A Matlab Implementation of a Flat Norm Motivated Polygonal Edge Matching

Method using a Decomposition of Boundary into Four 1-Dimensional Currents.
Simon Morgan, Los Alamos National Laboratory, Wotao Yin, Rice University
Kevin Vixie, Washington State University
Supported by Los Alamos National Laboratories, The National Geospatial Agency, Rice University.
The work of W. Yin was supported in part by NSF CAREER Award DMS-0748839 and ONR Grant
N00014-08-1-1101
Abstract: We describe and provide code and examples for a polygonal edge matching method.

Our goal is to implement in Matlab an algorithm to find a score to match two polygons P/ and P2
embedded in a rectangle R of the plane, of height 7/ and width J. Using a pixel based representation of
the polygon we find pixel based representations of the boundary of each polygon, with four matrices
representing top, bottom left and right edges separately. We then smooth these with a Gaussian kernel,
enabling either both matching of coincident edges, and partial matching of nearby edges. Note that we
only match top edges to top edges, left edges to left edges and so on, which makes the matching score
more sensitive.

This method can be used to match polygons which may represent templates and images or occluded
images where only part of the boundary is in its original position. Polygons which by differ by small
deformations can still be matched with this method. The code here can be combined with registration
techniques if required. Following [2], a distance function can be defined using an edge matching score.
E(P1,P2) for the two polygons. We can define it as d(P1,P2)=E(P1,P1)+E(P2,P2)-2E(P1,P2).

The capability of partial matching of nearby boundary or curves is analogous to properties the flat norm
on currents. See [3] for an introduction to currents and the flat norm. Existing implementations of the
flat norm [1],[2] however allow for cancellation between top and bottom edges and cancellation
between left and right edges within the same polygon. This would prevent the match shown in figure 4
of the slender regions protruding to the right of the two polygons that do not intersect.

The four types of edges can also be used to represent unions of oriented curves in the plane. This can
include graphs and trees. In this general setting we can consider the four matrices as a decomposition of
the curves into four currents.

Top

dl
[

Left Right

\ 4 »

Boffom
Figure 1: Correspondences between top, bottom, left and

right boundary edges and oriented curves

With an appropriate sign convention as used in oriented boundary integrals with Stokes theorem, the
top edges can be interpreted as horizontal components of oriented curves going to the left, bottom
edges as horizontal components of oriented curve going to the right, left edges as vertical components
of oriented curves pointing down, and right edges as vertical components of oriented curves pointing
up. For unoriented curve matching we only make a distinction between vertical and horizontal
components, requiring only two matrices; all vertical components of a curve are represented with a
positive number in the vertical component matrix. This unoriented case corresponds to a decomposition
into two varifolds[3], one for vertical and one for horizontal.

The Method

Step 1: Create pixel bitmap versions of polygons
Convert each polygon to an / by J logical matrix (M1 and M?2) representing each polygon in R. Entry
M1(ij) =1 if point (7,j) in R is inside polygon P/ and 0 if not. Similarly for M2.

Step 2: Create the difference matrices of polygonal representations

DTI(ij)=1 if M1(ij)-M1(i-1,j)=1, otherwise DT(i,j)=0. This detects upper edges of polygon pixel
representations. DT/ (1,j)=0; similarly for DT2.

DB and DB?2 detect bottom edges.

DL1 and DL?2 detect left edges.

DRI and DR?2 detect right edges.

Figure 2: Four edges types for each polygon

The top row row of figure 2 shows polygon 1 and the bottom row shows polygon two. Edges types are
shown in red in the order across the page; top, bottom left and right.

Step 3: Convolve difference matrices

Figure 3: Four edges types convolved for each polygon
A compact Gaussian kernel is convolved with each difference matrix.
CTl1=conv(DT1,Gaussian_kernel), and similarly for the others.

Step 4: Compute Edge Matching matrices
EMT=CT1.*CT2, represents top edge matches
EMB=CB1.*CB2, represents bottom edge matches
EML=CL1.*CL2, represents left edge matches
EMR=CRI1.*CR2, represents right edge matches

These are point wise products, e.g.: EMT(1,))=CT1(1,))*CT(i,j).

Step 5: Compute total score

This uses a Euclidean metric on the net vertical and net horizontal components.
EM=((EMT+EMB)*+(EML+EMR)?*)"*

Edge match score=sum(sum(EM));

sum(sum(EM)) is the sum of all entries in matrix EM.

1

Figure 4 (a to e): Left to right:(a) M1 (polygon 1); (b) M2 (polygon2); (c) the two polygons
superimposed, (d) the two polygons superimposed with edge matching shown; and (e¢) EM the
edge matches shown without the polygons.

Notice that in (c) the mid left the two polygons share an edge, but for one polygon (a) this is a top edge
for the other (b) it is a bottom edge. Therefore that shared edge does not match in (d) and (e). The two
dots in (e) are from nearby vertical components of the polygonal edges. Notice also that the the two
slender protrusions of the polygons going to the right are matched, even though they do not intersect.

Further Reading

[1] Simon P. Morgan and Kevin R. Vixie. L'TV computes the flat norm for boundaries.
arXiv:math/0612287
This paper describes the flat norm applied to boundary currents.

[2]Marc Vaillant and Joan Glaun‘es. Surface matching via currents. In Proceedings of
Information Processing in Medical Imaging (IPMI 2005), volume 3565 of Lecture
Notes mn Computer Science. Springer, 2005.

This paper describes the use of current representations of surfaces and the use of Gaussian kernels to
perform a flat norm type calculation

[3]Frank Morgan. Geometric Measure Theory: A Beginner's Guide. Academic
Press, 3rd edition, 2000.

This gives an introduction to currents, varifolds and the flat norm.

http://arxiv.org/abs/math/0612287
http://arxiv.org/abs/math/0612287
http://arxiv.org/abs/math/0612287

Appendix: Matlab code

Sample data:

P1=[30 10;50 10;50 25;40 35;28.1 35;28.1 55;27.9 55;27.9 35;10 35;10 20;30 20;30
101,

P2=[12 10;29 10;29 20;50 20;50 25;40 35;25.1 35;25.1 50;24.9 50;24.9 35;7 35;12
201;

M-file:

function Edge match score=BasicEdgeMatch (P1,P2)
% Note that Pl and P2 are 2 column matrices giving lists of vertex coordinates.
% All entries of Pl and P2 must be >0

% Polygons are only represented by integer lattice points and so Pl and P2 should
% be scaled accordingly. See sample data.

900000000000 000000000000

X=1:x;
X=repmat (X',1,vy);

Y=1:y;
Y=repmat (Y, x,1);

Ml=inpolygon (X,Y,P1(:,1),P1(:,2));
M2=inpolygon (X,Y,P2(:,1),P2(:,2));

9900000000000 000000000000

boundlr=M1-[M1l (2:end, :) ;ML (1,:)];
boundlc=M1-[Ml(:,2:end) , ML (:,1)]1;
bound2r=M2-[M2 (2:end, :) ;M2 (1, :)1;
bound2c=M2-[M2 (:,2:end) ,M2(:,1)1;

DT1=boundlr<0;
DBl=boundlr>0;
DL1=boundlc<0;
DR1=boundlc>0;
DT2=bound2r<0;
DB2=bound2r>0;
DL2=bound2c<0;
DR2=bound2c>0;
DT1l=double (DT1) ;
DBl=double (DB1) ;
()
()

’

DL1=double (DL1
DR1=double (DR1

’

DT2=double () ;
DB2=double (DB2) ;
DL2=double (DL2)
DR2=double (DR2)

DT2

’

’

imagesc ([2*DT1+M1, DB1+M1, 2*DL1+M1, DR1+M1; 2*DT2+M2, DB2+M2, 2*DL2+M2, DR2+M21]) ;

000000000000000000000000

G=fspecial ('gaussian',5,1)/.1621;
G=double (G) ;

’

CTl=conv2)
CBl=conv2)
CLl=conv2) ;
CR1l=conv2 (DR1,G) ;
)
)
)
)

(DT1,G
(
(
(
CT2=conv2 (DT2,G
(
(
(

DB1,G
DL1,G

’

’

’

CB2=conv2 (DB2,G
DL2,G
DR2,G

’

CL2=conv?2
CR2=conv?2

’

figure

imagesc ([CT1 (3:end-2,3:end-2) +M1,CB1 (3:end-2,3:end-2)+M1,CL1 (3:end-2, 3:end-
2)+M1,CR1 (3:end-2,3:end-2) +M1;CT2 (3:end-2, 3:end-2) +M2,CB2 (3:end-2, 3:end-
2)+M2,CL2 (3:end-2, 3:end-2)+M2,CR2 (3:end-2, 3:end-2) +M2]) ;

9900000000000 000000000000

EMT=CT1.*CT2;
EMB=CB1.*CB2;
EML=CL1.*CL2;
EMR=CR1.*CR2;

figure
imagesc ([EMT (3:end-2, 3:end-2) +M1+M2,EMB (3:end-2, 3:end-2) +M1+M2, EML (3:end-2, 3:end-
2)+M1+M2,EMR (3:end-2, 3:end-2) +M1+M21]) ;

EM= ((EMT+EMB) .2+ (EML+EMR) ."2) .~ (0.5) ;
Edge match score=sum(sum(EM)) ;

figure

imagesc ([[M1,-2*M2]; [(M1-2*M2) ,EM(3:end-2,3:end-2)11);
title(['Edge match score(P1l,P2)=',num2str (Edge match score)])
drawnow

pause (0.0001)

drawnow

figure

Displ(:,:,3)=M1;

Disp2=Displ;

Disp2(:,:,:)=0;

Disp2(:,:,2)=M2;

Dispa(:,:,3)=M1;

Dispa(:,:,2)=M2;
Disp(:,:,1)=EM(3:end-2,3:end-2);
Disp(:,:,3)=Dispa(:,:,3)+ Disp(:,:,1);
Disp(:,:,2)=Dispa(:,:,2)+ Disp(:,:,1);
Dispb(:,:,1)=EM(3:end-2,3:end-2);
Dispb(:,:,2)=EM(3:end-2,3:end-2);
Dispb(:,:,3)=EM(3:end-2,3:end-2);

imshow ([Displ, Disp2,Dispa,Disp,Dispb])
Acknowledgements

Thanks for helpful discussions to: Robert Hardt, Sarang Joshi, William Allard, Selim Esedoglu, Pete
Schultz and Robert Sarracino.

