
Matroid Optimization and Algorithms

Robert E. Bixby

and

William H. Cunningham

June, 1990

TR90-15

MATROID OPTIMIZATION AND ALGORITHMS

by

Robert E. Bixby

Rice University

and

William H. Cunningham

Carleton University

Contents

1. Introduction

2. Matroid Optimization

3. Applications of Matroid Intersection

4. Submodular Functions and Polymatroids

5. Submodular Flows and other General Models

6. Matroid Connectivity Algorithms

7. Recognition of Representability

8. Matroid Flows and Linear Programming

1

1. INTRODUCTION

This chapter considers matroid theory from a constructive and algorithmic viewpoint.

A substantial part of the developments in this direction have been motivated by opti­

mization. Matroid theory has led to a unification of fundamental ideas of combinatorial

optimization as well as to the solution of significant open problems in the subject. In

addition to its influence on this larger subject, matroid optimization is itself a beautiful

part of matroid theory.

The most basic optimizational property of matroids is that for any subset every max­

imal independent set contained in it is maximum. Alternatively, a trivial algorithm max­

imizes any {O, 1 }-valued weight function over the independent sets. Most of matroid op­

timization consists of attempts to solve successive generalizations of this problem. In one

direction it is generalized to the problem of finding a largest common independent set

of two matroids: the matroid intersection problem. This problem includes the matching

problem for bipartite graphs, and several other combinatorial problems. In Edmonds' solu­

tion of it and the equivalent matroid partition problem, he introduced the notions of good

characterization (intimately related to the NP class of problems) and matroid (oracle)

algorithm.

A second direction of generalization is to maximizing any weight function over the

independent sets. Here a greedy algorithm also works: Consider the elements in order of

non-increasing weight, at each step accepting an element if its weight is positive and it

is independent with the set of previously-accepted elements. A most significant step was

Edmonds' recognition of a polyhedral interpretation of this fact. He used the fact that the

greedy algorithm optimizes any linear function over the convex hull of characteristic vectors

of independent sets to establish a linear-inequality description of that polyhedron. He then

showed that a greedy algorithm also works for the much larger class of polymatroids: poly­

hedra that are defined from functions that, like matroid rank functions, are submodular.

This polyhedral approach led to the solution of the weighted matroid intersection problem

and extensive further generalizations, culminating in the optimal submodular flow prob­

lem. Other important related problems are that of minimizing an arbitrary submodular

function and a polymatroid generalization of nonbipartite matching. Complete solutions

of these problems remain to be discovered, but substantial progress has been made.

There is a second aspect of matroid theory, other than the optimizational one, for

which a constructive approach is desirable. This might be called the structural aspect. We

seek constructive answers to such fundamental questions as the connectivity, graphicness,

or linear representability of a given matroid. It is pleasant to realize how many of the

classical structural results of Tutte and Seymour are essentially constructive in nature. In

fact, the most important structural result to date, Seymour's characterization of regular

2

matroids, yields an algorithm to recognize regularity by reducing that problem to recogniz­

ing graphicness and connectivity, two problems to which Tutte contributed substantially.
On the other hand many structural questions can be proved to be unsolvable by matroid

algorithms. Indeed, recognizing regularity turns out to be essentially the only question on

linear representability that is solvable.

We use the matroid terminology introduced in the Handbook chapter of Welsh. The
following additional notation is used. For a subset A of the set S, we use A to denote S\A.

Where J is an independent set of matroid M = (S,I), and e E J with JU {e} tf; I, we
use C(J, e) to denote the unique circuit (fundamental circuit) contained in JU { e}. Use of

this notation will imply that J U { e} ¢:. I.

3

2. MATROID OPTIMIZATION

Two of the most natural optimization problems for a matroid M = (S, I) with weight

vector c E Rs are to find an independent set of maximum weight, and to find a circuit of

minimum weight. These generalize standard optimization problems on graphs. We show in

this section that the classical greedy algorithm solves the independent set problem. While

this problem is easy, it leads to very useful polyhedral methods. Considering the greedy

algorithm requires the discussion of efficiency of matroid algorithms. It turns out that,

with respect to the resulting notion of algorithmic solvability, the circuit problem above is

intractable.

The Optimal Independent Set Problem

If we are asked to find a maximum cardinality independent set, we know from the
independent set axioms (Chapter Welsh) that any maximal independent set is a solution.

Hence the following trivial algorithm works: Where S = { e1, e2, ... , en}, start with J = 0
and treat the ei sequentially, adding ei to J if and only if J U { ei} is independent. The

maximum weight independent set problem

(2.1) max(c(J): J EI)

includes the above problem as a special case (take each Ci = 1). Moreover, (2.1) is solved
by making two simple modifications to the above algorithm. First, we treat the elements

of Sin order of non-increasing weight, and second we do not add to Jany negative-weight

elements. The resulting method is the greedy algorithm (GA).

Greedy Algorithm for the Maximum-Weight Independent Set Problem

Order S = { e1, e2, ... , en} SO that Ce 1 ~ Ce 2 ~ ••• ~ Cem ~ 0 ~ Cem+i ~ ... ~ Cen

J := 0

For i = 1 to m do

If J U { ei} E 'I then J := JU { ei}

(2.2) Theorem. For any matroid M = (S,T) and any c E R 5 , GA solves (2.1).

Proof. Suppose that J = {ii, ... , j k} is found by GA, but Q = { q1 , ... , qc} has

larger weight. Assume that the ji are in the order in which GA added them, and that

Cq1 ~ Cq2 ~ ••• ~ Cql. There is a least index i such that Cq; > Cj; or Cq; > 0 and i > k. Then
{ji, ... ,ji-d is a basis of A= {j1, ... ,ji-1,q1, ... ,qi}, for otherwise GA would choose
one of q1, ... , qi as j i. But { q1, ... , qi} is a larger independent subset of A, a contradiction.
D

A pair (S,T) satisfying only that 'I=/= 0 and A~ BE 'I implies A E 'I, is sometimes

called an independence system. Both the problem (2.1) and the greedy algorithm can be

4

stated for any independence system, and one wonders whether other independence systems

are similarly nice. However, the matroid axioms say that (S, I) is a matroid if and only if

GA solves (2.1) for every c E {O, 1}8 . In view of this observation, Theorem (2.2) can be

restated as follows.

(2.3) Theorem. An independence system (S,I) is a matroid if and only if GA solves

(2.1) for every c E R 8 .

A second proof of (2.2), almost as short and much more useful, leads us to the poly­

hedral method.

Proof. (of 2.2) Let x be the characteristic vector of the set J produced by GA, and

let x be the characteristic vector of any independent set J'. Then c(J') = I: Ce;Xe; = c · x.

Let Ti = { e1 , ... , ei} for O :S i :S n. Notice that x(Ti) 2:: x(Ti) for 1 :S i :S m, because

J n Ti is a maximal independent subset of Ti. Then

m n

C · X = L Ce;Xe; + L Ce;Xe;

i=l i=m+l
m n

i=l i=m+l

m-l n

= L (ce; - Ce;+Jx(Ti) + Cmx(Tm) + L Ce;Xe;

i=l i=m+l

m-l n

:::; L(ce; -Ce;+i)x(Ti)+cmx(Tm)+ L Ce;Xe;•

i=l i=m+l

But the last line is c · x, since the inequality holds with equality for x = x. o

Notice that the only properties of x, x used in the second proof of (2.2) were that

x 2:: 0 and x(Ti) :S x(Ti)(= r(Ti)), 1 :Si :Sm. So GA actually solves the following linear

programming problem, since x(Ti) = r(Ti) implies x(Ti) :S x(Ti):

(2.4)

max1m1ze c · x

subject to

x(A) :S r(A),

X 2:: 0.

ACS·
- '

This observation implies the following Matroid Polytope Theorem of Edmonds (1970).

(2.5) Theorem. For any matroid M = (S,I), the extreme points of the polytope P(M) =

{ x E R! : x(A) :S r(A) for all A ~ S} are precisely the characteristic vectors of

independent sets of M.

5

Proof. It is easy to see that the characteristic vector of any independent set is an

extreme point of P(M). Now let x' be an extreme point of P(M). Then there is c E Rs

such that x' is the unique optimal solution of max(c · x: x E P(M)). Applying GA to M

and this c, we obtain x, the characteristic vector of an independent set, and x solves the

same linear programming problem. Hence x' = x, as required. o

(2.6)

The dual linear program to (2.4) is:

minimize I)r(A)yA : A~ S)

subject to

'z:)YA : j E A) 2: Cj, for j E S;

YA 2: 0, for A ~ S.

Analysis of the second proof of theorem (2.2) shows that the following formula, sometimes

called the dual greedy algorithm, gives an optimal solution y' to (2.6):

I Yr, = Ce, - Ce,+1' 1::; i < m;

Y'rm = Cerni

y~ = 0 for all other A~ S.

It follows that (2.6) has an optimal solution that is integer-valued whenever c is integer­

valued, that is, that the constraint system of (2.4) is totally dual integral. (This important

notion is developed in Chapter Schrijver. One fundamental fact that we do mention, is

that if Ax ::; b is totally dual integral, b is integer-valued, and max(ex : Ax ::; b) has an

optimal solution, then it has one that is integer-valued.) One can also use y' and the linear

programming optimality conditions to prove the following converse to (2.2). (The point

here is that there can be many choices of the ordering of S, because of equal weights or

zero weights.)

(2. 7) Theorem. J EI has maximum c-weight if and only if it can be found by GA.

Efficient Matroid Algorithms

How efficient is GA? Because sorting can be done in polynomial time, therefore GA
runs in polynomial time if and only if there is a polynomial-time algorithm to answer the
question: "Is J E I?" (In fact, we need to answer at most n such questions.) It is usual for

matroids to be represented, for purposes of algorithms, by such an (independence-testing)

oracle. An abstract matroid algorithm is good if both the number of calls to the oracle

and the amount of additional computation is bounded by a polynomial in n and the size

of any additional input (such as the weights). Hence GA is a good matroid algorithm.

For concrete classes, such as matroids represented by matrices, for which there exists a

6

subroutine for independence-testing that is polynomial-time in the usual sense (that is,

relative to input size), a good matroid algorithm does yield a polynomial-time algorithm.

Having defined what is meant by "good matroid algorithm" and having described an

important example, we digress briefly on some related issues. First, let us explain why

the oracle representation is necessary. A natural alternative would be to have a general

encoding for matroids, as we do, say, for graphs, and to measure algorithm efficiency

relative to the encoding-size of the input matroid. The difficulty is that the number of

matroids on an n-element set (see Chapter Welsh) is so large that any general encoding

scheme would require space exponential in n, which would affect the meaning of polynomial

time.

Since we are not using the usual model of computation, the theory of NP-completeness

does not play the same role, and it is natural to ask whether there is an analogous theory

of difficult matroid problems. We call a matroid problem intractable if there is no good

matroid algorithm solving the problem. In contrast to the situation in ordinary complexity

theory, we can prove that certain natural problems are intractable. To illustrate a typical

proof method, we consider the problem of finding the girth (minimum size of a circuit) of

a matroid. Let ISi = n = 2m, let M be the uniform matroid of rank m on S, and, for

each A s;;; S with IAI = m, let MA denote the matroid obtained from M by making A a

circuit. If an algorithm concludes that the girth of M is m + 1 after making fewer than

(
2
:) oracle calls, then there is some A such that the same (incorrect) conclusion would

have been reached if the input had been MA. (Notice that the argument uses the fact

that all calls other than A receive the same answer for both Mand MA.) Hence a correct

algorithm requires at least (
2
:) calls, which is not bounded by a polynomial in n, and

so computing the girth is intractable. (We mention that it is an open problem whether

there is a polynomial-time algorithm to compute the girth of the matroid of a given binary

matrix; on the other hand, finding a smallest circuit containing a fixed element in such a

matroid is known to be NP-hard.) Other examples of intractable problems are described in

later sections. Proofs can be more intricate than this example, but use similar "adversary"

arguments.

Finally, we discuss why independence is an appropriate choice of oracle on which

to base a theory of matroid algorithms. Consider the following alternatives: (i) "What

is r(B)?"; (ii) "Is B a circuit?"; (iii) "What is the minimum size of a circuit contained

in B?" It is easy to see that (i) is equivalent to the independence-testing oracle, since
there is a good matroid algorithm for each with respect to the other. On the other hand

(ii) is weaker than independence-testing: IBI + 1 calls to the independence-testing oracle

will be enough to determine whether B is a circuit, but there can be no polynomial-time

7

simulation of independence-testing by an oracle for (ii). (To see this, use an adversary

approach, considering matroids on S having at most one circuit.) So (ii) would lead to

a theory of matroid algorithms with respect to which independence-testing is intractable

- in contrast to what the standard classes of matroids would lead us to expect. On the

other hand, we have seen that (iii) would lead to a theory in which the existence of a good

matroid algorithm would not imply the existence of a polynomial-time algorithm for the

corresponding matrix problem.

8

3. MATROID INTERSECTION

We are given matroids M 1 , M2 on the same set S. We want to find a maximum

weight (or maximum cardinality) common independent set. Obviously this problem gen­

eralizes the optimal independent set problem (2.1), taking M 1 = M 2 • Some examples of

applications are the following:

(3.1) Finding a maximum weight matching in a bipartite graph;

(3.2) Finding a maximum weight branching (forest in which each node has indegree at

most 1) in a digraph;

(3.3) Finding a maximum weight subgraph that is the union of k forests in a graph;

(3.4) Given bases B1,B2 of a matroid Mand X1 ~ Bi, finding X2 ~ B2 such that

(B1 \X1) U X2, (B2\X2) U X1 are both bases.

Problem (3.1) is a direct special case of weighted matroid intersection. Where {Vi, Vi}
is a bipartition of G = (V, E), take S = E and Ii = { J ~ S: each v E ¼ is incident with

at most one element of J}. Problem (3.2) is also a special case; (3.3) and (3.4) will be

treated later. We begin the discussion with the maximum cardinality case.

Matroid Intersection Theorem

It is obvious, for any J E I 1 n I2 and any A ~ S, that

So if we can find J and A satisfying this relationship with equality, then we know that

this J is maximum. In fact, such a pair (J, A) always exists; this is the content of the

Matroid Intersection Theorem of Edmonds (1970). We remark that applying this theorem
to maximum cardinality bipartite matching as above immediately yields Konig's Theorem

(Chapter Pulleyblank). While the theorem follows from the algorithm described later, we

first give a short non-constructive proof.

(3.5) Theorem. For matroids M1, M2 on S,

Proof. The proof is by induction on ISi. Let k be the minimum of r 1(A) + r2(A),
and choose e E S with { e} E I 1 n I 2 • (If none exists, k = 0, and we are finished.) If the

minimum of r 1 (A) + r2 (S'\A) over subsets A of S' = S\ { e} is k, then we are finished,

by induction. If Mf denotes Md { e} and the minimum of r~ (A1) + r; (A2) over subsets

A1, A2 of S' is at least k - l, then induction gives a common independent set of Mf, M~

9

of size k - l; adding e to it gives the desired J. We conclude that, if there is no common

independent set of size k, then there exist subsets A, B of S' such that

r1 (A)+ r2(S'\A) :s; k - l

and

r1(B U {e})-1 + r2 ((S'\B) U {e}) -1 :s; k- 2.

Adding and applying submodularity, we have

r1 (A U B U { e}) + r1 (A n B) + r 2 (S\ (A n B)) + r 2 (S\ (A U B u { e})) :s; 2 k - l;

it follows that the sum of the middle two terms, or the sum of the other two terms, is at

most k-1, a contradiction. (Notice that this proof gives no hint of how to find the desired

subsets J and A efficiently.)

The Matroid Intersection Algorithm

The Matroid Intersection Algorithm (MIA) uses an augmenting path approach that

generalizes a common method for bipartite matching. It maintains J E T1 nT2 , at each step

either finding a larger such J, or finding A giving equality with J in the min-max formula,

proving that J is maximum. Given J E T1 n T2 , an auxiliary digraph G = G(M 1 , M 2 , J)
having node-set SU { s, t} is constructed. It contains:

an arc (e,t) for every e E S\J such that JU {e} E 'I1;

an arc (s,e) for every e E S\J such that JU {e} E T2 ;

an arc (e,f) for every e E S\J,f E J such that f E C1(J, e);

an arc (f, e) for every e E S\J, f E J such that f E C2(J, e).

The following "augmenting path" theorem is the basis for the algorithm.

(3.6) Theorem (a) If there exists an (s, t)-dipath in G, then J is not maximum; in fact,

ifs, e1, Ji, ... , ek, fk, ek+I, t is a chordless (s, t)-dipath, then J' = (JU { e1, ... , ek+d)

\{Ji,···, fk} E 'I1 n 'I2.

(b) If there exists no (s, t)-di path in G, then J is maximum; in fact, if A ~ S and

<5+(A U { s}) = 0, then IJI = r1 (A)+ r2(A).

We remark that, while the restriction to chordless dipaths is not necessary for the

special case of bipartite matching, it is needed in general. The proof of (b) in (3.6) is easy.

Consider e E A\ J. Since (e, t) is not an arc, JU { e} contains an M1 -circuit C. Since there

is no arc (e,f) with f E S\A, we have C ~(An J) U {e}. Therefore, J n A M1-spans A.
Similarly, J n A M2-spans A. Hence

10

We can deduce (a) of (3.6) from the following result, whose proof is a straightforward

induction. (Recall that a(A) denotes the closure of the subset A.)

(3.7) Lemma. Let M = (S,T) be a matroid, let J EI and let x1,Y1, .. ,,xk,Yk be a

sequence of distinct elements of S such that

(a) Xi tt. J, Yi E J for 1 ::; i::; k;
(b) YiEC(J, Xi)forl::;i::;k;

(c) Yi rf. C(J, Xj) for 1::; i < j::; k.

Then where J' =(JU {xi, ... , xk})\{y1, ... , yk}, J' EI and a(J') = a(J).

Efficiency of the Matroid Intersection Algorithm

Since MIA will terminate after at most n = ISi augmentations, since the dipath or set

A as in (3.6) can be found with standard methods, and since each auxiliary digraph can be

constructed with O(n2
) independence tests, therefore MIA is a good matroid algorithm.

Here we mention the complexity for some refinements and special cases. Just as MIA

generalizes a basic bipartite matching algorithm, more efficient versions of MIA generalize

some of the ideas used to speed up matching and network flow algorithms. (See Chapter

Frank.) The most important refinement is a natural one: At each step augment J using a

shortest (s, t)-dipath of the auxiliary digraph. Of course, any such dipath will automatically

be chordless. The next result implies that a large proportion of the resulting augmentations

will be on very short augmenting paths. It is from Cunningham (1986), and part (a) is

also due to Gabow and Stallmann (1985).

(3.8) Theorem. If MIA using shortest augmenting paths is applied to matroids M 1 , M 2

on S, ISi = n, then:

(a) The length of a shortest augmenting path never decreases, and the number of

different lengths is 0(vn);
(b) The sum of lengths of augmenting paths used is 0(n log n).

It follows from (a) of (3.6) that the work of the algorithm can be divided into 0(vn)
stages; during each stage all augmenting paths have the same length. It is possible to find

and perform all of the augmentations of a stage more efficiently than if the auxiliary digraph

were reconstructed after each stage. This leads to a version of MIA (Cunningham (1986))

that requires O(n2
·
5

) independence tests rather than the O(n3
) of the basic algorithm.

How close is this bound to being best possible? One of the few results on this theme is

that the greedy algorithm for finding a basis of a single matroid is optimal; it requires

exactly n independence tests, and an easy argument shows that no algorithm uses fewer.

For matroid intersection nothing more is known, that is, it is an open problem to find a

nonlinear lower bound on the number of independence tests required.

11

For concrete classes of matroids, one can usually obtain better bounds than arise from

simply multiplying the number of oracle calls by the oracle complexity. For example, for
matroids arising from two matrices each having at most n rows, part (b) of (3.8) can be used

to show that the complexity of MIA is 0(n 3 log n), assuming that arithmetic operations

are counted as single steps. As another example, Gabow and Stallmann (1985) have given

an O(p2 ·5) time bound for MIA on the cycle matroids of two graphs, each having at most

p nodes.

Matroid Partitioning

Many of the applications of matroid intersection are most easily derived through

the theory of matroid partitioning. In fact this theory is equivalent to that for matroid

intersection and actually was discovered earlier by Edmonds.

The matroid partitioning problem is, given matroids Mi = (S,Ii), l :::; i :::; k, to find

a maximum cardinality subset J ~ S that is partitionable, that is, J = U(Ji : 1 :::; i :::; k)
where Ji E Ii, 1 :::; i :::; k. Obviously, we may assume that the Ji are disjoint. Moreover,

the assumption that all Mi have underlying set S is made only for convenience. The main

result of the theory is the following Matroid Partition Theorem.

(3.9) Theorem. Let J be a maximal partitionable subset with respect to Mi = (S, Ii), l :::;

i <; k. Then fJI = %!i (t r;(A) + IAI) ,

As usual we can observe that for any such J and A, we have !JI= IJ\AI + IJ n Al

:::; IS\AI + ~ IJi n Al

:::; !Al + ~ri(A).

Notice that (3.9) is stronger than a simple max-min equality; it implies that every maximal

partitionable subset is maximum. From this observation, one easily obtains the following

important consequence.

(3.10) Theorem. The subsets of S partitionable with respect to the Mi, form the inde­

pendent sets of a matroid. Its rank function r is given by r(B) = min(IB\AI +~ri(A) :
A~ B).

The matroid partitioning problem is reduced to a matroid intersection problem as

follows. (This construction, and the reverse one described later, are due to Edmonds

(1970).) Make k disjoint copies S1 , S2 , ..• , Sk of S, and imagine Mi as being defined on
Si rather than S. Let Na be the direct sum of the Mi and let Nb be the matroid on

S' = USi in which a set is independent if and only if it contains at most one copy of e

12

for each e E S. It is easy to see that there is a correspondence between partitionable

sets with respect to M1, ... , Mk and common independent sets of Na, Nb. It is also easy

to see that a set B ~ S' that minimizes ra(B) + rb(S'\B) can be chosen to consist of

all the copies of elements of A, for some A ~ S. It follows that the maximum size of a

parti tionable set is min (IA I + ~r i (A) : A ~ S). Moreover, every maximal parti tionable set

has this cardinality, since whenever a copy of e is deleted from the common independent

set of Na, Nb by the intersection algorithm, it is replaced by another copy of e, so that

no element is ever deleted from the partitionable set. Now (3.10) follows from the fact

that the same argument could be applied to maximal partitionable subsets of an arbitrary

subset B.

There is a neater description of the partitioning algorithm, obtained by identifying all

copies of each element e of Sin the auxiliary digraph for the intersection algorithm. The

resulting digraph has node-set S U { s, t} and has

an arc (s, e) for each e E S\J;

an arc (e, t) for each e E S such that Ji U { e} E Ii for some i;

an arc (e, f) for each e, f E S such that f E Ci(Ji, e) for some i.

At termination of the algorithm, any set A ~ S such that 5+ (AU { s}) = 0 has the property

that Jin A Mi-spans A, and so IJI = !Al + ~ri(A). It is worthwhile also to observe that

every set A that minimizes !Al + ~ri(A) must have this property and so must satisfy

5+ (A U { s}) = 0.

Now recall problem (3.3) at the beginning of the section. By (3.10) the feasible so­

lutions form the independent sets of a matroid. Hence (3.3) can be solved by the greedy

algorithm, with independence tests requiring applications of the matroid partition algo­

rithm to k copies of the cycle matroid of the graph. The Matroid Partition Theorem applied

to this example yields standard graph results of Nash-Williams and Tutte on the existence

of disjoint spanning trees and the covering of edges by forests. (See Chapter Frank.) There

are also beautiful combinatorial applications in transversal theory; see Chapter Welsh and

Mirsky (1971).

Finally, let us describe Edmonds' reduction of intersection to partitioning. The proof

1s easy.

(3.11) Theorem. Let B be a basis of M;_ Extend B to a maximal partitionable set

B' with respect to M1 and M2. Then B'\B is a maximum cardinality common

independent set of M1 and Mz.

Basis Exchange

13

Recall problem (3.4). If X2 has the required properties, then B2 \X2, X2 provides a

partitioning of B2 with respect to the matroids M1 = M/X1 and M2 = M/(B1 \X1). Thus

X 2 can be found with the Matroid Partition Algorithm. Moreover, applying the Matroid

Partition Theorem one gets, after a short calculation, the following result of Greene.

(3.12) Theorem. Let B1, B 2 be bases of a matroid M and let X1 ~ B1. Then there

exists X2 ~ B2 such that (B1 \X1) U X2 and (B2 \X2) U X1 are also bases.

Solution of the Shannon Game

The Shannon game, proposed by Shannon and generalized to matroids and solved by

Lehman (1964), is a game played on a matroid with a single distinguished element e. (See

also Chapter Guy.) The two players, Short and Cut, alternately choose elements of S\{e},
with elements chosen by Cut deleted from M and elements chosen by Short contracted.

Short's (Cut's) objective is to reach a minor in which e is a loop (coloop).

A game (M, e) is called short (cut) if there is a winning strategy for Short (Cut)

playing second (and hence also playing first). The game is neutral if it is neither cut nor

short, that is, if the first player, whether Cut or Short, has a winning strategy. It is easy

to see that (M, e) is a cut game if and only if (M*, e) is short, and that (M, e) is neutral

if and only if (M, e) is not short and (M', e) is short, where M' is obtained from M by

adding an element parallel to e. Hence it is enough to characterize short games.

(3.13) Theorem. (M, e) is short if and only if there exist disjoint independent sets I 1 , I 2

of M such that e E a(I1) = a(h) and e (j. Ii Uh.

The "if" part of (3.13) can be proved by checking that the following strategy, applied

iteratively, works. If Cut plays f E I 1 then Short plays e E h, where (with respect to

the current minor just before f is deleted) (11 U { e})\ {J} is independent, and similarly for

J E h. (If Cut does not play an element of I 1 Uh, then this only makes life easier for
Short.) The "only if" part can be proved (this is harder) by showing that I1, I2 exist for

one of (M, e), (M*, e), (M', e).

The condition of (3.13) is easily recognized by the partitioning algorithm applied

with M1 = M 2 = M. (In fact, Lehman's work was one of the motivations for Ed­

monds' development of matroid partitioning.) We know that the minimizers of g, where

g(A) = IS\AI + 2r(A), are precisely the sets A ~ S such that, in the auxiliary digraph

at termination of the algorithm, s+(A U { s}) = 0. There is a unique smallest such A
(easily found); call it A'. If e E A', then the minimum of g remains the same when

e is deleted, so there is a maximum partitionable set J = J1 U h with e (j. J. Then

e E A' = a(J 1 n A') = a(h n A'), so J 1 n A', h n A' are the required sets. On the other

hand, we claim that if such sets [1 , [2 exist, then necessarily e E A'.

14

For suppose we start the partition algorithm with Ji = Ii, Jz = I2. Then in the

auxiliary digraph, we have 8+(a(Ii)) = 0, so no augmenting path can use any element of

a(I1) and so I1 ~ J1, I2 ~ Jz, e (f. Ji U Jz will be maintained throughout execution of the

algorithm. At termination 8+ (A' U { s}) = 0, and so e E A', as required. Finally, we point

out that the sets Ii, h, can be found by applying the algorithm to M\e, M\e after first

checking that e E A'.

Further analysis of the game and interesting extensions due to Edmonds, Bruno and

Weinberg, and the authors can be found in Hamidoune and Las Vergnas (1986).

Weighted Matroid Intersection

Just as r 1 (A) + r 2 (A) provides an upper bound for the size of a common independent

set J, where c E R 8 we can define a simple upper bound for c(J). Namely let (c1, c2
) be

a "weight-splitting", that is, c1 + c2 = c. Then

(3.14)

Hence, if we find J E I 1 n I 2 and a weight-splitting (c1 , c2) such that equality holds

in (3.14), we know that J has maximum weight. In fact, this is always possible.

(3.15) Theorem. For matroids M1 , M2 on S and c E R 8 , there exists a weight-splitting
(c1 , c2) and a set J such that J has maximum ci-weight among independent sets of

Mi, for i = 1 and 2.

We shall also see that, if c is integer-valued, then there is an integral weight-splitting

in (3.15). Actually, (3.15) is equivalent to the Matroid Intersection Polytope Theorem of

Edmonds (1970). (Notice that the converse of (3.16) is trivially true.)

(3.16) Theorem. For matroids M1 , M2 on S, every extreme point of P(Mi) n P(M2)
is the characteristic vector of a common independent set.

Proof. (of equivalence of (3.15) and (3.16)). Suppose that (3.15) holds and let x
be an extreme point of P(M 1) n P(M2). Choose c E R 8 such that x is the unique optimal

solution of max(c · x : x E P(M1) n P(M2)). Then by (3.15) we have J E I 1 n I2 and
(c1, c2) such that c(J) = c1 (J) + c2 (J) ~ c1 · x + c2 · x = c · x. It follows that x is the

incidence vector of J.

Now suppose that every extreme point of P(M1) n P(M2) = { x E Ri : x(A) ::; r1 (A),
x(A) ::; r2 (A), for A ~ S} is the characteristic vector of a common independent set.

Given c E R 5 , let J be a maximum weight common independent set, and let x be its

characteristic vector. Let (y1 , y2) be an optimal solution of the linear program dual to

max(c·x: x E P(M1)nP(M2)). Then the optimality conditions imply that IJ n Al= ri(A)

15

whenever yi(A) > 0. For i = 1 and 2 and j E S, let c} = I:(yi(A) : j E A); then c ~ c1 +c2.

Thus x, yi satisfy the optimality conditions for max(ci · x : x E P(Mi)) and its dual, so

J is Ci-optimal in Mi, for i = 1 and 2. Moreover, c(J) = c1(J) + c2(J), soc}+ c; > Cj

implies j ¢:. J, soc; can be lowered to Cj - c} without affecting the c2-optimality of J. o

Although Edmonds (1970) used the idea of weight-splitting in a non-constructive proof

of (3.16), it was Frank (1981) who showed how to use the optimality conditions based on
(3.15) to simplify the weighted matroid intersection algorithms of Edmonds (1979) and

Lawler (1975). We describe here an algorithm based essentially on Frank's, but with an

additional simplification.

The basic idea is to generalize the unweighted MIA by using a weight-splitting to assign

costs to the arcs of the auxiliary digraph. Where ci denotes max(c~ : e (/. J, J U { e} E Ti),
the arc costs Wuv are defined by:

W - cl cl· et - O - ei

W - c2 c2· se - O - e,

Wef = -c! + c};
2 2

Wfe =-Ce+ c,.

We shall require that (c1, c2), J satisfy the properties c5 = 0, and Wuv ~ 0 for each arc uv.

If in addition, we have c5 ~ 0, then the conditions of (3.15) are satisfied (by (2.7)) and we
are finished. We can begin with c1 = c, c2 = 0, J = 0. (Notice that, if we augment on

an (s, t) dipath P to obtain J' from J, then the cost of Pis c5 + c5 + c(J) - c(J'). This

motivates choosing P to have least cost. In fact, solving a least-cost dipath problem gives

a way to update the weight-splitting too. This observation makes possible the following

simpler presentation of Frank's algorithm. We remark that Lawler also used a shortest

path calculation, but without weight-splitting.)

Iteration of Weighted MIA

If c5 ~ 0, stop;

Form G = G(M1,M2,J,c1,c2);

Compute a dipath from s to v of least cost dv for each v ES U {s, t};

For each v ES, let av= min(dv,dt,c5), and replace c~ by c~ - av, c! by c! + av;

If cA ~ 0, stop;

Augment Jon a zero-cost (s, t) dipath having as few edges as possible.

Notice that the resulting algorithm has essentially the same complexity as its un­

weighted version, since the non-negative-cost shortest path calculation can be done in

16

time O(n2) (see Chapter Frank). We outline a proof of validity of the algorithm. There

are three things to check: (i) That the change in (c1, c2) preserves the properties required

of it; (ii) That J remains common independent after an augmentation; (iii) That an aug­

mentation does not violate the properties required of (c1, c2). It is straightforward to check

(i), using the fact that the dv satisfy du + Wuv ::::: dv. Notice that (ii) is not obvious, since

the di path may have chords (but not zero-cost ones). One actually shows that the sub­

graph induced by the zero-cost arcs is G(M{, M~, J) for new matroids M{, M~ for which

J is common independent, and every common independent set is also independent in both

M1 and M 2 • Then the result follows from the validity of the unweighted MIA. To define

M{, let P1 > P2 > ... > Pk be the distinct values of c! that are greater than C6, let Ti

denote { e E S: c! ::::: pi}, and let M{ = (M1 IT1) EB (Mi/T1)l(T2 \T1) EB ... EB (Mi/Tk)- For

(iii), it is easy to show that the change in J preserves the property that c5 = O; to show

that it also preserves w ::::: 0, we use the fact that the latter condition is equivalent to J

being Ci-optimal of its cardinality in Ti, i = l and 2. Consider i = 1, and let em+l be the

second-last node of the augmenting path P. Then c!n+1 = c6, so JU { em+l} is c1-optimal

of cardinality IJI + 1 in T1. But c1(J') = c1(J U {em+d), since each element of Jon P
has the same c1-weight as the preceding node on P, and we are done.

A good deal of recent work has been done on faster implementations of a MIA for

special classes of matroids. See Gabow and Tarjan (1984), Brezovec, Cornuejols, and

Glover (1988), and Gabow and Xu (1989).

17

4. SUBMODULAR FUNCTIONS AND POLYMATROIDS

Let f be a function defined on subsets of S, with values in R; f is submodular if

f(A) + f(B) ~ f(A U B) + f(A n B) for all A,B ~ S.

Some examples:

(4.1) Let M be a matroid on S, and let f be the rank function of M.

(4.2) Let G = (V, E) be a digraph, let s E V, let S = V\ { s }, and let f(A) = 18-(A)I.
(Specifying sis not necessary here, but will be useful later.)

Given a set function f on S we let P(f) denote the polyhedron {x E Ri: x(A) ::S f(A)

for all A ~ S}. A polymatroid is a polyhedron of the form P(f) where f is submodular
and non-negative. It is said to be integral if f is integral. It follows from (2.5) that the

polymatroid defined by f of (4.1) is the convex hull of characteristic vectors of independent

sets of M. In example (4.2), if there exists in G a family of edge-disjoint directed paths,

each beginning at sand ending in S, and we let Xv denote the number of dipaths ending at

v, then it is easy to see that x E P(f). It is a consequence of a form of Menger's Theorem

that every integer-valued element of P(f) arises in this way.

The first result ((4.3) below) shows that our polymatroids do satisfy the central condi­

tion of Edmonds' original geometric definition: For any u E Ri, all maximal (with respect

to component-wise order) vectors x E P with x ::S u, have the same component-sum. An­

other consequence of this result is a construction for matroids: The {O, 1 }-valued vectors in

an integral polymatroid are the characteristic vectors of the independent sets of a matroid,

and (4.3) gives a formula for its rank function. In particular, the fact that r of Theorem

(3.10) is a matroid rank function follows from applying this to f = ~ri.

(4.3) Theorem. Let f be submodular on S, let u E Ri, and let x be any maximal

vector satisfying x < u, x E P(f). Then x(S) = min(f(A) + u(A)). Moreover, if f
- A~S

and u are integer-valued and x is required to be integer-valued, the conclusion is still

satisfied.

Proof. First we observe that, for any A ~ S and any x (maximal or not), we have

x(S) = x(A) + x(A) ::S f(A) + u(A). Therefore, it will be enough to prove that there
is some A for which equality holds. Obviously, for each j E S, if Xj =/=- Uj, then by the
maximality of x, there is a set Aj ~ S with j E Aj such that x(Aj) = f(Aj). Call such a

set x-tight, or just tight. A fundamental fact is:

(4.4) Claim. The intersection and union of tight sets are also tight.

18

Proof of claim. If A, Bare tight, we have

x(A U B) + x(A n B) ::; f (A U B) + f (A n B)

::; f(A) + f(B)

= x(A) + x(B)

= x(A U B) + x(A n B),

so x(A U B) = f(A U B) and x(A n B) = f(A n B). D

Now if we choose A to be the union of the Aj, then A is tight and x(A) = u(A), so we are

finished. The same proof applies to the integer-restricted version. D

It is a consequence of (4.3) that a greedy algorithm maximizes x(S) over P(f) (or

more generally over { x : x E P(f), x ::; u}). The algorithm begins with x = 0, and for

each j ES increases Xj as much as possible subject to the restriction that x E P(f). Just

as in the special case of matroid polytopes, we generalize to arbitrary weight-vectors by

treating the elements in order of non-increasing weight.

Polymatroid Greedy Algorithm (PGA)

Order S = { e1, ... , en} so that Ce 1 2: ... 2: Cem 2'.: 0 2'.: Cem+i 2'.: ... 2'.: Cen

X := 0

For i = 1 to m do

Choose Xe; as large as possible so that x E P(f).

(4.5) Theorem. For any non-negative submodular function f on Sand any c E R 5 ,

PGA optimizes c · x over P(f). Moreover, if f is integer-valued, the output of PGA

is integer-valued.

Where Ti = { e1 , ... , ei} and x is the output of PGA, one can apply (4.3) to deduce

that x(Ti) = max(x(Ti) : x E P(f)). With this observation, (4.5) can be proved in the

same way as (2.2). Other results for matroid polytopes immediately generalize. These

include the fact that the extreme points of P(f) are precisely the vectors that can be the

output of PGA, the dual greedy algorithm, and the total dual integrality of the linear

system for P(f). One also can prove a converse of (4.5) similar to (2.3), characterizing

polymatroids as the compact subsets of Ri that are closed below and for which a greedy

algorithm always works.

Call a function f a polymatroid function if f is submodular, normalized (!(0) = 0),

and monotone (f(A) 2: J(B) if A 2 B). For an arbitrary submodular function f, the

function f' defined by f'(A) = min(f(B) : B ~ A), is obviously monotone, and is easily

19

seen to be submodular. Notice that, for the f of example (4.2), f(A) is the maximum

number of edge-disjoint directed paths beginning at s and ending in A.
More generally, applying (4.3) with Uj = O,j (/:. A and Uj large, j EA, yields

(4.6) J'(A) = max(x(A) : x E P(f)), for A-/= 0.

It follows that P(f) ~ P(f'). But f' s; f by definition, so P(f) = P(f'). Notice also that

if f is a polymatroid function, then f = f' and PGA reduces to a formula (which works

in the slightly more general case when f is non-negative and monotone):

(4.7)
{

f(Ti), i = 1;
Xe; = f(Ti) - f(Ti-i), 2 s; is; m;

0, i > m.

It is easy to derive from these observations the following result of Edmonds.

(4.8) Theorem. Every polymatroid is determined by a (unique) polymatroid function.

Submodular Function Minimization

We have seen from (4. 7) that when f is non-negative and monotone, the greedy
algorithm is especially simple. Its efficiency depends on the ease with which we can obtain
function values, and the size (number of digits) of the values. There is no difficulty with

the first of these, since we assume that the function is given via an evaluation oracle. On

the other hand, the maximum size of function values must, like n = ISi, be treated as a

measure of input size. (We must do the same for the element weights Cj.) With these

ground rules, the greedy algorithm can be regarded as a polynomial-time oracle algorithm,

when f is monotone.

On the other hand, if no additional assumption on f is made, computing component

e of x in the greedy algorithm requires minimizing f(A) - x(A) over subsets A containing
e, a problem easily seen to be equivalent to that of finding the minimum of an arbitrary
submodular function. This latter problem is fundamental; it includes as special cases both

the minimum cut problem and, by (3.9), the problem of finding the maximum size of a

partitionable set. Using some of the above results, we shall show that the minimum of

a submodular function can be well-characterized. (The obverse problem of maximizing a
submodular function, on the other hand, includes NP-hard special cases, and can be easily

proved intractable in the oracle context.)

It is useful to reduce the general problem of submodular function minimization to

that of minimizing a function of the form f(A) - u(A), where f is a polymatroid function

and u E Rf Let g be a submodular function on Sand let Uj = g(S\ {j}) - g(S), j E S.
If u i < 0, it is easy to see that no minimizer of g will include j, so the problem could

20

be restricted to subsets of S\ {j}. Hence we may assume that u 2: 0. The function f
defined by f(A) = g(A) + u(A) - g(0) is easily shown to be a polymatroid function.
Hence minimizing g is equivalent to minimizing f(A) + u(A), since this differs from g by

the constant u(S) - g(0). Then (4.3) characterizes the minimum. That this is a useful

characterization is not completely obvious, since the maximizing x must be certifiably in

P(f). But x can be expressed as a convex combination of at most n + l extreme points
of P(f), by a standard result in polyhedral theory, and these can be generated by PGA,

since f is a polymatroid function.

In fact, a minimization algorithm can be based on the above ideas: Maintain x E P(f)
with x ~ u explicitly as a convex combination of extreme points of P(f), and at each step

either find A giving equality in (4.3), or find a new x with x(S) larger. This combinatorial

approach was first developed (Cunningham (1984)) for the special case in which f is a

matroid rank function. The resulting algorithm, which can be viewed as a generalization of
the matroid partition algorithm, runs in polynomial time. For general f, a finite algorithm

occurs in Bixby, Cunningham, and Topkis (1985), and it was modified to run in "pseudo­

polynomial" time (Cunningham (1985)).

Grotschel, Lovasz, and Schrijver (1981) did find a polynomial-time algorithm for sub­

modular function minimization. It is based on the equivalence, via the ellipsoid method,

of the optimization and separation problems for polyhedra. (See Chapter Schrijver.) Since

we wish to minimize f(A) - u(A), it is enough to be able to determine, given I< E R,
either a set A~ S for which f(A) - u(A) < I<, or the information that no such A exists.

(For then one could search over I< for a sufficiently small I< for which A does exist.) The

function fK defined by JK(B) = f(B)-I< is submodular and monotone, and such A exists

if and only if u (/:. P(f K). But this is the separation problem for P(f K), and since fK is

monotone, the optimization problem for P(f K) is solvable, and we are done. The resulting

algorithm, while theoretically acceptable, is not computationally useful. An important

open question is the existence of a polynomial-time combinatorial minimization algorithm.

Polymatroid Intersection

The matroid intersection theorem (3.5) is a special case of a result of Edmonds (1970)

on polymatroids.

(4.9) Theorem. Let fi,h be polymatroid functions on S. Then

max (x(S) : x E P(f1) n P(h)) = min (Ji (A)+ h(S\A)).
A~S

Moreover, if Ji, h are integer-valued, then the maximizing x can be chosen to be

integer-valued.

21

We remark that, if Ji, fz are not required to be monotone, then by monotonization

arguments the same result holds, except that the right-hand side becomes min(fi (A) +
fz(B) : AU B = S). The inductive proof of (3.5) outlined in Section 2 generalizes to a

proof of the integral version of (4.9). (The induction is now on E(min(f1 ({j}),fz({j})):

j E S), and the appropriate analogue of contracting e E S is to form the function g by

ft(A) = min(fi(A),fi(A U {e}) -1). The non-integral version can be deduced from the

integral version in a straightforward way. Later we shall see other proofs and algorithmic

aspects of (generalizations of) (4.9).

The following sandwich theorem of Frank (1982) is a useful and attractive restatement
of (4.9). Its resemblance to classical results on separation of convex and concave functions

is evident; we shall see that the relationship is more than an analogy. A set function f is

supermodular if - f is submodular, and is modular if it is both sub- and supermodular. It
is easy to see that a function mis modular on subsets of S if and only if m(A) = x(A) + k
for some x E R 5 , k E R.

(4.10) Theorem. Let g, h be defined on subsets of S such that g is supermodular, h is

submodular, and g ~ h. Then there exists a modular function m satisfying g ~ m ~ h.
Moreover, if f and g are integer-valued, then m may be chosen integer-valued.

To derive (4.10) from (4.9) one proceeds as follows. Add a constant tog and h to make

g(0) = 0. Lower h(0) to 0. Raise g(S) to h(S). Add a function p of the form p(A) = M IAI
to make f and g monotone. Now take Ji = h, define fz by fz(A) = g(S) - g(S\A), apply

(4.9) to find x E P(f1)nP(fz) with x(S) = g(S), and define m by m(A) = x(A). A similar

construction allows the derivation of (4.9) from (4.10).

Optimization over the Intersection of Polymatroids

The problem of optimizing a linear function over the intersection of two polymatroids

may be stated as a linear program:

(4.11) max1m1ze c · x

subject to

x(A) ~ fi(A), A~ S;

x(A) ~ fz(A), A ~ S;

Xj ~ 0, j Es.

The dual linear program is

(4.12) minimize E(f1(A)y\ + fz(A)y! : A~ S)

subject to

22

~(y~ + Y! : j E A~ S) ~ Cj, j E S;

Y1, Y! ~ 0, A ~ S.

The main result (Edmonds (1970)) on this topic may be stated as follows.

(4.13) Theorem. If Ji, h are integer-valued, then (4.11) has an optimal solution that

is integer-valued. If c is integer-valued, then (4.12) has an optimal solution that is

integer-valued.

A number of important results are consequences of (4.13). For example, taking Ji, h
to be matroid rank functions, we can conclude that the intersection of two matroid poly­

hedra is a polyhedron with {0, 1}-valued extreme points, and thus derive the Matroid

Intersection Polyhedron Theorem. A second consequence is the Polymatroid Intersection

Theorem (4.9), obtained by taking each Cj = 1 and observing that y 1 , y 2 can be required
to take a very special form.

A proof of (4.13) based on the theory of total dual integrality and total unimodularity

can be found in Chapter Schrijver. In the next section we treat a generalization of (4.13).

It is worthwhile to identify the results that extend to the intersection of three (or

more) polymatroids. It is possible to optimize any linear function over the intersection of

three polymatroids, using the ellipsoid method, since the separation problem can be solved

efficiently. However, the integrality theorem (4.13) does not generalize, and optimizing over

the integral vectors in three polymatroids, even over common independent sets of three

matroids, is difficult. Although we are not aware of a proof that this problem is unsolvable

in the oracle context, it is well known to contain NP-hard problems.

Some Extensions

It is frequently useful in applications to relax some of the assumptions in the definition

of polymatroid. A first such variant is to drop non-negativity, considering Q(J) = { x E

Rs : x(A) :::; f(A) for all A ~ S}. For such submodular polyhedra (4.3) still holds with

the same proof. In addition the greedy algorithm works (for any c E R!) with the same

proof. Moreover, we do not need monotonicity for the formula (4.7) to be correct.

This greedy algorithm for Q(f) motivates the definition (Lovasz (1983)) of an exten­

sion of a set function. For c E R! let](c) denote max(c · x : x E Q(f)). It is easy to see

(essentially from the proof of the greedy algorithm) that if f is submodular, J(c) can also
k

be calculated as follows: c can be expressed (uniquely) as I: AiXT; for .Ai > 0 and Ti ~ S
i=l

A k
with T1 :i T2 :i ... :i Tk, Then J(c) = I: >.if(Ti)- This can be taken as the definition of

i=l

23

the extension of any set function, submodular or not, to a function on Rf Now we can

make the connection between submodularity and convexity more explicit.

(4.14) Theorem. f is submodular on S if and only if J is convex on Rf

This result, from Lovasz (1983), has a straightforward proof. When combined with a

standard result on separation of convex and concave functions, it implies the first part of

Frank's Theorem (4.10).

Another useful extension is to allow a function to take value oo on some of the subsets
of S. With this extension essentially all of the previous results still obtain, with obvious

exceptions caused by unboundedness of P(f). (It is true that if P(f) is bounded and

non-empty, then it is a polymatroid.) This idea is often combined with another important

extension, namely, requiring the submodular inequality to hold only for certain pairs of sets.

We say that f is intersecting (crossing) submodular if f(A) + f(B) 2: J(A U B) + f(A n B)
whenever An B-=/ 0 (An B-=/ 0 and AU B-=/ S). (When considering such weaker notions,

we sometimes refer to ordinary submodular functions as fully submodular). Edmonds
(1970) considered intersecting submodular functions and proved extensions of most of our

earlier results. For example, the next result generalizes (4.3); the same idea underlies the

proof.

(4.15) Theorem. (4.3) is true if f is intersecting submodular, with min(f(A) + u(A))
ACS

replaced by min (~f(Ai) + u(UAi): 0-=/ Ai CS, Ai pairwise disjoint).

As for (4.3), we can conclude from (4.15) that if f is integer-valued and intersecting

submodular, then the {O, 1}-valued vectors in P(f) correspond to the independent sets of

a matroid. A classical example of this construction results in the forest matroid of a graph

G(V, E). Here we take S = E and f(A) = IV(A)I - 1 for A-=/ 0, with J(0) = 0.

The following consequence of (4.15) is also useful.

(4.16) Theorem. If f is intersecting submodular on Sand f' is defined by f'(A)
min(~J(Ai): A= UAi, 0-=/ Ai ~ S, Ai pairwise disjoint), then f' is submodular on

S, and Q(f') = Q(f).

There is also a construction that produces an intersecting submodular function be­

ginning with a crossing submodular function; it is from Frank (1982) and also implicitly

Fujishige (1984).

(4.17) Theorem. If f is crossing submodular on S with J(S) finite, and f' is defined by

f'(A) = min(I:J(Ai) : A= UAi, Ai C S, Ai pairwise disjoint), then f' is intersecting

submodular; moreover, Q(f') n {x E Rs: x(S) = f(S)} = Q(f) n {x E Rs: x(S) =
f(S)}.

24

Notice the essential difference between (4.16) and (4.17). If f is crossing submodular,

it need not be true that Q(f) = Q(f'); in fact, Q(f) need not be a submodular polyhedron.

It is the base polyhedron B(f) = Q(f)n{x E R 5 : x(S) = f(S)} that is preserved. However,

we can still construct a matroid from a crossing submodular function (Frank and Tardos

(1984)).

(4.18) Theorem. Let f be integer-valued and crossing submodular on Sand let k E Z+.

Then {B ~ S: IBI = k, XB E Q(f)}, if non-empty, is the basis family of a matroid.

25

5. SUBMODULAR FLOWS AND OTHER GENERAL MODELS

In this section we describe several more general models. We give considerable atten­

tion to submodular flows, a generalization of polymatroid intersection. In particular, we

describe the basic ideas behind solution algorithms. (This has not been done for polyma­

troid intersection.) We also report on the polymatroid matching problem, a submodular

model that includes graph matching as a special case. Finally, we describe two of the many
additional generalizations of matroids, .6-matroids and greedoids.

Submodular Flows: Models and Applications

The optimal submodular fl.ow problem is a generalization of the problem of optimiz­

ing over the intersection of two polymatroids, that keeps the important integrality and

algorithmic properties of the latter problem. In addition, it contains several other funda­

mental problems. There are a number of closely related models, introduced under other

names, and many of the important contributions have been made in these differing con­

texts. (Schrijver (1984) explains the connections among these models.) However, we define
just two of the models, and state the main results in the language of one of them.

First we describe the polymatroidal network flow model of Lawler and Martel (1982);

it was introduced independently by Hassin (1982). Let G = (V, E) be a digraph, let s, t
be distinct elements of V, and for each v E V let fv, 9v be polymatroid functions on

8-(v), o+ (v). A feasible flow is a vector x = (x j : j E E) satisfying

x(8-(v)) - x(o+(v)) = 0, for v E V\{s,t};

x(A) ~ fv(A), for all v EV, all A~ 8-(v);

x(A) ~ 9v(A), for all v E V, all A~ o+(v);

x j ~ 0, for all j E E.

If u E Rf and we take fv(A) = u(A), 9v(A) = u(A), then the feasible flows are the feasible
flows of an ordinary (single-source, single-sink) flow network. If we take V = {s, t} and

allow 9s, ft to be arbitrary polymatroid functions, the feasible flows are the elements of

P(gs) n P(ft).

The model for which we shall present the main results is one introduced by Edmonds

and Giles (1977). Let G = (V, E) be a directed graph, let b be a crossing submodular

function on V, and let R, u, c E RE. We allow values of u and b to be oo, and we allow

values of/!, to be -oo. The optimal submodular flow problem is

(5.1) maximize~(CjX j : j E E)

subject to

x(8-(A)) - x(o+(A)) ~ b(A),

lj ~ Xj ~ Uj, j EE.

26

ACV· - '

We shall use the term feasible flow to refer to a vector x satisfying the constraints

of (5.1). The special case where bis identically 0, is the well-known optimal circulation
problem of network fl.ow theory. Let us also show that the polymatroid intersection problem

(4.11) can be cast in this form. For each j E S, let JI, J2 be copies of j, let Ai denote

{ji : j EA} for any A~ S, and let G = (V, E) be defined by V = S1 U S2 and E = S with

j = (j1,J2) for each j ES. Define Cj = 0, Uj = oo for each j. Define b(A2) = J1 (A) and

b((S1 \A1) U S2) = h(A) for all A~ S, b(A) = oo for all other A~ V. The resulting (5.1)

is exactly (4.11). We encourage the reader to check that bis crossing submodular.

The main integrality result for (5.1) is due to Edmonds and Giles.

(5.2) Theorem. If £,u,b are integer-valued and (5.1) has an optimal solution, then it
has one that is integer-valued. If c is integer-valued and the dual of (5.1) has an

optimal solution, then it has one that is integer-valued.

The proof of (5.2) uses an idea similar to that of (4.13) in Chapter Schrijver: the dual

of (5.1) has an optimal solution whose non-zero components form an optimal solution to a

linear program having a totally unimodular constraint matrix. Such an optimal solution is

obtained from any optimal solution y by successive "uncrossings", that is, given sets A, B

with An B, A \B, B\A, V\(A U B) all non-empty and YA, YB > 0, decreasing YA, YB by

€ = min(yA, YB) and increasing YAuB, YAnB by€.

As yet another illustration of the power of the submodular fl.ow model, we show how

the Lucchesi-Younger <lieut-covering result (Chapter Frank) can be derived from (5.2).

Given G = (V, E), we put Cj = 0, Cj = -1, and Uj = oo for each j EE. For each A~ V
such that 8-(A) = 0 and 0 -=/- A -=/- V we put b(A) = -1, and b(A) = oo for all other A.
Then it is easy to check that an optimal integer-valued feasible flow is the characteristic

vector of a minimum cardinality cover of directed cuts, and an optimal integer-valued

solution of the dual problem picks out a collection of arc-disjoint directed cuts. Hence the
Lucchesi-Younger result follows from (5.2) and the linear programming duality theorem.

Submodular Flow Algorithms

Suppose we are given x = (x j : j E E) and want to determine whether x is a feasible

flow. Then it will be enough to be able to minimize g(A) = b(A) - x(8-(A)) + x(8+(A))
over A ~ V. Since g is a (crossing) submodular function, there exists a polynomial­
time (ellipsoid) algorithm to minimize it. Hence by the equivalence of separation and
optimization, there exists a polynomial-time algorithm for (5.1). The resulting algorithm

uses the ellipsoid method on two different levels. The search for better algorithms has

succeeded in decreasing this reliance on the ellipsoid method. We shall outline an efficient

combinatorial algorithm for (5.1), assuming the availability of a subroutine for minimizing

a submodular function. It follows that, if an efficient combinatorial algorithm for the latter

27

problem is discovered, then (5.1) is also solved in a satisfactory way. In addition, there

exist instances of (5.1) for which the submodular functions arising can be minimized by
efficient combinatorial algorithms. An example is the problem of re-orienting the arcs of a

digraph at minimum cost so as to make it k-arc-diconnected (Frank (1982)).

Notice that xis a feasible flow if and only if£~ x ~ u and Bx E Qo(b) = Q(b) n {z E
R v : z(V) = 0}, where B is an appropriately defined matrix. (Recall that Q(b) = { x E

R 5 : x(A) ~ b(A), A~ S}.) The results (4.16) and (4.17) tell us that Q0 (b) = Q0 (b')

for some fully submodular function b', since there is no harm in assuming that b(V) = 0.

Hence the feasible flows remain the same when b is replaced by b'; this is a result of

Fujishige (1984). In addition the submodular oracle that is used has the same output for b

and for b'. Therefore, we may pretend that b is fully submodular even if it is not. (There

are two exceptions to this statement; for purposes of this exposition we ignore them.)

Submodular Flow Algorithms: Maximum Flows and Consistent BFS

The maximum (submodular) flow problem is to find a feasible flow that maximizes

x I for a fixed arc f E E. (Notice that it is an equivalent problem to minimize x I, since

f's direction could be reversed.) This is a special case of (5.1), and includes as special

cases the ordinary network maximum flow problem (Chapter Frank), and the problem of

finding a maximum component-sum vector in the intersection of two polymatroids. (The

first is easy to see; the second requires modifying the previously-described submodular flow

representation of polymatroid intersection.) The shortest augmenting path technique of

maximum flow theory (see Chapter Frank) generalizes to this context, but we also need
an important further refinement of breadth-first search.

The algorithm for the maximum flow problem generalizes the cardinality matroid

intersection algorithm, as well as the usual network maximum flow algorithm. To motivate

the augmentation used, we first describe two special cases. Suppose that we find a circuit

in G including f and such that Xe < Ue for all arcs having the same orientation as f
and Xe > Re for all arcs having opposite orientation to f. Then x I could be increased by

sending flow around the circuit, increasing Xe by c for arcs of the first kind and decreasing

Xe by c for arcs of the second kind; c must not exceed Ue - Xe for any arc of the first
kind, or Xe - Re for any arc of the second kind. Next, suppose that we have a path with

the same properties, say from q top, and we attempt to send flow along the path. Now

there is an additional limitation on c; for the new flow to satisfy the constraints of (5.9), c

cannot exceed cx(P, q), defined to be min(b(A)-x(s-(A)) +x(s+(A)) : p E A, q (/. A). This
limitation could be represented as an upper bound for the flow on a fictitious arc (p, q).
An actual augmentation in the algorithm will consist of a sequence of augmentations on
paths linked into a circuit by the addition of fictitious arcs, and is best described via an

auxiliary digraph.

28

Given a feasible flow x, let G' = G'(G,b,f,u,x) have node-set V and:

For each e = (p, q) E E with Xe < Ue, an arc (p, q) with capacity Ue - Xe;

For each e = (p, q) EE with Xe > fe, an arc (q,p) with capacity Xe - fe;

For each p, q E V with €x(P, q) > 0, an arc (p, q) with capacity €x(P, q).

We call the arcs forward, backward, and jumping, respectively. Suppose that f = (t, s). A

dipath P in G' from s to t together with (t, s) yields a directed circuit C in G'. Let c be

the minimum capacity of its arcs. The augmentation corresponding to P increases Xe by c

if a forward arc of C arises from e, and decreases Xe by c if a backward arc of C arises from

e. The next lemma occurs in Frank (1985); similar results for other models can be found
in Fujishige (1978), Hassin (1982), Lawler and Martel (1982), and Schonsleben (1980).

(5.3) Lemma. If Pis a chordless (s, t)-dipath in G', then the augmentation correspond-

ing to P results in a feasible flow.

On the other hand, if there is no (s, t)-dipath in G', then Xf is maximum, and the

algorithm may terminate. To see this we observe that in this case there is a set A ~ V

withs E A, t rt. A such that Xe = Ue for all e E 8+(A), Xe = fe for all e E 8-(A)\{f},
and for every p E A, q rt. A there is a tight set containing p and not q. (A set is tight if its
inequality in (5.1) holds with equality.) Since we may assume that bis fully submodular,

it is easy to prove that the intersection and union of tight sets is tight. It follows that A
is tight. Therefore,

But obviously no feasible flow can have x f exceeding this, so x f is maximum. The resulting
min-max theorem is the following.

(5.4) Theorem. If there is a maximum flow and bis fully submodular, then

max(x f : x a feasible flow) =
min(u1, min(b(A) -£(8-(A)\{f}) + u(8+(A)): s EA~ V\{t})).

There is a more general version of (5.4) for crossing submodular functions. It can
be derived from (5.4) by applying (4.16) and (4.17). In addition, feasibility can be tested
by applying the maximum submodular flow algorithm to a certain auxiliary problem and
so the following feasibility characterization is also a consequence. Again a more general

version (Frank (1984)) is available.

(5.5) Theorem. If bis fully submodular then there exists a feasible flow if and only if,

for all A~ V, £(8+(A)) - u(8-(A)) ~ b(A).

29

Now we discuss the efficiency of the algorithm. First, we observe that if b, u, R, and the

initial x are integer-valued, then x remains integer-valued, and the algorithm terminates

(assuming there exists a maximum flow). However, we would like to have a bound on

the number of augmentations that is not so dependent on the size and form of the input

numbers. A similar difficulty arises in ordinary network flows, where the classical solution

is to find shortest augmenting paths, found by "breadth-first search": scanning nodes in

the order in which they are labelled. The analysis of that method is based on the following

facts. For a flow x, let k(x) denote the length of a shortest augmenting path with respect

to x, and let E(x) denote the set of arcs contained in some shortest augmenting path with

respect to x. Suppose that an augmentaion replaces flow x by flow x'. Then:

(a) k(x') ~ k(x);

(b) If k(x') = k(x), then E(x') C E(x).

It follows from (a) that the computation is divided into at most n = IVI stages and

it follows from (b) that each stage takes at most n 2 augmentations. In the more general
situation of submodular flows, (a) still holds but (b) fails. However, careful examination

of how it can fail, leads to a further refinement. In addition to scanning nodes in the

order labelled, we label nodes (from a node being scanned) in an order consistent with

a fixed ordering of V. The resulting path has a node-sequence that is lexicographically
least among node-sequences of shortest augmenting paths. This important technique was

introduced independently by Schonsleben (1980) and Lawler and Martel (1982), who used

it in contexts similar to the present one. Cunningham (1984) used it in his algorithm

for testing membership in matroid polyhedra. He also labelled the technique "consistent

breath-first search", and described its essential properties in a context-free way. For the

submodular flow model we are using, the following result is due to Frank (1984).

(5.6) Theorem. If consistent breadth-first search is used, the maximum fl.ow algorithm

terminates after 0(n 3) augmentations.

Submodular Flow Algorithms: Optimization

Recall that the weighted MIA used the following three ideas: (i) Simpler optimality

conditions (using weight-splitting) than those coming from a straightforward use of linear

programming duality; (ii) Use of the same auxiliary digraph as the unweighted algorithm,
except that arcs were assigned costs; (iii) Use of a least-cost dipath computation to update
the dual solution, followed by use of the unweighted algorithm on arcs of cost zero. These

three ideas will be used in extending the work of the last section to an algorithm for the
optimal submodular flow problem.

30

The first important idea, suggested by Frank (1982), is that an optimal dual solution

for (5.1) can be represented by a vector of potentials ?rv, v E V. Given such a vector 7r

and an arc e = (p, q) EE, Ce denotes Ce+ ?rp - ?rq.

(5. 7) Theorem. Suppose that x is a feasible flow and 7r, x satisfy

(a) If Ce > 0 then Xe = Ue, fore EE;

(b) If Ce< 0 then Xe= Re, fore EE;

(c) If 7rp > ?rq, then Ex(p,q) = 0, for p,q EV.

Then x is optimal.

This result is easily proved, by showing that linear programming optimality conditions

are satisfied by x and the dual solution (y, f, g) constructed from 1r as follows. Let 7ro <
1r1 < ... < 7rk be the distinct values of 1r, and let Ai denote {v EV: 7rv 2:: 1ri}, 1 Si S k.

Define YA to be 7ri - ?ri-1 if A = Ai and to be O otherwise. Define fe to be max (ce, 0)
and 9e to be max (-ce, 0), e E E. (The dual variable fe corresponds to the constraint

Xe Sue; 9e corresponds to -Xe S -Re.) Notice that (y,f,g) is integer-valued if 7r is.

The algorithm maintains a feasible flow x and a potential 1r satisfying (5.7c). Let

f = (t,s) be an arc violating (5.7a); the other case is similar. It is convenient to assume
that f is the only arc violating (5.7a) or (5.7b). This can be accomplished by temporarily

changing the appropriate bound of any other offending arc e to Xe. Now we form the

auxiliary digraph G' of the last section and assign arc-costs as follows: A forward arc (p, q)
has cost Wpq = -ce; a backward arc (q,p) has cost Wqp = ce; a jumping arc (p, q) has
cost ?rq - ?rp. Now each arc of G' (except the forward arc (t,s), which we delete) has non­

negative cost, and indeed, this is equivalent to the condition that (5. 7abc) is violated only

by f.

Next we use an O(n2) shortest-path algorithm to find a least-cost dipath in G' from

s to v for each v E V; let dv be its cost. For v E V we replace 7r v by 7r v - min(dv, cj). It
is quite easy to check that the arc-costs remain non-negative. Now either Cf= 0, in which

case we have ended f's violation of the optimality conditions, or Cf > 0, in which case

there exists in G' an (s, t)-dipath consisting of arcs having weight 0. In this case we use
consistent breadth-first search to find such a dipath and perform an augmentation. (It is

possible that this dipath yields a directed circuit of G' having no finite capacity; in this case

(5.1) is unbounded, and the algorithm terminates.) That such an augmentation preserves

(5.7abc) is obvious. That it delivers a feasible flow can be proved as for the weighted MIA,

by showing that it is an augmentation of the maximum submodular flow algorithm applied

to a more restricted submodular flow problem; see Cunningham and Frank (1985). From

this observation it follows also that there will be at most 0(n3
) augmentations before 1r

31

changes again. The number of potential changes can be shown to be finite, and better

bounds hold when c is nice. Refinements based on scaling c lead to a polynomial bound

(Cunningham and Frank (1985)) and to a bound polynomial inn alone (Fujishige, Rock,

and Zimmermann (1989)) for the number of augmentations.

Polymatroid Matching

An important common generalization of graph matching and matroid intersection may

be formulated as a problem on 2-polymatroids: polymatroids whose polymatroid function

f is integer-valued and satisfies f({j}) ~ 2 for each j E S. A matching is a set J ~ S such

that f (J) = 2 I JI. Ordinary matching on a graph G = (V, E) arises when we take S = E
and f(A) = IV(A)I for A~ S. Matroid intersection for matroids M1, M2 on S arises when

we take f = r 1 + r 2 . Historically the first common generalizations of these two important
problems were equivalent models called matroid parity (Lawler), matchoids (Edmonds),

and matroid matching. The latter is the case of polymatroid matching in which we are

given a graph G = (V, E) and a matroid M on V and take S = E with f(A) = r(V(A)).
However, the maximum matching problem, even in this special case, is intractable from the

oracle viewpoint (Lovasz (1980b), Korte and Jensen (1982)), and also contains NP-hard

problems.

Nevertheless, a great deal of progress has been made on the 2-polymatroid matching

problem, mainly due to the work of Lovasz. He has described (Lovasz (1980b)) general

reduction techniques for computing a maximum matching. For several important special

classes these lead to efficient algorithms and min-max results. Among the applications are

finding a maximum cardinality forest in a 3-uniform hypergraph, and finding a maximum

family of openly disjoint A-paths in a graph. (See Chapter Frank for more on the latter

problem).

The most important special case is that of linear 2-polymatroids. Here S is a set of

lines (equivalently, pairs of points) in a vector space, and f(A) is ar(U{ e: e EA}), where

ar denotes affine rank. Graph matching and matroid intersection for two matroids linearly
represented over the same field are both special cases, and their min-max formulas are

generalized by the next result from Lovasz (1980a).

(5.8) Theorem. The maximum size of a matching in a linear 2-polymatroid is

k

. () """"' l ar(Ai) mmar Ao + ~
2

J,
i=l

where the minimum is over sets Ao, A1 , ... , Ak of points of the space such that, for

every e ES, either ar(Ao U e) ~ ar(Ao) + 1 or, for some i, ar(Ai U e) = ar(Ai).

32

Lovasz has also given a (complex) polynomial-time algorithm for linear 2-polymatroid

matching. Gabow and Stallmann (1986) contains a different, much more efficient algo­

rithm. Its running time is O(n4), where n = ISi, surprisingly close to the best bound

known for the special case of linear matroid intersection. An outstanding question is the

solvability of the corresponding weighted problem, about which little is known.

Delta-matroids and Bisubmodular Polyhedra

Many of the optimizational properties of matroids are preserved in an interesting

generalization introduced under various names by Dress and Havel (1986), Bouchet (1987),

and Chandrasekaran and Kabadi (1988). A delta-matroid is a pair (S, :F) where S is a

finite set and :Fis a family of subsets of S, called the feasible sets, satisfying the following

symmetric exchange axiom:

(Here 6 denotes symmetric difference.) Matroids, defined by their basis families, are

precisely the delta-matroids in which the feasible sets all have the same cardinality. They

form the fundamental examples, although the independent sets of a matroid also form the

feasible sets of a delta-matroid. Other interesting examples are matching delta-matroids

(S is the node-set of a graph and F ~ S is feasible if and only if it is the set of end­

nodes of some matching), and linear delta-matroids (where As,s is a skew-symmetric (or

symmetric) matrix over a field, F ~ S is feasible if and only if AF,F is non-singular).

The maximum-weight feasible set problem can be solved by a type of greedy algorithm.

This algorithm needs an oracle that, for disjoint subsets A, B of S, determines whether

there is a feasible set F satisfying A~ F ~ S\B.

Symmetric Greedy Algorithm for the Maximum-Weight Feasible Set Problem

Order S = { e1, e2, ... , en} so that lce 1 I ~ lce 2 I ~ ... ~ Iceni
For each i, let Ri denote { ei, ... , en}

J := 0
For i = 1 to n do

If Ce; ~ 0 and there exists FE :F with JU { ei} ~ F ~ JU Ri then J :=JU { ei}

If Ce; < 0 and there exists no FE :F with J ~ F ~JU Ri+I then J :=JU {ei}

(5.10) Theorem. (S, :F) is a delta-matroid if and only if for any c E R 5 , the symmetric

greedy algorithm finds a maximum-weight feasible set.

Again the "if" part is an easy consequence of the definition. The other part can be

proved by methods similar to the ones used for matroids. However, it is also possible to

33

derive many of the results for delta-matroids from corresponding matroid facts. One useful

technique is the following. (The reader should consider the effect of choosing N to be the

set of negative-weight elements of S.)

(5.11) Proposition. (S,:F) is a delta-matroid if and only if for every N ~ S, the
maximal members of { F 6.N : F E :F} are the bases of a matroid.

We define a rank function f for a delta-matroid by J(A, B) = max(IF n Al - JF n Bl :
F E :F) for subsets A, B of S. Clearly the characteristic vector of any feasible set, and

therefore any convex combination of such vectors, satisfies the inequalities

(5.12) x(A) - x(B) ~ f(A, B), A,B ~ S, AnB = 0.

(5.13) Theorem. The convex hull of characteristic vectors of feasible sets of a delta­

matroid is precisely the set of solutions of (5.12).

As for matroids, there is one property of the rank function that is the essential one

for proving such results. Let f be a function defined on ordered pairs of disjoint subsets

of S. We say that f is bisubmodular if it satisfies

(5.14) f(A,B) + f(A',B') ~ f(A n A',B n B')+

f((A U A')\(B U B'), (BU B')\(A U A')).

Kabadi and Chandrasekaran (1990), Nakamura (1988), and Qi (1988) have shown that for

any bisubmodular f, the system (5.12) is totally dual integral. In particular, this implies

that if f is also integer-valued, then every extreme point of the corresponding bisubmodular

polytope, that is, the solution set P(f) of (5.12), is also integer-valued. This result easily

implies Theorem 5.13. The total dual integrality of (5.12) can again be proved by a greedy

algorithm for maximizing c · x over the bisubmodular polyhedron, a generalization of the
one for delta-matroids. (A. Frank has observed that it also is a special case of (5.2)). In

fact, this algorithm already appears in Dunstan and Welsh (1973). For P ~ R 5 , A~ S,

and x ERA, we say that xEP if there exists y E P such that Yi= Xj for all j EA.

Symmetric Greedy Algorithm for Bisubmodular Polyhedra

Order S = {e1, e2, ... , en} so that lce1 I ~ lce 2 I ~ ... ~ lcen I

For each i, let Ri denote { ei, ... , en}

J := 0

For i = 1 to n do

If Ce; ~ 0 choose Xe;as large as possible so that(xe 1 , ••• , XeJEP

If Ce; < 0 choose Xe; as small as possible so that(Xe 1 , •.• , Xe;)EP

34

Dunstan and Welsh call a compact set P E Rs greedy if the above version of the greedy

algorithm maximizes c · x over P for every c E Rs. To describe their characterization of

greedy sets, we need to define some terms. For a point x E Rs and a subset A ~ S, we

denote by x.6A the point obtained by replacing x j by its negative for each j E A. For a

subset P of Rs, we write P.6A to denote {x.6A: x E P}. Finally, the hereditary closure

{y E Rs : y :S: x for some x E P} of P is denoted by dn(P). The equivalence of (a)

and (c) below is due to Dunstan and Welsh; that of (a) and (b) is due to Kabadi and

Chandrasekaran and Nakamura. It is an interesting puzzle to understand why the recent

interesting work on delta-matroids and bisubmodular polyhedra occurred so long after the

initial work of Dunstan and Welsh.

(5.15) Theorem. For a polytope P ~ Rs, the following statements are equivalent:

(a) P is greedy;

(b) P is a bisubmodular polyhedron;

(c) For every A~ S, dn(P.6A) is a submodular polyhedron.

The bad news about delta-matroids and bisubmodular polyhedra is the absence of

an intersection theorem. In fact, the matroid matching problem is easily seen to be the

intersection of a matroid with a matching delta-matroid, so the delta-matroid intersection

problem is intractable. Frank introduced a special class of bisubmodular polyhedra that

is better behaved in this respect, but still includes polymatroids and base polyhedra.

A generalized polymatroid is a bisubmodular polyhedron determined by a bisubmodular

function f satisfying J(A, B) = g(A) - h(B), where g is submodular, h is supermodular,

and they satisfy

(5.16) g(A) - h(B) :S: g(A \B) - h(B\A), A,B~S.

Actually, the definition of Frank is slightly more general. The paper of Frank and Tardos

(1988) is an excellent reference, giving a wealth of results on generalized polymatroids and

related topics. One result that helps to explain their good behaviour is that every such

polyhedron can be obtained by projection from a base polyhedron. The main integrality

result, generalizing the Polymatroid Intersection Theorem, may be stated as follows.

(5.17) Theorem. The union of the defining systems of two generalized polymatroids in

Rs is totally dual integral.

Greedoids and Independence Systems

A pair (S, :F), where :F is a family of subsets of S containing 0, is a matroid if it

satisfies:

(5.18) If A~ BE :F, then A E :F;

35

(5.19) If A, BE F, IAI > IBI, then there is a E A\B with BU {a} E F.

Requiring only one of (5.18), (5.19) yields two different generalizations. The first, of course,
is independence systems. These objects seem to be too general to have an interesting

theory. We do mention one result on the effectiveness of the greedy algorithm. For any A <;;;

S, let r+(A) denote max(IFI: A 2 FE F), and let r-(A) denote min(IFI: A 2 FE F, F

maximal). Of course, an independence system is a matroid precisely when r+(A) = r-(A)

for all A <;;; S. That is, the quantity min (~~~1~ : A<;;; S, r+(A) > 0) = p(S, F) is 1 for

matroids, and p(S, F) is a measure of how close (S, F) is to being a matroid. We know
from Theorem 2.2 that the maximum weight independent set problem is solved optimally
by the greedy algorithm when p(S, F) = l. Jenkyns, and independently Hausmann and

Korte, have proved more generally that the greedy algorithm works well if p(S, F) is not

too small.

(5.20) Theorem. Let (S, F) be an independence system. For any c E Rs the greedy

algorithm delivers a feasible set of weight at least p(S, F)max(c(F): FE F).

Now let us consider the objects obtained when we drop (5.18) and keep (5.19). The

resulting structures are called greedoids. They were introduced by Korte and Lovasz and,

while very general, have a surprising amount of structure. (In fact, enough to justify a

book; see Korte, Lovasz and Schrader (1990).) Here we mention a few of the connections

with optimization.

For a greedoid (S, F) a basis of (S, F) is a maximal feasible set. Given a weight

function c such that c(F) E R for each F E F, we consider the problem of finding a

basis F maximizing c(F). We do not assume that c is linear, that is, determined by

c(F) = ~(cj : j E F) for an element-weighting c E Rs. We state a greedy algorithm for

the maximum-weight basis problem.

Greedy Algorithm for a Greedoid

J := 0

While there exists e E S\ J with J U { e} E F do

Choose such e with c(J U { e}) maximum

J:=JU{e}

Notice that this algorithm, for the case when c is linear and (S, F) is a matroid, is
equivalent to the greedy algorithm for finding a matroid basis of maximum weight. In

that case the algorithm finds an optimal solution. The situation for greedoids is more

complicated. We illustrate two of its aspects by considering a class of greedoids arising

from a digraph G = (V, E) with a fixed node s E V. We take S = E and take F to be the

arc-sets of arborescences rooted at s. Notice that (5.19) is preserved under the truncation

36

operation Fk ={FE F: IFI ~ k}. Let T ~ V\{s} be a set of target nodes and assign
(linear) weights of 1 to arcs having head in T and O to the others. By finding a maximum

weight basis of (S, Fk), we can decide whether there is an s-rooted arborescence having

at most k edges and including all the target nodes. This latter problem is a version of the

"Steiner tree problem" and is NP-hard. So optimizing linear functions over greedoid bases

is, in general, difficult.

On the other hand there are interesting nonlinear functions that the greedy algorithm

optimizes. For an example, consider again (S, F) from above. Given d E Ri and F E F,

we let c(F) denote I: (I: -dj) where Pv is the arc-set of the unique dipath in F from
vEV(F) jEPv

s to v. Then a basis F of (S, F) maximizing c(F) provides least-cost dipaths (with respect

to d) from s to v for all v E V, and the greedy algorithm will find such a basis. (These

facts are consequences of standard results on shortest path problems; see Chapter Frank.)

More generally, there is a large class of functions that the greedy algorithm optimizes over

the bases of any greedoid. There is also a characterization of greedoids in terms of the
functions that the greedy algorithm optimizes, and a characterization of the greedoids for

which it optimizes every linear function. For these results and others, we refer the reader

to Korte, Lovasz and Schrader (1990).

Finally, we describe a generalization of the matroid intersection theorem to a larger

class of greedoids. A distributive supermatroid (we do not attempt to explain the name)

is a greedoid (S, F) together with a partial order on S satisfying

(5.21) If A~ BE F and A is an ideal, then A E F.

Notice that every matroid satisfies (5.21), by taking the partial order to be trivial. It is

a result of Tardos (1987) that, for two distributive supermatroids (S, F 1), (S, F2) on

the same set with the same partial order, the quantity max(IFI : F E F 1 n F 2) is well­

characterized. If the partial orders are not assumed to agree, then the intersection problem
can be shown to be intractable in general. We state a simple version of Tardos' min-max

theorem. This is a bit misleading since it involves quantities that are difficult to compute;
her paper provides a more complicated formula that does not have this drawback. For

i = 1 and 2 and A ~ S, let ,Bi(A) denote max(IF n Al : F E Fi)- (Of course, if (S, Fi) is

matroid, then ,Bi is just the rank function.)

(5.22) Theorem. Let (S, F 1), (S, F 2) be distributive supermatroids with the same

partial order. Then max(IFI : FE F1 n F2) = min(,81(A) + ,82(A): A~ S).

37

6. MATROID CONNECTIVITY ALGORITHMS

Connectivity is a fundamental structural property of matroids. Algorithmically
this notion took on a central role with Seymour's work on regular matroids. The
connectivity-based decompositions applied there have since been further applied and
significantly extended by Seymour and Truemper.

Let M be a matroid on S with rank function r. A partition {S1 , S2 } of Sis an
m-separation of M for m 2: 1 if

(6.1)

(6.2)

Define M to be k-connected for k 2: 2 if M has no m-separation for m < k (Tutte
(1966)); in this case we say that M has connectivity k. 2-connected matroids are
called connected or nonseparable. It is easy to see that { S1 , S2 } is a 1-separation of
M if and only if every circuit of M is either a subset of S1 or a subset of S2 .

The above definition is motivated by graph connectivity. Tutte proved that the
polygon-matroid M(G) of a graph G is k-connected if and only if G is k-connected in
the usual sense (that is, connected and remains so upon the deletion of any k - 1 or
fewer vertices), and either ISi :::; 2k-1 or G has no cycle of size less thank. To obtain
an exact analogue of node k-connectivity in graphs we can replace the cardinality
condition (6.1) by r(S1) 2: m:::; r(S2). This definition, however, is not invariant under
duality, whereas Tutte's definition is: It is easy to show that r(S1) + r(S2) - r(S) =
r*(Si) + r*(S2) - r*(S) for any pair {S1 , S2 }.

The following table summarizes the best algorithms available for testing k-connectivity
for various values of k. Note that for general k, the complexity does grow exponen­
tially with ISi, as it inevitably must since computing the connectivity of a matroid
specified by an oracle is easily shown to be intractable (see the argument used for
girth in Section 2).

I k I Complexity (Oracle Calls) I Method

2 O(ISli) Shifting
3 O(ISl3

) Bridges or Shifting
4 O(ISl 4

•
5Jlog ISi) Shifting

2: 5 O(ISlk+1
) Matroid Intersection

Algorithms for Testing k-Connectivity

Partial Representations

Partial representations (Truemper (1984)) will be used in several places in this section.
Let X be a basis of a matroid M. The partial representation, abbreviated PR, of M

38

with respect to X is the {O, 1}-matrix R with rows indexed on elements x EX and
columns indexed on elements y E Y = S\X such that the (x, y) entry is 1 if and only
if x E C(X, y). If M is binary, (I, R) is an actual representing matrix for M over
GF(2), where I is an identity matrix of appropriate dimension.

For X' ~ X and Y' ~ Y, let R(X', Y') denote the submatrix of R with row index
set X' and column index set Y'. R(X', Y') is then a PR of M\(Y\Y')/(X\X') with
respect to X\X'. Define the R-rank of R(X', Y') by

rk(R(X', Y')) = r(Y' u (X\X')) - IX\X'I,

where r is the usual matroid rank function for M. If rk(R(X', Y')) = IX'I = IY'I,
then R(X', Y') is called nonsingular.

2-Connectivity

By definition, a matroid is disconnected (separable) if there is a partition {S1 , S2 }

of S with S1 ::/= 0 ::/= S2 and r(S1) + r(S2) = r(S) (r(S1) + r(S2) ~ r(S) holds by
submodularity). There is an easy algorithm for testing this condition using PR's.

Let X be any basis of M and let R be a corresponding PR. R has a naturally
associated bipartite graph G(R) in which there is one node for each row and column
of R and one edge for each nonzero entry.

(6.3) Theorem. Let M be matroid, X a basis of M, R the PR corresponding to
X and G(R) the associated bipartite graph. Then M is connected if and only if
G(R) is connected. (Thus, M is connected if and only if R has no nontrivial block
decomposition.)

Proof. We prove one half of the theorem. Suppose that M is not connected, let
{S1 , S2 } be a separator, and let X be a basis of M. Define Xi = Sin X (i = 1, 2).
Now Xi ~ Si is independent and so

It follows that Xi is a basis of Si (i = 1, 2). Let Yi= Si\Xi. We conclude that every
fundamental circuit C(X, e) for e E Yi is contained in Si. That is, the submatrices
R(Xi, lj), i ::/= j, are identically zero. It follows that G(R) is not connected. D

Theorem (6.3) yields an algorithm for testing the connectivity of M, as follows.
First construct a basis and the corresponding PR R. This step requires at most ISi
+ r(S)(ISI - r(S)) :'.S; ISl 2 calls to an independence oracle. Now test the connectivity
of the graph G(R). The time for this latter computation is dominated by that for the
first, and so the total is O(ISl2

) oracle calls.

39

Computing Minors Containing a Fixed Element

The relationship introduced in the last subsection between 2-connectivity and bipar­
tite graph connectivity is the basis for an algorithmic proof of the following result.
This approach is typical of several proof techniques in the subject.

(6.4) Theorem. (Seymour) If N and M are connected matroids, N is a minor of
M, and e E S(M)\S(N), then there exists a connected minor N' of M such that
N = N'\e or N = N' /e (these are actual equalities-no isomorphism is involved).

Proof. Let M and N be as in the statement of the theorem. Let X' be independent
and Y' coin dependent in M such that N = M\ Y' / X'. Take a PR R corresponding
to a basis X such that X' ~ X ~ S\Y'. Let e E S(M)\S(N) = X' UY'. By duality
assume e E Y'. Now if column e of R has a nonzero in the rows of N, we are done:
N' = M\ (Y'\ { e}) / X' satisfies the requirements of the theorem (by (6.3)). Otherwise,
we find a chordless path in the bipartite graph G(R) from e to any element in N.
Deleting the column elements not in this path, and contracting the row elements not
in the path yields the following picture (or a slight variant), where all entries not in
N and not on the path are zero:

e

N
1
1 1

1 1
1 1

1

1

Denote the set of elements corresponding to non-N columns in this picture by Y" and
the set corresponding to non-N rows by X". One can verify that the minor obtained
by deleting X" and contracting Y"\ { e} has the property asserted in the theorem.

D
Theorem (6.4) may be applied in the following way. Suppose that we know an

excluded-minor characterization for some class of matroids and ask the question,
whether one of the excluded minors, when it occurs, can be isolated to a part of the
ground set of a given matroid, or must be present throughout that matroid. This
question leads to the notion of 1-roundedness: We say that a subfamily P' of a family
P of connected matroids is I-rounded if whenever M E P has a minor N isomorphic
to a member of P', then for every element e E S(M), there is minor N' of M such
that N' is isomorphic to a member of P' and e E S(N'). An example is provided by
the binary matroids. In that case we take P to be the class of connected non-binary
matroids, and P' = { U2,4}, where U2,4 denotes a matroid on 4 elements every 2 of
which form a basis. By (6.4), to prove that {U2,4 } is 1-rounded, we need only prove
that for every connected 1-element extension of U2 ,4 , the new element in the extension

40

is an element of a minor isomorphic to U2,4 • This result together with Tutte's theorem
(Tutte (1965a)) that every non-binary matroid has a minor isomorphic to U2 ,4 implies
a result of Bixby: If M is a connected non-binary matroid, then for every element
e E M, there is a minor of M isomorphic to U2 ,4 and containing e. Note that the
proof of (6.4) gives an algorithm to find such a minor, given any single U2,4 minor of
M. This idea is used later in computing the special 3-separations needed for testing
the regularity of general matroids not known to be binary.

To use the algorithm suggested in the proof of (6.4) we need to know N in the
form N = M\ Y" / X", for disjoint sets X" and Y". In 0(IS I) oracle calls we can
find a maximal independent subset of X", extend it to a maximal independent set in
X" U S(N) and then further extend to a basis X of M. Let X' = X n (X" UY") and
Y' = (X"UY")\X'. Then X' is independent, Y' is coindependent and N = M\Y' / X'.
Now constructing the partial representation R corresponding to X and finding the
chordless path described in the above proof takes time 0(1S12). Finally, computing
the necessary contractions and deletions is no more than the work for computing a
PR for N. Thus, the complete algorithm runs in 0(1S1 2

) oracle calls.

3-Connectivity and Bridges

Connectivity (i.e. 2-connectivity) is relatively easy to analyze. 3-connectivity is thus
the first difficult instance of k-connectivity. It is particularly important in the theory
of regular matroids and in decomposition theory in general. In this section we present
a special-purpose recursive algorithm for testing 3-connectivity in connected matroids.
Some of the ideas in this algorithm will be used later in a graph-realization algorithm.

Define the elementary separators of a matroid to be the minimal nonempty sets S'
such that {S', S\S'} is a I-separation. Let M be a matroid, and let D be a cocircuit
of M. The elementary separators of M\D are called the bridges of D. D is called a
separating cocircuit if it has more than one bridge. The corresponding D-components
are the matroids M/(S\(D U A)) where A is a bridge. The A-segments of D, for a
bridge A, are the parallel classes of M/(S\(D U A)) in D.

The above quantities are easily computed using PR's. Take a PR of M such
that D is a fundamental cocircuit. Then D minus some single element is a row of
this matrix. Deleting this row and the incident columns gives a PR for M\D. The
bridges of D can then be computed using the connectivity algorithm given by (6.3).
The corresponding D-component for a particular bridge A is obtained by deleting
the columns and rows not in D U A. The computation of the A-segments is then
straightforward.

One more definition is required. Say that two D-bridges A1 and A2 avoid if there
are Ai-segments }"i (i = 1, 2) such that Yi U ½ = D. Define the bridge graph of D
to have vertices corresponding to the bridges of D and an edge joining two vertices if
and only if they do not avoid.

(6.5) Theorem. (Bixby and Cunningham {1979)) Let M be a connected matroid

41

that is both simple and cosimple, and let fl be a cocircuit of M. Then

(a) M has a 2-separation {S1, S2 } such that fl ~ S2 if and only if the matroid
obtained from some fl-component by identifying parallel elements has a 2-
separation;

(b) M has a 2-separation {S1, S2} such that fl meets both S 1 and S2 if and only if
the bridge graph of fl is not connected. D

The above theorem suggests a recursive procedure for testing 3-connectivity, given
a method for finding separating cocircuits. But this latter task is easy, because of the
following lemma:

(6.6) Lemma. Let M be a simple, connected matroid, and let X be a basis of
M. If every fundamental cocircuit with respect to X is nonseparating, then M is
3-connected. D

The algorithm based on the above results proceeds as follows. First construct
a PR. Check its rows to see whether any is separating. If none is, the matroid is
3-connected by (6.6); otherwise, take a separating cocircuit fl and compute its fl­

components. Compute the corresponding bridge graph. By (6.5) we can determine
whether M is 3-connected by examining the connectivity of the bridge graph and
determining whether the fl-components are 3-connected. Since the latter matroids are
smaller than the original matroid, the suggested procedure can be applied recursively.
An appropriate implementation gives a bound of ISl3 oracle calls.

k-Connectivity

We describe two algorithms for testing k-connectivity for general k. The first is based
on an elementary shifting idea in partial representations. For 2-connectivity, this
algorithm reduces to the one given by Theorem (6.3). The second algorithm uses the
cardinality matroid intersection algorithm.

A Shifting Algorithm

We need an interpretation of m-separation in PR's. Let M be a matroid, and let R
be a PR of M determined by a basis X. Let {S1 , S2 } be a partition of Mand define
Xi =Sin X and }"i =Sin Y (i = 1, 2), where Y = S\X. Define Rii = R(Xi, Yj).
This situation is depicted below:

Y1 Y2
X1 R11 R12

(6.7) X2 R21 R22

PR for M

42

Using the above notation, an equivalent definition of m-separation in terms of
PR's is obtained from the computation:

(6.8)
rk(R21) + rk(R12) = r((X\X2) U Yi) - IX\X2I

+ r((X\X1) U ½) - IX\X1 I

= r(S1) + r(S2) - r(S).

Thus, a partition of the elements S of a matroid into two sets is an m-separation
if and only if its blocks are sufficiently large and, in any partial representation R,
the corresponding "off diagonal" submatrices determined by this partition have total
R-rank at most m - 1.

We now present the shifting algorithm. It is convenient to assume that M is
known to be m-connected (we could first apply the algorithm for smaller values of
m). Consider a basis X and the corresponding PR R, and suppose R~2 and R;1
are submatrices of R having disjoint row and column sets and total R-rank m - 1
(m 2:: 1). These matrices induce a partitioning of R, as illustrated below:

PR for M

We also assume that IX~ U Y{I ~ m. The basic routine of the shifting algorithm
determines whether R~2, R;1 can be extended to a pair R12, R21 determining an m­
separation as in (6.7). (We call R12 , R21 a legal extension of R~2 , R~1 .) It consists of
the following two operations.

Row Shifting: Given x EX such that rk(R(X~ U {x}, Y{)) > rk(R; 1), set X{
x~ u {x}.

Column Shifting: Given y E Y such that rk(R(X{, Y{ U {y})) > rk(R~ 2), set Y{ =
Y{ U {y}.

It is easy to see that these operations are valid, in the sense that any legal extension
R12 , R21 of R~2, R;1 must also be an extension of the new R~2, R;1 • Now suppose that
we repeatedly apply these operations. If rk(R~2) + rk(R; 1) ever increases, then we
can stop; no legal extension exists. On the other hand, if rk(R~2) + rk(R;1) = m - 1,
but no shifting operation is possible, then X 1 = X{, X 2 = X~ U (X\XD, Yi = Y{,
Y; = Y{ U (Y\Y{) defines a legal extension, unless IX~ U Y{I < m, in which case no
legal extension exists.

Next we explain how to use the basic routine to test M for the existence of an
m-separation. For matrices R12 , R21 as in (6.7) and determining an m-separation of
M, there exist square non-singular submatrices P of one and Q of the other whose
total R-rank is m - 1. Suppose that we are given P and Q, and we want to find

43

R12 , R 21 • Let z E Y such that z does not index a column of P or of Q. We run the
basic routine twice. First we initialize R~ 2 to be P and R;1 to be Q with column
z appended, and second we initialize R~ 2 to be Q and R;1 to be P with column z
appended. (We are taking advantage of the fact that we may assume z indexes a
column of R~1 .) The shifting algorithm applies this procedure for all choices of P, Q.

Complexity of Shifting

For m = 1, testing 2-connectivity, the shifting algorithm reduces to the algorithm
given by (6.3). First, since m - 1 = 0, the matrices P, Q must be O x O matrices,
implying there is only one pair to consider. There is also only one case to consider for
the special element z-being appended to P is now equivalent to being appended to
Q. Finally, the shifting procedure is equivalent to using a standard graph algorithm
to compute the component containing z in G(R).

In general, the shifting algorithm can be shown to have a complexity of O(ISl2m)
oracle calls for computing m-separations. This involves an O(ISl2) implementation
of the basic routine for a given pair P, Q and the observation that there are at most
O(ISl 2

m-
2

) pairs of nonsingular matrices with total R-rank m - 1. A defect in this
approach is that, for general m, we do not know any device to decrease the estimate
of the number of pairs considered. Such a device is known for the matroid intersection
approach given in the next subsection.

Cunningham suggested the following idea in the special case m = 2. Assume M
is connected and select a spanning tree of G(R). Since m - 1 = 1, it follows that one
of the matrices R12 , R21 in (6.7) must be a zero matrix, so that the other must then
contain one of the elements from the spanning tree. Using this observation, we see
that only JSI - 1 pairs P, Q must be considered, yielding an overall bound of O(JSJ3

)

oracle calls, the same as that derived from (6.5). For the binary case, this bound can
be further improved to O(ISJ2

) running time using a graph decomposition algorithm
of Spinrad.

Finally, an improved bound is also known for testing 4-connectivity. The details
are too involved to present here, but using a graph theory lemma of Szegedy, Rajan

has shown how to reduce the bound to O(ISl 4
·
5 jlog ISi) oracle calls.

An Algorithm Using Matroid Intersection

Let M be a matroid on S and suppose that we wish to test whether M has an m­

separation for some m 2:: 1. To do this it suffices to test for each pair of disjoint sets
U1, U2, both of cardinality m, whether there exists an m-separation {V1 , ½} such
that Ui ~ V;. For a particular choice of U1 and U2 , define matroids M1 = M/U1 \U2

and M 2 = M/U2\U1 • These are matroids on S' = S\(U1 U U2), and for any partition
{V{, V;} of S' we have

44

Since r(U1) + r(U2) is a constant, minimizing this quantity over partitions {V{, vn
of S' is equivalent to minimizing r(Vi) + r(½) over partitions {Vi,½} of S such that
Ui ~ ¼ (i = 1, 2). Thus, using Theorem (3.5) and the matroid intersection algorithm
we can determine whether a given pair {Ui, U2 } induces an m-separation. It follows
that with 0(ISl 2m) applications of the matroid intersection algorithm we can test
(m + 1)-connectivity.

This bound can be significantly improved using the following observation. Fix
some set Q ~ S with IQI = m. Fix a partition {Qi, Q2 } of Q. There are O(ISlm) ways
to complete this partition to a pair of disjoint sets { Ui, U2} such that I U1 I = I U2 I = m.
Since there are 2m partitions of Q into two sets, and this number is a constant relative
to ISi, we see that O(ISlm) applications of matroid intersection will do. Since matroid
intersection takes times O(1S1 2

·
5

) we obtain an overall bound of O(ISlm+2·5) oracle
calls. By taking into account the similarity of the matroid intersection instances
being solved, the bound can be reduced to O(ISlm+2) oracle calls, and in the linear
case, to O(1s1m+2

) total work.

Menger's Theorem for Matroids

Tutte has generalized Menger's theorem to matroids (Tutte (1965b)). Let M = M(G)
for a graph G, and let S be the edge-set of G. Pick two vertices u, v of G, let P and
Q be the stars of these vertices and assume that P n Q = 0. Menger's theorem for
graphs (see Chapter Frank) asserts that the minimum number of vertices, distinct
from u and v, the deletion of which separates u and v equals the maximum number
of internally node-disjoint paths joining them. If G is 2-connected, this minimum can
be expressed in matroid terms as

min r(A) + r(S\A) - r(S) + 1
P~A~S\Q

To express the maximum imagine that we have found a family of m node-disjoint
paths joining u and v. Deleting all edges not on these paths, and contracting all
remaining edges other than those in P and Q, yields a graph in which u and v are
still joined by m paths. This minor of G corresponds to a minor M' of M, and for
this minor we have m = r'(P) + r'(Q)- r'(P U Q) + 1, where r' is the rank function of
M'. Now it is easy to prove that for any such minor, r'(P) +r'(Q)-r'(PU Q) + 1 is no
bigger than the minimum above. Tutte proved that equality can always be achieved.

(6.9) Theorem. (Tutte) Let M be a matroid on S and let P and Q be disjoint
subsets of S. Let M' be the family of minors of Mon the element set PU Q. Then

max r'(P) + r'(Q) - r'(P U Q) = min r(A) + r(S\A) - r(S)
M'EM' P~A~S\Q

Note that the quantity on the right can be computed using the matroid intersec­
tion algorithm. This fact was the basis for the connectivity algorithm in the previous

45

subsection. It works by defining M1 = M\P/Q, M2 = M/ P\Q and finding a maxi­
mum cardinality set J jointly independent in M1 and M2 • It can then be proved that
for this J, the matroid M' = M/J\(S\(P U Q U J)) achieves the maximum in (6.9).
This idea, due to Edmonds, yields a proof of (6.9).

46

7. RECOGNITION OF REPRESENTABILITY

Graph Realization for General Matroids

A matroid M is graphic if there is a graph G such that S = E(G) and the circuits of
Mare exactly the edge-sets of simple cycles in G. In this case we write M = M(G).
Graph realization (GR) is the problem, given a matroid M, to determine that M is
not graphic or find a graph G such that M = M(G). Seymour (1981b) first solved
GR. We use here a slight variation of Seymour's result due to Truemper.

(7 .1) Theorem. Let M and M' be matroids on S, and let G be a graph with edge-set
S. Suppose that

(1) Mand M' are connected,

(2) M and M' have a common basis X such that the corresponding partial repre­
sentations are identical,

(3) M' = M(G), and

(4) for every node v of G, the star of v contains a cocircui t of M.

Then M = M', which implies that Mis graphic.

We remark that (1) is necessary. Let S = { a, b, c, d, e} and define two matroids M
and M' on Sas follows: Mis the direct sum of UJ and Uf where S(Uf) = {e}, and
M' = M(G) where G has four vertices the stars of which are { a, c, d}, {b, c, d}, { a, b, e}
and { e }. Then the pair M,M' satisfies (2)-(4) with X = { a, b, e }, but M-=/:- M'.

(7.2) Lemma. Assume that M is a connected matroid, X is a basis, C is a circuit,
and S\(X UC) -=/:- 0. Then there is an element e E S\(X UC) such that either M\e
is connected or e is in series with some element of X. D

(7.3) Lemma. Assume that (M, M') satisfy (2)-(4). Let e E S, and assume e is a
coloop of neither M nor M'.

(a) Fore E S\X, (M\e,M'\e) satisfy (2)-(4) with G replaced by G\e.

(b) Fore EX, if e is parallel to no edge in G, then (M/e,M'/e) satisfy (2)-(4)
with G replaced by G / e and X replaced by X\ { e}. D

(7.4) Lemma. Assume that (M, M') satisfy (1)-(4).

(a) If e E S\X is parallel to some element of X (in either Mor M'), then (1)-(4)
hold for (M\e, M'\e) with G replaced by G\e.

46

(b) If e EX is in series with some element of S\X (in either Mor M'), then (1)-(4)
hold for (M / e, M' / e) with G replaced by G / e and X replaced by X\ { e}. D

Proof of (7.1). Suppose that M f. M', and that S has been chosen minimal subject
to this condition. Let C be a circuit of one of M, M', independent in the other. Then
by (7.2), (7.3a), and (7.4b), C 2 S\X, and so r(S) 2:: r*(S). Let D be a cocircuit of
one of M,M', coindependent in the other. Then, by the dual of (7.2), and by (7.3b)
and (7.4a), D 2 X, and so r*(S) 2:: r(S). It follows that r(S) = r*(S), C = S\X
and D =X.

Now suppose that C is a circuit of M and that D is a cocircuit of M. Then for
e EX, adding e to C creates no circuit in M, because of D. Hence, by the minimality
of S, CU { e} is a circuit in M'. But if: X :2:: 2, this implies X contains a circuit of
M', since M' is binary. Moreover,: X :f. 1 (otherwise M = M'), and so we conclude
that C is a circuit of M' and Dis a cocircuit of M'. But then deleting D from M',
that is, G, leaves M' connected, because of C, which implies that D is the star of a
node in G. On the other hand, C is a basis of M, and so D contains no cocircuit of
M, contrary to (4). This proves the theorem. D

In the next subsection we will describe two algorithms for recognizing when a
binary matroid is graphic; given such an algorithm, (7.1) yields an algorithm for GR,
as follows. Let M be a matroid and assume that M is connected (if not, apply the
algorithm to its connected components). Construct a partial representation R for M
and determine whether the associated binary matroid M((I, R)) is graphic. If not,
stop-Mis not graphic; otherwise, taking G to be a graph with representation (I, R),
use (7.1) to test whether M = M(G).

The computational complexity of this algorithm may be derived as follows. The
construction of a partial representation R requires O(r(M) : S :) calls to an indepen­
dence oracle. To determine whether (I, R) is the binary representation of a graphic
matroid, we may use the algorithm of Bixby and Wagner described in the next sub­
section. The work for this step is bounded by O(za(z, r(M))), where a(·,·) is an
inverse of the Ackermann function (see (7.8)) and z is the number of nonzero entries
in R. Finally, to apply (7.1) one must check the star of each node in G to see whether
it contains a cocircuit. This checking requires a total of 0(r(M) : S :) calls to an
independence oracle. Thus, the entire algorithm uses O(r(M) : S :) oracle calls, plus
O(za(z, r(M))) other work.

In closing we mention another result that can be used to solve GR. This result
generalizes a result of Tutte for binary matroids. It uses concepts defined in the
discussion preceding Theorem (6.5).

(7.5) Theorem. (Bixby) Let M be a matroid and let D be a cocircuit of M. Then
M is graphic if and only if

(a) the D-components of M are graphic, and

(b) the bridge graph of D is bipartite.

47

This theorem suggests a recursive algorithm for GR, very similar to the first
algorithm discussed in the next subsection. The bound for this algorithm is O(r(M)z),
where z is the number of nonzero elements in some partial representation of M.

Graph Realization for Binary Matroids

Numerous algorithms have been proposed for GR on binary matroids. We describe
two. The first is based on Theorem (7.5) for the case of binary matroids. Let M
be a binary matroid and let R be a partial representation of M. The steps in the
algorithm are the following:

Step 1. If (I, R) has at most 2 ones in each column, Mis graphic; otherwise, choose
a column having a one in each of three rows, corresponding to cocircuits D 1 ,D2

and D3.

Step 2. If each of D 1 ,D2 and D3 has just one bridge, then M is not graphic (because
edges of graphs can be in at most two nonseparating cocircuits, corresponding
to their end vertices); otherwise, let D be a separating cocircuit. (For definitions
of terms used here, see the discussion preceding (6.5).)

Step3. Compute the bridge graph of D. If it is not bipartite, M is not graphic;
otherwise, apply the above steps recursively to the D-components of M. Mis
graphic if and only if each of these is graphic.

In (Bixby and Cunningham (1980)) it is shown that this procedure can be imple­
mented to run in time O(r(M)z) where z is the number of nonzero elements in the
representation (I, R).

As our second algorithm, we describe one (Bixby and Wagner (1988)) based on
an idea of Lofgren. The algorithm has the same computational complexity as an
algorithm outlined by Fujishige, which is also based on Lofgren's procedure. This
complexity is the best for any known GR algorithm on binary matroids. It is conjec­
tured in (Bixby and Wagner (1988)) to be best possible.

Let G be a 2-connected graph with edge-set E. For E' ~ E, let V(E') denote the
set of vertices in G incident to some edge in E'. Let {E1 , E 2 } be a partition of the
edge-set of G such that V(E1) n V(E2) = { u, v }. Let G1 be the subgraph of G induced
by E 1 • Define G' to be the graph obtained by interchanging in G1 the incidences of
the vertices u and v. Then G' is said to be obtainable from G by reversing G1 . In
general, G" is 2-isomorphic to G if G" is obtainable from G by a sequence of subgraph
reversals.

(7.6) Theorem. (Whitney) Let G and G' be 2-connected graphs on the same edge­
set. Then G and G' are 2-isomorphic if and only if they have the same matroid.

0

48

Let R be a partial representation of a binary matroid M. Define R to be graphic
if M is graphic. Let Rk denote the matrix made up of the first k columns of R, where
rows consisting entirely of zeros have been deleted. R is called totally nonseparable
if Rk is nonseparable for 1 ::; k ::;: S : -r(M). For any matrix A such that G(A) is
connected, it is easy to compute a permutation of the columns such that the resulting
matrix is totally nonseparable.

Where Ck is the fundamental circuit defined by column k of R, define Pk =
Ck n {Uj<k Cj}. A set of edges P of a graph G is a hypopath of G if Pis a path in
some graph 2-isomorphic to G. The following statement, provable directly from (7.6),
is Lofgren's "subrearrangement theorem."

(7.7) Theorem. Let R be a totally nonseparable {0, 1}-matrix with c columns. As­
sume that for some 1 ::; k :::; c, Rk is graphic with realization Gk. Then Rk+I is
graphic if and only if Pk+I is a hypopath of Gk. D

Lofgren suggested the following procedure for testing whether R is graphic: As­
sume R is totally nonseparable. Clearly R1 is graphic. Suppose there exists a graph
Gk that realizes Rk. Further, suppose Pk+I is a hypopath of Gk. Then there exists
a graph Gk 2-isomorphic to Gk such that Pk+I is a path in Gk. Add the edges of
Ck+I \Pk+1 to Gk so that they form a path between the ends of Pk+I but are not
incident to any other vertices of Gk. It is straightforward to verify that the resulting
graph Gk+I is a realization of Rk+I· If the above procedure breaks down at any point,
it follows that R is not graphic.

To implement the above idea requires a polynomial-time method for construct­
ing Gk from Gk. A natural approach is to invoke some representation of Gk that
"displays"' all graphs 2-isomorphic to Gk. For this representation we use a graph
decomposition theory developed by Tutte in which a 2-connected graph is uniquely
decomposed into polygons, bonds and 3-connected graphs. Using this decomposition,
we can determine in polynomial time whether a given subset of edges is a hypopath.

The complexity of the algorithm is stated in the following theorem. The function
o:(·, ·) is an inverse of the Ackermann function, and is very slow growing, being for all
practical purposes never bigger than 4.

(7.8) Theorem. (Bixby and Wagner) Given an r x c {0, 1 }-matrix (I, R) with z
nonzero entries, there is an algorithm that runs in time 0(zo:(z, r)) and uses space
O(z) to determine whether the binary matroid M((I, R)) is graphic. D

An Application to Linear Programming

A (linear) network (flow) problem is a linear programming problem min{crx: Nx =
b, x 2:: 0}, where is N is a {0, ±1 }-matrix with no column having two equal nonzero
entries. We call a matrix with this property a network matrix. These are exactly the
matrices that occur as submatrices of node-arc incidence matrices of digraphs.

49

Two matrices A and R are projectively equivalent if one can be obtained from the
other by elementary row operations and nonzero column scaling. A linear program
min{ cT x : Ax = b, x ~ 0} is called a hidden network if its constraint matrix A is
projectively equivalent to a network matrix N. In this case, given explicit knowledge
of N, one can easily produce an equivalent network problem with constraint matrix
N. The motivation for doing so is primarily computational: It is well established
that network linear programs can be solved much more efficiently than general linear
programs.

The relationship between GR and hidden networks is summarized in the following
theorem. In particular, it follows from this result that any polynomial-time algorithm
for GR on binary matroids implies a polynomial-time algorithm for testing whether
a given linear program is a hidden network.

(7.9) Theorem. (Bixby and Cunningham {1980)) Let A = (I, R) be a real-valued
matrix, where I is an identity matrix, and let A' = (I, R') where R' is obtained
from R by replacing nonzero entries with 1 's. Then A is projectively equivalent to a
network matrix if and only if the following two conditions hold:

(a) R' is the partial representation of a graphic matroid M; and

(b) where G is any graph whose matroid is M, D is any orientation of G, and N is
its corresponding network matrix, A is projectively equivalent to N. D

Recognizing Total Unimodularity

A {0, 1}-matrix is totally unimodular if every square submatrix has determinant ±1 or
0. The significance of these matrices in optimization was pointed out by A. J. Hoffman
and J. B. Kruskal (see Chapter Schrijver for an extensive discussion of total unimod­
ularity), who observed that linear programming problems min{cTx: Ax= b,x ~ 0}
with integral b and totally unimodular constraint matrix A have integral basic feasi­
ble solutions (a simple consequence of Cramer's Rule). It is well known that network
matrices are totally unimodular, and Hoffman and Kruskal asked whether other in­
teresting classes could be found. Seymour gave an answer to this question:

(7.10) Theorem. (Seymour (1980)) Let M = M(A) where A is totally unimodular,
and assume that M is 3-connected and has no 3-separation {Si, S2 } with : Si :~
4 ~: S2 :. Then M is either graphic, cographic (the dual of a graphic matroid) or
isomorphic to Rio- (See Chapter Seymour for a definition of Rio-) D

The above theorem is perhaps best viewed as a "decomposition" result. In Chapter
Seymour, the connectivity-based notions of 1-, 2- and 3-sum are defined. In terms
of these sums, (7.10) can be stated as follows: Every matroid arising from a totally
unimodular matrix can be constructed using 1-, 2- and 3-sums starting with only
graphic and cographic matroids and copies of R10 • Thus, apart from the matrices

50

representing R10 , all "indecomposable" totally unimodular matrices arise from graphs,
or duals of graphs. This view suggests an algorithm for testing whether a matrix is
totally unimodular. More generally, it can be used to test whether a given matroid
Mis regular (i.e. M = M(A) where A is totally unimodular).

To see that a solution to the second problem above yields a solution to the first,
suppose that M = M(I, A) has been shown to be regular where A is a given real
matrix with {O, ±1} entries, and / is an identity matrix of appropriate dimension.
Let Ak denote the submatrix of A made up of the first k columns. A1 is clearly totally
unimodular. In general, assume that Ak (k 2'.: 1) is known to be totally unimodular.
Find the components of the bipartite graph G(Ak), and let i' and i" be two row
indices in the same component of G(Ak) and such that ai',k+l -=/:- 0 -=/:- ai",k+l· Find a
shortest path from i' to i" in G(Ak)- The row and column indices of this path together
with the column index k + 1 determine a square submatrix of Ak+l, since the path
was chosen to be shortest. If this submatrix has determinant other than ±1 or 0,
then Ak+l is not totally unimodular, and so neither is A; otherwise, after checking all
such pairs (i', i"), it follows that Ak+l is totally unimodular. The validity of this last
assertion can be deduced by showing that if (I, A') is a totally unimodular matrix
with the same zero, nonzero pattern as (I, A) ((I, A') exists because M is regular),
then the success of the checking procedure for A implies that A can be scaled to A'
by multiplying some rows and columns of A by -1.

We now sketch an algorithm for determining whether a general matroid is regular,
using Seymour's theorem above. The description proceeds inductively on : S(M) :.
Thus, we assume that a matroid M is given, specified by an independence oracle, and
that we can test for regularity any matroid that has a smaller number of elements.

Obviously we can test whether M is isomorphic to R10 , and using the results
on graph realization given earlier in this section, we can test whether M is graphic
or cographic. If any of these tests is positive, then M is regular and we are done;
otherwise, using results of Section 6, we test whether M has a 1-separation {S1 , S2 }.

If so, let Mi = M\ Si (i = 1, 2); it is easy to see that M is regular if and only if M1

and M2 are regular. Hence, we may assume that M is connected. Now, test for a
2-separation {S1 , S2 }. If one exists, find a circuit C of M such that Ci = C n S; -=f:.

0 (i = 1,2). Select ei EC; (i = 1,2) and let M; = M\(S;\Ci)/(C;\{ei}) (i = 1,2).
Then both M1 and M2 are smaller than M, and it can be shown that M is regular if
and only if M1 and M2 are regular.

Finally, it remains to consider the case when M is 3-connected, neither graphic
nor cographic, and not R10 • This case is difficult because we must, in effect, consider
representing M as a 3-sum, 3-sums are defined only for binary matroids, and M is not
known to be binary (moreover, if Mis not regular we have no way to test whether it is
binary, short of determining that it is regular, since testing whether a general matroid
is binary is intractable.) The method given below for dealing with this difficulty is
due to Truemper (1982).

Using the connectivity algorithm based on matroid intersection (see §7), we can
easily determine whether M has a 3-separation {S1 , S2} such that : S1 :~ 4 ~: S2 :.

51

Suppose this is the case. Let X2 be a basis of S2, and extend X2 to a basis X = X1 UX2
of M, where X1nX2 = 0. Let X = Si\Xi (i = 1, 2). Let R be the PR of M determined
byX:

R-~
-~

where Ai= R(Xi, X) (i = 1, 2) and rk(D) = 2. Suppose that D has the structure

where J1 and J2 are matrices of all 1 's. If D does not have this structure, we take
R' = R, X~ = X 2 and Y; = ½; otherwise, since M is 3-connected, it follows that
there is a shortest path in A2 joining some row of J1 and some row of J2 • A pivot on
a nonzero element rxy of Risa sequence of elementary row operations (over GF(2))
that remove all nonzeros in column y, except rxy, followed by a resetting of all entries
in this column to their original values. Performing GF(2) pivots on appropriate l's
along this path in A2 we obtain a matrix

R'=~1 0
D' A' 2

where D' = R'(X~, Yi) and A~ = R'(X~, Y{), and where D' has some row of all l's
and X~ UY;= S2 • Note that if R' is not a PR of M, then Mis not binary, and hence
not regular.

Now define M1 = M/ X1 and M2 = M2 \Y{. Let N1 be the binary matroid with
PR (D', A2), and let N2 be the binary matroid with PR A1 • Remove loops, coloops,
series and parallel elements from N1 and N2 • If these elements are not loops, coloops,
series and parallel in M1 and M2 , respectively, then M is not regular; otherwise, let
M{ and M~ be the corresponding reduced versions of M1 and M2 , respectively. Now
M1 and M2 are smaller than M, and Truemper has proved that they are both regular
if and only if M is regular.

The above procedure clearly runs in polynomial time. We will not attempt to
estimate its complexity. Truemper has given a more complicated, direct algorithm
with complexity 0(: S :3).

Intractable Problems

In Section 2 it was shown that computing the girth of a matroid is intractable (i.e.
that there is no oracle polynomial-time algorithm for this problem), and, as noted at
the beginning of Section 6, the same argument applies to show that computing the
connectivity of a matroid is intractable.

In this section we have given polynomial-time algorithms for a small set of "repre­
sentability" questions: Testing whether a matroid is graphic, testing whether a binary
matroid is graphic and testing whether a matroid is regular. The surprising fact is

52

that these are essentially the only "interesting" representability questions for which
polynomial-time algorithms are possible. Thus, at one extreme, testing whether there
exists a field over which a given matroid is representable is intractable, as is the other
extreme case of testing whether a given matroid is representable over a given field.

The most basic result along these lines was proved by Seymour (1981), who showed
that testing whether a matroid is binary is intractable. His proof runs as follows. Let
S = {x 1 , ••• ,xk,Yt,···,Yd be a 2k-element set, define Y = {y1, ... ,yk} and define
two families of subsets A and B of S as follows:

B = {Z = {z1 , ... , zk} ~ S: Zi = Xi or Yi, and : Zn Y: is even}

Then C =AU Bis the family of circuits of a binary matroid Mon S. Now, for
each Z EB, let Mz denote the nonbinary matroid that is identical to M except that
Z is independent (Mz is a matroid since Z is a circuit and hyperplane of M). The
existence of the matroids Mz implies that any algorithm proving that M is binary
must have made at least : B : = 2k-l calls to the independence oracle.

53

8. MATROID FLOWS AND LINEAR PROGRAMMING

Maximum Flows

Let M be a matroid on S. Fix l E S, and let Ci be the family of circuits of M
containing l. Let A be the { 0, 1 }-matrix with columns indexed on elements e E S\ { l}
and rows indexed on circuits C E Ci, such that ace = 1 if and only if e E C. Let 'D1
be the family of cocircuits of M containing l. We say that Mis an l-MFMCmatroid,
that is, has the (integral) max-flow min-cut property with respect to l, if for every
choice of nonnegative integral vector w defined on S\ { l},

where 1 is a vector of 1 's.

A nonnegative vector y satisfying yT A ::; wT is called a flow, or l-flow, and Fy
is its value. A flow of maximum value is a maximum flow. The special element l is
called the demand element: Define M to be a MFMC matroid if it is an l-MFMC
matroid with respect to every choice of demand element l. (In Chapter Seymour
MFM C matroids are called free flowing.)

(8.1) Theorem. (Seymour (1977)) A matroid Mis a MFMC matroid if and only if
it is binary and contains no F7 minor. D

This theorem can be proved using "splitter theory" (Seymour (1980)), from which
it follows that a 3-connected matroid M is binary and has no F; minor if and only if
it is either regular or isomorphic to F7• This structural result gives an algorithm for
computing maximum flows in MFMC matroids, and for testing whether a matroid is
a MFMC matroid. We describe this algorithm for computing flows.

Suppose Mis not 2-connected. Then it is easy to see that Mis a MFMC matroid
if and only if each of its 2-connected components is. In particular, for any choice of
demand element, the computation of a maximum flow for this demand element can
be restricted to the component containing it.

Assume Mis 2-connected but not 3-connected. Let {S1 , S2} be a 2-separation of
M and let C be a circuit of M such that Ci = C n Si =J. 0 (i = 1, 2). Select ei E Ci
(i = 1, 2) and let Mi= M\(Si\Ci)/(Ci\{ei})) (i = 1, 2). Then Mis a MFMC matroid
if and only if M1 and M2 are. Assuming that M1 and M2 satisfy this property, we
may compute maximum flows for M as follows. Select an element l E S and assume
l E S(Mi). Let w be an integral vector defined on S. Restricting w to S2, compute
a maximum ei-flow in M2. Let r be the value of this flow. Now define w' on S1 by
w': (S1\{e2}) =wand w'(e2) = r. Now compute the value of a maximum I-fl.ow on
M1 with respect to w'. It is easy to prove that this is the maximum flow value for
M; moreover, it is not difficult to construct the actual flow for M from the flows for
M1 and M2.

54

Finally, suppose that M is 3-connected. Then M is either isomorphic to F7 or
regular. Both of these properties can be checked, the latter using the algorithm
given in §7. To complete the description of the algorithm for finding maximum
flows in MFMC matroids, we describe a method for computing maximum flows in
regular matroids. This can be done in a variety of ways. The simplest is via linear
programming. Let M be regular and assume I{ is a totally unimodular matrix such
that M = M(K). Then it can be proved that the optimal value of the following linear
program is the value of a maximum /-flow in M:

max(x,: Kx = 0,0 ~Xe~ we(e -/-1))

Since I{ is totally unimodular, this LP will have an integral optimal solution x. By
decomposing this x into multiples of rows of A, we obtain the desired flow vector y.

The characterization of the 1-MFMC matroids, for a fixed l, is very similar to that
for the MFMC matroids, but the proof is much more difficult.

(8.2) Theorem. (Seymour (1977)) A matroid Mis an 1-MFMC matroid with re­
spect to some fixed demand element l if and only if it is binary and contains no F;
minor containing l. D

Let us denote the class of binary matroids that are 1-MFMC matroids with respect
to some fixed l by M,. Truemper (1987) has given a polynomial-time algorithm for
testing membership in M1 and has shown that the maximum flow problem on this
class always has an integral solution by giving an algorithm for computing such a
solution. We describe Truemper's algorithm for computing maximum flows on M,.
To simplify the presentation, we do not concern ourselves with finding integral flows.
We also do not treat membership, although the development given below can easily
be modified to do so.

The problem we will actually solve is the problem of finding shortest /-paths.
An I-path is a set P of the form C\ {l} where C E C1• Given a real-valued "length"
function d defined on S, the length of Pis d(P). Pis shortest if its length is minimum.
Now, to see that we can solve maximum flow problems by computing shortest paths,
note first that to solve a given maximum flow problem, it is sufficient to solve the
corresponding dual:

(8.3) min(wTx: Ax~ 1,x ~ 0).

Of course, (8.3) generally has an enormous number of constraints, and it is no more
obvious how to solve it than to solve the primal. Note, however, that for a given
x 2 0, checking Ax ~ 1 is nothing but the problem of checking whether

minx(C\{l}) 2 1.
CEC1

Thus, if we can compute shortest /-paths in polynomial time, then we can check
for violated inequalities in (8.3) in polynomial time, and so we can solve (8.3) m
polynomial time using the ellipsoid method.

55

Let M E M 1 and consider the problem of computing a shortest I-path with respect
to some nonnegative weight function w defined on S. We begin by discussing several
special cases.

If Mis not 3-connected, this shortest path problem on M can be solved, or, more
precisely, reduced to smaller shortest path problems, using exactly the same methods
we used to compute maximum flows in the non-3-connected MFMC matroids.

Suppose Mis either regular or isomorphic to F7 . The F7 case obviously presents
no difficulty. For the case when M is regular, we can use the following computation,
where M* = M(K*) and K* is totally unimodular:

(8.4) max(x,: K*x = 0, 0:::; Xe:::; we(e-/- l)).

Since regular matroids are MFMC matroids, the optimal value in (8.4) equals the
minimum weight of a circuit containing I.

Suppose that there is a triad { x, y, z} of M, not containing l. (A triad is a cocircuit
of carrdinality 3.) In this case we make use of the following result:

(8.5) Lemma. Suppose that M E M1, { x, y, z} is a triad of M not containing I,
and {e,J,g} is disjoint from S. Then M' E M1, where M' is obtained from M by
creating circuits {e,x,y}, {J,y,z} and {g,z,x}. D

This lemma justifies the following construction. Assign weights We = Wx + wy, WJ =
Wy + Wz and w9 = Wz + Wx to the elements e, f and g, respectively. Let M" =
M'\ { x, y, z}. Now, using any shortest I-path in M", we easily construct a shortest
l-path in M. This procedure reduces by one the number of triads not containing I.

We are now reduced to considering the case when M is 3-connected, not isomorphic
to F7 , not regular, and contains no triad missing l. In this final case, M can be
appropriately decomposed, and the shortest path problem solved on it by solving
appropriate problems on the smaller matroids that result form the decomposition.

Assume that {S1 , S2} is a 3-separation of M with the properties that : S1 :~ 4 :::;:
S2 :, l E S2 and S2 \ { l} spans l. Let X2 be a basis of S2 \ { l} and extend X2 to a basis
X = X1 U X2 of M, where X1 n X2 = 0. Let r'i = Si\Xi (i = 1, 2). Let R be the
PR determined by X (in fact, R is a representation of M since M is binary). Let
X~ ~ X2 be such that X~ U {l} is the fundamental X-circuit determined by l, and let
Xf = X2 \X~. Then we may display Ras

X1
X' 2

X" 2

A1
D'
D"

0
1 A' 2

0 A" 2

where and 1 and O are matrices of 1 's and O's, respectively, of appropriate dimen­
sions. Now if D' is identically 0, then there must be an element in ½ such that the

56

corresponding column of R has a 1 in both A~ and A~; otherwise, Mis not connected.
By pivoting on a 1 in the intersection of such a column with A~, D' becomes nonzero.
We would also like to arrange that rk(D') = 2. Suppose this is not the case. Let .X~
be the subset of elements in x; determined by the nonzero rows in D', and let .X~ be
the subset of elements in X~ determined by the nonzero rows in D", different from
those in R(X;, Yi). Then there is a path in G = G(R(X2, Y;)) between some ele­
ment of x; and some element of x;1

, for in the alternative case M is not 3-connected
(where T is the vertex-set of the component of G containing x;, {T, S\T} is either
a 1- or 2-separation of M if S\T =J 0). Taking a shortest such path, and pivoting
on appropriate l's in the path, results in rk(D') ~ 2. Now, applying essentially the
same argument to A1, letting any nonzero row in A1 play the role of l, it follows that
we may assume R has the following form, for appropriate elements e, f, x, y and z:

X

e

f

A1

D1

y z l

0 -
1 1
1 0 1
0 1 1
D2 A2

lFrom the above representation for M, we construct two matroids M1 and M2
with PR's given by R1 and R2:

We can now state

X

e

f

A1

D1

y z l

TT 0

1 0 1
0 1 1

(8.6) Theorem. Let ME M1 be 3-connected. Assume that Mis not regular, not
isomorphic to F1 and has no triad missing l. Then there is a 3-separation {S1, S2} of
M such that : S1 :~ 4 :S;: S2 :, l E S2, S2 \ { l} spans l and M 1 is either isomorphic to
F7 or is regular. D

There are now two steps left. We must show how to compute a 3-separation of
the form guaranteed by (8.6), and we must show how the resulting decomposition
into M 1 and M2 can be used to compute shortest /-paths. For the computation of
the 3-separation we use the following expedient algorithm. (A much more efficient,
direct algorithm is given in Tseng and Truemper (1986).) For each disjoint pair
{U1, U2}, where l E U2 and : U1 := 4 =: U2 :, we apply the matroid intersection
algorithm to the pair of matroids M' = M/U1 \U2 and M" = M/U2 \U1 to determine
the unique minimal set A ~ S' = S\(U1 U U2) that minimizes rM,(A) + TM11(S1\A).

57

1 Then { U1 U A, S\ (U1 U A)} is a 3-separation if and only if there exists some 3-
separation {Vi,½} such that Ui ~ ¼ (i = 1, 2). Now, by the minimality of the A's,
for any 3-separation {S1 , S2} that satisfies the conditions of Theorem (8.6), we will
find some A determining a 3-separation and such that U1 U A ~ S1 . It follows that
this 3-separation also satisfies the conclusion of the theorem.

We are now in a position to complete the description of a method for finding a
shortest l-path in M. By the computation of the previous paragraph, there is a 3-
separation giving rise to matroids M1 and M 2 satisfying the conditions of (8.6). The
method for finding shortest paths is then straightforward. Set We = w f = W/ = 0
in M 1 . Find the shortest e-, f- and /-paths in M1\{J,l}, M 1 \{e,l} and M 1 \{e,f},
respectively, and let their corresponding lengths be de, di and d,. (These computations
are possible since M1 is either regular or isomorphic to F1.) Now add new elements e',
f' and g' to M2 so that { e', x, y }, {f', y, z} and {g', z, x} are circuits; then delete x,y
and z, denoting the resulting matroid by M~. By Lemma (8.5), M~ E M1; moreover,
M~ has fewer elements than M, and so we may assume (by induction on: S :) that an
algorithm is available to compute shortest I-paths in M~. Set Wi = di for i = e',f',g'.
It is straightforward to see that a shortest I-path in M~, together with the three
shortest paths constructed in M1 can be used to build a shortest [-path in M.

Oriented Matroids and Linear Programming

Matroid theory arises as a combinatorial abstraction of properties of linear depen­
dence. From this viewpoint, oriented matroid theory arises when attention is re­
stricted to ordered fields. Hence, it allows interpretation and generalization of ideas
of real linear algebra. We indicate here how this can be done with linear programming.
It is a very attractive theory, which has also produced new insights and methods in
linear programming. A good reference for this subject is the monograph of Bachem
and Kern (1990).

Oriented matroids are treated in Chapter Welsh. We give a definition that is
useful for our purposes, and explain the relationship with the earlier definition. A
sign vector on S is an element of { 0, 1, -1 } 8 . To each vector in R 8 we associate a sign
vector in the obvious way. For any vector x E R 8 , the support of x is {j E S : x j =/- 0}.
For a subspace L of R 8 , a vector x E L is elementary if x =/- 0 and the support of
x is minimal. The supports of elementary vectors of L are the circuits of a matroid
M, and those of L.1_, the orthogonal complement of L, are the circuits of M*. In
particular, where A is a matrix with columns indexed by S, and L = { x : Ax = 0},
M is the matroid whose independent sets correspond to linearly independent sets of
columns of A. One can easily check that the sets F, F* of sign vectors corresponding
to elementary vectors of L,L1- satisfy:

(8.7) The supports of members of Fare the circuits of a matroid M, and those of

1To see that we can compute A with this property, note that A here is the same as the A in
Theorem (3.6b), where M' plays the role of M1 and M" the role of M2. The minimal A is just the
set of vertices v # s of G such that there exists an (s, v)-dipath.

58

:F* are the circuits of M*;

(8.8) For every circuit C of M (M*), there are exactly two elements x,y of :F (:F*)
such that C is the support of both, and x = -y;

(8.9) If x E :F, y E :F*, and XiYi =/:- 0 for some i, then there exists j, k E S with
XjYi = 1 and XkYk = -1.

For a triple (S, :F, :F*) such that :F, :F* are sets of signed vectors on S, we take
(8. 7)-(8.9) as the definition of a dual pair of oriented matroids. It is not difficult to
see that (S, :F) determines :F*, so oriented matroids do not need to be defined in dual
pairs. (See Chapter Welsh.) It is also unnecessary (and a little inconvenient) to deal
with elementary sign vectors. We have done so because the corresponding matroidal
objects (circuits) are more familiar. The price we pay is that, in applications, we
often have "elementary" as a qualifier when we do not really want it. In many cases,
the following result can be used to get rid of it.

(8.10) Lemma. Let L be a subspace of R 8 and let x E L, x =/:- 0. Then there
exist elementary vectors x1 , x 2

, ••• , xk of L such that I::7=1 xi = x and x~ =/:- 0 implies
X~Xj > 0. 0

As an example, suppose that we are interested in the existence of a non-negative
solution of A'x' = b. By taking A= (A', -b), this is equivalent to the existence of a
non-negative solution of Ax = 0 with a particular component Xe positive. By (8.10)
the latter is equivalent to the existence of such a solution that is also elementary.
So the following oriented matroid theorem (due independently to Bland and Las
Vergnas, see Bland (1977)) gives a characterization. (Notice that both situations in
(8.11) cannot occur, because of (8.9).)

(8.11) Theorem. Let (S,:F,:F*) be a dual pair of oriented matroids, and let e ES.
Then either there exists x E :F with x ~ 0 and Xe = 1, or there exists y E :F* with
y ~ 0 and Ye = 1. 0

Applying (8.10) and (8.11), we have that A'x' = b has a non-negative solution if
and only if there does not exist a vector z ~ 0 in the row space of (A', -b) that is
positive in the last component, that is, if and only if there does not exist y such that
yT A'~ 0, yTb < 0. This is the classical Farkas Lemma; see Chapter Schrijver.

Somewhat similar techniques allow a generalization of the duality theorem of
linear programming. One form of that theorem says that if the problems max(cT x' :
A'x' = b, x' ~ 0) and min(yTb : yT A' ~ cT) have feasible solutions, then they have
ones for which cT x' = yTb. An equivalent statement of the latter condition is that
(yT A' - cT)x' = 0. We handle the objective function cT x' by adding a new variable
x f and a new equation x f - cT x' = 0 as the last equation in the system. Thus, where
the components of x' and the columns of A' are indexed by elements of S\ { e, J}, we

59

get a new problem with unknown vector x E R 8 . So the existence of x' such that
A' x' = b and x' ~ 0 is equivalent to the existence of x such that Ax = 0, Xe = 1 and
xi ~ 0 for j E S\ {f}. The existence of a vector y such that yT A' ~ cT is equivalent
to the existence of a vector z = (yT, 1)A in the row space of A, such that Zj ~ 0 for
j E S\ { e} and z f = 1. If x, y and z have the above properties, then the condition
(yT A' - cT)x' = 0 is equivalent to XjZj = 0 for j E S\{e,f}. Hence, the following
result of Lawrence generalizes the duality theorem.

(8.12) Theorem. Let (S, :F, :F*) be a dual pair of oriented matroids and let e, f E S
withe=/= f. If there exists x E :F with Xe= 1 and Xj ~ 0 for j E S\{f}, and there
exists z E :F* with z f = 1 and Zj ~ 0 for j E S\ { e}, then there exist such x, z with
XjZj=0,jES\{e,f}. 0

Considerable effort has gone into finding constructive proofs of results such as
(8.11) and (8.12). One would like to have, for example, an oriented matroid algorithm
that constructs x and z of (8.12). Bland (1977) found an extension to oriented
matroids of the simplex method of linear programming, although the extension is not
as complete as one might hope. (More recently other algorithms for "optimizing" in
oriented matroids have been introduced. See Bachem and Kern (1990) for references.)

We briefly indicate how the simplex method can be imitated. Consider a basis B
of M, such that e (/. B and f E B. We define a tableau (aij : i E B, j E S) determined
by B as follows. For each i E B, (aij : j E S) is the vector z E :F* whose support is
the fundamental circuit C(S\B, i) of M*, and that also satisfies Zi = 1. It is easy to
show that for each j EB, the vector x defined by Xj = -1, Xk = akj fork E B, and
Xk = 0 fork E (S\B)\ {j}, is in :F, and its support is the fundamental circuit C(B,j)
of M. In particular, the z E :F* determined by choosing i = f above, and the x E :F
determined by choosing j = e, satisfy the condition XjZj = 0 for all j E S\ { e, f} of
(8.12). If this x satisfies Xj ~ 0, j E S\ {f}, then the tableau is primal feasible; if this
z satisfies Zj 2'.'. 0, j E S\ { e}, it is dual feasible.

A strengthening of (8.12) is that (under the same hypotheses) there exists a
tableau that is both primal and dual feasible. A primal simplex method is one that
begins from a primal feasible tableau and performs pivot operations, replacing B by
a basis B' = (B U {j}) \ { k} where j E S\ (B U { e}) violates dual feasibility. There
is a simple rule in ordinary linear programming for choosing k, but it is based on
numerical comparisons, and so is unavailable in the oriented matroid setting. How­
ever, it can be proved that there does exist a choice for k, if the hypotheses of (8.12)
are satisfied. A more serious difficulty is that cycling (repeating a basis) can occur
in a different way from that in ordinary linear programming, making rules for finite
termination considerably more complicated.

Acknowledgment. We are grateful to Kazuo Murota and Andras Sebo for their
comments on earlier versions of this paper.

60

References

BACHEM, A. and W. KERN

[1990] Oriented Matroids from a Polyhedral Point of View, to appear.

BIXBY, R.E.

[1974] .€-matrices and a characterization of binary matroids, Discrete Math. 8, 139-145.
[1982] Matroids and operations research, in: Advanced Techniques in the Practise of

Operations Research, edited by H.J. Greenberg, F.H. Murphy, and S.H. Shaw

(North-Holland, New York) pp. 333-458.

BIXBY, R.E. and W.H. CUNNINGHAM

[1979] Matroids, graphs and 3-connectivity, in: Graph Theory and Related Topics, edited

by J.A. Bondy and U.S.R. Murty (Academic Press, N.Y.) pp. 91-103.

[1980] Converting linear programs to network problems, Math. of Opns. Res. 5, 321-

357.

BIXBY, R.E., W.H. CUNNINGHAM and D.M. TOPKIS

[1985] The poset of a polymatroid extreme point, Math. of Opns. Res. 10, 367-378.

BIXBY, R.E. and A. RAJ AN

[1988] A short proof of the Truemper-Tseng theorem on max-flow min-cut matroids,

Linear Algebra and Appl., 114/115, 277-292.

BIXBY, R.E. and D.K. WAGNER

[1988] An almost linear-time algorithm for graph realization, Math. of Opns. Res. 13,

99-123.

BLAND, R.G.

(1977] A combinatorial abstraction of linear programming, J. Combinatorial Theory B
23, 33-57.

BOUCHET, A.

[1987] Greedy algorithm and symmetric matroids, Math. Programming 38, 147-159.

BREZOVEC, C., G. CORNUEJOLS and F. GLOVER

[1988] A matroid algorithm and its application to the solution of two optimization prob­

lems on graphs, Math. Programming 42, 471-488.

CHANDRASEKARAN, R., and S.N. KABADI

[1988] Pseudomatroids, Discrete Math. 71, 205-217.

CUNNINGHAM, W.H.

61

[1984] Testing membership in matroid polyhedra, J. Combinatorial Theory B 36, 161-

188.

[1985] On submodular function minimization, Combinatorica 5, 185-192.

[1986] Improved bounds for matroid partition and intersection algorithms, SIAM J.

Comp. 15, 948-957.

CUNNINGHAM, W.H. and A. FRANK

[1985] A primal dual algorithm for submodular flows, Math. of Opns. Res. 10, 251-262.

DUNSTAN, F.D.J. and D.J.A. WELSH

[1973] A greedy algorithm for solving a certain class of linear programmes, Math. Pro­

gramming 5, 338-353.

EDMONDS, J.

[1970] Submodular functions, matroids, and certain polyhedra, in: Combinatorial Struc­

tures and their Applications, edited by R.K. Guy, H. Hanani, N. Sauer, J. Schonheim,
(Gordon and Breach, New York) pp. 69-87.

[1979] Matroid intersection, Ann. Discrete Math. 4, 39-49.

EDMONDS, J. and R. GILES

[1977] A min max relation for submodular functions on directed graphs, Ann. Discrete
Math 1, 185-204.

FRANK, A.

[1981] A weighted matroid intersection algorithm, J. Algorithms 2, 328-336.

[1982] An algorithm for submodular functions on graphs, Ann. Discrete Math. 16,

97-120. and

[1984] Finding feasible vectors of Edmonds-Giles polyhedra, J. Combinatorial Theory B

36, 221-239.

FRANK, A. and E. TARDOS

[1984] Matroids from crossing families, in: Finite and Infinite Sets, Eger 1981 edited by
A. Hajnal, (North-Holland, Amsterdam), pp. 295-304.

[1988] Generalized polymatroids and submodular flows, Math. Programming 42, 489-

563.

FUGISHIGE, S.

[1978] Algorithms for the independent flow problems, J. Oper. Res. Soc. Japan 21,
189-203.

[1984] Structures of polytopes determined by submodular functions on crossing families,

Math. Programming 29, 125-141.

62

FUGISHIGE, S., H. ROCK and U. ZIMMERMANN

[1989] A strongly polynomial algorithm for minimum cost submodular fl.ow problems,

Math. of Opns. Res., 14, 60-69.

GABOW, H. and M. STALLMANN

[1985] Efficient algorithms for graphic matroid intersection and parity, extended ab­

stract, in: Automata, Languages and Programming (Springer, Berlin).

[1986] An augmenting path algorithm for the linear matroid parity problem, Combina­

torica 6, 123-150.

GABOW, H. and R.E. TARJAN

[1984] Efficient algorithms for a family of matroid intersection problems, J. Algorithms

5, 80-131.

GABOW, H. and Y. XU

[1989] Efficient theoretic and practical algorithms for linear matroid intersection prob­

lems, Technical Report CU-CS-424-89, University of Colorado.

GROTSCHEL, M., L. LOV Asz and A. SCHRIJVER

[1981] The ellipsoid method and its consequences in combinatorial optimization, Com­

binatorica 1, 169-197.

HASSIN, R.

[1982] Minimum cost fl.ow with set constraints, Networks 12, 1-21.

KABADI, S. and R. CHANDRASEKARAN

[1990] On totally dual integral systems, Discrete Applied Math. 26, 87-104.

KORTE, B. and P. JENSEN

[1982] Complexity of matroid property algorithms, SIAM J. Computing 11, 184-190.

KORTE, B., L. LOVA.SZ, and R. Schrader

[1990] Greedoids (Springer, Berlin).

LAWLER, E.L. and C. MARTEL

[1982] Finding maximal polymatroidal network flows, Math. of Opns. Res. 7, 334-347.

LAWLER, E.L.

[1975] Matroid intersection algorithms, Math. Programming 9, 31-56.

LEHMAN, A.

[1964] A solution of the Shannon switching game, SIAM J. Appl. Math. 12, 687-725.

63

LOVASZ, L.

[1980a] Selecting independent lines from a family of lines in a space, Acta Sci. Univ.

Szeged 42, 121-131.

[1980b] Matroid matching and some applications, J. Combinatorial Theory B 28, 208-236.

[1983] Submodular functions and convexity, in: Mathematical Programming: The State

of the Art, edited by A. Bachem, M. Grotschel and B. Korte (Springer, Berlin)

pp. 235-257.

MIRSKY, L.

[1971] Transversal Theory, (Academic Press, New York).

QI, L.

[1988] Directed submodularity, ditroids, and directed submodular flows, Math. Pro­
gramming 42, 579-599.

SCHONSLEBEN, P

[1980] Ganzzahlige Polymatroid-Intersektions-Algorithmen, thesis, ETH Zurich.

SCHRIJVER, A.

[1978] Matroids and Linking Systems, (Mathematisch Centrum, Amsterdam).

[1984] Total dual integrality from directed graphs, crossing families and sub- and super­

modular functions, in: Progress in Combinatorial Optimization, edited by W.R.

Pulleyblank (Academic Press, New York) pp. 315-362.

SEYMOUR, P.D.

[1977a] A note on the production of matroid minors, J. Combinatorial Theory B 22,

289-295.

[1977b] The matroids with the max-flow mincut property, J. Combinatorial Theory B 23,
189-222.

[1980] Decomposition of regular matroids, J. Combinatorial Theory B 28, 305-359.

[1981a] Matroids and multicommodity flows, European J. Combinatorics 2, 257-290.

[1981b] Recognizing graphic matroids, Combinatorica 1, 75-78.

TARDOS, E.

[1987] An intersection theorem for supermatroids, preprint.

TRUEMPER, K.

[1982] On the efficiency of representability tests for matroids, European J. Combina­

torics 3, 275-291.

[1984] Partial matroid representations, European J. Combinatorics 5, 377-394.

64

[1985] A decomposition theory for matroids, I: General results, J. Combinatorial Theory

B 39, 43-76.
[1986a] A decomposition theory for matroids, Ill: Decomposition conditions, J. Combi­

natorial Theory B 41, 275-305.

[1986b] Max-flow min-cut matroids: Polynomial testing and polynomial algorithms for

maximum flow and shortest routes, Math. of Opns, Res. 12, 72-96.

TSENG, F.T. and K. TRUEMPER

(1986] A decomposition of matroids with the max-fl.ow min-cut property, Discrete Appl.

Math. 15, 329-364.

TUTTE, W.T.

[1965a] Lectures on matroids, J. Res. Nat. Bur. Stand B 69, 1-47.

[1965b] Menger's theorem for matroids, J. Res. Nat. Bur. Stand. B 69, 49-53.

[1966] Connectivity in matroids, Canad. J. Math. 18, 1301-1324.

WELSH, D.J.A.

(1976] Matroid Theory (Academic Press, New York).

65

