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CHAPTER 1

Introduction and Synopsis

1.1. Introduction
In this thesis we will be concerned with nonlinear programming problems
having a particular form. In the unconstrained case, they can be written
:?li?f’:g{‘ /(=) (1.1)
indicating that there is some natural distinction between the groups of variables.
The variables which will comprise the vector z are chosen by the requirement
that, given a fixed k-vector & we must be able to solve the (n-dimensional)

problem

masnet;:z.:zc J(z,a) (1.2)

cheaply and accurately. For certain functions f, the solution of problem (1.2)
provides an explicit formula expressing = in terms of a, and we may use it to
eliminate z from the original problem entirely.

In a general minimization problem, every feasible vector is a candidate for a

minimizer. The particular solution technique chosen to perform the

2
minimization will determine which of these points will be investigated. For our
special case, we can use problem (1.2) to specify a relationship between the z-
variables and the a-variables at the solution. It seems reasonable, then, to
restrict our search for a minimizer to only those points (z,a) in R*** at which
z and « satisfy the given relationship. This is equivalent to adding a constraint
to the problem. In the simplest cases, £ can be written as an explicit function
of a, and the requirement z = g{a) can be used to rewrite the problem as a
function of « alone. In the more general case, the relation between z and a is
implicit, and it may not éven be possible to express it in the form of a nonlinear
programming problem constraint. Yet, under suitable conditions, the original

problem may still be reduced to a problem in a alone.
A problem of the form (1.1) for which it is possible to define a relationship
expressing z in terms of « will be called reducible. To solve a problem of this

type, we solve instead the reduced problem

mi;zeilrin.izc fla) = [(z(a)a) (1.3)

This is a problem in fewer variables, but now every function evaluation requires

the solution of a subproblem of the form (1.2).

The existence of a minimization subproblem in the function evaluation does
not require any modifications in the routine used to solve problem (1.3). If this
routine requires derivative information, however, we must be able to compute

the gradient and possibly the Hessian of the reduced functional f. We will give
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3
conditions under which this can be done and derive expressions for the gradient
and Hessian of f. The expression for the gradient will be shown to be
particularly simple. In fact, for unconstrained problems and for constrained

problems of a certain type, we will prove that

V(@) = v/ (z(a)a).

Since the determination of z(a) is required by the function evaluation, the
gradient of f is available for only the amount of work required to evaluate the

partial derivatives of / with respect to a at the point (z{a),a) .

Although the expressions for the gradient and Hessian of the reduced
functional allow us to use existing software immediately, they can also be used
to suggest modified algorithms which take fuller advantage of the special
structure of specific problems. This can be important if these problems are to

be solved repeatedly or if they are hard to solve using standard techniques.

1.2. Example

Note:  We include this example mereiy to illustrate our suggested approach.

We do not mean to imply that such dramatic success is to be expected.

Suppose that we need to solve the following problem and that the only
minimization routine available is an implementation of the steepest descent

method.

original problem:

m
minimize ,a) = 100 (z;-a;2)° + (1-a; 2]
zER'.aG’lzl' /(I Cl) ,El[ ( 7 ) ( ’)

This is Rosenbrock'’s function [51], extended to the case of 2m variables. It is

well known to be an extremely difficult problem for steepest descent.

Instead of solving the problem directly, we will take advantage of its special
structure. Since f is quadratic in z, it would be very easy to determine the
optimal z il the optimal a were known. If we require that z and a always
satisfy the relationship that z(a) is the value of z that minimizes f for the
given value of a, then we can rewrite the problem as a function of a alone,

hiding the computation of z in the objective function evalualion.

alternate formulation:

mine:"rgiu f(a) = jé] []00 [z(a;) - a,-’ P+ (]_aj.)'.']

where z(a) solves

minig_ize t(z) = f(z30) = [100 (::,--02)"'+(1-a)2]

z€
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For a given value of @, define [z(a)]; = a;% Then z(a) satisfies the
second-order sufficient conditions for a minimizer of the subproblem. Since the

dependence of r on a is explicit, we may simply substitute aj2 for [z(a)]; to

avoid excess computation.

After this substitution, the alternate problem reduces to

m
NI fla) = l-a; 2
miigie 1) = (1)

which can be solved by steepest descent in a single iteration.

The two-variable Rosenbrock function is difficult for certain methods
because it has a curved valley following the parabola z = a®. In our alternate
formulation, we have constrained our search so that the only candidates for

minimizers which we will consider are precisely those which lie on this curve.

In this problem, forming the alternate problem not only reduced the
problem dimension but simplified its form. Unfortunately, this is an extremely
rare occurrence. In general, expressfng the problem as a function of a alone

makes it more complicated and more nonlinear.

1.3. Synopsis
Chapter 2 contains the mathematical background material which will be
used in subsequent chapters.

Chapter 3 is an introduction to the semilinear (or separable) least squares
problem. This problem has been studied by a number of authors, [3], [8], [21},
[22), [23), [24), [27), [28], [20), [30], 35}, [36], [43], [46], [49], (50}, [52], [54], [57],
[58], [59] We will use the simple Gauss-Newton method to provide a framework
for the characterization of several of these solution techniques. We will show
that certain of these methods can be considered either in terms of solution of
the full problem or of the reduced problem. Two methods, that of Barham and
Drane [3] and tbat of Kaufman [27), which appear dissimilar and which were
derived from quite diflerent viewpoints, will be shown to be based on identical
local quadratic models. If these two methods were to be implemented using the
same globalization strategy for handling poor initial guesses, then they would

generate the same iterates.

The idea of a reduced problem was introduced for the unconstrained case in
section 1.1. In chapter 4, we make a more rigorous definition and extend it to a
general nonlinear programming problem. A theorem from sensitivity theory for
nonlinear programming problems will be used to provide conditions under which

there exists a unique differentiable funetion z(a) defined in a neighborhood of a
given &. We then derive an expression for gz and use it to express the

da

gradient and Hessian of the reduced functional in terms of information from the




original problem and from the subproblem which defines z(a).

The development In chapter 4 is entirely theoretical and ignores our
original stipulation that it must be easy to determine z(a). Chapter 5 contains
some special cases of the general reducible nonlinear programming problem.
These are chosen to provide examples of the application of the equations of
chapter 4 and are cases in which the structure of the subproblem defining z{a)

makes it easy to solve,

In chapter 6, we return to the semilinear least squares probiem, defining a
general constrained version and analyzing it using the techniques of chapter 4.
We first demonstrate that the reduced fanctional i‘n the constrained case has the
same form as the reduced functional in the unconstrained case. The gradient
and Hessian of f are easily represented as special cases of the formulas from
chapter 4. In addition we will derive an expression for the Jacobian of the
residual of the reduced problem. The Jacobians of the unconstrained and
constrained semilinear least squares problems will be shown to have the same
basic structure. This will suggest direct extension of the solution techniques for

unconstrained problems to the constrained case.

Chapter 7 contains a modification of the problem formulation ideas
presented in previous chapters. We ‘will drop the assumption that there is a
natural partition of the variables and allow the partitioning to be redefined at
any iteration. We will, however, impose suflicient restrictions on the

partitioning to maintain our requirement that the subproblem be easy to solve.

8
This modification will be shown to be the problem formulation used by the
generalized reduced gradient method. Hence, the generalized reduced gradient

method may be thought of as defining a sequence of locally reducible problems.

Finally, in chapter 8, we consider the application of the concepts of the

previous chapters to the solution of nonlinear programming problems.

1.4. Notation

Throughout the paper || - || will refer to the usual 2-norm.




CHAPTER 2

Mathematical Background

2.1. Rate of Convergence

(See Ortega and Rheinboldt [44]).
Let {z; } be a sequence of vectors in R".
{z;} converges to z, if

lim ||z-~2,} = 0
k—oo

Let {z; } be a sequence which converges to z,.

2.1.1. Root Convergence Rates .

A sequence {z;} converges with r-order p if p is the largest number such that

The value of p that occurs in that limit is the asymptotic convergence rate.

It p=1, the convergence is r-linear. I p =2, the convergence is r-

quadratic.
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The sequence {z; } converges r-superlinearly if

1
limsup || 2;-2, |[* = O.
k—00

2.1.2. Quotient Convergence Rates

{z,} converges g-linearly if therc is some constant ¢ €[0,1) and an integer
£ > 0 such that
I Zpi-2. 1l £ e llz-2. |l
{21} converges g-superlinearly if there exists a sequence {¢;} converging to 0
such that
Nzea-ze | € exllop~a, |l for all £ > E.
{z1} converges q-qu#dratically if there exists a constant ¢ 2> 0 and an integer

£ such that

fzeg-7ll < ellmy-2 |I?

2.2. Generalized Inverses and Projection Matrices

2.2.1. The Pseudoinverse and Other Generalized Inverse Matrices

Let A be an n Xm matrix. A has an inverse if and only if n=m and A is
of full rank. In the general case, however, there do exist matrices which exhibit

some of the properties of an inverse. Unfortunately, the nomenclature in this
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area is not standardized. We will use the following notation taken from

Boullion and Odell [6] and from Golub and Pereyra [23}.

We will consider matrices X satisfying one or more of the following

properties:
AXA = A (1)
XAX = X (2)
(Xa)T = XA (3)
(AX)T = Ax (1)

A generalized inverse of A is a matrix X=4' satisfying property (1).-

A reflexive generalized inverse of A is a malrix X=A" satislying
properties (1) and (2).

A symmetric g-inverse of A is a matrix X=A" satis{ying properties (1)
and (4).

A left weak generalized inverse of 4 is a matrix X=A" satisfying
properties (1), (2), and (3).

A right weak generalized inverse of A is a matrix X=A" satislying
properties (1), (2), and (4).

The pseudoinverse of A4 is the u.nique matrix X'=A" satisfying properties
(1), (2), (3), and (4). The pseudoinverse was introduced by Moore [41] and
rediscovered by Penrose [48]. Early work in the area was done by Tseng [55]

and by Bergmann, Penfield, Schiller, and Zatkis [5).

12
Although pseudoinverses are commonly used in the theoretical derivation of
algorithms, it is often cheaper computationally to implement algorithms

numerically using generalized inverses satislying only as many of the conditions

(1) - (4) s are essential to the problem being considered.
2.2.2. Projection Matrices

Let S be a subspace of R®. The matrix PER"*" is the orthogonal

projector onto S if

(i) P issymmetric (PT=P)
(i) P isidempotent (P=P)
(iii) The column space of P is S.

We will also refer to P as a projection matrix.

We will be concerned with some special projection matrices associated with

a given m Xn matrix A:

B = At is the orthogonal projector onto the column space of A.

Q, = A*A is the orthogonal projector onto the row space of A.

The projectors onto the orthogonal complements of the column and row spaces

of A will be denoted }}l and QH'. respectively.
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2.2.3. Useful Properties of Pseudoinverses and Projection Matrices

Let A be any mXn real matrix. Collected below are some of the

properties of A*, F, and @ which are used in the derivation of certain results

appearing in later chapters.

(B

(i) AQ =A and AQl=0

(i) A*R =A* and A*Bl=0

(iv) QA*=4* and Q4*=0

(v) @A) =4

V) (AT = (4T

(vii) (AAT)* = (a)Ta*

(viii) (ATA) = At(a")T

(ix) At = (ATA)*AT and A* = AT(AAT)*,

In fact,

A* = (ATA)*AT for any choice of (4TA4)"
A = AT(AAT)" for any choice of (AAT)"

(x) @ = A“A for any choice of A"

(xi) R = AA" for any choice of A~

14
(xit) Let B be an nXk real matrix. It is not true in general that

(AB)* = B*A*

2.3. The Fréchet Derivative of a Matrix

2.3.1. Deflnition

Let A(a) be an m Xn malrix, each of whose elements is a function of
a€R*. Assume that each of these elements a,;;() is diflerentiable at some point
a. The Fréchet derivative of A(a) at G is given by

Ba,J(&)

— ] fori=1,...,m ands=1,...,k
da,

DM(a) = [

D4 (&) is a tridimensional tensor.. It consists of k£ *‘slabs”, each of which is an
m X n matrix containing the partial derivatives of the q;; with respect to one of
the components of a.

A(a) is of local constant rank at a point & if there exists a neighborhood
N(a) such that A(a) has constant rank for all a€N(a). We will assume that
A(a) is of local constant rank at every point a at which we need to compute its

derivative.

2.3.2. Properties of the Fréchet Derivative of a Matrix
(i) Ir A is constant, then D{ =0

(i) DAT) = ()T
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(iii) If C(a) = A(a)B(a), then
DC(a) = Di(a)B(a) + Ala)DB(a)
(iv) If A(a) is nonsingular and differentiable, then
D[A Y a)] = -AYa)Di(a)A Y a)
2.3.3. The Fréchet Derivative of Projectors and Pseudoinverses
Early work in this area was done by Kruskal [31], Hearon and Evans [26},
Wedin [57], Pavel-Parvu and Korganoff [17], Fletcher and Lill [19), Pérez and
Scolnik {49], Guttman, Pereyra, and Scolnik {24}, and Decell [9]. The following

results are taken from Golub and Pereyra [22].

Lemma 2.1: Let B, = AA* and @, = A*A. Then
D; = B{o)at + [T
D, = At+(D1)Qt + [ D) YT
Lemma 2.2:

DIY = -A* DAY + AT(A)T(TBL + QDT )(AH)TA*

2.4. Linear Least Squares

{see Lawson and Hanson [34))

Let A be an m Xn matrix and assume that m>n.
Let b be an m-vector.

The linear least squares problem has the form

16

mineilr{zlize —;—”Az b2 (LLS)
The solutions of problem (LLS) are exactly those vectors z which satisfy the
normal equations

ATAr - AT4 = 0.
Hence any vector of the form z = A"4, where A” is a‘ symmetric g-inverse of 4,
solves problem (LLS).
The choice
i = At}

selects the unique solution of minimal norm. That is, £ is the unique solution of

minimize || z ||
z€R"

subject to ATAz-ATL = 0

2.5. Nonlinear Least Squares

(General references: Dennis {10], [11])

2.5.1. Definition of the Problem

The general nonlinear least squares problem has the form

a2

ma"neili{l.i:c f(z)= -i-" F(a)|I* (NLS)

where F(z)ER™ and m >n.
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F is called the residual function of problem (NLS). Let J denote its

Jacobian. Then the gradient and Hessian of f at any point x are given by

v/(z) = J(=z)TF(z)
V(=) = J=)TI(z) + $(z)
where S(z) = f:F.-(I)Vzp.'(’)-

=1
2.5.2. The Gauss-Newton Method

The Gauss-Newton method for the solution of problem (NLS) is an iterative

process which, at iteration k and current point z;, computes a step 8, satisfying

He) I ()8, = -J(5)TF(g,) (2.1)
Hence, Gauss-Newton may be thought of as a Newton-type method with the
Hessian approximation JTJ,

The basic Gauss-Newton method requires that JTJ be nonsingular at each

z;. If we view the procedure as making a linear least squares model

"

e 1 2
minimize = || Js + F ||*
nimize L1 Jo +F |

then it is natural to generalize the step definition to
s = ~J(x)*F(x)

(see Ben-Israel [4] ).
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2.5.3. Local Convergence of the Gauss-Newton Method

2.5.3.1. Gauss-Newton Using the True Jacobian

The following theorem gives conditions for local convergence of the Gauss-

Newton method. (See Dennis and Schuabel [13]).

THEOREM 2.3: For F:R"—-R", define
J(z) = TF(z)TF(z)

and assume that f is twice continuously differentiable in an open convex set

D C R", Suppose that the Jacobian of F satisfies

() J(z) € LivyD)
(ii) There exists a poi.nt. z,ED such that J(z,)TF(zx,) =0
(i) | J) Il £ B forallzeD
(iv) The smallest eigenvalue X of J(x,)T J(z,) is nonnegative.
(v) There exists a nonnegative scalar o such that
I (F I TFE) s S olla-z, s for sll z€D.
If o<\, then, given any cE(l,%), there is a corresponding ¢>0 such that every

possible starting value z, in an e-neighborhood N(z,,e) of z,, the sequence

generated by the Gauss-Newton method

-
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G = 5 - @) Hz ) ()T F(z)

is well-defined, converges to z,, and obeys

cpy

LY Y, |2

co
barsoz |l < <2 la-z, |l +

co+X

Naszoll < = la-zll < lla-= |l

Pf: See Dennis and Schnabel |13].

»

Thus, if S(z,) = 0, then the Gauss-Newton method is locally g¢-

quadratically convergent.

If $(x,) is small relative to J(z,)TJ(r,), then the Gauss-Newton method is

locally g-linearly convergent.

If 5(z,) is too large, we are not guaranteed even local convergence.

2.5.3.2. Gauss-Newton Using an Approximate Jacobian

We would like to consider the consequences when the Gauss-Newton

method is applied using a particular type of approximation to the Jacobian,

Theorem 2.4: For F:R*—R™, define f(r) = %F(I)TF(I) and assume that

20

[ is twice continuously differentiable in an open convex set D CR" satisflying

(6) J(z) = Uz) + V()
(b) V(E=)TU@E) =0

(¢) V(2)TF(z)
Suppose that

0.

(i) J(z)eLip, (D)
()  There exists a point z,€D such that J(z,)TF(z,) = 0
(i#)

(fv)  The smallest eigenvalue X of U(z,)7 U(z,) is nonnegative

U(@z)} < Bforall zeD

(v) There exists a nonnegative scalar o such that

NUGEFVEITFEM < o llz-z i for slizeD.

If o < A, then, given any ¢ G(l,%) there is a corresponding ¢>0 such that for

every possible starting value zgin an e-neighborhood N(z,,¢) of z,, the sequence

generated by the modified Gauss-Newton method
nay = 7 - [U(m)TU(2)] U ()T F(24)
is well-defined, converges to z, and obeys

¢y
2L || 2z, |

cX
laer-zl S 5> llai-e, | +

co+ A
ozl < <2

lae-z fl < -2, |-
Pf: Notation: Let Jp = J(z;), etc.

Assume that 0 < o < ), and let ce(l.%) be given.
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Then U(z,)T U(z,) Is positive definite and hence nonsingular.
So U(z)TU(z) is nonsingular for all z in some neighborhood of z,. In

particular, there is some >0 such that UOTUO is nonsingular and
H(UTUoy' | < 5 for any 2,€ N(z,,1)
Let

A\-co )

cfy

¢ = min(,

I, = Ig - (UOTUO)_lUOTFo

which is well-defined.

-z, = (50-12,) - (UTUoJ U TFo
= ~(UoTUg)"! [UpTFo+(UqT Uo)(z,-20)]
= ~(UoTUo) ' [UsTFo+ UpTF, - U,TF,
+ UgTVy(2,-20)+ UgT Uy(20-2,))

= —(UgT Uy \UgTF. - UpT(F,~ Fo-Jo(,~%0))]

lzi-20 | < IH(UoTUo) i [ll UoTFo=UTF, || + || Uoll | Fo=Fo-Jo(zs~20) II]

c el 2
< £ (ol sz, Il + 62N so-2, |12

Since
zo€ N(z,,¢) implies || ro-=, || < ﬂf_,
~ b
we have

co c A-cao
Normz ) € Sllmo-a )l + [L2) [252) N5o-a.

2\ c By
co+\
= | 2212 0.

! > ) °

And
Ao, . co Mo X

c < - implies Ty < o = 3

giving

|| z,-2, | < eO.

And the remainder of the proof follows by induction

2.5.4. Modifications of the Gauss-Newton Method

Although the Gauss-Newton method can work very well, there are
difficulties when the starting point is far from the solution, the problem has a
large value of the residual function at the solution, or JTJ is singular (or poorly
conditioned). One type of modification which has been used is exemplified by
the method of Hartle& (25], which uscs a line search and computes a damped

Gauss-Newton step based on some appropriate criteria.

An alternate approach is to usc as the approximate Hessian JTJ + B. The
Levenberg-Marquardt method ( [37], [40], [42] ) uses B ==\I, where X\ is a
suitable parameter. This method, while successful in many cases, has local

convergence properties similar to those of Gauss-Newton. Other choices for B
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can be used to Improve the convergence properties. For example, B can be
chosen to be an appropriate type of approximation to S. In NL2SOL ( see

Dennis, Gay, and Welsch [12] ), B is a secant approximation.

2.8. First-Order Sensitivity Analysis of a Second-Order Local

Solution

Sensitivity theory in nonlinear programming is concerned with an analysis
of the behavior of a given nonlinear programming problem under perturbation
of the parameters appearing in the problem. The development below follqws
that of Fiacco [17]). (See also Bank, Gudt'.lat, Klatte, Kummer, and Tammer [2]

and Fiacco [15], [16]).

Consider the problem of determining a local solution z(¢) of the following

problem.
{P(e)] minimize [(z,¢)
z
subject to g;(z,) > 0 i=1,...,m
h,~(:n,c)= 0 =1,...,p

where z€ER" and ¢ is a parameter vector in R,

l(z,u.,w,c) = f(z,)- f:u;g,-(z,c) + f:w,-hj(z,c)

i=1 j=1
denote the Lagrangian of problem P ().

We are interested in analyzing the behavior of a local solution z(€) of
Problem P(¢) when € is subject to perturbation. For simplicity, and without

loss of generality, let ©=0. Also assume that each of the functions is twice

continuously differentiable.

2.8.1, Second-Order Sufficient Conditions for a Minimlzer of Problem

P(€) (See Fiacco and McCormick {18], McCormick [39], and Fiacco [17])

A point z° satisfies the first-order conditions for problem P(e) if there

exist vectors u*€R™ and w’€R? such that

(9 vl(z’u'w'e) = 0

(#) gi(z'e) > 0 i=1,....m
(i) hi(z*e) = 0O j=1,...,p
(iv) u'g(z’) = 0O i=1,...,m
(v) * >0 i=l1,...,m

Condition (fv) is the complementarity condition. If we require in
addition that one of u;* and g;(r°) must be strictly positive, then strict

complementarity will be said to hold.
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The first-order conditions are necessary conditions provided the constraints
satisfy some sort of constraint qualification which describes certain
characteristics that the constraint set must have. For the purposes of sensitivity
analysis, we will make a stronger linear independence assumption which will

imply that appropriate constraint qualifications hold.

a

A point £ which satisfies the constraints of problem P({¢) is a regular
point if the gradients of the equality constraints and the binding inequality

constraints form a linearly independent set when evaluated at Z.

The following lemma gives second-order sufficient conditions for z* to be a

strict local minimizer of problem P(0).

Let

B(z*,0) = {7 ] g;(z°0)=0}

D(z*0) = {i€B(z*0)| 1" >0)
Lemma 2.5: Suppose that the functions deflining problem P(0) are twice
continuously differentiable in a neighborhood of z*. Then z* is a strict local
minimizer of problem P({0) if there exist Lagrange multiplier vectors u*€R™
and w’€R? such that the first-order conditions hold at z* and, further, if for

every nonzero zER" such that

I
o

2Tgg(z°,0) i€D(z*,0)

v

zrvgi(z‘90) 0 iEB(I‘,O)—D(I.,O)

26

vah,-(z‘,o) =0 j=1,...,p

we have that

2T [Vzl(z’,u ’,w’,O)] 2 >0

These conditions are valid even when a vector z of the appropriate type does

not exist, and they may also be applied in the unconstrained case.

2.6.2. Sensitivity Analysis

Conditions for the existence of a function z(¢) may be obtained by
extending the implicit function theorem to the case of mathematical
programming. We are interested in the case in which this function not only
exists but is locally unidue and differentiable. Sufficient conditions for this are

given in the following theorem.

Theorem 2.8: (Basic Sensitivity Theorem; Fiacco [14])

I

(i) The functions defining problem P(¢) are twice continuously diflerentiable in
z, and if their gradients with respect to £ and the constraints are once

continuously differentiable in € in a neighborhood of (z *,0).

(ii) The second-order sufficiency conditions for a local minimizer of P(0) hold

at z*, with associated Lagrange multipliers ¥* and w*.
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(iit) The gradients
v9i(z°,0), for all i such that g;(z°,0) = 0,
and
vh;(z°,0), forall j,
are linearly lndependent.‘

(iv) Strict complementarity holds. (ie, multipliers corresponding to binding

inequality constraints are strictly positive),
then

(s) z° is & local isolated minimizer of P(0) and the associated Lagrange
multipliers «* and w* are unique.

(b) For ¢ in a neighborhood of O, there exists a unique once continuously
differentiable vector function

¥(€) = [=z(e), v(e), w(e) )T
sstisfying the second-order sufficient conditions for a local minimizer of
P(¢) and such that
y(0) = (2*, v’ w’) = y*%

hence z(c) is a Jocally unique local minimizer of P(¢) with associated unique
Lagrange multipliers u(¢) and w(e) ‘

(¢) For ¢ near 0, the set of binding Inequalities Is unchanged, strict
complementarity holds, and the binding constraint gradients are linearly

independent at z(¢).

CHAPTER 3

The Semilinear Least Squares Problem

3.1. The Unconstrained Problem

3.1.1. Problem Definition

The (unconstrained) semilinear least squares problem has the form

L. 1 2
@) = —|| F(a, 2
‘1‘151}1‘12125:, I (z,a) 2 || F(z,a) || (SLS)

where F{z,0) = A(a)z-b; A(a)eR™*"
It is a nonlinear least squares problem in which some of the variables
(z1,%q, - . ., 3,) appear linearly in the residual F. A common problem of this
type is curve fitting in which the model function is expressed as the sum of
exponentials (or rational functions or expressions describing probability

distributions), each term having a coefficient.

The semilinear least squares problem is more commonly known as a
separable nonlinear least squares problem or as a nonlinear least
squares probvlem whose variables separate. However, this terminology is
somewhat misleading. First, there is a more common usage of the word

separable to indicate, for example, problems in which the objective function can

28
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be expressed as [(z,a) = f\(z) + fas(a) or as f(z,@) = f,(x) fo(a) . Second,
although the word *‘separate” connotes a lack of connection between the
variable groups, the most important feature of these problems is that there is a

strong and distinct relationship between z and a .

3.1.2. Ideas for Solution Using the Gauss-Newton Technique

The Gauss-Newton method for the solution of nonlinear least squares
problems will provide a framework for the comparison of several procedures for
the solution of problem SLS. Recall that the Gauss-Newton step is computed

from the equation

T e = -JTF (3.1
so that

8§ = -~ JF
The Jacobian of the residual function F of problem SLS is

J = l"z "a] -

with  J, A(a)

Jo = Difa)z - b
where D indicates the Fréchet derivative.
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The step s has components corresponding to each of the n+k variables in
the problem. We will derive separate expressions for the step s, in the z-

variables and the step s, in the a-variables.

Expanding equation (1) above, we obtain the pair of equations

ATA s, + AT/ s, = -ATF (3.2)

o

JTA s + JTI, s, = -JTF (3.3)

Multiply equation (3.2) on the left by J,T (4*)T and subtract the result from

equation (3.3). This yields
JoT (U-AA o5, = - J,T(I-AA*)F.

Defining

PAl = ] - AAT,
we obtain

JoT Pat U, s = ~J,TPAF

Since the projection matrix PA'(‘ is symmetric and idempotent, this equation can

also be written _
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(P I T (PatJ,) s = -(Pab7 )T P4AR

So take

5a = - (PatU)T PALF.

From equation (3.2), s, may be computed from s, as

s, = —AY(F-J,8,)

The Gauss-Newton process, expressed in terms of the steps we have

derived, can be written

ALGORITHM 0: (Gauss-Newton on the full problem)
) Choose z! and o'
(2) For §=1,2, ' - - until convergence do
(2.1) Test for convergence

(2.2) (P ) PR

I

a
s = -AYF - AY J, 5,

(where these quantities are evaluated at 17 ,af)

-
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(23) o't = o + s,/

oI == gl 4 g

Problem SLS, however, has more structure than a general nonlinear least
squares problem. If the optimal value of a were known, then problem SLS
would reduce to. a linear least squares problem in z. We would like to take

advantage of this simplification.

A straightforward application of this idea is an alternation scheme in which
one group of variables is held constant while work is done on the other set.
This type of method has been applied in the solution of statistical problems. An

example is NIPALS, developed by Wold and Lyttkens [59].

ALGORITHM 1: (Alternation)
(1) Choose o’
(2) For j=1,2, - - *

until convergence do

(2.1) Solve the linear least squares problem

Ce . 1 .
minimize = || A(af)z - b ||2 .
nimize L || A(o)s =5 | (3.0

to obtain 77

(2.2) Test for convergence




(23) 8, = -J,tF

(24) o/t = of + 5,.

The full Gauss-Newton method (Algorithm Q) treats the z and a variables
alike. The alternation method of Algorithm 1 acknowledges the simplicity of
the problem when expressed as a function of z alone by solving an entire
minimization problem In z following each new step in a. The computation of
the step in « is done by treating z as a constant. Yet the problem has no

special structure in this case.

We have already derived an expression for s, in the full Gauss-Newton
case. It may be computed independently of s, and does not require any extra
assumptions on the form of the function. Since the problem has special
structure as a function of z, we can easily find a point £ which is better than
2748, in the sense that f (2,0’ +s,) < f(z7+s;,a/+5,) . In fact, if we choose
2 to be the solution of the linear least squares problem (3.4), then we obtain the
lowest function value it is possible to achieve using a’+s,. So we might try
computing a step in a and then choosing as our next z an optimal partner of
the new a. This is the method proposed by Barham and Drane [3]. (See also

Walling {56] ).

34

ALGORITHM 2: (Gauss-Newton in a; corrected z)
(1) Choose o
(2) For j=1,2, - - - uniil convergence do

(2.1) Solve the linear least squares problem

... 1 1
minimize — || A(a’)z - b ||2
inimize 2| Ala’)z - b |

to obtain z/
(2.2) Test for convergence
(23) 8, = (P ) PIF

(24) o/t = o + 5.

Consider the linear least squares problem which appears in Algorithms 1
and 2. In general, there may be many solutions. If we choose the solution of

minimal norm, we can give an explicit representation for z’ in terms of a’:
27 = A(a) b
Under suitable conditions, we can define a differentiable function

z{a) = Afa)* b

-

and use it to eliminate z from the objective function.
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Define the variable projection functional f: R =R by

fla) = J(z(a)a)

= Sl A@a@*e - b |2

The corresponding residual function will be denoted by
Fla) = -PXa)b.

We may then define a reduced problem

.. 1 2
minimize f = — || -P,H{a)b ||°.
iy 3 I -Patte)s i

After the solution & is computed, # is set to A(&)*b.

The variable projection functional f involves fewer variables than the full
functional f but at the cost of greater complexity. In particular, determination
of the Jacobian of F requires differentiation of the matrix projection function
P,. This difficulty slowed the development of variable projection methods.
Lawton and Sylvestre [38], for example, stated that it is “‘impractical to obtain
the analytical derivative” of F and used finite differences instead. Scolnik [54],
Guttman, Pereyra, and Scolnik [24], and Pérez and Scolnik [49] developed
expressions for the derivative of P,, beginning with simple cases and working

toward the general problem. Golub and Pereyra [21), [22], [23], showed how to
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differentiate pseudoinverses and projection matrices in the general non-full-rank

case and derived expressions for the Jacobian of F and the gradient of f.

Whenever the form of a problem is modified, as with a change of variable,
there is the possibility of adding or deleting solution points, The following
theorem of Golub and Pereyra [22] (and in [21] for the more general case in
which g(z) replaces z) asserts that the change from minimization of the full
functional to minimization of the variable projection functional does not add

any critical points and does not delete the solution of the original problem.

Theorem 3.1: Let f(z,a) and f be defined as above. Assume that A(a) has

constant rank r <min(m,n) for all & in the open set 1 C R*.

() If & is a critical point (or a global minimizer in ) of f{a) and if
& = A(a)* b , then (i,4) is a critical point of f(z,a) (or a global
minimizer for a€N) and f(2,&) = f{a).

(b) If (£,&) is a global minimizer of f(z,a) for €M, then & is a global
minimizer of f{a} in 1 and f(&) = /(a‘:,&). Furthermore, if there is a

unique £ among the minimizing pairs of f(z,a), then £ = A(a&)* b.

This theorem provides justification for solving problem SLS by minimizing
the variable projection functional. The Jacobian of F can be computed by

applying the rules for diflerentiation of projection matrices.
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Ja) = PoiA)ats + (AT @mT)Pte
= Ps#J, - P, (4T MT)F. (3.5)

The Gauss-Newton method applied to the variable projection functional f is

. ALGORITHM 3: (Gauss-Newton on the reduced problem)
(1) Choose a!
(2) For §=1,2, - - - unt:l convergence do
(2.1) Test for convergence. On convergence, go to (3) with & = o’
(22) o = -[PatJy - Py (4T @MT)F|* PLF
(23) ot = af + s,

) i = Afa)tb

Unfortunately, computation of J(a) is expensive. Golub and Pereyra
perform a trapezoidal orthogonal factorization of the matrix A(a) and use a
symmetric g-inverse A~ instead of the pseudoinverse A* (recall that P, will be
the same in either case.) Krogh [30] assumes a full column rank A and performs
a QR decomposition. He also notes that the method extends immediately to the

case in which b is also a function of a.
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Both of these methods must form the tensor D4 since it appears in the
expression for J(a) as both D4 and D4 7. Kaufman [27] drops the second term
on the right-hand side of equation (3.5). Using this approximation to the full
Jacobian speeds the computation and introduces more flexibility into the
handling of the tensor IM. For example, we can evaluate the m X k matrix Ja‘

directly rather than performing the multiplications.

3.1.3. Solution of the Reduced Problem

Algorithms 1, 2, and 3 have been presented as methods for applying the
Gauss-Newton procedure to the original problem, SLS. The same algorithms
may also be thought of as various applications of Gauss-Newton to minimization

of the variable projection functional.

We are interested primarily in the three forms of the step calculation.

(sch = -J,*F
(sas = - (Pata)* PAAF
(sa)s = -[PatJ, - P{A*)T(DLT)F]* P,IF.

Recall that the quantities on the right-hand side are, in each case, evaluated at

a point (z,a) satisfying

A(a)TA(@)z ~ A(a)Td = o.
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The general form for a vector z satisfying this equation is

z = Ala)*b + v,
where y is in the null space of A(a). Then
F(z,0) = A(a)z - b
= A(@A{*b + Al)y - b
= -Pa)b
= F(a)

Clearly, PAlF = F and PAlF = F. So we may rewrite the step

calculations as

(Ba)l = —ja+F
(sa)r = -(PsY)*F
(8as = —[P4, = Py (AT (T)FJ*F.

The step (8,); is the actual Gauss-Newton step for the variable projection
functional. The other steps are approximations to it which arise from
approximating J by some of its terms. Note that (s,)y, which was derived from

the Barham and Drane approach, is exactly the step used by Kaufman,
Ruhe and Wedin [52] have comput‘cd the asymptotic r-convergence rates of

all four of these algorithms for solving problem SLS. They determined that

each algorithm is r-linear in general and that Algorithms 2 and 3 display
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superlinear convergence whenever Algorithm O (Gauss-Newton on the full

problem) does. Algorithm 1, however, always has linear convergence.

Algorithm 3 is just Gauss-Newton on the reduced problem. So, by theorem
2.3, it is locally g-linearly convergent for problems satisfying the conditions of
the hypothesis of that theorem. Algorithm 2 involves a Jacobian approximation
of the form required by the hypothesis of theorem 2.4. Hence, Algorithm 2
displays local g-linear convergence when applied to suitable problems.
Algorithms 0, 2, and 3 are all locally g-quadratically convergent for problems in

which the residual at the solution is zero.

3.1.4. Solution of the Semilinear Least Squares Problem in Practice

The Gauss-Newton method has provided a convenient framework for the
discussion of the semilinear least squares problem. While it is valuable from a
theoretical standpoint, other methods are used in practice. By theorem 3.1, we
can find critical points for the full problem SLS by working with the reduced
problem instead; and Golub and Pereyra have provided expressions for the
gradient of the variable projection functional and for the Jacobian of the
associated residual function. The minimization may then be done using any

appropriate method.

In [22], Golub and Pereyra compare the solution of the full functional and
variable projection formulations of the semilinear least squares problem. The

minimization was accomplished by a varicty of methods requiring different kinds
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of derivative information (function only, gradient of / or f, and Jacobian of F
or F). In general, the variable projection formulation was found to require fewer
function evaluations than the full functional version. However, the greater
complexity introduced by the variable transformation means that each iteration
in the reduced problem formulation requires more work, and there were cases in
which solution of the original problem took less time. The Jacobian
approximation of Kaufman [27] and the revised computations recommended by

Krogh [30] and Kaufman [27] have reduced the work per iteration in later tests.

3.2. The Constrained Problem

3.2.1. Linear Inequality Constraints on o

The variable projection method may be extended to constrained problems

as well. Kaufman has shown (see [23] ), that a problem of the form

. 1
a) = = -5
minimize [(z,0) = 3 || A(a)2 I

subject to HT a > d

is equivalent to

. 1
ms‘:légt.:zc f(a) = 5 I -PAL(a) b ||2
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subject to HT o > d

followed by

2 = A(a)* b

3.2.2. Semilinear Equality Constraints
Constraints of the form
H(a)z = g(a)
will be called semilinear equality constraints. Kaufman and Pereyra (28] have
shown that elimination of constraints of this type from a minimization problem

with a semilinear least squares objective function yields a (more complicated)

unconstrained semilinear least squares problem.

If the constraints are consistent (ie, if g(a) lies in the column space of

H(a)), then the general form for any vector z which satisfies them is

z = H*a)g(a) + Y(a):z

where Y(a) is a basis for the null space of H(a) and z is some vector in

R™ - rank(4)

Substituting this expression into the objective function, we obtain

s(s.2) = 31l (A(@) Y(@) s ~ (b - A(a) H(a)" g(a)) |7

which js a semllinear least squares problem in the variables z and a.




43
The new problem ¢an be solved by a general variable projection method or
by a modification which takes into account the special structure of the

transformed problem.

Let G = AY
p = b-AH*g
F = - Palp .
Then the Jacobian of the new residual function F is
PeXDy) G*p - P (G1)T(DGT) F

As in the unconstrained case, we form a Jacobian approximation by dropping
the second term. Then we may usc the change of variables formulas to write

the first term using the original variables.

Payt |-A H¥DL)~y + A H*(Iy) + (D1)~)
where’y = Y(,‘Y)"’(IJ-AII"'Q) + H+g

Kaufman and Pereyra used a symmetric g-inverse (AY) in place of (AY)"*
in their implementation of this method. Corradi [8] reduced the computation

required still further by replacing //* by an arbitrary generalized inverse HY.

CHAPTER 4

Reducible Nonlinear Programming Problems

4.1. Problem Statement

In this chapter, we will be concerncd with the following three problems.

Il s ()
subject to
gz, @) 20 i=1,...,m,
hi(z,a) =0 i=1...,p,
(z) 20 i=1...,p;

d(z)=0 1i=1,...,p,

r(@) 20 i=1,...,pg
si(a) =0 i=1...,pg

[} ' minimize f(a) = [(z(a)a)
a€R!

subject to




rifa) 2 0
8,-(&) =0

where z(a) solves

(A) ml;neifrgizc t(z)

subject to
gi(z,@) 2 0
hi(z,a) =0
ci(z) 20

df{z)=0

=1, P
=1, +1Ps
= /(z;0)
’_11 'lpl
1 1,. .,p2
! 1, -2 Pa
i =1, o Py
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Problem [ I ] represents the original nonlinear programming problem which we

need to solve; problem [ 11} is the corresponding reduced problem. We will give

conditions under which we can find a point (z°,a") satislying the first-order

conditions for problem [1] by solving problem [ 11 } instead.

4.2. Analysis of the Subproblem

First consider the subproblem (A). "The elements of the vector a are

variables in the original problem, but they act as parameters in the subproblem.

So we msay analyze problem (A) using results from sensitivity theory. We will

use this analysis to derive an expression for ——ld':l(: .

Assume that problem (A) satisfies the hypothesis of the basic sensitivity

theorem at the point (£,&). In particular, the first-order necessary conditions
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hold at (2,4).

Let the Lagrangian for problem (A) be

Howwhie) = f(za) - Sug(za) - 3 ve(s)

=1 i=1
P2 Pa

+ Y Nhi(za) + Y pidi(2)
=1 =]

By the conclusions of the sensitivity theorein, the system of equations

V:l(zva) =0

u;g;(z,a) = 0 i=1...,mn
vig;(z) = 0 t=1,...,p;3
hi(z,a) = 0O 1=1...,p2

d(z) =0 s =1,...,p,

holds for all a in some neighborhood of &. Furthermore, this system may be

differentiated with respect to o, and ils Jacobian matrix is nonsingular.
Differentiating the first equation, we obtain
o 2] o
0 = [(v,*/ Ndz/da) + v,*/ | - ¥ [ui(v.%9;)(dz/da)
i=1

+ 4 (V20) + (V.0 du;/da))]

= B (s 2e)dafda) + (9e)dvi/da) ]

=1
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+ ﬁ [xi(szha’)(dx/da) + X.‘(Vz’a"u’)
=]
H AN Sda) ) + 5 [ (9.2, )da/da)
=}
s di)Nduilda) |

0 = (v,H)Nds/da) + (7o)~ 3> (90:)du;/da)

f=1

- B (@aeeufda) + § (0,h)ax/da)

i=]

+ 5 (0 d)du/da)

Diflerentiating the general g-constraint yields

4(V,90,)T(dr/da) + (Vo) + ¢i(du;/da) = 0.

The other constraint equations give similar results.

In matrix form, the full system of equations resulting from differentiation

with respect to a is

M (-ﬁ-) =N (4.1)

with

==

=

=

"dx/da'
du /da
dy
where e = dvjda
d\/da
Ldu/duj
with v = (u, ..., 4,)7
vo= (v;,...,0)7
A= (A, ... .X“)T
po= (py....0,)7
[
Ay M
AIQI A‘]:-p-;p 0
M 0o o
MsT 0 o
v,
[—ngl » o0y -V;!Ip,]
[‘v:cl ey _chp,]
[ Vzhl 1y V:"ppl
~diog(vy, . . ., v,) M,T
diag(gll see :gp,)

0

0
0
0

0

0
0
0

Mgz My, M

]
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My = -diag(vy, . ..,v,) M, T ( b
My = diag(cy, . . . ,¢,, .
— i o 99,
and I= J 9911
2 I J
N= [—va,l ~Valy - - .40, O -Uhy, ... » Vahy, O ] . L
First consider the equations of (4.1) involving the g-constraints. Since the

value of each binding constraint is zero and the multipliers associated with

M s (n+pi+pa+p3+py) X (n+p,+0p3+ps+p) nonbinding constraints are zero by complementarity, these equations have the

dy .
T (Pt Pt pstp) X K form
N (n+p,+pa+p3+p) X k. :
! "Wg- (Vs i)r (da"/da') = ‘p; (Vai)r
G (di /da) = 0

Suppose, without loss of generality, that the inequality constraints that sre

. where Vo = diag (-u,, . .. =ty

binding at & are: .
G =disg (9,41, --..9,)

gp -+ ..9, and ¢, ..., Cor G is nonsingular by definition, and V. is nonsingular by the assumption of

. . . . strict complementarity. Hence
When convenient, we will refer to groups of constraints or multipliers P 4

collectively. For example,
- (v.9)7 (dz/da) = (v.7)7

di [da = 0

By a similar argument,

- (v,2)7 (dz/da) = 0
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dv /da = 0 . constraints. By the regularity assumption and the results of the sensitivity

. . . . . theorem, it has full row rank.
The equations corresponding to the equalily constraints are simply

By the results of the sensitivity theorem, the matrix
(V:h)r (dz/da) = - (Vah)r

v:d)T (dz/da)= O . -
We have shown that the derivatives of the multipliers corresponding to R’ 0

nonbinding constraints are all zero. This was to be expected since the ‘

is nonsingular. Denote its inverse by

sensitivity theorem shows that constraints which are nonbinding at (£,a&) will

remain ponbinding throughout the neighborhood; and their associated
W, Wy

multipliers must, therefore, remain constant at zero. _
W = T
Wi Wy
Defining (Note that Wy; and Wy, are symmetric).
? = (vq, ... B VIS A SO Dpaby, - ,p,.)r o
ET = [-v,7 I ~V:T l Vih I V,d] Then
FT = [-al | Vaf | Vo | Wad ] dzfda = ~[ W) (V:*l) + W,,T]
=[-vd | 0 | w,h | 0] df/da = - W,T (v,,%) + Wy, T)
The reduced system of equations becomes
Lemma 4.1: (see McCormick [30] )
v RT dx [da Vil _
s 7, _ _ ta fet Bbean n X (91 + g3 + P2+ p,) basis for the null space of . Then
R 0 df/da r : ;

_ Wy = B|[BT (v, 2)B}!BT
R is(g,+ g3+ pa+py) X n and consists of (signed) gradients of the active
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Wy = [I - W, (v,2)]R*

Wy = - Wyl (9,5 w,

where R denotes the pseudoinverse of .

Note:

(i) Every column of B is orthogonal to the gradients of the active constraints.
Hence the second-order sufliciency conditions, which hold throughout the
neighborhood, require that BT (y,2l) B be positive definite (and thus

nonsingular).

(ii) Any generalized inverse Bf may be used in place of K.

Before concluding this section, we note for laters reference that the

definition of the matrix W requires that

WuRT = o

le TET = 1

4.3. Analysis of the Reduced Problem

Now we are ready to consider problem [ Il . We shall assume that the

hypotheses of the basic sensitivity theorem hold for problem (A) at every a of
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interest. Then we have the existence and differentiability of an z(a)

corresponding to each a.

4.4, The Gradient of the Reduced Functional

Lemma4.2: ¢,f = -RT7

Pf:  From the first-order conditions for problem (A),

0 = ¢y,
Py Ps
= V:f - Lu(v.0) - Lvi(v.e)
f=1 =1

+ SNV + S ui(v.d)

f=1 V=1

= 9,/ - )’j".‘(Vzﬂ.‘) - ﬁ”i(vzci)

=] i=1

+ BN + S ui(v.d)
=1

=1

= v,/ + RT7

Lemma 4.3: Let

IT = [ Ves | ~Vae | Vo | vad |

=!"V09' 0 ,Vah,()]
and
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0 = (uy, .o oup,v, .,y N, DA By e ,u,‘)r.
Then I'T9 = FT7
Pf: Each of the extra terms in I'T# contains a multiplier corresponding to a

nonbinding constraint and thus must be zero.

Lemma 4.4: Y.fla) = g,/(2(a)a) + 79
Pf:
Vof= 9o/ + (dz/da)T(9.[)
= o + [(VLD) Wy, + TTW,T|RT?
Vo + 70
== Vaf + I‘Tﬂ

Corollary 4.5: If no constraint involves both z and a, then

Vaf(a) = Vaf(.‘t(a),a)

4.5. The Hessian of the Reduced Functional
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Lemma 4.6
= 1
| vl RT Vsall
T
v3f=v31—lv3,llfl[ﬁ 0 F

v, vl [d:r/da]

= [(d’/da)r | I] Vil VA 1

where the quantities on the right side of the equations are evaluated at the point

(z(a)a).

Pf: Differentiate the expression ¢ f = v,/ + I'T4, which must hold at every
value of a.

VQf = VQI - i‘:“i(Va!’i) = ﬁv,»(vac,ﬂ)

+ EN(Tah) + 3 ui(Vad)

=] F=1

Vil = 93 + (de/da)T(9.4%/)

- et fda) + u(vee:)

i==]

+ w(dz/da)T(92,9)]

- B (aeidri/da) + v(ales)

j=}

+ p'.(fl_(.‘/(l G)T(Vfacl‘ )]
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Ps
+ S (Vahidar;/da) + Xi(Wa’h)

=1
+ M(dz/da)T (9 2hi))
+ El(vadi)(dl‘i/da) + pi(v.2d;)
i=1

+ nilde/de)T (9 24)
= VU + (de/da)T(9,.%) + (d0/da)TT

VA + (dz/da)T(9;,%) + (d0/da)T T

2 =T V:QI RT - V:azl
= Vgl - [V&zl , r ] I3 o T

To show the second equality, note that

(dz/da)T (v 2)(dz/da) = (93.1) Wy (v,%) Wy (Vsa?l)
+ (930 Wy (9,2 Wy T
+ TTw,T (9.%) Wy (V2a™)
+ TT Wy, T(w,2) Wy

= (vzagl) “"ll (VzGQI) - Frwﬂr

and
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(d0/da)T T = (v2,0) W, T - TTw,, T'T
= (Vi) (dz/da) + (93:1) Wi (Vsa®l)
- Tw,F
= (dz/da)T (v, %) (dz/da) + (Vi) (ds/da)

4.6. The Correspondence Between the Original and Reduced

Problems

Theorem 4.7:

(1) Let the function f in problem | I ] be twice continuously differentiable in
z, and assume that its gradient with respect to z Is continuously

differentiable in a.

(2) Let each of the constraints present in the problem be continuously

differentiable in its arguments.
(3) Assume that, for every &, the subproblem (A) has a solution z(&) such that

(a) the second-order sufficiency conditions for a local minimizer of problem

(A) hold at z(&) (with appropriate Lagrange multipliers ),

(b)  the gradients (with respect to z) of those constraints of problem (A)

which are binding at (&) are linearly independent,

(¢)  strict complementarity holds for problem (A) at z(&).

Then problems [ 1] and [ II ] are related in the following way:
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(i) Let (z*,a°) be a global minimizer of problem [ I}. Then z°* satisfies the

first-order conditions for problem (A), @’ is a global minimizer of problem

[1), and f(a®’) = f(z’,a®). Furthermore, if there is a unique z* among

the pairs (z°,a®) yielding the (same) minimal value of f, then

z* = z(a’).

(i) Let «° satisfy the first-order conditions for problem | I |.

(z(a’), a"*) satisfies the first-order conditions for problem | I ).

Pf: We have previously defined the Lagrangian for problem (A) as
P
1(39“ ’”oxv“;a) = ,(’:va) - E uigl'(z'a)

P3 Pg
- Yuci(z) + L hibi(z,a)

i=1 i=1

Pa o
+ Yudi(z) .

im=]

Let the Lagrangians for problems [ I ] and [ II ] be, respectively,

Ll(zvavhvﬁswyxyﬁvi}) = ,(:va) = _ﬁlﬁigl'("'ia) - ﬁﬁici(z)

fe=]

Ps Ps
- Ydri(a) + 'El)\.'/l.'(-'l"a)

fom]
+ g‘f'-'d.'(’-’) + ﬁlf’i’i(a)
= =

Lylewy) = f(a) - SSwira) + Svsi(a)

i=1 f==]

Then

(i) Let (z°,a’) be a global minimizer of problem {1].

Then there are multipliers

such that

. o Al a®
4, 95, ©°, N, 47, b

V:Ll(z’ra.yd .vo‘vi’.ox.vi‘.vu’) =0

Voli(z*0’,8%9° 0 X" w’) = 0

gi(”":a.) 20 i=1...,m

h(z*e’) = 0O i=1...,p
ci(’.)?.ob i=1...,p3
d(z*) = 0 f=1...,p4
ri(@®) 2 0 i=1...,ps
8;(a’) = 0 i=1,...,p¢

4;"g;(z*,a*) = 0 § =1, , D1
b;'ci(z°) = 0 i=1...,ps
;*ri(a’) = 0 i=1...,ps

xa‘. 20 1=1...,m

ﬁi’ z0 e=1 ..., P3

A 2o =1 ...,ps

Clearly, z*

(A).

and a’ satisfy the constraints of problem | 11 | and subproblem



Identify corresponding multipliers. That is, let

.

;' = i i=1...,p

v’ = ¢’ =1, ,» Pa

w '’ B * i=1...,ps

k,’ == i". ) 1, .,ﬂz

ot o=’ i=1...,p,
[ A @

v = j; t =1 ., Pe
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f(z(a®)a’) = [(z*\a’).

So (z(a*),a”) is also a global minimizer for problem [1].

Clearly, if (z*,a") is the unique global minimizer, then 2* = z(a*).

Ps
Voly(e®w'w*) = vouf(e’) - 3 w;°Vri(a’)

fa=]

Ps
+ E by .Vasi(a.)

f=1

Then problem [ Il | and subproblem (A) have nonnegative multipliers

corresponding to inequality constraints, and complementarity holds.

We have that

0 = v, L)(z%0ai’,6" 0,5 i’ v*)

= v, /(") - 4,00 a’)

Pa e Y Ps . . . »
- 2"!' Viei(z’) + YA Vehi(z%e’)

()] =}
Pa e R
+ Y ii'vsdi(z*)
=1

= g, dx*u’ v’ 2\ u"a’)

by the identification of multipliers.

Hence, z* satisfies the first-order conditions for (A}).

By the definition of subproblem (A), we must have that

= Vo/(a'2(0") - P vagi(a’e(a’))

fe==1

+ BN Vahiata(a) - 3w tTaria’)

fe=1 =1
Pe Y Y
+ Eui VQG,'((X )

famx)

= V.,L,(:r(a'),a'.u',v'.w',)\‘,u‘,u‘)

(with the correct identification of multipliers).
Hence, a® satisfies the first-order conditions for problem [ 11 ].

Suppose that there is some feasible # such that

f(8) < f(a®)
Then, by the definition of f,
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‘e;(z°) = 0 1 =1, ,
108) > f(z(a*)a’) wele) Ps

contradicting the fact that (z(a”),a) is 2 global minimizer of problem [f].

Uy ¢ 2 0 1= l) ' 21
Therefore, a® is a global minimizer of problem (1] .

v,”ZO l=l,...,p3

(i) Let a” satisfy the first-order conditions for problem [ I ]. Again, identification of the corresponding multipliers gives the constraint

Define z* = z(a’). and multiplier conditions for problem [ 11 ].

Then there exist multipliers u*,v",w* \*,u*,v* such that

I I I V,L[(I',a’,u’,v',w’,)\’,p',u')
Vaoly(a®,w* ) = 0
= .z’ v* \" ')

@) > o i=1...,p5 =0
s(a’) = 0 i=1...,pe
And finally,
X,"r;(a') =0 i=1,.. -4 Ps

. 0 = VQL"(G.,W’,U’)

wy 20 i=l,...,p5
= Vali(z(a’)a’u’v’w* X\’ v’)

from part (i).

Tz N utat) = 0
gi(z*a’) 2 0 i=1...,p,
hi(z*a®) = 0 i=1...,p

‘-‘(-"’)20 i=l,...,p3
dl'(z’) = 0 1 =1, Py

v;'9:(z%a’) = 0 i=1...,p3,




CHAPTER §

Some Special Cases

In chapter 4, we showed that certain general nonlinear programming
problems of type [I] have associated with them reduced problems of type | I ].
We propose using problem [ II } to deicrmine a point which satisfies the first-
order conditions for problem [ 1 |, and we have derived expressions for the

gradient and Hessian of the reduced functional, f. At this point, it is instructive

to consider special cases of problem | 1 | in which the complexity of the

calculations is reduced.

A study of simple cases is not just an exercise in the 'application of the
general results. Since subproblem (A) must be solved each time the reduced
functional, f , is evaluated, it is reasonable 1o assume that we will be interested
in solving the reduced functional version of the problem only in cases in which

{11 ] or (A) is particularly easy Lo solve.

5.1. Effect of Constraint Presence or Absence

We will use the following notation:
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Constraints such as ¢ and dJ. which involve = only, will be called z~

cons(l.raints.

Constraints such as ¢ and /4, which involve both 2 and a, will be

called mixed constraints.

Constraints such as v and s, which involve a only, will be called a-

constraints.

We have already shown that in the absence of mixed conslriints the

gradient of the reduced functional has the simple form

Vofle) = v./(x{a)a)

The presence or absence of the various constraint types influences the
complexity of the routines which must be used to solve problem [ II | and its
subproblem (A). We are particularly intcrested in cases in which one of these
problems is unconstrained. The following table characterizes the simplifications

which occur when certain of the constraint types are absent,




Type of Constraints Problem 11 Subproblem A Vaf
Present
z, a, mixed constrained constrained v,/ + FTT

a, mixed constrained constrained v.f + 74

z, mixed unconstrained constrained Dol + r7yg
z,Q constrained constrained Taf

mixed unconstrained constrained v +TT o
a constraine) unconstrained ot
z unconstrained constrained i
none unconstrained | unconstrained i

5.2. The Case of n Active Constraints

67

Suppose that, for a given value of a, theve are precisely n constraints of the

subproblem active at z(a) and that the gradients of these constraints are

linearly independent. Then the matrix 7 of active constraint gradients is’

nonsingular and

-

R 0

so that

The gradient of f is still

[ v, RT

| -

dzfda =

ﬁ'-T

-

R-I
- E.T (V:zl) E.l

-F'T
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Vof = v/ + Ty,

but the Hessidn reduces to

Vi = i - WL)R'T
- rrﬁ-r(v:nel)

o~ —

+ F'RT (g, F'T

§.2.1. n binding constraints; no mixed constraints

If, in addition, none of the constraints in the subproblem involves a, then

Vol = TS
and
vir = /.

5.2.2. nbinding constraints; n equality constraints

Let 2 be a feasible point al which none of the inequality constraints is
binding. Assume that there are exactly » cquality constraints. Then we have n

linearly independent constraint gradicnis.

Lemma 5.1: Let & be given. Suppose F salislics:
h(2,6) = 0
d(i) = 0
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c(z) > 0

BT = [Z:4 | w.d] isnonsingular,

Then £ satisfies the first-order conditions for subproblem (A).

Pf: The Lagrangian for the subproblem is

T

I(z,8,0\p0) = [(x.a) - uTg - vTec

+ 2Th + uTd

Let the vector of Lagrange muitipliers be

Let

7= m = -FTv.))

The constraints are satislicd, complementarity holds, and the

multipliers associated with incquality constraints are nonnegative.

Vel = Usf - (Ve9) 0 - (V) v
+ (V)N + (Td)
= V:f + ETW

=v.f - RTRT(v,/)
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5.3. Speclal Structure In the Subproblem

We would like to choose the partitioning of the variables into z and a in
such a way that subproblem (A) has a unique and differentiable solution for
every a and that the subproblem has a structure which may be used to speed its

solution.

5.3.1. Solution of (A) is Unneccessary

Suppose z(a) is an explicit function of a. In this case, z can be eliminated
from the problem entirely (as in the unconstrained semilinear least squares

problem).
5.3.2. (A) is a simple unconstraincd problem
5.3.2.1. The Objective Function of (A) is Quadratic

J(z,@) = a(a) + () + w2TC(a)z

Assume that C(a) is positive delinite for all a.

Then the objective function for the subproblen is
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t(z) = a + b7z + naTCz

(where a, 6, C denote the corresponding functions evaluated at the current

value of a).

and hence z(a) solves

C xla) = -b
So in this case, determination of .(a) requires only the solution of a linear

system.

5.3.2.2. Unconstrained Semilinear Least Squares

In this case, subproblem (A) is a linear least squares problem. It can be
solved at each step, or the minimal norm solution can be chosen and the

variable z eliminated.
?

The Hessian approximations uscd in the various algorithms discussed in
chapter 3 can be related to the Hessian of the original function through the

equation

vzjf V:ogf [ dz/dc\']

vit = [@parr 1] | 70 ol |

(See Ruhe and Wedin [52]).
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5.3.3. (A)ls a Linear Programming Problem

In this case, ‘v,’l = 0. If therc are fewer than n linearly independent
constraint gradients, then the second-order sufficiency conditions fail to hold and
the inverse matrix W does not exist. In fact, z(a) may not even be continuous.
So assume that z(a) is a nondegenerate solution, with n linearly independent

binding constraint gradients. .

Then

so that

dzjda = -R'T
Also,

Vol = v/ + T77

and

Vet = Vil - (VLOFIT - TT B T(v,,%)

If the subproblem constraints do not involve a, then T = 0 and hence

vt = v,/
Vit = gif
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5.3.4. (A) is a quadratic programming problem

In this case, the objective function of subproblem (A) is quadratic in z and
its constraints are linear in z. Since efflicient computer codes for solving
quadratic programming problems are available, subproblems of this form are

also easy to solve,

We defer further discussion of this type of problem until the next chapter,

in which we will consider an important special case.

CHAPTER 6
Constrained Semilinear Least Squares Problems

8.1. Statement of the Problem

We will now consider the case in which the original objective function f

has the form

f(z,a) = %F(ar.a)r F{z,0)

with F(z,0) = A(a)z - b(a)

The subproblem which determines x(a) will be a constrained linear least
squares problem. So we will restrict attention to the case in which the

constraints are linear in z.

The full functional constrained semilinear least squares problem is

CSLS|I) minimize, f(z,0) = % | A(a)r - b |2

subject to G(a)r - Ba) > O
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8.1: F = -Pugia) | b(a)- A(a)R*(a)E
Lemma () Pas(e) [ 4(a) ()R (a)(ar) ] satisfy the first-order conditions

Pf: Let £ be the solution of the subproblem.

Identify the binding and nonbinding constraints at #: (AB)T(AB) z - (AB)T("‘-'”T'E) + (kB)TS‘ =0
- - -RB: + (E-RR*E) > o
RE-~-E=0 (i) . - ( ] )

S s [-RiB: + (6 -R;R*E) = 0
-(Ri-% >0 . (ii) si| (& 7€)

(for each constraint)
Let p = p;+ pa+ p3 + p, be the total number of constraints, and let
- : ' ¢20
¢ = q1+ pa+ g3+ py be the number of binding constraints, ! -
Since the constraints represented in R are nonbinding by definitio., it must

The general form of a vector ¥ satislying (i) is
be true that ¢ = 0.

i =R+ ‘ Then
where 2’ is an element of the null space of R.
(ABYT(AB) : = (ABB)( b - AR*E)

Expressing 2z’ in terms of the basis 13, we obtain Hence
i=1I¢t+ B: ' : o= [(AB)T(AL) )T (6 - F*F)
where £ is some vector in RY, ‘ = (AB)*( b - ATT*E)
Finally,

To determine £, apply the change of variables

T = R'€+ Bz
F(a) = A(a) z(a) ~ b(a) .

= Afa) £ - ¥(a)

to the subproblem.

The problem expressed in terins of = is = A(a)B(a){ - [b(a)- A(a) T*{a)Ea)]
= Pyple) [b(a) - A(n) B (1) &) - [b(a) - A(a) B*(a) E{a) ]

L 1 D+E 12
minimize — || (AB): - b~ ARTE) ||? —
€r? 2 = ~PapHa) [ b(a) - A(n) F'(0)(a) |

subject to ~-R B: + (£-R R*E) > 0

Then there Is a vector of Lagrnnge multipliers ¢ €RP-? such that # and ¢
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8.5. The Jacobian of the Reduced Functional

Now we are ready to give an expression for the Jacobian of F

Lemma 6.2:
Ja) = PygHa) | Jula)- A{x)R* (@) (a)]

T
- Pup [|4(a)B(a)*) B(e)K(a)

where K(a) = Kh(x(a).a)

and K(z,0) = [ 7(a)] F(r.0) - DGT(a)] u + [DNIT(a)] X .

Pf: F(a) = A(a)z(a)- b(a)
So

J(@) = DA(a)z(a) + A(a) (dr(a)/da) - Db(a)

Suppressing the argument, a, we have

J = J, + A (dx/da)
Recall that

d 3 -
‘i‘ = -Wy (v:0’f) - Wy

= Wy, [ATA ' T-aTy,-K) - B*F

= B [(AB)T(AB)' BT A T(AR?T-J,) - K) - R*F

= B(AB)*(AR*T-J,) - B{AB)T(AB)'BTK - R*T
So
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A 7'“; = Pp(AR'T-J,) - [(AB)*|TBTK - AR*T

Then

J = Jo-AR'T - Pyy(4,~ART) - (ABY)TBTK

= Pyg{Ja-AR'T) - Ppl(4B)*)"BTK

8.6. A General Form for the Problem Structure

Unfortunately, the complicated expression obscures the structure in the
Jacobian. So we will rewrite the basic form below, This general structure holds

in both the unconstrained and constrained cases.

F = - P
J=P¥ +Po
where the actual form of the vector v, the matrices ¥ and @, and the projection

matrix P depends on the problem.

Consider the two terms in the expression for J . Since

(Pap®)"(Pyp*¥) = 0

and

(Pan®)'F =0,

we note that the structure which was used to advantage by Kaufman [27) and

by Barham and Drane {3] in the unconstenined case carries over to the general




H(a)z - §a)

|

Cz-p
Di-o
r(a)
s(a)

v v

[

The corresponding reduced problem is

CSLS|11) minimize f(a) = - FTF
acR? 2

subject to r{a) > 0

s(a) = 0

c o o ©o o

where F(a) = A(a) r(a) - b(a)

z(a) solves

e 1
zellz) = — || A -b 2
nu;g;;z't e i(x) 3 | A(a)z - b(a)]

subject to

G(a) z ~f(a)
H(a) z - §a)
Cz-p

Dz-po

2

2

0
0
0.
0
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6.2. Notation

We will use the notation developed in chapter 3. Recall that the matrix R
contains the (signed) gradients with respect to z of the constraints. In the

present case,

- G(a)

For convenience, define

- Hla)
- §a)
s
o

As before, B and Z will denote quantities related to binding constraints, while R
and ~E will refer to nonbinding constraints. B will be a basis for the null space

of K.

The Jacobian of the original matsix function F will be denoted

J=1J J]

where
Jy = A
Jo = (D) x - (I0)

while the Jacobian of F is J.




The Lagrangian of thg subproblem is

Iz u,0 \p0) = % | Az ~b |2 - uT(Gz-8) - oT(Cz-p)

+ MN(Hz-68) + uT(Dz-0)

= %—u Az —b [|* + 07(Rz-€)

where 8 is the vector of Lagrange multipliers.

The Hessian of ! has the following components

v,2l = AT A

Vol = ATJ, + K
vl = 1,74 + KT
v = J,TJ, + 8,

where K = (MT)(4z-b6) - DGT) v + (D‘!T)):

P1 P2
S, - uilvala) + LMi(Vaih)

fa=) =]

= - uT [DG)z - (D¥)] + AT [(DH)z - (DY)
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Note that only the term S, involves second derivatives of the matrices defining

the problem.

8.3. The Gradient and Hessian of the Reduced Functional

The ﬁradient and Hessian of the reduced functional f have already been defined.

Vof = J,T(Az-b) + 67T

- (Va9)T - {(DG)z - DB
0 0
where I' = (Vah)T = (U{)I -Db
0 0

Let

Y = [(4B)*)"BTK
Z = AR'T
Then
Vaf = (JaTJa + 85) - (-2TPy5t2)
~(aTPagJe + J,TY + YTJ, + YTY)
-T2 -0,TPgZ - YTZ + KTR*T)
-(2TJ,-2TP,gJ, - 2TY + TT(RHTK)
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= J TPt Iy~ I, TY - YT, - YTY - J, TP plZ - 2TP, 5L,

+YTZ + 2TY - KTR*T -TT(R*)TK + 2TP,ptz + S,

6.4. The Residual of the Reduced Problem

Since the reduced problem is a nonlinear least squares problem, we would

like to develop an expression for the Jacobian of F as well. We begin by

Investigating the form of F itself.
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case as well. Since the second term docs not contribute to JTF, the full matrix

J is not required in order to compute Lhe gradient of f.

CHAPTER 7

Extension to Problems Without Special Structure

7.1. The Original Problem

In this chapter, we will consider the general problem

minimize [(y)
JERT

subject to  hi(y) = O t=1,...,p
L <y<y,

(where I, and u, are constant)

in which there is no obvious partitioning for the variables.

In the method discusscd previously, we maintained the same partition of
the variables throughout the solution process. However, the conditions implying
existence, continuity, and differentinbility of z(«) given a are all local. So if we
can assume that these conditions hold at every point with any partition, then

we are free to redefine the partitioning whenever it seems advantageous.

x*
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7.2. The Reduced Problem

Rewrite the given problem in the alternate form described in chapter 4.

For convenience, let

minimize f(a) = [(r(a)a)
a
subject to 1, <a <,

where z(a) solves

minimize t(z) = [(z;c)
2
subject to  Ai(z;a) = 0 i=1...,p
¢
L <z <,

7.3. Restrictions on the Partitioning of the Variables
In this case, there is no natural structure in f which makes the subproblem

easy to solve. So we will use the choice of a partition to simplify its structure,

We will require that

(i) z has p elemenis
(it) there are exactly p hinding eounstraints at the solution of the

subproblem.
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Note that if we sassume regularity at every point for the original problem
there can be at most m binding constraints at a given point and hence no more
than m—p variables can be at a bound. Thus the partitioning requirements

above are reasonable.

7.4. Solution of the Subproblem

We will maintain all of the assumptions from the original method. In
particular, the gradients of the binding constraints from the subprobiem will be
finearly independent. In the present case, there are p linearly independent

constraint gradients.

The constraint derivative matrices for this problem are

RT = {-1, -4 v ]. BT = v

rf=[o 0 v,_,l:], T = guh
The Lagrange multipliers are

07T = [vT wT )\T], 7 = X

We showed in section (4.2.2) that

? = -E-T (V:f)

and that any £ which satisfies conditions (i) and (ii) also satisfies the first-order

conditions for the subproblem.
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This means that, given &, we can define z(&) by (i) and (ii). The
nonsingularity of R guarantees diffcrentiability of z(a) in a neighborhood of &
without requiring that z(&) satisfies the second-order sufficiency conditions. The
value of z(&) can be determined by solving the equality constraints; no

minimization of £(z} is required.

7.5. The Reduced Gradient

The gradient of the reduced functional f at & is given by

Vofla) = vof + TT7

= Vo = (Vah)T (V:0)T (9,))
{(where the right-hand side is evaluated at (z(a),&) ).

This is called the reduced gradient and the solution technique we have

Just described is the generalized reduced gradient method.

The reduced gradient method, Wolfc [60], arose as an attempt to generalize
the simplex method of linear programming to handle a nonlinear objective
function. Note that when the constraints are linear the determination of z(a)
involves only the solution of a linear system. This method was generalized to
the case of nonlinear constraints by Abadic and Carpentier [1). Since the
solution methods for the minimization of f and for the determination of z(a) are
not specified, these can be chosen to suit the type of problem being considered.
For example, the implementation by Lasdon, Waren, Jain.' and Ratner [33]

involves a variable metric method and is suitable for moderately sized problems,
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while Gabriele [20] uses a conjugate gradient technique for the solution of large

sparse problems."



CHAPTER 8

The Solution of Reducible Nonlinear Programming Problems

8.1. Using the Ideas We Have Developed

For problems with appropriate structure, the technique of rewriting the
original problem in reduced form can be uscful to both numerical analysts and
users of computer programs. The first group will be interested in tailoring
numerical methods to take advantage of the structure of the problem, while the
second group will be interested in tailoring the problem to fit the available
solution techniques. Consider the constrained semilinear least squares problem
of chapter 6 and assume that there are no constraints that ihvolve a but not z.
In its full form, this is a nonlinearly constrained nonlinear least squares problem.
Since computer programs of this type arc not widely available, the problem
would probably have to be solved using a general method, and no advantage
would be taken of the least squares strueture. The reduced problem, on the
other hand, requires an unconstrained nonlinear least squares program and a

linearly constrained linear least squares problem.

Now consider solution of the unconstrained semilinear least squares problem
of chapter 3, Since the formula for the gradient in this case Is very simple, we

might decide to use a general mcthod which requires only first derivative and
39
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function information. We would need to call an unconstrained linear least
solver during each function evaluation in order to determine z(a), but our work

in coding the function and gradient evalution would be minimal.

Of course, this simple approach fails to take advantage of the least squares
structure of the problem and also of Lhe lact that we can actually eliminate z
from the problem. Golub and Perc._\'m [21] have provided a routine which
evaluates the Jacobian of the reduced functional. The user needs only to supply
instructions for evaluating A and D1. Any suitable nonlinear least squares
program may then be used to complete the solution. If desired, an approximate

Jacobian could be generated instead (as suggested by IKaufman).

Finally, we might want to modify the nonlinear least squares solution
technique Itsell. One of the main justilications for computing J7J in solving
general nonlinear least squares problems is that we need to evaluate J in order
to compute the gradient. In the present case, however, all that is needed for the
formation of the gradient is the partial Jacobian J,. Hence it might be
worthwhile to compute J‘,,TJ° and develop a special secant approximation to

the remaining terms of the Hessian of the variable projection functional.

8.2. Identification of Suitable Problems
We have given suflicient conditions for the uniqueness and differentiability
of a local function z(a). These condilions are not necessary. We were able to

solve the unconstrained semilincar least squares problem by assuming that A
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had local constant rank rather than that A had full column rank. However, it
is not wise to aﬁply the reduction technique blindly. Consider, for example, a
problem involving only mixed constraints, The points a at which the function
will be evaluated will be dctermined by an unconstrained minimization
technique and so are unrestricted. The subproblem, however, may not even

have a feasible region for some values of «.

8.3. Choice of a Solution Technique for the Subproblem

If there are no mixed constraints, the subproblem exists only to provide
values of z given «. In the presence of mixed constraints, however, the
evaluation of the gradient of the reduced functional requires the vector of
Lagrange mulitipliers associated with the solution of the subproblem at the
current value of a. However, many of the solution metho(.ls which could be used

to solve the subproblem use multiplicr estimates and can return to the calling

routine the values of the multipliers at the solution.

If all or part of the Hessian is to he computed, it may be necessary to have
a basis for the null space of the active constraint gradients. In simple cases, this
is easy to provide. If the only constrainis are bound on the variables, then B
will consist of unit vectors. In the case of ‘“*probability” constraints (i.e., the
variables are nonnegative and sum to onc), McCord [38] suggests a basis
containing a row of the form [ -1, . .. ,~1 ] along with appropriate unit vectors.
When the constraints are more complicated, a solution technique that also

operates in the null space scems appropriate. Although such routines ususally
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do not form the basis explicitly, it should be possible to make use of the same
basis information in the determination of z(a) and the evaluation (or

approximation) of the Hessian of f.

8.4. Suggestions for Further Investigation

THe technique of problem reduction described above has been shown to be
advantageous in certain special cases. More testing should be done to identify
the types of problems for which this method is suitable and to determine

appropriate solution techniques for the various parts of the reduced problem.

In the theoretical development, we assumed that the subproblem was solved
exactly. Further analysis is needed 1o account for the actual accuracy to which
this auxiliary problem will be solved. The effect of subproblem solution
inaccuracy may help to specify problems which are sujtable for this method and

also solution techniques which should be used in solving for z in terms of a.

The close relationship between the solution of reducible problems by
forming the alternate problem and the solution of general problems by the
generalized reduced gradient method means that we should be able to take
advantage of work that has been done in the area of reduced-gradient-type
methods. This includes recovery from cases in which the subproblem is not well
defined for certain points. Since the generalized reduced gradient method has
been shown to be effective and robust in comparative studies, see Colville [7|

and Schittkowsky [53], the application of similar methods to problems with




special structure should also yield favorable results.
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