > 0 such that 

II XH1-l'• II ~ C II x.-x. II 

{ Xt} converges q-superlinearly if there cxbts a sequence {ck} converging to 0 

such that 

II XHI - x. II ::; CJ; II l'j, - i,. II for all k 2::: k. 

{xk} converges q-quadratically if thl'rc exists a constant c 2::: 0 and an integer 

f such that 

II Xk+1-x, II ~ c II X1;-x, 11 2 

2,2, Generalized Inverses and Projection Matrices 

2,2,1, The Pseudoinverse and Other Generalized Inverse Matrices 

Let A be an n X m matrix. A ha.~ 1lll inl'en;c if and only if 11=111 and A is 

or full rank. In the general case, how(•,•cr, there do exist matrices which exhibit 

some or the properties or an inverse. Unfortunately, the nomenclature in this 
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area is not standardized. We will use the following notation taken from 

Boullion and Odell (6] and from Golub and Pereyra (23]. 

We will consider matrices X satisfying one or more of the following 

properties: 

AXA= A 

XAX = X 

(XAf = XA 

(AXf = AX 

A generalized inverse of A is a m~trix X =H satisfying property (1). · 

(1) 

(2) 

(3) 

{4) 

A reflexive generalized inverse of A is a matrix X =.A! satisfying 

properties (1) and (2). 

A symmetric g-inverse of A is a matrix X=A- satisfying properties (1) 

and (4). 

A left weak generalized inverse or A is a matrix X =A"' satisfying 

properties (I), (2), and (3). 

A right weak generalized Inverse of A is a matrix X =A'' satisfying 

properties {I), (2), and {4). 

The pseudolnverse of A is the u11ique matrix X =A+ satisfying properties 

(1), {2), {3), and (4). The pseudoinvcrsc was introduced by Moore (41] and 

rediscovered by Penrose (48). Earl,r work in the area was done by Tseng (55] 

and by Bergmann, Penfield, Schiller, ancl Zatkis (5]. 
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Although pseudoinverses are commonly used in the theoretical derivation of 

algorithms, it is often cheaper computationally to implement algorithms 

numerically using generalized inverses satisfying only as many of the conditions 

(1) - (4) as are essential to the problem being considered. 

2,2,2. Projection Matrices 

Let S be a subspace of Rn. The matrix P ER II x n is the orthogonal 

projector onto S if 

(i) P is symmetric (PT =P) 

{ii) 

(iii) 

Pis idempotent (P2=P) 

The column space of P is S. 

We will also refer to P as a projection matrix. 

We will be concerned with some special projection matrices associated with 

a given m X n matrix A. : 

Jl = AA+ is the orthogonal project.or onto the column space or A. 

Qi = A+ A is the orthogonal projC'c-lor onto the row space or A. 

The projectors onto the orthogonal complement.,; of the column and row spaces 

of A will be denoted ~ l and Qi l, respectively. 
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2,2.3. Userul Properties or Pseudoinverses and Projection Matrices 

Let A be any m X n real matrix. Collected below a.re some or the 

properties or A+, ij, and ~ which are used in the derivation of certain results 

appearing in later chapters. 

(i) ijA =A a.nd ij.l.A = 0 

(ii) A~ =A and AQ1.I. = 0 

(Iii) A+ij = A+ and A+ij.l. = 0 

(iv) ~A+":"' A+ a.nd q..l.A+ = 0 

(v) (A+t = A 

(vi) (ATt = (A+)T 

(vii) (AA Tt = (A+f A+ 

(viii) (AT At = A+(A+f 

(ix) A+ = (ATAtAT and A+ = AT(AATt. 

In fa.ct, 

A+ = (AT At AT for a1;y choice or (AT A)" 

A+ = AT(AATt for any choice of (AAT)" 

(x) <24 = A" A for a.ny choice of .-1"' 

(xi) ij = AA- for any choice of A-
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(xii) Let B be a.n n Xk real matrix. It is not true in general that 

(AB)+ = B+A+ 

2.3. The Frechet Derivative or a Matrix 

2.3.1, Definition 

Let A(o) be a.n mxn matrix, earh of whose elements is a function or 

oER1 • Assume that each or these elements ",:;(a) is differentiable at some point 

t:x. The Frechet derivative or A (o) at a: is given by 

[ 
8a--(a:) } 

D-l(&) = -'-'- fori=l, ... ,m ands=l, ... ,/c 
80, 

Di(&) is a tridimensional tensor. It consists of k "slabs", each or which is an 

m X n matrix containing the partial dcrival ives of the a;; with respect to one or 

the components or o. 

A(o) is of local constant rank at a point a: if there exists a neighborhood 

N(&) such that A(o) has constant rank for all uEN(a). We will assume that 

A(o) is or local constant rank at every point a: at which we need to compute its 

derivative. 

2.3.2. Properties or the Frechet Derivative of a Matrix 

(i) Ir A is constant, then D-l = 0 

(ii) D(A T) = (J}l)T 



(iii) If C(o) = A (o)B(o), then 

OC'(o) = Dl(a)B(o:) + A(o)Il'J(o) 

(iv) If A (o) is nonsingular and differentiable, then 

D(A-1(o)) = -A-1(a)Dl(o)A-1(o) 

2.3.3. The Frechet Derivative of Projectors and Pseudoinverses 
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Early work in this area was done by Kruskal (31j, Hearon and Evans (20), 

Wedin (57), Pavel-Parvu and Korganoff (-17), Fletcher and Lill (10), Perez and 

Scolnik (40), Guttman, Pereyra, and Scolnik (2-1), and Decell (0). The following 

results are taken from Golub and Pereyra (22). 

Lemma 2.1: Let Jl = AA+ and Qi = .4+ A. Then 

~ = /lJ.(Dl)A+ + [~J.(01 p+f 

Jl:2i = A++(Dl)Q.iJ. + !A+(Dl)Q,J.)r. 

Lemma 2.2: 

m+ = -A+(Dl)A+ + A+p+)1'(111T)J1J. + Qi.!.(n-1T)(.-1+)TA+ 

2.4. Linear Least Squares 

(see Lawson and Hanson [341) 

Let A be an m X n matrix and assuml' that 111 > 11. 

Let b be an m-vector. 

The linear least squares problem has the form 

• 
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minimize .!.11 Ax - b 11 2 

zER' 2 
(LLS) 

The solutions of problem (LLS) are exactly those vectors x which satisfy the 

normal equations 

AT Ax - A.Tb = 0. 

Hence any vector of the form x = A-b, where A- is a symmetric g-inverse of A, 

solves problem (LLS). 

The choice 

:i: = A+b 

selects the unique solution of minimal norm. That is, :i is the unique solution of 

minimize II x II 
sen• 

subject to ATAx-A1'b = 0 

2.5. Nonlinear Least Squares 

(General references: Dennis (10), [ll I) 

2.6,1. Definition of the Problem 

The general µonlinear least squares p1ublt>m has the Corm 

minimize / (l:) = .!.11 F(x) II 2 
sER" :l 

where F(x)ERm and m >n. 

(NLS) 



17 

F is called the residual function of problem (NLS). Let J denote its 

Jacobian. Then the gradient and Hessian or / at any point x are given by 

"vf (x) = J(xf F(x) 

<v2/(x) = J(x)T J(x) + S(x) 
m 

where S(x) = E F;(x)<v 2F;(x). 
i=l 

2,5.2. The Gauss-Newton Method 

The Gauss-Newton method for the solution of problem (NLS) is an iterative 

process which, at iteration k and cunent point xk, computes a step Bt satisfying 

J(xt)T J(xk)Bt = -J(xkf F(xt) (2.1) 

Hence, Gauss-Newton may be thought or as a Newton-type method with the 

Hessian approximation JT J. 

The basic Gauss-Newton method requires that JT J be nonsingular at each 

Zt, If we view the procedure as making a linear least squares model 

minimize .!. II Js + F 11 2 
•Elt' 2 

then it is natural to generalize the step definition to 

Bt = -J(Jci)+F(xt) 

(see Ben-Israel [-4) ). 
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2.5.3. Local Convergence of the Gauss-Newton Method 

2.S.3.1. Gauss-Newton Using the True Jacobian 

The following theorem gives conditions for local convergence of the Gauss­

Newton method. (See Dennis and Schnabel [13)). 

THEOREM 2,3: For F :R"-+R"', define 

/(x) = ½F(xf F(x) 

and assume that / is twice continuously differentiable in an open convex set 

D CR". Suppose that the Jacobian or F satisfies 

(i) J(x) E Lip1{D) 

(ii) There exists a point x,ED such that J(x, f F(:r.,) = 0 

{iii) 11 J(x) [1 2 ~ /3 for all xED 

(iv) The smallest eigenvalue>. or J(:r,)T J(.r,) is nonnegative. 

(v) There exists a nonnegative scalar a such that 

ll[J(x)-J(x,))TF(x,)11 2 ~ a [I x-x, ll2 for all xeD. 

If a<>., then, given any cE(l,~), there is a corresponding c>O such that every 
a 

possible starting value x0 In an Mieighborhood N(x.,c) of :i,, the sequence 

generated by the Gauss-Newton method 



xk+l = Xi - [J(xtf J(xkW1J(xkf F(xi) 

is well-defined, converges to x., and obeys 

II xHi-x, II $ c.; II xk-x, II + ci'"Y II Xi-x, II 2 

II XHi-x, 11 $ ';:). II Xt-x, II < II 3't-X, II 

PC: See Dennis and Schnabel (13). 
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Thus, if S(x,) = 0, then the Gauss-Newton method is locally q­

quadratically convergent. 

IC S(x,) is small relative to J(x, f J(3·, ), then the Gauss-Newton method is 

locally q-linearly convergent. 

IC S(x,) is too large, we are not guaranteed even local convergence. 

2.5.3.2. Gauss-Newton Using an Approximate Jacobian 

We would like to consider the consequences when the Gauss-Newton 

method is applied using a particular type of approximat.ion to the Jacobian. 

Theorem 2.4: For F :R11 -+Rm, define /(x) = .!.F(x)TF(x) and assume that 
2 

/ is twice continuously differentiable in an open convex set D CR11 satisfying 

(a) 

(b) 

(c) 

J(x) = U(x) + l'(x) 

V(xf U(x) = 0 

V(xf F(x) = 0. 

Suppose that 

(i) J(x)ELip-,(D) 

(ii) There exists a point x,ED such that J(x,)T F(x,) = 0 

(iii) IIU(x)II ~ ,BforallxED 

(iv) The smallest eigenvalue >. of U(x,)T U(x,) is nonnegative 

( v) There exists a nonnegative scalar o such that 

II (U(x}-U(x,)JT F(x,) II $ o II x-x, II for allxED. 
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IC o < >., then, given any c E (1,l.) there is a corresponding t>O such that for 
0 

every possible starting value x0 in an £-neighborhood N(x.,t) oC x,, the sequence 

generated by the modified Gauss-Newton method 

xk+l = Xt - (U(xdT U(xk)J-1U(xk)7'F(xt) 

is well-defined, converges to x, ancl obeys 

c>. c/3'"1 I II X1+1-x, II $ T II 3,,.-a,, II + ::?>. II xk-x• I 

co+>. 
llxk+i-x,11 ~ ~llxt-x,11 < llxt-x,11. 

PC: Notation: Let Jk = J(l't ), etc. 

Assume that O < <J <>.,and let cE(I,l.) be given. 
- 0 
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Then U(x.)T U(x,) Is positive definite and hence nonsingular. 

So U(z f U(x) is nonsingular for all z in some neighborhood of z,. In 

particular, there is some 11>0 such that U0 T U0 is nonsingular and 

Let 

ll(U0 TU0t 1 11 $ ~ foranyxoEN(z.,q) 

>.-cu) 
f = min ( 7/, c /3"1 

xi = xo - (UoT Uot•uo T Fo 

which is well-defined. 

z 1 -x. = (x0 -z.) - (Ua1U0t 1U0 TF0 

= -(UoTUo)-1 1Ua1Fo+(Uo1 Uo)(x,-xo)I 

- -(UoTUo)-1 !Ul Fo+ ua1 F.- UoTF. 

+ U0
1 V0(x,-x0 )+ u0 T U0(z,-x0)] 

= -(U0 T U0)-1IU0 T F, - U0
1 ( F, - F 0-J0(x,-x0))] 

llz.-x.11 $ ll(UoTUot'II [11uo 1 F.-U. 1 F.ll+IIUoll llF,-Fo-Jo(x.-xo}II] 

$ ~ lull Xo-x• II + PI II :to-x, II 2 

Since 

we have 

zoE N(x.,t) implies II x0 - x. II < >.-cu, 
- c/37 

• 

cu (c/3"1} [>--cu} I II x.-x.11 $ xii Xo-x. II + 2>. c{J,.., II Xo-:t, I 

And 

giving 

- [ cu+>.) eO 2>. . 

>. . l' C < - illlp 1es 
u 

!..2-. < >,2u = ~ 
2>- 2u>- 2 ' 

II x 1 - :r • II < e O. 

And the remainder of the proof follows by induction 

2.6.4. Modifications of the Gauss-Newton Method 

22 

Although the Gauss-Newton method can work very well, there are 

difficulties when the starting point is far from the solution, the problem has a 

large value of the residual function at the solution, or JT J is singular (or poorly 

conditioned). One type of modification which has been used is exemplified by 

the method of Hartley [25), which uses a line search and computes a damped 

Gauss-Newton step based on some appropriate criteria. 

An alternate approach is to use a<; the approximate Hessian J T J + B. The 

Levenberg-Marquardt method ( 137), '40], !42] ) uses B = >-1, where >. is a 

suitable para~eter. This method, while successful in many cases, has local 

convergence properties similar to those of Gauss-Newton. Other choices for B 
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can be used to Improve the convergence properties. For example, B can be 

chosen to be an appropriate type of approximation to S. In NL2SOL ( see 

Dennis, Gay, and Welsch (12) ), B is a secant approximation. 

2.6. First-Order Sensitivity Analysis of a Second-Order Local 

Solution 

Sensitivity theory in nonlinear programming is concerned with an analysis 

oC the behavior of a given nonlinear programming problem under perturbation 

of the parameters appearing in the problem. The development below follows 
. 

that of Fiacco [17). (See also Bank, Gud<lat, Klatte, Kummer, and Tammer [2) 

and Fiacco (15), (161). 

Consider the problem of determining a local solution :r(t) or the following 

problem. 

(P(<)) minimize /(3:,t) 
s 

subject to g;(x,t) 2:: 0 

lr;(x,t)= 0 

where xER" and f is a parameter vector in Rk. 

Let 

i=l, ... ,Ill 

j=l, ... ,p 
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Ill ,.1... 
l(x,u,w,£) = f(:r,t)- E u;g;(:r,t) + i;, w;h;(:r,£) 

i=I j=l 

denote the Lagrangian of problem P(f). 

We are interested in analyzing the behavior of a local solution :r(l) of 

Problem P(t) when 7 is subject to perturbation. For simplicity, and without 

loss or generality, let 7-0. Also assume that each of the functions is twice 

continuously differentiable. 

2.6.1. Second-Order Sufficient Conditions for a Minimizer of Problem 

P(t) (See Fiacco and .McCormick [18), McCormick [30), and Fiacco [17)) 

A point x• satisfies the first-order conditions for problem P(t) if there 

exist vectors u • ER m and w • ERP such that 

(i) 1i7zl(x',u',w',t) = 0 

( ii) g;(:r',t) 2:: 0 i=l, ... ,m 

( iii) h,-(x',t) = 0 i=l, .. · .• p 

(iv) u;'g;(x') = O i=l, ...• Ill 

(v) u·' > 0 
I - i=l, ... , Ill 

Condition (iv) is the complementarity condition. If we require in 

addition that one of u;' and 9;(x ') must be strictly positive, then strict 

complementarity will be said to hold. 
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The first-order conditions are nece5.5ary conditions provided the constraints 

satisfy some sort or constraint qualification which describes certain 

characteristics that the constraint set must have. For the purposes or sensitivity 

analysis, we will make a stronger linear independence a5.5umption which will 

imply that appropriate constraint qualifications hold. 

A point z which satisfies the constraints or problem P(t) is a regular 

point i( the gradients of the equality constraints and the binding inequality 

constraints form a linearly independent set when evaluated at i. 

The following lemma gives second-order sufficient conditions for x • to be a 

strict local minimizer or problem P(O). 

Let 

B(x',O) = { i I U;(x',O)=O} 

D(x',O) = {iEB(x',O)I u;'>O} 

Lemma 2.5: Suppose that the functions defining problem P(O) are twice 

continuously differentiable in a neighborhood or x •. Then x • is a strict local 

minimizer or problem P(O) ir there exist Lagrange multiplier vectors u 'ER m 

and w'ER' such that the first-order conditions hold at x• and, further, ir for 

every nonzero zER" such that 

zT,;;,,-g;(z',O) = O 

zT,;;,,-g;(x',O) > o 

iED(x',O) 

iEB(x' ,0)- D(z' ,0) 
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zT'i7h;(x',o) = o j=l, ... ,P 

we have that 

zT['i72l(x',u',w',o)]z > 0. 

These conditions are valid even when a vector z or the appropriate type does 

not exist, and they may also Le applied in the unconstrained case. 

2.6.2, Sensitivity Analysis 

Conditions for the existence or a function x(t) may be obtained by 

extending the implicit function theorem to the case of mathematical 

programming. We are interested in the case in which this function not only 

exists but is locally unique and differentiable. Sufficient conditions for this are 

given in the following theorem. 

Theorem 2,6: (Basic Sensitivity Theorem; Fiacco (HI) 

Ir 

(i) The functions defining problem P(l) are twice continuously differentiable in 

x, and If their gradients with respect to x and the constraints are once 

continuously differentiable in l in a neighborhood of (z •, 0). 

(ii) The second-order sufficiency conditions ror a local minimizer or P(O) hold 

at x •, with associated Lagrange multipliers u • and w •. 



(ill) The gradients 

Vli(z•,o), 

and 

ror all i such that l;(x•,o) """'o, 

vA;(z•,o), for all j, 

are linearly Independent. 
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(Iv) Strict complementarity holds. (ie, multipliers corresponding to binding 

Inequality constraints are strictly positive), 

then 

(a) z• Is a local 18olated minimizer or" P(O) and the associated Lagrange 

multipliers 11 • and w• are unique. 

(b) For f In a neighborhood or 0, there exists a unique once continuously 

dlfl'erentlable vector runctlon 

r(t) - I x(E), v(t), w(t) IT 
satisfying the second-order sufficient conditions ror a local minimizer or 

P(E) and such that 

r(o) - ( :r•, v•, w•) & 11•; 

hence z(t) Is a locally unique local minimizer or P(t) with associated unique 

Lagrange multipliers 11(,) and w(t) 

(c) For f near 0, the aet or binding Inequalities ls unchanged, strict 

complementarity holds, and the binding constraint gradients are linearly 

Independent at z(f). 

• 

CHAPTER 3 

The Semilinear Least Squares Problem 

3.1. The Unconstrained Problem 

3.1.1. Problem Definition 

The (unconstrained) semilinear least squares problem has the form 

minimize f (x,a) = .!.11 F (x,a) 11 2 

sER', aER1 2 
(SLS) 

where F(x,et) = A(et)x-b; A(a)ERm x • 

It is a nonlinear least squares problem in which some of the variables 

(x1,:r2, •.. , x,.) appear linearly in the residual F. A common problem of this 

type is curve fitting in which the model function is expressed as the sum of 

exponentials (or rational functions or expressions describing probability 

distributions), each term having a coelficient. 

The semilinear least squares problem is more commonly known as a 

separable nonlinear least squares · problem or as a nonlinear least 

squares problem whose variables separate. However, this terminology is 

somewhat misleading. First, there is a more common usage of the word 

separable to Indicate, for example, problems in which the objective function can 

28 
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be expressed 88 / (z,a) = / 1(z) + / 2(a) or as / (z,a) = / 1(z) / 2(a) . Second, 

although the word "separate" connotes a lack of connection between the 

variable groups, the most important feature of these problems is that there is a 

strong and distinct relationship between x and a . 

3.1.2. Ideas for Solution Using the Gauss-Newton Technique 

The Gauss-Newton method for the solution of nonlinear least squares 

problems will provide a framework for the comparison of several procedures for 

the solution of problem SLS. Recall that the Gauss-Newton step is computed 

from the equation 

(JT J) B = - JT F (3.1) 

so that 

s = - J+F. 

The Jacobian of the residual function F of problem SLS is 

J = I J, Jo I -
with J, = A (a:) 

Jo = Dt·(a) X - b 

where D indicates the Frechet derivative. 

---------
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The step s has components corresponding to each of the n+k variables in 

the problem. We will derive separate expressions for the step s, in the ,;­

variables and the step s0 in the a-variables. 

Expanding equation (1) above, we obtain the pair of equations 

AT A 8
1 

+ AT J0 6
0 

J0 TAs, + J,_/Joso 

-ATF 

- Jo T F. 

(3.2) 

(3.3) 

Multiply equation {3.2) on the left by J0 T (A +)T and subtract the result from 

equation (3.3). This yields 

JoT(J-AA+)Joso = -JoT(J-AA+)F. 

Defining 

P,tl = I - AA+, 

we obtain 

Jo T p A l. Jo 8 o = - Jo T p Al. F. 

Since the projection matrix PA l is symmetric and idempotent, this equation can 

also be written 
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( pAJ. Jo f ( pA.I. Jo) Bo -(PA.I.Jof pA.I.F. 

So take 

Bo = - (PA.I. Jof pA.I. F. 

From equation (3.2), Bs may be computed from B0 as 

Ba = -A+ ( F - J0 B 0 ). 

. 
The Gauss-Newton process, expressed in terms of the steps we have 

derived, can be written 

(1) 

(2) 

ALGORITHM 0: (Gauss-Newton on the full problem) 

Choose x1 and o 1 

For j=l,2, · · · until convergence do 

(2.1) Test for convergence 

(2.2) Bo = -(PA.I.Jot pAlF 

Bs = - A+ F - A+ J a Ba 

(where these quantities are evaluated at xi ,ai) 

(2.3) oi+l = ai + B/ 
:,J+l --: xi + Bsi . 
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Problem SLS, however, has more structure than a general nonlinear least 

squares problem. If the optimal value of o were known, then problem SLS 

would reduce to a linear least squares problem in x. We would like to take 

advantage of this simplification. 

A straightforward application of this idea is an alternation scheme in which 

one group of variables is held constant while work is done on the other set. 

This type of method has been applied in the solution of statistical problems. An 

example is NIPALS, developed by Wold and Lyttkens (50). 

(1) 

(2) 

ALGORITHM 1: (Alternation) 

Choose ai 

For j=l,2, · · · until convergence do 

(2.1) Solve the linear least squares problem 

minimize .!. II A (o:i )x - b 11 2 

sER• 2 · 

to obtain xi 

(2.2) Test for convergence 

(3.4) 
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(2.3) Bo, = - JOI+ F 

(2.4) oci+l = oc; + •a . 

The full Gauss-Newton method (Algorithm O} treats the x and oc variables 

alike. The alternation method of Algorithm 1 acknowledges the simplicity or 

the problem when expressed as a function of x alone by solving an entire 

minimization problem in x following each new step in oc. The computation of 

the step in oc is done by treating x as a constant. Yet the problem has no 

special structure in this case. 

We have already derived an expression for •a in the full _Gauss-Newton 

case. It may be computed independently of s, and does not require any extra 

assumptions on the form of the function. Since the problem has special 

structure as a function of x, we can easily find a point x which is better than 

xi+•, in the sense that / (x ,a; +•a) ~ / (x; +s, ,oJ +so,) • In fact, if we choose 

i to be the solution of the linear least squares problem (3.4), then we obtain the 

lowest function value it is possible to 11,chieve using oc; +•a· So we might try 

computing a step in oc and then choosing as our next x an optimal partner or 

the new a. This is the method proposed by Barham and Drane 13). (See also 

Walling 156) ). 

• 

(1) 

ALGORITHM 2: (Gauss-Newton in oc; corrected x) 

Choose oc; 

(2) For j =l, 2, · · · until convergence do 

(2.1} Solve the linear least squares problem 

to obtain x; 

minimize 
zER' 

(2.2) Test for convergence 

1 . - II A ( oc1 )x - b II 2 

2 

(2.3) Bo, = -(PA.LJa)+PA.LF 

(2.4) ai+l = oci + Ba • 
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Consider the linear least squares problem which appears in Algorithms 1 

and 2. In general, there may be many solutions. If we choose the solution of 

minimal norm, we can give an explicit representation for :,;i in terms of o:i: 

xi A(oc;t b. 

Under suitable conditions, we can define a differentiable function 

x(oc) = A (a)+ b 

and use it to eliminate x from the objective function. 
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Define the variable projection functional C: Rk-+R by 

f(et) = / (x(et),a) 

- ½ II A(a)A(et)+ b - b 11 2
, 

The corresponding residual function will be denoted by 

F(et) = - p,._ J.(a) b. 

We may then define a reduced problem 

minimize r=.!.11-P,..J.ccw)b 11 2. 
aER' 2 

After the solution & is computed, i is set to A(&)+b. 

The variable projection functional r involves fewer variables than the full 

functional / but at the cost of greater complexity. In particular, determination 

of the Jacobian of F requires differentiation of the matrix projection function 

P,... This difficulty slowed the development of variable projection methods. 

Lawton and Sylvestre (38J, for example, stated that it is "impractical to obtain 

the analytical derivative" of F and used' finite differences Instead. Scolnik (54), 

Guttman, Pereyra, and Scolnik (24], and Perez and Scolnik [40J developed 

expressions for the derivative of PA, beginning with simple cases and working 

toward the general problem. Golub and Pereyra (21], (22J, (23J, showed how to 
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differentiate pseudoinverses and projection matrices in the general non-full-rank 

case and derived expressions for the Jacobian of F and the gradient of f. 

Whenever the form of a problem is modified, as with a change of variable, 

there is the possibility of adding or deleting solution points. The following 

theorem of Golub and Pereyra 122) (and in 121) for the more general case in 

which g(x) replaces x) asserts that the change from minimization of the full 

functional to minimization of the variable projection functional does not add 

any critical points and does not delete the solution of the original problem. 

Theorem 3.1: Let /(x,et) and r be defined as above. Assume that A(et) bas 

constant rank r ~ min( m ,n) for all et in the open set n s; R k. 

(a) If & is a critical point (or a global minimizer In 0) of C(a) and if 

x = A(a)+ b , then (i,&) is a critical point of / (x,et) (or a global 

minimizer for oEO) and/ (i ,&) = C(&). 

(b) If (i,o:) is a global minimizer of /(x,o) for oEO, then & is a global 

minimizer of C(et) in n and C(&) = / (x ,&). Furthermore, if there is a 

unique x among the minimizing pairs of /(x,o), then i = A(&)+ b. 

This theorem provides justification for solving problem SLS by minimizing 

the variable projection functional. The Jacobian of F can be computed by 

applying the rules for differentiation of projection matrices. 



J(a) = pAl.(Di)A+b + (A+)T(DiT)pAl.b 

= pAl. lo - PA (A +f (Di T) F. 
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(3.5) 

The Gauss-Newton method applied to the variable projection functional r is 

ALGORITHM 3: (Gauss-Newton on the reduced problem) 

(1) Choose a 1 

(2) For j=l,2, · · · until convergence do 

(2.1) Test for convergence. On convergence, go to (3) with a= a; 

(2.2) Ba = - I PA l. la - PA (A +)T (Dl T) F J+ PA l. F 

(2.3) ai+I = ai + Ba 

(3) .z = A(a)+ b 

Unfortunately, computation of J(a) is expensive. Golub and Pereyra 

perform a trapezoidal orthogonal factorization of the matrix A (a) and use a 

symmetric g-lnverse A - Instead of the pseudolnverse A+ (recall that PA will be 

the same in either case.) Krogh 130) assumes a full column rank A and performs 

a QR decomposition. He also notes that the method extends immediately to the 

case In which b is also a function of a. 
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Both of these methods must form the tensor D4. since it appears in the 

expression for J(a) as both D4. and D-l T. Kaufman (27) drops the second term 

on the right-hand side of equation (3.5). Using this approximation to the full 

Jacobian speeds the computation and introduces more flexibility into the 

handling of the tensor D4.. For example, we can evaluate the m X k matrix J a 

directly rather than performing the multiplications. 

3.1.3. Solution of the Reduced Problem 

Algorithms 1, 2, and 3 have been presented as methods for applying the 

Gauss-Newton procedure to the original problem, SLS. The same algorithms 

may also be thought of as various applications of Gauss-Newton to minimization 

of the variable projection functional, 

We are interested primarily in the three forms of the step calculation. 

(sah = - Ja+ F 

(sah = -(PAl.Jat pAl. F 

(soh = - [ pA l.Ja - PA (A +)T(Dl T)FJ+ PA .1.F. 

Recall that the quantities on the right-hand side are, in each case, evaluated at 

a point (z ,a) satisfying 

A(a)TA(a)z - A(a)Tb = 0. 



The general form for a vector x satisfying this equation is 

x = A(atb + 11, 

where y is in the null space of A (a). Then 

F(x,a) = A(a} x - b 

= A(a}A(a)+ b + A(a) y - b 

- - pA.l.(a) b 

F(o}. 
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Clearly, pA.I.F = F and pA.I.F 

calculations as 

F. So we may rewrite the step 

(soh = - Jo+F 

(so)2 = -(PA.l.Jo)+ F 

(s 0 b = -IPA.I.Jo - P,.. (A+f(Dlr}FJ+F. 

The step (s0 b is the actual Gauss-Newton step for the val'iable projection 

functional. The other steps are approximations to it which arise from 

approximating J by some of its terms. Note that (s 0 l2, which was derived from 

the Barham and Drane approach, is exactly the step used by Kaufman. 

Ruhe and Wedin lo2) have computed the asymptotic r-convergence rates of 

all four of these algorithms for solving problem SLS. They determined that 

each algorithm is r-linear in general and that Algorithms 2 and 3 display 

• 
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superlinear convergence whenever Algorithm O (Gauss-Newton on the full 

problem) does. Algorithm 1, however, always bas linear convergence. 

Algorithm 3 is just Gauss-Newton on the reduced problem. So, by theorem 

2.3, it is locally q-linearly convergent for problems satisfying the conditions of 

the hypothesis of that theorem. Algorithm 2 involves a Jacobian approximation 

of the Corm required by the hypothesis of theorem· 2.4. Hence, Algorithm 2 

displays local q-linear convergence when applied to suitable problems. 

Algorithms 0, 2, and 3 are all locally q-quadratically convergent for problems in 

which the residual at the solution is zero. 

3.1,4. Solution of the Semllinear Least Squares Problem in Practice 

The Gauss-Newton method has provided a convenient framework for the 

discussion of the semilinear least squares problem. While it is valuable from a 

theoretical standpoint, other methods are used in practice. By theorem 3.1, we 

can find critical points for the full problem SLS by working with the reduced 

problem instead; and Golub and Pereyra have provided expressions for the 

gradient of the variable projection functional and for U1c Jacobian of the 

associated residual function. The minimization may then be done using any 

appropriate method. 

In j22), Golub and Pereyra compare the solution of the full functional and 

variable projection formulations of the semilinear least squares problem. The 

minimization was accomplished by a variety of methods requiring different kinds 
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or derivative information (function only, gradient of/ or r, and Jacobian of F 

or F). In general, the variable projection formulation was found to require fewer 

function evaluations than the full functional version. However, the greater 

complexity introduced by the variable transformation means that each iteration 

in the reduced problem formulation requires more work, and there were cases in 

which solution or the original problem took less time. The Jacobian 

approximation or Kaufman (27) and the revised computations recommended by 

Krogh (30] and Kaufman (27) have reduced the work per iteration in later tests. 

3.2. The Constrained Problem 

3.2.1. Linear Inequality Constraints on er 

The variable projection method may be extended to constrained problems 

as well. Kaufman has shown (see (23) ), that a problem of the form 

is equivalent to 

minimize 
.reR•,oeR1 

1 
/(x,o:) = 2 II A( o:) x - b 112 

subject to HT a > d 

minimize f(a) = .!. II - PA ¾a:) b 11 2 
oeR1 2 
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subject to HT a :::> d 

followed by 

x = A(o:)+ b. 

3.2.2. Semilinear Equality Constraints 

Constraints of the form 

H(o:) X = g(o:) 

will be called semilinear equality constraints. Kaufman and Pereyra (281 have 

shown that elimination of constraints of this type from a minimization problem 

with a semilinear least squares objective function yields a (more complicated) 

unconstrained semilinear least squares problem. 

If the constraints are consistent (ie, if g(o:) lies in the column space of 

H(o:)), then the general form for any vector x which satisfies them is 

X = n+(a) g(a) + Y(a) z 

where Y(a) is a basis for the null space of H(a) and z is some vector in 

R" - roni(A), 

Substituting this expression into the objective function, we obtain 

s(z,o:) = 1 
2 II (A(o:) Y(a)) z - ( b -A(a) H(a)+ g(a)) 11 2 

which is a semllinear least squares problem in the variables z and o. 
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The new problem can be solved by a general variable projection method or 

by a modification which takes into account the special structure of the 

transformed problem. 

Let G = AY 

p = b-AH+g 

F = -PaJ.P. 

Then the Jacobian of the new residual function F is 

PaJ.cQJ) a+p - Pa (a+f(ooT) i' 

As in the unconstrained case, we form a Jacobian approximation by dropping 

the second term. Then we may use the change of variables formulas to write 

the first term using the original varinlilcs. 

PAi I-A H+(nl),., + A H+(l~) + (Dlh'J 

where "I = l'(.-lY)+(b-AJJ+g) + H+g 

Kaufman and Pereyra used a srmmetric g-invcrse (A Yt in place oC (A Yt 

In their Implementation of this nll'thod. Corradi [SI reduced the computation 

required still further by replacing JJ+ by an arbitrary generalized inverse H 1 • 

CHAPTER 4 

Reducible Nonlinear Programming Problems 

4.1. Problem Statement 

III 

I II I 

In this chapter, we will be concerned with the following three problems. 

minimize /(x,o:) 
sER",erER' 

subject to 

9;(.:r,cr) ~ 0 i = 1, ... ,11 1 

h;(.:r,cr)=O i=l, .. ,,p2 

c,(.:r)~O i=l, ... ,ti3 

d;(.:r)=O i=l, ... ,p4 

r;(cr) ~ 0 i = 1. ... , l's 

s;(cr) = 0 i = 1. ... , 1'6 

minimize f (n) = /(x(o),o) 
eren• 

subject to 

.,., 
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r;(a) ~ 0 i = 1, ... , P5 

s;(a) = 0 i = 1, ... , P6 

where :r:(a) solves 

(A) minimize t(x) - f (x;a) 
•ER' 

subject to 

g;(:r:,a) ~ 0 i = 1, · · · ,P1 

h;(x,a) = 0 i = l, . · ·, P2 

c;(x) ~ 0 j = 1, ... 'p3 

d;(x)=O i = 1, ... , p4 

Problem ( I ) represents the original nonlinear programming problem which we 

need to solve; problem I II ) is the corresponding reduced problem. We will give 

conditions under which we can find a point (:r:•,a•) satisfying the first-order 

conditions for problem ( I ) by solving problem I II ) instead. 

4.2. Analysis of the Subproblem 

First consider the subproblem (A). "The elements of the vector a are 

variables in the original problem, but they act as parameters in the subproblem. 

So we may analyze problem (A) using result.s from sensitivity theory. We will 

h. I . to d . . r d.r(a) use t 1s ana ys1s er1ve an expression 1or d . 
a 

Assume that problem (A) satisfies the hypothesis of the basic sensitivity 

theorem at the point (i ,&). In part.kulnr, the first-order necessary conditions 

• 
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hold at (i,&). 

Let the Lagrangian for problem (A} be 

Pi P• 
l(x,u,v,>.,µ;a) = J(x,a) - I; 11;gdx,a:) - I; v;c;(x) 

i=l i=l 

Po p, 
+ I;>.;l1;(x,a:) + I;11;d;(x) 

i=l i=l 

By the conclusions of the sensitivity theorem, the system of equations 

v7 ,l(x,a) = 0 

u;g;(x,cx) = 0 i = 1, ... ,P1 

tl;C;(x) = 0 i = 1, ... , P3 

h;(x,a) = O i = l, ... , P2 

d;(x} = 0 i = 1, ... , P4 

holds for all a in some neighborhood of' ii. Furthermore, this system may be 

differentiated with respect to a, and il,; J»robian matrix is nonsingular. 

Differentiating the first equation, we obtain 

o = I (v/f)(dx/da) + v,/J I 
p, 

I: I u;(V/g,)(dx/da} 
i=I 

+ U;(v1;0 g;) + (v',Y;)(t/11;/cln)) 

..,, 
- I; I t1;(v1,/c;}(,fa:/c/o.) + (v1,c,)(d1,;f da}) 

i=l 



,. 2 2 
+ E I >.;(v', h;)(dx/da) + >.,-(v7, 0 h;) 

i-=1 

,. 
+(v',h;)(d>.;/do) I + E [ µ;(v'/d;)(dx/dat) 

i=I 

+(v', d;)(dµ;/dat) I 

,. ,, 
0 - (v', 2l)(dx/dat) + (v7, 0 ·l)- E (v',9;Xdu;/da) 

i=I 

Pa P2 
- E (v',c;)(dv;/da:) + E (v',h;)(d>.;/dat) 

i=l i=I 

,. 
+ E (v', d,. )(d,,;/ ,, a:) ..... 

Differentiating the general g-constraint yields 

u,-(v7,g,-)T(dx/da) + u,(v'0 U;) + g;(du;/da) = 0. 

The other constraint equations give similar results. 
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In matrix form, the full system of equations resulting from differentiation 

with respect to at is 

M ( .!.!JL.) = N 
,In: (4.1) 

• 
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dx/da 

du /da 

where ..!E.. = ldv/da 
dat 

d>.J do 

d11/da 

with u = (u 1, ... , up,)T 

V = (vi, ... 't•,.)T 

}. = (>-1, · · · • >.p,f 

µ = (µ1, · • · • 11,.f 

Mu 1'112 Al13 Mu M1s 

M21 M22 0 0 0 

M= I Ma1 0 M33 0 0 

M14T 0 0 0 0 

ll\/ 15 T 0 0 0 0 

with 

Mu= v7/l 

M12 = l-v',91 , · · ·, -v',Yp,I 

M13 = l-v',c:1 , · · ·, -v'rc,,) 

M ... = I v',h1 , ... , v.,,,p.) 

M21 = -diog(v1, ••• , v,.) 1\/12 
T 

M22 = diag(g 1, .•• , g,
1

) 

---- -----------------



and 

M31 = -diag(v1, ••• , 11,
1

) M 13 T 

M33 = diag(c 1, ••• , c,
1

) 

N= [-v!sl -U1Vof1, · · · , u,,9,, 0 -Voh1, · · •, Voh,1 0 ] 

M is (n + P1 + P2 + P3 + P4) X (n + Pi + P2 + P3 + P4} 

:~ is (n + P1 + P2 + P3 + P~) X le 

N is (n + P1 + P2 + p3 + v.) X !: 
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Suppose, without loss of generality, that the Inequality constraints that are 

binding at & are: 

g 1, .•. , g9, and c 1, ... , c,.. 

When convenient, we will refer to groups of constraints or multipliers 

collectively. For example, 
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g , 

I 1 

gm [;] -
,,, 

991+1 

9p, 

First consider the equations of (·1.1) involving the g-constraints. Since the 

value of each binding constraint is zero and the multipliers associated with 

nonbinding constraints are zero by complementarity, these equations have the 

form 

-IJt.- (VsUf (d3:/da:) = w. (V0 iT)T 

a (dii /do:) = o 

where IJt.- = di<tg (-11 1, ... , -u
91

) 

G = diag (Uq,+l• ... , u,,) 

G is nonsingular by definition, and "1 • is nonsingular by the assumption of 

strict complementarity. Hence 

- (Vsi)T (dxf,lo.) (V.,g)T 

du /da = o 

By a similar argument, 

- (vsc)f (dz/do) = 0 



dv /do. = o . 

The equations corresponding to the equality constraints are simply 

(v'zh)T (th/do) = - (v'
0
h)T 

(vzdf (tb:/do.) = 0 
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We have shown that the derivath·es of the multipliers corresponding to 

nonbinding constraints are all zero. This was to be expected since the 

sensitivity theorem shows that constraints which are nonbinding at (i ,a) will 

remain nonbinding throughout the neighborhood; and their associated 

multipliers must, therefore, remain constant at zero. 

Defining 

1 ... (u1, ... , "11•"1, ... , u,.,>.1, ... ,>.,,,111, ... ,µ,,)T 

j[T = 1-v,J I -y'zC I v'zh I v,d I 
fT = ( -v'o1 I -voe I v,,h I vad I 

= (-v'o9 I 0 I v'o/1 I o I, 

The reduced system of equations becomes 

[ "';/' ~T] 
[ 

cl:r:.J d a ] 
dO/do: 

- [ v'f 2/] 

ii is (91 + 9a + P2 + p4) X n and consists of (signed) gradients of the active 

a 
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constraints. By the regularity assumption and the results of the sensitivity 

theorem, it has·full row rank. 

By the results or the sensitivity theorem, the matrix 

[ v'j/' ~T ] 

is nonsingular. Denote its inverse by 

w - [ 

ll'u 

ll'il 
W12] 
IV22 

(Note that Wu and W22 are symmetric). 

Then 

tb:/do. = - I Wu (v'zo2l) + 11'12 f j 

;; T " -dv/do = - I W12 (v'za·l) + 11'22 f j 

Lemma 4.1: (see McCormick (30J ) 

Let B be an n X (q 1 + 93 + p 2 + ,,~) basis for the null space or R. Then 

Wu = B ( BT (v'z2/) B 1-1 LJT 
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I 2 -+ W12 = I - W11 (v. l}) R 

W22 = - W12T (Vs 2l} W12 

where 'if+ denotes the pseudoinverse or R. 

Note: 

(i} Every column of B is orthogonal to the gradients of the active constraints. 

Hence the second-order sufficiency conditions, which hold throughout the 

neighborhood, require that BT (V/l) B be positive definite (and thus 

nonsingular}. 

(ii) Any generalized inverse if' may be used in place of if+. 

Before concluding this section, we note for later• reference that the 

definition of the matrix W requires that 

-r 
W11R = O 

W12TifT -

4.3. Analysis of the Reduced Problem 

Now we are ready to consider problem I II J. We shall assume that the 

hypotheses of the basic sensitivity theorem hold for problem (A) at every a of 
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interest. Then we have the existence and differentiability of an z(o) 

corresponding, to each a. 

4.4. The Gradient of the Reduced Functional 

Lemma 4.2: Vs/ -r­= -R O . 

Pf: From the first-order conditions for problem (A), 

0 = Vsl 

,,, ,. 
= Vs/ - Eu;(VrU;} - Ev;(V.c;} 

i=l i=l 

,. ,,, 
+ E>-;(V.h;) + Eµ;(Vsd;) 

i=l l==l ,, h 
= Vs/ - E u;(VrU;) - E v;(Vsc;} 

i=) i=l 

,. ,,, 
+ E>-;(V.h,) + Eµ;(V.d;) 

i=l i=l 

= vs/ + ilro 

Lemma 4,3: Let 

and 

rT = I Vo9 

= I-Vc9 

- Voe I Va/1 I V 0 d 

0 I V 0 h I O J 
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0 == (u1, • • · 1 ",,, 1J1, • • • , "P•' A1, · · • • >.,,, 1'1, · • • • l'p,)T · 

Then rTo = fT 8 

Pf: Each of the extra terms in rTo contains a multiplier corresponding to a 

nonbinding constraint and thus must be zero. 

Lemma 4,4: v'0 f'(a) == v'o/ (x(a),a:) + fTO 

Pf: 

v'of- v'o/ + (dx/do:f(v.n 

- v'o/ + I (v'g,l) 11'11 + fTw,2T I j[T 9 

= v'o/ + fTg 

= v'o/ + fTO 

Corollary 4.6: If no constraint involves both :r. and o, then 

'y'0 f(a) = '\70 / (x(a),a) 

4,6, The Hessian of the Reduced Functional 

Lemma4,6: 

[ 

v' 2, 
v!r == v!t - I v!rt I fT I ff 

[ 
v', 21 

= [ (dz/da)T I 1 ] v,
0

21 

:T rl [ v'f 21 ) 

v:,t] [ dx/da] 
1v!t I 
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where the quantities on the right side of the equations are evaluated at the point 

(x(o),o). 

Pf: Differentiate the expression v' 0 r = v' ,.,/ + f T fJ, which must hold at every 

value of a. 

Pt Pa 
v'cf = v'of - E u;(v'o9;) - E t1;(v'cC;) 

i=l i=l 

Po P, 
+ E >-;(v,.,li;) + E JJ;(v'od;) 

i=l i=l 

v!r == vU + (dx/daf(vra2n 
Pt 

- E l(v'o9;)(,fo;/da:} + u;(v'0
2g;) 

i-=l 

+ 11,-(dx/<la:)T(v';cgi)J 

,. 
- E ICvoc;)(,l1•;/da) + v,.(v0

2c;) 
i-1 

+ t•;(d.r /1la:)T(v' ; 0 c,- )) 

-~-- -



h 2 + 'E l(voh;)(d>..;/do:) + >..;('ii'o h;) 
iz=-1 

+ >..;(dx/da:f(v;oh;)) 

,. 2 
+ 'E l('i70 d;)(d11;/da:) + µ;(Vo d;) 

i==l 

+ 11;(dx/do:)T('i7;0 d;)) 

= v!l + (dx/cla:f(vz/1) + (dO/do:)Tf 

= v!t + (dx/da:f('i7,ra2l) + (d9/daf f 

= v!t - [ v!zl I fT] [ 'ii'j/' 
-T ]-1 [ 2z ] R Viro 

0 f 

To show the second equality, note that 

(dx/daf(v/l)(dx/da) = ('i7~,l) 11'11 (v/l) W11 ('i7,r 0
2l) 

+ ('ii'!zl) 11'11 ('i7z 2l) W12 f 

+ fTll'1:/ ('i7z2l) Wu ('i7zo2l) 

-T T q) + r 11'12 ('ii'z ·I W12 

= (v,/l) ll'u ('i7,r 0
2l) - fTW22f 

and 
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(d8/daf f = ('ii'Jzl) H'12 f - fT W22 fT 

= ('ii'Jzl) (dx/da:) + ('ii'Jzl) Wu (Vso2l) 

-T -- r w22 r 

- (dx/do:)T (vz 2l) (dx/da) + ('ii'!irl) (dx/da) 

4,6. The Correspondence Between the Original and Reduced 

Problems 

Theorem 4.7: 

(1) Let the function / in problem I I ) be twice continuously differentiable in 

x, and assume that its gradient with respect to x ls continuously 

differentiable in o:. 

(2) Let each of the constraints present in the problem be continuously 

differentiable in its arguments. 

(3) Assume that, for every&, the subproblem (A) has a solution x(&) such that 

(a) the second-order sufficiency conditions for a local minimizer of problem 

(A) hold at x(&) (with appropriate Lagrange multipliers ), 

(b) the gradients (with respect to ~:) of those constraints of problem (A) 

which are binding at x(lt) are linearly independent, 

(c) strict complementarity holds for problem (A) at x(&). 

Then problems I I ) and I II ) are 1·elatecl in the following way: 
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(i) Let (:r' ,a') be a global minimizer of problem ( I ]. Then :r • satisfies the 

first-order conditions for problem (A), a' is a global minimizer of problem 

( II ), and f(o') = / (:r' ,a'). Furthermore, if there ls a unique :r• among 

the pairs (:r',o') yielding the (same) minimal value of /, then 

x• = :r(a'). 

(ii) Let a• satisfy the first-order conditions for problem ( II ). Then 

(:r(o"),a') satisfies the first-order conditions for problem I I). 

Pf: We have previously defined the Lagrangian for problem (A) as 

P1 
l(:r,u,11,>.,µ;a) = /(:r,o) - E uig,-(:r,o) 

i==l 

Pa P• 
- E v,-c,-(:r) + E >.,-hi(:r,o) 

i=l i=l 

P< 
+ 1;11,-d,-(x) 

i-1 

Let the Lagrangians for problems I I ) and I II J be, respectively, 

• P1 Pa 
L1(x,a,ti,v,w,>.,µ,ii) = /(:r,o) - E u,-g,-(:r.,o) - E ilici(:r) 

i-1 i-1 

,. , .. 
- E w,-r,-(a) + E >.ih,-(:r ,a) 

i-1 i-1 

,, ,. 
+ Eiiid,(x) + Eii;si(o) 

i=I i-1 

,. ,. 
L11(a,w,11) = f(o) - E w,-ri(a) + E 11,-s,-(a) 

i-1 •-1 
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(i) Let (:r\a') be a global minimizer of problem I I]. 

Then there are multipliers 

a•, v", w•, ~·. ;;•, v• 
such that 

L ( ' • • • • • • • ~ • • • ') o V r r :r ,a ,u ,11 ,w , ,µ ,11 = 
VoLr(z',a',u',v',w',X",µ',11•) = 0 

9i(:r',o') ~ 0 i = 1, ... ,P1 

hi(:r' ,o') = 0 i = 1, ... ,P2 

Cj(:r') ~ 0 i = 1,., ·, Pa 

di(:r') = 0 i = 1, ... ,P4 

ri(o') ~ 0 i = 1, ... , Ps 

Bj(o') = 0 i = 1, ... , P& 

u/gj(:r',o') = 0 i = 1, . · , , P1 

v;'cj(:r') = 0 i = 1, ... , Pa 

w; • ri(o') = 0 i = 1, ... , Ps 

~-· > 0 I -
i = 1,., ·, P1 

i).' > 0 
I -

i = l, ... , Pa 

~-· > 0 ' - i = 1, ... , Ps-

Clearly, :r• and a• satisfy the constraints of problem { II J and subproblem 

(A). 
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Identify corresponding multipliers. That is, let 

• • • Uj = Uj i=l, ... ,p. . . . 
11; = 11; i = l, ... ,Pa 

• • • Wj = Wj i=l, ... ,p5 

). .. 
I = ~i· i = 1, ... , P2 

• • • /Ji = /J; i = 1, ... ,p4 . . . 
11; = /Ji i = 1, ... ,P6· 

Then problem [ II ) and subproblem (A) have nonnegative multipliers 

corresponding to inequality constraints, and complementarity holds. 

We have that 

0 = V:rL1(x',cx',ii',v',w',>.',i1\11') 

,, 
= Vs/ (x',cx') - E ii/Vs9;(x',cx') 

i=l 

,. . , ... 
Ev; Vsc;(x') + E >.; v.h;(x',o') ,-1 .-~1 
,. 

+ Eii/vsd;(x') 
i-==1 

= v,,l(x',u',v',>.',,,•;o•) 

by the identification of multipliers. 

Hence, x • satisfies the first-order conditions for (A). 

By the definition of subproblem (A), we must have that 

/(x(o'),o') = /(x',cx'). 

So (x(a:'),cx') is also a global minimizer for problem ( I J. 

Clearly, if (x',a') is the unique global minimizer, then x• = x(cx'). 

,. 
VoL11(cx',w',11') = Vof(a:') - E w;'vor;(cx') 

i-=1 

,. 
+ E II; ·vos,(cx') 

ic:1 

Pi 
= v 0/ (a:' ,x(a')) - E u;'v 0g;(cx' ,x(cx')) 

i=l 

,. ,. 
+ E >., 'vah;(a:' ,x(cx' )) - E w, •v0 ,,.(cx') 

i==l i=-1 

,. 
+ E 11/vas;(a:') 

e"=l 

= v 0 L1(x(a:'),a:' ,u • ,v• ,w• ,.>. • ,11 • ,11') 

= 0 

(with the correct identification of multipliers). 

Hence, ex• satisfies the first-order conditions for problem ( II J. 

Suppose that there is some feasible /3 such that 

f(/3) < f(a:') . 

Then, by the definition of f, 
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I (z(/3),/3) > J (z(o'),o') 

contradicting the fact that (z(o'), o') is a global minimizer or problem (IJ. 

Therefore, o• is a global minimizer of problem I II ). 

(ii) Let o• satisfy the first-order conditions for problem I II J. 

Define x• = z(a'). 

Then there exist multipliers u • ,v • ,w • ,>.. • ,µ • ,v• such that 

VoLII(a',w',11') = 0 

ri(o') :::,. 0 

Bj(a') = 0 

>..,-•r,-(a') = 0 

w-• > 0 
I -

Vsl(x•,u•,11•,>,.•,µ•;a•) = O 

g,-(x',a') ~ 0 

h,-(x•,a•) = O 

c,-(x•) ~ O 

d;(z') = 0 

u/g,-(.x',a') = 0 

j = 1, .. · ,p5 

i=l, ... ,p5 

i = 1, ... , P5 

i = 1, ... ,Ps 

i = 1, ... ,P1 

i = l, ... ,P2 

i = 1, ... , Pa 

i=l, ... ,p. 

i = 1, ... , Pt 
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11/c,-(x') = 0 i = 1, .. ·, Pa 

u-• 
I > 0 i=l, ... ,p. 

11·. 
I ? 0 i = 1, ... , Pa 

Again, identification of the corresponding multipliers gives the constraint 

and multiplier conditions for prohlem I II J. 

Vs L1(:i' ,a• ,u • ,11• ,w• ,>.. • ,µ • ,11') 

= V sl(x • ,u • ,v• ,)I•,µ ';a') 

= 0 

And finally, 

0 = v 0 LI/(a',w',11') 

= v 0 L1(:i(a'),a•,u•,11•,w•,>,.•,1,•,11•) 

from part (i). 



CHAPTER 5 

Some Special Cases 

In chapter 4, we showed tlmt c·crLain general nonlinear programming 

problems of type ( I ) have assodal-1·d with them reduced problems of type ( II ). 

We propose using problem [ II ) to <l<-lc•rmine a point which satisfil'!' the first­

order conditions for problem [ l I, n11d we have derived expressions for the 

gradient and Hessian of the reduced f111u·lfonal, f. At this point, it is instructive 

to consider special cases of J>rohlC'm [ l I in which the complexity of the 

calculations is reduced. 

A study of simple cases is not jusl, an exercise in the 'application of the 

general results. Since subproblem (A) musL be solved each time the reduced 

functional, f , is evaluated, it is rc·aM>u11hl1· 10 assume that we will be interested 

in solving the reduced Cunctionul v1•1-siou of I-he problem only in cases in which 

[II) or (A) ls particularly easy to soln•. 

5.1. Effect of Constraint Presence or Absence 

We will use the following nol-11linn: 

(l.j 
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Constraints such as c a11d d. which involve x only, will be called x­

constraints. 

Constraints such as g and Ii, which involve both z and a, will be 

called mixed constraints. 

Constraints such as r and JJ,. which involve a only, will be called a­

constraints. 

We have already shown that i11 l he absence of mixed con,,I nints the 

gradient of the reduced functional has the· ~implc form 

v7 0 f(o) = v7,.J (x(a:),a:) . 

The presence or absence of thC' various constraint types influences the 

complexity of the routines which 11111st br used to solve problem [ II ) and its 

subproblem (A). We are particularly i11l(·rc·~ted in cases in which one of these 

problems is unconstrained. The l'ollowing; lahlc characterizes the simplifications 

which occur when certain of the constraint tn>es are absent. 
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Type or Constraints Problem II Subproblem A 'ilof 
Present 

z, a, mixed const,ra i n<·d constrained Vn/ + f' 0 
a, mixed constraiiwd constrained vft/ + rT o 
z, mixed unconstniined constrained vhf+ rT o 

z,a const ra i m•,l constrained 'i1 ,,/ 
mixed unconslr11in1•,l constrained ~ftf + fT 0 

Q co11,..trni1wd unconstrained 'iln/ 
z unconstrni1t<·1I constrained vhf 

none unconstrnin,·<l unconstrained '7,,/ 

5.2. The Case of n Active Constraints 

Suppose that, for a given vnlne or u. Lht·r<· nre precisely n constraints of the 

subproblem active at z(a) and that the gradients or these constraints are 

linearly Independent. Then tlu· mat rh ii or active coMtraint gradients is 
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'i1of = 'i1of + [TO, 

but the Hessian reduces to 

vJr = vJl - (vJ.1) n·1 f 

_ fTff-T( _2/) '1ru 

+ f1'jz·T ('i1
1

~/) Tf:I f' 

5.2,1. n binding constraints; no mixed constraints 

If, in addition, none or the constraints in t,he subproblem involves a, then 

'ilof = 'i1,J 
and 

v,;r = 'i1,?J. 

nonsingular and 5,2,2. n binding constraints; 11 equality constraints 

[ 'il;/' ~Tr - [ ;.T 
so that 

dz/clet = - if·' r 

The gradient of r is still 

n·• ] 
- n·T (v.21) ff·' 

Let i be a feasible point nt, whii·h none or the inequality constraints is 

binding. Assume that there are exal't-ly II equality constraints. Then we have n 

linearly independent constraint g1wlic111,.,, 

Lemma 5.1: Let & be given. Suppo,.,,· ,i· ,-a1 i,;lics: 

h(i,&) = 0 

d(i) = 0 

g(i,&) > 0 



e(i) > 0 

ifT = I Vsh I Vsd I is nonsingular. 

Then i satisfies the first-orde1· condiUons for subproblem (A). 

Pf: The Lagrangian for the suhprohk•m is 

l(:r,u,11,>.,µ;o) = /(J,,n) - 11Tg - ,,Tc 

+ >,T/1 + µTd 

Let the vector of Lagrange mulLipliers be 

Let 

,; 

i• 
o = I~ 

;, 

u = 0, i, = 0, and 

- [i] -r 6 = j, = - Jr ('v,/) 

The constraints are sntblic·d, complementarity holds, and 

multipliers associated with i111·c111ality c-onslraints are nonnegative. 

Vsl = 'vs/ - ('v,Y) 11 - ('v1 t) v 

+ ('v,h)>. + ('v.d)µ 

=v.J+lfTo 

= 'vs/ - iFff·T('v,/) 
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the 
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= 0 

5.3. Special Structure In the Subproblem 

We would like to choose the p11rLilioning of Lhe variables inLo :r and o in 

such a way that subproblem (A) hn.~ a unique and differentiable solution for 

every Ct and that the subproblem Im<; a slrurture which may be used to speed its 

solution. 

5.3.1. Solution of (A) is Unneccessary 

Suppose :r(o) is an explicit funcLion of n. In this case, :r can be eliminated 

from the problem entirely (as in tlw 1111ro11sLrained semilinear least squares 

problem). 

5.3.2. (A) is a simple unconstrained problem 

5.3.2.1. The Objective Function or (A) is Quadratic 

/ (:r ,o) = a(o) + /, (n )r.i: + 11, .T T C(o):r 

Assume that C(o) is positive delinil.c· for :ill n. 

Then the objective function for l-lu, ~11i>prohlP111 is 
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t(z) =a+ l, 1'x + l'lzTCz 

(where a, b, C denote the corresponding functions evaluated at the current 

value or o). 

and hence z ( o) solves 

C x(a) = - b. 

So in this case, determination of .r(o) requires only the solution of a linear 

system. 

6.3.2.2. Unconstrained Semilinear Least Squares 

In this case, subproblem (A) is a linear least squares problem. It can be 

solved at each step, or the minimal norm solution can be chosen and the 

variable z eliminated. 

The Hessian approximations mwd in the various algorithms discussed in 

chapter 3 can be related to the I-11·:;.sian of the original function through the 

equation 

[ 

'i7 2/ 
v!r -= [ (dz/do)T I 1] 'i7,:/J 

(See Ruhe and Wedin (521). 

'i7 ,.,,2 I 

vJ/ l [ "('· l 
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5.3.3. (A) ls a Linear Programming Problem 

In this case, v/l = 0. If there are fewer than n linearly independent 

constraint gradients, then the seconcl-oriler sufficiency conditions Cail to hold and 

the Inverse matrix W does not exist. In fact, z(a) may not even be continuous. 

So assume that z(o) is a nondegc11crntc· solution, with n linearly independent 

binding constraint gradients. 

Then 

so that 

Also, 

and 

[ 
V,21 

il 

j[T 

0 

dJ:/dc1 

'i7 ,.f 

r - [/r :J] 

-ff·l f 

'i7,J + f1' o 

V!f = 'i7~l - (V,~1 1) Tf·l f - fT R" T('i7
10

2l) . 

If the subproblem constraints do not i11\'olvc o:, then f = 0 and hence 

'i7,,f = 'i7,,/ 

v'/;r = v'/;/ 
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6.3.4. (A) is a quadratic programming problem 

In this case, the objective funcLion of subproblem (A) is quadratic in x and 

its constraints are linear in x. Sin cl· elflcient computer codes for solving 

quadratic programming problems arc arnilable, subproblems of this form are 

also easy to solve. 

We defer further discussion or thi.5 L~·pe of problem until the next chapter, 

In which we will consider an important, special case. 

CHAPTER 6 

Constrained Semilinear Least Squares Problems 

6.1. Statement of the Problem 

We will now consider the case in which the original objective function / 

has the form 

/(x,o:) = .lF(l,,af F{x,o:) 
2 

with F(x,a:) = ,-1 (a) x - b(o:) 

The subproblem which determines x(a) will be a constrained linear least 

squares problem. So we will restrict attention to the case in which the 

constraints are linear in x. 

The full functional constrained selllilinear least squares problem is 

CSLS(J) minimize 
sER", oen• 

l 
/(x,a:) = 2 II .'1(a)r - b 112 

aubject to G(a:)Y - /J(o:) > 0 

7-1 



Lemma 6.1: F(cr) = -P,48 l.(a) I li(a)- A(o).if+(et)€(cr) J 

Pf: Let :i be the solution of the subprohlem. 

Identify the binding and nonbinding constraints at :i: 

R:i-°{=o 

- (kz - "'e) > o 
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(i) 

(ii) 

Let p = P1 + P2 +Pa+ 11 1 I><' tlw 1-ot.al number of constraints, and let 

I} = 1/1 + P2 + '13 + p4 be t.lw n11mli<'r of binding constraints. 

The general form of a vector i; satbfying (i) is 

i; = if+f.+z' 

where z1 is an element of the 1111II 8(l!lC'<' of il. 

Expressing z' in terms of the ha:;i,, 11. we obtain 

i, = ff;"l, + B z 
where z is some w<:lor i11 R 9 • 

To determine z, apply the <'hunge of Ynrinblcs 

X = if+£. + B z 

to the subproblem. 

The problem expressed in terms ol' :.: b 

. . . 1 II ( manmuze - .·In) ;; 
,en• 2 

/1 -Aff+e) 11 2 

subject to -k B :.: + ( f. - Ii il+e ) > 0 . 

Then there Is a vector of Lngrnng1· 11111ltiplie1'H ('ERP-I such that z and (' 

----- -- --· 

satisfy the first-order conditions 

(ABf(AB) z - (ABf (l,-.:-lff+e) + (RB)T (' = 0 

- iw:: + (e - kil+e) 2: 0 

('; 1-R;m + (~; - k;17+e)) = o 
(for Ca<'h constr11i11t) 

(' 2'.: 0 
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Since the constraints represented in R are nonbincling by definilin1,. it must 

be true that (' = O. 

Then 

Hence 

Finally, 

(AB)T(AD)z = (.IIJ)( b - Aff+e) . 

, = 1 (An)r(..-1LJ) r't.-111)r(b - ff+e) 

= (AB)+( b - .. ,if+"l,) . 

F(et) = A(cr) z(et) - b(a-) 

= A(et) i - b(a) 

= A(et)B(et).i - (/,(n)-.l(o)it+(c,)£.(a)) 

= P,4s(o) ( b(a) - A (n) ir .. (ri) °l(n)] - [ b(et} - A (et} if+(o) €(0)] 

= -P,4gl(cr) I b(o) - A (11) if' (n)f.(a)) 



6.6. The Jacobian ot the Reduced Functional 

Now we are ready to give an expres:sion for the Jacobian of F 

Lemma6.2: 

J(o) = P1.a.l.(o:) I J 0 (0)- A{o:).R+(o)f(o)) 

T 
- PAB ( 1-·1 (a)O(o)J+I B{o:)K(o) 

where K(o:) = /1'.'(.r(a).ll) 

and /((x,o) = ID11'(u)J F(.r,a:) - IOOT(o:)) u + jil/Jr(o))). 

Pf: F(o:) = A (o)x(o) - b (o) 

So 

J(o) = D4(o)x(o) + A(o:) (tlJ·(o)/do)- D'i(o:) 

Suppressing the argument, a, we l111n.' 

J = J0 + ..-l (t/J:/tlo) 

Recall that 

:: = - W11 ('vs,/1) - 1r,~ F 

I T -+- 1' -+-= W 11 A A R I' - A J,. - I{ I - R r 

= B l(AB)f(A/J)J- 1/Jrl.·1 7°(.·IR+f _Jc:r) - KJ - if+f 

= B(AB)+(A17+f-J,,) - 1Jl( ... wf(AD)l-1nr1< - if+r 

So 

81 

Then 

dz -+- T T -+-A - = P1.a(AR f-J,.) -1(,-lllj+) n /( -AR r . 
do 

J = J0 - Aif+r - P,rn(J,.,-.·IR+r) - l(ABj+f BT K 

= P1.s¼Jo-Aif+f) - PAol(.-lllj+]TBTJ( . 

6.6. A General Form for the Problem Structure 
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Unfortunately, the compli<-at.rd cxprc,,sion obscures the structure in the 

Jacobian. So we will rewrite the h!lsic· form below. This general structure holds 

in both the unconstrained and cons Ira i ncd cases. 

F = - pl,, 

J = pl111 + p <I> 

where the actual form of the vccl-or 11 , llll' 11111Lriccs Ill and 4>, and the projection 

matrix P depends on the problem. 

Consider the two terms in the ciqm•,-sion for J . Siutc 

(PA11<l>)r(/'_.,11.!."1) = 0 

and 

W.-111 ,,, ) "/' F = 0, 

we note that the structure whi<·h II as 11,-,l•d to advantage by Kaufman j27) and 

by Barham and Drane 13) in Lil<' 111u-011,-1 r:ii11l'd casc carries over to the general 



H(a:)x - 6(0:) = o 

Cx -p = 0 

Dx -u > 0 

r(o:) ~ 0 

s(o) = 0 

The corresponding reduced problem is 

CSLSIII) minimize f(et) = .!.. FTF 
oER' 2 

subject to r(a:) > O 

s(a:) = 0 

whm F(o:) = .4{o:) x(o:)- b(o:) 

.:r(o:) solves 

111i11imi::e t(x) 
zEll' 

1 
~ 2 II A(o)x - b(et)ll 2 

subject to G(o:) x -.B(o) > 0 

H(o:) x - 6(0) = 0 

Cz-p"?'_O 

Dx-a=O 
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6.2. Notation 

We will use the notation developed in chapter 3. Recall that the matrix R 

contains the (signed) gradients with respect to x of the constraints. In the 

present case, 

For convenience, define 

[

- G(et)l 

R - /~1~) 

[

- ti(et)l e = - 6(a:) 
p 

(7 

AB before, il and 'e will denote quantities related to binding constraints, while R 

and E will refer to nonbinding constroints. B will be a basis for the null space 

of il. 

The Jacobian of the original matrix function F will be denoted 

1 = ( ls Ju J 

where 

JS = A 

10 = (D·l) .r - (J:Y,) 

while the Jacobian of Fis J. 



The Lagrangian or the subproblem is 

l(x,u,v,>.,µ;a) = ½ II Ax - b 11 2 
- uT( Gx -/3) - 11T( Cx - p) 

+ >,.T(Hx-6) + µT(Dz-a) 

= .!. II Ax - b II 2 + oT( Rx - O 
2 

where IJ is the vector of Lagrange multipliers. 

The Hessian or l has the following components 

v's2l = AT A 

v's,/l = AT Jo + K 

'il!sl = Jo TA + J(T 

v!l = JOT Jo + So 

where K = (ill r) (Az-b) - (IX: T) 11 + (IY/ T) >..' 

P1 Po 

So = - E u;('ilo29;) + E >.;('ilo2h;) 
is:::1 i=l 

= - uT [(D~)x - (D~) I + >,.T ((D~/)x - (D~)J 
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Note that only the term S0 involves second derivatives of the matrices defining 

the problem. 

6.3. The Gradient and Hessian of the Reduced Functional 

The gradient and Hessian of the reduced functional r have already been defined. 

Let 

'ilof = J0 T(Ax-b) + IJTf 

[

- (Vogf l 
wh,re r - (v~h)' -

y = I (AB)+ ]TBTK 

Z = A if+ f . 

[

- ((oo ~x - WI l 
(D'{)x - D5 • 

0 

Then 

'il!t = (J0 T J 0 + S0 ) - (-zT PAB.lz) 

-(JaTpABJa+JaTY+ yTJ0 + yTY) 

-(J0 Tz - J
0

TPAsZ - yTz + /{Tji+f) 

- (zT J 0 - zT PABJo - zTy + fT(if+f K) 

= JaTpAB.lJo-JoTy_ yTJa- }'T}'-JoTpAD.lz_zTpAB.lJo 

+ yT Z + zTy - J(T if+f - fT(.ff+f /( + zT PAs.lz + S
0 

· 

6.4. The Residual of the Reduced Problem 
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Since the reduced problem is a nonlinear least squares problem, we would 

like to develop an expression for the Jacohian of F as well. We begin by 

investigating the form of F itself. 
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case as well. Since the second term doC's not, contribute to JTF, the full matrix 

J is not required in order to compul,e Lhc gradient off. 

CHAPTER 7 

Extension to Problems Without Special Structure 

7 .1. The Original Problem 

In this chapter, we will consider the general problem 

minimize / (y) 
,ER~ 

subject to h;(Y) = 0 

,, $ y $ 11, 

i = 1, ... ,p 

(where 111 and 11
6 

are constant) 

In which there is no obvious partitioning ror the variables. 

In the method discus.5cd prP,·iously, we maintained the same partition of 

the variables throughout the solution process. However, the conditions implying 

existence, continuity, and dilTerentinbilit.,· of x(cr) given a are all local. So if we 

can assume that these conditions hold at. every point with any partition, then 

we are free to redefine the partitioning whrne\'cr it seems advantageous. 

8-1 
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7.2. The Reduced Problem 

Rewrite the given problem in the alternate form described In chapter 4. 

For convenience, let 

!/ = [:] ' 1, = [::] ' 

minimize f{o) = / (:r(o:),a-) 
Q 

subject to l0 :5 et $ 11., 

where z{o) solves 

minimize t{z) = / (x;o:} 
:r 

subject to h;(x;a) = O 

l;r $ X '.5 llz 

u = , [::] 

i = 1, ... ,p 

7.3. Restrictions on the Partitioning of the Variables 

In this case, there is no naturnl strurturc in / which makes the subproblem 

easy to solve. So we will use the choice· or l\ p11rtition to simplify Its structure. 

We will require that 

{i) x has p elements 

(ii) there are exactly 11 binding constraints at the solution or the 

subproblem. 

86 

Note that if we assume regularity at every point for the original problem 

there can be at most m binding constraints at a. given point and hence no more 

than m-p variables can be at a bound. Thus the partitioning requirements 

above are reasonable. 

7 .4. Solution of the Subproblem 

We will maintain all of the assumptions from the original method. In 

particular, the gradients or the binding constraints from the subproblem will be 

linearly independent. In the present ca.5e, there are p linearly independent 

constraint gradients. 

The constraint derivative matricc•s for this problem are 

RT= [ - 1, - 1,, """ ] . -r 
ll = '1:rh 

rT = [ 0 0 "Q" ] ' f T = '70 /1 

The Lagrange multipliers are 

gT = [t1r wT >-r], 0 = >. 

We showed In section (4.2.2) thnt 

9 = - jf-T ('1:r/) 

and that any i which satisfies co11clit ions (i) nncl {ii} also satisfies the first-order 

conditions for the subproblem. 
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This means that, given &, we can define z(&) by (i) and (ii). The 

nonsingularity of 'ii guarantees differentiability of z(a:) in a neighborhood of & 

without requiring that z(&) satisfies the second-order sufficiency conditions. The 

value of z(a) can be determined by solving the equality constraints; no 

minimization of t(z) is required. 

7.S. The Reduced Gradient 

The gradient of the reduced funcLional r at & is given by 

'var(&) = 'val + fT 0 

- 'val - ("vahf ("vzhtT ('ilz/) 

(where the right-hand side is evaluated at (x(ci),it) ). 

This is called the reduced gradient and the solution technique we have 

just described is the generalized reduced gradient method.' 

The reduced gradient method, Wolfe [60J, arose as an attempt to generalize 

the simplex method of linear programming to handle a nonlinear objective 

function. Note that when the constrnint,s are linear the determination of z(a:) 

involves only the solution of a linear system. This method was generalized to 

the case of nonlinear constraints hr Abadie and Carpentier (1). Since the 

solution methods for the minimization off and for the determination of z(a:) are 

not specified, these can be chosen to suit the type of problem being considered. 

For example, the Implementation by LRSdon, Waren, Jain, and Ratner (33) 

involves a variable metric method and is suitnhle for moderately sized problems, 
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while Gabriele (20] uses a conjugate gradient technique for the solution of large 

sparse problems. · 



CHAPTER 8 

The Solution ol Reducible Nonlinear Programming Problems 

8.1. Using the Ideas We Have Developed 

For problems with appropriate structure, the technique of rewriting the 

original problem in reduced form can h!:' useful to both numerical analysts and 

users or computer programs. The fi1'!>t group will be interested in tailoring 

numerical methods to take advantagl' of the structure of the problem, while the 

second group will be interested in tailoring the problem to fit the available 

solution techniques. Consider the constraiiwd semilinear least squares problem 

of chapter 6 and assume that tlll'rc u1·e no constraints that i\1volve o but not .:r. 

In its full form, this is a nonlinearly conMrained nonlinear least squares problem. 

Since computer programs of this type are not widely available, the problem 

would probably have to be soh•ed w,ing n general method, and no advantage 

would be taken of the least sqmu·t•,- :,;1.r11rt.111·t,. The reduced problem, on the 

other hand, requires an unconstrni,wd nonlinear least squares program and a 

linearly constrained linear least sq1111rc•,, prolilrm. 

Now consider solution of the 111wonsl,rai11cd semilinear least squares problem 

of chapter 3. Since the formula for lhr grnclient in this case Is very simple, we 

might decide to use a general nwt,hod which rrquircs only first derivative and 
~!) 

oo 

function information. We would need to call an unconstrained linear least 

solver during each function evaluat.ion in order to determine .:r(o), but our work 

in coding the function and gradient ernlution would be minimal. 

or course, this simple approach fails to take advantage of the least squares 

structure of the problem and also of the fact that we can actually eliminate .:r 

from the problem. Golub and Percyr1\ l:H] have provided a routine which 

evaluates the Jacobian of the reduced functional. The user needs only to supply 

instructions for evaluating A and DI. Any suitable nonlinear least squares 

program may then be used to compleu· thr solution. If desired, an approximate 

Jacobian could be generated instead (a.-s suggest,ed by Kaufman). 

Finally, we might want to modify the nonlinear least squares solution 

technique Itself. One of the main juslilicat-ions for computing JT J in solving 

general nonlinear least squares proLlcms is that we need to evaluate J in order 

to compute the gradient. In the present, c:m,e, however, all that is needed ror the 

formation of the gradient is the partial .Jacobian J 0 • Hence it might be 

worthwhile to compute J0 T J0 and de,·cloµ a special secant approximation to 

the remaining terms of the Hrssian or th<' variablt> projection functional. 

8.2. Identification or Suitable Problems 

We have given sufficient condition,; for t-hc uniqueness and differentiability 

of a local function .:r(o). These conclil.ion:s nre not necessary. We were able to 

solve the unconstrained semiline11r lc·ast M11111rcs problem by assuming that A 
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had local constant rank rather than that, A had full column rank. However, it 

is not wise to apply the reduction tC>rhnic1uc blindly. Consider, for example, a 

problem involving only mixed constrninL,;, The points er at which the function 

will be evaluated will be determined by an unconstrained minimization 

technique and so are unrestricted. The subproblem, however, may not even 

have a feasible region for some values of a. 

8,3. Choice of a Solution Technique for the Subproblem 

If there are no mixed constraints. the subproblem exists only to provide 

values of z given er. In the presence of mixed constraints, however, the 

evaluation of the gradient of the rt'Clucecl functional requires the vector or 

Lagrange multipliers associated with the solution of the subproblem at the 

current value of a. However, many or the i.olution methods which could be used 
' 

to solve the subproblem use multipJi<,r esti1m1tes and can return to the calling 

routine the values of the multipliers at I he· !<olution. 

If all or part of the Hessian is to II(' tomputed, it may be necessary to have 

a basis for the null space of the- Art,h·c <·onst.n1i11t gradients. In simple cases, this 

ls easy to provide. If the only constraints arc bound on the variables, then B 

will consist of unit vectors. In tlw c:nsr of "probability" constraints (i.e., the 

variables are nonnegative and sum to one), McCord 138) suggests a basis 

containing a row of the form I -1. .... -I I nlong with appropriate unit vectors. 

When the constraints are more rompli,·at.('(l, a solution technique that also 

operates in the null space seems ap11roprintc•. Although such routines ususally 

-----·-·----· -·· --- ·-
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do not form the basis explicitly, lt should be possible to make use of the same 

basis Information in the determination of x(a:) and the evaluation (or 

approximation) of the Hessian or r. 

8.4. Suggestions for Further Investigation 

THe technique of problem reduction described above has been shown to be 

advantageous in certain special cases. t-.Iore testing should be done to identify 

the types of problems for which this method is suitable and to determine 

appropriate solution techniques for the various parts of the reduced problem. 

In the theoretical development, we assumed that the subproblem was solved 

exactly. Further analysis is needed to account for the actual accuracy to which 

this auxiliary problem will be sol\"cd. The effect of subproblem solution 

Inaccuracy may help to specify problems which are suitable for this method and 

also solution techniques which should he rnsed in solving for x in terms or er. 

The close relationship between t.he solution of reducible problems by 

forming the alternate problem and the 1solution of general problems by the 

generalized reduced gradient method means that we should be able to take 

advantage of work that has been doue in the area of reduced-gradient-type 

methods, This includes recovery from cases in which the subproblem is not well 

defined for certain points. Since I.he gl·1wrnlized reduced gradient method has 

been shown to be effective and rohw,t in comparative studies, see Colville 17) 

and Schittkowsky (53J, the applicat.ion of similar methods to problems with 
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special structure should also yield favorable results. 
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