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CHAPTER I

INTRODUCTION

1.0 Definition of the Problem

The basic topic under consideration in this thesis concerns the prob-
lem of determining periodic (or steady state) responses of physical sys-
tems which can be described by nonlinear ordinary differential equationms.
In mathematical terms, it is desired to find all periodic functiomns, of

period 2m , which satisfy the equation
% = f(x,t) (L)

where % =dx/dt , x and f are n-dimensional vectors, and f£(x,t) is
pericdic (of period 27) in the scalar variable t . (Note that the above
definition excludes such periodic solutions as subharmonic oscillations
and oscillations which are not harmonically related to the excitation.)
Unlike the case of linear, time-invariant ordinary differential

equations, where the function £(x,t) in (1) is of the form
£(x,t) = Ax + g(t) , (2)

and A is an nXn constant matrix, there is no theory available which
yields exact’ solutions of the general nonlinear system. Consequently,
since the physical world cannot always be adequately described by linear
equations, there has been considerable effort devoted to the development

of methods which generate approximations to the exact solutions of the

1 The phrases "exact solution" and "true solution' are redundant; how-
ever, the phrase "approximate solution" (which denotes any function of
time that in some sense approximates a solution of (1)) is well estab-
lished in the literature and hence the redundant modifiers will be freely
used to distinguish the solution from its approximationms.
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system (1). These approximate methods have been of many different types,
including graphical methods (phase plane techniques) which are valuable
in analyzing second order systems, simulation using the analog computer,
numerical integration methods using modern high speed digital computers,
and various analytical techniques. Of the analytical methods, the most
widely known are Poincare's method of small perturbations (which was used
in the late nineteenth century by astronomers to analyze the motion of
the planets), the method of successive approximations (with its many
variations), and the method of harmonic balance. A concise presentation
of these various analytical methods is given in the first chapter of
Hayashi's very interesting book [5]. There exists considerable confusion
in the literature regarding the proper nomenclature for the wvarious
methods., Variations such as Galerkin's method, the Ritz method, and
equivalent linearization are either identical with, or very closely
related to, the harmonic balance method -- depending on the precise
definitions used; the same basic idea, when applied to nonlinear auto-
matic control systems, is known as the describing function method. This
thesis will be concerned with the method of harmonic balance (as defined
by Hayashi [5]) or equivalently with Galerkin's method (as defined by
Urabe [8]), and the two terms will be used interchangably. To avoid con-
fusion, the method will be defined and illustrated in Chapter II.

The harmonic balance method (and its variants) has been widely
utilized in practical investigations of nonlinear systems. It has been
shown in many instances to be surprisingly accurate, considering the basic
simplicity of the ideas involved. Unfortunately, it has also been demon-

strated that the method can be quite inaccurate;® an example will be

® See section 7, Chapter 3 of reference [11].
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given in Chapter II which illustrates the variations in accuracy which
can occur.

A well-known difficulty in the application of the harmonic balance
method is the lack of knowledge about the accuracy of the resulting
approximate solution. For example, in applying the first order method,3
in which the approximating solution is a pure sinusoid, it has long been
recognized that the source of error in the method is the presence of
higher harmonics in the true solution; however, the first order method
provides no estimate of the magnitudes of these higher harmonics. There-
fore, one has no idea of the magnitude of the terms which have been
neglected by the method, and hence no indication of its accuracy.

This problem has attracted the attention of many researchers.
Approaches to the problem have been of two distinet types: the develop-
ment of error bounds (together with existence conditions), and the de-
velopment of error estimates and/or corrections for improving the approxi-
mate solution. The research to be presented in this thesis is of the
latter approach; specifically, two methods for generating corrections to
the first order harmonic balance solution(s) will be derived in Chapters
III and IV. The meaning of the term correction as used in this thesis
(and of the improvement in the approximation which it suggests) deserves
clarification. It is not meant that under choice of an appropraite norm,
the distance between the approximate solution and the true solution will
always be reduced by application of the correction methods. What is
meant is that provided certain quantities (to be subsequently specified)
are sufficiently small, then the above distance will generally be reduced

(independent of the particular choice of norm) because additional information

3 The concept of the order of the harmonic balance method will be presented
in Chapter II.
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about the true solution is being utilized. A simple analogy which illus-
trates the above statement is the approximation of a scalar function g(t)

by a truncated Taylor series about a point ¢t,:

8(t) = g(ts) +87(tg) « (£ - ) . (3)
If we now include an additional term in the series

gt Sg(te) +87(t) « (t =) +387(t,) - (£ - )%, (4)

then provided (t-ty) is sufficiently small, the second approximation
will generally be better than the first.
s . th . . .
In a similar sense, the m order Galerkin solutions are corrections
. . X . th

to the first order Galerkin solutions (or altermatively, the m order
procedure may be viewed as a means of estimating the error of the first
order procedure). Provided all harmonic components above the mth are

. th . .
sufficiently small, the m order solutions will generally be better

approximations to the true solution. The two results to be presented

in Chapter III and Chapter IV may be viewed as analytic approximations

to the higher order Galerkin procedures. The approximations upon which
the results are based are generalizatioms of the truncated Taylor series
in (3). These methods will generally improve the first order Galerkin
solution provided all harmonics above the first are sufficiently small.
The question of "how small is sufficiently small' as used in the
preceding sentence has not been considered in this thesis, because this
same question has yet to be answered for the (exact) mth order harmonic

balance procedure. We will return to this subject briefly in the con-
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cluding chapter. Before discussing further the objectives and results
of this thesis (and the results of two other researchers who have also
pursued the estimation and correction approach), a brief summary of the
research which has been directed toward the development of error bounds

and existence conditions will be presented.

1.1 Error Bounds and Existence Conditions for Harmonic Balance
Solutions

Most of the research related to the problem of inaccuracies in the
harmonic balance method (or its variants) has been in the area of error

bounds and/or existence conditions. The harmonic balance method (as

e

well as most all other analytical metheds of nonlinear analysis) is
basically heuristic in origin, and efforts to provide it a firm mathematical
foundation have been generally frustrating. R.W. Bass [l] has considered
the mathematical legitimacy of equivalent linearization, and has proposed

a criterion for determining its applicability. Unfortunately, as Bass
himself points out, his results are quite difficult to apply in practice.
The questions of existence are quite complicated. There may exist no
periodic solution to system (1), or alternatively there may exist one or
more periodic solutions (the interesting phenomenon of jump-resonance is

a well-known consequence of the latter occurrence). The harmonic balance
method may generate multiple approximate solutions when in fact there is
only one true solution, and vice versa. Lamberto Cesari [2] has considered
the question of the existence of an exact solution in some neighborhood

of a harmonic balance solution and has exhibited an algorithm which may
establish existence, and (in the affirmative case) may provide an error
bound. The indecisiveness implied in the above statement is a conse-
quence of the manner in which the results are stated: there is no con-
structive procedure for verifying whether or not Cesari's conditions

for existence can be satisfied.
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Minoru Urabe [8] has determined conditions under which the existence
of an exact solution implies the existence of a Galerkin solution of
sufficiently high order (and vice versa), together with an error bound.
Urabe, in a subsequent paper co-authored with Reiter [9], presents a
numerical method for approximating (as closely as desired) the high order
Galerkin solutions necessary for applying his existence conditions. The
numerical method of Urabe and Reiter is significantly related to the
analytic methods of Chapters III and IV, and hence will be discussed fur-
ther in the next section and in later chapters,

J.M. Holtzman [6] uses a formulation similar to that used by both
Cesari and Urabe, and he develops sufficient existence conditions which
can be stated quite concisely; a practical difficulty is that his condi-
tions are stated in a manner which is reminiscent of Liapunov's stability
theorems, in the sense that a function must be found which satisfies
certain conditions -- and unfortunately no constructive procedure for
obtaining the function is given. Both I.W. Sandberg [7], and Garber/
Rozenvasser [4] have established results which can be interpreted graph-
ically; however, in the case of the latter researchers, a fundamental
difficulty in the application of some of their results has been recently
noted by G.W. Duncan and R.A. Johnson [3]. Sandberg's results are
relatively easy to apply and are of an intuitively pleasing form. The
restrictions he imposes upon the form of the nonlinearity £(x,t) are
somewhat strange from a physical standpoint, however.

In general, all of the above approaches have in common the fact that
they were derived from ideas of contraction mappings and various fixed-
point theorems from the theory of functional analysis. They differ pri-

marily in their restrictions imposed upon the form of the nonlinearity
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f(x,t) and upon their choice of a Banach space? in which to frame their
results.

In the remainder of this thesis, we will leave the above questions
of existence (and the related methods for bounding the error), and con-
sider instead the problem of improving the approximation generated by the
first order harmonic balance method, assuming the existence of both a

true solution and a Galerkin solution.

1.2 Objective of This Thesis

The objective of the research leading to this thesis was to answer
the following question: assuming the existence of a periodic solution
to the system (1), and given the first order harmonic balance (or
Galerkin) approximation to this solution, how can an improved approxima-
tion be obtained ~- subject to the constraint that the analytic effort
required be comparable to that of the first order harmonic balance pro-
cedure? The reason behind the imposed constraint is that although in
principle® one can obtain an approximate solution of arbitrarily small
error by employing a Galerkin procedure of sufficiently high order, in
general only the first order procedure can actually be applied in practice
because of the very rapid increase in analytic computational difficulty
with increasing order of approximation. The analytic effort required for
both the first and second order Galerkin method will be illustrated in
Chapter II.

Urabe and Reiter [9] have studied methods of numerically approximat-

ing high order Galerkin solutions. As will be seen in the next chapter,

“4See Holtzman [6] for a concise discussion of these differences.

SAssuming that the true periodic solution is an isolated solution.
(See [8])
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the difficulty in applying the general mt:h order harmonic balance method
arises from the necessity of analytically expanding the function

m

f[ £ (x4, cos jt + xy, sin jt),t] (5

j=0
in a Fourier series. Urabe and Reiter approximate the integrals neces-
sary for determining the Fourier coefficients of (5) with finite sums,
and then use Newton's method to obtain an approximation to the mth
order Galerkin solution. In Chapter IV of this thesis, an iterative
procedure will be presented which is shown to be related to a Newton
procedure; the method is somewhat similar to that of Urabe-Reiter, except
that their method is, from the outset, a numerical procedure, whereas the

iterative method of Chapter IV is primarily an analytical method. The

only numerical aspect to the latter method is that an algebraic system
Az = b (6)

must be solved at each stage of the iteration, where A 1is a square
matrix of dimension no smaller than 4X4. The elements of A and b in
(6) are all evaluated analytically, before the iteration begins; in the
method of Urabe and Reiter, one also solves a system similar to (6), but
in that case, the elements of A and b are computed at each stage of
the iteration by numerical integration. The approximate solutions ob-
tained by the two methods are different because their sources of error
are different: in the method of Urabe-Reiter, the source of error is in
the numerical integration; in the iterative method of Chapter IV, the
source of error lies in the truncation of a Taylor's series expansion.
An advantage of the method of Urabe and Reiter is that by increas-

ing indefinitely the accuracy of the numerical integration (at the cost
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of increased computer usage), their approximate solutions can be made to
approach the mth order Galerkin solution as closely as desired. Such

a capability does not exist in the method of Chapter IV, because to include
any additional Taylor series terms would require an impractical amount

of (analytic) computational effort. However, the method of Chapter IV

has the advantage of being an analytical, rather than a numerical, method.
For example, suppose that the required analytic evaluations of A and b

have been performed for a third order scalar system

00

= f(is}.{, X,t)

where the function £ has the form

£(%,%x,x,t) = g o, + % By%Y + ; vixd + ; M cos jt , (7)
j=1 j=1 j=1 j=1

and p, g, ¥, and s are small integers. The important point is that
once the original analytic work has been done, then for each iteration
(and for each new choice of the parameters oy, By, v:, and Ty) no addi-
tional analytic computation is required. It is only necessary to numeri-
cally solve the linear algebraic system. Consequently, if it is desired
to investigate the system (7) for a large number of different parameter
values, the method of Chapter IV can result in considerable savings in
computer usage.

One other approach is pertinent to this thesis: Hayashi ({5], section

1.5) proposes that the third® order Galerkin solution be approximated by

a linearization of the third order equations about the first order solution.

G_We consider the third (rather than second) order method because atten-
tion will be restricted in Chapter III to nonlinearities £(x,t) which

are odd in x (in which case the second order method is degenerate).
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A set of approximations will be presented in Chapter III which allows the
linearized equations of Hayashi to be obtained with less effort than is

required by his method.

1.3 The Nature of the Results Obtained

Before beginning the detailed derivation and illustration of the
results in the remainder of the thesis, in this section the qualitative
aspects of the two methods will be briefly discussed. Hayashi approxi-

mates the Fourier expansion of
f[A cos t + B sin t + C cos 3t + D sin 3t,t] (8)

which is required in the third order Galerkin method with the Fourier

expansion of
£[(A+€6A) cos t + (B+e6B) sin t + €5C cos 3t + €8D sin 3t,t] , (9)

where all terms of order greater than unity in € are ignored as the ex-
pansion progresses. The meaning of the phrase "progression of the expan-
sion" deserves some comment at this point. In introducing the topic of
this thesis in section 1.0, no restrictions were imposed on the form of
the nonlinearity £(x,t) in (1); for practical reasons, we will be con-
cerned with polynomial nonlinearities, i.e., attention will be restricted
to the class of functions £(x,t) in which each of the n components fi
of the vector £ are polynomials in the n components X, of the state
vector x . Specifically, the reason for this restriction is that in

practice it is very difficult, if not impossible, to analytically expand

expression (5) in a Fourier series for nonlinearities other than poly-

nomials.” An exception in the special case of m =1 and £(x,t)

7 And, as will be demonstrated in Chapter II, even in the polynomial case
it is not practical to amalytically expand (3) for m > 1, except for
very low order polynomials.



I.11

piecewise-linear in x : such evaluations have been performed in connec-
tion with the describing function method of automatic control theory.

When £(x,t) is polynomial in x , the Fourier expansion of (5) is
obtained not by evaluating the integrals which define the Fourier coef-
ficients, but rather by direct algebraic expansion using trigonometric
identities; this expansion process will be clearly illustrated in Chapter
IT.

We further restrict the nonlinearity £(x,t) to be continuous in
t . This results in no loss of generality in practice, however. For
example, if the mth order Galerkin method is used to analyze the steady
state response of a nonlinear system excited with a squarewave, the
excitation must be approximated with a finite number of terms from its
Fourier series (and only the first m terms affect the Galerkin solution).

By ignoring all terms in the expansion of (5) of order greater than
unity in € , Hayashi obtains an approximation to the third order Galerkin
solution in which only the first order effects (in the sense of a truncated
Taylor series) of the third harmonics are taken into account. In Chapter
III, a set of approximations is presented which (for odd nonlinearities)
allows Hayashis equations to be obtained by consideration only of the

first order Galerkin results. If the Fourier components of
f[A cos t + B sin t,t] (10)

are known analytic functions of A and B , then it will be shown how
Hayashi's equations can be obtained by the substitution of various simple
algebraic expressions (such as A + C, A +D, B + C, and B + D) for the
parameters A and B in (10). A saving of analytic effort is thereby
obtained by eliminating the necessity of expanding £(x,t) when x 1is a

sum of more than two sinusoids.
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The second result to be presented in this thesis (Chapter IV) is an
iterative method which can use the first oxder Galerkin solution as a
starting point. The method possesses three significant features: first,
its accuracy for oscillations® whose harmonic content decreases slowly
with increasing frequency can be comparable to the third (or higher)
order harmonic balance method, even though the analytical effort neces-
sary to apply the method is comparable to that required for the first
order harmonic balance procedure. Secondly, the method generates esti-
mates of as many of the harmonics of the oscillation as desired, with no
increase in required analytic effort; the only price one pays for addi-
tional harmonic information is 2 larger linear algebraic system which
must be solved numerically at each stage of the iteration. Finally, in
contrast to the general mth order Galerkin procedure, the method pro-
duces an indication of its own accuracy by estimating the magnitude of

the terms which have been neglected in the approximations used.

® We have implicitly assumed that the dominant Fourier component in the
oscillation is the fundamental; the approximations upon which the itera-
tive method is based are not physically meaningful if this assumption is
not satisfied.
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CHAPTER II

THE HARMONIC BALANCE METHOD (GALERKIN'S PROCEDURE)

2.0 Introduction

In this chapter, the harmonic balance method [5] will be discussed.
First, the basic motivation behind the procedure will be presented, and
two simple examples will be given to illustrate the ideas. The general
mth order harmonic balance method will then be precisely defined. Finally,
the first and third® order procedures will be applied in detail to a spe-

cific example which will be used later to illustrate the results of the

thesis,

2.1 Motivation Behind the Method

Consider the first order vector differential equation
% = £(x,t) (1)

where x and f are n-dimensional vectors, x = dx/dt , and f 1is
periodic (of period 2ﬂ)2 in the scalar variable t . Hereafter, in the
interest of brevity the term "periodic" will always imply periodicity in

t of period 2m. The Galerkin procedure is well defined for an extremely
broad class of systems (1). The functions £(x,t) are restricted only

to the extent that the time function

y(t) & £[x(e, 07 ,

! In the example chosen, all even harmonics are identically zero and
hence the second order procedure is degenerate.

2 Restriction of the period to 2m of course results in no loss of
generality.
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(where ;kt) is periodic and possesses a finite number of Fourier com-
ponents) be expandable in a Fourier series. However, in the two results
to be presented in Chapters III and IV, attention is restricted to the
class of systems (1) in which f£(x,t) is polynomial in x and continuous
in t . As was explained in Chapter I, these restrictions are based on
practical considerations and are more restrictive than is theoretically
necessary.

Given any periodic differentiable function ;(t) , the functions

f(;(t),t) and ;(t) are also periodic, as is their difference

A

NOERNCORE

* - £(x(t),t) . (2)

In the above definition, €(t) 1is referred to as the equation error
or the residual. The functional notation €°(x,t) will be used in lieu
of e(t) when it is desired to emphasize the dependence of the equation
error upon the periodic function ;(t). If X(t) 1is a periodic function,

and if
e (X(t),t) =0, (3)

then clearly Xx(t) is an exact solution of (1). Assuming a periodic
solution X(t) to (l) exists, a reasonable way of obtaining an approxi-

mation to X(t) is to assume some functional form for x(t) ,
x(t) = x(t, a;, a2, ..., ag) (&)

and then choose the unknown parameters in (4) above such that

e'(;kt, a3, 83, .+« 5 3),t) is minimized in some sense. In particular,

the basic idea behind harmonic balance is to assume for ;kt) the form
m

x(t) = = (xy. cos jt + xy, sin jt) (5)
j=0
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and then choose the parameters x;., Xy,, j=0,1,...,m so that as many
as possible of the low-frequency components of the equation error are
zero. This procedure will be precisely defined in the next section;
however, to avoid obscuring the simplicity of the basic idea of harmonic
balance with the mathematical details, consider the following simple

illustration of the method: given the scalar equation

X+ox +8x° =Ccos t, (6)
assume for x(t) the form®

x(t) =A cos t , (7

where A 1is an unknown parameter whose value is to be determined by the

harmonic balance method. The equation error is

e’ (%, t) =k +ox + B2 - Ccos ¢ . (8)
Substituting (7) into (8), we have

e(t) = [-A cos t] + o[A cos t] + B[A cos t]® - C cos t . (9)

Using the trigonometric identity

cos® t = %-cos t +-% cos 3t , (10)
we can expand (9) in a Fourier series:
e(t) = [(e-1)A +-% BA® - Clcos t + [% BA®Jcos 3t . (11)

The principle of harmonic balance asserts that the parameter A should

8 A sin t term is not included in (7) because equation (6) is known to
be conservative; if a sin term were included, the procedure itself would
subsequently specify that its coefficient be zero.
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be chosen so that as many as possible of the low-order harmonics of e(t)

be zero. Hence, we choose A such that
3 ops
(o-1)A + z BA® - C =0. (12)

Equation (12) is referred to the determining or bifurcation equation.

Notice that since (12) is a nonlinear algebraic equation, multiple roots
are possible. This allows the harmonic balance procedure to approximate
the multiple steady state solutions which are responsible for the jump
resonance phenomena frequently observed in nonlinear systems.

In addition to systems described by equation (1) (which are commonly
referred to as driven, or forced, systems), the harmonic balance proce-

dure is also applicable to autonomous systems of the form

% = £(x) (13)

where the function £ 1is not an explicit function of the scalar t , and
the period of oscillation is unknown. A simple example is the Van-der-Pol

equation

¥ - 8(l-x")% + Tk = 0 . (14)
Assume for ;kt) the form
x(t) = A cos (wt) . (15)

A sine component is omitted since in this case it is clear that if
x(t) is a solution of (14), then so also is x(t + T) , where T is

arbitrary. The equation error is

e(t) = [-0FA cos (wt)] + 6[1-CA cos® (wt)] - [-wA sin (wB]+N[A cos (wt)].

(16)
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Again by the use of several trigonometric identities the equation error

is expanded in a Fourier series to obtain

e(t) = [(ﬂ-wz)A] cos (wt) + éwA[%'Az-I]sin (wt) +-%'6wA3 sin (3wt) .

(17)
The determining equations are therefore
(M-o*)A=0
émA(% A2 - 1) =0 (18)
and hence the harmonic balance solution is
x(t) =2 cos (T t) . (19)

2.2 Definition of the General mth order Harmonic Balance, or Galerkin,
Procedure

Stated concisely, the mth order harmonic balance approximation to
periodic solutions of system (1) is a trigonometric series of order m ,
m
X (t) = T (xy. cos jt + x4 sin jt) , (20)
j=0

which exactly satisfies the related system

1 W 217
X == Z {(cos jt) ‘ff(x,s) cos js ds
' j=0 o
27 (21)
+ (sin jt) f f(x,s) sin js ds} .
o

The relationship of equation (21) to equation (1) is clearer if equation

(1) is rewritten as

2m
. 1 &
X == 2 {(cos jt) f f(x,s) cos js ds
j=0 (o] (1’)

2T
+ (sin jt) j f(x,s) sin js ds} ;

o
equations (1') and (21) are identical except for the upper limits on the

summations. Solutions of (21) are obtained as follows: for notational convenience,
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the Fourier components of £(x,(t),t) will be denoted with braces as

1 2m
{£(xz,8)} e == [ £0x2(5),8] - cos js ds
(o]

j=0,1,...
(22)

1 27
{£(xg,t) s == I f[x,(s),s] - sin js ds .
o

Note that although x. has no harmonics of order greater than m , the
function f£(x;,t) in general possesses harmonics of all orders. There-

fore f£(x,(t),t) is written

£(xz(t),t) = £ ({[£(xz,t)}ya cos jt + [£(x;,t)}y, sin jt) . (23)
j=0
From (20),
m
%.(t) = Z (jxys cos jt - jx,. sin jt). (24)
j=1

Therefore the equation error is

€(t) -é }.{2 - f(xn)
m x
= T (jx3s cos jt - jxy. sin jt) - T ({f(x;,t)};.cos jt
j=1 j=0
+ {£(x;,t)}ys sin jt)
m
= Z[(ijs - {f(xn’t)}.ﬁc) cos jt + ('jxjc-{f(xn:t)}Js)Sin Jt]
j=0
+ & ([£(xz,t)}ye cos jt + [E(x5,t)}y, sin jt) . (25)
j=mtl

Hence if the (2m + 1) parameters X,., Xj., X35, j=1,2,...,m can be chosen

such that the (2m+l) determining equations
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{£(x,(t),t)}e. = 0O
jxgs = {E£(x(E),t) Y. =

-ijc - {f(X=(t)’t)}Jl =

[
o

(26)
j=1,2,...,m

I
o

are satisfied, then x_.(t) 1is a solution of (21). In this thesis, the
(2m + 1) roots of (26) will be referred to as the Galerkin estimates
of the exact Fourier coefficient of the oscillation. It should be noted
that the analytic effort required to obtain equations (26) for a partic-
ular system lies in expanding the function

m

f[ 2 (x5, cos jt + xy, sin jt),t] (27)

j=0
in a Fourier series; as will be clearly demonstrated in the following
sections, the difficulty increases very rapidly with increasing m .
Of course, it is also true that as m increases, the number of (coupled)
nonlinear algebraic equations (26) which must be solved increases. This
is not a significant problem in practice, however, since even for small
m the equations must generally be solved numerically, and consequently
larger values of m merely require more computer time for solution;
the actual limiting factor in the application of the method for m> 1
is the necessity of expanding (27). It is for this reason that the use
of the Galerkin method as a practical tool has been largely limited to

the first order procedure.

2.3 Application of the First Order Procedure

In this section, the first order harmonic balance procedure will be
applied to an example; the same system will be used in Chapters III and
V to illustrate the results of the thesis. Consider the second order

differential equation
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X +oax + Bx +vyx® =T cos (wt) . (28)

Equation (28) is the classical Duffing equation. There were two reasons
for choosing this particular system to illustrate the thesis results.
First of all, the equation has been widely studied; hence the computer
programs which were written to generate the numerical results reported
in later chapters could be checked against known results in the liter-
ature. Secondly, it was felt that the ideas to be presented later would
be clarified if a comparison between the first and third order Galerkin
results could be made; however, the third order procedure is impractical
to apply except for very low order polynomial nonlinearities. This latter
restriction, together with the practical importance of odd nonlinearities,
naturally led to the choice of the cubic term in (28).

For a first order harmonic balance solution, the approximation is

of the form
X(t) = x;, cos wt + x;, sin wt . (29)

To apply the procedure, we must expand

e “(x(t),t) =% + 0% + 8% +vx3 - T cos wt (30)

in a Fourier series. Of course, the only term in (30) which causes any
analytic difficulty is the nonlinear one; because the required analytic
effort for both the first and third order procedures will be an impor-
tant consideration in later chapters, the necessary manipulations are
shown in detail below. For reasons which will become apparent in Chapter
IV, the expansion is performed in a more general manner than is actually
necessary for the present example; instead of expanding the expression
3

(%)3 S 1 (A cos wt + B sin wt), where A=x;. and B=xX;; , (31)
i=1
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we instead expand*
3
T (A; cos w,t + By sin w,t) . (32)
i=1
The expansion of expression (32) and other similar expressions will be
repeatedly referred to in Chapters IV and II. Hence it will be convenient
to define a function h by
k

T (A; cos wst + By sin w,t)
i=1l

h(A;,By ,w; 3A2,B2,Wa5 .+« 54, By ,Ux)

e

h(A,,B,,w;:i=1,2,...,k) .

Each of the two methods (and combinations thereof) employed above for
denoting the arguments of the function h will prove useful.

Proceeding with the expansion of (32), we have

o
[}

(A; cos w t + B; sin wt)(Ay cos wat + By sin wyt)(Az cos wat + By sin wat)

(A, cos w;t + By sin w;t)[AzA; cos wyt - cos wst .
(32))
+ A3B2 cos wat sin wzt + AzBa coSs wzt sin UJat

+ BBy sin wpt sin wat] .

We now make use of the trigonometric identities for products of sinusoids

to obtain

h = (A, cos w;t + B, sin uwyt)[(AzA; + ByBg) cos (wp-wg)t
+ (A2A3 - BzBa) cos (U)z + U.)a)t + (A2B3 - Ang) sin (wa-UJQ)t

+ (AzBa + AaBg) sin (wa + wz)t]

4 It is important to note that the number of trigonometric multiplications
required for expansions (31) and (32) is the same in each case; (32) is
more difficult to evaluate only to the extent that more "bookkeeping' is
necessary.
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or

%-[AI(A2A3+B2B3) cos wyt cos (wg-wp)t

+ By (A2A3+B2B3) sin wyt cos (wa-wp)t

+ A; (A2A3-B2Bs) cos wit cos (wptws)t

+ B, (ApA3-BzBs) sin Wyt cos (WaHns)t ..
+ A; (AgB3=-A3Bz) cos Wt sin (wa~-wp)t G2
+ By (AzB3~-A3Bz) sin w; t sin (wz-wy)t

+ A;(AgBa+A3By) cos uwyt sin (Watwp)t

+ Bl(AzBa'f‘Ang) sin U.)lt sin ((Da'{'u-)e)t] .

Again, using the trigonometric identities, we finally obtain the desired

result:

h(A; ,B,,w; 3A2,B2,W3A3,B3,w3) =

% [[Ay(ApAg+B;B5) + By (AzBa-AgBy)] cos [wy=(wg-wg)]t
+

[A;(AzAg+B2Bs)

B;(A2B3-A3B3)] cos [wyHwz-wz)]t
+ [Al(AgAa'BzBa) + Bl(AzBa’*'AaBg)] cos [wI-(wa-KDa)]t

+ [A;(A2A3-B2Ba) - B;(A2B3+AzBz)] co

(%]

[ Hwatwp )]t (33)

A;(AgBs-A3B2)] sin [w;-(wz-wp)]t

+ [B1(A2A3+B2B3)
+ [BI(A2A3+B2B3) + AI(AZBS-ASBZ)] sin [w1+(w3-u.)2)]t
+ [By(A2A3-B2B3) - A;(AgBa+A3Bz)] sin [wy -(wa+w,y)]t

+ [By(AzA3-BzBs) + Aj(AzBa#i3B3)] sin [wyHwadwp)]t] |

Equation (33) will be extensively used in Chapter V in applying the iter-
ative method (to be presented in Chapter IV) to an example., For the pre-
sent, we are interested in the first order Galerkin method, and hence

equation (33) is specialized for expression (31) by the substitutions

A, = A, =A5 =x,,

B, (34)

i
td
[
n
td
W
n
~
'™
(2]

W =W

n

&
1
€
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Equation (33) then becomes

(x)3 = [% X2 +%x1cx1,2] cos wt
+ [% Xg 5> +% X1.°%;,] sin ot

1 3 2 (35)

+ [F X2 - 7 ¥1c¥y1a ] cos 3ut

+ [~ -}: Xy 5> +%x1c2x1,]sin 3wt .

The Fourier expansions for the linear terms in the equation error (30)
can be obtained by inspection:

{Xx +ox + Bx - T cos wt}y, = -uPxy, + ouxy;s + Bxy, - 1
and (35%)

{Xx + ax + Bx - M cos wt}y, = -0°x;, - oux;, + Bxy, -

Therefore, from (30),(35), and (35°), the first order Galerkin determining

equations are

3 3
[(B-0)xy, + oumy, - M+ V(& %2+ 7 X Xy52)] = 0 6

3 3
[(B-wz)xls - muxlc +Y(Z xlsa +Zx1c2x15)] = 0 .

2.4 Numerical Results

In spite of the fact that the first order harmonic balance method
essentially ignores all harmonics higher than the fundamental, the accu-
racy of the approximation can nevertheless be quite good. As one would
expect, the greater the harmonic content of the actual solution, the
poorer is the first order harmonic balance approximation. To illustrate
the variations in accuracy which can be encountered, the results obtained

by solving the determining equations (36) for the specific system

X + 0.3% + 10x - 0.1x> = 8 cos 0.9t (37)
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are compared below with the exact solutions obtained by numerical inte-
gration. The particular values of the parameters in (37) were chosen so
that the harmonic content of the oscillations would not be negligible in
every case. (The same parameter set will be used in Chapter V, except
that the driving frequency w will be varied over the interval [1,4].)
There are three periodic solutions to equation (37). The true
solutions, through the Sth harmonic, are followed in each case by the

corresponding first order Galerkin solution.

X,(t) =<9.6 cos .9t + 7.4 sin .9t - 1.2 cos 3(.9)t - 2.4 sin 3(.9)t

+ 0.7 cos 5(.9)t - 0.16 sin 5(.9)t + ...

¥1(t) = -10.6 cos .9t + 4.4 sin .9t
x2(t) =9.3 cos .9t + 6.6 sin .9t + .57 cos 3(.9)t - 2.5 sin 3(.9)t

- 0.66 cos 5(.9)t + 6.09sin 5(.9)t + ...

(38)

*2(t) = 9.9 cos .9t + 3.8 sin .9t
xa(t) = 0.87526 cos .9t + 0.025890 sin .9t

4+0.0057 cos 3(.9)t + 0.0024 sin 3(.9)t

-0.00003 cos 5(.9)t - 0.00001 sin 5(.9)t + ...
%Xa(t) = 0.87523 cos .9t + 0.025876 sin .9t

Notice that x5(t), which is very nearly sinusoidal, is approximated quite
closely by the harmonic balance solution; however, in the case of x,(t)
and x,(t) (each of which has much higher relative harmonic content than
x5(t)), the approximation is not nearly so accurate. Unfortunately,

when one applies the first order procedure to a practical problem, the
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method does not generate estimates of the higher harmonics components,

and hence there is no indication whatsoever of the accuracy of the approx-
imate solution. Applying the third order harmonic balance procedure®
would generate estimates of the first and third harmonics; however, as
will be demonstrated in the next section, harmonic balance procedures

of order higher than the first are generally too difficult to be used as

a practical tool for obtaining periodic solutions to nonlinear systems.

2.5 Application of Higher-Order Harmonic Balance

Suppose one wishes to improve the approximation generated by the
first order results in Section 2.4 by applying the third order method.

This would require the expansion not of
(x(t))3 = (x,, €0 t + Xy, sin t)° (39)
as in the first order method, but of
(x(t))® = (%, cos t + X;5 Sin t + x5, cos 3t + xa, sin 3t)3. (40)

In Section 2.4, expression (39) required the evaluation of 8 trigonometric
multiplications; expression (40) requires 64 such multiplications. For

a low-order polynomial nonlinearity such as £(x) = x> , evaluation of
(40) is certainly not a practical impossibility, though it is somewhat
tedious. What we would like to be able to do, however, is to approximate
any arbitrary nonlinearity with a power series

P
£(x) = T aux! , (41)
j=1

S In this example, there are no even order harmonics (because the non-
linearity is odd), and hence the next level of approximation above the
first is the third.
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with p 1large enough to allow fairly irregular nonlinearities to be simu-
lated. Suppose we let p =7 . The first order procedure will then
require 27 or 128 trigonometric multiplications; though not a simple
task, this is not an unreasonable amount of effort to expend, considering
the generality of the result. However, the evaluation of the third order
procedure for p = 7 would require 47 or 16,384 trigonometric multi-
plications, which is hardly a practical task. The results to be presented
in the remainder of the thesis are intended to answer the following ques-
tion: how can the accuracy of the first order harmonic balance solution
be improved, subject to the constraint that the analytic effort required

for the improvement be comparable to that of the first order procedure?
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CHAPTER III1

A SIMPLIFIED METHOD OF OBTAINING THE
LINEARIZED DETERMINING EQUATIONS OF HAYASHI

3.0 Introduction

In this chapter a method will be presented which, for odd nonlinear-
ities, results in Hayashi's approximation [5] to the third order* Galerkin
solution, but which requires less effort to apply than his method. The
motivation behind the results will first be explained, and a simple exam-
ple to illustrate the ideas will be presented. 1In section 3.2, the gen-
eral results will be derived. The method will then be applied to several
examples, and numerical results reported. Finally, some limitations on

Hayashi's approximation will be discussed.

3.1 Motivation Behind the Results and an Observation

Recall that in Chapter II it was demonstrated that the practical
difficulty in applying Galerkin's method for orders greater than the
first is that expressions of the form

m
f[ £ (xj. cos jt + x4g sin jt), t] , m> 1 (D
j=0
must be analytically expanded in a Fourier series. The vector function
f(x,t) is polynomial in the vector x , continuous in the scalar ¢t ,

and periodic (in t) of period 2m. 1In particular, for f£(x,t) odd in x ,

the third order Galerkin method requires expansion of

f[xq, cOos t + x;5 sin t + x5, cos 3t + x5, sin 3t, t] . (2)

! Hayashi refers to the third order solution as the second order solutionm,
when f(x,t) 1is odd, reflecting the number of harmonic oscillations
present in the argument of £ ; we will conform to the definition in

Chapter II.
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As was emphasized at the end of the last chapter, analytical evalua-
tion of (2) is simply a practical impossibility except in the case of
very low order polynomials. In his book [5], Hayashi suggests that in-
stead of expanding (2) in a Fourier series, one can instead expand the

expression

f[(xlc* + €8,.) cos t + (xlf + €8;,) sin t + €63, cos 3t + €63, sin 3t, t],
‘ (3)
where xlf and xf, are first order Galerkin solutions; as the expan-
sion progresses, all terms of order greater than unity in € are to be
ignored, thus reducing the amount of computational effort required. The
resulting equations may be viewed as the third order determining equa-
tions linearized about the first order solutions. Provided the terms in
€ are sufficiently small, the solution of the linearized equations will
be close (in some sense) to the solution of the determining equations.
More will be said about the limitations implied by the preceding state-
ment in the final section of this chapter; for the present, the objective
is to obtain Hayashi's linearized equations without having to expand (3).
Specifically, the expansion of f£(x,t) , when the argument x consists
of a sum of more than two sinusoids, is to be avoided. This last state-
ment essentially constitutes the motivation behind both of the results
to be presented in this thesis.

Suppose that for a particular nonlinearity £(x,t), the first order
harmonic balance procedure has been carried out, so that the following
information is available:

Ky

f[A cos t +B sin t, t] = z (g:(A,B) cos jt + hy(A,B) sin jt) ,
j=1,3,5,...
(4)

where g, and h, are known (polynomial) functions of the parameters
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A and B . The fact that the summation in (4) terminates (as indicated
by the upper limit k;) is a result of the restriction of f£(x,t) to be
polynomial in x . 1In the braces notation introduced in Chapter II, the

algebraic functions are denoted as

gs(A,B) = {f[A cos t + B sin t, t]},,

€))

hy(A,B) = {f[A cos t + B sin t, t]},;, »

If we could perform the third order Galerkin method, then we would

obtain

f[A cos t + B sin t + C cos 3t + D sin 3t, t]
= ) (24(4,B,C,D) cos jt + h;(A,B,C,D) sin jt), (6)
j=1,3,5,...

where g; and h; are (vector) functions which reduce to gy and hy
when C =D =0 . If we could obtain the functions g; and h; , then
the third order Galerkin solution could be computed exactly. Since this
is not generally practical, our objective is to approximate the functions
g; and h; in some manner. In the braces notation, we want to approxi-

mate the functions

gy(A,B,C,D) = {f[A cos t + B sin t 4+ C cos 3t + D sin 3t, t1}ye

(7)
hy(A,B,C,D) = {f[A cos t + B sin t + C cos 3t + D sin 3t, t1}s
j=1,3.

In Hayashi's approximation, all terms in g; and h; of order greater

than unity in C and D are omitted.

The objective of this chapter is to obtain Hayashi's approximations
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to g; and h; by manipulating the known algebraic functions g, and
h, in some manner. To clarify this idea, consider a simple example.
In Chapter II, the first order Galerkin procedure was applied to the con-

servative system
X+ox+Bx> =Ccos t, (8)
and it was found that
Aa
Nf[A cos t, t] = B(A cos t)® = T B[3 cos t + cos 3t] , )

where the notation Nf(x,t) is used to denote the nonlinear terms of
f(x,t); this notation will be frequently used throughout this thesis when
the inclusion of the linear terms of f£(x,t) would be a needless compli-
cation.

From (9), we have that

%

{Nf{A cos t,t]};.

]
]

g1 (a)

g3(4)

and (10)

I PR S [
o
"

{NE[A cos t,t]},,

In this simple example, the third order Galerkin procedure is not diffi-

cult to perform. The result is

Nf[A cos t + C cos 3t, t] = B(A cos t + C cos 3t)3

= B[3 A3 4+ 3 A%c 4 3 Ac? L 342043
= BI7 A® + 7 A°C + 5 AC®]cos t + Bl A° +5A°C + 7 c3lcos 3t

3,2 3 < q P 3 .24 e . arl 1 \
+ S[Z A°C +Z AC®lcos 5t + B[Z AC%]}cos 7t + BLZ C®lcos St . (11)

If all terms in (11) of order greater than unity in C are ignored, we

have Hayashi's approximation

NEf(x,t) = B[= A® +23:A20] cos t + s[% A® +%A2C] cos 3t

(12)

W Pl

+ Bl A°C] cos S5t .
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Throughout this thesis, the symbol "='" will be used to denote a first
order approximation in the above sense.

From (10) and (12), note that
(A) = 3 BA® and ’(A,C) = 3 BAS + 3 gAcc (13)
81(2) =72 8118 4 A

Thus in this simple example, we see that the first order effect of in-

cluding the third harmonic in the argument of £(x,t) is the additional

-
e

term

3 2
% BA“C (14)

in g{ . (Of course, the presence of the third harmonic in the argument
also generates additional terms in gg ; however, in this example atten-
tion will be restricted to the effect on the fundamental component, g;.)
The question is, can the additional term (14) be obtained directly from
the functions g,(A) without having to expand (11)? The answer, for
this specific example, is fes: observe that if we substitute the alge-
braic expression (A+C) for the amplitude parameter A in gs(A) , we

have

Ba(A4C) & [NE[(AC) cos tlla. =3 B(ARC) = 3

= BIA® + 3A°c],  (15)

where in the expression of (A+C)® we have ignored terms of order greater

than unity in € . From (13) and (15), we have that
g, (A,C) = g, (A) + g3(A+C) - g3(A) (16)
or, in braces notation,

{f[A cos t + C cos 3t, t]};. = {f[A cos t, t]};. + {£[(A+C) cos t,t]}s,

- {f[A cos t, t]}ac (17)
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where the left- and right-hand sides of the above expressions are identi-
cal except for terms of order greater than unity in C . What is impor-
tant to note is that each of the three terms on the right-hand side can
be evaluated directly from the first order Galerkin results, i.e., it is
only necessary to know the functions g,(A) and gg(A) . If it can be
shown that approximations of the above type exist for any odd polynomial
function, then it should be clear that we will have a very easily applied
general technique for obtaining Hayashi's equations. Fortunately, as
will be demonstrated in the next section, (16) is not a relationship which
happens to be true only for the cubic nonlinearity, but rather a general
property of all polynomial nonlinearities and their Fourier coefficients.
In order that this approach be generally useful, however, the approxima-
tion (16) must be extended to the case in which both sines and cosines
appear in the argument x of £(x,t) , since otherwise only undamped
systems could be handled. In addition, a similar approximation is required
for the third harmonics. To be specific, in order to obtain Hayashi's
equations it is necessary to obtain approximations for the following four

(vector) functions:

gf(A,B,C,D) = {f[A cos t + B sin t + C cos 3t + D sin 3t, t]l} . (18a)
h(A,B,C,D) = {f[A cos t + B sin t + C cos 3t + D sin 3t, t}};, (18b)
g;(A,B,C,D) = {f[A cos t + B sin t + C cos 3t + D sin 3t, t]lse (18c)
h{(A,B,C,D) = {£[A cos t + B sin t + C cos 3t + D sin 3t, tl}s,. (18d)

The objective is to approximate each of the above functions with a sum

of as few terms as possible, each term being of the form

gis(x,s) or hy(r,s) , j =1, 3, 5, ... (19)
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where the g, and h; are known from the first order Galerkin analysis,
and the arguments r and s in (19) are simple algebraic expressions
of the form A +C, A+D, B+C, and B £ D .

The derivation of four approximations which fulfill the above objec-
tives will be presented in the next section. It should be obvious how
the objectives as stated above can be generalized to general polynomial
functions; however, the results of the next section are restricted to odd
nonlinearities. The reader may notice that the derivations themselves
do not depend upon the polynomial form of £(x,t), nor upon its being odd.
The fact that we are concerned with odd functions is indicated only by
our choice (18) of the functions to be approximated. The restriction
that f£(x,t) be polynomial in x results from the practical considera-
tions discussed in Chapter I; polynomials are smoother than is actually

required in the derivations.

3.2 Derivation of the Approximations

Consider first the approximation of the function (18a). Our approach

will be to obtain an equation of the form
gl'(A’BydC’dD) = g{(A,B,0,0) + dg;(A,B,dC,dD) s (20)

where dg,(A,B,dC,dD) is the differential change in g; resulting from
differential changes in C and D about the point C =D =0, with A
and B constant. Note that the first term on the right-hamd side of (20)
is just g,(A,B) . To accomplish our objectives, we need to obtain an
analytic expression for dg{(A,B,dC,dD) in terms of the first order

Galerkin functions g, and hy; . From our definition of dgf , we have

' a L4 a ,
dg;(4,B,dC,dD) = £= 8/(A,B,C,D)| *dC + == g/(4,B,C,D)| -dD (21)

C=D=0 C=D=0
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The meaning of the partial derivatives in (21) is the usual one: if the

th Ay

k| component of the vector g; is denoted g; , and similarly for

the components of the vectors C and D , then

-agl'(l) . . . agl'(l)_

3 | 2
¢ | (22)

agl’(n) . . agl’(n)
) ()

and similarly for g%l . These matrices are commonly referred to as the

Jacobian matrices of g; with respect to C and D . From the defini-

tion of g;(A,B,C,D) , (21) is

dgll(A:B3dC’dD) =

27
(l f cos t - f[Acos t +B sin t + C cos 3t + D sin 3t,t]dtﬂé dc
=D=0

_ 2
-3¢

27
(— f cos t » f[A cos t + B sin t + C cos 3t + D sin 3t, t]dt)L dD .
=D=0

B
(23)
Since f(x,t) is polynomial in x and continuous in t , the order of

integration and differentiation in (23) may be interchanged, with the

result that

dg, (A,B,dC,dD) =
1 & 3
= [—-f cos t £f (Acos t +B sint + C cos 3t +D sin 3t,t)|dt]-
n 3¢ c=D= 0
21 3
+ [— f cos t - ) f (Acos t +Bsint +C cos 3t + D sin 3t t)'dt]- dD

C=D=0

(24)
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If we denote by £, the Jacobian f£(x,t) with respect to x , evaluated

at x =A cos t + B sin t , then (24) becomes

277
dg{ = [l-j cos t * £, - EL-(A cos t +B sin t + C cos 3t + D sin 3t) dt]-dC
m o ¥ oC C=D=0
. orr ; (252)
+[=[cost - f, - £ (Acost+Bsint+C cos 3t +D sin 3t)|dt]-dD
™ * aD
o C=D=0
1 27 1 2
=[= [ cos t « £ - cos 3t dt] - dC + [= [ cos t - £, . sin 3t dt] - dD
0 )
(25b)
1 27
== f cos t ¢« £, - (dC cos 3t + dD sin 3t)dt . (25¢)
)

Recall that one objective is to express dg;(A,B,C,D) in terms of the

functions

gj(x’Y) and hj(xs}') » J=1,3,5, ...

where the arguments x and y are algebraic functions(as simple in form
as possible) of A, B, C, and D . This objective can be accomplished as

follows: <£first, (25c) is rearranged to give

dg; = [% [ (cos 3t - £, - cos t)dt] - dc +
(o]
1 277
e [ (sin 3t - £ - cos t)dt] - dp . (26)
(o]

Now observe that the matrix I - cos t , where I is the identity matrix,

is equivalent to the expression

%E [(A +E) cos t +B sin t] ,

Equation (26) can thus be written

2m
dg{ - [%.I cos 3t - £, . %E [(A4C) cos t + B sin t]dt] - dC
0
o (27)

+ [% J osin3e. g, . %5[(A+D) cos t + B sin t]dt] - dD .
[o]
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We now make use of the fact that from the definition of £, (as defined

immediately before equation (25a)),

£, - %E [(A+C) cos t + B sin t] =-%E (£f[(A+C)cos t + B sin t]ﬂ
and

£, - %)- [(A+D) cos t + B sin t] =% (£[(A+D)cos t + B sin t])|

Hence, we can write (27) as
1 & d
dg; = [= [ cos 3t <5 £1(A+C) cos t + B sin t]| dt] - dc
(o}

(28)
o
+ (2 [sin 3t % £[(A4D) cos t + B sin t]! at] - @ .
O

Interchanging the order of integration and differentiation in (28) gives

Zn
dgf ='%— C— f cos 3t - f[(A+C) cos t + B sin t]dt)l- dc
0
(29)
3 1 277
+35 J; sin 3t - £[(A+D) cos t + B sin t]dt)| . d .

The first term on the right-hand side of (29) is not a function of D .

Therefore, it can be expressed as

2T

%E'i j cos 3t « f[(A+C) cos t + B sin t]dt) - dC = dgz(A+C,B) (30)
o C=D=0

where the differential change dg; is understood to result from differ-

ential changes in C and D about the point C=D=0 , with A and B

constant., The second term can likewise be written

-@—(— j sin 3t - £[(A4D) cos t + B sin t]dt)| - dD = dhy(A+D,B). (31)
-D=0
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Combining (20), (29), (30) and (31), we have
g, (A,B,dC,dD) = g, (A,B) + dgs(A+C,B) + dhz(A+dD,B). (33)

We can now use the differential relationship (33) to approximate the

effect of finite variations of C and D about the point C=D=0 :
gl’(A’B’C’D) = gl(A:B) + gs(A'*'C’B) = 83(A,B) + hB(A'*'D:B) = ha(A,B) . (34)

Equation (33) asserts that the approximation (34) is correct to first
order in the variables C and D .

In applying approximation (34) in practice, it is not necessary to
actually compute the third and fifth terms; for example, to compute the

expression
ga(A+C,B) - g3(A,B) , (35)

one simply computes the first term, g3(A+C,B) , and then deletes all terms
not containing the variable C as a factor. (In addition, all terms of
order greater than unity in C and D can, of course, be deleted.) To

emphasize this point, we define the operator A by
A
0gz(A4C,B) = g3 (A+C,B) - g3(A,B) . (36)

Using this notation, approximation (34) becomes

g, (A,B,C,D) = g (A,B) + Ag3(A+C,B) + Lha(A+D,B) (37)

Once again, it will be emphasized that the value of appraximation (37)
is due to the following two facts: the expression on the left-hamd side
of (37) is generally impractical to evaluate analytically, whereas the
three terms on the right-hand side can easily be obtained by making

simple substitutions into the first order harmonic balance results.
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The derivation of the approximation for expression (18b) is very
similar to that for (18a2) and will consequently be omitted. The differ-
ential relation analogous to (33) is

h,(A,B,dC,dD) = hy(A,B) + dgs(A,B+dC) + dhy(A,B+dD) (38)

and the corresponding approximation is

h,(A,B,C,D) = h,(A,B) + 0g3(A,B+C) + Ahsz(A,B+D) (39)

To derive the first order approximation for (18c), we proceed in

exactly the same manner as for (18a) to obtain

217
dgs(A,BdC,dD) == | cos 3t - £ - (dC cos 3t + dD sin 3t)dt. (40)
o]

Afr

We then make use of the two trigonometric identities

cos 3t - cos 3t = (cos t - cos 3t + cos 5t)(cos t)

(41)
cos 3t ° sin 3t = (cos t + cos 3t + cos 5t)(sin t)
to obtain
1 21
dgs = b j cos t « £, ¢ (dC cos t + dD sin t) dt
o
1 2m
- = [ cos 3t « £, - (dC cos t - dD sin t) dt (42)
o

2%
+-% j cos 5t - £, - (dC cos t + dD sin t) dt
o

Proceeding from (42) in a manner similar to that used to obtain (33) from
(25¢), the result is that

gs(A,B,dC,dD) = g5(A,B) + dg, (A+JC,B+dD)
(43)
+ dgs(A-dC,B+dD) + dgg(A+dC,B+dD) ,

and, therefore, the first order approximation for (18c) is
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ga(A,B,C,D) = g3(A,B) + Ag, (A4C,B+D) + Aga(A-C,B+D) + Ags(A+C,B+D)

(44)
The derivation of the approximation for (18d) is similar to the above

except that instead of the trigonometric identities (41), the identities

sin 3t - cos 3t = (sin t - sin 3t + sin 5t) cos t

(45)
sin 3t * sin 3t = (sin t + sin 3t + sin 5t) sin t
are required. The differential relation analogous to (43) is
h3(A,B,dC,dD) = hz(A,B) + dh, (A+dC,B+dD)
(46)

+ dhy(A-dC,B+dD) + dhg(A+dC,B+dD) ,

and, therefore, the approximation for (18d) is

h3(A,B,C,D) = hy(A,B) + Ah, (A+C,B+D) + Ahy(A-C,B4D) + Ahg(A+C,B4D).

(47)
In the next section, the above results will be illustrated with a

simple example.

3.3 An example

Hayashi [5] applied his method to the second order scalar system
X+ 0.25+x> =0.3cos t . (48)

A typical sample of his numerical results will be included at the end of

this section.
In Chapter II, the first order Galerkin procedure was applied to a

system with a cubic nonlinearity, and it was found that
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(A cos t + B sin t)3 ='% [A2+ABZ]cos t +-%-[BS+A2B]sin t

(49)
+2 [A%-38B%o0s 3t + < [-B%+3A%B]sin 3t .
4 4
Using the notation of the last section, from (49) we obtain
3 3 2 . 3 2
gl(AaB) = Z [A +AB ] ’ hl(A,B) = Z [Ba'*1A B]
(50)
gs(A,B) =% [A%-3AB%]; hy(A,B) =% [-B3+3A%B] .

Now, the application of the second order Galerkin method requires that
the expression

(A cos t +Bsint +C cos 3t + D sin 3t)® (51)

be expanded in a Fourier series -- or, using the notation of the last

section, it is required that the four functions
g.(4,B,C,D), h/(A,B,C,D), 84(A,B,C,D), and hs(A,B,C,D) (52)

be known in analytic form. For the cubic nonlinearity, it is not pro-
hibitively difficult to obtain these functions exactly, and it will be
instructive to observe the effect on the Fourier components of adding
third harmonics to the argument of f(;,t) . The result of expanding
(51) is shown in its entirety below and on the next page,
(A cos t+Bsint + C cos 3t +D sin 3t)3 =
23;[A~'3 + AB® + (A®-B°)C + 2ABD + 2A(C°+D°)] . cos t

+ 23;[133 + A®B + (A®-B®)D - 2ABC + 2B(C3#D°)] - sin t

+214% - 38B° + 6(A%4B%)C + 3C° + 3CD°] - cos 3t (53)

+ -};[-33 + 3A°B + 6(A3B®)D+ 3D° + 3¢°D] - sin 3t

+ -z-[(Az-Bz)C - 2ABD + A(C®-D°) + 2BCD] - cos 5t
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+%[A2-32)D + 2ABC - B(C°-D°) + 2ACD] - sin 5t

+'%[A(02-D2) - 2BCD] - cos 7t

(53

3 2 .2 .
+ 4[B(c -D°) + 2ACD] sin 7t cont'd)

+%[C3 - 3¢D°] - cos 9t

+-2]-;-[-Da + 3¢°D] - sin 9t .

By comparing (53) with (49), one obtains an appreciation of the complica-
tion caused by the inclusion of additional harmonics in the argument of
f(x,t) . Hayashi approximates the above expansion by ignoring all terms
in (53) of order greater than unity in C and D , as well as all har-
monics above the third. By performing the above deletions as the expan-
sion progresses, a savings in analytic effort is obtained; however, this
process is not quite so straightforward as might be expected: consider-
able care must be exercised when deleting higher harmonics during the
expansion to insure that they would not subsequently contribute to the
desired result by heterodyning with other high harmonics.

From (53), we have that the first order approximations to the func-

tions (52) are

8/(A,B,C,D) = 2 [A° +AB® + (A%-B°)C + 24BD] (54a)
h,(A,B,C,D) é% [B% + A®B + (A®-B®)D - 2ABD] (54b)
g(A,B,C,D) é% [A% - 3AB° + 6(A%+B3)C] (54c)
hi(4,B,C,D) = & [-B® + 3A°B + 6(A%+5°)D] (54d)

The reader should compare the above expressions with the first oxder
Galerkin results in (50).
To clearly illustrate how the results of the last section are used

to obtain the above approximations, the necessary computations will be
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shown explicitly for (54a). Applying (37) and using (50), we have

8, (A,B,C,D) = g,(A,B) + Ag5(A+C,B) + Ahg(A+D,B)

= 2 (wr?] +% A[CA4CY® - 3(A+C)B?] (55)
+% A[-B® + 3(A4D)"B]
5-13: [A% + AB® + (A%-B°)C + 2ABD] ,

which agrees with (54a). The other three results, i.e., (39), (44), and
(47) in the previous section, are applied in the same manner to generate
(54b), (54¢), and (544d) .

Numerical results obtained by solving the linearized determining
equations generated from approximations (54) are reported by Hayashi [5].
Of the three periodic solutions to example (48), only one will be included

here. The true solution, through the third harmonic, is
x(t) = 0.6864 cos t + 0.9841 sin t - 0.0597 cos 3t + 0.0214 sin 3t. (56)
The corresponding first order Galerkin solution is

X,(t) = 0.703 cos t + 1.012 sin t , (57)
and the linearized second order Galerkin solution is
;(t) = 0.684 cos t + 0.988 sin t - 0.061 cos 3t + 0.021 sin 3t. (58)

The third harmonic components of the solution (56) above are fairly
small relative to the fundamental components, and the improvement in the
first order Galerkin solution is quite good, expecially considering the
ease of obtaining the approximations. However, as is evident from the
nature of the approximaticns, it is to be expected that the accuracy

observed above will deteriorate with increasing harmonic content of the
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oscillation. Some numerical results will be reported in the next section,
and this chapter will then be concluded with some brief comments regard-
ing the relationship of this method to the iterative method to be presented

in the next chapter.

3.4 Error of the Linearization

To provide an indication of the magnitude of error which is typically
encountered for various nonlinearities, the following numerical results
were obtained: the first and third harmonics of the time functions

£ (X) =(A cos t +B sin t + C cos 3t + D sin 3t)* ,
hoy
(59)
n=3,5,7, and 9
were numerically computed, with the values of the parameters arbitrarily
selected as
A =1.0 c =0.05

(60)
B =0.6 D =0.02 .

In addition, the first, third, and fifth harmonics of the time functions

[(A4+C) cos t + B sin t]” [A cos t + (B+C) sin t]”
[(A4D) cos t + B sin t]® [A cos t + (B+D) sin t]” (61)
[(A4C) cos t + (B4D) sin t]® [A cos t + B sin t]”

n =3,5,7, and 9

were numerically computed, so that the approximations (37),(39),(44), and
(47) could be evaluated and compared with the exact values from (59).

The results are shown in the table below. 1In order to emphasize the
error of the approximations, the entries reported are changes in the har-

monic components of (42) about their respective values for C=D=0. In each
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case, the results of the approximations are shown directly beneath the

exact values.

ogy Ahy Ags bhy

x3: 0.0464  -0.0328  0.1021  0.0408 ~(exact)
0.0437  -0.0337  0.1058  0.0412 —(approximate)

x°: 0.1038 -0.0412 0.1757 0.0732
0.0938 -0.0433 0.1867 0.0706

. (62)
x": 0.1873 -0.0378 0.2692 0.1279
0.1611 -0.0415 0.2922 0.1186

x°: 0.3115 -0.0222 0.3919 0.2168
0.2550 -0.0287 0.4330 0.1942

To clarify the table above, note that the first entry was obtained by

numerically computing

Ag, (1.0, 0.6, 0.05, 0.02) =

2m
2 [(1.0 cos t + 0.6 sin t + 0.05 cos 3t + 0.02 sin 3t)® cos t dt

o

1 21
- = [ (1.0 cos £ + 0.6 sin t)® cos t dt = 0.0464 (63)
and

Mgz (1.0 + 0.05,0.6) + Ahz(1l.0 + 0.02,0.6) =

217
% [ (1.05 cos t + 0.6 sin t)® cos 3t dt
(o]

2m
l 1 - 1 =33 - -
T E]: (1.0 cos t + 0.6 sin t)® cos 3t dt

2T

[ (1.02 cos t + 0.6 sin t)® sin 3t dt

(o)

27

[ (1.0 cos t + 0.6 sin t)® sin 3t dt = 0.0437 . (64)

(o}

-+
Al

1 |1
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3.5 Conclusions

In this chapter, four approximations have been presented which (for
odd nonlinearities) allow Hayashi's linearized third order Galerkin
solution to be obtained easily from the results of the first order
Galerkin analysis. An example was given which demonstrates that the
linearized solution can significantly improve the first order Galerkin
solution. However, from the nature of the approximations used, it is
obvious that if the third harmonic amplitudes C and D are not suffi-
ciently small, then the terms which we have ignored may not be negligible,
and the accuracy of the result may be quite poor. Some improvement in
accuracy may be obtained by iterating the linearized equations; the
iterative method to be presented in the next chapter, although derived in
a completely different manner, can be regarded as a genmeralization of this
idea. More will be said about the relationship of the two methods in

Chapter IV.
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CHAPTER 1V

AN ITERATIVE METHOD

4.0 Introduction

In this chapter, an iterative procedure will be presented which
generates an improved approximate solution using the first order Galerkin
solution as a starting point. The result may be viewed as an analytic
approximation to arbitrarily high order Galerkin methods. As was stated
in Chapter I, the process possesses the following significant features:
first, its accuracy for oscillations with rich harmonic content (but with
a dominant fundamental component) is comparable to the accuracy of third
(or higher) order harmonic balance, whereas the analytic effort necessary
to apply the method is comparable to that required for the first order
procedure., Secondly, the method is capable of generating estimates of
as many of the harmonics of the oscillation as desired, with no increase
in analytical effort; the only price one pays for additional harmonic
information is a larger linear algebraic system which must be numerically
solved at each stage of the iteration. Finally, in contrast to the
general mth order Galerkin procedure (and the linearized equations of
Hayashi), the method produces an indication of its own accuracy by esti-
mating the magnitudes of the terms which have been neglected in the approx-
imations used.

In the next section, the problem of generating an improved approxi-
mate solution will be formulated in terms of a linear algebraic system
in matrix form. In section 4.2, the matrix formulation will be related
to the general mth order Galerkin procedure (and to the method of Urabe-
Reiter) by showing that the procedure is equivalent to the Newton method

for finding the solutions of a vector equation F(x) = 0 . In section
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4.3, some approximations within the matrix formulation will be made so
that the procedure can be practically applied, i.e., so as to satisfy

the imposed constraint that the required analytic effort be comparable

to the first order harmonic balance procedure. The resulting process will
again be related to a Newton procedure. To facilitate understanding of
the application of the method (which will be illustrated in detail in

the next chapter), in section 4.4 the results of the foregoing sections
will be specialized for the case of second order scalar systems. In the
final section, the accuracy of the iterative method (and the nature of

its relationship with the Galerkin method) will be discussed.

4.1 The Matrix Formulation

Recall again the vector nonlinear system,
x = f(x,t) (L

which was defined previously. We will continue to impose the restric-
tion that £(x,t) be polynomial in the state vector x and continuous
in the scalar t ; however, in contrast to Chapter III, it will no longer
be required that f(x,t) be odd in x . We assume that there exists an
exact periodic solution which will be denoted %(t) , and for some integer
p let

- P

x(t) = Z (x;. cos jt + xy, sin jt) (2)

j=0

be any approximate periodic solution. We will continue to use the term

"periodic" to imply periodicity in t of period 2 . The solution

error, 6(t) , is defined as

5(t) 2R(e) - T(t) = ¥ (8y. cos jt + by, sin jt) . (3)

j=0
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Then the exact solution X(t) may be written
2(t) = & [(xy0 + 650) cos jt + (x4, + by,) sin jtl , (%)
j=0
where it has been implied that xy. =x;, =0 ¥ j>p . Recall the

definition of equation error as
e(t) = e’(x,8) = x - £(x,t) . (5)
Then from (1), (3), and (5) we obtain
é(c) =% - % = £&,t) - [£F,8) + (X, )] . (6)

Since X%(t) and ;tt) are each assumed periodic, their difference
6(t) 1is also periodic, as is its derivative. Therefore, §(t) can be
expandeZ in a Fourier series
§(t) = £ [{E(R,t) - £(x,t) - ¢’(X,t)}; cos jt
j=1
(7)

+ [£(%,t) - £(%,t) - €’(x,t)}y, sin jtl ,

where the previously introduced braces notation is used to denote the
Fourier coefficients. Integrating (7) gives*
5(t) = 8., + & (1/i)I{£,t) - £(x,t) - e’(xX,t)1,, sin jt
j=1
(8)

- {£(&,t) - £(x,t) - €(x,t)}y, cos jt] .

Furthermore, the assumed periodicity of x(t) and x(t) implies that
their derivatives must have zero average value. Consequently, it is

required that

[E(R,t) - £(X,t) - e (X,t)} =0 . (9)

% The convergence of (3) and (6), as well as the validity of term-by-term
integration of (7), is guaranteed by the quasi-differentiability of x(t).
(See [14], sections 20.4 and 20.5.)
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In addition to (9), we have from equation (8) the system of equationms

8y

(1/5){£R,t) - £(x,t) - €°(x,t)},,

- - (i=1,2,3,...) .  (10)
-(1/3){£(x,t) - £(x,t) - e"(x,t)},,

61:

Note that once the function ;(t) is specified, equations (9) and (10)
are functions only of the unknown parameters 83cs O3as 3j=0,1,... . 1If
this infinite system of nonlinear algebraic equations could be solved
for the infinite number of unknowns, then from equation (4) it is clear
that the exact solution X(t) would be obtained. Therefore, if we can
obtain sufficiently accurate approximate solutions, EJC, 3“ (j=0,1,...p),
to equations (9) and (10), then the periodic function

P - -

y(t) = Z [(xj, + 83c) cos jt + (X;5 + 855) sin jt] (11)

j=0
will be an improved approximation to X(t). If the variables Edc’ 3“
approach the true error variables §,, , 645 as the periodic function

;(t) approaches %(t) , then the iterative process defined by

p
x_(n*l) 2 z (xgz*l)cos jt +x§’,“’1 )sin jt)
320
(12)
p
= T 1) + 5520y cos g+ (x$3) + 5380y sin ge
=0

(where ggz), Egﬁ), (j=0,1,...,p) are approximate solutions to equations
- _(a)
(9) and (10) with x(t) = x(t)) may converge to X(t) .
The question to be considered in the remainder of this chapter is the

following: how can approximations to the error variables 6y and &4

be obtained subject to our imposed constraint on analytic effort?
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Note that equations (9) and (10) cannot be solved exactly for two
reasons: first, the number of equations is not finite; secondly, the
argument X of the nonlinearity £(¥%,t) has an infinite number of terms
in its Fourier series. It is obviously the latter condition which is the
prime source of difficulty. As has been previously demonstrated, we are
generally unable (for practical reasons) to analytically expand f£(x,t)
in a Fourier series if =x(t) contains more than two sinusoidal terms.

The first approximation which will be made is to expand the expression
£(X,t) - £(x,t)

in a Taylor series about §', and then neglect all terms of order greater

than unity in (%X - X) :

£.(x%,t) - (R-x) (13)

£(%,t) - £(x,t)

where f, 1is the Jacobian of the vector function f£f(x,t) with respect
to the vector x , evaluated at x = ;kt) . Given a periodic function
;(t) s fx(;,t) is an nXn matrix whose elements are known functions of
time. From definitions (2) and (4), approximation (13) can be written

£(X,t) - £(X,t) = £,(x,t) - T (B4, cos kt + &, sin kt) .  (14)
k=0

In the above form, the jth cosine component in (9) and (10) is approx-

imately given} by

1 Interchange of the limiting processes in (15) is valid since £ (x,t)

is, by assumption, continuous in its arguments, and consequently ‘the
integrand is continuous in t . (See [14], section 20.5.)
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2m
(£, 0)-£G, )} 2 2 [ £, 000 £ (6, cos ke + &, sin ke)] cos jtdt
o k=0

2
) [% f fx(;,t) . cos kt cos jtdt]. 8,
k=0 o
(15)
1 2m
+ £ [= [ £x(x,t) - sin kt cos jtdt]. b,
k=0 o

= % [{£:(X,t)cos kt}y 6cc + {£4(X,t)sin kt}y,by,]
k=0

and similarly

[E(%,8)-£(X,8)} 342 & [{£,(x,t) cos kt}y,b.
x=0
(16)

+ {£,(%,t) sin kt}ys8e,] o

If the approximations (15) and (16) are substituted into equatioms (%)

and (10), the result may be written in the matrix form

(A, +Az)z Baz = (17)
where
{£f:30c [£, cos tl. {£, sin tl,, {£, cos 2t}g, « .
{fx}lc {£, cos t},. {f, sin t},, {f, cos 2t}y, . . -
Ay = | {£f.}6 {£; cos tlig {f, sin t};, {f, cos 2t} . . .
(0 o0 o o0 0o o0 O0...
0 0 -I 0 0 0 0. .
0 I 0 0 0 0 o. ..
A, =10 0 0 0 -2I 0 O...
0 0 0 2 O 0 0. .
0 0 0 0 0 o -3I. ..
0 0 0 0 0 31 0. .



Iv.7

(6”6 oc | EN
{e’ X, ). 81c
b=|{e’x, )N, z =| By,
{e (%, ) Jac B2
.. : 820

In A; , the Jacobian fx(;;t) has been simply denoted by £, . In A
the symbols I and 0 denote the nXn identity and zero matrices, respec-
tively.

Before concluding this section, several observations should be made
about the preceding formulation. First, note that the only approximation
which has been made to obtain (17) is (13), which approaches equality as
x approaches % . Recall that the Fourier components of ;(t) are de-

noted as X,;., X35, (3j=0,1,2,...). Define the vector X as

T
X = (Xoe Xye X35 Xze eoe ) (18)

where the superscript "T" denotes the transpose of the row vector. Then
the matrix A and the vector b in (17) can be considered to be func-

tions only of X . We formally define the following iterative process:
x2) =580 v ady af ) - 68y, (19)

where the superscript p indicates that the infinite dimensional vectors
and matrices of (17) and (18) are truncated at some finite (but arbitrary)
dimension p . The reader should perhaps be reminded that the elements
of the matrices and vectors in (19) are themselves n dimensional matrices

and vectors, respectively.
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In the next section, it will be shown that (19) is equivalent to
the Newton technique for finding the solutions of a vector equation
F(x) =0

The final observation which should be noted is that the process (19),
with A and b as in (17), violates our imposed constraint on analytic

effort: the expansion of

e’( g (x5, cos jt + x4, sin jt),t) (20)
j=0
in a Fourier series, which is required for the computation of the b
vector in (19), is precisely what makes the pth order Galerkin proce-
dure analytically impractical to apply. In addition, analytical compu-
tation of the elements of the A matrix is almost as difficult as eval-
uvating the b vector. In section 4.3, we will resolve this difficulty

by making use of another approximation.

4.2 The Matrix Formulation as a Newton Procedure

Given a vector function F(x) , of a vector variable x (where F
and x are of the same dimension), the Newton method is an iterative

procedure for finding solutions of the equation

F(x) =0. (21)

Starting with an initial point x, , the algorithm is
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Xpe1 = Xy - Frr(x,) « F(x,) . (22)

This algorithm can be used to solve the Galerkin determining equations.
From the definition of equation error e'(x,t) and the system equations

(1), it is clear that if for some function y(t) ,
e“(y(t),t) =0,
Then y(t) is a solution of (1). The function y{t) can be written

v(t) = & (yyo cos jt +yy, sin jt) . (23)
j=0

Define the vector Y, as

T
Y. = (Yoo Yic Yis Y2e Y2u <+« Ypu) (24)

and the vector Function F;(Y;) as

g
g

P
{e'( Z (yj. cos jt + yy, sin jt), O,
j=0

P

{e'( L (¥4 cos jt +y,y, sin jt),O},
j=0

F,(Y,) = (25)

P
{e'( Z (yyo cos jt + y,y, sin jt),t:)}18
j=0 .

P .
fe’( T (yy. cos jt +yy, sin jt),Dl;,
j=0

W —

To apply the Newton algorithm (22), the Jacobian of F;, must be evaluated.

From (24) and (25),

[ 3fe" . el  3[€loe ... 3f€To.

dYoc Y1c Y1 s
F,(Y;) | 3feThe : (26)
dY, | Wee :

3fe’ s L ... ... 3MeTY,
Yoe e
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Note that each of the elements of the Jacobian matrix (26) is itself an
nXn matrix,

The Newton process,

(n)yq-1
an+1) = an) - [anézz q . Fp(an))

is the procedure which Urabe and Reiter utilize [9]. At each stage of
the iteration, they evaluate the elements of both the Jacobian matrix
(26) and the vector F, (25) using techniques of numerical integration.
To compare the above Newton process with the iterative method defined

in equation (19), we must evaluate the elements of the Jacobian matrix
analytically. We will consider separately the two terms which comprise
the equation error. Denote the function of time obtained by truncating
the Fourier expansion of y(t) after the pth harmonic by y (t):

P

yo(t) = Z (yy. cos it + y;, sin it) .

i=0

We now decompose the vector function F (Y,) into a sum of two terms,

F_(Y,) = Fgl)(Y,) + ng)(Yp) , where

F8,) 2 (5500 (0 he [53(0 s - [35(0)}50)7(272)
and
F$y,) & (1K T
P p) = Yp<t):t>}°c' . O{f(Yp(t)st)}vs> . (27b)
To evaluate the Jacobian of Fgl) with respect to Y, , comnsider first

its terms of the form

a{yp(t)}Jc = 3

)%
{gE Zo(yic cos it + y1; sin it)],,

OYxs Wy s i=
d P
=3y { Z (-iy;. sin it + iy,, cos it},,
Tks =] (28)
= Sy (iyys)

jI&kj ’
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where 0§, = {?’ k=] , and I is the nXn identity matrix. In a similar

0, k#j

way, it can be shown that

a{}.’p(t)}ja

and

¥ (t)}ia _ 3Fp(B)],.

Wee =3I, (29)

= =0 ,
O¥x s O¥xe (30)

where 0 1is the nXn zero matrix. Combining equations (28), (29), and

(30) we have

6o 0 o 0 o...0 O
0 0 I o0 O 0 O
o - 0 0 O 0o o
(1) 0O 0 0 o0 21 0 o
F;~ 7(Y,;) 0O 0 O0 -21 O 0 O
—P——Layp =lo 0 0 0 O 0 o0 (31)
0 0 0 o0 o 0 pI
0 0 0 0 O0...-pI O
To evaluate the Jacobian of ng) with respect to Y, , consider

first its terms of the form

- -é—_ {f(y;(t)at)}jc =

a}’k 8

nw

ne

—
i

3 1 27
5o G £ £(y;(t),t) + cos jtdt)

21
1 d .
;‘J‘ [g}"-k-: f(yp(t),t)] cos jtdt
(o]

2w 3 D
J'E;-- f[ € (y4, cos it + yy, sin it),t] cos jt dt

o “xs  i=0

2 3 P

f fx(y,(t),t) s;j— ( Z (¥4, cos it + y.; sin it)). cos jtdt
o k8 i=0

27

[ £:(y;(£),£) - sin kt - cos jt dt

)

Al

Al

=1 P

{£,(y,(t),t) « sin ktly, . (32)

2 Interchange of integration and differentiation is valid provided £

and 3f/dyys

are continuous; our previous restrictions on f(x,t)

clearly fulfill this requirement.



In a similar

- -5—3— [£0y5(t),8) 1y,

-
BYRC

and

9
" Sy {E£(yp(t),t) )y,

{f(Yp(t)’t)}Jc
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way, it can be shown that

- {£,(yp(t),t) - sin kt},, ,

- {f.(y;(t),t) * cos kt},. , (33)

- {£,(y,(t),t) » cos kt},, .

Combining equations (32) and (33), we have

(2)
Fpo L)

oY,

&fx}oc {fx cos t},. {f, sin tlo. {fy cos 2t} ....{f, sin pt],.
{fx}lc

{fx}IS

If the matrices (31) and (34) are substituted into the Newton algo-

rithm (22), then the result is just the iterative process (19) of the

previous section.

Kantorovié [12] has established sufficient conditions that guarantee

quadratic convergence of the Newton procedure from a given starting point.

The statement of this theorem, specialized for our particular case, is

rather lengthy and hence will be relegated to an appendix. For the pre-

sent, it should simply be noted that provided certain conditions are

th

satisfied, the iterative process (19) converges quadratically to the p

order Galerkin solution. 1In addition, if p=2 , and if the starting point

is taken as the first order Galerkin solution, then the first step of the

iterative process is equivalent to solving the linearized equations of

Hayashi. This suggests that one might improve Hayashi's linearized

solution by iteratively solving his equations.
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4.3 An Approximation to the Matrix Formulation

At the end of section 4.1 it was observed that the matrix formula-
tion (17) cannot be practically evaluated. Specifically, to obtain the

elements of the A matrix and b vector requires the Fourier expansions

of
p
£,( £ (%3, cos jt + x4, sin jt),t)
j=0
and (35)
%
£( T (xy, cos jt + xy4 Sin jt),t)
j=0

respectively. We have imposed the constraint that no more than two sinu-
soidal terms be aliowed as the first argument of £(x,t) . Define x,(t)

to be the fundamental component of x(t), i.e.,
Xo(t) = Xg, + X, COS t + X;, Sin € . (36)

In a similar manner as was done in deriving the matrix formulation of
section 4.1, we expand the functions f(;;t) and fx(;,t) about

x,(t) , and ignore terms of order greater than unity in (;on). For

£(x(t),t) ,

£(x(E),t) = £(xo(L),t) + £, (x.(t),t) - (X(t) - xo(E)) -

P
f(x.(t),t) + fx(xo(t),t) * T (%3, cos jt + %y, sin it) .
i=2

Likewise, the Jacobian matrix fx(;(t),t) is approximated by expanding
each of its elements about x.,(t) . Denote the scalar elements of the

vector Xyi. by

(1) (2) x(n))T

Kye = (xkc Xxe - . ¢ ke ]

and similarly for x,; . We then define the scalars
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_ Ly (3) o o
6xy = Z (xx¢’” cos kt + x¢3” sin kt) , j=1,2,...,n .

k=2
6x; is simply the jth element of (;(t) - %x,(t)) . Finally, if we
denote the scalar elements of the vectors f and x as

A T
£(x,t) = (£3(X15Xgse0esXnst)senesfn(Xy5Xos00.,%,8))"

then the expansion of the Jacobian matrix fx(;;t) about f£(x,(t),t)

can be written as

5 Ff ... Ff
j:l axla}CJ J J=1 anBxJ 3
£,(x(t),t) & £,(x.(t),t) + . . (38)
P s
‘El 3%, 9% 4 OXyen El 3%, 3% bx;

Note that only the first approximation (37) has any effect on the accuracy
of the result. The quality of the second approximation (38) affects only
the convergence properties of the procedure; it does not affect the point
of convengence. In the next section, the iterative procedure will be
specialized to second order scalar differential systems. The nature of
the approximations (37) and (38) should then become clearer. Before con-
cluding this section, however, it will be shown how the iterative pro-
cedure (19) -- with approximations (37) and (38) used to evaluate the A
matrix and b vector -- is related to a Newton process.

In the preceding section, the Newton method was used to find the
values of Xg., Xyc5 X1ss-++5 Xpg £foT which the first p Fourier coef-
ficients of

- p
e’(x(t),t) = €’( T (x;., cos jt + xy, sin jt),t) (39)
j=0
were zero. These roots clearly correspond to the pth order Galerkin

solution. Suppose instead we apply the method to the related problem of
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finding x¢., X;., Xys,---5Xps SO that the first p Fourier coefficients

of

e"(xo(£),) + /(%) + (R(t) = x,(t)) &
e:'(xoc + x;., cos t +x,, sin t,t) (40)
+ €5(Xoo+%;, COS t + Xy, Sin t,t) . g (xy, cos jt + x3, sin jt)
j=2
are zero. Note that (40) is a Taylor series expansion of (39) about
Xoe +* X3, €0S t + X;, sin t , with all terms of order greater than unity

in (;(t) - x,(t)) ignored.

Analogous to the definitions (25) through (27b), we define

_ T
Xy, = (oo Xqe Xy XKoo oee Xp5)

——

(; = xc)‘}Oc

[ (e”(xe,t) + €7(x5)

(; - Xo)}lc ’

Gp(xp) = {3’("0 ,t) + €;(X°)
fe’(%o,t) + €7(%0) + (X - %) )15

.

{e '(x;,t) + (%) - (x - %) 355

and

Gy (X;) = G,(,l)(x,,) + G§2)(xp) ,

corresponds to the time derivative term in € ’(x,t) , and

where Ggl )

ng) corresponds to the nonlinear term £(x,t) . Since differentiation

is a linear operation, we have that

6,y )
3, oY,

(2)
To obtain the Jacobian 29% , consider terms of the form
?



Iv.16

aijc {£(x0,t) + £.(x,,t) * (;-xo)}kc =
= T {£(x%0,t) Hxe +§21—c {Ex(xo,t) - (;-xo)}kc (41)

3 P . C
{Bxgc E(xo,t) e + {-5-2-: £.(%Xo,t) - (-Zz(xlc cos it + x,, sin it)}xc -
i=

Now, consider two cases: j <1 and j>1. If j> 1, then the first

term on the right-hand side of (41) is zero, and hence the result is

P ) -
ach {f(XOst) + fx(xo:t) . (x’xo)}kc =
p
= {£,(xq,t) 537 _Ez(xic cos it + x;, sin i)}y, (42)
i=

= {fx(xost) ¢+ cos jt}kc .

Alternatively, if j <1,

{al‘aﬂc f(Xo’t)}kc + {S}B{T fr(%Xo,t) - (;-XO)}kc =

= {fx(xo »t) + cos jt}kc + {323— fx(xost) ‘(;‘xo)}kc (43)

The remaining elements

o (£Cra(£),8) + £,(xo(£),8) - (R(E) - %o ()i
so [E0(),8) + £:(xe(),8) = (HE) = % () s
and

S [EGo(6),8) + £(o(£),8) = (R(E) - %o(E))Tug

are evaluated in the same fashion. Comparing (42) and (43) with (38),
one sees that the first three columns (corresponding to the case j < 1)
of 3G,/3X, in the Newton method are equivalent ot those of the matrix
A, (with approximation (38)); however, the remaining (p-3) columns of

Newton's Jacobian matrix are not equivalent to those of A,: they are
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approximations to A; obtained by ignoring the matrix of second partial
derivatives in eqn. (38).

We have found in the above investigation that the jiterative method
of this thesis is closely related to, though not the equivalent of, a
Newton procedure.® Their convergence properties are not identical because
of the presence of second order partial derivatives in A; which are not
contained in the Jacobian of the Newton method. However, because we are
concerned with oscillations in which the fundamental harmonic is dominant,
we would expect the convergence of the two processes to be quite similar
since the first three columns of the two matrices are identical. A
quadratic rate of convergence has in fact been observed in all numerical
examples investigated. (The application of the method to an example is
illustrated in Chapter V.)

Since we have the capability of deleting (if we so desire) the second
order partial derivatives in all columns of A; beyond the third, the
results of Kantorovié ([10] and [12]) can be used to investigate ques-
tions of convergence (see Appendix). However, it should be mentioned
that the application of the theorem requires a considerable amount of
computational effort, and in practice the algorithm is frequently used

without benefit of guaranteed convergence.

4.4 A Special Case: Second Order Scalar Systems

Because of their importance in practice, and because their simpler
form should help to clarify the approximations made in the last section,

the iterative method will now be specialized to the case of second

® 1If, as suggested in the last section, the linearized third order equa-
tions of Hayashi are solved iteratively, the resulting process is equiv-
alent to the Newton method.
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order* differential systems of the form

X = f(x’*,t) s (44)

where f and x are now scalars, and f is polynomial in both x and
x (and continuous in t).

So that the results will conform exactly with those needed for the
practical applications in the next chapter, £ will be further restricted
to be odd in its arguments x and x . This latter restriction simply
means that all even harmonics are assumed at the outset to be zero.

Instead of expansion (7) in section 4.1, we have

Bee) = F [{ER,%,0) - £K50) - e XX, 6)]. cos jt
j=1,3,...
+ {£&,%,8) - £X,x,t) - € (X%, t)),, sin jt] . (45)

After integrating tiwwice (with each constant of integration taken as
zero because of the assumption that £(x,%,t) is odd in x and x), we

have the following equations which are analagous to (10):

Bye = ~(L/IP{EEE,t) - £(F,3,t) - e (i t) )y

j=1,3,...  (46)

S0 = ~(1/3)2{EGR,%,t) - £(,5,t) - (X5, 0)}ys .

If, in (46), the following Taylor series approximation (analogous to
(13)) is made,

£(3,%,t) - £GLX, ) £ £,(R,%,0)-(R5) + £,(F 05 0)-(Rx) ,  (47)

then we obtain a matrix formulation (A; + Az)z = b , where

. . . . . . . th
4 The generalization of the derivation in this section to n order
(scalar) differential systems is straightforward and will not be presented.
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{f,cos t-fysin t};, {£xsin t+fzcos t};. {ficos 3t-3f;sin 3t};....
{frcos t-fisin t},, {f,sin t+fjcos t},, {f,cos 3t-3f;sin 3t}y,...
A, = [{fycos t-f;sin t}s, .

f.cos t-f;sin t .
x b3 3s

(48)

cococooor!
oococoro
coowvwoo
cowvwooo

. -

{el(;’;’t)}lc 6lc
[e’GE% O hs 5

b = {e'(;,;,t)}sc and 2z = [8a,

{e'(;,;:t)}as a3

. . - e o o

In a similar manner as was done for the vector system in (37) and
(38), we expand the functions £(xX,%x,t) , £x(X,x,t) and £;(x,x,t)
about x,(t) , and retain only the first order terms of the expansion:

EGRE ) & £y 13 s E)HEx (Ko Ty £+ (R(E) X0 £) 145 (X0 »0 5 E) - (K(E) o (£))

£ (X, %0 t) = £, (Xqykot)Hxx (Xos¥o, ) (R(£)-Xo(£))
FEgz (X %o, £) = (X( L) =%k, (£))
£L (R0 E) 2 £3(0 o » E)HEgg (o e 5 £) (R(E) 2 (£))

+E32 (X0 ,%o , )+ (X(£) %, (£)) . (49)

With the approximations (49) substituted into the matrix system (48), we

have the desired result.
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It can now be seen how the A matrix and b vector can be evaluated
from knowledge of the first order Galerkin results. Suppose the nonlinearity

has the form

. my W mz M, L
f(x,%,t) = T ox* + T BX* + T T ykLikx (50)
k=1 k=1 k=1 4=1

where we have ignored the dependence of £ wupon ¢t .

If, in expanding £(x,, cos t + X;, sin t, t) in a Fourier series,
one performs the expansion in the general manner of section 2.3 (Chapter
11), then each of the elements in A and b is obtained merely from
direct substitution into this first order result. For example, consider

the particular term x®x® from (50). Instead of expanding
g(A,B) = (B cos t - A sin t)3(A cos t + B sin t)S (51)

we instead expand the more general expression

8
h(Ai ,Bl ,w1:i=1,2,...,8) = n (A: cos wit + Bi sin w:t). (52)
i=1
Once this is done, each of the elements in (48) can be obtained by merely

substituting various values of A,, B,, and w; into (52). For example,

with £(x,%x) = ¥°x° , then
£, (x,%) = 531t

and therefore
f, cos wt = 5-h(%y4,-%y.,1:1=1,2,3 ; x,.,%;,,1:1=1,2,3,4 ; 1,0,w) .

In a similar manner, the term
=

£5(x,%) sin wt = 3%°xS sin ot

is evaluated by
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f; sin wt = 3-h(Xy,,-%;.,1:1=1,2 ; X;.,%X,,,1:1=1,2,3,4,5 ; O,l,w) .

In the next chapter, all of the techniques necessary for applying
the method to a particular system will be illustrated in detail. Before
concluding this chapter, however, the question of the accuracy of the
iterative method and its relationship to harmonic balance will be discussed.

4.5 Accuracy of the Iterative Method and the Nature of its Relationship
to the Galerkin Procedure

For simplicity, in this section we will consider the nonlinearity
to be a scalar function of a scalar variable; the more general n-vector
case is not qualitatively different. 1In particular, consider the func-

tion
f(x) = x° (53)

where n 1is an integer. If we expand
P P
f[ Z (xy. cos jt +xy, sin jt)] = f[ Z x; cos (jt + @;)] (54)
j=0 j:o

in a Fourier series, the various coefficients will consist of weighted®

sums of terms of the form

n
%
- -2_2
x7 ko x1TPxZ L. cee. X3
n=1 n=2_2 n=2 n
Xl Xa X1 Xa X X2X3 PR Xs
- 2.2
kg xP7E .. X5 (55)
- -2
X3 %, XPTOXS aeieiee.i.n X5 .

To better compare the relative magnitudes of the terms in (55), we normalize

5 The weighting factors of the various terms in (55) are determined by
the structure of the particular nonlinearity (the value of n in (53)),

and by the phase angles (o,
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each term by dividing by x] , with the result

Lo
Xz /%, : (%2/%,)° oonnnn ceeieeeaeeaeas (Xg/x)"
xalry | ka1l (ralx)(xolxy) ee (alx) (56)
VN (% /%,)° ouen... Ceereaeaa. cee (Xe/x)"
X, /%y E O T cy

The first order Galerkin method neglects all terms above in comparison
with unity; the second order Galerkin method neglects all terms below
the second row (below the dotted horizontal 1line). By considering the
terms which were neglected in the truncated Taylor series approximations
of section 4.3, it is clear that the iterative method of this chapter ig-
nores all terms to the right of the dotted vertical line.

From the above discussion, it is obvious that the approximations
made in the iterative procedure are qualitatively different from those
made in the harmonic balance method. The second order harmonic balance
method takes into account the exact effect of the first and second har-
monics, but completely ignores the third and higher harmonics; the third
order method completely accounts for the first three harmonics, but
totally ignores the fourth and higher, etc.® The iterative method of
this thesis accounts for the first order effects of all of the harmonics.
The source of error in the iterative method is that the higher order
effects of all harmonics other than the first are neglected.

There are two important consequences of the above comments which
should be noted. First, it is possible to see from (56) that the itera-
tive procedure can be more, or less, accurate than second (or higher)

order harmonic balance, depending upon the harmonic content of the oscil-

® The other well-known analytic methods [5] (the perturbation method and
the method of successive approximations) are also approximations of this

type.
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lation. For example, when the oscillation has a large second harmonic
component (e.g., Xp/%x; > 0.5) and all its other harmonics are relatively
small (e.g., x;/x; < 0.01: j=3,4,5,...), then the second order Galerkin

method will generally be the more accurate, since the terms
(x2/%, ) , k=2,3,...,n (57)

which are neglected by the iterative method will in such a case be more

significant than the terms
(xy/%)* , j=3,4,5,... (58)

which are neglected by the second order Galerkin method, Alternatively,
when the harmonic content of the oscillation is more evenly distributed
(consistent with our previously stated requirement that the fundamental
component be dominant), then the iterative method will generally be

more accurate than the second (or higher) order harmonic balance method,
even though the second-order procedure is much more difficult (if not
practically impossible) to apply. For example, consider a squarewave
oscillation; the magnitude of its jth harmonic component is proportional
to 1/j , j=1,3,5,... . In this case, the terms neglected by the third

order harmonic balance method are of the order of
1/s , 1/7 , 1/9 , ...,

whereas the terms neglected by the iterative method are of the order of
(1/3)° =1/9 , (1/3)® =1/27 , (1/3)* =1/81, ...

Hence in this case, the first order effect of the ninth harmonic is poten-

tially as important as the higher order effects of the third harmonic.
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Before concluding this chapter, an additional consequence of the
qualitative difference in the approximations should be noted. 1In the
case of the second order harmonic balance method, the accuracy of the
method depends upon the magnitude of the third and higher harmonics, yet
the procedure does not generate any estimate of these harmonics. Hence
in applying the method, one has no indication of the magnitude of the terms
which have been neglected. On the other hand, the iterative method of
this chapter estimates harmonics of arbitrarily high order, and therefore
the magnitude of the terms neglected in the truncated Taylor series

approximations can be estimated.
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CHAPTER V

APPLICATION OF THE ITERATIVE METHOD TO AN EXAMPLE

5.0 Introduction

In this chapter, it will be shown how the iterative method of Chapter
IV is applied in practice; in particular, techniques for evaluating the
elements of the A matrix and b vector in a general manner (so that
the dimension of the algebraic system can be subsequently chosen arbi-
trarily) will be exhibited. The particular nonlinear system which was
selected to illustrate the application of the method is the classical

Duffing equation

X+ o%x + Bx +vx° =T cos(ut) . (1)

The improvement over the first order Galerkin solution which can
be obtained using the iterative method will be illustrated with numeri-

cal results for the special case

X + 0.3% + 10x - 0.1x® = 8 cos(wt) , (2)

for the forcing frequency w in the range [l,4]. The particular values
of the parameters in (1) were chosen so that the resulting oscillations

would have significant harmonic content.

5.1 Evaluation of the A Matrix

For the system (1), the funetion f(x,%,t) is

f(x,%,t) = ~o% - Bx - vx> + T cos wt (3)

and the nonlinear portion is
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Nf(x,%,t) = -y . (4)

To apply the iterative procedure, we need the Fourier expansion of
3
I (A, cos wst + By sin w,t) , (5)
i=1
which was computed in section 4 of Chapter II, Equation (II-33). In
this and the following section, it will be shown how the various elements
in equation (48) of the last chapter are evaluated by making appropriate
substitutions into expression (II-33). Consider first the evaluation of

the matrix A; . To avoid confusion, the various component terms will

be considered separately and hence we make the following definitionms:

—Tfo(x°) - cos th, {Nf(xe) - sin t}y, . . N

Agl) = {fo(xo) + COS t}ls

{fo(xo) - COSs t}ac

((NE,,(x0) » (X - Xo) - cos th, . .

a?) o .
[ [(I-N)Ex(x,) - cos tlye  [(I-N)£,(x,) - sin th. . . .
A§3) ’ '
—{-fi(xo) - sin t};,  {f3(x,) - cos t};. . ..
A(4 ) — ’ ) .
1

(2)

The notation (I-N)f in the matrix A, is used to denote the linear
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terms in the function £(x,%x,t) . Note that because of the particular
form of the nonlinearity in this example, the matrices corresponding to
the derivatives Nf,; , Nfy, , and Nf;; are zero.

Consider first the matrix Agl) . To evaluate the odd columns of
All) , observe that

@ - %; ) . cos kt = 3ox> . cos kt
X=X,

Nf,(x,) ¢ cos kt

(6)

]

3&h(1,0,k; Xics X138 1; Xics X158 1) ’

where the function h(.) 4is defined in expression (II-33) of Chapter II.
The notation used in (6) is simply meant to indicate that the parameters

of expression (II-33) should be given the following values:

A, =1 B, =0 w =k
7
Ap = A3 = X9, B2 =Bs = X35 wg =wg =1.
The result of substituting (7) into (II-33) is
3 2 2
NEg(%0) + cos kt =7 o [2(xT .+ x7g) cos kt
+ (xic- xfs) cos (k-2)t
+ (%X5.- x5,) cos (k+2)t (8)

+ 2%, .%;5 sin (k+2)t] .

(1)

Similarly, to evaluate the even columns of A; » we need the Fourier

components of f,{x,) . sin kt., Hence, we can make the substitution

(9)

Ay = =Bz = X, wp =wg =1

g
1]
"
»
0
L)
[
1

(&
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to get

Nf,(x,) + sin kt =*%'a [2¢x5 .+ xf,) sin kt
+ (x2.- x5,) sin (k-2)t
+ (%o~ %5,) sin (k+2)t (10)
+ 2%, X, cos (k-2)t

= 2%X;.%Xy 5 cos (k+2)t] .

The elements of the matrix Agl) can now be written down, column by

column, from inspection of (8) and (10); to save space, in (8) and (10)

we let
2(xfc + xf,) = a
X, - %o, =b (11)
2%y .%Xq g =c .
Then the matrix Agl) is
2+ c}"‘b‘“'c’f 0 o0 o0 0
1 1
c a-b:-c by O 0 0 0 .
]
b -c : a 0, r b c_E 0 0 .« o .
1 t 1
c b lO0 ani-e b O 0 ...
' 1 e
0 0 ;b -clta 0}y O
} ‘l 11 ¢
3 ' ' h '
o o OL.c._-_-IZ_::O aji-e b: .. (12)
! i
0 0 0 o0 ;b -clla oi...
! 1
]
0 0 0 0 te__blro a: ..
I 1
0 0 0 0 0 O'Ib -c ! ..
{
]
0 O 0 0 0 0 ic¢ b ...
[, 4
0 0 0 0 0 0 0 0 .
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Recall that it was stated earlier that the analytic effort required in
applying the iterative method does not increase as the dimension of the
matrix system is increased; it should now be clear why this is the case:
the structure of the matrix (12) is quite redundant, as is emphasized by
the dotted rectangles. The first two colummns are exceptions to this uni-
form structure because of the '"folding over" of negative frequencies
which occurs below the third harmonic.

Note that (12) is symmetric; this is a general property of both

Agl) and Agz) » Since

(fx-cos kt) sin jt dt = {f, sin jt},. , (13)

[e] N
c_,:‘

{£; cos kt},, =%

etc. However, the elements of A14) (in which the partials are with

respect to x) are not arranged in this symmetrical manner.

(2)

Next, we need to evaluate the matrix A;"7. Since

- d -
NExx(x0) « (%x-%c) Q’E}_{?xs o (x-%o)
X=X,
(14)
P
6o %t} T (X3, cos jt + xy, sin jt)
j=3,5,...

and so

- P
NE; (%) « (x-%g) = cos wt = 6 T h(1,0,KkiXy.3%y3355L13X455X5553) « (15)
j=3,5,...

In other words, we need to evaluate expressicn (II-33) for the substitu-

tions

A2 =Xy BQ = X315 Wy = 1 (16)

"



The

result is

Nf g (%0) (;'xo) + cos kt =

P
%a z [(XyeXye + X;4Xy,) cos [k =~ (j-1)]t
j=3,5,...

+ (X1 X3 + X14Xyy) €O
+ (X70Xyge = Xy4Xg,) €O
+ (xlcxdc
= (X1cXy,

+ (X1cXys - Xp4%Xg.) Si

7]

[k + (3-1)]t

(2]

(k = (3+1)]t

co

7]

[k + (j+D)]t

'
=
'™
«w
'N
o«
o’

si

=]

[k - (j-1)]t

[k + (j-D]t

1
b
-
]
"
e
4]
~’

=]

= (XycXsg + X14%Xgc) sin [k - (j+D)]tc

+ (X;.%55 + %

=]

X3c) sin [k + (j+1)1t]

Similarly, for Nf,.(xy) - (;-xo) « sin kt we make the

A, =0
Ay =Xy,
Aa =x:c

with the result

By =1 W =
Bz = X1 Wy =
Ba-_-x_’a Wy =

Nf,x(Xo) + (X = Xo) - sin kt =

3
-Z'Q

P
z [(xlcxjc
j=3,5,...

+ (X1.%3,
+ (chxic
+ (XICXJC
+ (xlcx“
- (xlcx.ﬁ‘

+ (X1.Xys

+ (%, cXis

+ X;4Xy,) sin [k - (§-1)]1t
+ X, 4Xy,) sin [k + (-1)]t
- Xy .%y5) sin [k - (j+1)]t
- X,5%y,) sin [k + (j41)]t
- X 4%;.) cos [k - (3-1)]t
- Xy4Xy.) cos [k + (j-1)]t
+ Xg5X3c) cos [k = (j+)]t

+ Xy¢Xy.) cos [k + (j+1)]t]

V.6

(17)
substitutions
k
1
J
(19)
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(2)

Because the matrix A; is symmetrical, we need evaluate only the ele-
ments on and below the diagonal, i.e., we need expressions for the following

Fourier coefficients:

{NE (%) - (X - Xg) » cos Kt} eamye (20a)
- m=0,2,4,...
{Nf 2 (%X0) « (X = X,) - cos kt}(k+m)s k=1,3,5,... (20b)
and
{Nf (%) - (;.' Xo) - sin kt}(k+m)c (20c)
{NE ,(%5) + (X - X,) - sin kt}(kﬁm)s . (204)

These expressions are obtained by collecting the appropriate terms from
(17) and (19). For example, consider the first expression in (20): we
need to collect all (k,+m)th order cosine components in (17). 1In the
first sumt of (17),

P

z (xlcxjc + xlsxjs) cos [k - (j-1)]t , (21)
3=3,5,...

we select the term for which
k-(j-1) = «(kitm) or j=2k+m+1 . (22)

Hence, the portion of expression 20a due to the first sum of cosines in

(17) is

XicX(okrz+)c T X1:Xoxrzel)s - (23)

From the second sum in (17), i.e.,

P
j=3,5,...

we select the term for which

! In writing expression (21), we have implicitly rearranged the order of
summation in (17).
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k + (j=1) =k +m or j=m+1 (25)
so the sum (24) contributes the terms

XieXg+) e T ’El sXCa+1) s - (26)

In a similar way, the contributions due to the third and fourth cosine

sums in (17) are

X1eX (2x+a=1) ¢ ~ X1aX(2k+2-1) 8 (27)

and

KieXco-De ~ X15¥Cz-1)s o (28)

Combining (23), (26), (27) and (28) we have that for m = 0,2,4,... and

k = 1,3,5,-...

INEgx(%o) * (X=%o) + €08 kt}(xemye =
(X1eX(z-1)c = ¥1s¥(z-1)s)
+ (X3eXqaap) e T X16X(za1) s) (29)
+ (X1.X(2xpa-D e - X1:5X (2kez—-1) 5)

+ (xlcx(2k+=+1)c + X1 8X CRxaz +1) s) -

Implicit in the preceding manipulations is the fact that the subscripts

of the second variable in each term is a member of the class
(3, 5, 7, 9, ...) , (30)

and therefore one must use care in applying (29) to delete any terms not

in this class. For example, when m=0 the first four terms in (29) are

(XcXaqe = XpeXeys) + (X1cXye + X1eX35) 3
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these terms should be ignored because they are not present in the original
sum (17).
The results of this "sorting" process for the remaining three

expressions in (20) are as follows:

[NE, (%) - (X-X,) - cos Ktqernys =
(X3cXz-1)s T X18¥Ca-1) c)
+ (XycX(zeD s - X1sXcaeD c) (31)
+ (X3eX (2kwn=1) 8 F X¥18X @kea-1 c)

+ (xlcx(2k+:+1) 3~ X1sX(2k+z+D c)

[NEo(Xo) - (¥-%o) - sin ktloum e =
(X¥1cX(a-D s + Xps¥(z=Dc)
- (X1cX(zed) s - F1s¥(zeD c) (32)
+ (XX (2xrz-1 5 F ¥1s¥ (@rez-1c)
+ (XycX (2kez+D s - X1sX(2kenrD c)
and
(Nfgx(%0) + (X-%o) - sin ktlgun s =
(X1cX(z-1yc - ¥16X(a-1)s)
+ (XX @en e XXz 8) (33)
- (X1cX(2ksz=1)c - ¥18% (2kea=1) 8)

- (X eX(2xra+1 c T X1sX(2k+z+1) 8) -

(=)

The lower triangular elements of Aj are defined by the formulas (29),

(2) as

(31), (32), and (33). If we represent the elements of Ay a;y, then
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{fox(xo) * (;;xo) - COS kt}(kf:)c = ak*:,k
{fox(xo) . (;on) - cos kt}(k+ﬂ s < ak+:+1,k

_ (34)
{fox(xo) * (x'xo) - sin kt}(k*ﬂ e T akfn-l,k*l

{NEg (%0) = (x=%5) « sin Kt}yany s = 8gpz xv1

(for k=1,3,5,... and m=0,2,4,...) .

(=)
2.

The remaining elements are defined by the symmetry of A

)

The evaluation of the remaining matrices, A;3’ and A§4) is trivial

since they correspond to the linear terms in £(x,%,t) . From eqn. (3),

-8
and (35)

(I'N)fx(xo:io,t)

(I'N)f{(xo,io3t) = ¢

(<)

Hence the matrices Aga) and A; are simply

[ o

o 1 0 oO0... -1 0 0 0o O O0...

A%) ol o 0 0 3 0 o0...

(365

5.2 Evaluation of the b Vector

The vector b 1is evaluated in the same manner as was A . Again

we consider separately the various component terms of the vector and

define
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—{-Nf(xg,}'co,t)},: r{-fo(xo,:'co,t)-[;(t) - xo(t)]}l:
by = =| {NE(Xq,%0,5t) has 5 bz = =l {NEL(Xo,%,,t) - [x(£) = %,(£)]},
{NE(Xo,%05t) )30 {NE, (X0 ,%,,t)- [X(t) = Xo(t)]}ae
[ [(I-N)ERCE), %(£),t) e | _{§}1: 7
by = = [(T-N)EGRCE),%(£), )}y be =| {xhe| .
[(T-MEGR(E), 58Dt ) s (xlac
: (%o

The first compenent, b, , is evaluated by observing that
NE(Xg,%o,t) = =0%o(t)3 = ~oh(x,.,%15,1 :1=1,2,3) (38)
i.e., that the parameters in expression (II-33) are

Ay = Ay =45 =%,
B, =By =Bz = X;, (39)

W, =Tuwy =wg =1.
The result of substituting (39) into (II-33) is

. 3 2
Nf(x,%q,t) = Z vI(x,2 + %, %,3) cos t
+ (%2 + Xy 4%,2) sin t
. (40)
+ (§-x1§ = XycXy5) cos 3t

+ (- % %2 + x,°%,,) sin 3t] .

(Note that this is the expression which was required for the application
of the first order Galerkin method in chapter II.) The component b,

is therefore
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[ Xy.° + xlcxi,z-
Xy52 + Xy pXgo”
by ='% Y %’ﬁca - XioXys . (41)
- %xlsa + xlclea

To evaluate b, , note that

-3x3(t)e T (xy, cos jt + Xy, sin jt)
j=3,5,...

NE, (Xo,%o,t) = [X(t)=Xo(t)]

(42)

-3 X h(Xye,X35513X1¢5X15515%X15X1851)
i=3,5,...

In other words, we need to evaluate (II-33) for the parameter values

Ay = Xy, By = Xy, W, =3
(43)
Ay = Az = x5, B = Bz = X35 wp =wg =1,
The result of substituting (43) into (II-33) is
Nfg (X,%,,t) + [X(£) - %,(£)] =
3 P )
- Y T [(2xycxc” +%,°]) cos jt
j=3,5,7...
+ (xjc(x1c2'x152)+2xjs(xlcx18)) cos (j"z)t
. . (44)
+ (xlc(xlc "Xy )'zxja(xlcxls)) cos (j+2)t
+ (2% 5(%,.24%,4°)) sin jt
+ (x:,(xlcz-xlaz)-ijc(xlcxls)) sin (j-2)t
(X5 (K7 =%g g 2)HF2%, (X1 %y 5)) sin (j+2)t]
and so for k = 1,3,5,...
{Nf (%o %00 t) » [X(E) = %,(t)] e =
2xkc[x1c2 + xlaa]
+ x(k+2)c[x1c2 - X1a2] + 2X (x+2) sX1cX1s (45)

=] 21
J

- o~ | ~ Var . N -~ -
+ X (x=2) ¢ 1X1c Xig 1 7 2X(k—2) s¥1:%15
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where subscripts of the first variable in each term above are constrained

to be in the set
(3,5,7,9,...) . (46)
Similarly,

{NE, (%Ko ,%0,t) = [X(t) - Xo(t)]}ys =
2xk,(x1c2 +-x152)
. . (47)
+ X(xe2) s (X1 " X357) = 2X(ke2)cX1cXas

2 2
+ X(xm2) s (X9e” = Xy sT)F 2X(x_2) XycX1s

To save space, deiine

0
I
[
t]
4
(2]
b
%)
1]

Then

bxa, + Xz,
-CX3. + bXg,

axs, + bxg, + cxs, (48)

o
0
]
&lw
<

aXz, - CXs. + bxs,
bXz., - CXazg + axs, + bx7v, + cx=v,

eXg, + bxgg + axg, + bx7, - exv,

The remaining two vectors correspond to the linear terms in e‘(x(t),t)

and their evaluation is trivial. To evaluate bg,
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ox(t) - Bx(t) + T cos t
P

=« o Z (=j%3. sin jt + jxy, cos jt)

3=t (49)
P

B Z (x;. cos jt + x4, sin jt)

j=0

(I-N)E(R(L), X(t),t)

4+ T cos t
so that

’_'w{la - Bxlc + -n—
+ox; . - Bxy,
by = - -3ox3, - Bxa. . (50)

+3ach - BX33

And for b,

= P
x(t) = -2 j2(x3c cos jt + X5 sin jt) (51)
j=1

so that

by, =< 9%, | ° (52)
9%4,
25X5c

25X5 s

This completes the evaluation of all the terms needed to apply the method
of the last chapter. Collecting the various components which have been

evaluated separately in this section, the complete matrix system is
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[A§1) +A§2) +A,(_3) +A§4) + Az)Jz =b; + by +bs +by , (53)
where the matrix A, was defined in Chapter IV, egqn. (48).

5.3 An Additional Correction Term for the b Vector

Before reporting the numerical results obtained for a particular
example in the next section, a correction term for the b vector will
be evaluated which for the simple system of this chapter results in an
improved approximation with little increase in effort. If in the Taylor
series expansion of the equation error we attempt to retain one additional
term

T t) 2% - E(XX,E) = X - E(XgyRo,t) = £5(%0) + (X-Xo)

- . _ s (54)
= fi(io) . (X'}.(o) = ffxx(xo) i (x"xo) >
this requires the expansion of
P 2
[ 2 (%, cos jt + x5, sin jt)]° , (55)
j=1

which would cause a considerable increase in the amount of analytic effort
necessary to apply the iterative method. 1In addition, it is clear that
such a correction in the general n-dimensional case would severely compli-
cate the method. For this reason, this correction term was not discussed
in the presentation of the general method in Chapter III. 1In this simple
scalar case, however, we can rather easily account for the second order
effects of the third harmonics by substituting (for the underlined term)

in (54) the correction term
- % £,,(x,) - (%a cos 3t + x5, sin 3t)% . (56)

This is easy to evaluate in this case since for
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Nf(x) = - Yx39 fix(xc) = -6yx, , and so

- % £,,(X) ¢ (X3, cos 3t + X3, Sin 3t) =
(57)
+ 3Y h(xlc:xla’l; xac,xass3; xsc’xaa’3)

and hence we can use the same direct substitution technique into (II-33)

which was used for the other components of A and b . Substituting the

values
Ay =X By =X, w =1
(58)
A2=A3=X3c B2=Bs=xss w2=u)3=3
into expression (II-33) results in
- & £,,(x,) » (x3. cos 3t + x5, sin 3t)® =
+‘% y[2x1c(x3c2+x352) cos t
+ (xlc(x3c2+x352) + X; 3 (2%3.%35)) cos 5t
+ (% (X3 “=Xas”) = X14(2X3.%Xa5)) coS Tt (59)
+ 2x15(x3c2+x352) sin t
- (XIS(x3c2-x352> = xlc(2x3cxas)) sin 5t
+ (xls(XScz-X382) + xlc(2x3CXQ3)) sin 7t].
To save space, we define the parameters
a = 2(x%3,° + X35°)
b o= x5.2 - %s,° (60)

¢ = 2X3.X3; .

Then the additional component to be added to the b vector is
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o
w

I
iy (W
<

]
o
b

™)

1

+
2
[¢]

(61)

It should be noted that the inclusion of the above correction vector
can be expected to result in an improvement only for those oscillations
having large third harmonic content relative to the fifth and higher

harmonics.

5.4 Numerical Results

In this section, numerical results obtained by applying the iterative

method to the specific example

¥ 4+ 0.3% + 10x - 0.1x® = 8 cos (wt) (62)

(for values of the forcing frequency in the interval 1 < w < 4) will be
reported. The results of the iterative method will be compared with both
the first order harmonic balance results and with the exact solutions as
obtained by numerical integration.

The bulk of the results will be presented in tabular and graphical

form; for clarity, however, the results for one particular value of w
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(v = 1.5) are shown explicitly below. The expansions are complete through
the fifth harmonic; it was observed during the numerical iteration that
increasing the matrix dimension to the 7th harmonic and higher had negli-
gible effect on the accuracy.

The first order Galerkin solutiomsto (62) with w = 1.5 were obtained
by numerically solving the cubic determining equations (II-36).° At the
above driving frequency, the steady state solution of (62) is not unique:
there are three distinct periodic functions of time which satisfy (62).

To conserve space, numerical results for only one of the three will be

reported here. The chosen Galerkin solution is
x(t) = -8.49 cos 1.5t + 6.27 sin 1.5t . (63)

Using (63) as a starting point for the iterative procedure, the resulting
approximate solution is
x(t) = -7.9763 cos 1.5t + 7.5753 sin 1.5t - 0.829 cos 3(1.5)t

(64)
-0.875 sin 3(1.5)t + 0.11317 cos 5(1.5)t - 0.1026 sin 5(1.5)t + ...

and the true solution is

%(t) = -7.9751 cos 1.5t + 7.5610 sin 1.5t - 0.835 cos 3(1l.5)t
(65)
-0.885 sin 3(1.5)t + 0.11327 cos 5(1.5)t = 0.1017 sin 5(1.5)t + ...
The improvement in the accuracy of the fundamental components in the

above example is typical of that which has been observed in all other

examples studied: percentage error is reduced by factors of between

10° and 10°.

2 These two coupled cubic equations can be reduced to one cubic equa-
Jx1c2+ xlaz

tion in the magnitude ; see Hayashi [5], p. 29.
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Since it is necessary in the iterative method to perform the itera-
tions numerically (i.e., using a digital computer), it is appropriate to
compare the time required for the iteration method with the time required
to perform the numerical integration. In the above example, the oscilla-
tion was observed to be unstable; consequently, the solution obtained by
numerical integration shown in (65) was very difficult to obtain. The
result (64) of the iterative method was used as a first "guess," and a
rather sophisticated technique [13] for predicting new initial conditions
based on initial and final values (over one period) was necessary. It
was not possible to obtain the true solution for this example starting
from initial conditions calculated from the Galerkin solution (63),
because the instability of the oscillation was such that the integration
procedure diverged in a mere fraction of the period. Under such circum-
stances, the iterative method (or some other means of approximating high
order Galerkin solutions such as that of Urabe-Reiter [9]) obviously
possesses a great practical advantage over direct numerical integration
of the differential equations. Even in the case of oscillations which
were stable, the time required for the integration procedure was, at best,
an order of magnitude greater than that required for the iterative method.

Comparisons between the results of the iterative method, the first
order Galerkin solution, and the true solution for the system (62) with
various forcing frequencies are shown in the plots on the next page, and
in Table 1 on page 21. The plots are of the fundamental components x,.
and x,, ; the error of the iterative solution is too small to be seen
on these graphs. The non-uniqueness of steady state responses in nonlinear

systems is clearly evident.
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In Table 1, numerical results (through the fifth harmonic) are shown
for four different values of the forcing frequency. (The first case is a
repetition of the solutions shown explicitly in equations (63), (64), (65);

this redundancy should help clarify the meaning of the entries in Table 1.)

5.5 Conclusions

In this chapter, it was explicitly shown how the elements of the
matrix A and the vector b are obtained for the Duffing equation. The
evaluations were performed in such a way that the dimension of the linear
algebraic system can be chosen arbitrarily at each stage of the numerical
iteration. Although in this chapter these techniques are specifically ap-
plied to the cubic nonlinearitythey are directly applicable to the general
case as well,

As demonstrated in Table 1 and in (63) and (64), the improvement

obtained using the iterative method can be quite significant. i
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CHAPTER VI

CONCLUSIONS

6.1 Final Comments on the Nature of the Thesis Results

In this thesis, we have been concerned with the problem of deter-
mining steady state oscillations resulting from excitation of the same
period. Two methods have been presented which, for polynomial nonlinear-
ities, generate corrections to the first order Galerkin solution. The
methods may be viewed as analytical approximations to the higher order
Galerkin procedures. The value of these methods lies in the fact that
the mth order Galerkin determining equations are generally impractical
to obtain analytically if m> 1 , and hence the ability to approximate
them is an important practical consideration.

The first of the two methods consists of a set of approximations
which, for odd nonlinearities, allows Hayashi's [5] linearized third order
Galerkin equations to be obtained directly from the first order Galerkin
results. A savings in analytic effort is achieved as a result of the
fact that only first order Galerkin equations are required.

The second of the two methods is an iterative proce@ire which is

th

more general than the above method in that it approximates the m

order Galerkin solution for arbitrary m. A significant distinction of

this method relative to other analytic methods is the fact that the first
order effects of essentially every harmonic component are taken into
account (yet the analytic effort necessary to apply the procedure is com-
parable with the first order Galerkin method). As illustrated in the
example of Chapter V, the accuracy of the iterative method can be quite

impressive.
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6.2 Suggested Extensions

There are several directions in which the methods of this thesis
might be profitably extended. Hayashi [5] makes extensive use of the
harmonic balance procedure in investigations of super- and sub-harmonic
oscillations, and of spontaneous oscillations in unforced (autonomous)
systems. Combinations of the above types of behavior (e.g., almost
periodic oscillations and the entrainment of frequency [5]) in which non-
harmonically related oscillations exist simultaneously can also be studied
by the Galerkin method. Although in this thesis we have been concerned
with oscillations of the same period as the excitation, the basic ideas
behind the methods may be extendible to the above phenomena.

Attention has also been restricted in this thesis to polynomial
nonlinearities; the methods of Chapters III and IV may be useful in
the analysis of systems with other types of nonlinearities. In the case
of piecewise linear characteristics (whose derivatives fail to exist
at a finite number of points), the method of Chapter IV can be applied,
at least formally, if impulses are allowed. Whether the truncated Taylor
series approximations are meaningful in such a case is not clear.

As a final comment, it should be noted that the restriction to
systems with polynomial nonlinearities is not a severe limitation in
practice. Polynomials of reasonably low order can be used to simulate
a wide variety of nonlinear characteristics and hence the applicability

of the thesis results is actually quite broad.
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APPENDIX
CONVERGENCE OF NEWTON'S METHOD

In this appendix, it will be shown how Kantorovié's theorem [12] on
the convergence of Newton's method (as presented by Rall [10]) can be

applied to the particular algebraic equations
F,(Y;) =0 and G (X;) =0 (1)

defined in Chapter IV. Recall that G;, X;, F;, and Y, are p-dimensional
vectors whose elements are themselves n-dimensional vectors. The state-
ment of Kantorovid's theorem will be significantly simplified if we con-
sider the above vectors to have p-n=q scalar elements, rather than p
n-dimensional elements. By so doing, we can frame the theorem in the well-
known vector space RZ , which utilizes the easily computed Chebychev
norm. Let us define the q-dimensional vector G (whose elements E},
i=1,2,...,q , are scalars) in the following manner: if we denote the

th

.th
k™ element of G, as a; (ay is an n-vector), and the i~ element of

a, as ai (ai is a scalar), then

X

i

ag =G(k-1) n+l 1_<= seeesP (2)
1

Thus the vector G, is a partition of the vector G 1into p
n-dimensional segments. In a similar mamner, we define g-vectors X,
F, and Y , corresponding to the p-vectors X, F;, and Y, .

We can now use Rall's statement of Kantorovic's sufficient conditions

for the convergence of

=7z -
Tlerr) 2 x(e) [EQ%(____Z]_J._ G(i-(“)) . (3)
X
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we first assume that the starting point X(o) is such that [ac(x 0))/BX]"]‘

exists. We can then use (3) to compute 3{-(1) , from which we determine
two constants which satisfy
o > max ‘_(1) igo)‘ (4)
(i)
and
z h (O
B, > max I |hy (X , (5)
(1) j=1

where the hyy, i,j=1,2,...,q are the elements of the inverse of the

Jacobian:

ux) & [9%}%&1-1 . (6)

we define the closed ball U(X(°) r) , of center %¥°) and radius r ,

as

7T, 1y é{iekgz max [%, - X7] < 1} . (7)
(1)

Finally, we define the scalar function o(X) as

- a g -
«X) Smax = I |gy4x(X)| , where (8)
(i) j=1 k=1
g 4 BZE‘(E) i,j,k =1,2 9)
14 = o= i,i,k = ceesq .
T Xex, SEAAAA

. . - Il .
In terms of the above definitions, Kantorovic's theorem states that if
>

a(X) € K

in some closed ball U(X(O)

r) and

A ;
hy =B, K< %,

then the Newton sequence (3), starting from the initial point X(O)



-
will converge to a solution X of

G(X) =0

which exists in U(x(°),r) , provided that

1,>1-A/1-2h,, e

-— ho
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